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Preface

Hyperspectral imaging has witnessed tremendous growth over the past few years. Still its applica-

tions to new areas are yet to be explored. Many hyperspectral imaging techniques have been devel-

oped and reported in various venues. My first book, Hyperspectral Imaging: Techniques for

Spectral Detection and Classification, referenced as Chang (2003a), was written in an attempt to

summarize the research conducted at that time in my laboratory (remote sensing signal and image

processing laboratory, RSSIPL) and to provide readers with a peek of this fascinating and exciting

area. With rapid advancement in this area many signal processing techniques have been developed

for hyperspectral signal and image processing. This book has been written with four goals in mind.

One is to continuously explore new statistical signal processing algorithms in this area for various

applications. Many results in this book are new, particularly some in Chapters 2, 4, 5–6, 11, 16, 18–

19, 23, 24, 29, 30–31, and 33. A second goal is to supplement Chang (2003a), where many poten-

tial research efforts were only briefly mentioned (in Chapter 18 of the book). A third goal is to

distinguish this book from Chang (2003a) in many ways. Unlike Chang (2003a) where the main

theme was hyperspectral target detection and classification from a viewpoint of subpixel and mixed

pixel analysis, this book is focused on more in-depth treatment of hyperspectral signal and image

processing from a statistical signal processing point of view. A fourth and last goal is to focus on

several unsettled but very important issues that have been avoided and never addressed in the past.

One issue is “how many spectral signatures are required to unmix data?” arising in linear hyper-

spectral unmixing. This has been a long-standing and unresolved issue in remote sensing image

processing, specifically hyperspectral imaging, since the number of signatures to be used for data

unmixing has a significant impact on image analysis while its accurate number is never known in

real applications. Another is “how many pure spectral signatures, referred to as endmembers, are

supposed to be present in the data to be processed?” It is common practice to assume that the

number of signatures used for spectral unmixing is the same number of endmembers.

Unfortunately, such a claim, which has been widely accepted by the community, is not always true

in practical applications (see Chapter 17). The issue of endmembers has not received much interest

in multispectral image analysis because of its low spectral and spatial resolutions that generally

result in mixed data sample vectors. However, due to recent advances in hyperspectral imaging

sensors with hundreds of contiguous spectral bands endmember extraction has become increas-

ingly important since endmembers provide crucial “nonliteral” information in spectral interpreta-

tion, characterization, and analysis. Interestingly, this issue has never been seriously addressed

until recently when it has been investigated by a series of papers (Chang, 2006ab; Chang and

xxiii



Plaza, 2006; Chang et al., 2006; Plaza and Chang 2006) by introducing a new concept of virtual

dimensionality (VD). Besides, some controversial issues result from misinterpreting VD. There-

fore, one of the major chapters in this book is Chapter 5, which revisits VD to explore its utility in

various applications. Unlike the intrinsic dimensionality (ID), also known as effective dimension-

ality (ED), which is somewhat abstract and defined as the minimum number of parameters to rep-

resent general high-dimensional multivariate data, VD is more practical and realistic. It is defined

as the number of “spectrally” distinct signatures particularly developed for hyperspectral data in

which the non-literal (spectral) information is more crucial and vital than information provided by

other dimensions such as spatial information. In particular, an issue arises in how to define the

spectral distinction among signatures in VD estimation. Furthermore, unlike ID that is a one-size-

fits-all definition for all data sets, VD should adapt to data sets used for different applications as

well as vary with the techniques used to estimate VD. In order to address this issue, Chapter 5

explores two types of VD criteria, data characterization-driven criteria and data representation-

driven criteria, to define spectrally distinct signatures, and further decouples the concept of VD

from the techniques used to estimate VD. Consequently, when VD is poorly estimated by one tech-

nique for a particular data set, it is not the definition of VD to be blamed, but rather the technique

used for VD estimation that is not applicable to this particular data set. In addition, an issue related

to VD is “characterization of pixel information.” For example, an anomaly is not necessarily an

endmember and vice versa. So, the issues “what is the distinction between these two?” and “how

do we characterize these two?” become interesting issues in hyperspectral data exploitation to

be discussed in Chapter 18.

Another interesting topic presented in this book is a new concept of “hyperspectral information

compression” introduced in Chapters 19–23. It is different from the commonly used so-called

hyperspectral data compression in the sense that hyperspectral information compression is gener-

ally performed based on the information required to be retained rather than the size of hyperspec-

tral data to be compressed. Therefore, a more appropriate term to be used is “exploitation-based

lossy hyperspectral data compression.” Nevertheless, it should be noted that the definitions

and terminologies used in these chapters are by no means standard.

Finally, an issue of “multispectral imagery versus hyperspectral imagery” is also investi-

gated. It seems that there is no cut-and-dried definition to distinguish these two terminologies.

A general understanding of distinguishing these two is that a hyperspectral image is acquired

by hundreds of contiguous spectral channels/bands with very high spectral resolution, while a

multispectral image is collected by tens of discrete spectral channels/bands with low spectral

resolution. If this interpretation is used, we run into a dilemma, “how many spectral channels/

bands are enough for a remotely sensed image to be called a hyperspectral image?” or “how

fine the spectral resolution should be for a remote sensing image to be considered as a hyper-

spectral image?” For example, if we take a small set of hyperspectral band images with spec-

tral resolution 10 nm, say five spectral band images, to form a five-dimensional image cube, do

we still consider this new-formed five-dimensional image cube as a hyperspectral image or

simply a multispectral image? If we adopt the former definition based on the number of bands,

this five-dimensional image cube should be viewed as a multispectral image. On the other

hand, if we adopt the latter definition based on spectral resolution, the five-dimensional image

cube should be considered as a hyperspectral image. Thus far, it seems that there is no general

consensus on this issue. In Chapter 31, an attempt is made to address this issue from a view-

point of how two versions of independent component analysis (ICA), over-complete ICA, and

under-complete ICA can be used to resolve this long-debated issue in the context of linear

spectral mixture analysis (LSMA). After all, some of these issues may never be settled or

standardized for years to come. Many researchers can always argue differently at their
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discretion and provide their own versions of interpretation. I have no intention of disputing any

of them, but rather respect their opinions.

Since processing hyperspectral signatures as one-dimensional signals and processing hyper-

spectral images as three-dimensional image cubes are rather different, this book makes a distinc-

tion by treating hyperspectral image processing and hyperspectral signal processing in two

separate categories to avoid confusion. To this end, three categories are specifically outlined in this

book: Category A: hyperspectral image processing; Category B: hyperspectral signal processing;

and Category C: applications.

For better understanding, a set of six chapters is included in PART I as preliminaries that

cover fundamentals and provide a basic background required for readers to follow algorithm

design and development discussed in this book. Category A is made up of 15 chapters (Chap-

ters 7–23) treated separately in four different parts, Part II to Part V. Category B consists of

six chapters (Chapters 24–29) in two separate parts, Part VI and Part VII. Finally, applica-

tions make up Category C.

It is worth noting that many materials presented in this book have been only available

after Chang (2003a). Theses include endmember extraction (Chapters 7–11), algorithm design

using different levels of information (supervised linear hyperspectral mixture analysis in

Chapters 12–15), pixel characterization and analysis (unsupervised hyperspectral analysis in

Chapters 16–18), exploitation-based hyperspectral information compression (Chapters 19–23),

hyperspectral signature coding and characterization (Chapters 24–29), and applications

(Chapters 30–32) in Category C.

There are three unique features in this book that cannot be found in Chang (2003a): (1) Part I:

preliminaries (Chapters 2–6); (2) extensive studies of synthetic image-based experiments for per-

formance evaluation; and (3) an appendix on algorithm compendium that compiles recently devel-

oped signal processing algorithms developed in the RSSIPL, all of which are believed to be useful

and beneficial to those who design and develop algorithms for hyperspectral signal/image process-

ing. Because this book also addresses many issues that were not explored in Chang (2003a), it can

be used in conjunction with Chang (2003a) without much overlap, where the latter provides neces-

sary basic background in design and development of statistical signal processing algorithms for

hyperspectral image analysis, especially for subpixel detection and mixed pixel classification.

Therefore, on one end, those who have been involved in hyperspectral imaging and are familiar

with hyperspectral imaging techniques will find this book useful as reference material. On the

other end, those who are new will find this book a good and valuable guide on the topics that may

interest them.

I would like to thank the Spectral Information Technology Applications Center (SITAC) that

provides its HYDICE data to be used for experiments in this book. I would also like to acknowl-

edge the use of Purdue’s Indiana Indian Pine test site and the AVIRIS Cuprite image data website.

I owe my sincere gratitude and deepest appreciation to my former Ph.D. students, Drs.

Sumit Chakravarty, Hsian-Min Chen, Yingzi Du, Qian Du, Mingkai Hsueh, Baohoing Ji,

Xiaoli Jiao, Keng-Hao Liu, Weimin Liu, Bharath Ramakrishna, Hsuan Ren, Haleh Safavi,

Chiun-Mu Wang, Jianwei Wang, Jing Wang, Su Wang, Englin Wong, Chao-Cheng Wu, Wei

Xiong, and MS student, Ms. Farzeen Chaudhary as well as my current Ph.D. student, Shih-Yu

Chen. My appreciation is also extended to my colleagues, Professor Chinsu Lin with the

Department of Forestry and Natural Resources at National Chiayi University, Dr. Ching Wen

Yang who is the Director of Computer Center, Taichung Veterans General Hospital, and Pro-

fessor Ching Tsorng Tsai with the Computer Science Department at Tunghai University. I

would like to thank particularly my former Ph.D. students, Dr. Chao-Cheng Wu who carried

out most of the experiments presented in Chapters 7–11, Dr. Ken-Hao Liu who performed
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Chapter 32, and Professor Antonio J. Plaza who contributed to some part of Chapter 18
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1

Overview and Introduction

The past few years have witnessed tremendous advances in hyperspectral imaging where statistical

signal processing has played a pivotal role in driving algorithm design and development for hyper-

spectral data exploitation. It has attracted attention of those who come from different disciplinary

areas by exploring new applications and making connections between remote sensing and other

engineering fields. In recent years, there has been a significant increase in participation in various

conferences and venues related to this area, which in turn has provided evidence that hyperspectral

signal and image processing has broken away from traditional spatial domain analysis–based

remote sensing and successfully branched out to stand alone as a single research topic, similar to

signal processing that evolved as a separate area from communications in the late 1970s. On the

contrary issues related to high spectral resolution provided by hyperspectral imaging sensors have

also changed the ways in which algorithms are designed and developed. As a consequence, many

problems such as subpixels and mixed pixels that are generally encountered in hyperspectral image

processing, but do not occur in classical two-dimensional (2D) image processing, have become

major issues for traditional spatial domain-based techniques. This is because the concept of

“seeing-is-believing” by visual inspection, which has been widely used in image processing, can-

not resolve issues of targets that are completely embedded in a single pixel or partially but do not

fully occupy a single pixel, in which case only spectral properties can be used to characterize such

targets for data analysis. Therefore, to distinguish such spectral characterization-based analysis

from the traditional spatial domain–based analysis, the former is referred to as nonliteral analysis

as opposed to the latter termed as literal analysis.

Due to complicated environments in real-world problems many uncontrollable parameters are

also beyond our grip. In order to explore insights into algorithm design, the use of synthetic images

to simulate various scenarios to substantiate designed algorithms for performance analysis

becomes an effective proof-of-concept evaluation tool. Such synthetic images can be simulated by

either real image scenes or laboratory data sets for various applications. Unfortunately, such syn-

thetic image-based computer simulations have received little attention in the past. Accordingly,

one of the major features that readers will find in this book is an extensive use of synthetic image-

based experiments in algorithm design and analysis for qualitative as well as quantitative perform-

ance evaluation. Another unique feature of this book is that the algorithms derived and developed

in this book can be implemented with little difficulty via the MATLAB, a widely accepted software

package developed by the MATHWORK for engineering applications. This advantage allows read-

ers to implement their algorithms. To further facilitate this benefit MATLAB codes of many

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
� 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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popular algorithms developed in this book are also made available in the appendix at the end of this

book. Most importantly, this book has also expanded its use of images in Chang (2003a) to include

two more popular image scenes, Purdue’s Indian Pine test site in Indiana and Cuprite image scene

in Nevada, both of which are available on web site so that they can be used by those who develop

new algorithms, to validate and evaluate their designed algorithm for performance analysis as well

as to conduct their own comparative study. Last but not the least, this book includes an appendix

that compiles many algorithms developed in the Remote Sensing Signal and Image Processing

Laboratory (RSSIPL) at the University of Maryland, Baltimore County (UMBC). Such an algo-

rithm compendium should serve as a valuable guide for people who are interested in applications

of hyperspectral data processing.

1.1 Overview

Hyperspectral signal and image processing has become a fast-growing area that bridges communi-

ties of remote sensing and signal/image processing due to the fact that many problems arising in

the former can be reformatted and solved by the latter. A good example is an increasing number of

conferences in both communities and a wide range of publications in both signal and image proc-

essing journals and traditional remote sensing journals. Particularly, in recent years significant

research and development in hyperspectral imaging has resulted in at least hundreds, if not thou-

sands, of publications in various journals. Many new findings have been reported in many annual

meetings and venues such as IEEE International Geoscience and Remote Sensing Symposia; SPIE

conferences on Defense and Security (previously known as AeroSense); Algorithms and Technol-

ogies for Multispectral, Hyperspectral and Ultraspectral Imagery (annually held in April); SPIE

International Symposium on Optical Science & Technology (Remote Sensing Symposium, specifi-

cally Conferences on Satellite Data Compression, Communication, and Processing and Confer-

ences on Imaging Spectrometry, annually held in August); Conference on Imaging Spectrometry;

EOS/SPIE Symposium on Remote Sensing; IEEE GRSS Workshop on Hyperspectral Image and

Signal Processing–Evolution in Remote Sensing (WHISPERS); and so forth. Accordingly, any

attempt to cover in a single book all possible areas in this field would be impossible and unrealistic.

Keeping this reality in mind the book is written based on personal preference and is only focused

on recent works that have been done mostly in RSSIPL at UMBC, but have not been covered in my

previous book (Chang, 2003a). Therefore, there is not much overlap between this book and Chang

(2003a). Hence this book can be considered as a sequel of Chang (2003a). Specifically, this book

takes a rather different yet unique approach compared with that adopted in Chang (2003a), by

treating hyperspectral image processing and hyperspectral signal processing as two separate sub-

jects where the former processes a hyperspectral image as an image cube and the latter considers a

hyperspectral signature as a one-dimensional signal so that no sample correlation such as spectral

correlation among pixels in a hyperspectral image cube can be taken into account and used for

algorithm design. Within this context the topics presented in this book are organized in the follow-

ing order.

I. Preliminaries

A. Hyperspectral Image Processing

II. Endmember Extraction

III. Supervised Linear Hyperspectral Mixture Analysis

IV. Unsupervised Hyperspectral Image Analysis

V. Hyperspectral Information Compression

B. Hyperspectral Signal Processing
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VI. Hyperspectral Signal Coding

VII. Hyperspectral Signal Characterization

C. Applications

Appendix: Algorithm Compendium

Several recent books on hyperspectral imaging are also available in the public domain (Chang.

2003a; 2006b; 2007a; Plaza and Chang, 2007a; Varshney and Arora, 2004) and the subjects cov-

ered in these books are somewhat selective. For example, the book by Varshney and Arora (2004)

is focused on some specific techniques, for example, independent component analysis, support

vector machines, and Markov random field. The book by Chang (2003a) is primarily devoted to

nonliteral statistical signal processing techniques developed for subpixel detection and mixed

pixel classification. The two books edited by Chang (2006b) and (2007a) are collections of most

recent results contributed by researchers who are experts and currently active in hyperspectral

imaging. Another book edited by Plaza and Chang (2007a) intends to target specific topics in

high-performance computing, which has grown rapidly due to the need of processing enormous

data volumes and has also become increasingly important in remote sensing data processing.

Unlike the above-mentioned books this book explores many interesting research topics resulting

from issues that are generally either overlooked or neglected in multispectral imagery as well as

issues that were not addressed or fully explored in Chang (2003a).

1.2 Issues of Multispectral and Hyperspectral Imageries

Because of its low spectral resolution a multispectral image pixel vector usually does not have

information as rich as a hyperspectral image pixel vector does. In this case, multispectral image

processing must rely on image spatial information and correlation to make up insufficient spectral

information resulting from a few discrete spectral bands. Therefore, an early development of mul-

tispectral image processing has focused on spatial domain-based techniques. However, with recent

advent of very high-spectral resolution hyperspectral imaging sensors many material substances

that cannot be resolved by multispectral imaging sensors can now be uncovered by hyperspectral

imagers for data analysis. As a consequence, targets or objects of interest for multispectral and

hyperspectral image analyses are quite different. In multispectral image analysis land cover/land

use is often of major interest. Therefore, the developed techniques generally perform pattern clas-

sification and analysis in the sense that every single pixel of an image must be classified into one of

a number of pattern classes, each of which corresponds to one particular spatial class. On the con-

trary, the objects of interest in hyperspectral image analysis are usually targets with particular spec-

tral characteristics such as man-made targets, anomalies, or rare targets. The targets of these types

generally appear either in a form mixed with a number of material substances or at subpixel level

with targets embedded in a single pixel vector due to their size that is smaller than the ground

sampling distance (GSD). Besides, these types of targets usually appear unexpectedly and their

probabilities of occurrence are also low. Most importantly, their sample pool may also be relatively

small and their sizes may only have limited spatial extent. As a consequence, such targets may not

be easy to be visually identified or inspected with prior knowledge; thus, they can be considered as

insignificant targets but are indeed of major interest from an intelligence or information point of

view. For example, these targets may include special spices in agriculture and ecology, toxic

wastes in environmental monitoring, rare minerals in geology, drug/smuggler trafficking in law

enforcement, military vehicles in combat, abnormality in battlefields, landmines in war zones,

chemical/biological agents in bioterrorism, weapon concealment and mass graves in intelligence

gathering, and so on. Under such circumstances, they can be only detected at mixed or subpixel
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level and traditional spatial domain (i.e., literal)-based image processing techniques may not be

suitable or effective. So, the extraction of such targets must rely on their spectral profiles and the

techniques developed for hyperspectral image analysis should perform target-based detection, dis-

crimination, classification, identification, recognition, and quantification as opposed to pattern-

based multispectral imaging techniques. As a result, a direct extension of multispectral imaging

techniques to hyperspectral imagery may not be effective in hyperspectral data exploitation

because pattern class information and correlation provided by these targets may be too little to be

used for performing hyperspectral image analysis. In order to address this issue the techniques in

Chang (2003a) are developed directly from a hyperspectral imagery point of view for spectral

detection and classification. This book expands the scope of Chang (2003a) to cover a wider range

of applications including endmember extraction, unsupervised target detection, information com-

pression, and hyperspectral signal coding and characterization, none of which is studied in Chang

(2003a).

1.3 Divergence of Hyperspectral Imagery from Multispectral Imagery

The hyperspectral imagery has changed the way we think of multispectral imagery. This is because

we now have hundreds of contiguous spectral bands available at our disposal. So, one major issue

is how to effectively use and take advantage of spectral information provided by these hundreds of

spectral bands for various applications in data exploitation, for example, target detection, discrimi-

nation, classification, quantification, and identification. This interesting issue can be addressed by

the following two interesting examples. The first example uses real-to-complex analysis to illus-

trate why it is inappropriate to simply extend multispectral imaging techniques to process hyper-

spectral imagery. The second example uses the well-known pigeon-hole principle in discrete

mathematics (Epp, 1995) to illustrate how hyperspectral imagery can be addressed by a rationale

completely different from that used for multispectral imagery.

1.3.1 Misconception: Hyperspectral Imaging is a Natural Extension
of Multispectral Imaging

While dealing with hyperspectral imagery there is a general consensus that hyperspectral imagery

is a natural extension of multispectral imagery based on an assumption that a hyperspectral image

has more spectral bands for data collection than a multispectral image does. As a result, it may lead

to a misconception that hyperspectral imaging problems can be solved by multispectral imaging

techniques by simply taking advantage of its expanded spectral bands. A similar misconception

also occurs in hyperspectral data compression where researchers in data compression community

consider a hyperspectral data as an image cube so that 3D image compression processing tech-

niques developed for videos can be simply applied to hyperspectral imagery as a 3D image cube

without extra precaution (see Part V: Chapters 19–23). Unfortunately, over the past few years these

misconceptions have somewhat directed the way we design and develop hyperspectral imaging

techniques.

To understand the fundamental difference between multispectral imaging and hyperspectral

imaging, we use a simple mathematical example to illustrate a similar misconception, which is

finding derivatives in real analysis and complex analysis. Since real variables can be considered as

real parts of complex variables, this may lead to a brief that real analysis is a special case of com-

plex analysis, which is certainly not true. One piece of clear evidence is derivatives. When a deriv-

ative is calculated in the real line, the direction with respect to which a derivative is calculated

along the real axis is constrained either to the left or to the right. However, the direction along
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which a derivative is calculated by complex analysis can be along any curve in the complex plane.

As a result, calculating a complex derivative is more sophisticated than simply extending the way

derivatives are calculated in real analysis. A natural extension of real derivatives is partial deriva-

tives in complex analysis along two axes: x-axis and y-axis. However, it is not true for any deriva-

tive calculated in the complex plane. This is because the direction along which the derivative is

calculated is not only limited to x- and y-axes but it must also take into account all directions that

are more likely curves instead of lines. When such a derivative occurs it is called total differentia-

ble or analytic and must satisfy the so-called Cauchy–Riemann equation that allows a differentia-

ble complex variable to be expanded as a power series which is much stronger than only

derivatives. This simple example explains why complex analysis is not a natural extension of real

analysis and a direct extension of real derivatives to complex derivatives as partial derivatives can

only achieve limited success to some extent. This example sheds some light on a similar key differ-

ence between multispectral and hyperspectral images. In its early days multispectral imagery has

been used in remote sensing mainly for land cover/land use classification in agriculture, disaster

assessment and management, ecology, environmental monitoring, geology, geographical informa-

tion system (GIS), and so on. In these applications, low spectral resolution multispectral imagery

may provide sufficient information for data analysis and the techniques developed for multispectral

image processing are primarily based on pattern classes that take advantage of spatial correlation

to perform various tasks. Compared to multispectral imagery, hyperspectral imagery utilizes hun-

dreds of contiguous spectral bands to perform target-class analysis. This is the major difference

between hyperspectral imagery and multispectral imagery. Specifically, the objects of interest in

hyperspectral imagery are no longer patterns of large areas as considered in multispectral imagery.

Instead, hyperspectral image analysts are interested in those objects that cannot be visualized by

inspection or with prior knowledge due to limited extent of their spatial presence. As a result,

hyperspectral imaging is generally developed to perform target class–based image analysis where

image background is usually of no interest. Such examples include anomaly detection, endmember

extraction, man-made target detection, and so on, where the spatial information provided by these

objects of interest is generally very little. So, if the hyperspectral imagery is treated as a natural

extension of the multispectral imagery, its success can be very limited due to its use of spatial

information to perform pattern class–based image analysis rather than target class–based image

analysis, a similar dilemma that also occurs between real and complex derivatives. Accordingly,

we must reinvent the wheel and re-design and develop new hyperspectral imaging techniques

rather than directly derive those adopted from multispectral image techniques. One promising

approach is the use of the following pigeon-hole principle described in the following section.

1.3.2 Pigeon-Hole Principle: Natural Interpretation of Hyperspectral Imaging

Suppose that there are p pigeons flying into L pigeon holes (nests) with L < p. According to the

pigeon-hole principle, there exists at least one pigeon hole that must accommodate at least two or

more pigeons. Now, assume that L is the total number of spectral bands and p is the number of

targets of interest. By virtue of the pigeon-hole principle, we can interpret a pigeon hole as a spec-

tral band while a pigeon is considered as a target (or an object) of interest. With this interpretation

if L > p, a spectral band can be used to detect, discriminate, and classify a distinct target. Since

there are hundreds of spectral bands available from hyperspectral imagery, technically speaking,

hundreds of spectrally distinct targets can be accommodated by these spectral bands, namely one

target by one particular spectral band. In order to materialize this idea, three issues need to be

addressed. First, the number of spectral bands, L, must be greater than or equal to the number of

targets of interest, p, that is, L � p. This seems always true for hyperspectral imagery, but is not
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necessarily valid for multispectral imagery, where L < p in the latter is usually true. For example,

3-band SPOT multispectral data may have difficulty with classifying more than three target sub-

stances present in the data using the pigeon-hole principle. However, the benefit of L � p also

gives rise to a challenging issue known as “curse of dimensionality” (Duda and Hart, 1973), that

is, “what is the true value of p if L � p.” This has been a long-standing issue for any hyperspectral

image analyst to resolve because it is nearly impossible to know the exact value of p in real-world

problems. Moreover, even if the value of p can be provided by prior knowledge it may not be

reliable due to many unexpected factors that cannot be known a priori. In multivariate data analy-

sis, the value of p is described by the so-called intrinsic dimensionality (ID) (Fukunaga, 1990),

which is defined as the minimum number of parameters used to specify the data. However, this

concept is only of theoretical interest. No method has been proposed regarding how to find it in the

literature. A common strategy is to estimate the p on a trial-and-error basis. A similar problem is

also encountered in passive array processing where the number of signal sources, p, arriving at a

linear array of sensors is of major interest. In order to estimate this number, two criteria, an infor-

mation criterion (AIC) suggested by Akaike (1974) and minimum description length developed by

Schwarz (1978) and Rissanen (1978), have been widely used to estimate the value of p.

Unfortunately, a key assumption made on these criteria is that the noise must be independent and

identically distributed, a fact that is usually not a valid assumption in hyperspectral images as

shown in Chang (2003a) and Chang and Du (2004). In order to cope with this dilemma, a new

concept called virtual dimensionality (VD) was coined and suggested by Chang (2003a) to esti-

mate the number of spectrally distinct signatures in hyperspectral imagery. It is also based on the

pigeon-hole principle where VD is used to estimate the number of pigeons with the total number of

spectral bands interpreted as the number of pigeon holes. The last issue to be addressed is that once

a spectral band is being used to accommodate one target, it cannot be used again to accommodate

another distinct target. One way to do so is to perform orthogonal subspace projection (OSP)

developed by Harsanyi and Chang (1994) on a space linearly spanned by the already found targets

to find an orthogonal complement space from which only new targets can be generated. Equiva-

lently speaking, the spectral bands used to accommodate previous targets cannot be used again to

accommodate a new target. Through a series of such OSP operations no two distinct targets will be

specified and accommodated by a single spectral band. In other words, all the found targets must

be accommodated in separate mutual orthogonal subspaces. In terms of the pigeon-hole principle it

implies that no two pigeons will be allowed to fly into a single pigeon hole. Here, one remark is

noteworthy. When it says that one target is accommodated and specified by one spectral band, it

simply means that the target can be best spectrally characterized by this particular band compared

to other bands. So, this band is chosen to be its identity like its fingerprint or DNA. If two targets

happen to have the same band being used for their best spectral characterization then there is no

way to discriminate one from the other. In this case, it implies that two pigeons fly into the same

pigeon hole. More specifically, one pigeon hole is used to accommodate two flying-in pigeons,

both of which reside in a single pigeon hole.

Once these three issues, that is, (1) L � p, (2) determination of p, and (3) no two distinct target

signatures to be accommodated by a single spectral band, are resolved, the idea of applying the

pigeon-hole principle to hyperspectral data exploitation can be realized and becomes feasible.

More specifically, using spectral bands as a means to perform detection, discrimination, classifica-

tion, and identification without accounting for spatial information or correlation provides an alter-

native approach, to be called nonliteral analysis as opposed to the spatial domain-based approach,

to be called literal analysis. Such a nonliteral analysis is particularly important for two types of

targets. One is that targets are small or insignificant due to their limited spatial presence and cannot

be effectively captured by spatial correlation or information. The other is that targets of the same
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type are spatially separated so that their spatial correlation is actually very weak and little in which

case the spatial domain-based literal analysis may have difficulty in finding them spatially corre-

lated. The only way to group them together is based on their spectral characteristics regardless of

where they are spatially located.

Interestingly, the pigeon-hole principle also sheds light on differentiation of hyperspectral imag-

ery from multispectral imagery. Through the relationship between the total number of spectral

bands, L, and the number of signal sources to be accommodated, p, discussed above, a multiple-

band remote sensing image can be considered as a hyperspectral image if L � p and a multi-

spectral image otherwise (i.e., L < p). More details of this interpretation can be found in

Chapter 31.

Furthermore, VD can be also interpreted by the pigeon-hole principle, and its potential in hyper-

spectral data exploitation has been demonstrated in many applications, for example, linear spectral

mixture analysis (Chang, 2006c), dimensionality reduction (Wang and Chang, 2006a, 2006b), band

selection (Chang and Wang, 2006), and so on. Chapter 5 will revisit VD for more details.

1.4 Scope of This Book

While writing this book it is important to consider hyperspectral image processing and hyperspec-

tral signal processing as two different research areas and treat them separately. When hyperspectral

data are processed as image cubes, it is called hyperspectral image processing where data samples

are image pixel vectors and both spectral and spatial correlation among image pixel vectors can be

made available for data processing. On the other hand, when hyperspectral data are processed as

signatures it is called hyperspectral signal processing where a signature is a one-dimensional sig-

nal, which represents its spectral profile over a range of wavelengths for signature characterization.

In this case, only interband spectral correlation within the signature is available for data processing

and no other information such as sample spatial or spectral correlation used in hyperspectral image

processing is available for signature processing. Such hyperspectral signals include data obtained

from laboratories, databases, and spectral libraries where no data sample spatial/spectral correla-

tion is available. Therefore, techniques developed for hyperspectral image processing may not be

directly applicable to hyperspectral signal processing and vice versa. Unfortunately, it seems that

there is no concern in distinguishing one from another when it comes to algorithm design. This

book is believed to be the first to do so by treating hyperspectral image processing and hyperspec-

tral signal processing in two separate categories: Category A: Hyperspectral Image Processing

treated in Parts II–V; Category B: Hyperspectral Signal Processing treated in Parts VI–VII.

In order to make this book self-contained, preliminaries are also included as Part I to cover basic

knowledge that provides readers with necessary background required to read this book. In particu-

lar, it integrates many scattering results into different chapters so that readers can follow through

materials easily without looking for other references. Each chapter in Part I can be read indepen-

dently with little interruption while also keeping the flow and all the chapters coherent each other.

Part II is endmember extraction that is one of most crucial tasks in hyperspectral data exploita-

tion and has recently become increasingly important due to significantly improved high spatial and

spectral resolution provided by hyperspectral imaging sensors. According to the definition given

by Schowengerdt (1997), an endmember is an idealized, pure signature for a class, more specifi-

cally, spectral class. For multispectral imagery, an endmember may nowhere be found since most

data sample vectors may be heavily mixed due to low spatial and spectral resolution. As a result,

the importance of endmember extraction has been overlooked and not been a major subject in

multispectral image analysis. By contrast, with recent advances of hyperspectral imaging sensors

many subtle material substances that cannot be resolved by multispectral imagery can be now
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revealed by hyperspectral imagery. These substances are generally not known a priori and can be

only diagnosed by high spectral resolution. Endmembers are considered to be one of such sub-

stances. In general, their existence in image data cannot be detected visually. Most importantly,

once endmembers are present, their spatial extent is relatively limited. Besides, their sample pools

are also very small. Accordingly, they may appear as anomalies. In this case, spatial characteristics

offer little advantage in finding endmembers. In the past, the image classification in multispectral

image processing has been often performed by pattern classification (land use/land cover classifi-

cation) where each image pixel must be classified into a particular class in accordance with a cer-

tain classification criterion. However, endmembers are generally rare. Unless they are treated and

extracted as targets of interest, their detection and extraction is very challenging. Additionally,

because of the lack of spatial patterns specified by endmembers the effectiveness of endmember

detection or extraction will be very likely to be compromised by spatial-based pattern classification

techniques. In order to address this issue, Chang (2003a) has focused on target classification than

on pattern classification, in which case only targets of interest are of major concern where image

background is only used for suppression. However, such an important issue of endmember extrac-

tion was not investigated and explored in Chang (2003a), when this subject was not mature but

now will be one of the major subjects in this book studied in great detail in Part II.

Part III revisits supervised linear spectral mixture analysis (SLSMA), which was discussed in

great length in Chang (2003a). This part rederives a least squares-based orthogonal subspace pro-

jection (LSOSP) from the signal-to-noise ratio (SNR)-based orthogonal subspace projection so that

LSOSP and OSP essentially operate the same matched filter subject to a constant k, which
accounts for least squares estimation error. More specifically, LSOSP performs as an estimator by

including the k, while OSP operates as a detector by setting k ¼ 1. By using different matched

signatures LSOSP and OSP can interpret many commonly used operators such as constrained

energy minimization (CEM) in Chang (2003a) and RX detector developed by Reed and Yu (1990).

Furthermore, OSP and LSOSP can be extended in three different directions. One is to replace the

least squares error criterion with Fisher’s ratio to derive Fisher’s LSMA (FLSMA). Another is to

impose weight constraints on spectral bands to derive weighted abundance-constrained LSMA

(WAC-LSMA). Finally, a third direction introduces a nonlinear kernel into LSMA to derive ker-

nel-based LSMNA (KLSMA).

Part IV extends SLSMA developed in Part III to unsupervised LSMA (ULSMA) where prior

knowledge of signature information is not available. Under such circumstance two major issues

that do not occur in supervised analysis need to be addressed. One is how many signature sources

of interest to be used for LSMA and the second is how to find them. Once these issues are resolved

ULSMA becomes SLSMAwhere approaches presented in Part III are readily applied.

Part V is hyperspectral information compression. One challenging issue in processing hyper-

spectral imagery is its huge data volume, which may result in high computational cost of data

processing, long delay of data transmission and communications, and difficult management of

data storage and archiving. Another is how to compress spectral information resulting from highly

correlated spectral bands without sacrificing vital information. The first issue can be addressed by

developing techniques reducing data size, referred to as data reduction/compression, while the sec-

ond issue can only be addressed by developing techniques removing redundant information,

referred to as information compression. These two types of compression are completely different

and should be dealt with separately. Unfortunately, many hyperspectral data compression tech-

niques have not taken this distinction into account. But, it is important to differentiate information

compression from data compression since the compression ratio used in data compression is meas-

ured by data size, which does not imply compression of information. In other words, information

compression is determined by various applications with specific information required to be
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retained during a compression process. This type of information compression can be considered as

exploitation-based lossy compression. To address this issue, the commonly used terminology,

hyperspectral data compression, is referred to as hyperspectral information compression in this

book and can be interpreted as exploitation-based lossy hyperspectral compression, which includes

two major spectral compression techniques, spectral dimensionality reduction and spectral band

selection, each of which will be discussed in great detail in Part V.

Up to now the hyperspectral data considered in previous parts are image cubes where all

the data sample vectors are image pixel vectors. However, in many situations the hyperspec-

tral data may only be obtained as signature vectors by nonimage sensors or from spectral

libraries or databases. In this case, the data to be dealt with is a one-dimensional hyperspec-

tral signal as a signature vector rather than as a pixel vector in three-dimensional image cube.

So, Category B in this book is primarily focused on hyperspectral signal processing, which

consists of two parts, Part VI and Part VII. Part VI considers hyperspectral signal coding

where information compression is performed on a hyperspectral signature vector to capture

its unique spectral profile to serve its fingerprint for signature discrimination, detection, clas-

sification, and identification. In other words, instead of considering image data as a 3D image

cube, the idea of hyperspectral signal coding is to explore spectral characteristics and further

to capture changes in the spectral profile within a single signature vector as spectral marks so

that a single signature vector can be encoded by its fingerprint as a code word to represent its

identity. On the other hand, hyperspectral signal coding can also be considered as quantiza-

tion that discretizes hundreds of spectral values into a finite set of discrete values. So, it can

be viewed as an analog-to-digital (A/D) converter and intends to find the best possible repre-

sentation of a hyperspectral signature vector for a given bit rate. For a multispectral signature

vector the spectral resolution is low and only a few spectral values are available for quantiza-

tion. So, signature coding may not be effective to characterize spectral signature properties.

This may no longer be true for a hyperspectral signature vector where hundreds of contigu-

ous spectral bands may provide sufficient information for spectral characterization. Interest-

ingly, hyperspectral signature coding has never been of major interest in hyperspectral data

analysis. This part investigates three types of hyperspectral signal coding: binary coding, vec-

tor coding, and progressive coding, where the binary coding can be viewed as memoryless

coding as opposed to the vector coding and progressive coding, which can be regarded as

memory coding. Comparing the hyperspectral signature coding in Part VI that makes hard

decisions on the spectral profile of a signature vector, Part VII presents techniques that make

soft decisions on a signature vector to perform hyperspectral signature analysis in the sense

of hyperspectral signature characterization. In this case, the knowledge of a reference signa-

ture is generally required for a hyperspectral signature vector to be characterized.

Unfortunately, hyperspectral signature analysis via spectral characterization has not received

much attention in the last few years. Part VII investigates this issue by developing three dif-

ferent approaches: band selection for signature characterization, Kalman filter for

signature estimation, and wavelets for signature representation.

The last category of this book is Category C: Applications, which show how hyperspectral

imaging techniques can be applied to various problems such as size estimation of subpixel

targets, concealed target detection, and how to take advantage of hyperspectral imaging tech-

niques to resolve issues of multispectral imagery. Specifically, a new application of hyper-

spectral imaging to magnetic resonance imaging is included to demonstrate its utility in

medical imaging.

To conclude this book, an appendix is also included for readers’ reference. It is an algorithm

compendium that compiles important algorithms developed in the RSSIPL at UMBC.
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1.5 Book’s Organization

This book is organized in accordance with the order laid out by seven parts in three categories

presented in the previous section. Each part can be read independently while keeping sufficient

correlation with other parts.

1.5.1 Part I: Preliminaries

The preliminaries in Part I help readers grasp sufficient knowledge to follow this book without

difficulty. It consists of six chapters.

Chapter 2 is Fundamentals of Subsample and Mixed Sample Analyses. It uses a simple example

to illustrate issues of subsamples and mixed samples encountered in detection and classification. It

then walks through various approaches using hard and soft decisions for subsample detection and

mixed sample classification. It includes many techniques currently being used and available in the

literature.

Chapter 3 introduces Three-Dimensional Receiver Operating Characteristics (3D ROC)

Analysis that can be used as an evaluation tool for soft decision-making performance for

hyperspectral target detection and classification. An ROC curve is defined as a curve plotted

based on detection probability versus false alarm probability. An analysis that uses ROC curves

to evaluate the effectiveness of a Neyman–Pearson detector is called ROC analysis. A major

advantage of ROC analysis is that there is no need of specifying a particular cost function. For

example, least squares error or signal-to-noise ratio may be a good criterion for detection of

problems in signal processing and communications, but may not be appropriate to measure

image quality or classification accuracy. This is essentially true when it comes to design of

computer-aided diagnostic systems where their effectiveness is measured by their end users in

which case the cost function is generally human errors. Furthermore, ROC analysis is devel-

oped for detection in the context of binary hypothesis testing problems. In chemical/biological

warfare (CBW) defense, estimation of chemical/biological (CB) agent abundance is more criti-

cal than CB agent detection since the lethal level of concentration of different CB agents poses

different threats. The detection-based ROC curves cannot address this need. Chapter 3 is

included to resolve this issue where a 3D ROC analysis is developed by creating a third dimen-

sion to specify target abundance so that a 3D-ROC curve can be generated and plotted based

on three parameters, detection probability, PD, false alarm probability, PF, and threshold t.
Consequently, the traditional detection-based ROC curves, referred to as 2D ROC curves,

become a special case of 3D ROC curves. As noted, most hyperspectral imaging techniques

are actually derived from various aspects of estimation, which produce abundance fractions of

signatures of interest such as linear spectral mixture analysis. In order to evaluate their per-

formance for quantitative analysis the estimated abundance fractions must be converted to

hard decisions via a threshold t. The 3D ROC analysis provides a feasible tool for this

purpose.

Chapter 4 is Design of Synthetic Image Experiments. One of major difficulties in algorithm

design is how to evaluate various algorithms objectively and impartially on a fair common ground.

In doing so, the first concern is the data to be used for experiments that must be available and

assessable for those who are interested in comparing their designed algorithms to others. This can

be done by using data sets in the public domain. A second concern is that the experiments should

be repeatable for performance assessment. A third and most important one is design of experi-

ments that should have controllable parameters to generate desired ground truth to address issues

to be investigated. Chapter 4 takes advantage of real image scenes available on web site to simulate

synthetic images with various scenarios that can be designed for this purpose.
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Chapter 5 is Virtual Dimensionality of Hyperspectral Data that revisits a recently developed

concept called virtual dimensionality defined in Chapter 17 of Chang (2003a) as the number of

spectrally distinct signatures in hyperspectral imagery. VD has been found to be very useful in

many applications (Chang, 2006a, 2006b) such as DR in Wang and Chang (2006a), BS in Chang

and Wang (2006), and endmember extraction in Wang and Chang (2006b). Accordingly, a new

way of reinterpreting VD becomes imperative. Chapter 5 is a result of such an effort where VD is

explored for new interpretation and various techniques are also developed to estimate VD for dif-

ferent applications.

Chapter 6 is Data Dimensionality Reduction. It provides a comprehensive study and survey on

many popular and commonly used dimensionality reduction (DR) techniques, which can be treated

in two separate categories: dimensionality reduction by transform (DRT) and DR by band selection

(DRBS). Specifically, DRT comprises two types of transforms: component analysis (CA)-based

transforms, which are derived from statistics of various orders including 2nd order statistics-based

principal components analysis (PCA), 3rd order statistics-based skewness, 4th order statistics-

based kurtosis and statistical independency-based independent component analysis (ICA) and fea-

ture extraction (FE)-based transforms, Fisher’s ratio-based linear discriminant analysis (FLDA),

and linear mixture model-based OSP. As an alternative to DRT, DRBS selects an appropriate

subset of bands from the original band set to replace the high-dimensional original data set with

a low-dimensional data set represented by selected bands. So, technically speaking, DRBS per-

forms data reduction, not data compression, by reducing band dimensionality without processing

data in the sense that selected bands form a new data cube with all the unselected bands being

discarded. While both DRT and DRBS accomplish the same goal, they present different ratio-

nales in DR. The former is developed to compact data information in low dimensions via a

transform, while the latter represents the original high-dimensional data by its low-dimensional

data via band selection. As a consequence, the effectiveness of DR and BS is measured by the

transform used for DR and criteria used for BS. Nevertheless, DRT and DRBS do share the

same fundamental issue, that is, “how many dimensions are required to be retained after DRT?”

and “how many bands are needed for DRBS to faithfully represent the original data?.” Interest-

ingly, such an issue has been either overlooked or intentionally avoided in the past because

finding an effective criterion for determination of the number of dimensions to be retained or

bands to be selected is extremely challenging. Figure 1.1 lists six chapters in Part I to provide

background knowledge for follow-up chapters.

VD, Chapter 5 

Fundamentals, Chapter 2 

DR, Chapter 6 

PART I: PRELIMINARIES 

Hyperspectral Information Compression, PART V 

Endmember 
Extraction, PART II  

Supervised LSMA PART 
III  

3D ROC Analysis, 
Chapter 3 

Design of Synthetic 
Images, Chapter 4 

Unsupervised Target 
Analysis, PART IV  

Figure 1.1 Six chapters in Part I to provide background knowledge.
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1.5.2 Part II: Endmember Extraction

Endmembers are probably one of most important features in hyperspectral data exploitation since

they represent pure signatures used to specify distinct spectral classes. So, finding endmembers

becomes a very crucial preprocessing step for hyperspectral image analysis. This is particularly

true for linear spectral mixture analysis (LSMA) that requires a set of basic material constituents,

referred to as image endmembers to form a linear mixing model to unmix data in terms of abun-

dance fractions of these endmembers. However, the prior knowledge of such image endmembers is

usually not available a priori. Therefore, endmember extraction comes to play a key role in finding

such image endmembers. Unfortunately, the research in endmember extraction has not received

much attention in early days until recently. This may be partly due to the fact that many research

efforts in remote sensing image processing have been directed to design and development of super-

vised methods where the necessary prior knowledge is assumed provided a priori. In this case,

there is no need of finding endmembers. Second, because of low spectral or spatial resolution most

image pixels appear in a mixed form rather than as pure pixels. Consequently, the presence of

endmembers is considered to be very rare. From a land use/land cover’s point of view there may

be few endmembers that have little impact on image classification. However, from a viewpoint of

intelligence endmembers provide crucial and critical information since their existence is

unexpected. Specifically, when they appear, only a small population will be present and cannot be

identified by prior knowledge. Additionally, the low probability of their occurrence also makes

their detection very difficult. Part II is devoted to this topic. Most importantly, it develops various

algorithms of different forms for endmember extraction.

Basically, an endmember extraction algorithm (EEA) can be categorized into simultaneous

EEA (SM-EEA) and sequential EAA (SQ-EEA) depending upon how it generates endmembers.

An SM-EEA generates a required number of endmembers all together compared to an SQ-EEA,

which generates one endmember at a time until it reaches a required number of endmembers. On

the other hand, based on how initial conditions are used for initialization, an EEA can be also

categorized into initialization-driven EEA (ID-EEA) and random EEA (REEA). These two types

of EEAs adopt completely opposite philosophies. An ID-EEA selects a specific set of initial end-

members to avoid randomness caused by the use of random initial endmembers compared to an

REEA, which converts the disadvantage resulting from random nature of initial endmembers to an

advantage of making an EEA immune to random initial conditions. In order to treat EEAs system-

atically and logically, Chapter 7 first considers SM-EEAs followed by SQ-EEAs in Chapter 8, ID-

EEAs in Chapter 9, and REEA in Chapter 10. Finally, Part II is concluded by Chapter 11, which

explores relationships among various EEAs studied in Chapters 7–10. Figure 1.2 outlines the orga-

nization of five chapters in Part II.

SM-EEA, Chapter 7 SQ-EEA, Chapter 8 

ID-EEA, Chapter 9 REEA, Chapter 10 

PART II: ENDMEMBER EXTRACTION 

Exploration on Relationships and Correlation among EEAs, Chapter 11 

Figure 1.2 Organization of five chapters in Part II.
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1.5.3 Part III: Supervised Linear Hyperspectral Mixture Analysis

Supervised linear hyperspectral mixture analysis (SLSMA) is probably the most widely used

hyperspectral imaging technique to perform various tasks for data analysis. It makes an assumption

that a data sample vector can be described by a linear mixing model as a linear mixture of a finite

number of known basic signature constituents called image endmembers, from which it can be

unmixed via a specific linear spectral unmixing technique into abundance fractions of these image

endmembers. Since SLSMA has been previously treated in the book by Chang (2003a), the five

chapters, Chapters 12–15 presented in this book, can be considered as an expansion of SLSMA

and complement to the LSMA discussed in Chang (2003a). Chapter 12 revisits the orthogonal

subspace projection originally developed by Harsanyi and Chang (1994). In particular, when only

partial knowledge such as desired target information is provided with no prior background knowl-

edge, OSP can be implemented as the constrained energy minimization developed in Harsanyi’s

dissertation (1993). If no prior knowledge is available, then OSP can be implemented as RX detec-

tor (Reed and Yu, 1990) for anomaly detection. Chapter 13 presents a third approach to SLSMA,

Fisher’s linear spectral mixture analysis (FLSMA), which replaces the signal-to-noise ratio

criterion used by OSP or least squares error (LSE) used by LSOSP with the criterion of Fisher’s

ratio. Chapter 14 further extends OSP and FLSMA to WAC-LSMA by replacing the commonly

used LSE with weighted LSE. While Chapters 13 and 14 extend SLSMA via imposing constraints

on the used linear mixing model, Chapter 15 derives kernel-based LSMA, which extends SLSMA

techniques to their kernel-based counterparts via nonlinear functions. Figure 1.3 outlines the orga-

nization of four chapters in Part III.

1.5.4 Part IV: Unsupervised Hyperspectral Analysis

One of major tasks in hyperspectral imaging is target detection and classification. Due to its high

spectral resolution, targets of interest are generally different from those in multispectral

imagery. For example, endmembers and anomalies that generally do not contribute much to land

cover/land use classification are actually crucial in hyperspectral image analysis. Other targets of

interest in hyperspectral data analysis also include rare minerals in geology, special spices in agricul-

ture and ecology, drug trafficking in law enforcement, combat vehicles in battlefield, man-made

targets in intelligent analysis, and so on. Realistically, most of such targets generally appear as either

mixed pixels or subpixels. So, the major goal of Part IV is to extend the SLSMA in Part III to

ULSMA where two main issues that do not occur in the SLSMA need to be addressed in ULSMA.

One is the number of signature sources of interest, p. The other is how to find these signature

sources once the value of the p is determined. Since the first issue can be addressed by the concept

of VD developed in Chapter 5, the main theme of Part IV is primarily focused on the second issue.

OSP 
Chapter 12

FLSMA 
Chapter 13

Unconstrained 
algorithms 

KLSMA 
Chapter 15

Constrained 
algorithms 

WACLSMA 
Chapter 14

PART III: SUPERVISED LINEAR HYPERSPECTRAL MIXTURE ANALYSIS 

Figure 1.3 Organization of four chapters in Part III.
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Chapter 16 investigates two types of hyperspectral measures: signature-based and correlation-

weighted measures, both of which can be used to discriminate and identify unknown signature

vectors for unsupervised data analysis. The former includes the spectral angle mapper (SAM),

Euclidean distance, spectral information divergence (SID), and orthogonal projection divergence

(OPD), while the latter uses the sample spectral correlation as a weighting factor to measure signa-

ture similarity for discrimination and identification.

Chapter 17 extends SLSMA to ULSMA. In doing so, two approaches are developed to find

unknown image endmembers, referred to as virtual signatures (VSs). The first one is to implement

LSMA techniques in an unsupervised manner on the original data and its sphered data to find two

sets of VSs corresponding to background and target signatures, respectively. A second approach is

to use components analysis methods where PCA and ICA are implemented to find unknown back-

ground and target signatures, respectively.

Due to substantial amount of information provided by hundreds of contiguous spectral bands it

is interesting to know how much information can be extracted from a single hyperspectral image

pixel vector as well as how to process the extracted pixel information for data analysis. In tradi-

tional image processing the only image pixel information is uniquely specified by its gray-level

value. In multispectral image processing with only tens of discrete spectral bands in use, the spec-

tral information provided by a multispectral image pixel is generally very limited compared to that

provided by a hyperspectral image pixel. So, the issue in exploration of information extraction

from a single hyperspectral image pixel vector has not received much interest as it should. Very

little work has been done in the past. For example, an endmember itself provides vital information

of a particular spectral class. Another example is an anomaly that provides information in identify-

ing unknown targets. While an endmember is specifically defined, the definition of anomaly seems

vague with a general understanding that an anomaly is a target whose spectral signature is distinct

from those of pixels in its surrounding neighborhood. However, how large should a surrounding

neighborhood be for a pixel vector to be qualified as anomalous pixel vector? So far, there is no

answer to it. More generally, for a given pixel vector, how can we characterize the pixel vector as a

subpixel vector or a mixed pixel vector or an anomalous pixel vector or a pixel vector of some

other type? Besides, can an endmember be a pure pixel vector, in which case it is referred to as

endmember pixel vector or vice versa? Can a pixel be both an anomalous pixel vector and an

endmember pixel vector? As a complete opposite to anomaly, how can we view a pixel vector if

the spectral signatures of pixel vectors in its proximity are very similar and close to each other?

Interestingly, these issues have never been investigated on a single pixel vector basis. So, Chapter

18 investigates the issue of “what spectral information can be extracted from a single hyperspectral

image pixel vector?” Figure 1.4 outlines the organization of two chapters in Part IV.

PART IV: UNSUPERVISED HYPERSPECTRAL ANALYSIS 

Pixel Vector Information Extracted from Hyperspectral Imagery 
Chapter 18

Unsupervised Linear Hyperspectral 
Mixture Analysis, Chapter 17 

Hyperspectral Measures 
Chapter 16 

Figure 1.4 Organization of three chapters in Part IV.
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1.5.5 Part V: Hyperspectral Information Compression

Data compression has received increasing interest in hyperspectral data analysis because of the

vast amount of data volumes needed to be processed and significant redundancy resulting from

high interband spectral correlation. Since a hyperspectral image can be viewed as a 3D image

cube, a common practice is a direct application of 3D compression techniques available in

image/video processing to hyperspectral imagery so as to achieve so-called hyperspectral data

compression. Unfortunately, there are several issues arising from such an approach. One is how

to deal with spectral compression from very high spectral resolution provided by a hyperspec-

tral imaging sensor. The reason why the hyperspectral imagery is called “hyperspectral” is due

to its wealthy spectral information, which offers unique spectral characterization that cannot be

provided by spatial information, particularly, the spectral profile information provided by sub-

pixels and mixed pixels across its acquired wavelength range by hundreds of spectral channels.

Therefore, from a hyperspectral imagery point of view, spectral information is usually more

important and crucial than spatial information when it comes to hyperspectral image analysts.

When hyperspectral compression is performed, extra care must be taken of in order to preserve

spectral characteristics and properties. For example, when targets of interest are rare such as

anomalies and endmembers, their spatial extent is generally very small and limited. Thus, the

spatial correlation resulting from such targets will be too little to be used for spatial compres-

sion. In this case a direct spatial compression without taking into account spectral properties of

these targets may result in significant loss of information that characterizes these targets. As a

consequence, blindly applying 3D compression techniques to hyperspectral data may not be

able to achieve effective compression from an exploitation perspective. Accordingly, a more

appropriate approach is to consider “information” compression rather than “data” compression

since the compression is performed based on preservation of the information of interest instead

of reduction in data size. More specifically, an effective technique in compressing data size

does not necessarily imply that it is also effective in compressing information to be retained.

To resolve this dilemma, an effective means of compressing hyperspectral imagery may be one

that performs compression in a two-stage process that carries out spectral compression in the

first stage to preserve crucial spectral information to avoid being compromised by the follow-

up spatial compression in the second stage (Ramakrishna et al., 2005a, 2005b). Such a two-

stage compression is referred to as hyperspectral information compression or exploitation-based

lossy hyperspectral data compression in this book as opposed to lossy hyperspectral data com-

pression, commonly referred in the literature. Five chapters are presented in Part V and outlined

in Figure 1.5.

Chapter 19 reviews issues arising in data compression commonly used in the literature and fur-

ther introduces a new concept of hyperspectral information compression or exploitation-based

lossy hyperspectral data compression where various approaches can be derived for different appli-

cations in data exploitation. This chapter is followed by two new approaches to hyperspectral

information compression developed in Chapters 20 and 21, which develop techniques to process

spectral dimensions and band dimensions in a progressive manner, referred to as progressive spec-

tral dimensionality process (PSDP) and progressive band dimensionality process (PBDP), respec-

tively. In order to more effectively determine spectral and band dimensionality to be used for

material classification Chapter 22 presents a new idea of dynamic dimensionality allocation

(DDA). By taking advantage of PBDP in Chapter 21 and DDA in Chapter 22 a new approach to

band selection, called progressive band selection (PBS), is further developed and presented in

Chapter 23.
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1.5.6 Part VI: Hyperspectral Signal Coding

So far, data processing discussed in all the previous chapters, Chapters 7–23, is considered as

hyperspectral image processing because the considered data are image data cubes and the

techniques are developed to process hyperspectral data as an image cube with data samples treated

as image pixel vectors. However, due to the use of hundreds of spectral channels a hyperspectral

data sample vector already contains spectral information that can be used for data analysis without

relying on sample spectral correlation provided by image structures. So, instead of considering a

data sample vector as an image pixel vector in an image cube, a data sample vector can also be

processed as a one-dimensional signal, referred to as a hyperspectral signal or signature vector

rather than as a hyperspectral image pixel vector. In this case a hyperspectral signal is a

spectral signature of a material substance specified by hundreds of spectral channels across a

certain range of wavelengths. In this book, both hyperspectral signal and signature vector will be

used interchangeably as appropriate. The data processing of hyperspectral signals or signature

vectors is called hyperspectral signal processing to distinguish it from hyperspectral image proc-

essing discussed in previous chapters. The only difference between hyperspectral image processing

and hyperspectral signal processing is that the former takes advantage of statistics resulting from

spectral correlation among pixel vectors in an image cube, while the latter processes a

hyperspectral signal as an individual 1D signal such as signatures from spectral libraries or data-

bases without accounting for spectral correlation among sample signals. As a result, when a hyper-

spectral signal is processed, the information available for processing is only the spectral

information within the signal without referencing spectral correlation with other signals. Accord-

ingly, 1D hyperspectral signal processing is primarily used as signal discrimination, detection,

classification, representation, and identification. Having this clear distinction in mind, Part VI and

Part VII are devoted to hyperspectral signal processing with an understanding that no sample spec-

tral correlation is available to be used for data processing.

The main focus of Part VI is on signal coding that encodes a hyperspectral signal as a code word

for its discrete representation. How fine and accurate such discrete representation of a hyperspec-

tral signal can be is determined by the total number of bits used for encoding. Three types of

encoding methods are developed in this part. One is binary coding in Chapter 24, which performs

Progressive Spectral Dimensionality 
Process, Chapter 20 

Exploitation-Based Hyperspectral Information 
Compression, Chapter 19 

PART V: HYPERSPECTRAL INFORMATION COMPRESSION 

Progressive Band Dimensionality 
Process, Chapter 21 

Dynamic Dimensionality Allocation, Chapter 22 

Progressive Band Selection, Chapter 23 

Figure 1.5 Organization of three chapters in Part V.
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memoryless coding. Another is vector coding in Chapter 25, which takes advantage of memory to

perform signature coding. A third one discussed in Chapter 26 is progressive coding, which enco-

des a hyperspectral signal stage by stage in a progressive manner. Figure 1.6 outlines the organiza-

tion of three chapters in Part VI.

1.5.7 Part VII: Hyperspectral Signal Feature Characterization

While the hyperspectral signal coding considered in Part VI converts a hyperspectral signal to a

codeword as its discrete representation so that different hyperspectral signatures can be discrimi-

nated and identified via their encoded code words, Part VII can be considered as a counterpart of

Part VI to perform hyperspectral signal characterization by converting a hyperspectral signal as a

continuous representation. Three major techniques are developed: OSP-based variable-number

variable-band selection (VNVBS) in Chapter 27 for hyperspectral signals, Kalman filter-based

techniques in Chapter 28 for hyperspectral signal estimation, and wavelet-based techniques in

Chapter 29 for hyperspectral signal representation. Figure 1.7 outlines the organization of these

three chapters in Part VII.

1.5.8 Applications

This book concludes with applications of hyperspectral data processing in various areas.

1.5.8.1 Chapter 30: Applications of Target Detection

The subpixel target detection discussed in Chapter 2 has major interests in many applications.

Since the size of a subpixel target is smaller than pixel resolution specified by ground sampling

distance, it is embedded in a single pixel vector and cannot be visualized by inspection. Therefore,

Binary Coding, Chapter 24 

Vector Coding, Chapter 25 

PART VI: HYPERSPECTRAL SIGNAL CODING  

Progressive Coding, Chapter 26 

Figure 1.6 Organization of three chapters in Part VI.

Kalman Filter-Based Estimation for 
Hyperspectral Signals, 

Chapter 28 

PART VII: HYPERSPECTRAL SIGNAL FEATURE CHARACTERIZATION 

Wavelet Representation for 
Hyperspectral Signals. Chapter 29 

Variable Number Variable Band 
Selection for Hyperspactral Signals, 

Chapter 27

Figure 1.7 Organization of three chapters in Part VII.
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it looks like that the best we can do for a subpixel target is detection and finding the size of a

subpixel target seems out of reach. Chapter 30 provides a means of doing so. Specifically, the size

of a subpixel target can be calculated by multiplying the pixel resolution with the estimated abun-

dance fraction of the subpixel target embedded in a pixel vector. Consequently, finding the true size

of a subpixel target is equivalent to accurately estimating the abundance fraction of a subpixel

target.

Many problems addressed by target detection assume that the targets to be detected are exposed,

in which case it makes detection easy and more effective. However, in remote sensing targets of

interest may be hidden under natural environments due to terrain characteristics such as shadow

and shade. On the other hand, in many military and intelligence applications, the targets of interest

may be concealed weapons or combat vehicles, which are camouflaged or canvassed. Detecting

such concealed targets generally presents a great challenge in an unknown image scene due to the

fact that the prior knowledge about targets of interest and background is not available. The second

part of Chapter 30 develops an approach to detection of unknown concealed targets. It comprises

three successive stage processes: (1) band selection procedure in the first stage; (2) band ratio

approach in the second stage; and (3) automatic target detection in the third stage. The objective of

the band selection is to select an appropriate set of band images for the band ratio transformation

and the selected bands are subsequently ratioed to form a desired set of images used for subsequent

automatic target detection carried out in the third stage.

1.5.8.2 Chapter 31: Nonlinear Dimensionality Expansion to Multispectral Imagery

The data processing techniques developed in this book are mainly derived from a perspective of

how to process hyperspectral imagery. Their applications to multispectral imagery may not be

immediately obvious and trivial. Specifically, the pigeon-hole principle described in Section 1.3

that holds for hyperspectral imagery is no longer true for multispectral imagery and virtual

dimensionality. In order for a hyperspectral imaging technique to be applied to multispectral

imagery, it hinges on two key issues, how to define a hyperspectral image and a multispectral

image as well as how to distinguish one from another. Interestingly, the pigeon-hole principle

once again proves to be a valuable means of doing so. When there are few pigeon holes than

pigeons, it implies that few spectral bands than signal sources can be used for signal discrimina-

tion in which case the image is defined as a multispectral image. Otherwise, it is a hyperspectral

image. Such definitions seem controversial in the first place. As a matter of fact, similar defini-

tions can be found in ICA. That is, if the number of data sample vectors is fewer than the number

of signal sources to be separated, an ICA is defined as an over-complete ICA. Otherwise, an ICA

is defined as an under-complete ICA. The definitions of over-complete ICA and under-complete

ICA shed light on how to distinguish multispectral image from hyperspectral images. In ICA a

data sample vector represents a linear mixture of random signal sources to be separated. This is

similar to viewing a data sample vector as a linear mixture of signal sources to be present in the

data. So, LSMA used to unmix a multispectral image tries to solve an over-complete linear spec-

tral unmixing problem, while LSMA used to unmix a hyperspectral image intends to solve an

under-complete linear spectral unmixing problem. By virtue of this interpretation, this chapter

develops two approaches to conversion of a hyperspectral imaging technique to a multispectral

imaging technique by nonlinear dimensionality expansion (NDE). One is band dimensionality

expansion, which implements a band expansion process (BEP) to create new additional images

from the original set of spectral images via nonlinear functions. The other is kernel-based

method that kerenlizes LSMA-based techniques via nonlinear kernels to solve linear nonsepar-

ability issue arising in multispectral image analysis.
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1.5.8.3 Chapter 32: Multispectral Magnetic Resonance Imaging

Recently, a new application of hyperspectral imaging techniques in multispectral imagery, mag-

netic resonance (MR) image analysis, has been investigated where MR images can be considered

as multispectral images and each image acquired by a particular MR pulse sequence can be consid-

ered as a spectral band image. As a result, MR images are actually an image cube collected by

particularly designed MR image pulse sequences. With this interpretation Chapter 32 extends

results in Chapter 31 to MR image analysis.

1.6 Laboratory Data to be Used in This Book

Three sets of laboratory data will be used for experiments in this book, two of which were collected

by the airborne visible infrared imaging spectrometer (AVIRIS) and the third one is a gas data set.

1.6.1 Laboratory Data

One data set to be used in this book is the one used in Harsanyi and Chang (1994). It is AVIRIS

reflectance data shown in Figure 1.8, which has five field reflectance spectra, blackbrush, creosote

leaves, dry grass, red soil, and sagebrush with spectral coverage from 0.4 to 2.5mm and 158 bands

after the water bands are removed.

1.6.2 Cuprite Data

A n o t h e r u s e f u l l a b o r a t o r y d a t a t h a t i s avai l a b l e o n t h e w e b s i t e h t t p : / / s p e c l a b. c r. u s g s . g ov / is the

reflectance spectra of five USGS ground-truth mineral spectra: alunite (A), buddingtonite (B),

calcite (C), kaolinite (K), and muscovite (M) shown in Figure 1.9. Each of the five mineral spectral

signatures is collected by 224 spectral bands at spectral resolution of 10 nm in the range of 0.4–

2.5mm.

1.6.3 NIST/EPA Gas-Phase Infrared Database

A third data set is one provided by the National Institute of Standards and Technology (NIST)

and also available on the w eb site s h ttp://www.n ist.gov/srd/nist35.htm and webbook.nist.gov/

chemistry. This data s et w as also used for the study in Kwan et al. (20 06). It c ontains the nine
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Figure 1.8 Spectra of five AVIRIS reflectances.
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gas agents labeled by sif g9i¼1 listed in Table 1.1 with their spectral signatures shown in Fig-

ure 1.10. This data set is included particularly for signal processing algorithm design and

development for hyperspectral signal processing to investigate hyperspectral signature analysis

and characterization in Part VI and Part VII.

Except that the frequency range of s1 is 550–3846 cm
�1 acquired by 825 bands, all the sif g9i¼2

has frequency range of 450–3966 cm�1 acquired by 880 bands, giving each signature a spectral

resolution of about 4 cm�1 per band.

1.7 Real Hyperspectral Images to be Used in this Book

Three real hyperspectral image data sets are frequently used in this book for experiments. Two are

AVIRIS real image data sets, Cuprite in Nevada and Purdue’s Indian Pine test site in Indiana. A

third image data set is HYperspectral Digital Imagery Collection Experiment (HYDICE) image

scene. Each of these three data sets is briefly described as follows.

1.7.1 AVIRIS Data

Two AVIRIS data sets presented in this section are Cuprite data and Purdue’s data, which can be

used for different purposes in applications. The Cuprite data set is generally used for endmember

Figure 1.9 Five USGS ground-truth mineral spectra.

Table 1.1 Nine gas agent data signatures

Signature no. Signature name

s1 2-Chloroethymethyl sulfide

s2 Diethyl ethylphosphonate

s3 Ethanol

s4 Freon 114

s5 n-Butyl bromide

s6 Bis-2-ethyl-1-hexyl phosphonate

s7 Benzyl benzoate

s8 Dibenzyl ether

s9 Piperidine
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extraction and target detection, while the Purdue’s data set is mainly used for land cover/land use

classification.

1.7.1.1 Cuprite Data

One of the most widely used hyperspectral image scenes available in the public domain is Cuprite

mining site, Nevada, as shown in Figure 1.11(a). It is an image scene of 20 m spatial resolution

collected by 224 bands using 10 nm spectral resolution in the range of 0.4–2.5mm. The center

region shown in Figure 1.11(b), cropped from the image scene in Figure 1.10(a), has size of 350�
350 pixel vectors.

Since it is well understood mineralogically and has reliable ground truth, this scene has been

studied extensively. Two data sets for this scene, reflectance and radiance data, are also available

for study. There are five pure pixels in Figure 1.11(a, b) that can be identified to be corresponding

to five different minerals, alunite (A), buddingtonite (B), calcite (C), kaolinite (K), and muscovite

(M) labeled by A, B, C, K, and M, respectively, in Figure 1.12(b) with their corresponding reflec-

tance and radiance spectra shown in Figure 1.12(c, d).

These five pure pixels are carefully verified using laboratory spectra provided by the USGS

( avai l a b l e f r o m h t t p : / / s p e c l a b. c r. u s g s . g ov ) a n d s e l e c t e d b y c o m p a r i n g t h e i r r e fl e c t a n c e s p e c t r a

in Figure 1.12(c) against the lab reflectance data in Figure 1.9. Figure 1.12(e) also shows an altera-

tion map for some of the minerals, which is generalized from ground map provided by the USGS
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Figure 1.10 Spectral signatures of nine chemical/infrared data signatures.
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and obtained by Tricorder SW version 3.3. It should be noted that this radiometrically calibrated

a n d a t m o s p h e r i c a l l y c o r r e c t e d d a t a s e t avai l a b l e f r o m h t t p : / / av i r i s . j p l . n a s a . g ov i s p r ov i d e d i n

reflectance units with 224 spectral channels where the data has been calibrated and atmo-

spherically rectified using the ACORN software package. It is recommended that bands 1–3,

105–115, and 150–170 be removed prior to data processing due to their low water absorption and

low SNR. As a result, a total of 189 bands are used for experiments as shown in Figure 1.11(c, d).

The steps to produce spectra in Figure 1.12(c, d) can be described as follows:

1. Download from http:// speclab.cr.usgs.g ov/ the labo ratory reflecta nce data.

2. Use spectral angle mapper (SAM) as a spectral similarity measure to identify the five pixels in

Figure 1.12(a) that correspond to the five reflectances obtained in step 1 by the following

procedure:
� Remove noisy bands from the five reflectance data.
� Remove bands with abnormal readings from the spectral library.
� In order to measure spectral similarity, there is still a need of removing several bands to

account for compatibility.

It should be noted that the ground truth is not stored in a “file.” The locations of the five minerals

are identified by comparing their reflectance spectra against their corresponding lab reflectances in

the spectral library.

Figure 1.11 Cuprite image scene, (a) original Cuprite image scene; (b) the image cropped from the center

region of the original scene in (a) (350� 350).
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Figure 1.12 (a) Spectral band number 170 of the Cuprite AVIRIS image scene; (b) spatial positions of five

pure pixels corresponding to minerals: alunite (A), buddingtonite (B), calcite (C), kaolinite (K), and musco-

vite (M); (c) reflectances of five minerals marked in (b) in wavelengths; (d) radiances of five minerals marked

in (b) in bands; and (e) alteration mineral map available from USGS.
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Figure 1.13 AVIRIS image scene: Purdue Indiana Pine test site. (a) Nine bands selected from the Purdue

Indiana Pine test site; (b) a USGS quadrangle map of the test site; (c) ground truth of Purdue Indiana Pine test

site; and (d) ground truth of each of 17 classes.
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1.7.1.2 Purdue’s Indiana Indian Pine Test Site

Another most widely used real AVIRIS image data set is Purdue’s Indiana Indian Pine test site,

which has 20 m spatial resolution and 10 nm spectral resolution in the range of 0.4–2.5mm with

s i z e o f 145 � 145 pixel ve ctors take n fr om an are a o f mi xed agric u lture a nd fore st ry i n Nort h-

w e s t e r n I n d i a n a , U S A . T h e d a t a s e t i s avai l a b l e o n t h e w e b s i t e h t t p : / / c o b w e b. e c n . p u r d u e . e d u /

�biehl/MultiSpec/documentation.html (both d ownload link a nd ground truth are provided) and

was recorded in June 1992 with 220 bands with water absorption bands, bands 104–108 and 150–

162 removed and leaving only 202 bands. Figure 1.13(a) shows nine bands selected from the web

site and a USGS quadrangle map of the test site provided in Figure 1.13(b).

According to the ground truth provided in Figure 1.13(c) there are 17 classes in this image scene

shown in Figure 1.13(d) including the background labeled by class 17, which has a wide variety of

targets such as highways, railroad, houses/buildings, and vegetation that may not be of interest in

agricultural applications but may be of great interest in other applications such as anomaly detec-

tion. The total number of data samples in the scene is 145� 145 ¼ 21; 025. Table 1.2 lists labels of
each of 17 classes where the numeral in parenthesis under each of 17 classes in Figure 1.13(d) is

the number of data samples in that particular class.

Due to the early season of harvest when the data were collected, some cultivated land has very

little canopy cover. For example, the corn area can be divided into three classes based on how

much is left on the land, which are corn-no till, -min, and corn (class 2–4). The soybean area also

can be divided into soybean-no till, -min, and -clean (class 10–12). The grass is mixed with four

other materials, which are classified as grass/pasture, grass/trees, grass/pasture-mowed, and bldg-

grass-green-drives (class 5, 6, 7, 15). Actually, it is believed that the grass is also mixed in the

background. According to Figure 1.13(c, d) (Landgrebe, 2003), the GIS map in Figure 1.13(b)

provides the information of “land use” classes instead of “land cover” classes. It means that not

every pixel in the map is supposed to be classified into their belonging classes. Additionally, also

based on the USGS quadrangle map in Figure 1.13(b), there are dual lane highways (U.S. 52 and

231) and a railroad crossed near the top. The other is Jackson highway, which is near to the middle

of the scene. All of them are in the NW–SE direction. Figure 1.13(b) also indicates some houses or

buildings by small rectangular dots (Landgrebe, 1998). With this information it is believed that

there are at least four classes included in the background: railroad (iron), highway (concrete),

houses/buildings (concrete, painted wood, or other materials), and vegetation (grass). The number

of classes for such unlabeled areas is important for the unsupervised classification when the total

number of classes in the scene is assumed to be unknown.

There are many reasons to select the Purdue Indiana Indian Pine test site for experiments. First

of all, it is a well-known image scene available on web site and has been studied extensively.

Another is that the pixels in this image scene are heavily mixed. Many algorithms or methods

claiming to work well on classification are very likely to break down for this image scene. To the

author’ best knowledge, most work on this image scene reported in the literature has selected

Table 1.2 Labels of 17 classes

Class 1 Alfalfa Class 7 Grass/pasture-mowed Class 13 Wheat

Class 2 Corn-no till Class 8 Hay-windrowed Class 14 Woods

Class 3 Corn-min Class 9 Oats Class 15 Bldg-grass-green-drives

Class 4 Corn Class 10 Soybean-no till Class 16 Stone-steel towers

Class 5 Grass/pasture Class 11 Soybean-min Class 17 Background

Class 6 Grass/trees Class 12 Soybean-clean
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particular areas for study and also supervised based on the provided ground truth. Very little has

been done in classification of the entire scene either supervisedly or unsupervisedly. Most interest-

ingly, according to our detailed analysis on the scene, we have found that it is almost impossible to

classify all the 17 classes in the image scene even though the complete knowledge of the ground

truth provided in Figure 1.13(c, d) is used for classification. This is because pixels in the same class

are mixed so badly that values among their spectral signatures measured by any spectral similarity

measure vary in a relatively wide range in which pixels in the same class may be classified into

different classes and pixels in different classes may be considered to belong to the same class.

From the ground truth provided in Table 1.2, it can be expected that the signatures of three sub-

classes of corn are close to each other, so are the four subclasses of grass and three subclasses of

soybean. However, the relationships among other pairs are still not known. In order to know how

much mixing is involved, the signature for each class is calculated by averaging all samples with the

same label according to the ground-truth map in Figure 1.12(c). Then the SAM is used to measure

how close one class is similar to the other. It has been shown in Liu (2005) that corn and soybean

classes (2–4, 10–12) are similar, which account for 6552 pixels, 63% of 10,366 labeled pixels. Simi-

larity also appears in two sets of classes: class 1, 7, 8 and class 6, 9, 13. Surprisingly, the four classes

of grass (5, 6, 7, 15), which account for 1650 pixels, are not similar to each other. Additionally, using

SAM to measure spectral similarity among 16 classes, it is found that classes 5, 14, 16 seem to be

the three most distinct classes and can be classified very easily. It is reasonable and makes sense

because class 5 contains chlorophyll, class 14 is wood, and class 16 comprises man-made objects.

With our tremendous experience of working on this image scene, excluding two classes (class 17

that is considered to be the background and class 9 that is considered to be too small) it is found that

the spectral signatures of the pixels in the six classes (class 2, class 3, class 4, class 7, class 9, and

class 11) are very close in terms of SAM or SID (spectral information divergence in Chang (2003a)).

Similarly, the pixels in the three classes (class 8, class 10, and class 15) also have very similar spec-

tral signatures. Hence distinguishing one from another is very difficult. The pixels in the three clas-

ses (class 13, class 5, and class 14) have less similar signatures but still present some difficulty with

classification. The most dissimilar classes are class 1, class 6, and class 12 that are considered to be

easy to classify. By taking into account all the things considered above, we can expect that the

classification of this image scene is a great challenge to any hyperspectral imaging algorithm.

1.7.2 HYDICE Data

The HYDICE image scene shown in Figure 1.14(a) has a size of 200� 74 pixel vectors along with

its ground truth provided in Figure 1.14(b) where the center and boundary pixels of objects are

highlighted by red and yellow, respectively. The upper part contains fabric panels with size 3, 2,

and 1m2 from the first column to the third column. Since the spatial resolution of the data is

1.56m2, the panels in the third column are considered as subpixel objects. The lower part contains

different vehicles with sizes of 4 m� 8 m (the first four vehicles in the first column) and 6 m� 3 m

(the bottom vehicle in the first column) and three objects in the second column (the first two have

size of 2 pixels and the bottom one has size of 3 pixels, respectively). In this particular scene, there

are three types of targets with different sizes, small-size targets (panels of three different sizes, 3, 2,

and 1m2), and large-size targets (vehicles of two different sizes, 4 m� 8 m and 6 m� 3 m and

three objects of 2-pixel and 3-pixel sizes) that can be used to validate and test anomaly detection

performance.

Figure 1.14(c) shows an enlarged HYDICE scene from the same flight for visual assessment. It

has a size of 33� 90 pixel vectors with 10 nm spectral resolution and 1.56m spatial resolution

where five vehicles lined up vertically to park along the tree line in the field where the red (R) pixel
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vectors (shown as dark pixels) in Figure 1.14(d) show the center pixel of the vehicles, while the

yellow (Y) pixels (shown as bright pixels) are vehicle pixels mixed with background pixels.

A third enlarged HYDICE image scene shown in Figure 1.15(a) is also cropped from the upper

part of the image scene in Figure 1.14(a, b) marked by a square.

It has a size of 64� 64 pixel vectors with 15 panels in the scene. This particular image scene

has been well studied in Chang (2003a). Within the scene there is a large grass field background,

a forest on the left edge, and a barely visible road running on the right edge of the scene. Low

signal/high noise bands: bands 1–3 and bands 202–210; and water vapor absorption bands: bands

101–112 and bands 137–153 were removed. The spatial resolution is 1.56m, and spectral resolu-

tion is 10 nm. There are 15 panels located in the center of the grass field and are arranged in a

5� 3 matrix as shown in Figure 1.15(b), which provides the ground-truth map of Figure 1.15(a).

Each element in this matrix is a square panel and denoted by pij with row indexed by i ¼ 1, . . . ,

5 and column indexed by j ¼ 1, 2, 3. For each row i ¼ 1, . . . , 5, the three panels were painted

by the same material but have three different sizes. For each column j ¼ 1, 2, 3, the five panels

have the same size but were painted by five different materials. It should be noted that the panels

in rows 2 and 3 are made by the same material with different paints, so did the panels in rows 4

and 5. Nevertheless, they were still considered as different materials. The sizes of the panels in

the first, second, and third columns are 3m� 3m, 2m� 2m, and 1m� 1m, respectively. So, the

15 panels have 5 different materials and 3 different sizes. Figure 1.15(b) shows the precise spatial

locations of these 15 panels where red pixels (R pixels, i.e., dark pixels) are the panel center

pixels and the pixels in yellow (Y pixels, i.e., bright pixels) are panel pixels mixed with back-

ground. The 1.56m spatial resolution of the image scene suggests that the panels in the second

and third columns, denoted by p12, p13, p22, p23, p32, p33, p42, p43, p52, p53 in Figure 1.15(b) are

one pixel in size. Additionally, except the panel in the first row and first column, denoted by p11
which also has a size of one pixel, all other panels located in the first column are two-pixel

panels, which are the panels in the second row with two pixels lined up vertically, denoted by

Figure 1.14 HYDICE vehicle scene. (a) Image scene; (b) ground-truth map; (c) five vehicles; and (d) ground

truth of (c).
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p211 and p221; the panel in the third row with two pixels lined up horizontally, denoted by p311
and p312; the panel in the fourth row with two pixels also lined up horizontally, denoted by p411
and p412; and the panel in the fifth row with two pixels lined up vertically, denoted by p511 and

p521. Since the size of the panels in the third column is 1m� 1m, they cannot be seen visually

from Figure 1.15(a) due to its size being smaller than the 1.56m pixel resolution.

Figure 1.16 plots the five panel spectral signatures obtained from Figure 1.15(b), where the ith

panel signature, denoted by pi was generated by averaging the red panel center pixels in row i.

These panel signatures will be used to represent target knowledge of the panels in each row.

According to visual inspection and ground truth in Figure 1.15(a, b) there are also four back-

ground signatures shown in Figure 1.17, which can be identified and marked by interferer, grass,

tree, and road. These four signatures along with five panel signatures in Figure 1.16 can be used to

form a 9-signature matrix for a linear mixing model to perform supervised linear spectral mixture

analysis.

Figure 1.15 (a) A HYDICE panel scene that contains 15 panels; (b) ground-truth map of spatial locations of

the 15 panels.

Figure 1.16 Spectra of p1, p2, p3, p4, and p5.
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1.8 Notations and Terminologies to be Used in this Book

Since this book primarily deals with real hyperspectral data, the image pixels are generally mixed

and not necessarily pure. The term “endmember” is not used here; instead, a general term

“signature” or “signature vector” is used. In addition, because we are only interested in target analy-

sis, the term “targets” instead of “materials” is also used throughout this book. In order to make a

distinction between a target pixel and its spectral signature vector, we use notation “t” to represent

the target pixel vector, “r” for an image pixel vector, and “s” or “m” to indicate its spectral signa-

ture vector. We also use bold uppercase for matrices and bold lowercase for vectors. The italic upper

case “L” will be used for the total number of spectral bands, K for the sample spectral covariance

matrix, and R for the sample spectral correlation matrix. Also, d�(r) is used to represent a detector

or classifier that operates on an image pixel vector r where the superscript “�” in d�(r) specifies
what type of a detector or classifier to be used. It should be noted that d�(r) is a real-valued function

that takes a form of inner product of a filter vector w with r, that is, d�ðrÞ ¼ ðw�ÞTr with the filter

vector w� specified by a particular detector or classifier. We also use “a”and â to represent the

abundance vector and its estimate where the notation “hat” over “a” indicates “estimate.”

a: Abundance vector
â: Estimate of the abundance vector a
aj: jth abundance fraction

âj: Estimate of the jth abundance fraction, aj

A: Weighting or mixing matrix

Az: Area under an ROC curve

Bl: lth band image

bl: lth band image represented as a vector

C: Total number of classes

Cj: jth class

d: Desired signature vector

D: Desired signature matrix

Dl: Eigenvalue diagonal matrix

d: Detector or classifier

D: Database
e: Error threshold
ej: jth endmember

Figure 1.17 Areas identified by ground truth and marked by three background signatures, grass, tree, road

plus an interferer.
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I: Identity matrix

I(x): Self-information of x

k(.,.): Kernel function

K: Total number of skewers used in PPI

K: Sample covariance matrix

l: Eigenvalue of sample covariance matrix, K

l̂: Eigenvalue of sample correlation matrix, R

l: Index of band number

L: Total number of spectral channels or bands

L: Eigenvector matrix

m: Global sample mean

mj: Global mean of the jth class

m(.,.): Spectral measure

mj: jth signature vector

M: Signature or endmember matrix

n: Noise vector

N: Total number of image pixel vectors in a band image, i.e., N ¼ nrnc
nc: Number of columns in a band image of a hyperspectral image

nD: Number of desired signatures in D

nr: Number of rows in a band image of a hyperspectral image

nP: Number of interferers

nT: Number of training samples

nU: Number of undesired signatures in U

nVD: Value estimated by the VD

p: Number of endmembers

PD: Detection power or probability

PF: False alarm probability

P?
U : Projector to reject undesired target signatures in U

q: Number of dimensions to be retained after dimensionality reduction

q̂: Number of spectral bands required to be selected by band selection

r: Image pixel vector

R: Sample correlation matrix

s2: Variance

SB: Between-class scatter matrix

SW: Within-class scatter matrix

t: Target signature

t: Threshold
w: Weight vector

W: Weight matrix

U: Undesired signature matrix

v: Eigenvector

VD�: The value of the VD obtained by the criterion specified by algorithm “�”
j: Transform used to perform dimensionality reduction

C: Interference matrix

z: Projection vector

<.,.>: Inner product
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I

Preliminaries

PART I provides readers with preliminary knowledge and basic background to make this book self-

contained. It comprises five chapters.

Chapter 1 covers fundamentals of subsample and mixed sample analyses. Chapter 2 addresses

one of the challenges in hyperspectral imaging, that is how to deal with subpixels and mixed pixels

often encountered in hyperspectral imagery. Since hyperspectral data are not necessarily image

data, more generic terms, subsamples and mixed samples instead of subpixels and mixed pixels,

are used to indicate that sample data can be either image pixels or spectral signatures.

Chapter 3 develops a new evaluation tool, a 3D ROC analysis, that extends the detection

performance-based 2D receiver operating characteristics (ROC) curves commonly used in detec-

tion theory to measure estimation performance. As described in Chapter 2, most hyperspectral

imaging techniques are developed as estimators rather than detectors to estimate abundance frac-

tions of target substances for various tasks such as discrimination, detection, classification, etc. As

a result, target detection that makes hard decisions is actually performed by target estimation that

makes soft decisions in which case the 2D ROC analysis is not applicable unless these real-valued

abundance fractions are thresholded to make hard decisions. The 3D ROC analysis is developed to

meet this need by including a third dimension to convert a soft-decision-based estimator to a hard-

decision-based detector.

Chapter 4 describes a set of synthetic image experiments that simulate two types of target inser-

tion into image backgrounds, target implantation and target embededness, each of which has three

different scenarios. As a result, a total of six scenarios can be used for quantitative study and analy-

sis. The need of synthetic images arises from algorithm design where an objective quantitative

analysis is required to substantiate an algorithm as well as to evaluate an algorithm compared to

other algorithms for performance assessment.

Chapter 5 revisits the concept of virtual dimensionality (VD) that was previously coined in

Chang (2003a) and defined as the number of spectrally distinct signatures present in the hyper-

spectral imagery. Since it was introduced, VD has become very useful and found in a wide range

of applications (Chang and Du, 2004; Chang, 2006a, 2006b), such as dimensionality reduction

(Wang and Chang, 2006a), band selection (Chang and Wang, 2006), endmember extraction (Chang

and Plaza, 2006; Chang et al., 2006; Chaudhry et al. 2006; Wang and Chang, 2006b; Plaza and

Chang, 2005, 2006), unsupervised target detection (Wang and Chang, 2006c), and unsupervised

image classification (Chang et al., 2010, 2011). With its potential, VD can be interpreted in many
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ways. For example, an endmember can be also considered as a spectrally distinct signature or a

target signature of interest. It is generally used to specify a spectral class, specifically a signature

to be used by linear spectral mixture analysis (LSMA) for spectral unmixing. However, on many

occasions an endmember may also appear as an anomaly. On the other hand an anomaly may be a

mixed pixel and may not be necessarily an endmember and vice versa. Therefore, using the same

value of VD to estimate the number of signatures of different types does not seem appropriate even

if the estimate provides a good and close estimate. In order to address this issue, VD must vary

with its applications from an exploitation point of view; this has been further explored in Chang et

al. (2010, 2011). Chapter 5 generalizes the concept of VD to explore its utility in data exploitation

where a comprehensive set of techniques are developed and studied.

Chapter 6 develops techniques to address another challenging task, that is how to cope with

enormous data volumes resulting from hundreds of spectral bands. A general approach is to per-

form dimensionality reduction (DR) as a preprocessing step prior to data processing so that the

original data can be reduced to a manageable low-dimensional data space. There are two

approaches to DR, DR by transform (DRT) and DR by band selection (DRBS), each of which is

discussed in detail in this chapter.
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2

Fundamentals of Subsample and
Mixed Sample Analyses

The issues of subpixels and mixed pixels, which have been briefly discussed in Chapter 1, are

crucial in hyperspectral data exploitation. Dealing with these issues is considered to be very chal-

lenging to hyperspectral image analysts, primarily due to the fact that techniques available in the

traditional pure pixel-based image processing are generally not directly applicable or ineffective if

they are blindly applied to hyperspectral signal and image processing. The main reason is that the

pure pixel-based image analysis is usually carried out by hard (discrete) decisions in the sense that

only a finite number of values are available for decision, while the subpixel and mixed pixel analy-

ses are generally performed by soft decisions in the sense that a decision is specified by abundance

fraction that is usually a real value. In other words, the relationship between a soft decision and a

hard decision is similar to the relationship between an analog signal and a digital signal. With this

interpretation, the process of converting a soft decision into a hard decision can be considered as an

analog-to-digital (A/D) converter commonly used in communications and signal processing. This

chapter reviews fundamentals of subpixel and mixed pixel analyses in hyperspectral data applica-

tions to detection and classification from a perspective of hard and soft decision-making processes.

To provide a general context, the terms subsample and mixed sample will be used in this chapter

instead of commonly used terms subpixel and mixed pixel, to reflect the nature of sample vectors

that can be either hyperspectral image pixels or hyperspectral signals such as signatures from spec-

tral library or database that do not appear as a form of pixels.

2.1 Introduction

A subsample target can appear in two different forms. One is a target that is smaller than the sam-

ple spatial resolution, in which case the target is embedded in a sample. An example is a vehicle

with size of 8 m� 4 m that can be completely embedded in a single pixel with resolution of

20 m� 20 m. Another is a target that partially occupies a sample with certain amount of abun-

dance fraction. That is, a target may or may not have its size greater than the sample resolution but

it occupies more than one sample with partial abundance fractions. In either case, such a target is

considered as a subsample target since it does not fully occupy an entire sample. It should be noted

that as shown in Sections 30.2–30.3 in Chapter 30 the abundance fraction of a target contained in a

sample can be used to calculate the partial size of the target occupying the sample.
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A mixed sample is considered as a sample mixed with a number of target substances with

appropriate abundance portions that account for the entire sample. A distinction between a sub-

sample target and a mixed sample is that the latter must have the knowledge of all the target sub-

stances present in the sample compared to the former that only needs to know that the target of

interest resides in the sample while discarding the information of other target substances in the

sample, which is considered to be the background information to the target.

The concept of subsample and mixed sample analyses can be illustrated by following a simple

example. Assume that there are five different fruits: apple, banana, lemon, orange, and strawberry.

Each of these five fruits is sliced to a small piece and mixed in a blender. After mixing these small

pieces of the five fruits, the resulting mixed juice can be viewed as a full sample and each of the

five fruits is considered as a target that is present in the mixed juice. Now, someone is asked to taste

a small amount of this mixed juice and answer the following questions:

1. Mixed sample classification

The answers to a series of five questions of “Is there apple in the mixed juice?,” “Is there

orange in the mixed juice?,” “Is there lemon in the mixed juice?,” “Is there strawberry in the

mixed juice?,” and “Is there banana in the mixed juice?” that exhaust all the five fruits by

knowing these five fruits as prior knowledge are “mixed sample classification.”

2. Mixed sample identification

The answer to a question of “Which fruit is in the mixed juice?” is “mixed sample identi-

fication.” In this case, we know all the five fruits in the mixed juice, but we do not know

“which one.” In general, identification is to identify an unknown target substance without prior

knowledge. It does not need a database to perform its task. When the identification is per-

formed via a database, it actually performs verification that verifies an unknown target sub-

stance from a known database or spectral library. Unfortunately, the term “identification” used

in signal processing is somewhat abused when the verification is used. For example, we know

all the five fruits in the mixed juice, but we do not know “which one.” So, in hyperspectral data

processing the “identification is actually meant for “verification.”

3. Mixed sample quantification

The answers to a series of five questions of “How much concentration of the apple is in the

mixed juice?,” “How much concentration of the orange is in the mixed juice?,” “How much

concentration of the lemon is in the mixed juice?,” “How much concentration of the straw-

berry is in the mixed juice?,” and “How much concentration of the banana is in the mixed

juice?” that exhaust all the five fruits by knowing these five fruits as prior knowledge are

“mixed sample quantification.” This task can be considered as either a subsequent process

after mixed sample classification or a stand-alone process.

On the other hand, consider a glass of plain water that mixes with only one of the five fruit juices,

say apple juice. In this case, the apple juice and water are considered as a subsample target and the

background, respectively. Now if one drinks a glass of water mixed with an unknown fruit juice or

a mixed juice without knowing other juice components, the following questions being asked are

subsample analysis.

1. “Is there apple in the water?”. This is “subsample target detection” where the apple is a sub-

sample target embedded in the background water.

2. “What fruit juice is in the water?” without assuming any prior knowledge at all. This is

“subsample identification.” Unlike subsample target detection where a specific target substance

is of interest, subsample identification does not know what substances in the plain water,
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specifically the fruit juice to be identified may not be one of the five fruits (apple, banana,

lemon, orange, and strawberry).

3. “What fruit juice is in the water?” via a database or library. This is “subsample verification.” As

noted above in the mixed sample analysis the key difference between subsample identification

and subsample verification is that the former must identify a target substance without any prior

knowledge, whereas the latter needs a database or library to identify the target substances via

the provided database/library in which case the used database/library is the required prior

knowledge. For example, if the database/library is made up of the five fruits, apple, banana,

lemon, orange, and strawberry, the target substances to be verified must be one of these five

fruits. So, generally speaking, subsample identification is much more challenging than sub-

sample verification. Unfortunately, most problems claimed to be identification problems in

reported literature are actually verification problems.

4. “How much concentration of the apple juice is in the water?” This is “subsample quantification”

in which case, the apple juice is the only target knowledge is known a priori. The main and only

interest is the amount of the apple juice contained in the plain water, which is the concentration

of the apple juice. This task can be considered either as a subsequent process after subsample

detection if the target substance is not known or a stand-alone process if the target substance of

interest is known in advance.

As an alternative, we can also use the above mixed juice as another example where subsample

analysis is performed by assuming only one of the five fruits (apple, banana, lemon, orange, and

strawberry) to be known, while the other four fruits are assumed to be unknown and considered to

be background to the known subsample target. In order to perform quantification and classification,

the complete prior knowledge of target substances must be known a priori as opposed to discrimi-

nation and identification, both of which do not need any target knowledge at all. The detection is

right in between and only needs to know the target substances of interest while discarding all other

information. Additionally, despite that subsample target classification is also considered in the lit-

erature, it will be considered part of mixed sample classification here because a subsample target

substance in this case is considered as a target partially occupying a sample with a certain propor-

tion of its presence and mixed with other target substances present in the same sample. Finally, it

should be noted that the above juice-mixing examples are only used for an illustrative purpose

where the mixing is not linear but rather nonlinear as was demonstrated in Guilfoyle (2003) and

Guilfoyle et al. (2001, 2002). Details of nonlinear mixing can be found in Guilfoyle (2003).

2.2 Subsample Analysis

The most fundamental task in subsample analysis is subsample detection where two types of

detectors will be discussed in this section, detectors with hard decisions and detectors with soft

decisions, which correspond to pure-sample target detector and subsample target detector,

respectively.

2.2.1 Pure-Sample Target Detection

Despite that a subsample target may be present in a sample, the pure-sample target detection is

performed by forcing a detector to make a binary decision, whether the sample is to be detected as

target sample or not. In other words, the pure-sample target detection can only say “yes” if target

is detected and “no” if target is absent. So, even though a subsample target does not fully occupy

the entire sample, it must be claimed to be a pure target sample if a detector says “yes” as target is
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detected. To emphasize such a nature, the commonly used binary hypotheses-based detectors

described in the following are called pure-sample target detectors.

A classical approach to pure-sample target detection is to formulate a signal detection problem

as the following binary hypothesis-testing problem.

H0 : r ¼ target absent � P0ðrÞ
versus

H1 : r ¼ target present� P1ðrÞ
ð2:1Þ

where r is an observable random variable; the null hypothesis H0 and alternative hypothesis H1

represent the case of target absence and the case of target presence with their probability distribu-

tions specified by P0(r) and P1(r), respectively. A decision rule d(r) for H0 versus H1 specified by

(2.1) is a partition of the observation space G into two regions: G1 referred to as rejection region

and G0 referred to as acceptance region. By virtue of the defined G0 and G1 with G ¼ G0 [ G1, the

decision rule d(r) is generally described by

dðrÞ ¼ 1; r 2 G1

0; r 2 G0

(

ð2:2Þ

and is shown in Figure 2.1.

Now, a solution to (2.2) is to find a best partition in some optimal sense. Specifically, we intro-

duce a cost function specified by a cost matrix
c00 c01

c10 c11

" #

where cij is the cost of the decision

saying Hi when Hj is actually true and a risk function of the decision rule d(r) under hypothesis Hj,

Rj(d) given by

RjðdÞ ¼ c0jPjðG0Þ þ c1jPjðG1Þ ð2:3Þ

Suppose that the prior probabilities of H0 and H1 for (2.1) are specified by p0 and p1, respectively.

The averaged risk r(d) is then defined by

rðdÞ ¼ p0R0ðdÞ þ p1R1ðdÞ ð2:4Þ

Minimizing (2.4) over all possible decision rules yields the Bayes detector dBayes(r) given by

dBayesðrÞ ¼ arg mindrðdÞf g: ð2:5Þ

The detector of this type can be considered as pure sample-based signal detection. If we further

assume that the probability distributions P0(r) and P1(r) have their own probability density

r ∈ Γ 
δ(r)

r ∈Γ1  
r ∈Γ0  

Figure 2.1 A decision rule specified by a partition of G, G ¼ G0 [ G1.
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functions given by p0(r) and p1(r), then PjðGiÞ ¼
R
Gi
pjðrÞdr. It can be shown in Poor (1994) that

the solution to (2.5) can be

dBayesðrÞ ¼ 1; LðrÞ � t

0; LðrÞ < t

(

ð2:6Þ

where L(r) is the likelihood ratio test (LRT) given by p1(r)/p0(r) and the threshold t is given by

t ¼ p0 c10�c00ð Þ
p1 c01�c11ð Þ. It should be noted that the Bayes detector in (2.6) declares H1 when the LRT L(r)

equals the threshold t. While this is generally true, it is not necessarily correct, particularly

when the random variable r is not continuous, but discrete. In order to address this issue,

let G0¼1 ¼ r 2 GjLðrÞ ¼ tf g and Figure 2.1 becomes Figure 2.2, where G ¼ G0 [ G0¼1 [ G1 and

k is the probability that H1 is true when L(r) is equal to the threshold t.
The risk function (2.3) can be further modified as

R1ðdÞ ¼ c01 P1ðG0Þ þ ð1� kÞP1ðG0¼1Þ½ � þ c11 P1ðG1Þ þ kP1ðG0¼1Þ½ �
R0ðdÞ ¼ c00 P0ðG0Þ þ ð1� kÞP0ðG0¼1Þ½ � þ c10 P0ðG1Þ þ kP0ðG0¼1Þ½ � ð2:7Þ

As a result of (2.7) the Bayes rule in (2.6) becomes a randomized detector dBayes(r) specified by the

following form:

dBayesðrÞ ¼
1; > t

k; LðrÞ ¼ t

0; < t

8
><

>:
ð2:8Þ

It is worth noting that it is the threshold t that determines which type of a detector will be. When t

is completely specified by a cost function and prior probabilities of H0 and H1 as the case of (2.3)

and (2.4), the detector is a Bayes detector. When the t is only specified by a cost function with no

knowledge of prior probabilities of H0 and H1, the detector is a minimax detector. A most practical

case is that there is no knowledge about the cost function or prior probabilities of H0 and H1. Under

such circumstances, the t is determined by a prescribed false alarm probability, PF and the resul-

tant detector becomes a well-known detector, called Neyman–Pearson (NP) detector. More specifi-

cally, for a detector, d let PF(d) be the false alarm probability given by

PFðdÞ ¼ P0ðG1Þ ¼
Z

LðrÞ�t

p0ðrÞdr ð2:9Þ

r ∈Γ
δ(r)

r ∈Γ1 
r ∈Γ0 

r ∈Γ0=1 

Figure 2.2 A randomized decision rule specified by a partition of G, G ¼ G0 [ G0¼1 [ G1.
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and PD(d) be the detection probability or detection power given by

PDðdÞ ¼ P1ðG1Þ ¼
Z

LðrÞ�t

p1ðrÞdr ð2:10Þ

The NP detector is one, denoted by dNP(r) to solve

maxd PDðdÞf g subject to PFðdÞ � b for any given 0 � b � 1 ð2:11Þ

where b is known as the significant level of test. In order to evaluate the detection performance of

dNP(r), a receiver operating characteristic (ROC) curve is plotted as a function of PD versus PF for

analysis (more details can be found in Chapter 3). Interestingly, no matter which detector is derived

as above, the structure of the detector always turns out to be the LRT. In other words, all the Bayes,

minimax, or Neyman–Pearson detectors end up with the same form of LRT. Details of signal

detection theory can be found in Poor (1994).

As mentioned earlier, in many cases where the probability distributions p0(r) and p1(r) are con-

tinuous such as Gaussian distributions, the detector dBayes(r) in (2.8) can be always made a deter-

ministic detector, d(r) by setting k¼ 1 with no effect on detection performance. In this case, (2.8)

can be simplified and reduced to (2.6).

The hypothesis-testing problem described by (2.1) is a general setting for a detection problem

where no signal model is assumed. However, if (2.1) is considered for signal detection in noise, the

hypothesis-testing problem (2.1) can be specifically represented by

H0 : r ¼ n

versus

H1 : r ¼ sþ n

ð2:12Þ

where s is the signal of interest and n represents an additive noise. Of particular interest is the case

that the noise in (2.12) is Gaussian in which case the Bayes decision rule (2.6) becomes a well-

known matched filter with the matching signal specified by the signal s.

2.2.2 Subsample Target Detection

In order to apply the signal detection model (2.12) to subsample target detection, we assume that a

subsample target signal specified by signature t is embedded in the background b with their pro-

portions specified by a and 1�a, respectively, where the proportion a will be referred to as abun-

dance fraction of t. As a result, the signal s in (2.12) will be replaced by a subsample target signal t

with its proportion occupied in r specified by an abundance fraction, a mixed with its background

signature b with the abundance fraction, 1�a, that is, atþ ð1� aÞb. The signal detection model

in (2.12) becomes

H0 : r ¼ bþ n � background with no subpixel target

versus

H1 : r ¼ t b½ �
a

1� a

" #

þ n ¼ atþ ð1� aÞbþ n � subpixel target presence

ð2:13Þ
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Using (2.13) subsample target detection is performed by the LRT given by

LðrÞ ¼ p1ðrÞ
p0ðrÞ

¼ pðrjsubsample targetÞ
pðrjno subsample targetÞ ð2:14Þ

Unlike pure sample-based signal detection specified by (2.12) using a threshold t, the LRT, L(r),
in (2.14) detects the subsample target t by estimating the abundance fraction of t, a present in r.

Since the amount detected by a detector specified by LRT is proportional to the abundance fraction

of a contained in the sample r, LRT essentially serves as an estimator of a, âðrÞ where the r is

included in âðrÞ to indicate the dependency of the abundance estimate on the r. By virtue of

(2.14), a subsample target detector can be interpreted as a detector that makes a soft decision based

on its estimated abundance âðrÞ instead of the one in (2.6) or (2.8) that makes a hard decision

based on a threshold t. The detector of this type can be considered as subsample signal detection

with soft decisions via the estimation of abundance fraction a, âðrÞ through r as opposed to pure

sample-based signal detection with hard decisions determined by the threshold t. A similar con-

cept will also be explored in Sections 2.3.1 and 2.3.2.

Since the major focus of subsample analysis is on the subsample target of interest t, the back-

ground b is generally not known and is something we would like to remove or suppress in order to

improve detectability of the t. In doing so, two general approaches have been proposed in the past.

One is to obtain the background knowledge from a secondary data set originally proposed by Kelly

(1986), and the other is to extend a model in (2.13) to a signal-background-noise (SBN) model

proposed in Thai and Healey (2002) and signal-decomposed and interference/noise (SDIN) model

suggested in Du and Chang (2004).

2.2.2.1 Adaptive Matched Detector (AMD)

As a special case of (2.12) where both probability density functions p0(r) and p1(r) are Gaussian

distributions specified by p0ðrÞ ¼ Nð�b;KÞ and p1ðrÞ ¼ Nð�t;KÞ with the same covariance matrixK

and the background mean, �b and target mean, �t, respectively, (2.14) becomes

LðrÞ ¼ p1ðrÞ
p0ðrÞ

¼ exp �t� �bð ÞTK�1 r� mð Þ
h i

¼ exp K�1
� �

�t� �bð Þ� �T
r� mð Þ

n o

) logLðrÞ ¼ log
p1ðrÞ
p0ðrÞ
� �

¼ K�1
� �

�t� �bð Þ� �T
r� mð Þ

¼ K�1
� �

�t� �bð Þ� �T
r� �t� �bð ÞTK�1m

¼ K�1
� �

�t� �bð Þ� �T
r� 1=2ð Þ �t� �bð ÞTK�1 �tþ �bð Þ

ð2:15Þ

Because 1=2ð Þ �t� �bð ÞTK�1 �tþ �bð Þ does not depend upon the observation r and can be absorbed in

the threshold t in (2.8) to produce a new threshold defined by

t0 ¼ log t þ 1=2ð Þ �t� �bð ÞK�1 �tþ �bð Þ ð2:16Þ

we can define a detector dAMD(r), called adaptive matched detector (AMD) via (2.15) to estimate

the abundance a by

dAMDðrÞ ¼ âðrÞ ¼ K�1
� �

�t� �bð Þ� �T
r ¼ �t� �bð ÞTK�1r ð2:17Þ
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which is a matched filter with the matching signal specified by �t� �bð ÞTK�1. However,
�t� �bð ÞTK�1 ¼ �t

T
K�1 � �b

T
K�1 is actually the difference between two whitened means by the

covariance matrix K; the matching signal is simply the difference of two means after the data is

whitened. If we calculate the variances of the detector of (2.17) under each of two hypotheses, H0

and H1 in (2.13), by

s2
AMD dðrÞjHj

� � ¼ �t� �bð ÞK�1 �t� �bð Þ for j ¼ 0; 1 ð2:18Þ

their variances turn out to be identical and are independent of hypotheses. Most interestingly, the

variance specified by (2.18) is actually the Mahalanobis distance between background mean and

target mean.

If we further use (2.18) to normalize AMD in (2.17), the resulting detector is referred to as

normalized AMD (NAMD), dNAMD(r) and given by

dNAMDðrÞ ¼ dðrÞ
s2
AMD dðrÞjHj

� � ¼
�t� �bð ÞTK�1r

�t� �bð ÞTK�1 �t� �bð Þ
ð2:19Þ

which becomes the commonly used adaptive matched filter. It should be noted that using the vari-

ance in (2.18) as a scaling constant in (2.19) has significant impact on the estimation of a. It has

been shown in Chang (1998) and Chang (2003a) that it was this constant to correct estimation error

of a. Unfortunately, this constant has been generally referred to as a normalization constant in the

literature, which is somewhat misleading. So, in order to further estimate the abundance of a in

(2.13) more accurately, we let âAMDðrÞ ¼ dNAMDðrÞ as an abundance estimator and use it as a

detector given by

dNAMDðrÞ ¼

1; > t00

h; if
�t� �bð ÞTK�1r

�t� �bð ÞTK�1 �t� �bð Þ
¼ t00

0; < t00

8
>>>><

>>>>:

ð2:20Þ

where t00 ¼ t0
�t � �bð ÞTK�1 �t � �bð Þ ¼ �t� �bð ÞTK�1 �t� �bð Þ

� 	�1

t þ 1=2ð Þ �t� �bð ÞK�1 �tþ �bð Þ� �
is a new

threshold obtained by absorbing the constant �t� �bð ÞTK�1 �t� �bð Þ
� 	�1

into the threshold

t0 ¼ log t þ 1=2ð Þ �t� �bð ÞK�1 �tþ �bð Þ defined in (2.16) with t defined in (2.8).
An alternative approach to arriving at the same detector in (2.20) is to perform a whitening

process on the original data by implementing a linear transformation specified by

r̂ ¼ jAðrÞ ¼ AT r� �bð Þ ¼ K�1=2 r� �bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t� �bð ÞTK�1 �t� �bð Þ

q ð2:21Þ

where A is referred to as a whitening matrix defined by

A ¼ K�1=2 �t� �bð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�t� �bð ÞTK�1 �t� �bð Þ

q ð2:22Þ
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As a result of (2.22), the transformed data have zero mean and variance normalized to unity where

the standard deviation of (2.18) used as the denominator in (2.21) to normalize the original data r
has the same effect as does the variance in (2.18) used to normalize the detector in (2.19).

In many real applications the statistics of the noise n, K and the knowledge of the background

mean �b in (2.20) are generally not known in advance. This implies that both the detector and the

threshold t00 in (2.20) cannot be specifically characterized. As a result, the hypothesis-testing prob-
lem specified by (2.13) is no longer a simple binary hypothesis-testing problem, but rather a binary

composite hypothesis-testing problem where a uniformly most powerful (UMP) detector is sought

to optimize detection performance. Unfortunately, such a UMP detector generally does not exist. A

general approach is to extend LRT, L(r), in (2.20) to so-called generalized LRT, which leads to a

maximum likelihood detector. In order to solve GLRT, a common assumption made on the noise is

Gaussian so that the maximum likelihood detector can be derived. On the other hand, since the cost

function and priorities of each hypothesis are also not unknown, the threshold t used in (2.20)

cannot be determined. To resolve this issue, an NP detector is implemented for this purpose. How-

ever, as noted, the performance of an NP detector is determined by a compromise between PD and

PF via the ROC analysis. If an NP detector is designed to perform a UMP detector while its false

alarm probability is retained at a constant level, such a detector is called constant false alarm rate

(CFAR) detector, which has been widely used in radar and sonar signal processing. On the other

hand, in order to obtain the background knowledge p0ðrÞ ¼ Nð�b;KÞ, a secondary data set is also

needed to produce required information. Many efforts along with this approach have been reported

in the literature, Reed et al. (1974), Kelly (1986), Reed and Yu (1990), Manolakis and Shaw

(2002), and so on.

2.2.2.2 Adaptive Subspace Detector (ASD)

The AMD-based subsample target detection discussed in Section 2.2.2.1 follows the standard

Neyman–Pearson detection theory by finding GLRTor CFAR detector where the probability distri-

bution under each hypothesis and background knowledge such as noise must be known a priori,

preferably Gaussian distributions from which a GLRT can be derived and an ROC analysis can be

further used for detection performance. As a matter of fact, in reality, such assumptions are gener-

ally not true for hyperspectral imagery, despite the fact that CFAR- or GLRT-based approaches

seem to perform successfully in subsample analysis. So, it is interesting to find out how can an

approach perform well, while its assumptions violate practical constraints? This question will be

answered by the following approach.

As noted, AMD assumes that noise or background statistics are given a priori. In this

section, we consider an alternative approach modified from the subspace detector proposed

by Kraut et al. (2001), which can be also considered as a CFAR detector. It only assumes

subsample target knowledge without knowing noise/background statistics. It is also referred

to as adaptive subspace detector (ASD) due to the fact that it is derived from the concept of

subspace projection. However, it is worth noting that the ASD derived here is a little bit

different from ASD in Kraut et al. (2001) in the sense that no signal model such as (2.13) in

Kraut et al. (2001) is assumed and involved in our derivation. The only assumption made is

the prior signature knowledge of the subsample target, t. ASD derived in (2.28) is nearly

identical to CEM derived in (2.33) except the sample covariance matrix used in ASD is

replaced by the sample correlation matrix in CEM.

According to Kraut et al. (2001), it first uses the sample covariance matrix, K, to whiten the

data and is then followed by a subspace projection approach that projects the entire whitened

data space into two separate mutually orthogonal linear subspaces, called signal subspace, denoted
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by ĥti and its orthogonal subspace, referred to as clutter space, denoted by ĥti? via two orthogonal

subspace projection operators specified by t̂ ¼ K�1=2t and defined as follows.

Pt̂ ¼ t̂ t̂
T
t̂

� 	�1

t̂
T

and I� Pt̂ ð2:23Þ

Now, let ŵ ¼ K�1=2w be the whitened vector of any weighting vector, w and the signal-to-clutter

ratio (SCR) be defined by

SCRðŵÞ ¼ ŵTPt̂ŵ

ŵT I� Pt̂

� �
ŵ

� � ¼ ŵTPt̂ŵ

ŵT ŵ� ŵTPt̂ŵ

¼ ŵTK�1=2t tTK�1t
� ��1

tTK�1=2ŵ

ŵT ŵ� ŵTK�1=2ttTK�1=2ŵ tTK�1t
� ��1

¼ tTK�1=2ŵ
� �2

tTK�1t
� ��1

ŵT ŵ� tTK�1=2ŵ
� �2

tTK�1t
� ��1

: ð2:24Þ

Maximizing (2.25) over w is equivalent to finding a vector w minimizing

1

SCRðŵÞ ¼ ŵT ŵ� tTK�1=2w
� �2

tTK�1t
� ��1

tTK�1=2ŵ
� �2

tTK�1t
� ��1

¼ ŵT ŵ

tTK�1=2ŵ
� �2

tTK�1t
� ��1

� 1

ð2:25Þ

which is in turn equivalent to finding an optimal vector w that maximizes

tTK�1=2ŵ
� �2

ŵT ŵ
¼ ŵTK�1=2t
� �2

ŵTŵ
ð2:26Þ

Using Schwarz’s inequality and following the same argument as (2.6) in Chang (2003a, p. 42), the

solution to maximization of (2.26) or (2.24) denoted by ŵ� can be shown to be

ŵ� ¼ kK�1=2t ¼ arg maxŵ
ŵTK�1=2t
� �2

ŵT ŵ

" #( )

¼ arg maxŵ SCRðŵÞf g

with

maxŵ SCRðŵÞ ¼
K�1=2t
� �T

K�1=2t
� �h i2

K�1=2t
� �T

K�1=2t
� � ¼ tTK�1t ð2:27Þ

where k is any constant. Using the weight ŵ� obtained in (2.27) by letting k ¼ tTK�1t
� ��1

, we can

define an adaptive subspace detector, dASD(r) on the original data space by

dASDðrÞ ¼ ŵ�ð ÞT r̂ ¼ K�1=2t
� �T

K�1=2r
� �

tTK�1t
¼ tTK�1r

tTK�1t
ð2:28Þ
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where k ¼ tTK�1t
� ��1

is a scaling constant and is a very important factor in correcting estimation

error of the abundance fraction of the subsample target t (Chang, 1998).
It is worth mentioning that the SCR defined in (2.24) is slightly different from signal-to-noise ratio

(SNR) generally used in signal detection in noise in the sense that the clutter considered in (2.24)

may include unwanted signals such as background or interferers that can be treated as structure noise

compared to the noise considered in SNR that is assumed to be a random noise and can be viewed as

an unstructured noise. Since a subsample target is embedded in a sample specified by its abundance

fraction a to reflect its spatial presence, the spatial proportion accounted for background is (1�a). In

this case, using SCR is more appropriate than using SNR for subsample target detection.

Comparing (2.28) against (2.19), the t and the constant k in (2.28) play the same role as �t� �bð Þ
and �t� �bð ÞTK�1 �t� �bð Þ

� 	�1

do in (2.19). However, as noted in AMD, a secondary data set is

needed to estimate the background so that the background mean �b can be removed. In addition,

since there is no Gaussian assumption made on the data, target signal�t in p1ðrÞ ¼ Nð�t;KÞ assumed

in (2.12) can be replaced by the target signal of interest t. With �b set to zero and �t set to t, the

dAMD
normalðrÞ specified by (2.19) is reduced to dASD(r) in (2.28).
Extensions of ASD from the standard signal detection model in (2.13) to a more general model

have been investigated in recent years, such as the ones including background (Thai and Healey,

2002), interference (Du and Chang, 2004), and clutter (Funk et al., 2001). Nevertheless, they can

all be considered as variants of the well-known AMD developed by Scharf and Friedlander (1994)

and ASD developed by Kraut et al. (2001). Details of such extensions will be discussed in

Chapter 12.

Finally, as will be shown in Sections 2.3.2.1 and 12.2.1, ASD is very closely related to the

orthogonal subspace projection (OSP).

2.2.3 Subsample Target Detection: Constrained Energy Minimization (CEM)

The ASD presented in Section 2.2.2.2 is derived from subspace projection using maximization of

SCR as a criterion for optimality. This section develops a rather different approach, called the con-

strained energy minimization (CEM) developed in Harsanyi’s dissertation (1993) and discussed in

great detail in Chang (2003a). It does not assume a signal model or noise/background knowledge.

The only knowledge that CEM requires is the subsample target information specified by t as the

same level of knowledge required by ASD presented in Section 2.2.2.2. Because there is no signal

model involved, CEM does not format a detection problem as a binary composite hypothesis test-

ing. So, CEM is not an LRT-based approach such as AMD and ASD. Moreover, CEM does not

need to know background information. As a result, no secondary data are required to produce the

background data. Therefore, from a practical point of view, CEM is more realistic and general due

to the fact that it requires the least amount of information about subsample target of interest with-

out making assumptions on signal model and noise/background statistics.

The CEM owes its idea to the linearly constrained minimum variance (LCMV) originally

proposed by Frost (1972) arising in adaptive beamforming. Suppose that a hyperspectral image

is represented by a collection of image pixel vectors, denoted by r1; r2; 	 	 	 ; rNf g where

ri ¼ ri1; ri2; 	 	 	 ; riLð ÞT for 1 � i � N is an L-dimensional pixel vector, N is the total number of

pixels in the image, and L is the total number of spectral channels. Further assume that

t ¼ t1; t2; 	 	 	 ; tLð ÞT is specified by the target signal of interest to be used for detection. The goal

is to find a target detector detecting data samples that contain the desired target signal specified by

signature t. Instead of directly appealing for an LRT-based detector, AMD, or a subspace projec-

tion-based detector, ASD, an LCMV-based adaptive beamforming approach is used for this

Fundamentals of Subsample and Mixed Sample Analyses 43



purpose. It assumes that the signals arriving at an array from the desired direction will be passed

through an adaptive beamformer, while the energies of signals coming from other directions will

be minimized at the output of the beamformer. Now, if we interpret the desired direction as the

desired signature that specifies targets to be detected and the beamformer’s output as a soft deci-

sion-maker for target detection, a soft target detector can actually be deigned by a finite impulse

response (FIR) linear filter with L filter coefficients w1; w2; 	 	 	 ; wLf g, denoted by an L-dimen-

sional vector w ¼ w1; w2; 	 	 	 ; wLð ÞT that minimizes the filter output energy subject to the con-

straint tTw ¼ wT t ¼ 1. More specifically, let yi denote the output of the designed FIR filter

resulting from the input ri. Then yi can be expressed by

yi ¼
XL

l¼1
wlril ¼ wð ÞTri ¼ rTi w ð2:29Þ

and the average energy of the filter output is given by

1=Nð Þ
XN

i¼1
y2i ¼ 1=Nð Þ

XN

i¼1
rTi w
� �2 ¼ wT 1=Nð Þ

XN

i¼1
rir

T
i

h i
w ¼ wTRw ð2:30Þ

where R ¼ 1
N

PN
i¼1 r

irTi
� �

is the sample auto-correlation matrix of the image. The CEM is

developed to solve the following linearly constrained optimization problem

minw wTRw
� �

subject to tTw ¼ wT t ¼ 1 ð2:31Þ

The optimal solution to (2.31) can be derived in Harsanyi (1993) and Chang (2002) by

wCEM ¼ R�1t

tTR�1t
ð2:32Þ

With the optimal weight wCEM specified by (2.32), a filter called CEM, denoted by dCEM(r), was

derived in Harsanyi (1993) and given by

dCEMðrÞ ¼ wCEM
� �T

r ¼ R�1t

tTR�1t

 �T

r ¼ tTR�1r

tTR�1t
ð2:33Þ

which is also a matched filter and turns out to be ASD in (2.28) with the covariance matrix K

replaced by the correlation matrix R. Therefore, except for the sample covariance matrix used in

ASD and the sample correlation matrix implemented in CEM, both ASD and CEM are essen-

tially identical to each other in terms of detector structure regardless of the fact that the design

rationales for ASD and CEM are quite different.

By further comparing (2.33) to (2.19), the only difference between (2.33) and (2.19) is that the

covariance matrix K and �t� �bð Þ used in (2.19) can be simply replaced with R and t in (2.33),

respectively. This implies that two different approaches, LRT and LCMV, arrive at the same form

of a detector with the same matching signal specified by t. As a consequence, they both give rise to

similar performance. This is the major reason why AMD can perform well even if it is derived

from Gaussian noise statistics.
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2.3 Mixed Sample Analysis

In analogy with subsample analysis presented in Section 2.2, mixed sample analysis can be per-

formed similarly with one key difference. In subsample analysis the background knowledge about

the b considered in (2.13) is assumed to be unknown or can be obtained a posteriori directly from

the data or a secondary data set, whereas in mixed sample analysis the target knowledge present in

the r must be completely specified a priori. One fundamental task of mixed sample analysis is to

perform spectral unmixing via linear spectral mixture analysis (LSMA). More specifically, LSMA

assumes that a data sample vector r can be specified by a set of p known signals, s1; s2; 	 	 	 ; sp
� �

as

a linear mixture in terms of their respective mixing abundance fractions specified by a1;a2; 	 	 	 ;ap.

When LSMA is used for classification, it classifies the r into one of these p signals, s1; s2; 	 	 	 ; sp.
Using the five-fruit mixed juice described in the introduction as an example, the classification of

mixed sample analysis is performed by assuming that the five fruits (apple, banana, lemon, orange,

and strawberry) represent five known signals s1; s2; 	 	 	 ; s5 and the mixed juice r is an admixture of

these five fruits with different concentrations a1;a2; 	 	 	 ;a5. The classification of the mixed juice r

is then performed in two ways. One is to determine which fruit is more likely to represent the

mixed juice r, in which case the classification is performed by hard decisions. The other is to deter-

mine how much concentration of each fruit is contained in the mixed juice r, in which case the

classification is performed by soft decisions via the concentration of each fruit estimated from the

r as its abundance fraction. In analogy with pure sample-based signal detection making hard deci-

sions and subsample-based signal detection making soft decisions that have been explored in Sec-

tion 2.2 for detection, two similar types of classification, classification with hard decisions and

classification with soft decisions, can be also derived in the same manner. The former can be con-

sidered as pure sample-based classification that labels a data sample vector r by a specific class,

whereas the latter is mixed sample-based classification that estimates abundance fraction of each

class present in a sample vector r as a likelihood of a particular class to be assigned to the r.

More specifically, if there are p classes of interest to be assigned to a data sample vector r,

the classification of r is performed by representing r as a p-dimensional vector,

âðrÞ ¼ â1ðrÞ; â2ðrÞ; 	 	 	 ; âpðrÞ
� �T

. When it is a pure-sample classification, only one âjðrÞ ¼ 1 for

some j with 1 � j � p and the rest are zeros in which case only one class can be assigned to r.
When it is a mixed-sample classification, âjðrÞ is a real value, which indicates the likelihood of

the jth signal sj to be assigned to the r via its abundance fraction estimate. Therefore, the pure

sample-based classification is basically a class-label membership assignment that makes a hard

decision on which class is more likely to represent the r. Two such well-known classification tech-

niques will be reviewed: Fisher’s linear discriminant analysis (FLDA) in Section 2.3.1.1 and sup-

port vector machine (SVM) in Section 2.3.1.2. On the other hand, the mixed sample classification

essentially performs abundance fraction estimation that assigns a likelihood of a particular class to

the sample r and the classification is performed by a set of likelihood values specified by abun-

dance fractions. Two such mixed sample classification techniques, orthogonal subspace projection

developed by Harsanyi and Chang (1994) and target-constrained interference-minimized filter

(TCIMF) developed by Ren and Chang (2000), will be reviewed in Sections 2.3.2.1 and 2.3.2.2,

both of which can be considered as extensions of CEM discussed in Section 2.2.3.

2.3.1 Classification with Hard Decisions

In this section, we first describe two supervised pure sample-based classification techniques, FLDA

and SVM, which require training data to perform hard-decision classification. From a view point of

how to use training data, FLDA and SVM are completely different approaches. While FLDA can

be considered as a statistics-based technique using training data on-average case, SVM can be
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regarded as a geometry-based technique using training data to find a hyperplane maximizing the

distance between training samples on worst-case in the sense that training samples are near the

separating hyperpalnes. In other words, an FLDA-generated classifier is derived by means and var-

iances of training classes, whereas an SVM-generated classifier is derived by worst training data

called support vectors. This is similar to what is used to evaluate computational complexity of an

algorithm based on average case and worst case. As a result, in order for an FLDA-based classifier

to perform effectively, the pool of training sample must be sufficiently large to produce reliable

statistics of the data. By contrast, in order for an SVM-based classifier to perform well, it does not

need a large set of training data. Instead, it requires the worst training data samples, that is, support

vectors that are close to hyperplanes used to separate data samples. Therefore, both approaches

have their own strengths and weaknesses depending upon provided training data.

2.3.1.1 Fisher’s Linear Discriminant Analysis (FLDA)

In binary classification, we assume that there are nj training sample vectors given by rif gnti¼1 for Cj,

j ¼ 1; 2, with nj being the number of training sample vectors in the jth class Cj. Let m be the global

mean of the entire training sample vectors, denoted by m ¼ 1=n1ð ÞPri2C1
ri þ 1=n2ð ÞPri2C2

ri, and

mj be the mean of the training sample vectors in the jth class Cj, denoted by mj ¼ 1=nj
� �P

ri2Cj
ri.

The main idea of the FLDA is to find a vector that projects all data sample vectors into a new data

space called feature space so that the projected data sample vectors in this feature space can have

maximum separation of two classes, C1 and C2. Let w denote the projection vector with the projec-

tion carried out by y ¼ wTx. The training sample vectors rif gnti¼1 projected in this new feature

space are then given by r̂if gnti¼1 with r̂i ¼ wTri, and the mean and variance of the projected training

vectors in Cj can be calculated as m̂j ¼ 1=nj
� �P

r̂i2Cj
r̂i and ŝ2

j ¼ 1=nj
� �P

r̂i2Cj
r̂i � m̂j

� �2
, respec-

tively. The optimal projection vector w� that achieves the maximum separability of binary classifi-

cation should be the one that separates the two projected means, m̂1 and m̂2, as farther as possible

while making two variances ŝ2
1 and ŝ2

2 as small as possible. In order to accomplish these two goals

simultaneously, the w� should be the one that maximizes the following criterion:

JðwÞ ¼ m̂2 � m̂1ð Þ2
ŝ2
1 þ ŝ2

2

¼ wTm1 � wTm2ð Þ2
P

ri2C1
wTri � wTm1ð Þ2 þPri2C2

wTri � wTm2ð Þ2 ð2:34Þ

Or alternatively, (2.34) can be reexpressed in terms of matrix forms called Fisher’s ratio or

Rayleigh’s quotient, which is

JðwÞ ¼ wTSBw

wTSWw
ð2:35Þ

where SB and SW are referred as between-class and within-class scatter matrices, respectively, and

given by

SB ¼ m2 � m1ð Þ m2 � m1ð ÞT ð2:36Þ
and

SW ¼
X

ri2C1

ri � m1ð Þ ri � m1ð ÞT þ
X

ri2C2

ri � m2ð Þ ri � m2ð ÞT ð2:37Þ

The solution for w to maximize (2.35) is given in Bischop (1995) by

wFLDA / S�1
W m2 � m1ð Þ ð2:38Þ
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which specifies a projection vector w� subject to a scale constant. Interestingly, letting two classes

be specified by the target class and the background class with their respective means, denoted by

target mean �t and background mean �b, (2.38) becomes

wFLDA / S�1
W

�t� �bð Þ ð2:39Þ

Comparing (2.39) to (2.17) both have the same form except that K�1 in (2.17) is replaced with S�1
W

in (2.32). More details about this relationship can be found in Chang and Ji (2006) and

Chapters 13–14 of this book.

A remark on FLDA for binary classification is noteworthy. It has been shown in Bischop (1995)

that FLDA-based binary classification is identical to least squares-based approach. In addition,

FLDA-based binary classification is also shown by Chang et al. (2006) to be identical to Otsu’s

image thresholding method. However, it is interesting to note that none of these two can be applied

to FLDA-based multiclassification.

In order to extend FLDA for two-class classification to multiple-class classification, assume that

there are p classes of interest, C1; C2; 	 	 	 ; Cp and nt training sample vectors given by rif gnti¼1 for

p-class classification, with nj being the number of training sample vectors in the jth class Cj. Let m
be the global mean of the entire training sample vectors, denoted by m ¼ 1=ntð ÞPnt

i¼1 ri, and mj be

the mean of the training sample vectors in the jth class Cj, denoted by mj ¼ 1=nj
� �P

ri2Cj
ri. Now,

we can extend (2.36) and (2.37) to define the within-class scatter matrix, SW and between-class

scatter matrix SB for p classes as follows.

SW ¼
Xp

j¼1
Sj where Sj ¼

X
r2Cj

r� mj

� 	
r� mj

� 	T
ð2:40Þ

SB ¼
Xp

j¼1
nj mj � m
� 	

mj � m
� 	T

ð2:41Þ

Using (2.40) and (2.41), Fisher’s ratio in (2.35) is then generalized and given in Bischop (1995) by

Trace WTSWW
� ��1

WTSBW
n o

for any matrixW of size L� ðp� 1ÞW ð2:42Þ

p-Class FLDA classification is to find a set of feature vectors specified by the matrix WFLDA that

maximize Fisher’s ratio specified by (2.42) where the number of feature vectors found byWFLDA is

p� 1, which is determined by the number of classes, p. These FLDA-obtained p� 1 feature vec-

tors specify boundaries among p classes. More details can be found in Duda and Hart (1973),

Bischop (1995, 2006), and Section 9.2.3 in Chang (2003a).

Since the feature matrix WFLDA obtained from (2.42) is a matrix that specifies p� 1 feature

vectors, directly findingWFLDA by maximizing (2.42) may encounter singularity problems. Instead

of solving p� 1 feature vectors in WFLDA all together from (2.42), an alternative solution is to find

these p� 1 feature vectors one at a time by solving (2.38). In other words, solving a multiple-class

FLDA problem can be accomplished by solving a sequence of two-class FLDA problems one after

another successively. A specific algorithm in doing so is described as follows.

Algorithm for finding successive feature vectors for FLDA

1. Assume that there are p classes of interest and TS1; TS2; 	 	 	 ; TSp are p training sample sets

where TSj is the jth training sample set for the jth class Cj and contains nt training sample

vectors.
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2. For j¼ 1, calculate the mean of class TS1 by m1 ¼ 1=n1ð ÞPri2TS1ri and m2 ¼
1=�n1ð ÞPri2[p

j¼2
TSj

ri where �n1 ¼
Pp

i¼2 ni.

3. Find the first feature vector w�
1 by solving (2.38) with m1 and m2 obtained in Step 2. This is the

same as finding an eigenvector corresponding to the largest eigenvalue of the matrix

S�1
W m2 � m1ð Þ.

4. Using the found w�
1, produce the OSP specified by P?

w�
1
¼ I� w�

1 w�
1

� �T
w�

1

� 	�1

w�
1

� �T
developed

in Harsanyi and Chang (1994) to TS2; TS3; 	 	 	 ; TSp to produce TS1j ¼ P?
w�

1
TSj for

j ¼ 2; 3; 	 	 	 ; p.
5. Calculate m1

2 ¼ 1=n2ð ÞPri2TS12ri, m
1
3 ¼ 1=�n11

� �P
ri2[p

j¼3
TS1j

ri, and �n
1
1 ¼

Pp
i¼3 ni.

6. Find the second feature vector w�
2 by solving (2.38) with m1 replaced by m1

2 and m2 replaced by

m1
3, that is, an eigenvector corresponding to the largest eigenvalue of the matrix S�1

W m1
3 � m1

2

� �
.

7. Apply P?
w�

2
¼ I� w�

2 w�
2

� �T
w�

2

� 	�1

w�
2

� �T
to TS3; TS4; 	 	 	 ; TSp to produce TS2j ¼ P?

w�
2
TS1j or

TS2j ¼ P?
W�2TSj withW

�2 ¼ w�
1w

�
2

� �
for j ¼ 3; 	 	 	 ; p.

8. Repeat the procedure of steps 2–7 over and over again using P?
w�

j
¼

I� w�
j w�

j

� 	T
w�

j

 ��1

w�
j

� 	T
or P?

W�j ¼ I�W�j W�j� �T
W�j

� 	�1

W�j� �T
for j ¼ 3; 	 	 	 ; p until

p� 1 feature vectors are generated, w�
3; 	 	 	 ;w�

p�1.

It is worth noting that the key for the above algorithm to work is to assume that all the p� 1 feature

factors are orthogonal to each other. This is true because solving the feature vector via (2.38) is

equivalent to finding an eigenvector associated with the largest eigenvalue of S�1
w m1 � m2ð Þ. As a

result, two different feature vectors result in two distinct eigenvectors that are always orthogonal.

The OSP is used to guarantee that its feature spaces from which feature vectors are generated are

indeed orthogonal to each other.

2.3.1.2 Support Vector Machines (SVM)

In this section, we describe another interesting pure-sample classifier, support vector machine,

which uses a different classification criterion. Instead of maximizing the distance between two

class means and minimizing sum of the distances within each of two classes as measured by

Fisher’s ratio in (2.35), SVM uses a set of training sample vectors, referred to as support vectors

for each of two classes and maximizes the distance between the support vectors in these two

classes. Following the same approach presented in Chapter 6 of Haykin (1999), its idea can be

described mathematically as follows.

Assume that a linear discriminant function, y¼ g(r) is specified by

y ¼ gðrÞ ¼ wTrþ b ð2:43Þ

where w is a weighting vector that determines the performance of y¼ g(r) based on the sample

vector r and b is a bias.

Consider a two-class classification problem with a given set of training data ðri; yiÞf gni¼1 where

rif gni¼1 are n training samples with their associated binary decisions dif gni¼1 specified by either 1 or

0. For each pair of ðri; diÞf gni¼1 it satisfies

di ¼
1; if yi ¼ gðriÞ ¼ wTri þ b � 0

0; if yi ¼ gðriÞ ¼ wTri þ b < 0

(

ð2:44Þ
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where

y ¼ gðrÞ ¼ wTrþ b ¼ 0 ð2:45Þ

specifies a hyperplane that is a decision boundary that separates two classes. If n be the normal

vector of the hyperplane specified by (2.45), then (2.45) can be reexpressed as

nTrþ b ¼ 0 ð2:46Þ
which indicates that the n is orthogonal to the hyperplane. If we further let u be the normalized unit

vector of n, that is, u ¼ n=jjnjj, then any data sample vector r in the data can be represented by

r ¼ rp þ ru ð2:47Þ

where rp is the projected point of r onto the hyperplane with gðrpÞ ¼ wTrp þ b ¼ 0 and the scalar

r is the distance of the data sample vector x from its projected vector xp which can be calculated as

follows.

gðrÞ ¼ gðrp þ ruÞ ¼ wT rp þ ru
� �þ b

¼ wTrp þ bþ rwTu ¼ gðrpÞ þ rwTu ¼ rwTu

) r ¼ gðrÞ=wTu

ð2:48Þ

If w¼ n, then r ¼ gðrÞ=nTu ¼ gðrÞ=jjnjj, which implies that gðrÞ ¼ rjjnjj. In particular, if r¼ 0

and w¼ n, r ¼ b=jjnjj. Figure 2.3 depicts their graphical relationship.
An SVM is a linear discriminant function that can be used as a linear binary classifier. It was

originally developed in statistical machine learning theory by Vapnik (1998). For a given set of

training data, ðri; diÞf gni¼1, an SVM finds a weighting vector w and bias b that satisfy

di ¼
1; if yi ¼ gðriÞ ¼ wTri þ b � 0

�1; if yi ¼ gðriÞ ¼ wTri þ b < 0

(

ð2:49Þ

g(r) = wTr + b 

r 

rp

u 

 ρ = g(r)/||n||  

ρ = b/||n||  

u = n/||n||  

Figure 2.3 Illustration of linear discriminant function g(r)¼wTrþ b.
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and maximize the margin of separation defined by distance between a hyperplane and closest data

samples. In particular, (2.44) can be rederived by incorporating its binary decision into the discrim-

inant function (2.49) as follows

di w
Tri þ b

� � � 1 for 1 � i � n ð2:50Þ

It should be noted that (2.49) is modified from (2.44) by replacing decision 0 with decision 1 when

yi ¼ gðriÞ ¼ wTri þ b < 0 so that two decisions in (2.49) can be combined in to one equation (2.50).

According to (2.48) the distance r between a sample vector r and its projected vector on the

hyperplane g(r)¼wTrþ b¼ 0 is specified by r ¼ gðrÞ=jjwjj, with w being the normal vector of

the hyperplane. Since g(x) takes only þ1 or �1, the distance r is then defined by

r ¼ 1=jjwjj if yi ¼ þ1

�1=jjwjj if yi ¼ �1

(

ð2:51Þ

Using (2.51) we define the margin of separation between two classes as

r ¼ 2=jjwjj ð2:52Þ

By virtue of (2.50)–(2.52), the linear separability problem for the SVM is to find an optimal

weight vector w� that maximizes the distance specified by (2.52), which is equivalent to minimizing

FðwÞ ¼ 1=2ð ÞwTw ¼ 1=2ð Þjjwjj2 ð2:53Þ

subject to constraints specified by (2.50). Figure 2.4 illustrates the concept of the SVM where two

classes of data sample vectors are denoted by “open circles” and “crosses” and the vectors satisfying

the equality of (2.50) are called support vectors.

Optimal 
hyperplane 

x 

xp 

w 

 ρ = g(r)/||w||  

ρ = b/||w|| 

Support vectors 

Support 
vectors 

 ρ = -1/||w|| 

 ρ = 1/||w|| 

Figure 2.4 Illustration of SVM.
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In order to solve the constrained optimization problem specified by (2.53), we introduce a

Lagrangian defined by

Jðw; b; aÞ ¼ 1=2ð ÞwTw�
Xn

i¼1
ai di w

Tri þ b
� �� 1

� � ð2:54Þ

which takes care of the cost function given by (2.54) along with constraints specified by (2.46).

Differentiating J(w, b, a) in (2.54) with respect to w and b yields

@Jðw; b; aÞ
@w

¼ 0 ) w� ¼
Xn

i¼1
aidiri ð2:55Þ

@Jðw; b; aÞ
@b

¼ 0 )
Xn

i¼1
aidi ¼ 0 ð2:56Þ

along with the constraint (2.50)

ai di w
Tri þ b

� �� 1
� � ¼ 0 for 1 � i � n ð2:57Þ

Expanding J(w, b, a) and wTw we obtain

Jðw; b; aÞ ¼ 1=2ð ÞwTw�
Xn

i¼1
aidiw

Tri � b
Xn

i¼1
aidi þ

Xn

i¼1
ai ð2:58Þ

wTw ¼
Xn

i¼1
aidiw

Tri ¼
Xn

i¼1

Xn

j¼1
aiajdidjr

T
i rj ð2:59Þ

Using (2.55) and (2.56) we can reformulate J(w, b, a) as

QðaÞ ¼
Xn

i¼1
ai � 1=2ð Þ

Xn

i¼1

Xn

j¼1
aiajdidjr

T
i rj ð2:60Þ

In light of (2.60) an alternative form of the linear separability problem for the SVM can be formu-

lated as follows.

Alternative Form of Linear Separability Problem for SVM
Given a set of training pool, ðri; diÞf gni¼1, find a set of Lagrange multiplier vector a ¼
a1; a2; 	 	 	 ; anð ÞT that maximizes Q(a) is given by (2.60) subject to the following constraints

1.
Pn

i¼1 aidi ¼ 0

2. ai � 0 for 1 � i � n

Solution to the above optimization problem is given by

wSVM ¼
Xn

i¼1
aSVMi diri ð2:61Þ

1 ¼ ds ¼ wSVM
� �T

rs þ b ) b ¼ 1� wSVM
� �T

rs ð2:62Þ

with rs is a support vector on the hyperplane with its decision ds¼þ1.
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By far the SVM discussed above was developed to separate two classes that are linearly separa-

ble. That is, the data sample vectors in two classes can be separated by a distance greater than r
from the hyperplane shown in Figure 2.4. However, in many applications, such desired situations

may not occur. In other words, some data sample vectors fall in the region within the distance less

than r from the hyperplane or even on the wrong side of the hyperplane. These data sample vectors

can be considered to be either bad or confusing data sample vectors and they cannot be linearly

separated. In this case, the SVM developed for linear separable problems outlined by (2.58)–(2.60)

must be rederived to take care of such confusing data sample vectors. In order for linear SVMs to

solve linear nonseparable problems, two approaches are of particular interest. One is a kernel-

based approach that will be discussed in detail in Section 33.5. The other is to introduce a set of

slack variables into SVMs to resolve the dilemma caused by confusing data sample vectors. Spe-

cifically, a new set of positive parameters, denoted by jif gni¼1 and referred to as slack variables,

must be introduced to measure the deviation of a data sample vector from the ideal condition of

linear separability, in which case ji < 0. However, if 0 � ji � 1, the ith data sample vector xi falls

within the region with distance less than the margin of separation but on correct side of the deci-

sion surface specified by the hyperplane. On the other hand, if ji > 1, the ith data sample vector xi
falls on the wrong side of its decision surface. In light of the mathematical interpretation, these

issues can be addressed by the following inequalities:

di w
Tri þ b

� � � 1� ji for 1 � i � n ð2:63Þ

ji � 0 for 1 � i � n ð2:64Þ

By incorporating (2.63) and (2.64) in (2.53) the object function F(w) can be modified as

FðwÞ ¼ 1=2ð ÞwTwþ C
Xn

i¼1
ji with C > 0 ð2:65Þ

By virtue of (2.63)–(2.65) a linear nonseparable problem solved by the SVM can be described as

follows.

Given a set of training pools, ðri; diÞf gni¼1, find an optimal weight vector wSVM and bias bSVM

such that they satisfy the constraints specified by (2.63) and (2.64) and such that the pair of

(wSVM, bSVM) and jif gni¼1 minimizes (2.65). Or an alternative form can be obtained as follows.

Given a set of training pool, ðxi; diÞf gni¼1, find a set of Lagrange multiplier vectors

a ¼ a1; a2; 	 	 	 ; anð ÞT that maximize Q(a) given by (2.60) subject to the following constraints:

1.
Pn

i¼1 aidi ¼ 0

2. C � ai � 0 for 1 � i � n, with C being a predetermined positive parameter.

The optimal solution wSVM to the above optimization problem is given by

wSVM ¼
Xns

i¼1
aSVMi ds

ir
s
i ð2:66Þ

where ns is the number of support vectors.

It should be noted that the slack variables jif gni¼1 along with their Lagrange multipliers

hif gni¼1 that are used to constrain non-negativity of jif gni¼1 do not appear in the alternative

form. Instead, the constraint constant C associated with the slack variables is included to
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bound the Lagrange multiplier aif gni¼1 from above. Nevertheless, by means of (2.60) we can

still derive the following equations that include the slack variables jif gni¼1 and their associated

Lagrange multipliers hif gni¼1.

ai di w
Tri þ b

� �� ð1� jiÞ
� � ¼ 0 for 1 � i � n ð2:67Þ

jihi ¼ 0 for 1 � i � n ð2:68Þ

Differentiating with the slack variables, jif gni¼1 and setting to zero yields

ai þ hi ¼ C ð2:69Þ

Combining (2.68) and (2.69) results in

ji ¼ 0 if ai < C ð2:70Þ

In this case, the bSVM can be obtained by taking any data sample vector xi with 0 < aSVMi < C

(in which case, ji ¼ 0 due to (2.70)) and (2.67).

As originally designed, SVM is a binary classifier. In order to extend SVM to a multiclass

classifier, two approaches have been proposed in the past. One is the so-called one-against-all

also known as winner-take-all approach, which reduces a multiclass classification problem to a

set of two-class binary classification problems, each of which is produced by SVM to separate

one particular training data sample vector from the rest of training sample vectors. That is, let V
denote the set of classes V ¼ vkf gnCk¼1 and nC be the number of classes. For each training sample

vector r, we consider two classes, Vk ¼ vkf g and V�Vk. The discriminant function or decision

function of a sample vector x derived by the SVM that separates the class vk from

V�Vk is given by

ykðrÞ ¼ wSVM
k

� �T
fðrÞ þ bk ¼

Xn

i¼1
aidiKðri; rÞ ð2:71Þ

The data sample vector r is then classified into the class denoted by class(r) that yields the maxi-

mum value of yk(r) over all 1 � k � nC, which is

classðrÞ ¼ arg max1�k�nCykðrÞf g ð2:72Þ

A second approach is to reduce a multiclass classification problem to a set of binary classifica-

tion problems by pairing any two classes as a binary classification problem. As a result, there are

nCðnC � 1Þ=2 pairwise binary classification problems. In other words, each binary classification is

specified by two separate classes vk and vl. The SVM separating these two classes is specified by

its discriminant function or decision function ykl(ri) for a sample vector r. If we define a score

function of a sample vector r associated with class vk by

SkðrÞ ¼
XnC

l¼1;l 6¼k
sgn yklðrÞð Þ ð2:73Þ
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The class assigned to r is one that yields the maximum score given by

classðrÞ ¼ arg max1�k�nCSkðrÞf g ð2:74Þ
The issues arising from using SVM to perform multi-classification are similar to those encoun-

tered in FLDA discussed in Section 2.3.1.1 and are addressed in detail in Bischop (2006).

2.3.2 Classification with Soft Decisions

Recall that the model in (2.13) is used for subsample target detection where the desired target t is

assumed to partially occupy the sample vector r as a subsample target with its abundance fraction

specified by a and the background b is accounted for the remaining abundance (1�a). In this case,

the algorithms developed for subsample target detection are designed to enhance the detectability of

the target of interest while suppressing the background as much as possible. The CEM developed in

Section 2.2.3 was the one that adopts this design rationale and philosophy. However, this is not true

for mixed sample analysis where the background knowledge is completely specified by other known

target signals which are also of interest. In order for CEM to be able to perform mixed sample

analysis, several CEM-based mixed sample classification techniques were investigated in Chang

(2002b) and presented in Chang (2003a), among which two techniques are of particular interest,

orthogonal subspace projection derived from linear mixture analysis and target-constrained interfer-

ence-minimized filter, which will be discussed in this and following sections.

2.3.2.1 Orthogonal Subspace Projection (OSP)

The OSP was originally developed by Harsanyi and Chang (1994) for linear spectral mixture

analysis. Its idea is similar to that used in the ASD discussed in Section 2.2.2.2. It makes an

assumption that a data sample vector r is completely characterized by a linear mixture of a

finite number of so-called endmembers that are assumed to be present in the image data. More

specifically, suppose that L is the number of spectral bands and r is an L-dimensional data

sample vector. Let m1;m2; 	 	 	 ;mp be p endmembers, which are generally referred to as digital

numbers (DNs). The data sample r can be then linearly represented by m1;m2; 	 	 	 ;mp with

appropriate abundance fractions specified by a1; a2; 	 	 	 ; ap. In other words, let r be an L� 1

column vector, M be an endmember signature matrix, denoted by m1 m2 	 	 	 mp

� �
, and a ¼

a1;a2; 	 	 	 ;ap

� �T
be a p� 1 abundance column vector associated with r where aj denotes the

abundance fraction of the jth endmember mj present in the r. Then an L-dimensional data sam-

ple r can be represented by a linear mixture model as follows.

r ¼ m1m2 	 	 	mp

� �

a1

a2

..

.

ap

2

666664

3

777775
þ n ¼

Xp

j¼1
ajmj þ n ¼ Maþ n ð2:75Þ

where n is noise or can be interpreted as either a measurement or a model error.

If we assume that the target signal of interest is mp without loss of generality and compare

(2.75) with (2.13), an immediate finding is that the subsample target of interest t and the back-

ground b in (2.13) are now represented by mp, with the b completely characterized by the remain-

ing p� 1 target signals, m1;m2; 	 	 	 ;mp � 1 as a background matrix B ¼ m1m2 	 	 	mp�1

� �
. With

this interpretation the model (2.75) can be reexpressed as a subsample target detection model

54 Hyperspectral Data Processing: Algorithm Design and Analysis



similar to (2.13) and given by

r ¼ m1m2 	 	 	mp

� �

a1

a2

..

.

ap

2

66666664

3

77777775

þ n ¼ apmp þ
Pp�1

j¼1 ajmj þ n

¼ apmp þ B

a1

a2

..

.

ap�2

2

66666664

3

77777775

þ n ¼ apmp þ Bg þ n

ð2:76Þ

where mp¼ t with ap¼a and b¼B, with (1�a) replaced by the p� 1 dimensional abundance

vector g ¼ a1;a2; 	 	 	 ;ap�1

� �T
.

It has been shown in Harsanyi and Chang (1994), Chang (2003a), and Chang (2005) that the

optimal solution of ap to (2.76), âpðrÞ is given by an OSP projector dOSP(r)

âpðrÞ ¼ dOSPðrÞ ¼ kdTP?
Ur subject to a constant k ð2:77Þ

where the desired signal d is designated by the signal of interest mp, U ¼ m1m2 	 	 	mp�1

� �
is

undesired signal matrix, and P?
U is an undesired signal subspace projector given by

P?
U ¼ I� UU# ð2:78Þ

with U# ¼ UTU
� ��1

UT being the pseudoinverse of U. The notation ?
U
in P?

U indicates that the

projector P?
U maps the data sample r into the orthogonal complement of hUi, denoted by hUi?. If

we compare (2.77) to (2.27), we immediately find that both ASD and OSP are derived from max-

imizing SCR or SNR and also yield the same detector structure except that the subtarget signal t

and the inverse of the sample covariance matrix, K�1 in (2.27) and (2.28) are replaced by the

desired signal d to be classified and the undesired signal subspace projector P?
U in (2.85), respec-

tively. This is because OSP has prior knowledge about the undesired signals,m1;m2; 	 	 	 ;mp�1 and

takes advantage of P?
U to annihilate such unwanted interference prior to the use of matched filter.

By contrast, ASD does not have such prior knowledge about m1;m2; 	 	 	 ;mp�1. As a consequence,

it makes use of a whiten matrix K�1 resulting from the sample covariance matrix K to suppress

unknown interference. Detailed discussion on this issue can be found in Chapter 12 and

Chang (2005).

By virtue of (2.77) dOSP(r) performs classification with soft decisions by estimating the abun-

dance fractions of each of p endmembersm1;m2; 	 	 	 ;mp in such a way that each of p endmembers

m1;m2; 	 	 	 ;mp is designated as a subsample target of interest specified by the desired signal d,

while other signals are considered as undesired signals to form an undesired signal matrix U.

It was shown in Chang (1998) that dOSP(r) in (2.77) performed as a detector rather than

an estimator since it did not consider the estimation accuracy of abundance ap. In order to

make dOSP(r) perform an estimator, a scaling constant dTP?
Ud

� ��1
is included in dOSP(r) to correct

the estimation error resulting from dOSP(r). The resultant estimator turns out to be a least
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squares-based estimator given by

dLSOSPðrÞ ¼ dTP?
Ur

dTP?
Ud

ð2:79Þ

which has a form similar to that of CEM in (2.33) except that the subtarget signal t and the inverse

of the sample covariance matrix, R�1 in (2.33) are replaced by the desired signal d to be classified

and the undesired signal subspace projector, P?
U in (2.77). Furthermore, comparing (2.79) to (2.28),

both ASD in (2.28) and LSOSP in (2.77) judiciously select an appropriate constant k,
k ¼ tTK�1t

� ��1
in (2.27) and k ¼ dTP?

Ud
� ��1

in (2.77) to account for the error caused by estimat-

ing the abundance of target signal t in (2.13) or desired signal d in (2.75).

2.3.2.2 Target-Constrained Interference-Minimized Filter (TCIMF)

As shown in Section 2.2.2 CEM was designed to detect a single subsample target. If there are

multiple subsample targets in the sample vector r, one subsample target must be carried out by

CEM at a time. On the other hand, the OSP derived in (2.77) and (2.79) is developed for mixed

sample classification for each of endmembers, m1;m2; 	 	 	 ;mp. However, in reality, background

may not be completely characterized by known signals. In most cases, interferers that cannot be

identified a priori may be also present in the sample vector r. The OSP is not designed to account

for such unknown interferers. In order to extend the capability of CEM to perform detection of

multiple targets as well as take advantage of the capability of OSP in suppressing unknown inter-

ference a TCIMF was recently developed by Ren and Chang (2000), which can be viewed as a

generalization of the OSP and CEM.

Let D ¼ d1d2 	 	 	 dnD½ � denote the desired target signature matrix and U ¼ u1u2 	 	 	 unU½ � be
the undesired target signature matrix where nD and nU are the number of the desired target

signals and the number of the undesired target signals, respectively. Now, we can develop

an FIR filter that passes the desired target signals in D using an nD � 1 unity constraint vector

1nD�1 ¼ ð1; 1; 	 	 	 ; 1ÞT
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

nD

while annihilating the undesired target signals in U using an nU � 1 zero

constraint vector 0nU�1 ¼ ð0; 0; 	 	 	 ; 0ÞT
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

nU

. In doing so, the constraint in (2.31) is replaced by

DU½ �Tw ¼ 1nD�1

0nU�1

" #

ð2:80Þ

and the optimization problem specified by (2.31) becomes the following linearly constrained opti-

mization problem

minw wTRw
� �

subject to DU½ �Tw ¼ 1nD�1

0nU�1

" #

ð2:81Þ

The filter solving (2.81) is called target-constrained interference-minimized filter (TCIMF)

(Ren and Chang, 2000) and given by

dTCIMFðrÞ ¼ wTCIMF
� �T

r ð2:82Þ
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with the optimal weight vector, wTCIMF given by

wTCIMF ¼ R�1 DU½ � DU½ �TR�1 DU½ �� ��1 1nD�1

0nU�1

" #

ð2:83Þ

A discussion on the relationship between OSP and CEM via TCIMF can be found in Chang

(2002, 2003a, 2005). For example, if D ¼ mp ¼ d with nD ¼ 1 and U ¼ m1m2 	 	 	mp�1

� �
with

nU ¼ p� 1, dTCIMF(r) performs like dOSP(r). On the other hand, if D ¼ mp ¼ d with nD ¼ 1 and

U ¼ ? with nU ¼ 0, dTCIMF(r) performs like dCEM(r). More details on OSP in comparison with

CEM and TCIMF can be found in Chapter 12.

2.4 Kernel-Based Classification

Kernel-based approaches have recently received considerable interest in solving linear non-

separable problems in classification. Their main idea is to introduce a nonlinear kernel that

maps the original data into a high-dimensional feature space from which the extracted fea-

tures can be used to resolve the issue of linear nonseparability encountered in the original

data space. The property of the Mercer’s theorem in Scholkopf and Smola (2002) then plays

a trick called kernel trick to implicitly calculate the dot products in the feature space F with-

out actually mapping all data sample vectors into the feature space F in which case the ker-

nel function was not even identified.

2.4.1 Kernel Trick Used in Kernel-Based Methods

Prior to introducing kernel-based classifiers a kernelization procedure and kernel trick need to be

discussed. The idea of kernel-based techniques is to obtain a nonlinear version of a linear algo-

rithm by implicitly mapping the original data to a higher-dimensional feature space. Suppose that

X ¼ rif gNi¼1 forms a data space of rif gNi¼1 and f is a nonlinear function that maps the data space X

into a feature space F with dimensionality yet to be determined by a kernel, that is,

f : X ! F by x 7!fðxÞ ð2:84Þ

It is shown in Scholkopf and Smola (2002) that an effective kernel-based learning algorithm

known as “kernel trick” can be implemented. This technique implicitly computes dot products in

F without mapping the original data sets into a feature space, which provides feasibility to imple-

ment classifiers in a higher-dimensional space. The kernel representation of dot products in F is

expressed as

Kðx; yÞ ¼ f xð Þ;f yð Þh i ¼ f xð Þ 
 f yð Þ ð2:85Þ

where K is a kernel function of the original data. There are three common types of kernel that are

generally used:

1. Polynomial kernel, 1þ xTyð Þp,
2. Radial basis function kernel, exp � 1

2s2
jjx� yjj2

� 	
, and

3. Sigmoid function kernel, tanh b0 þ b1x
Tyð Þ.
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2.4.2 Kernel-Based Fisher’s Linear Discriminant Analysis (KFLDA)

The idea of kernel-based FLDA (KFLDA) is to first map the data matrix X via (2.84) using a

nonlinear kernel f into a higher-dimensional feature space F in which FLDA is performed where

the between-scatter and within-class scatter matrices in (2.40) and (2.41) can be reexpressed by

SfB ¼
Xp

j¼1
nj
� �

mf
j � mf

� 	
mf

j � mf
� 	T

ð2:86Þ

Sfw ¼
Xp

j¼1

Xnj

i
fðriÞ � mf

j

� 	
FðriÞ � mf

j

� 	T
ð2:87Þ

where mf ¼ 1=Nð ÞPN
i¼1 fðriÞ and mf

j ¼Pri2Cj
fðriÞ ¼

Pnj
i¼1 fðriÞ. Using (2.86) and (2.87) the

Fisher’s ratio in the feature space F can be derived as follows.

JfðwÞ ¼ wTSfBw

wTSfww
ð2:88Þ

where w is a nonzero vector in F. According to the theory of reproducing kernel, any data vector in

the feature space F can be also represented as a linear combination of fðr1Þ;fðr2Þ; 	 	 	 ;fðrNÞf g by

w ¼
XN

i¼1
wifðriÞ ¼ fTv for some combinatorial vectorv ð2:89Þ

where f ¼ fðr1Þ;fðr2Þ; 	 	 	 ;fðrNÞð ÞT and v ¼ v1;v2; 	 	 	 ;vNð ÞT . Substituting (2.89) in (2.86)

and (2.87) yields

wTSfBw ¼ vTKf
Bv ð2:90Þ

wTSfWw ¼ vTKf
Wv ð2:91Þ

where Kf
B and Kf

W are obtained by the kernel trick. Using (2.90) and (2.91), (2.88) can be reex-

pressed as

JfðwÞ ¼ wTSfBw

wTSfWw
¼ vTKf

Bv

vTKf
Wv

ð2:92Þ

The optimal solution to maximizing (2.92) is given by a set of p� 1 eigenvectors

wFLDA
1 ;wFLDA

2 ; 	 	 	 ;wFLDA
p�1 that solve the following generalized eigenvalue problem

Kf
Bw

FLDA
j ¼ liK

f
Ww

FLDA
j for 1 � j � p� 1 ð2:93Þ

For a new data sample vector fðriÞ in the feature space F its projection onto the optimal jth dis-

criminant vector wFLDA
j is given by

wFLDA
j

� 	T
fðriÞ ¼

XN

k¼1
vFLDA
k fðrjkÞfðriÞ ¼

XN

k¼1
vFLDA
k Kðrk; riÞ ð2:94Þ
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where

wFLDA
j ¼

XN

k¼1
vFLDA
k fðrkÞ ¼ fvFLDA for some combinatorial vectorvFLDA ð2:95Þ

Let WFLDA ¼ wFLDA
1 wFLDA

2 	 	 	wFLDA
p�1

h i
be the optimal feature matrix formed by

wFLDA
1 ;wFLDA

2 ; 	 	 	 ;wFLDA
p�1 . The data space ~X in the feature space F can be obtained via the optimal

discriminant feature matrixW� specified by (2.95) as follows

~X ¼ WFLDAfðXÞ ¼ wFLDA
1 wFLDA

2 	 	 	wFLDA
p�1

h iT
fðXÞ ð2:96Þ

where X is the original data space. KFLDA is then used to perform the FLDA on ~X and is expected

to perform better than FLDA directly operating on the original space X.

2.4.3 Kernel Support Vector Machine (K-SVM)

The SVM discussed in Section 2.3.1.2 is a linear machine that performs a binary decision for linear

separable or nonseparable problems. As we have seen, in order for a linear SVM to solve linear

nonseparable problems, a set of slack variables are introduced to resolve the dilemma caused by

confusing data sample vectors. In this section, we consider a rather different approach that general-

izes the linear discriminant function gðrÞ ¼ wTrþ b to allow a much larger class of possible deci-

sion boundaries by transforming an original data sample x via a set of M predetermined nonlinear

functions fj(r), fjðrÞ
� �M

j¼1
referred to as basis functions or kernels. The output of r resulting from

such a nonlinear transform can be represented by a linear combination of these functions

fjðrÞ
� �M

j¼1
as follows

yk ¼ gkðrÞ ¼
XM

j¼1
wkjfjðrÞ þ bk ð2:97Þ

In order to absorb the bias bk in the linear sum in (2.97), we can introduce an auxiliary function

f0(r)¼ 1 so that the Equation (2.71) can be reexpressed as a linear form by

yk ¼ gkðrÞ ¼
XM

j¼0
wkjfjðrÞ ¼ wT

kfðrÞ ð2:98Þ

where fðrÞ ¼ f0ðrÞ;f1ðrÞ; 	 	 	 ;fMðrÞð ÞT and the weight vector wk is represented by w ¼
wk0;wk1; 	 	 	 ;wkMð ÞT with wk0¼ bk. By adapting (2.98) we can also obtain a kernel-based SVM

specified by the weight vector wSVM given by

wSVM ¼
Xn

i¼1
aSVM
i difðriÞ ð2:99Þ

Xn

i¼1
aSVM
i yifðriÞfðrÞ ¼ 0 ð2:100Þ

If we further define the kernel K(r,ri) as the inner product of r and ri by

Kðr; riÞ ¼ fTðrÞfðriÞ ¼
XM

j¼1
fjðrÞfjðriÞ ð2:101Þ

we can form a kernel-based SVM (KSVM) as follows.
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Given a set of training pool, ðri; diÞf gni¼1, find a set of Lagrange multiplier vector a ¼
a1;a2; 	 	 	 ;anð ÞT that maximizes Q(a), which is modified from (2.60) and given by

QðaÞ ¼
Xn

i¼1
ai � 1=2ð Þ

Xn

i¼1

Xn

j¼1
aiajdidjKðri; rjÞ ð2:102Þ

subject to the following constraints:

1.
Pn

i¼1 aidi ¼ 0

2. C � ai � 0 for 1 � i � n, with C being a user-specified positive parameter.

An optimal solution to the above kernel-based SVM optimization problem is given by

wSVM ¼
Xns

i¼1
aSVM
i ds

ir
s
i ð2:103Þ

where ns is the number of support vectors.

The key issue to solve the KSVM is to determine the kernel used in (2.103). Interestingly,

according to Mercer’s theorem, if a kernel-based inner product K (x,y) is continuous and symmet-

ric in a closed interval a � x; y � b, K (x,y) can be expanded in a series

Kðx; yÞ ¼
X1

j¼1
ljfjðxÞfjðyÞ ð2:104Þ

where lj
� �

are eigenvalues and fj

� �
are their associated eigenfunctions.

The KFLDA and KSVM discussed above are derived from two popular hard decision-made

classifiers, FLDA and SVM. Correspondingly, there should also be kernel versions of soft deci-

sion-made classifiers as discussed in Section 2.3.2.1 such as OSP. However, their derivations are

much more involved. Therefore, their kernel versions, referred to as kernel-based linear spectral

mixture analysis (KLSMA), will be developed and discussed in a separate and individual chapter,

Chapter 15, which includes kernel versions of various LSMA-based classifiers.

2.5 Conclusions

Subsample detection and mixed sample classification play central roles in hyperspectral image

analysis. However, it seems that there is a lack of detailed treatment on decision issues of these

two topics. Generally speaking, a subsample is a target sample of interest embedded in a sam-

ple with an unknown proportion while the remaining proportion of its embedded sample is

considered as the background. On the other hand, a mixed sample comprises a set of known

target signatures mixed linearly or nonlinearly in a sample. In light of this interpretation a

major difference between a subsample and a mixed sample is that the background of a sample

in which a subsample is embedded is unknown, while the background of a mixed sample is

completely specified by other known target signatures. As a result, there is no background

issue in a mixed sample and a mixed sample is generally performed by classification. By con-

trast, the background of a subsample is generally unknown and unspecified. Therefore, a sub-

sample is usually performed by detection rather than by classification and the effectiveness of

the subtarget detection is heavily determined by background suppression. Because of that this

chapter is devoted to detection and classification via two types of decision-making processes,

hard decisions and soft decisions, to address the issues of subsamples and mixed samples. As

for detection, two approaches are reviewed. One is the likelihood ratio test using a threshold in
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terms of a cost function or the false alarm probability, which can be derived from a standard

binary composite hypothesis testing approach that can be implemented as either pure sample

detection or subsample detection. The other includes generalized LRT (GLRT)-based CFAR

and the constrained energy minimization, both of which are developed for subsample detection

with soft decisions. In analogy with detection, classification with hard and soft decisions is

also considered. The classification with hard decisions is addressed by two pure sample-based

classification techniques, FLDA and SVM, while classification with soft decisions is dealt by

two mixed sample-based classification techniques, orthogonal subspace projection and target-

constrained interference-minimization filter. Table 2.1 summarizes pure/subsample detectors

and pure/mixed-sample classifiers presented in this chapter where k, n, B, D, and U represent

a scaling constant, noise, background, and desired and undesired signals, respectively and a

“yes” or “no” indicates that the knowledge is required or not required. In addition, a “K” or an

“R” indicates sample covariance or correlation matrix is required without knowing noise statis-

tics. It should be noted that SVM is not included in Table 2.1 due to the fact that the training

samples used in SVM are support vectors, which can be considered as worst samples for train-

ing. As a result, the mean of support vectors of each class cannot represent the mean of the

class to which they belong. In this case, the target and/or background knowledge generated by

these support vectors is not reliable and not representative.
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3

Three-Dimensional Receiver
Operating Characteristics (3D ROC)
Analysis

Receiver operating characteristics (ROC) analysis is a widely used performance evaluation tool in

signal processing, communications, and medical diagnosis. It utilizes two-dimensional (2D) curves

plotted between detection rate (PD) and false alarm rate (PF) to assess effectiveness of a detector or

sensor/device for detection. However, PD and PF are actually dependent parameters resulting from

a more crucial but implicit parameter hidden in the ROC curves, that is, threshold t, which is deter-

mined by the cost of implementing a detector or sensor/device except the case when the Bayes

theory is used for detection, where t is completely determined by the Bayes cost. This chapter

extends the traditional ROC analysis for single-signal detection to multiple-signal detection and

classification. It also explores the relationship among the three parameters, PD, PF, and t, and fur-

ther develops a new concept of three-dimensional ROC (3D ROC) analysis that uses 3D ROC

curves plotted with PD, PF, and t to evaluate detection effectiveness rather than only PD and PF

used by 2D ROC analysis. As a result of using the 3D ROC curves, three 2D ROC curves can also

be derived, the conventional 2D ROC curve plotted by PD versus PF and two new 2D ROC curves

plotted by PD versus t and PF versus t. To demonstrate the utility of 3D ROC analysis, four appli-

cations are considered: hyperspectral target detection, medical diagnosis, chemical/biological

agent detection, and biometric recognition.

3.1 Introduction

The receiver operating characteristics (ROC) analysis has been widely used in signal processing

and communications to assess effectiveness of a sensor or detector/device for detection (Poor,

1994). In recent years, it has also become a common evaluation tool for effectiveness of a medical

modality in medical diagnosis, specifically for computer-assisted diagnostic systems (Metz, 1978;

Swets and Pickett, 1982), automatic target recognition (ATR) (Parker et al., 2005a, 2005b; Blasch

and R. Broussard, 2000; Bauman et al., 2005), and fusion analysis (Blasch et al., 2001; Blasch and

Plano, 2003; Blasch, 2008). The idea is simple. For a given detector or detection technique how

can we objectively evaluate whether or not it is effective and in what sense? There are many criteria

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
� 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

63



or cost functions available for such assessment, such as least-squares error, signal-to-noise ratio,

and misclassification error. Unfortunately, none of these criteria can be considered as a general

criterion to fit all detection problems. For example, least-squares error or signal-to-noise ratio may

be a good criterion for detection problems in signal processing and communications but may not

be suitable for measuring image quality or classification accuracy in image processing. So, in order

to avoid using a specific criterion for performance evaluation, the ROC analysis is introduced for

this purpose. It does not necessarily specify a particular criterion or cost function. Instead, it

focuses on the effect of a decision made for a detection problem regardless of what specific crite-

rion or cost function should be used. More specifically, it casts a detection problem as a binary

decision problem, that is, binary hypothesis testing problem which results in four decisions that

need to be considered:

1. When the ground truth of the problem is true, we made a “not true” decision. In this case, we

commit an error, referred to as “miss” or “false negative” decision.

2. When the ground truth of the problem is true, we made a “true” decision. In this case, we made

a correct decision, referred to as “detection” or “true positive” decision.

3. When the ground truth of the problem is not true, we made a “true” decision. In this case, we

commit another type of error, referred to as “false alarm” or “false positive” decision.

4. When the ground truth of the problem is not true, we made a “not true” decision. In this case, we

made another type of correct decision, referred to as “true negative” decision.

Using the above four decisions we can evaluate a given detector or a detection technique according

to its effectiveness without actually appealing for a specific performance criterion or cost function.

Since two error decisions contradict each other, a general practice is to choose the “false alarm,”

that is, “false positive” as a base to produce the best decision. In other words, by constraining the

false alarm rate to a certain level for which the considered problem can tolerate, what can a detec-

tor or detection technique achieve as the best detection power in terms of probability? The ROC

analysis is developed to address this issue. For any given detector or detection technique the ROC

analysis plots a curve, referred to as ROC curve, based on the probability of detection power, that

is, detection rate versus false alarm rate where an ROC curve is a function of two parameters, the

detection rate PD and the false alarm rate PF, and is used to evaluate how effective or good a given

detector or detection technique is. For example, suppose that two detectors or detection techniques

are considered for performance evaluation. To see which one performs better, we first generate and

compare their ROC curves. If for any given false alarm rate the detection rate of one technique is

higher than the other, we can conclude that this technique is more effective or better than the other.

Since the ROC curve is always convex, we can calculate the areas under their ROC curves, called

area under curve (AUC), Az instead of examining their ROC curves without actually calculating

their individual pairs (false alarm rate, detection rate). As a result, the higher the value of Az is, the

better the detection performance.

Despite that the ROC analysis does not use any cost function it does use PF as a cost measure to

evaluate detection performance where the PF indeed involves with an implicit parameter hidden in

the PF, called threshold t, which actually determines the PF (see the Neyman–Pearson detector

specified in Section 3.5). In other words, it is t, which is a real cost parameter, that implements a

detector with both PD and PF calculated as functions of t. Unfortunately, this t is not shown in the

ROC analysis since the PF of an ROC curve is considered as an independent variable ranging from

0 to 1 rather than a variable dependent on t. To deal with such an issue, a concept of developing a

three-dimensional (3D) ROC was first envisioned by Alsing et al. (1999) who introduced 3D ROC

trajectory by including a third parameter, such as probability of rejection, to assess the detector’s
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degree of difficulty to recognize unknown targets due to the lack of confidence. Nearly at the same

time, Chang et al. (2001b) also proposed a rather different concept that directly involves t to deter-
mine PF and PD. It argued that threshold t ultimately determines the detection performance. When

a detector is not ready to make its decision due to lack of confidence in provided evidence, two

approaches can resolve this dilemma. One is to reject the decision as proposed by Alsing et al.

(1999) with applications to fusion analysis for user-synthetic aperture radar (SAR)-ATR systems

(Plano and Blasch, 2003) rather than making a hard decision. The other is to make a soft decision

based on likely cost determined by the threshold t (i.e., in this case, the likelihood ratio test is

equal to the threshold t in (2.6) or (2.8)). Under this circumstance, the detector is forced to make a

random decision according to the likelihood of each decision in terms of probability calculated by

the threshold t. The resulting detector is called a randomized detector. The work using a threshold

representing the likelihood of the signal presence in Parker et al. (2005a) and the work using the

confidence error as a criterion in Parker et al. (2005b) are good examples in this aspect. As a matter

of fact, a random decision is better than a rejection because a randomized detector offers likelihood

of each decision to be made in terms of its probability compared to the latter which simply does not

make a decision by rejection. In a broader sense, a rejection can be interpreted in the context of a

random decision where the probability of rejection actually describes the likelihood of a decision

to be rejected. Since a great deal of research effort devoted to the 3D ROC analysis using the

probability of rejection as a third parameter has been made in Alsing et al. (1999) and Plano and

Blasch (2003), this chapter will focus only on the development of a 3D ROC analysis using thresh-

old t as the third parameter which has been investigated in hyperspectral imaging (Chang et al.,

1998; Chang, 2002, 2003a), magnetic resonance imaging (Wang et al., 2003, 2005; Chen et al.,

2005), chemical/biological agent detection (Chang, 2006; Liu et al., 2005), and biometrics identifi-

cation (Du and Chang, 2007, 2008) where a 3D ROC curve can be plotted according to the three

parameters, PD, PF, and threshold t. This is because a detector implemented in the above-men-

tioned applications is actually an estimator whose estimated values represent the strength of signal

detectability used to perform signal detection via a threshold t that helps a signal estimator make a

binary decision. By virtue of these three parameters, PD, PF, and t, we can derive a 3D ROC analy-

sis to generate a 3D ROC curve as a function of PD, PF, and t. As a result of a 3D ROC curve, three

2D ROC curves can also be derived and plotted. One is an ROC curve of (PD,PF) which turns out to

be the ROC curve by the traditional ROC analysis. The other two are new 2D ROC curves, which

are the ROC curves of (PD,t) and (PF,t).

Since the Neyman–Pearson detection theory is mainly focused on detection of signal in noise

the decision of detecting noise, that is, the fourth decision described earlier, does not make any

sense. However, in other applications such as medical diagnosis the probability of making the

fourth decision of true negative represents specificity of a medical modality. Besides, when signals

to be detected are multiple signals, it may require multiple hypotheses to perform multisignal

detection. This problem can be actually addressed by signal classification problems where different

threshold values of t are required to classify different signal classes. Unfortunately, the 2D ROC

curve of (PD,PF) does not provide such information of t. This chapter makes an attempt to address

this need and explores 3D ROC analysis and its utility in four different applications.

3.2 Neyman–Pearson Detection Problem Formulation

In Section 2.2.1 a binary hypothesis testing problem (2.1) is used to formulate the pure-sample

target detection as two hypotheses, H0 and H1, which represent the absence and presence of

a signal source in an observed sample r, respectively. This section places its main focus

on a particular type of detection problem when there is no prior knowledge of the two
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hypotheses and cost functions. It is generally called the Neyman–Pearson detection problem

cast by (2.9)–(2.11).

More specifically, assume that the observation process is described by a random process Yt.

When this process is observed at a particular time instant t¼ t0, it is referred to as an observation y

which can be described by a random variable Yt0 . If the probability distribution of Yt0 is further

assumed to be P(y) with its probability density function given by p(y), the binary hypothesis testing

problem (2.1) can be described by

H0: Yt0 � p0ðyÞ
versus

H1: Yt0 � p1ðyÞ
ð3:1Þ

where the hypotheses H0 and H1 can be observed from the variable Yt0 whose probability

distributions are derived from p(y) under each hypothesis, denoted by p0(y) under H0 and

p1(y) under H1. The hypotheses “H0” and “H1” are generally called “null hypothesis” and

“alternative hypothesis,” respectively. In applications of signal processing and communica-

tions, “H1,” such as in Section 2.2.1, represents the case when the signal is present along

with noise, while the hypothesis “H0” indicates that no signal is present. So, when hypothesis

“H1” is true, it implies that there is a signal present in the observation y.

Assume that the observation y is the data sample vector denoted by r and the observation

space G is denoted by data sample vector space. Using (2.2) and Figure 2.1 and renumbering

(2.9)–(2.11), PD(d) is defined as the detection probability/rate or detection power specified

by (2.10),

PDðdÞ ¼ P1ðG1Þ ¼
Z

G1

p1ðrÞdr ð3:2Þ

and PF(d) as the false alarm probability/rate specified by (2.9),

PFðdÞ ¼ P0ðG1Þ ¼
Z

G1

p0ðrÞdr: ð3:3Þ

An NP detector, denoted by dNP(r), is obtained by solving the following constrained optimization

problem specified by (2.11) and recapped as follows:

maxd PDðdÞf g subject to PFðdÞ � b for any given 0 � b � 1 ð3:4Þ

where b is prescribed and known as the significant level of test and the maximum is sought

over all possible decision rules, d(r). The well-known Neyman–Pearson lemma shows that the

optimum solution to (3.4) turns out to be a likelihood ratio test, L(r), similar to (2.8) and

given by

dNPðrÞ ¼
1 if LðrÞ � t

1 with probability k if LðrÞ ¼ t

0 if LðrÞ < t

8
><

>:
ð3:5Þ
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where L(r)¼ p0(r)/p1(r), the threshold t is determined by the constraint b, and g is the probabil-

ity of saying H1 when L(r)¼ t. By virtue of dNP(r), PD and PF in (3.2)–(3.3) can be obtained and

expressed as follows:

PD ¼
Z

LðrÞ>t

p1ðrÞdrþ kP frjLðrÞ ¼ tgð Þ ð3:6Þ

PF ¼
Z

LðrÞ>t

p0ðrÞdrþ kP frjLðrÞ ¼ tgð Þ ð3:7Þ

with t determined by PF¼ b via (3.3). Details of signal detection theory can be found

in Poor (1994). Figure 3.1 shows how a decision can be made by adjusting threshold t using

(3.6) and (3.7) where the regions corresponding to four decisions described in Section 3.1

PM¼ 1�PD (decision 1), PD (decision 2), PF (decision 3), and PTN¼ 1�PF (decision 4) are

indicated with different shaded areas.

A final remark is noteworthy. According to standard detection theory four types of decisions

described in Section 3.1 can be made based on the binary hypothesis testing problem specified by

(3.1). However, in some applications there is a fifth decision that is no action to be taken due to

insufficient knowledge. For example, in automatic target recognition (Parker et al., 2005a, 2005b;

Blasch et al., 1999; Blasch and Broussard, 2000; Bauman et al., 2005), documentation analysis

such as character recognition (Suen et al., 1980) and text detection in video images (Du et al.,

2003), and biometric recognition (Du and Chang, 2008), when the level of confidence of making a

decision is low due to the lack of knowledge, an alternative option is rejection. However, this

approach can be actually interpreted in the context of what is the so-called randomized decision in

statistical detection theory. When the detector statistics, L(r) specified by (3.5), is equal to the

threshold t, two actions can be taken. One is doing nothing but rejection which is the fifth type of

decision as described above in addition to the four described in Section 3.1. The other is to force

the detector to make a soft decision on two hypotheses to express the confidence level of each

decision in terms of its probability. As a consequence, such a random decision is better off than a

rejection since the latter simply does not make any decision by rejecting.

3.3 ROC Analysis

Interestingly, according to (2.8), (2.11), and (3.5), no matter what the type of detector is, its detec-

tor statistics always turns out to be the likelihood ratio test (LRT). In other words, all the Bayes,

Figure 3.1 An illustration of probabilities PD, PF, PM, and PTN.
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minimax, or Neyman–Pearson detectors can be shown to have the same functional form deter-

mined by LRT. Nevertheless, NP detectors are the most practical detectors in real applications

since they do not require prior knowledge of the cost function and probabilities of hypotheses that

are generally unknown or difficult to obtain in practice. Instead, the performance is evaluated

based on the four decisions described in Section 3.1 but with general descriptive terms given in the

following:

1. When “H0” is true, “H0” is also true.

In this case, a correct decision is made and the decision is called “true negative” (TN). How-

ever, it should be noted that there is no detection term corresponding to this decision since noth-

ing is detected other than noise.

2. When “H0” is true, “H1” is true.

In this case, an incorrect decision is made and the decision is called “false alarm” (FA) or “false

positive” (FP) in medical diagnosis.

3. When “H1” is true, “H0” is also true.

In this case, an incorrect decision is made and the decision is called “miss” or “false negative”

(FN).

4. When “H1” is true, “H1” is also true.

In this case, a correct decision is made and the decision is called “detection probability, rate or

power” or “true positive” (TP).

As per the above decisions, we have two correct decisions 1 and 4, that is, TN and detection rate or

power or true positive (TP), and two incorrect decisions 2 and 3, that is, FA (FP) and miss (FN).

Consequently, a good detector must be the one that maximizes the probabilities yielded by the

correct decisions, TN and detection rate/TP, and in the mean time it also minimizes the probabilit-

ies resulting from the two incorrect decisions, FA/FP and miss/FN. However, it is generally true

that the two incorrect decisions contradict each other, so do the correct decisions. In other words,

minimizing miss/FN is also to increase FA/FP and vice versa. Since minimizing miss/FN is equiv-

alent to maximizing detection power/TP, a common practice is to maximize the detection rate/TP

while imposing a constraint on FA/FP specified by (3.4). Using (3.6) and (3.7) we can further

derive

PMðdNPÞ ¼
Z

LðrÞ<t

p1ðrÞdrþ ð1� kÞP frjLðrÞ ¼ tgð Þ
¼ 1� PD

ð3:8Þ

PTNðdNPÞ ¼
Z

LðrÞ<t

p0ðrÞdrþ kP frjLðrÞ ¼ tgð Þ ¼ 1� PF: ð3:9Þ

To evaluate the detection performance of dNP(r), the ROC analysis is commonly used as an

evaluation tool to assess the effectiveness of a detector based on an ROC curve plotted as a func-

tion of PD versus PF as shown in Figure 3.2. As an alternative to the use of ROC curves, the area

under curve (AUC), Az, which has been widely used in medical diagnosis (Metz, 1978; Swets and

Pickett, 1982), is also calculated by the area under an ROC curve.

The use of Az has advantages over the ROC curves. For example, on some occasions two detec-

tors d1 and d2 may generate two different 2D ROC curves but have the same area, Az, as shown in

Figure 3.3. In this case, both d1 and d2 yield the same detection performance even when they have

different ROC curves.
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3.4 3D ROC Analysis

From the hypothesis testing problem specified by (3.1), a detector makes a binary hard decision by

thresholding a real-valued LRT, L(r), via a threshold t (see (3.5)). Accordingly, the detector per-

formance is determined by two parameters, L(r) and t, both of which are real values. As a result,

the detection rate, PD, in (3.2) and (3.6) and the false alarm probability/rate PF in (3.3) and (3.7)

are indeed functions of L(r) and threshold t. However, in the Neyman–Pearson detection theory

the cost function cij
� �

and prior probabilities pif g are assumed to be not known, nor is t. In this

case, the false alarm rate PF is used as a cost function and the threshold t becomes a dependent

function of PF via (3.7) by setting PF¼ b in (3.4). This is contradictory to the original detection

problem where PF¼ b is actually obtained by a specific value of the threshold t. Therefore, when

an ROC curve is plotted in Figure 3.4 based on PD versus PF, the threshold t is implicitly absorbed

in PF and there is no way to show how the threshold t specifies PF as the way it should be in Bayes

detection theory in (3.1). To resolve this issue, this section develops a new approach to ROC

Figure 3.3 An example of ROC curves generated by two detectors with the same Az.

Figure 3.2 An example of AUC, Az, calculated by an ROC curve.
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analysis, referred as 3D ROC analysis, which extends the traditional 2D ROC analysis in Section

3.3 by including the threshold t as a third parameter along with PD and PF used in the 2D ROC

analysis. In other words, the proposed 3D ROC analysis makes use of a 3D ROC curve plotted

based on three parameters, PD, PF and t, referred to as the 3D ROC curve of (PD,PF,t) from which

three new 2D ROC curves can be derived, the 2D ROC curve of (PD,PF), the 2D ROC curve of

(PD,t), and the 2D ROC curve of (PF,t), where the 2D ROC curve of (PD,PF) turns out to be the

traditional ROC curve in Figure 3.2. An example of a 3D ROC curve along with its three 2D ROC

curves is shown in Figure 3.4, where the x, y, and z axes are specified by PF (green), t (blue), and

PD (red). In Figure 3.4(a), a 3D ROC curve is plotted in a perspective view in Figure 3.4(a) where

the three 2D ROC curves, that is, 2D ROC curve of (PD,PF), 2D ROC curve of (PD,t), and 2D ROC

curve of (PF,t), are plotted in Figures 3.4(b)-3.4(d), respectively, in the right, front and top views.
As shown by the two new 2D ROC curves in Figure 3.4(c) and (d), the lower the threshold t is,

the higher the PD and PF. This new 3D ROC analysis addresses several inherent issues arising in

the 2D ROC analysis.

1. First, the original rationale of the ROC analysis is based on signal detection in noise where a

fixed threshold t is calculated to determine whether or not a signal is present. However, when

signal detection is extended to signal classification where there are multiple signals to be

detected or classified, the signal profile such as amplitude and energy is of major interest and

a single fixed threshold t may not be applicable. In this case, the traditional ROC analysis

must be modified for multiple decisions for multisignal detection/classification or soft deci-

sions for signal classification. The new 3D ROC analysis is developed to address this issue

Figure 3.4 An example of a 3D ROC curve along with three 2D ROC curves.
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by considering the threshold t as an independent variable instead of a constant parameter

treated in signal detection theory. Varying the threshold t results in different pairs of PD and

PF which in turn also generate different ROC curves of (PD, PF). Such an advantage cannot

be obtained using the 2D ROC analysis as will be demonstrated by the applications in the

following section.

2. Despite the fact that an ROC curve of (PD, PF) is generated by varying PF, actually both PD and

PF are determined by the threshold t and functions of t where each pair of (PD, PF) is obtained

by a single value of threshold t. Unfortunately, a direct relationship between PD and PF via t

is hidden in the 2D ROC curve of (PD, PF). As a consequence, it may occur that two

different detectors d1 and d2 may generate the same 2D ROC curves of (PD, PF) as shown in

Figure 3.5 Two examples of 3D and 2D ROC curves in (b) and (c) with the same 2D ROC curve of (PD,PF)

as in (a).
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Figure 3.5(a) but their 3D ROC curves along with the other two 2D ROC curves of (PD,t) and

(PF,t) are in fact quite different as shown in Figures 3.5(b), and 3.5(c).

The example illustrated in Figure 3.5 demonstrates that the traditional ROC analysis is

ineffective in capturing the impact and effect of different threshold values on PD and PF individ-

ually. As will also be demonstrated in the experiments, the 2D ROC curves of (PD,t) and (PF,t)

provide certain crucial information about how to choose a best possible threshold t to compro-

mise PD and PF, a task that the 2D ROC curve of (PD, PF) cannot really deliver.

3. The traditional 2D ROC analysis generally makes an assumption that the noise is Gaussian so

that a closed form for the 2D ROC curve of (PD, PF) can be generated analytically in such a

way that PD can be expressed as a function of PF without actually calculating the threshold t.
However, in many real-world applications the Gaussian assumption is usually not valid.

In this case, no analytical form for an ROC curve of (PD, PF) can be derived. Accordingly,

we need to consider the original detector structure in (3.5) where the threshold t is the key

parameter that determines the detector performance. The 3D ROC curve provides an exit

tool from this dilemma to represent detection performance in terms of the three parameters

PD, PF, and t where both PD and PF can be expressed as functions of t as shown in Figures

3.4(c) and 3.4(d).

3.5 Real Data-Based ROC Analysis

In real applications only a limited number of samples are available for data analysis, referred to as

the power of the test. In this case, the data sample pool is generally not sufficiently large to consti-

tute reliable statistics that can be used to characterize the LRT L(r) implemented by a detector.

Under such a circumstance there is no effective means of producing L(r) and the ROC analysis

must be carried out with data samples rather than statistics, p0(r) and p1(r).

3.5.1 How to Generate ROC Curves from Real Data

In what follows, we define

N¼ total number of data samples used for a particular detection method (technique)

Nsignal¼ total number of data samples with presence of a signal (according to ground truth)

Nno-signal¼ total number of data samples with absence of a signal (according to ground truth)

ND¼ total number of data samples with presence of a signal which is actually detected by the

method

NF¼ total number of data samples with absence of a signal, but claimed to have an signal

detected by the method

NM¼ total number of data samples with presence of a signal which is not detected by the

method

NTN¼ total number of data samples with presence of a signal and also claimed to have no

signal detected by the method.

False alarm or false positive rate/probability is defined by

PF ¼ PFP ¼ NF

Nno-signal

¼ NF

NTN þ NFP

: ð3:10Þ
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False negative or miss rate/probability:

PM ¼ PFN ¼ NM

Nsignal

¼ NM

NTP þ NFN

: ð3:11Þ

Detection power/true-positive rate/probability:

PD ¼ PTP ¼ ND

Nsignal

¼ ND

NTP þ NFN

: ð3:12Þ

True-negative rate/probability:

PTN ¼ NTN

Nno-signal

¼ NTN

NTN þ NFP

: ð3:13Þ

Based on (3.10)–(3.13), the following relationships are true:

N ¼ Nsignal þ Nno-signal

Nsignal ¼ ND þ NM ¼ NTP þ NFN ð3:14Þ
Nno-signal ¼ NTN þ NFP ð3:15Þ

with

PD ¼ 1� PM and PF ¼ 1� PTN: ð3:16Þ

3.5.2 How to Generate Gaussian-Fitted ROC Curves

Until now Equations (3.10)–(3.16) are defined based on real samples. So, for a given set of sample

pool used for testing any detection technique, only one point (PD, PF) can be generated for the

ROC curve of a particular technique. Therefore, in order to produce a complete ROC curve for

any specific detection technique (method), an infinite number of samples pool are required,

which is practically impossible. One way to mitigate this difficulty is to assume that the noise

in the binary hypothesis decision problem described by (3.1) is a zero-mean Gaussian distribu-

tion and the given sample pool is sufficiently large to generate reliable statistics. In this case,

we can calculate the sample mean and variance for each hypothesis, and then assume these

calculated sample means and variances to be the Gaussian means and variances under each

hypothesis. With these new Gaussian distributions, finding the ROC curve of a specific detec-

tion technique (method) becomes feasible and can be actually derived mathematically from a

standard signal detection theory as follows.

Now if we further assume that the probability density functions p0(y) and p1(y) in (3.1) that

govern H0 and H1 are Gaussian distributions with means m0 and m1 and variances s2
0 and s

2
1 calcu-

lated from a large pool of samples, respectively, the L(r) in (3.5) becomes LðyÞ ¼ y. As a result,

(3.6) and (3.7) can be further simplified to

PFðdNPÞ ¼
Z 1
t � m0

s0

p0ðyÞdy ð3:17Þ
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PDðdNPÞ ¼
Z 1
t � m1

s1

p1ðyÞdy ð3:18Þ

where p0ðyÞ ¼ 1ffiffiffiffi
2p

p e
� ðy�m0Þ2

2s2
0 and p1ðyÞ ¼ 1ffiffiffiffi

2p
p e

� ðy�m1Þ2
2s2

1 are two Gaussian distributions with means

m0 and m1 and variances s2
0 and s2

1, respectively. Furthermore, if both of the variances s2
0 and s2

1

are set to 1, (3.25) and (3.26) simplify to most familiar forms:

PFðdNPÞ ¼
Z 1

t

p0ðyÞdy ð3:19Þ

PDðdNPÞ ¼
Z 1

t

p1ðyÞdy: ð3:20Þ

Using Figure 3.3 as an example, a decision can be made by adjusting threshold t via (3.19) and

(3.20) where the regions corresponding to PD, PF, PM, and PTN are indicated with different

shaded areas. For example, PD is the area to the right of the threshold t under the Gaussian distri-

bution p1(y) when H1 is true and PF is the area to the right of the threshold t under the Gaussian

distribution p0(y) when H0 is true. On the contrary, PM is the area to the left of the threshold t

under the Gaussian distribution p1(y) when H1 is true and PTN is the area to the left of the thresh-

old t under the Gaussian distribution p0(y) when H0 is true. It should be noted that the threshold t
is determined by the false alarm rate. If the false alarm rate is upper bounded by b in (3.4) with

Gaussian distributions, using (3.17) we can calculate the corresponding t by the following:

b ¼ PFðdNPÞ ¼
Z 1
t � m0

s0

p0ðyÞdy ) b ¼ 1�F
t � m0

s0

� �

) t ¼ m0 þ s0F
�1ð1� bÞ

ð3:21Þ

where F(x) is a standard Gaussian distribution given by

FðxÞ ¼
Z x

�1

1
ffiffiffiffiffiffi
2p

p e�
y2

2 dy: ð3:22Þ

Therefore, the best decision to find an optimal threshold t for (3.18) is (3.21) which is determined

only by b. We now substitute t given by (3.21) for t in (3.18) and obtain the best detection power

given by

PDðdNPÞ ¼
Z 1
m0�m1þs0F

�1ð1�bÞ
s1

p1ðyÞdy: ð3:23Þ

Using (3.21) and (3.23) we can plot a Gaussian-fitted ROC curve of PD versus PF¼ b for real

data.
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3.5.3 How to Generate 3D ROC Curves

A major disadvantage resulting from the use of the traditional ROC curve is that both the detector

statistics, L(r), implemented by the Neyman–Pearson detector dNP(r) and the threshold t are inde-

pendent parameters and are not specified in the ROC curve of (PD, PF) where PD and PF are actu-

ally dependent on L(r) and t. Since the value of L(r) obtained from a data sample r is generally

real valued and represents the detected signal strength present in r, that is, concentration level of a

signal in r, a soft decision must be made directly on L(r) by varying the threshold t instead of

using the parameter b imposed on PF. In doing so, we introduce a normalized detected signal

strength of L(r) as

LnormalizedðrÞ ¼ LðrÞ �minrLðrÞ
maxrLðrÞ �minrLðrÞ : ð3:24Þ

Using t as a detection threshold value between 0 and 1 for (3.24) we can further define a normal-

ized Neyman–Pearson detector, denoted by dNPt ðrÞ based on LnormalizedðrÞ as follows:

dNPt ðrÞ ¼ 1; if LnormalizedðrÞ � t

0; if LnormalizedðrÞ < t;

�
ð3:25Þ

which uses t as a threshold value to convert the normalized real value of LnormalizedðrÞ to a binary

value. Accordingly, a “1” produced by (3.25) indicates that a target is detected; otherwise, there is

no target present. By varying t 2 ½0;1� in (3.25), a family of detectors dNPt ðrÞ� �
t2½0;1� are generated

for target detection, where for each t the detector dNPt ðrÞ produces its pair of detection rate and a

false alarm rate, (PD, PF). Therefore, if a third dimension is created to specify the threshold t that

is used to define a detector dNPt ðrÞ via (3.35), a 3D ROC curve can be generated and plotted based

on three parameters, PD, PF and t. With such a 3D ROC curve, three 2D ROC curves can also be

generated, the 2D ROC curve of (PD, PF) which is the traditional ROC curve in Figure 3.1, a 2D

ROC curve of (PD,t) and a 2D ROC curve of (PF,t). To generate a 3D ROC curve for real data,

three steps are performed:

1. The data samples will be first classified into two categories, falsely alarmed sample pool VFA

and correctly detected sample pool VD. The samples in VFA are those samples which

are detected as signal samples but actually contain no signals according to the ground truth.

The detected sample pool VD are those samples that are correctly detected by the normalized

NP detector dNPt ðrÞ according to the ground truth. The sample set Vsignal denotes the set of

samples which actually have signal strength/concentration present in the r according to the

ground truth.

2. Let V denote the total sample pool used for evaluation and VS be the set of samples with signal

presence, that is, samples with correctly detected and falsely missed signal samples (see (3.14)),

and VNS be the set of samples with signal absence, that is, samples with no signal detected and

falsely detected signal samples (see (3.15)). In addition, let VSD be the set of samples with

detected signal strength/concentration greater than zero and VNSD be the set of samples with no

signal detected, that is, signal with zero strength/concentration. Then V ¼ VS [VNS ¼ VSD [
VNSD with VS \VNS ¼ ? and VSD \VNSD ¼ ? . The threshold t in (3.21) is used to generate

probabilities of falsely alarmed sample pool VFA and signal detected sample pool VSD.
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3. For each threshold t calculated in step 2, a pair of probabilities PF and PD are defined as fol-

lows, where N(A) denotes the number of samples in a sample pool A:

PD ¼ NðVDÞ
NðVSÞ ¼

NðVS \VSDÞ
NðVSÞ ð3:26Þ

PM ¼ NðVMÞ
NðVSÞ ¼ NðVS \VNSDÞ

NðVSÞ ¼ 1� PD ð3:27Þ

PF ¼ NðVFAÞ
NðVNSÞ ¼

NðVNS \VSDÞ
NðVNSÞ ð3:28Þ

where VS \VSD ¼ VD, VS \VNSD ¼ VM , VNS \VSD ¼ VFA; and VNS \VNSD ¼ VND with

jVDj ¼ NTP, jVMj ¼ NM, jVFAj ¼ NFP; and jVNDj ¼ NTN. (See the definitions given in

Section 3.5.1 and jXj¼ number of samples in X.)

Figure 3.6 shows a diagram of relationships among VS, VSD, VM, VFA, VNS, and VNSD.

In analogy with Section 3.5.2, we can also generate Gaussian fitted 3D ROC curves by the fol-

lowing steps:

1. Calculate sample means and variances for VS and VNS, denoted by mS, s
2
S, and mNS, s

2
NS,

respectively.

2. Find the Gaussian probability distributions under hypotheses H0 and H1, that is, p1ðyÞ ¼
NðmNS; s

2
NSÞ for H0 and p1ðyÞ ¼ NðmS; s

2
SÞ for H1.

3. Calculate the pair of probabilities PF and PD according to the following formulas:

PD ¼
Z þ1

e
p1ðyÞ dy ¼

Z þ1

e

1
ffiffiffiffiffiffi
2p

p
sS

� ðy� mSÞ2
2s2

S

( )

dy ð3:29Þ

PF ¼
Z þ1

e
p0ðyÞdy ¼

Z þ1

e

1
ffiffiffiffiffiffi
2p

p
sNS

� ðy � mNSÞ2
2s2

NS

( )

dy: ð3:30Þ

Figure 3.6 A diagram of relationships among VS, VSD, VM, VF, VNS, and VNSD.
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It should be noted that the means and variances in (3.29) and (3.30) can be calculated from a

given sample pool. For example, using the notations, Nno-signal and N defined in Section 3.5.1,

we can calculate the m0, m1, s
2
0 and s

2
1 for (3.29) and (3.30) as follows:

m0 ¼
1

Nno�signal

X
i2no-signalf ðyiÞ ð3:31Þ

s2
0 ¼

1

Nno-signal

X
i2no-signal f ðyiÞ � m0ð Þ2 ð3:32Þ

m1 ¼
1

N

X
i
f ðyiÞ ð3:33Þ

s2
1 ¼

1

N

X
i
f ðyiÞ � m1ð Þ2 ð3:34Þ

where f(yi) is the value of the ith sample yi.

3.5.4 How to Generate 3D ROC Curves for Multiple Signal Detection and
Classification

The hypothesis testing problem (3.1) considered so far assumes the standard signal detection in

noise (SN) model where hypotheses H0 and H1 represent noise and signalþ noise, respectively.

There have been studies on extending (3.1) to two scenarios. One is called the signal/back-

ground/noise model proposed in Thai and Healey (2002) which includes background B as a third

signal source described by

H0: Y � Bþ N

versus

H1: Y � Sþ Bþ N:

ð3:35Þ

A second scenario is called the signal-decomposed interference/noise (SDIN) model suggested in

Du and Chang (2004b) and is given by

H0: Y � Uþ Iþ N

versus

H1: Y � Dþ Uþ Iþ N

ð3:36Þ

where the signal source S considered in the SBN model (3.35) is further decomposed into the

desired signal source D and the undesired signal source U and the background B considered in the

SBN model is included in the interference signal source matrix I.

Using the SDIN model specified by (3.36), we can interpret various commonly used models as

follows. When U ¼ I ¼ ? and D¼ S, the SDIN model is reduced to the standard SN model. If

D¼ S and I¼B with U ¼ ? , then the SDIN model becomes the SBN model. The SDIN allows

us to deal with multisignal detection and classification by interpret I ¼ ? and signal sources as

a signal source matrix S ¼ d U½ � comprising multiple signal sources with D¼ d representing

the target signal source of interest to be detected and U being other target signal sources with

no interest to d.
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In order to extend a single target signal detection-based ROC analysis to a multiple-signal

detection model specified by (3.36), we assume that there are p signal sources of interest,

m1;m2; . . . ;mp. Then the detection rate RD(mj) and false alarm rate RF(mj) for the jth signal

sourcemj defined by

RDðmjÞ ¼ NDðmjÞ
NðmjÞ ð3:37Þ

RFðmjÞ ¼ NFðmjÞ
N � NðmjÞ ð3:38Þ

where ND(mj) is the total number of true pixels which aremj and detected asmj, NF(mj) is the total

number of true pixels which are not mj but detected as mj, N(mj) is the total number of pixels that

are specified by target signature mj and N is the total number of pixels in the image. For detection

of multiple signal sources, the detection rate/power PD and false alarm rate PF are then replaced by

the mean detection rate �RD and mean false alarm rate �RF, respectively, which can be defined by

taking the mean of RD(mj) and the mean of RF(mj) over all the pm1;m2; . . . ;mp as

�RD ¼
Xp

j¼1
pðmjÞRDðmjÞ ð3:39Þ

�RF ¼
Xp

j¼1
pðmjÞRFðmjÞ ð3:40Þ

where pðmjÞ ¼ NðmjÞ
Nðm1;m2;...;mpÞ, N(mj) is the total number of pixels, which are, mj and

Nðm1;m2; . . . ;mpÞ is the total number of all target pixels given by Nðm1;m2; . . . ;mpÞ ¼Pp
j¼1 NðmjÞ.
It notes that through dNPt ðrÞ specified by (3.25) along with (3.39) and (3.40) each of multiple

signals, m1;m2; . . . ;mp will be detected and classified jointly by a fixed and same threshold t for
all the p signal sources m1;m2; . . . ;mp to produce a point in a 2D space given by ð�RD; �RFÞ. This is
different from the single signal detection of mj which uses its own and separate individual thresh-

old ti in (3.25) to produce its own pair (PD, PF). However, such a subtle and crucial difference

cannot be seen from the traditional 2D ROC curve of (PD, PF) since the threshold t is hidden in PD

and PF and the curve cannot show its influence on both PD and PF.

By decreasing t from 1 to 0 in a third dimension, it results in a 3D mean-ROC curve, which can

be used to evaluate the performance of a detector where the (x,y) coordinate is specified by

(�RD,t) and the z-axis is specified by �RD. Using this 3D mean-ROC curve we can further plot

three 2D curves, a curve of �RD versus �RF which is the traditional ROC curve, a curve of �RD

versus t and a curve of �RF versus t for detection performance analysis. Once the 2D ROC

curve of (�RD,�RF) is generated, the area under the curve is calculated and defined as detection

rate, which can be used to evaluate the effectiveness of a detector. The higher the detection

rate the better the detector.

3.6 Examples

One immediate application of 3D ROC analysis is hyperspectral imaging where the

strength/concentration of a detected signal is specified by the abundance fraction of a particular

target which is actually a real value and plays the central role in data analysis. By varying the value

of threshold t in (3.25) the resulting different abundance fractions can be generated and different

performances can be produced.
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3.6.1 Hyperspextral Imaging

Two examples, hyperspectral target detection and linear hyperspectral mixture analysis, are pre-

sented in this section for illustration.

3.6.1.1 Hyperspectral Target Detection

In this section, the CEM specified by (2.33) in Section 2.2.3 of Chapter 2 will be used for target

detection for the HYDICE scene in Figure 1.15 and panel signatures in Figure 1.16 will be used for

desired target signature, t. Since we are only interested in panel detection, pixels other than panel

pixels will be considered as background pixels. In this case, there are five panel classes identified

as target classes, of which one class for each of five panel signatures and one background class

which accounts for all nontarget pixels. Figure 3.7 shows the detection results for all the five panel

signatures with each of the five panel signatures in Figure 1.16 used as the desired target signature

t for detection. As shown in Figure 3.7, all the panels in five rows are detected very well and

effectively.

The results in Figure 3.7 provide only qualitative assessment by visual inspection and not quan-

titative analysis. Since the detector specified by (2.33) actually estimates the abundance fraction of

the desired target signal t rather than detects the target signal t itself, we can tabulate the detection

results according to the ground truth in Figure 1.13(b) and use 3D ROC analysis for performance

evaluation. By virtue of (3.24) we can derive a normalized CEM by

dCEMnormalizedðrÞ ¼
dCEMðrÞ �minrd

CEMðrÞ
maxrd

CEMðrÞ �minrd
CEMðrÞ : ð3:41Þ

Analogous to (3.25) we can also use (3.41) to define a hard-decision making detector as

dCEMt ðrÞ ¼
1; if dCEMnormalizedðrÞ � t

0; if dCEMnormalizedðrÞ < t

(

: ð3:42Þ

By varying the threshold t 2 ½0; 1� we can produce a 3D ROC curve plotted in Figure 3.8(a) along

with their corresponding three 2D ROC curves in Figures 3.8(b) and 3.8(d) detecting of each of the

five panel signatures.

As shown in Figure 3.8(b), the 2D ROC curve of (PD, PF) is nearly close to the one which

indicated that CEM performed extremely well in detecting 15 panel pixels. As also shown in

Figure 3.8(c), the 2D ROC curve of (PD,t) implies that the CEM detected abundance fractions

to reflect why detection rate is so high. On the other hand, the 2D ROC curve of (PF,t) in

Figure 3.8(d) shows that PF is very high when t is set to very small values less than 0.15, but PF

Figure 3.7 Detection of 15 panels by CEM.
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dropped down to nearly zero when t is greater than 1.3. Based on the 2D ROC curves in Figures

3.8(c) and 3.8(d), the best t would be around 0.2. Such information is not provided by the 2D ROC

curve of (PD, PF) in Figure 3.8(b). Table 3.1 also tabulates their AUCs, Az, for 2D ROC curve of

(PD, PF).

3.6.1.2 Linear Hyperspectral Mixture Analysis

Linear hyperspectral mixture analysis is one of fundamental data processing techniques widely

used in hyperspectral imaging. One of known and popular LSMA techniques is the orthogonal

subspace projection (OSP) developed in Section 2.3.2.1. It is originally developed by Harsanyi and

Chang (1994) to estimate abundance fractions of each of image endmembers assumed to be present

in the data to perform mixed pixel classification. Since OSP is an abundance-unconstrained estima-

tor it may not accurately estimate the true abundance fractions of each of image endmembers

used to form the linear mixture model (2.75), two abundance-constrained least-squares-based

LSU techniques are further used for comparison. One is a partially abundance-constrained least-

squares LSMA, called the non-negativity abundance-constrained least-squares (NCLS) method
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Figure 3.8 3D ROC curves of five-panel signature detection.

Table 3.1 Az calculated panels detected in five rows in Figure 3.8(b)

Panels in row 1 Panels in row 2 Panels in row 3 Panels in row 4 Panels in row 5

Az 0.99919 0.99963 0.99969 0.99969 0.9996
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(Chang 2003a, Chapter 3), and fully abundance-constrained least-squares (FCLS) methods (Chang

2003a, Chapter 10) are also used for experiments.

Obviously, from the scene in Figure 1.13(a) there are more than 15 panels. Because there is no

ground truth of signatures provided other than 15 panels in the scene, we use the virtual dimension-

ality (VD) in Chapter 5 originally developed in Chang (2003a, Chapter 17) to estimate a total

number of spectrally distinct signatures assumed to be present in this scene, which is 9. Based on

this information and visual inspection, we identify five areas marked in Figure 3.9 to produce four

other signatures, grass, tree road plus an interferer in addition to five panel signatures in

Figure 1.14.

In order to effectively perform the LSMSA, the SDIN model specified by (3.36) was used as the

signature matrixM with the desired panel signatures denoted by S¼ [p1 p2 p3 p4 p5] designated as

the signal matrix and I¼ [interferer grass tree road] as the interference matrix. In this particular

example, we can formed a background signature matrix B made up of grass, tree, road which

were considered as part of the interference matrix I. With this interpretation the SBN in (3.35)

became a special case of the SDIN. It should be noted that since the interferer on the left upper

corner shows strong signal presence by its gray intensity, it is chosen as an unwanted signal source.

The linear spectral unmixing was then performed to unmix 15 panel pixels using p1, p2, p3, p4,

p5 for mixed pixel classification where d¼ one specific panel signature to be used for classification

and U made up of all the other four panel signatures. Three mixed pixel classifiers LSOSP

(Tu et al., 1997), NCLS, and FCLS that were then used to unmix 15 panel pixels in Figure 1.13

where two orthogonal subspace projectors, P?
½U B� and P?

½U I�, defined by (2.78) were used for the

SBN and SDIN models, respectively, to reject all unwanted signatures prior to detection of d by a

matched filter. It should be noted that LSOSP was used instead of OSP because LSOSP provides

better abundance fraction estimation than OSP does as shown in Tu et al. (1997) and Chang et al.

(1998). Figures 3.10 and 3.11 show classification of the 15 panels with the 19 panel pixels unmixed

by LSOSP, NCLS and FCLS using SBN and SDIN models, respectively, where as expected, the

15-panel (19 panel pixels) classification results using the SDIN model performed better than that

produced by using the SBN model.

Since the unmixed results in Figures 3.10 and 3.11 are abundance fraction maps, they cannot be

directly used for hard-decision-based classification to perform 3D ROC analysis. In this case, we

followed the same treatment as we derived (3.41) and (3.42) for CEM by defining a normalized

LSMA as

dLSMA
normalizedðrÞ ¼

dLSMAðrÞ �minrd
LSMAðrÞ

maxrd
LSMAðrÞ �minrd

LSMAðrÞ : ð3:43Þ

Figure 3.9 Finding background and interferer signatures.
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and a hard-decision-making detector as

dLSMA
t ðrÞ ¼ 1; if dLSMA

normalizedðrÞ � t

0; if dLSMA
normalizedðrÞ < t

(

ð3:44Þ

where the superscript “LSMA” in (3.43) and (3.44) is used to indicate any specific LSMA tech-

nique that will be converted to hard decisions. In this case, hard-decision-making LSOSP, NCLS,

and FCLS detectors can be defined via (3.43) and (3.44).

By varying t in the range of [0,1] in (3.43) and (3.44) we produced 3D ROC curves of (�RD,�RF,t)
for performance evaluation. Figures 3.12(a) and 3.13(a) show 3D ROC curves of 15-panel-pixel

detection results in Figures 3.10 and 3.11 using the SBN and SDIN, respectively, where the same

threshold t was used in (3.44). Along with the 3D ROC curves their corresponding 2D ROC curves

are also plotted in Figures 3.12(b)–(d) and 3.13(b)–(d) for comparison and their AUCs for the 2D

ROC curve of (PD, PF), Az are also tabulated in Table 3.2.

From the results in Figures 3.13, 3.14, and Table 3.2 NCLS clearly outperformed LSOSP and

FCLS for both SBN and SDIN models in terms of 15-panel (19-panel pixels) mean detection.

To further make a comparison between joint detection of multiple signals, S¼ [p1 p2 p3 p4 p5],
using the same threshold tS and single-signal detection of five individual panel signatures, p1, p2,

p3, p4, p5, using five separate and independent thresholds t1, t2, t3, t4, t5, tabulated in Table 3.3,

their AUCs, Az, were calculated where it can be clearly seen that independent and separate single

signal detection of multiple signals always performed better than joint detection of multiple sig-

nals. This is because the latter used different independent thresholds, t1, t2, t3, t4, t5, to detect

Figure 3.10 Classification of 19 panel pixels produced by LSOSP, NCLS, and FCLS using the SBN model.
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five distinct panel signatures, while the former must use the same threshold t for all the five panel

signatures.

As also shown in Figures 3.12(c)–(d) and 3.13(c)–(d), it suggested that an effective detector

such as NCLS should have smaller areas under the 2D ROC curves of (�RD,t) and (�RF ,t). In partic-

ular, these figures also provide information about what a good threshold to be compromised

between PD and PF is where t is around 0.18 for the SBN model and 0.1 for the SDIN model.

Additionally, Figures 3.12(d) and 3.13(d) also show that how effective NCLS was in terms of PF

versus the threshold t where such information could not be provided by the traditional 2D ROC

curve of (PD, PF).

3.6.2 Magnetic Resonance (MR) Breast Imaging

This section presents another application of 3D ROC analysis in real breast MR image experiments.

We define two specific terminologies commonly used in medical imaging community, sensitivity

sensitivity ¼ PD ¼ NTP

NTP þ NFN

ð3:45Þ

which is exactly the same as the detection rate in detection theory, and specificity

specificity ¼ PTN ¼ NTN

NTN þ NFP

ð3:46Þ

Figure 3.11 Classification of 19 panel pixels produced by LSOSP, NCLS, and FCLS using the SDIN model.
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which does not exist in detection theory because it is the case of noise detection where detecting noise

does not make sense in detection theory. However, it does make sense in medical imaging because it

represents “negative” in diagnosis which implies a normal case.

3.6.2.1 Breast Tumor Detection

Four multispectral MR breast images shown in Figure 3.14 were used for the experiments. Each

image has the same size of 427� 427 pixel vectors with five breast tissues of interest, fatty, glan-

dular, muscle, tumor mass, and vessel, specified in Figure 3.15.
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Figure 3.12 3D and 2D ROC curves of LSOSP, NCLS, and FCLS for the SBN model.

Table 3.2 Az calculated for LSOSP, NCLS, and FCLS for SBN and

SDIN models in Figures 3.12(b) and 3.13(b)

LSOSP NCLS FCLS

SBN 0.865 0.996 0.987

SDIN 0.974 0.999 0.966
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Specifically, band 1 is the flash 2D spectral image acquired by TR/TE¼ 352ms/4.7ms; band 2

is a T1-weighted 2D spectral image acquired by TR/TE¼ 832ms/20ms; band 3 is a T2-weighted

2D spectral image acquired by TR/TE¼ 3000ms/105ms; and band 4 is photon-density (PD)-

weighted 2D spectral image acquired by TR/TE¼ 3000ms/15ms. The slice thickness is 3mm and

sagittal sections are taken by the Siemens 1.5-T system. By stacking these four MR breast images

as an image cube, the CEM specified by (2.33) was used to detect these five breast tissues. Since

three signatures from Figure 3.15, fatty, tumor, and muscle, are of our major interest, these tissues
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Figure 3.13 3D and 2D ROC curves of LSOSP, NCLS, and FCLS for the SDIN model.

Figure 3.14 Four breast MR images.
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were then used as the desired tissues by CEM for target detection. The detection results for each of

these three breast tissues (fatty, glandular, and tumor mass) are shown in Figure 3.16, where the

breast tumor mass is clearly extracted in Figure 3.16(a).

Since the detection images in Figure 3.16 are actually abundance fraction maps, the detection

rate for each of the three tissues must be determined by the threshold t specified in (3.42). As a

result, a 3D ROC curve along with three 2D ROC curves were generated for fatty, tumor, and

glandular, respectively. Because the tumor mass is of primary interest, only its 3D ROC curves

along with three 2D ROC curves are plotted in Figure 3.17 with Az¼ 0.8764 where the PD and PF

are TP and FP, respectively.

To further illustrate the need for 3D ROC analysis, Figure 3.18 shows various results of detect-

ing each of the three tissues in Figure 3.16 using four threshold values, t¼ 0.2, 0.4, 0.6, 0.8.

As shown in Figure 3.18, the detection performance varied and was largely determined by the

threshold t, which in turn determined the pair of 2D ROC curves of (TP,FP) in Figure 3.17(b)–(d).

Table 3.3 Az calculated for 19-panel pixels in five rows

Panels in row 1 Panels in row 2 Panels in row 3 Panels in row 4 Panels in row 5

SBN

LSOSP
0.93221 0.92984 0.99426 0.96103 0.95261

NCLS 0.98971 0.99976 0.99951 0.99948 0.98596

FCLS 0.98604 0.99161 0.99976 0.99905 0.97476

SDIN

LSOSP
0.97432 0.99149 0.99976 0.99939 0.99289

NCLS 0.99475 0.99884 0.99963 0.96451 0.95401

FCLS 0.99646 0.99976 0.99969 0.9996 0.99945

Figure 3.15 Five breast tissues of interest.
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Under such a circumstance, only the 3D ROC curve could provide adequate analysis for medical

diagnosis.

3.6.2.2 Brain Tissue Classification

The synthetic images to be used for experiments in this section were the axial T1, T2, and proton

density MR brain images (with 5-mm section thickness, 0% noise, and 0% intensity

Figure 3.16 Detection results of three breast tissues by CEM.
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Figure 3.17 3D ROC curve and three 2D ROC curves for tumor mass.
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nonuniformity) resulting from the MR imaging simulator of McGill University, Montreal, Canada

(available at _www.bic.mni.m cgill.ca/bra inweb/ ). The image volume provided separ ate volumes of

tissue classes, such as CSF, GM, WM, bone, fat, and background. The use of these web MR brain

images allows researchers to reproduce our experiments for verification. Figure 3.19 shows three

Figure 3.18 Detection results for each of the three tissues determined by the threshold t specified by (53).

Figure 3.19 Three MR brain images.
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MR brain images with specifica tions provided in www.b ic.mni.m cgill.ca/bra inweb/ where the first

image is acquired by Modality¼ PD, Protocol¼ ICBM, Phantom_name¼ normal, Slice_thickness

¼ 5mm, Noise¼ 0%, INU (intensity nonuniformity)¼ 0%, the second image by Modality¼T1,

Protocol¼ ICBM, Phantom_name¼ normal, Slice_thickness¼ 5mm, Noise¼ 0%, INU¼ 0% and

the third image by Modality¼T2, Protocol¼ ICBM, Phantom_name¼ normal, Slice_thickness

¼ 5mm, Noise¼ 0%, INU¼ 0%.

Figure 3.20 provides the ground truth, which is also avai l a b l e i n t h e w e b s i t e w w w. b i c . m n i .

mcg il l.c a/b rai n we b/ fo r br ain ti s su e su b sta n ce s in th e im a ge s in Fi g ur e 3. 19 tha t wi ll be u se d to

verify the results obtained for our experiments.

Since only GM, WM, and CSF are major tissues of interest in brain image classification, all

other brain tissues in Figure 3.20 are considered as unwanted signatures for suppression. In this

case, the SDIN model (3.36) was specified by S¼ [CSF GM WM] as the signal matrix and

I¼ [B fat muscle skin skull glial connective] as the interference matrix which included all

brain tissues in Figure 3.20 other than CSF, GM, and WM where the background signature B

was included as part of the interference matrix I. With this interpretation the SBN in (3.45) was

considered as a special case of the SDIN. Also, it has been shown in Figures 3.10 and 3.11 that

the SBN model was not as good as the SDIB model. In this case, only the SDIN model was

considered to be used for LSMA. An LSMA technique is then performed via (3.44) to unmix

CSF, GM, and WM where d¼ one specific brain tissue to be classified and U made up of the

other two brain tissues. Similar to the application of hyperspectral image classification pre-

sented in Section 3.6.1.2, LSOSP, NCLS, and FCLS were used to unmix the CSF, GFM, and

WM where an orthogonal subspace projector P?
½U I� was used to reject all unwanted signatures

prior to detection of d by a matched filter. Figure 3.21 shows classification results unmixed by

LSOSP, NCLS, and FCLS where the results produced by NCLS seemed to be the best by visual

assessment.

To conduct a quantitative study, we further used 3D ROC analysis for performance evaluation.

The mean classification rates of CSF, GM, and WM were calculated based on (3.39) and (3.40) and

used to plot their corresponding 3D ROC curves along with three 2D ROC curves in Figure 3.22,

where NCLS clearly performed better than the other two methods.

Figure 3.20 Ground truth of brain tissue substances for images in Figure 3.19.
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Table 3.4 also tabulates their AUCs, Az, calculated for the 2D ROC curves in Figure 3.22(b)

produced by LSOSP, NCLS, and FCLS in Figure 3.21; the best classification rate was actually

NCLS which yielded Az¼ 0.916500 compared to LSOSP and NCLS which produced Az

¼ 0.847063 and 0.805803, respectively.

Table 3.4 Az obtained for LSOSP, NCLS, and FCLS

LSOSP NCLS FCLS

Az 0.847063 0.916500 0.805803

Figure 3.21 Classification of CSF, GM, and WM produced by (a) LSOSP, (b) NCLS, and (c) FCLS

methods.
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Interestingly, FCLS in Figure 3.21(c) did not perform better than LSOSP as it did for hyper-

spectral linear unmixing in Figures 3.10(c) and 3.11(c). This is mainly because FCLS was

designed to quantify rather than classify brain tissues. Furthermore, for NCLS, the best threshold t

seemed to be around 0.4 according to the three 2D ROC curves in Figures 3.22(b) and 3.22(d).

These experiments further provided evidence of usefulness of 3D ROC analysis.

3.6.3 Chemical/Biological Agent Detection

This section describes a third application of 3D ROC analysis in chemical/biological agent detec-

tion. After 9/11 the threat from chemical and biological warfare (CBW) agents has become reality,

especially contamination and pollution in water supplies during water point selection, production,

storage, and distribution to consumers. To address such a need the U.S. Army Joint Service Agent

Water Monitor (JSAWM) program is particularly interested in developing a hardware-designed

device, named JSAWM HHA (hand-held assay) (Chang, 2006; Liu et al., 2005), based on lateral

flow immunoassay technology to determine threat levels of the CBW agents of the incidents. Two

tickets with/without an agent signal shown in Figures 3.23(a) and 3.23(b) are developed by the

ANP Inc. for HHA and can be read either by human eyes or by an optical scanner. The detection

of water ticket samples shown in Figure 3.23(c) was carried out by the software developed at the
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Figure 3.22 3D ROC of LSOSP, NCLS, and FCLS.
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University of Maryland, Baltimore County (UMBC). According to the ground truth provided by

the ANP, Table 3.5 tabulates the ticket samples of four signals with various concentrations that

were provided by the ANP, Inc.

These ticket samples were further used for experiments. To generate ROC curves for this

particular application for HHA tickets, we calculated the PD and the PF of each agent signal

mj (signal j) for j ¼ 1; . . . ; 4 in the HHA ticket image, where the mj was given by different

combinations of agent signals such as vaccinia, coxiella, ricin, or bot tow. Setting a concentra-

tion threshold for each agent signal to be detected was an important task in chemical and

biological applications, where the presence of a threat usually depends on whether its concen-

tration or abundance is above a certain tolerance threshold. If the concentration is greater than

the threshold, we claim that the agent signal is detected. Otherwise, we consider that no agent

signal is detected.

Since Figure 3.23 shows detected abundance fractions produced by the designed image detec-

tion algorithms, it requires the threshold t to perform target detection. Let a% be the abundance

percentage used as the desired cutoff threshold value. Now for each target signature mj we use

(3.24) to normalize its detected abundance fraction âjðrÞ in Figure 3.23 for each single ticket sam-

ple r to ~ajðrÞ by defining

~ajðrÞ ¼ âjðrÞ �minr âjðrÞ
maxrâjðrÞ �minr âjðrÞ : ð3:47Þ

As a result, the values of ~ajðrÞ always lie in the range of [0,1]. With a% as a thresholding

criterion we can define an abundance percentage mixed-to-pure pixel converter (APMPCV)

with a%-threshold, referred to as a%MPCV, xa%MPCM;mj
ðrÞ (Chang, 2003a, Chapter 9) as

follows:

xa%MPCM;mj
ðrÞ ¼ 1 if âjðrÞ � t ¼ a

100
0 otherwise:

(

: ð3:48Þ

Table 3.5 Ticket samples of four signals with various concentrations used for experiments

Concentration Signal 1 Signal 2 Signal 3 Signal 4 Number of samples

1 0.00Eþ 00 0.00Eþ 00 0.00Eþ 00 0.00Eþ 00 6

2 3.00Eþ 01 6.00Eþ 01 2.00Eþ 01 2.00Eþ 01 6

3 3.00Eþ 01 1.00Eþ 02 4.00Eþ 01 4.00Eþ 01 6

4 6.67Eþ 01 1.33Eþ 02 6.00Eþ 01 3.33Eþ 01 6

5 1.00Eþ 02 2.00Eþ 02 1.00Eþ 02 7.50Eþ 01 6

6 1.33Eþ 02 2.33Eþ 02 2.00Eþ 02 1.00Eþ 02 6

7 2.00Eþ 02 3.00Eþ 02 3.00Eþ 02 1.33Eþ 02 6

8 3.00Eþ 02 1.00Eþ 03 3.00Eþ 02 3.00Eþ 02 6

9 3.00Eþ 02 3.00Eþ 03 1.00Eþ 03 1.00Eþ 03 6

10 1.00Eþ 03 1.00Eþ 04 3.00Eþ 03 3.00Eþ 03 6

11 2.00Eþ 03 3.00Eþ 04 1.00Eþ 04 1.00Eþ 04 6

12 3.00Eþ 03 1.00Eþ 05 2.00Eþ 04 4.00Eþ 04 6
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If the detected abundance fraction of a target signature,mj, ~ajðrÞ exceeds t ¼ a%=100 within the
sample r, then the r will be assigned to this particular target. So, a “1” produced by (3.48) indi-

cates that the sample r is classified as the desired target signature mj; otherwise, it is detected as

the absence of the target signature.

Using (3.47) and (3.48) and threshold t ¼ a%=100 with a% ranging from 0% to 100% we can

produce 3D ROC curves of (�RD,�RF,t) for each of four signals shown in Figures 3.24–3.27 along

with their AUCs, Az, tabulated in Table 3.6.

Figure 3.23 An example of tickets with/without agent signals.

Table 3.6 Az calculated for four signals Figures 3.24(b)–3.27(b)

Signal 1 Signal 2 Signal 3 Signal 4

Az 1 0.6389 0.9167 0.9722
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Since Table 3.6 was calculated based on Az under the 2D ROC curve of (�RD,�RF) which did

not include concentration as a parameter for performance evaluation, in this case, the 2D

ROC curves of (�RD,t) and (�RF ,t) must be factored in analysis of signal sensitivity to tickets.

This phenomenon can be explained by the 2D ROC curves of (�RF ,t) in Figures 3.24(d), 3.25

(d), 3.26(d), and 3.27(d) which provided additional information. That is exactly the reason

why we need to introduce a 3D ROC curve to include concentration as a parameter for per-

formance evaluation.

It should be noted that Figures 3.24–3.27 and Table 3.6 were obtained by real ticket samples. As

an alternative, we could also use the statistics obtained from the real ticket samples in Table 3.5 to

generate Gaussian-fitted 3D and 2D ROC curves. Figures 3.28–3.31 show the Gaussian fitted 3D

and 2D ROC curves of Figures 3.24–3.27 along with their corresponding AUCs, Az, tabulated in

Table 3.7.

Like Table 3.6, the best performance based on Az in Table 3.7 was still produced by signal

1 and the worst came from signal 2. If we further compare the results in Table 3.6 against
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Figure 3.24 3D and 2D ROC curves produced by signal 1.

Table 3.7 Az obtained for four signals from Figures 3.28(b)–3.31(b)

Signal 1 Signal 2 Signal 3 Signal 4

Az 0.9637 0.6406 0.8887 0.9306
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those in Table 3.5 the errors obtained from the ROC generated by real data and those gener-

ated by Gaussian-fitted data described in Sections 3.5.2 and 3.5.3 were within the range of

0.04, which indicated the appropriateness of Gaussian-fitted data in this particular

application.

3.6.4 Biometric Recognition

In the three applications described earlier, the threshold t is considered as an independent parame-

ter and PD and PF are treated as dependent parameters as functions of t. As a matter of fact,

according to (2.6) or (3.5), t is actually determined by the costs cij defined by

t ¼ p0 c10 � c00ð Þ
p1 c10 � c11ð Þ ð3:49Þ

and prior probabilities pj which are unknown and cannot be specified in any means beforehand

in these applications. However, in some applications the costs may be specified by particular

needs. One such application is the evaluation of a biometric recognition system which is gener-

ally conducted based on the costs used by the system (Du and Chang, 2007, 2008). To reflect

the role that the costs play in the threshold t, a 3D ROC curve may be better plotted based on
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Figure 3.25 3D and 2D ROC curves produced by signal 2.
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three parameters, PD, PF, and costs via (2.7), (2.9)–(2.10) instead of PD, PF, and t via (3.49),

(3.2)–(3.3). More specifically, PD is replaced by false rejection rate (FRR) which is actually

the missed probability PM defined by (3.27) to reflect how a biometric system is sensitive to

false rejection rate rather than detection rate. If we further assume that pj for two hypotheses
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Figure 3.26 3D and 2D ROC curves produced by signal 3.
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Figure 3.27 3D and 2D ROC curves produced by signal 4.
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are equally likely, this implies that two systems evaluated under each hypothesis have equal

chance to be used for the application. As a result, the averaged risk r(d) defined by (2.4) and

the cost specified by (3.49) become

rðdÞ ¼ 1=2ð ÞR0ðdÞ þ 1=2ð ÞR1ðdÞ; ð3:50Þ
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Figure 3.27 (Continued).
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Figure 3.28 Gaussian-fitted 3D and 2D ROC curves produced by signal 1.
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t ¼ c10 � c00

c10 � c11
; ð3:51Þ

respectively. Since we generally assume that there is no cost for TN and TP in which case c00¼
c11¼ 0, (60) can be further reduced to

cost ¼ rðdÞ ¼ 1=2ð Þc10P0ðG1Þ þ 1=2ð Þc01P1ðG0Þ; ð3:52Þ

which is reduced to a cost function of PD and PF specified by (3.2) and (3.3), respectively. As

shown in Du and Chang (2007, 2008), a 3D ROC curve, referred to as the 3D cost curve of

(FRR, PF, cost), can then be plotted by the three parameters, FRR¼ 1�PD, PF, and cost speci-

fied by (3.52) instead of the threshold t. Consequently, in addition to the three 2D ROC curves of

(PD, PF), (PD,t), (PF,t) that are already introduced in the 3D ROC analysis, there are three more

additional 2D ROC curves of (PD, cost), (PF, cost), and (t, cost) that can be further derived by

introducing (3.50) as a cost via (3.51) parameter. Furthermore, upon evaluating a biometric

recognition system, users may care more about relationships among Security, Convenience, t,

and cost. Under such circumstances, various 3D ROC curves, called 3D combinational curves in

Du and Chang (2007, 2008), can be plotted based on these four parameters of interest, FER¼ 1

�PM, PF, t, and cost along with their corresponding 2D combinational ROC curves by defining
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Figure 3.29 Gaussian-fitted 3D and 2D ROC curves produced by signal 2.
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the system security by 1�PF¼PTN via (3.13) and the system convenience by 1� FRR¼PD. For

example, in the context of Security, Convenience, t, and cost, a 3D combinational performance

ROC curve and a 3D combinational performance cost curve can be specified by a 3D ROC curve

of (Convenience, Security, t) and a 3D ROC curve of (Convenience, Security, cost), respectively,

along with their six corresponding 2D combinational ROC curves of (Convenience, Security),

(Security, t), (Convenience, t), and (Security, cost), (Convenience, cost), and (cost, t). For

example, a 2D combinational ROC curve of (Convenience, Security)¼ (PD, PTN) represents a

compromise of a biometric system between security and convenience. Since the utility of 3D

ROC analysis in the evaluation of biometric recognition systems has been investigated and

explored in great detail in Du and Chang (2008) and extensive experimental results are also con-

ducted therein, no experiments are included here to avoid duplication.

3.7 Conclusions

This chapter presents a 3D ROC analysis for multiple-signal detection and classification. Its idea

arises from the fact that the performance of a detector is generally measured by a likelihood ratio

test which is indeed a real-valued function, both detection power and false alarm rate are actually

determined by a value that thresholds a real-valued detector. This problem is not only a pattern

classification, where classification accuracy is also determined by a threshold used for clustering
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Figure 3.30 Gaussian fitted 3D and 2D ROC curves produced by signal 3.
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data. Therefore, including a threshold as a parameter to account for performance analysis seems

more realistic and effective. To substantiate its utility in versatile applications, four examples rep-

resenting a wide range of applications are presented for demonstration, which are linear spectral

unmixing and target detection for hyperspectral data, medical diagnosis in tumor detection, and

tissue characterization for magnetic resonance images, chemical/biological agent detection for

water monitoring, and evaluation of biometric recognition systems.
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4

Design of Synthetic Image
Experiments

Many hyperspectral imaging algorithms have been developed for various applications such as

spectral unmixing, subpixel detection, quantification, endmember extraction, classification, com-

pression, as well as many more yet to explored. While each algorithm deserves its own right, it is

very difficult to compare them one against another without a fair common ground. This chapter

makes an attempt to design a set of standardized synthetic images for hyperspectral target analysis

which simulate various scenarios so that different algorithms can be validated and evaluated on the

same setting with completely controllable environments. Here, the term “target” used here is

generic and simply indicates an object of interest in data analysis where a real target is specified

by a certain application such as endmembers, anomalies, and man-made objects. Two types of

scenarios are developed to simulate how a target can be inserted into the image background. One

is called target implantation (TI) which implants a target by removing the background pixels they

intend to replace. This type of scenario is of particular interest in endmember extraction where

pure signatures can be simulated and inserted into the background with a target of guaranteed

100% purity. The other is called target embeddedness (TE) which embeds a target by superimpos-

ing it over the background pixels they intend to insert. This type of scenario can be used to simu-

late signal detection models where the noise and background pixels are additive, that is, signal

detection in additive noise. It is worth noting that TE does not satisfy abundance sum-to-one con-

straint (ASC) due to superimposition of an inserted target pixel over a background pixel. Further-

more, for each type of target insertion three scenarios are designed to simulate different levels of

target knowledge by adding a Gaussian noise. To make these six scenarios (three for TI and three

for TE) standardized data sets for experiments, the data used to generate synthetic images can be

chosen from a database or a spectral library available in the public domain or on website to avoid

biased data being used for validation. By virtue of these designed six scenarios, an algorithm can

be evaluated objectively and compared impartially to other algorithms in the same environment

with completely controllable target knowledge. To further demonstrate how these six scenarios

can be used for performance evaluation and analysis, various algorithms developed for applications

of subpixel detection, mixed pixel classification/quantification, and endmember extraction are used

for comparison.

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
� 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.
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4.1 Introduction

When a new algorithm is designed and developed, a frequently asked question is that “How does it

perform compared to other algorithms?”. In other words, if one walks in with a new algorithm

saying that his algorithm performs better than other existing algorithms, how do we substantiate

his claim? This is particularly true for a new area such as hyperspectral imaging where new algo-

rithms keep emerging and popping up in a fast pace and each algorithm claims to be better than

others. Many users have been struggling and wrestling this issue when they come to select candi-

date algorithms for hardware architecture design and development such as field programma-

ble gate array (FPGA). Despite the fact that computer-simulated data such as Monte Carlo

simulations have been used for this purpose, on many occasions the computer simulations

generally go far beyond reality and can be only used for proof-of-concept. In order to move

to the next level, more realistic data are needed for further evaluation. The same dilemma

occurs in medical community also where the so-called phantoms are designed and developed

based on real data using controllable parameters to simulate real environments before experi-

ments can be conducted for real data in vivo. One good example is the magnetic resonance

(MR) brain web library provided by MR imaging simulator of McGill University, Montreal,

Canada (available at www.bic.m ni.mcgill.ca/brai nweb/) (see Chapter 32). It seems natural

that a similar approach to McGill’s synthetic images can also be adopted for hyperspectral

imaging. This chapter takes this challenge and designs so-called synthetic images that serve

the same purpose as phantoms designed for medical imaging.

Before doing so several issues must be addressed. First, it is important to note that none of the

algorithms can claim its superiority over other algorithms without specifying criteria to be used for

optimality and applications for which they are designed. More specifically, in what sense of opti-

mality and in what application can an algorithm perform better than other algorithms? Second,

there should be a database or a spectral library available in the public domain that allows users to

perform impartial assessments and objective comparative studies and analyses. Additionally, all

the experiments conducted should be repeatable for validation so that any claimed algorithm can

be verified by others using the same data set and identical environment under which the experi-

ments are conducted. Only in this way it can prevent users from being accused of the use of their

own data sets to make their own cases. Most important of all is how to design an effective and

objective evaluation process to compare algorithms without controversy and subjectivity. Interest-

ingly, to the author’s best knowledge, no such effort has ever been made in the past. In this chapter,

we investigate and focus on the first and third issues since the second issue can be resolved by

many data sets available on website now. Besides, the third issue is also closely related to the first

issue which is completely determined by applications. In this case, both issues will be investigated

in a coherent manner when it comes to design of experiments.

This chapter first addresses the third issue of how to design and develop a creditable evaluation

process. Unlike most computer simulations which generally use laboratory data sets via a set of

parameters such as Monte Carlo simulations, here we use real data sets to design synthetic images

that can simulate real images with certain properties that we would like to explore. Because hyper-

spectral imaging sensors can effectively capture targets that generally appear in a mixed form or at

subpixel level, it is important to design a process of how such targets can be inserted into an image

scene at our discretion. Two types of target insertion are considered, target implantation (TI)

and target embeddedness (TE), where the former implants targets by removing the background

pixels they intend to replace as opposed to the latter which embeds targets by superimposing the

targets over the background pixels they intend to insert. While TI is of particular interest in end-

member extraction since pure signatures can be simulated and inserted into the background with
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guaranteed 100% purity, TE is particularly useful in target detection where the noise and back-

ground are assumed to be additive. For each type of target insertion three scenarios can be designed

to simulate different levels of target knowledge by adding a Gaussian noise. In order for the

designed six scenarios (three scenarios for TI, TI1, TI2, TI3 and three scenarios for TE, TE1, TE2,

TE3) to be used as standardized data sets for experiments, the data sets used to generate synthetic

images can be chosen from existing databases or spectral libraries available in the public domain.

Therefore, no particular data sets are required to simulate these synthetic images. By virtue of

these particularly designed six scenarios, an algorithm can be assessed and evaluated objectively

and compared fairly to other algorithms on the same setting.

4.2 Simulation of Targets of Interest

As noted earlier, a target used in this book is referred to as an object whose existence can be spec-

trally characterized by certain properties, for example, statistics of spectral correlation across the

wavelength range used for data acquisition. Generally two types of targets are of interest in hyper-

spectral target analysis, subsample targets, and mixed-sample targets, as discussed in Chapter 2.

4.2.1 Simulation of Synthetic Subsample Targets

First, we simulate a subsample target. Assume that a subsample target is specified by a signature,

p, for example, panel signature in Figures 1.8–1.10, 1.12(c), (d) and 1.16–three subsample targets

with 3/4,
1/2, and

1/4 sample sizes, respectively. Figure 4.1(a) shows how a subsample target

t1 with
3/4 sample size is simulated by the panel signature, p. To simulate the subsample target t1,

we first simulate one-sample vector specified by a background signature b and three-sample

vectors specified by p to form a four-sample square panel as shown at the bottom layer of

Figure 4.1(a).

The four-sample square panel is then shrunk to its 1/4 size by averaging all four sample vectors

to a single four-subsample square panel with the same spatial resolution 1.56m shown at the top

layer of Figure 4.1(a) where each subsample vector in the shrunk single-sample square panel is

only 1/4 size of its corresponding sample vector at the bottom layer of Figure 4.1(a) as a result of

1=4ðpþ pþ pþ bÞ. This shrinking process is actually a linear mixture of two signatures, p and b,

with abundance fractions corresponding to 3/4 and
1/4, respectively, and similar to the process used

in Chang et al. (2004). The shrunk single four-subsample vector at the top layer of Figure 4.1(a) is

the desired sample vector p1 that contains a subsample target t1 of
3/4 sample size specified by the

panel signature p. Similarly, two-sample vectors p2 and p3 shown in Figure 4.1(b) and,(c) are also

simulated in the same fashion as results of 1=4ðpþ pþ bþ bÞ and 1=4ðpþ bþ bþ bÞ, respec-
tively, where p2 contains a subsample target t2 of

1/2 sample size specified by creosote leaves and

p3 contains t1 of
1/4 sample size specified by creosote leaves.
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Figure 4.1 Simulations of three subsample target panels: (a) subsample target panel, p1 with
3/4 of pþ 1/4 of

b; (b) subsample target panel, p2 with 1/2 of pþ 1/2 of b; (c) subsample target panel p3 with
1/4 of pþ 3/4 of b.
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4.2.2 Simulation of Synthetic Mixed-Sample Targets

In general, simulating a synthetic mixed-sample target can be done in a similar way as the sub-

sample targets are simulated in Figure 4.1. However, there is a simple method to do it. If we

assume that the abundance fraction of a signature present in a sample vector is proportional to its

size embedded in a sample vector, a subsample target of 1/4 sample size can be simulated by 25% of

its abundance provided that the abundance of a fully occupied sample vector is assumed to be

100%. In light of this interpretation, the three subsample targets, p1, p2, and p3, in Figure 4.1 can

be re-expressed as p1 ¼ 75%pþ 25%b, p2 ¼ 50%pþ 50%b, p3 ¼ 25%pþ 75%b. As a result,

we can simulate any arbitrary sample vector p linearly mixed by a number of signatures,

m1;m2; . . . ;mp with their corresponding abundance fractions specified by a1;a2; . . . ;ap with aj �
0 for all 0 � j � p and

Pp
j¼1 aj ¼ 1 as p ¼ Pp

j¼1 ajmj .

4.3 Six Scenarios of Synthetic Images

Section 4.2 describes how to simulate subsample targets or mixed-sample targets according to their

characteristics. In this section, we will discuss on how to simulate synthetic images with target

panels inserted in accordance with certain desired properties.

4.3.1 Panel Simulations

First, the real image scene with reflectance data shown in Figure 1.12(c) is used to simulate panels

of interest where the reflectance spectra of five USGS ground-truth mineral spectra: alunite (A),

buddingtonite (B), calcite (C), kaolinite (K), and muscovite (M) are used to simulate 25 panels of

various sizes that are arranged in a 5� 5 matrix as shown in Figure 4.2.

Each row of the five panels in Figure 4.2 is simulated by the same mineral signature and each

column of five panels has the same size. Among 25 panels are five 4� 4-pure pixel panels, pi4�4

for i ¼ 1; . . . ; 5 in the first column, five 2� 2-pure pixel panels, pi2�2 for i ¼ 1; . . . ; 5 in the second

column, five 2� 2-mixed pixel panels, pi3;jk

n o2;2

j¼1;k¼1
for i ¼ 1; . . . ; 5 in the third column, five

Figure 4.2 25 simulated panels.
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subpixel panels, pi4;1 for i ¼ 1; . . . ; 5 in the fourth column, and five subpixel panels, pi5;1 for

i ¼ 1; . . . ; 5 in the fifth column. The purpose of introducing five panels in the third column is to

conduct a study and analysis on the five mineral signatures with different mixtures in a pixel. Table

4.1 tabulates the mixing details of mineral composition in the 20 panels in the third column, while

subpixel panels in the fourth and fifth columns are simulated with their simulated abundance frac-

tions tabulated in Table 4.2, where the background (BKG) is simulated by the sample mean of the

real cuprite image scene in Figure 1.12(a).

According to Tables 4.1 and 4.2, the simulated synthetic image in Figure 4.2 has a total of

130 panel pixels present in the scene, 80 pure pixel panels in the first column, 20 pure pixel panels

in the second column, 20 mixed panel pixels in the third column, five 50%-abundance subtarget

panel pixels in the fourth column, and five 25%-abundance subpixel target panel pixels in the fifth

column. These 130 pixel panels include a total of 26 spectrally distinct signatures (5 pure mineral

signatures in the first and second columns, 20 mixed signatures in the third column 5 along with 1

BKG signature). Figure 4.3 graphically plots the abundance fractions of all these 130 panel pixels

where (a-e) indicate the five mineral signatures, A, B,C,K, and M, used to simulate 26 panel pixels

in each of five rows in Figure 4.2 respectively.

By virtue of the 25 simulated panels in Figure 4.2, two target insertions, TI and TE, can be

designed to be used for experiments conducted in this book.

1. Target implantation (TI): Three scenarios to implant target pixels into the background are

simulated in such a manner that the target pixels are inserted into the background while their

corresponding background pixels are removed. This type of scenario is mainly designed to sim-

ulate pure target pixels for extraction. The utility of TI includes applications such as endmem-

ber extraction (Chapters 7–11), mixed pixel detection, classification, and quantification

(Chapters 12–18).

Table 4.1 Simulated 20 mixed panel pixels in the first column

Row 1 p13;11 ¼ 0:5Aþ 0:5B p13;12 ¼ 0:5Aþ 0:5C
p13;21 ¼ 0:5Aþ 0:5K p13;22 ¼ 0:5Aþ 0:5M

Row 2 p23;11 ¼ 0:5Bþ 0:5A p23;12 ¼ 0:5Bþ 0:5C
p23;21 ¼ 0:5Bþ 0:5K p23;22 ¼ 0:5Bþ 0:5M

Row 3 p33;11 ¼ 0:5Cþ 0:5A p33;12 ¼ 0:5Bþ 0:5C
p33;21 ¼ 0:5Cþ 0:5K p33;22 ¼ 0:5Cþ 0:5M

Row 4 p43;11 ¼ 0:5Kþ 0:5A p43;12 ¼ 0:5Kþ 0:5B
p43;21 ¼ 0:5Kþ 0:5C p43;22 ¼ 0:5Kþ 0:5M

Row 5 p53;11 ¼ 0:5Mþ 0:5A p53;12 ¼ 0:5Mþ 0:5B
p53;21 ¼ 0:5Mþ 0:5C p53;22 ¼ 0:5Mþ 0:5K

Table 4.2 Abundance fractions of subpixel panels in the fourth and fifth columns

Row Fourth column Fifth column

1 p14;11 ¼ 0:5Aþ 0:5BKG p15;11 ¼ 0:25Aþ 0:75BKG
2 p24;11 ¼ 0:5Bþ 0:5BKG p25;11 ¼ 0:25Bþ 0:75BKG
3 p34;11 ¼ 0:5Cþ 0:5BKG p35;11 ¼ 0:25Cþ 0:75BKG
4 p44;11 ¼ 0:5Kþ 0:5BKG p45;11 ¼ 0:25Kþ 0:75BKG
5 p54;11 ¼ 0:5Mþ 0:5BKG p55;11 ¼ 0:25Mþ 0:75BKG
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2. Target embeddedness (TE): Three scenarios to embed target pixels into the background are

simulated in such a manner that the targets are inserted into the background by adding the tar-

gets directly to their corresponding background pixels. In other words, target pixels are super-

imposed over their corresponding background pixels instead of removing their corresponding

background pixels to accommodate the target pixels as the way target implantation does. This

type of scenario is primarily designed for target detection where a binary hypothesis testing

problem is cast for detection (see Chapter 2) with the null hypothesis H0 representing back-

ground with additive noise against the alternative hypothesis H1 representing signal (target pix-

els) plus background (background pixels) with additive noise. It can also be used to test whether

or not an endmember extraction algorithm can extract the most purest signatures, which also

turn out to be embedded target pixels but do not have 100% purity of signatures. A salient dif-

ference between TI and TE is worth being mentioned. Since the three TE scenarios insert tar-

gets by adding target pixels to and superimposing over background pixels instead of replacing

background pixels as the way the three TI scenarios do for their target insertion, the abundance

fraction of the pixel into which a target pixel is embedded is not summed to one. These three TE

scenarios violated the abundance sum-to-one constraint (ASC) generally imposed on linear

spectral mixture analysis (LSMA), and thus, they cannot be used for quantification as shown in

Chang et al. (2010) and Figure 4.14 (Section 4.4.2.2). Nevertheless, they are well suited for

detection-in-noise model analysis.

4.3.2 Three Scenarios for Target Implantation (TI)

Three interesting scenarios for TI, Scenario TI1, Scenario TI2, and Scenario TI3, presented in this

section, are designed for applications in target extraction such as endmember extraction (see Part

II) and target quantification. The 25 panels in Figure 4.2 are used as targets of interest and

implanted in a synthetic image scene with size of 200� 200 pixel vectors in a way that the targets

to be implanted replace their corresponding background pixels. Each of these three scenarios is

described as follows.

4.3.2.1 Scenario TI1 (Clean Panels Implanted into Clean Background)

This scenario assumes that the image background is clean and simulated by only one BKG signa-

ture. The 25 clean panels simulated in Figure 4.2 are then implanted in the background by replacing

their corresponding background pixels with the clean panel pixels. The resulting image is a syn-

thetic image shown in Figure 4.4 with clean panels implanted in the clean background image scene.
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Figure 4.3 Graphical plots of abundance fractions of 130 panel pixels in Figure 4.2.
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4.3.2.2 Scenario TI2 (Clean Panels Implanted into Noisy Background)

Practically, Scenario TI1 does not exist because of no noise present in the data. Scenario TI2 is more

realistic when the noise-free background in Scenario TI1 is replaced with a noisy background image

which is corrupted by an additive Gaussian noise to achieve a signal-to-noise ratio (SNR)¼ 20:1

defined as 50% signature (i.e., reflectance/radiance) divided by the standard deviation of the noise in

Harsanyi and Chang (1994). Then clean targets are implanted into such simulated noisy background

image. So, the resulting synthetic image has clean targets implanted in a noisy background as shown

in Figure 4.5. This scenario simulates a case that true clean targets are indeed present in a noisy image

background for target extraction.

Figure 4.4 Synthetic image simulated by Scenario TI1.

Figure 4.5 Synthetic image simulated by Scenario TI2.
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The synthetic image scene in this scenario is the same as the one in Scenario TI1 except that the

image background is not clean, but rather corrupted by an additive Gaussian noise with

SNR¼ 20:1.

4.3.2.3 Scenario TI3 (Gaussian Noise Added to Clean Panels Implanted

into Clean Background)

Scenario TI3 is the same as Scenario TI1 except that a Gaussian noise is added to TI1 to achieve an

SNR¼ 20:1. So, in this synthetic image, the clean targets and clean background image are both

corrupted by an additive Gaussian noise with SNR¼ 20:1 as shown in Figure 4.6. It is also similar

to Scenario TI2 but the implanted targets are now noise-corrupted compared to the clean targets

implanted in Scenario TI2.

This scenario simulates a case that the implanted targets are not original true targets and have

been contaminated and corrupted by noise. As a consequence of noise corruption, all the pure

pixels, mixed pixels, and subpixels are contaminated. So, technically, those panel pixels of 100%

purity as endmembers are no longer pure. However, these implanted targets are still considered to

be purest and closest to the original targets compared to other pixels present in the image scene.

So, they can still be considered as targets of interest. This scenario is designed to test and evaluate

how sensitive a target extraction algorithm can be when clean targets are corrupted by noise.

4.3.3 Three Scenarios for Target Embeddedness (TE)

In the previous sections, three scenarios for TI are simulated by inserting the 25 panels into

the image scenes by removing background pixels to accommodate these 25 panels for target

implantation. As an alternative, this section simulates another type of target insertion, called TE,

which inserts the 25 panels into an image scene with a size of 200� 200 pixel vectors by adding

the 25 panels directly to an image scene in such a way that the 25 panels are simply superimposed

over their corresponding background pixels. In other words, unlike target implantation in Scenar-

ios TI1, TI2, and TI3 which replaced background pixels with 25 implanted panel pixels, the

Figure 4.6 Synthetic image simulated by Scenario TI3.
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following three scenarios embed 25 panel pixels by adding panel pixels to background pixels via

superimposition. In this case, a pixel which contains an embedded panel pixel also contains a back-

ground pixel and thus, its abundance is the sum of abundance of the embedded panel pixel and

background pixel. The three counterparts of Scenarios TI1, TI2, and TI3 can also be simulated as

TE1, TE2, and TE3, respectively. The design of TE serves different applications such as signal

detection (see Chapter 2) and discrimination including subpixel target detection and discrimina-

tion, mixed pixel classification, and identification.

4.3.3.1 Scenario TE1 (Clean Panels Embedded in Clean Background)

Scenario TE1 is the same as Scenario TI1 except that the targets implanted into the background are

now embedded into the background as shown in Figure 4.7.

More specifically, the targets are inserted into the background in such a manner that the targets

are added to their corresponding background pixels without removing them similar to Scenario

TI1. This scenario simulates an idealistic case for signal detection where two hypotheses represent

background versus signal plus background, that is, H0: BKG versus H1: clean signalþBKG. As a

result, there are no pure pixels in this particular scenario since pure pixels in the first and second

columns are no longer pure due to its inclusion of background pixels. So, technically, there are

no pure signatures or endmembers in the image scene, but there are 25 spectrally distinct panel

signatures plus one BKG signature.

4.3.3.2 Scenario TE2 (Clean Panels Embedded in Noisy Background)

In analogy with TI2, Scenario TE2 simulates a practical signal detection problem where clean

targets are embedded into a noisy background simulated by a background signature with an addi-

tive Gaussian noise to achieve an SNR¼ 20:1. In other words, instead of replacing background

pixels with the clean targets as done in Scenario TI2, the targets are actually embedded into and

superimposed over clean background pixels. So, in this case, the resulting synthetic image has

clean targets embedded into a noisy background as shown in Figure 4.8.

Figure 4.7 Synthetic image simulated by Scenario TE1.
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This scenario simulates a case for target detection where two hypotheses represent noisy

background against signal plus noisy background, that is, H0: BKGþ noise versus H1: clean signal

þBKGþ noise. It is tricky to simulate this scenario since the noisy background pixels are replaced

by their corresponding clean background pixels, while SNR must be retained at the given level.

4.3.3.3 Scenario TE3 (Gaussian Noise Added to Clean Panels Embedded in Background)

Scenario TE3 is the same as Scenario TE1 except that a Gaussian noise is added to Scenario TE1

to achieve SNR¼ 20:1 as shown in Figure 4.9.

Figure 4.8 Synthetic image simulated by Scenario TE2.

Figure 4.9 Synthetic image simulated by Scenario TE3.
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It is also similar to Scenario TE2 with only difference that the embedded targets are noise cor-

rupted compared to the clean targets embedded in Scenario TE2. More specifically, in Scenario TE3

the clean targets and clean background image are both corrupted by an additive Gaussian noise

with SNR¼ 20:1. So, the 25 spectrally distinct panel signatures are corrupted by noise and BKG

signature. This scenario simulates a case that two hypotheses represent noisy background against

noisy signal with noisy background, i.e., H0: noisy BKG versus H1: noisy signalþ noisy BKG.

Finally, several remarks on the above designed six synthetic images are noteworthy:

1. Most panel pixels in Figures 4.4–4.9 are visible. This may lead to a belief that these six scenar-

ios are not useful or appropriate for experiments. The truth is that what we see from images is

generally not what we will expect. Specifically, what we see is only qualitative and not quantita-

tive, a task that a computer algorithm can do well while human being cannot. Although all target

panels either implanted or embedded in synthetic images are clearly visible, it does not mean

that an algorithm can detect these target panels well. This is exactly what we need from these

scenarios to show that “can an algorithm accomplish what human eyes cannot do or do better?”

Unfortunately, on many occasions visual assessment may even mislead conclusions. This phe-

nomenon will be demonstrated in the following experiments where human eye inspection can

only provide qualitative assessment but not quantitative measure. One such example was dem-

onstrated in Chang and Wang (2008) and Figure 4.14 (Section 4.4.2.2), where a fully con-

strained least-squares (FCLS) method (Heinz and Chang, 2001; Chang, 2003a) could not

estimate abundance fractions of any target panel in the second to fifth rows in Scenario TE2

even when the embedded target panels are clean and known precisely a priori. However, if we

examine Scenario TE2 shown in Figure 4.8 closely, all the 130 embedded target panels are

clearly visible by visual inspection. Why was FCLS unable to estimate abundance fractions of

the embedded target panels correctly? The simple reason of why FCLS failed in Scenario TE2

is not that FCLS was ineffective but rather that the simulated embedded target panels in Sce-

nario TE2 do not satisfy ASC imposed by FCLS. To resolve this dilemma, the nonnegativity

constraint least squares (NCLS) method (Chang and Heinz, 2000; Chang, 2003a) was imple-

mented. The NCLS-estimated abundance fractions of all 130 target panels in the TE2 scenario

turned out to be very accurate as demonstrated by Chang and Wang (2008) and Figure 4.14

(Section 4.4.2.2). This simple example shows how unreliable human visual inspection can be. It

also further explains why the three TE scenarios, which are simulated for various signal detec-

tion models involving pure, mixed, and subpixel targets, can be used to evaluate effectiveness of

signal detection techniques such as NCLS (Chang and Heinz, 2001), while the three TI scenar-

ios, which contain various simulated pure, mixed, and subpixel targets, can be used to evaluate

effectiveness of endmember extraction algorithms such as FCLS used for accurate abundance

fraction estimation (Heinz and Chang, 2001). The above six scenarios are precisely designed

for these purposes.

2. The TI and TE scenarios introduced above bridge a gap between computer simulations such as a

Mote Carlo method and real images and provide basic understanding of real images under com-

plete controllable environments via a set of designed parameters. They can be further used to

simulate more sophisticated scenarios such as two or more BKG signatures or different noise

distributions or some examples in Chapter 18.

3. It should be noted that since different spectral bands have different signal energies, in order for

each spectral band to achieve the same level of SNR defined as 50% signature (i.e., reflectan-

ce/radiance) divided by the standard deviation of the noise in Harsanyi and Chang (1994), zero-

mean Gaussian noises with different variances are used and added to different bands for this

purpose.
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4. In hyperspectral imagery noise is generally non-Gaussian. This is mainly due to the fact that many

unknown subtle substances such as clutters and interferers uncovered by hyperspectral imaging

sensors are actually interference and not noise, in which case these unwanted interferers should be

considered as structure noise instead of random noise. If all such unknown substances are removed

in the image data, which is the case in these six scenarios, it leaves only random noise. Under this

circumstance, the Gaussian noise is the most appropriate assumption, which is exactly the case

assumed in signal processing and communications. In light of this interpretation, it is reasonable

to simulate Gaussian for Scenarios TI and TE, because the simulated image background is clean.

4.4 Applications

The usefulness of the synthetic image-simulated six scenarios three applications are presented

for illustration.

4.4.1 Endmember Extraction

Endmember extraction has received considerable interest in recent years and is probably one of the

most important and crucial steps in hyperspectral image analysis since endmembers provide

unique spectral information that is very valuable for data exploitation. Many algorithms have been

developed and reported in the literature. Two most popular and widely used endmember extraction

algorithms, pixel purity index (PPI) (Boardman, 1994) and N-finder algorithm (N-FINDR)

(Winter, 1999a,b) with details in Chapter 7, were used for evaluation by the six designed scenarios.

Since there are only five pure signatures, which are A, B, C, K, and M, dimensionality reduction

required for PPI and N-FINDR was performed by the maximum noise fraction (MNF) transform

(Green et al., 1998) to reduce the original data space to five dimensions. The results produced by

the PPI using 500 skewers and N-FINDR are shown in Figures 4.10 and 4.11, respectively, where

all pixels with PPI counts greater than zero are shown and marked by yellow pixels. Since there is

no noise in TI1 and TE1, PCA instead of MNF was performed for dimensionality reduction.

According to Figure 4.10, PPI was able to extract all five pure mineral signatures in all scenarios

except TI1 and TE1. In particular, in TE1 PPI counts of all background pixels produced by the PPI

were constant and greater than the PPI counts of the five pure mineral signatures because no noise

was present in the data and the background dominates the entire data in which case it was consid-

ered as a pure signature. Similar results were also found by N-FINDR except one interesting find-

ing which showed that N-FINDR could not extract the pure “calcite” signature in all TE scenarios.

This is because the sample mean is used to simulate the image background and the signature of

“calcite” is very close and similar to its signature in the sense of spectral similarity compared to

other four mineral signatures. So, in this case, calcite was considered as a corrupted background

signature so that once the background signature was extracted, the calcite could not be extracted.

To see this, Figure 4.12 plots the spectral signatures of all the five minerals and the sample mean

Figure 4.10 Endmember extraction by PPI.
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and their normalized spectral signatures to show the similarity among their spectral shapes where

the sample mean in Figure 4.12(a) and the calcite have nearly the same shapes from band 1 to band

140 in Figure 4.12(b).

The above experiments conducted based on Scenarios TI and TE also demonstrated several

interesting results of how panel pixels extracted by PPI and N-FINDR in correspondence to five

mineral signatures, which could not be observed by real image experiments. For example, N-

FINDR successfully extracted all the panel pixels corresponding to five mineral signatures but in

different manners where all the five extracted panel pixels in TI2 were from the first column com-

pared to TI3 with two panel pixels from the first column and three panel pixels from the second

column. A similar phenomenon was also observed in TE2 and TE3 except that N-FINDR success-

fully extracted the signature of calcite in TI2 and TI3 but failed to do so in Scenarios TE2 and TE3.

4.4.2 Linear Spectral Mixture Analysis (LSMA)

To perform LSMA, a linear mixing model is generally required where the complete target signa-

ture knowledge must be known a priori. It should be noted that in addition to the five endmembers

discussed in Section 4.1, the background signature must be included in unmixing even when the

background signature is mixed. This is because the background signature also represents a distinct

spectral class in the data and cannot be excluded from being considered as an important signature

to form the model. In this case, we assume that six distinct target signatures, which are five mineral

signatures, A (alunite), B (buddingtonite), C (calcite), K (kaolinite), and M (muscovite) and a

background signature, are the desired component signatures mj

� �6

j¼1
to be used to form a linear

mixing model r ¼ Maþ n, where r is an image pixel, M ¼ ½m1m2 � � �m6� is the target signature
matrix with the abundance vector a ¼ ða1;a2; . . . ;a6ÞT specified by their corresponding abun-

dance fractions aj

� �6

j¼1
, and n is a model correction term.

Figure 4.11 Five endmembers extracted by N-FINDR.
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Figure 4.12 Spectra of A, B, C, K, M mineral signatures in the cuprite image scene and its sample mean

signature.

Design of Synthetic Image Experiments 113



4.4.2.1 Mixed Pixel Classification

There are many mixed pixel classification methods available in the literature. One of the most

widely used techniques is the so-called orthogonal subspace projection (OSP) developed by Harsa-

nyi and Chang (1994) which has shown great success in various applications. Since OSP is devel-

oped as a signal detection technique and does not factor in abundance estimation, a least-squares

OSP (LSOSP) was proposed by Tu et al. (1997) by including an abundance estimation error cor-

rection term in OSP as shown in Chang (1998). Figure 4.13 shows unmixed classification results by

LSOSP along with their unmixed abundance fractions of each of the five mineral signatures where

the labels of (a), (b), (c), (d), and (e) in quantification results corresponding to (A), (B), (C), (K),

and (M) mineral signatures, respectively, and the LSOSP-unmixed abundance fractions were very

close to true simulated abundance fractions for five mineral signatures.

4.4.2.2 Mixed Pixel Quantification

Despite that LSOSP has demonstrated its ability in unmixing abundance fractions as shown in

Figure 4.13, it is an unconstrained spectral unmixing method which does not impose ASC
P6

j¼1 aj ¼ 1 and abundance nonnegativity constraint aj � 0 for 1 � j � 6. Consequently, the

LSOSP-unmixed abundance fractions were not necessarily true fractions even though their unmixed

fractions were more accurate than those produced by the OSP. So, for the purpose of mixed pixel

quantification, these two constraints must be imposed on LSOSP. One such algorithm is the so-

called FCLS method developed by Heinz and Chang (2001). Figures 4.14 graphically plot quantifi-

cation results produced by FCLS for six scenarios where the labels of (a), (b), (c), (d), and (e) in

quantification results corresponding to (A), (B), (C), (K), and (M) mineral signatures, respectively.

A very interesting and intriguing observation can be made from the results of three TE scenarios

in Figure 4.14(c)–(f) where FCLS completely failed in quantifying all the five mineral signatures

by throwing all abundance fractions to a single mineral signature, Muscovite. There is a reason for

it. Since TE scenarios do not satisfy ASC, FCLS was forced to perform constrained quantification

in which case it weighed all abundance fractions on the Muscovite due to the fact that the Musco-

vite has the most spectrally distinct signature among the five mineral signatures. This experiment

demonstrated an important fact that constrained methods only worked effectively when the prob-

lems to be considered satisfy required constraints. These experiments further demonstrated the

advantages of using synthetic images over real images.

4.4.3 Target Detection

Unlike the mixed pixel classification/quantification which requires complete knowledge of target

signatures assumed to be in the data, the target detection only needs a certain level of partial target

knowledge. In this section two types of target detection are considered, subpixel target detection

which only needs the knowledge of the target signature of interest and anomaly detection which

does not need any target knowledge.

4.4.3.1 Subpixel Target Detection

One of the most powerful subpixel target techniques is the constrained energy minimization

(CEM) developed by Harsanyi (1993). Its various forms have been investigated in Chang (2002b).

CEM only assumes that the target of interest is given and designated as the desired target signature,

d, while discarding all other knowledge including background knowledge. By specifying one of

the five mineral signatures as a desired target signature, d, Figure 4.15 shows the detection results

of panel pixels that were simulated by the particular signature d.

114 Hyperspectral Data Processing: Algorithm Design and Analysis



Quantification results

(a) TI1

Quantification results

(b) TI2

0

10
(a)

(b)
(c)

(d)
(e)

20

30

0

0.5

1

1.5

0

10
(a)

(b)
(c)

(d)
(e)

20

30

0

0.5

1

1.5

Figure 4.13 LSOSP-mixed pixel classification results for six scenarios.
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Figure 4.13 (Continued ).
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As we can see from the results in Figure 4.15, CEM also performed target detection very effec-

tively including subpixel detection in the fourth and fifth columns. Most interestingly, CEM could

detect small amounts of abundance fractions of other signatures simulated in mixed panel

pixels, specifically panel pixels in the second row and the third column. Comparing the results in

Figures 4.13 and 4.14, it can be clearly seen that LSMA made use of other signatures as unwanted

signatures to suppress their interfering effects instead of detecting their abundance fractions as
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Figure 4.14 FCLS-mixed pixel quantification results for six scenarios.
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Figure 4.15 CEM detection results for six scenarios.
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CEM did. Obviously, real image experiments cannot provide such evidence because there is no

complete prior endmember knowledge for verification.

4.4.3.2 Anomaly Detection

When CEM is implemented, it requires the specific knowledge of the desire target signature of

interest (Chang, 2003a). In many applications such as surveillance there is no prior knowledge

regarding which targets we are looking for and which targets we are interested in. In this case,

target detection must be performed without appealing for any prior knowledge. One widely used

detection algorithm is developed by Reed and Yu (1990), referred to as RXD. Figure 4.16 shows

the results of the six scenarios produced by RXD which detects all panel pixels in the first

three columns but misses all the subpixel panels in the fourth and fifth columns.

Now, if we operated RXD on the same six scenarios with a small image size of 64� 64 pixel

vector where the same 25 panels simulated in Figure 4.2 were also inserted into these six scenarios

with the image background, Figure 4.17 shows their RXD-detected results. An immediate finding by

comparing the results in Figure 4.17 to those in Figure 4.16 led to an interesting observation. That is,

the target panels of sizes 2� 2 and 1� 1 that were detected in TI2 and TE2 by RXD in Figure 4.16

as anomalies now became undetectable in TI2 and TE2 for RXD as shown in Figure 4.17, in which

case they were no longer considered as anomalies in Figure 4.17. Moreover, the performance of

operating RXD on scenarios of TI and TE in Figure 4.16 was nearly the same and so was for scenar-

ios of TI3 and TE3 in Figure 4.16. But this was not the case for RXD operating on a smaller image

scene with the same identical 25 panels in Figure 4.17 where RXD had complete opposite results for

TI1 and TE1 and quite different results for TI3 and TE3. Why did the same RXD produce different

results for the same set of 25 panels inserted into the same image background with the only differ-

ence in the size of the processed image scenes? This simple example sheds light on the utility of the

designed six scenarios which shows a tricky issue in anomaly detection, “what is really meant by

anomaly?”, a topic to be discussed in Chapter 18, Chang and Hsueh (2006) and Chang (2013).

Figure 4.16 Anomaly detection by RXD for six scenarios with an image size of 200� 200 pixel vectors.
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4.5 Conclusions

Many hyperspectral imaging algorithms have been designed and developed for data exploitation in

the past. It seems that there is a lack of standardized data sets that can be used to objectively com-

pare one algorithm to another for performance evaluation and analysis. In other words, if one

claims his algorithm to be better than any other algorithm, without a standardized data set it will

be very difficult to substantiate such a claim and validate the results. This chapter investigates this

issue and further designs six scenarios that can be used as a standardized data set to simulate vari-

ous scenarios. However, it should be noted that the six scenarios serve only as a purpose of how to

deign synthetic images. Many other scenarios can also be simulated on the basis of the same con-

cept such as those explained in Chapter 18. To illustrate how these scenarios can be carried out for

algorithm performance analysis, three applications are included as illustrative examples, which are

endmember extraction, spectral unmixing for mixed pixel classification/quantification, and sub-

pixel target detection, each of which requires different levels of target signature knowledge.

Figure 4.17 Anomaly detection by RXD for six scenarios with an image size of 64� 64 pixel vectors.
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5

Virtual Dimensionality of
Hyperspectral Data

The term of virtual dimensionality (VD) was first coined in Chang (2003a) as a new concept

defined as the number of spectrally distinct signatures in hyperspectral imagery. It was later pub-

lished in Chang and Du (2004) and has received considerable interest since then. There are reasons

of why VD has become a widespread and acceptable concept in hyperspectral imaging community.

First, due to significantly improved spectral and spatial resolutions a hyperspectral image sensor

can now uncover many unknown subtle material substances, referred to as signal sources that can-

not be identified by a priori knowledge or visual inspection. Determining the number of such sub-

stances in the data is very challenging and extremely difficult, if not impossible. Second, there

exists no concept in hyperspectral imaging similar to intrinsic dimensionality (ID) (Fukunaga,

1982, 1990) used in statistical signal processing, pattern recognition, and classification that can be

used for hyperspectral data exploitation where ID, also known as effective dimensionality (ED), is

defined as the minimal number of parameters used to characterize data. Third, the techniques

developed for determining ID in multivariate data have been shown to be inapplicable to hyper-

spectral data. Finally and most importantly, before VD was introduced, there were few techniques

available in the literature that can be used to effectively determine the number of unknown signal

sources in hyperspectral data. VD was originally proposed to address these issues. Like many other

new concepts VD has evolved through several stages where it has been examined and studied

extensively for its use in various applications. As expected, some controversial issues also arise in

how VD is used and interpreted. This chapter revisits and reexamines the concept of VD and fur-

ther explores its utility in hyperspectral data exploitation, while clarifying some issues that may

have misled users to misinterpreting VD.

5.1 Introduction

How to represent multidimensional data in an appropriate form in some sense of optimality

is very challenging. There are two key issues involved. One is how to determine the number

of basic elements, referred to as p, present in the data. The other is how to find these p basic

elements. While these two issues may be addressed separately, they can also be treated as

one issue if they are tied together in a certain form. This chapter investigates VD from these

two aspects.

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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The VD proposed in Chang (2003a) is essentially developed from the first aspect without con-

structing the basic elements. According to the definition provided in Fukunaga (1990) for ID, it is

defined as the minimal number of parameters required to account for the observed properties of the

data that must be specifically defined. As a matter of fact, the properties observed in the data are

generally determined by these basic elements that vary with applications. In other words, when

high-dimensional data sets are observed, the data sample vectors are generally represented in a

certain form of dimensionality. Most commonly it is the dimensionality of a data sample vector,

referred to as data dimensionality, which is defined by the number of coordinates used to represent

the data sample vector. As an alternative, in many applications in order for a data set to be repre-

sented more effectively, the original data dimensions are usually transformed to components via a

transformation where each data component is a result of a transformed data dimension. The

resulting dimensionality is referred to as component dimensionality. For example, in color

image processing the red (R), green (G), and blue (B) are used to represent an image in color

space where the data dimensions are specified by three colors, R,G,B. However, the representa-

tion by the (R,G,B) coordinate is not well suited for describing colors in terms of practical or

human interpretation. In this case, a more effective way to represent a color image is to trans-

form the R-G-B model to a new data coordinate system, called Hue (H), Saturation (S), and

Intensity (I) as new data dimensions. Similarly, a data set can also be represented by new data

components via the principal components analysis (PCA) where each original data dimension is

transformed to a component specified by a data variance. In remote sensing data an array of

sensors specified by a range of wavelengths has been used for data collection in which case a

data dimension acquired by each spectral channel is called a spectral band dimension. As a

result, the spectral dimensionality of a remotely sensed data set is determined by the number of

spectral bands or channels used for data acquisition. So, as long as data representation is con-

cerned, various types of data coordinate systems can be used for this purpose. How well a data

representation can characterize data-observed properties is determined by an appropriate selec-

tion of a data representation system. Unfortunately, ID only provides a very abstract notion and

does not specify the parameters to be used for data characterization. As a consequence, ID is

practically not useful. This is because ID decouples the issue in determining the number of

parameters from the issue of what parameters are used to account for data-observed properties

where both issues are indeed closely tied together and must be treated as one single issue.

VD is defined in Chang (2003a) as well as Chang and Du (2004) as the number of spectrally

distinct signatures in hyperspectral data without specifying these signatures. It was originally

developed along the same line as ID is defined. But it has three salient differences from ID. Firstly,

unlike ID that does not specify data properties, VD is particularly designed for hyperspectral data

by data spectral properties characterized by so-called nonliteral information. Secondly, while ID

requires the number of parameters to be minimal, the number of spectrally distinct signatures

defined in VD is not necessarily minimal. This number can vary and is actually determined by a

particular application. For example, the number of endmembers is different from the number of

anomalies. However, when it comes to data representation such as linear spectral mixture analysis

(LSMA), VD can be considered as the minimal number of spectral signatures required to form a

linear model to perform linear spectral unmixing, in which case such signatures are referred to as

virtue endmembers (VEs) that are the basic elements required to form a linear mixing model used

by LSMA. Thirdly, even for a given particular application VD may also vary with a specific

designed technique. Unfortunately, being unaware of these differences some users have misinter-

preted the use of VD as a one-size-fits-all definition for all applications. So, when VD does not

work for a particular application, VD takes the blame. In fact, the technique used to find VD should

be the one that takes responsibility. In order to further explore the concept of VD the following
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section revisits and reinterprets VD in terms of a two-category dichotomy, data characterization

and data representation.

5.2 Reinterpretation of VD

Since VD was introduced in Chang (2003a), it has shown promise in various applications, just to

name a few, dimensionality reduction (Wang and Chang, 2006), band selection (Chang and Wang,

2006), and endmember extraction (Nascimento and Dias, 2005; Chang and Plaza, 2006; Chang

et al. 2006). However, it also gives rise to some controversial issues caused by users’

misinterpretation of VD. The first misinterpretation of VD is to tie VD to the technique that was

originally developed by Harsanyi et al. (1994a), referred to as Harsanyi–Farrand–Chang (HFC)

method for VD estimation. When the HFC method does not perform effectively, users blame VD

for its inapplicability. A second misinterpretation is caused by the fact that VD does not address the

second issue mentioned in the introduction, that is, how to find the p basic elements as a whole.

More specifically, VD must be tuned to various applications that define basic elements. In other

words, a different application may need a different set of basic elements in which case a different

value of p is also required. A third misinterpretation results from a misconception that the tech-

niques developed for finding ID should also be applicable to finding VD. Unfortunately, this is not

true. Since ID does not specify any data properties, a default assumption about the data properties

for ID is data variances in which case PCA becomes a classical approach to determine ID. Unlike

ID, VD is specifically designed to preserve the information provided by spectral dimensions,

particularly signal sources characterized by “spectral ” not “spatial ” properties. In this case, PCA

that finds its applicability for ID is no longer effective for VD as demonstrated in Chang (2003a)

and Chang and Du (2004). To address this issue, a new technique called the HFC method, designed

by Harsanyi et al. (1994a), has been particularly developed. Finally, the most common mis-

interpretation is to tie VD together with the HFC method and consider the HFC method as the only

technique used to determine VD. So, when the HFC method does not work, users promptly con-

clude that VD is wrongly defined. This is similar to what users believe that PCA is the only method

that can be used to determine ID. When PCA does not work, users then complain that ID is

incorrectly defined. Apparently, this is a serous misinterpretation. The matter of truth is that ID

and VD only define the number of parameters and the number of signal sources in the data, but do

not define what exactly these parameters and signal sources are. How to find these parameters or

signal sources is another issue. Accordingly, what the HFC method is to VD is exactly the same as

what PCA is to ID. The PCA and HFC methods are only one of many methods that can be used to

determine ID and VD, respectively, but not the only method to be used for this purpose. If one

method does not work effectively, a new method should be sought. This has nothing to do with

definitions.

This chapter explores the aforementioned issues and further proposes two aspects to determine

VD. The first one is based on characterization of data-observed properties regardless of what basic

elements are. This is similar to that used to define ID. The second one is based on data representa-

tion, which treats determination of VD as a part of finding appropriate basic elements to represent

the data to be processed in some sense of optimality such as linear representation. In this case, the

issue of determining VD is tied with the issue of finding an optimal set of basic elements for data

representation as one single issue. In what follows, each of these two aspects is discussed in detail.

5.3 VD Determined by Data Characterization-Driven Criteria

Many criteria have been reported in the literature to estimate the number of signal sources from

various perspectives. This section briefly reviews criteria that use characterization of data
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properties to determine VD. The first criterion, referred to as the eigenvalue distribution crite-

rion, calculates the cumulative eigenvalues to account for the energy contributed by signals

sources, which is determined by a given error threshold e. This criterion involves finding

eigenvalues of a sample data covariance/correlation matrix. A second criterion is also eigen-

based component analysis that includes singular value decomposition (SVD) and PCA, both

of which find a smallest singular value or eigenvalue bounded below from a given error

threshold e. A third criterion is referred to as factor analysis (FA)-based Malinowski’s error

theory where four measures, real error (RE), extracted error (XE), imbedded error (IE), and

empirical indicator function (EIF), are used to implement the FA criterion. A fourth criterion

is information theoretic criterion (ITC) that includes an information criterion (AIC) and mini-

mum description length (MDL), both of which are developed based on the logarithm of like-

lihood functions. A fifth criterion is a Gershgorin radius that is developed by separating the

Gershgorin disks formed by Gershgorin radii into two classes, signal class and noise class.

The error threshold e is used to determine how well these two classes will be separated. A

sixth criterion makes use the Neyman–Pearson (NP) detection theory to estimate the number

of signal sources.

5.3.1 Eigenvalue Distribution-Based Criteria

Before we proceed, some necessary notations need to be defined. Let {r1; r2; . . . ; rN} be a set of N
data sample vectors where ri ¼ ri1; ri2; . . . ; riLð ÞT is an L-dimensional vector with 1 � i � N.

Assume that m ¼ 1=Nð ÞPN
i¼1 ri is the sample data global mean vector, and KL�L is the sample

data covariance matrix formed by KL�L ¼ 1=Nð ÞPN
i¼1 ri � mð Þ ri � mð ÞT. Suppose that

{l1 � l2 � � � � � lL} are the eigenvalues of KL�L arranged in descending order and

{v1 �; v2 �; � � � �; vL} are their associated orthonormal eigenvectors. Similarly, let RL�L be the

sample data correlation matrix formed by RL�L ¼ 1=Nð ÞPN
i¼1 rir

T
i with its eigenvalues specified

by {l̂1 � l̂2 � � � � � l̂L} in descending order and their corresponding orthonormal eigenvectors

{v̂1 �; v̂2 �; � � � �; v̂L}.
The ID definition neither specifies what observed data properties need to be characterized nor

provides a means of how ID is determined. So, a general approach to finding ID is PCA where

eigenvalues are used to determine the number of principal components, which is the value of p. In

this case, the observed data properties characterized by ID are data variances specified by eigenval-

ues. There are usually two ways to find ID using eigenvalues. One is to plot all eigenvalues in

descending order and find a sudden drop at a certain eigenvalue that determines ID. The other is to

calculate the ratio of a cumulative sum of descending eigenvalues to the total sum of eigenvalues

and the ratio is then used to determine ID. So, a straightforward extension to VD is to follow simi-

lar approaches to determining VD.

One simplest and commonly used criterion is to use the sum of eigenvalues of KL�L or RL�L to

estimate the number of signal sources. Three measures can be derived for this purpose. In order to

make the error threshold for different measures in the same range for comparison, the covariance

eigenvalues {l1 � l2 � � � � � lL} and correlation eigenvalues {l̂1 � l̂2 � � � � � l̂L} are normal-

ized by ~ll ¼ llPL

l¼1
ll
and

~̂ll ¼ l̂lPL

l¼1
l̂l
for 1 � l � L as probability vectors, respectively.

5.3.1.1 Thresholding Energy Percentage

One is to calculate the cumulative sum of eigenvalues to represent how much energy is con-

tributed by signal sources. In other words, the cumulative distribution resulting from proba-

bility vectors [~l1; ~l2; . . . ; ~lL] defined above is used to specifiy how much energy percentage
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a% is contributed by signal sources. In this case, VD is determined by finding the smallest

number p that yields

VD
eigen

l̂
ða%Þ ¼ arg min1�l�L

Xp

l¼1
~ll � a

100

h in o
for a given percentage a% ð5:1Þ

5.3.1.2 Thresholding Difference between Normalized Correlation Eigenvalues and

Normalized Covariance Eigenvalues

Analogous to (5.1) we can also define a meausre by calculating the difference between two corre-

sponding normalized covariance and correlation eigenvalues,
~̂ll � ~ll , as follows:

VD
eigen

l̂�l
ðeÞ ¼ arg max1�l�L

~̂ll � ~ll � e
h in o

for a given threshold e ð5:2Þ

5.3.1.3 Finding First Sudden Drop in the Normalized Eigenvalue Distribution

An alternative to (5.2) is to calculate the difference between two consecutuve normalized

covariance eigenvalues, ~ll�1 � ~ll , or normalized correlation eigenvales
~̂ll�1 � ~̂ll , by

VD
eigen
l ðeÞ ¼ arg max2�l�L

~ll�1 � ~ll � e
� �� �

for a given threshold e ð5:3Þ

or

VD
eigen

l̂
ðeÞ ¼ arg max1�l�L�1

~̂ll�1 � ~̂ll � e
h in o

for a given threshold e ð5:4Þ

5.3.2 Eigen-Based Component Analysis Criteria

Another commonly used approach is to find eigen-components via eigenvalue decomposition. Two

such techniques are discussed.

5.3.2.1 Singular Value Decomposition (SVD)

SVD is one of most important signal processing techniques. Assume that the matrix BL�L ¼
AL�N AL�Nð ÞT where AL�N ¼ r1r2 � � � rN½ � is a data matrix formed by N data sample vectors

{r1; r2; . . . ; rN}. The singular values of the matrix BL�L can be found and arranged in the following

descending order:

l1 � l2 � � � � � lq > 0 ¼ lqþ1 ¼ lqþ2 ¼ � � � ¼ lL ð5:5Þ
ffiffiffiffiffi
l1

p � ffiffiffiffiffi
l2

p � � � � � ffiffiffiffiffi
lq

p
> 0 ¼ ffiffiffiffiffiffiffiffiffi

lqþ1

p ¼ ffiffiffiffiffiffiffiffiffi
lqþ2

p ¼ � � � ¼ ffiffiffiffiffi
lr

p ð5:6Þ

where
ffiffiffiffiffi
l1

p � ffiffiffiffiffi
l2

p � � � � � ffiffiffiffiffi
lq

p
in (5.6) turns out to be the square root of nonnegative eigen-

values of KL�L or RL�L. If we interpret eigenvalues as variances, the singular values are simply

their standard deviations. Detailed discussion on SVD can be found in Section 6.2.1.3 of

Chapter 6.
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According to (5.6) it is the value of p that corresponds to VD needed to be estimated and

defined as

VDSVD
l ðeÞ ¼ arg max1�l�L

ffiffiffiffi
~ll

q
� e

� �	 

for a given threshold e ð5:7Þ

5.3.2.2 Principal Components Analysis (PCA)

A similar and very popular component transform to SVD is PCA. Assume that {l1 �
l2 � � � � � lL} is a set of eigenvalues arranged in descending order. We calculate the ratio of a

cumulative sum of the eigenvalues in descending order to the total sum of eigenvalues,

RlðpÞ ¼
Pp

j¼1 lj

� �
=

PL
j¼1 lj

� �
, and determine VD by setting a prescribed percentage a%, that is,

VDPCAða%Þ ¼ arg minp RlðpÞ � a=100½ �� � ð5:8Þ

In this case, selecting an appropriate a% in (5.8) as a cutting threshold is also challenging.

5.3.3 Factor Analysis: Malinowski’s Error Theory

Malinowski’s error theory (Malinowski, 1977a, 1977b) is developed based on FA, which is a math-

ematical technique developed for solving multidimensional problems by expressing a data sample

as a linear sum of a finite number of product terms referred to as factors. It has been widely used in

various fields of chemistry such as chromatography, spectrophotometry, nuclear magnetic reso-

nance, and mass spectroscopy (Malinowski, 1977a, 1977b). Therefore, a factor used in FA is simi-

lar to a principal component used in PCA. So, like PCA, FA also finds eigenvalues of a sample

covariance matrix and groups all eigenvalues into two categories called primary set of eigenvalues

and secondary set of eigenvalues in accordance with three types of errors illustrated in Figure 5.1:

RE resulting from the difference between the pure and raw data, XE resulting from the difference

between the FA-reproduced data and raw data, and IE resulting from the difference between the

pure data and FA-reproduced data, each of which can be defined as follows:

REð pÞ ¼
PL

l¼pþ1 ll

NðL� pÞ

" #1=2

ð5:9Þ

IEð pÞ ¼ p
PL

l¼pþ1 ll

LNðL� pÞ

" #1=2

ð5:10Þ

Raw data FA-reproduced data 

Real error (RE) Imbedded error (IE)

Extracted error (XE) 

Pure data 

Figure 5.1 Relationship among three types of errors.
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XEð pÞ ¼
PL

l¼pþ1 ll

LN

" #1=2

ð5:11Þ

where L is the total number of spectral bands and N is the total number of data samples with

L � N.

While the primary set consists of eigenvalues corresponding to RE and IE that cannot be

removed by any technique, the secondary set is made up of XE that can be removed by a custom-

designed mathematical technique for data improvement. So, if we interpret pure data, raw data,

and FA-reproduced data as reflectance data, real radiance data, and processed data, respectively,

endmembers represent pure signatures compared to data samples that are real signatures in the

data, while the processed pixels are pixels used for data representation. In light of this interpreta-

tion, (5.9)–(5.11) can be used as criteria to find an optimal number of factors as follows:

VDFA
RE ¼ arg min1�p�L REð pÞ½ �� � ¼ arg min1�p�L

PL
l¼pþ1 ll

NðL� pÞ

" #1=2
0

@

1

A

8
<

:

9
=

;
ð5:12Þ

VDFA
IE ¼ arg min1�p�L IEð pÞÞ½ �� � ¼ arg min1�p�L

p
PL

l¼pþ1 ll

LNðL� pÞ

" #1=2
0

@

1

A

8
<

:

9
=

;
ð5:13Þ

VDFA
XE ¼ arg min1�p�L XEð pÞÞ½ �� � ¼ arg min1�p�L

PL
l¼pþ1 ll

LN

" #1=2
0

@

1

A

8
<

:

9
=

;
ð5:14Þ

Another criterion different from (5.12)–(5.14) is the EIF derived by Malinowski (1977b) and

defined as

EIFð pÞ ¼ 1=ðL� pÞð Þ2
PL

l¼pþ1 ll

NðL� pÞ

" #1=2

ð5:15Þ

The optimal number of factors to produce the smallest EIF( p) in (5.15) is the one solving the

following equation:

VDFA
EIF ¼ arg min1�p�L EIFð pÞ½ �� � ¼ arg min1�p�L

PL
l¼pþ1 ll

NðL� pÞ5
" #1=2

8
<

:

9
=

;
ð5:16Þ

5.3.4 Information Theoretic Criteria (ITC)

A similar issue is also encountered in statistical signal processing, specifically in passive array

processing where determination of the number of signal sources has been a challenging problem.

Several methods have been proposed in the past for this purpose. Two most widely used criteria to

estimate the number of signal sources arriving at an array of sensors are AIC suggested by Akaike

(1974) and MDL proposed by Schwarz (1978) and Rissanen (1978), which can be used for model

selection. They can be derived from information theoretic criteria. The formulas given below for

AIC and MDL are obtained by Wax and Kailath (1985).
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5.3.4.1 AIC

AICð pÞ ¼ �2log
QL

j¼pþ1 l
1=ðL�pÞ
j

.
1=ðL� pÞð ÞPL

j¼pþ1 lj

h i� �ðL�pÞ=N

þ2pð2L� pÞ
ð5:17Þ

where p is the number of free parameters that specifies a family of probability density functions

and {l1 � l2 � � � � � lL} are eigenvalues generated by the sample covariance matrix KL�L:

VDITC
AIC ¼ arg min1�p�LAICð pÞ

� � ð5:18Þ

5.3.4.2 MDL

MDLð pÞ ¼ �log
QL

j¼pþ1 l
1=ðL�pÞ
j

.
1=ðL� pÞð ÞPL

j¼pþ1 lj

h i� �ðL�pÞ=N

þð1=2Þpð2L� pÞlogN
ð5:19Þ

where p is the number of signal sources determined by finding the smallest number of p that solves

the following optimization problem:

VDITC
MDL ¼ arg min1�p�L MDLð pÞ� � ð5:20Þ

It is worth noting that there are two underlying assumptions on these two criteria. The noise is

assumed to be (1) independent identically distributed (i.i.d.) and (2) Gaussian.

Intuitively, it seems that AIC and MDL can be directly applied to estimation of VD. The truth is

that the concept of VD is more sophisticated than just a simple estimate considered in array proc-

essing. Such implication may be too na€ıve since the issue in determining the number of signal

sources of interest in hyperspectral imagery is much more complicated than that in array processing.

Firstly, in passive sensor array processing the only issue is to separate signal sources of interest from

the noise and there is no need of differentiating one signal source from another. In hyperspectral

data, signal sources of interest vary with different applications. Signal source distinction is crucial

in hyperspectral data analysis. Secondly, the number of signal sources estimated in array processing

is a fixed value for data to be processed regardless of what types of signal sources are of interest in

different applications. However, different types of signal sources play a key role in hyperspectral

data exploitation. However, the AIC- and MDL-estimated values are fixed at a constant. After all its

only interest is determination of signal sources arriving at an array of passive sensors. These two

issues are indeed crucial in developing the concept of VD because the number of signal sources of

interest must vary and be determined by applications but not by a single value as a constant. In this

case, the criteria used in array processing may not be applicable to hyperspectral imagery.

5.3.5 Gershgorin Radius-Based Methods

One of major disadvantages of using AIC and MDL is their assumption of Gaussian noise. It is

well known that the noise in remotely sensed imagery is generally not Gaussian. In order to allevi-

ate this dilemma, this section presents another criterion that only assumes that the noise is i.i.d., but

not necessarily Gaussian. The idea is to develop a method that can find locations of eigenvalues of

the sample covariance matrix so that all the eigenvalue can be separated into two classes in accord-

ance with their locations: signal class and noise class. By counting the number of eigenvalues in

the signal class we can estimate the number of signal sources in the data. The idea is briefly

described as follows.
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Assume a complex L� L matrix A ¼ aij
 �

with the (i, j) element denoted by aij. For each row i,

1 � i � L, we define a parameter ri by

ri ¼
XL

j¼1; j 6¼i
jaij j ð5:21Þ

Then the so-called Gershgorin disk Ri(A) is defined by

RiðAÞ ¼ z 2 Cjri � jz� aiijf g ð5:22Þ

Gershgorin Circle Theorem (Moon and Stirling, 2000, p. 325)

The eigenvalues of an L� L matrix A ¼ aij
 �

all lie in the union of the Gershgorin disks of A:

lðAÞ � [L
i¼1RiðAÞ ¼ GðAÞ ð5:23Þ

Furthermore, if any Gershgorin disk Ri(A) is disjoint from the other Gershgorin disks of A, then it

contains exactly one eigenvalue of A. By extension, the union of any k of these disks that do not

intersect the remaining m� k circles must contain precisely k of the eigenvalues, counting

multiplicities.

Let KL�L be reexpressed as

KL�L ¼ aij
� � ¼

a11 a12 � � � a1L

a21 a22 } a2L

..

.
} } ..

.

aL1 aL2 � � � aL�L

2

66664

3

77775
¼

KðL�1Þ�ðL�1Þ a

aT aL�L

" #

ð5:24Þ

where a ¼ a1L; a2L; . . . ; aðL�1ÞL
� �T

and KðL�1Þ�ðL�1Þ is given by

KðL�1Þ�ðL�1Þ ¼

a11 a12 � � � a1L

a21 a22 } a2L

..

.
} } ..

.

aL1 aL2 � � � aðL�1Þ�ðL�1Þ

2

66664

3

77775
ð5:25Þ

with the Gerschgorin radii defined by (5.21).

Now assume that {l01 � l02 � � � � � l0L�1} are eigenvalues obtained from KðL�1Þ�ðL�1Þ and

{v01 � v02 � � � � � v0L�1} are their corresponding orthonormal eigenvectors. Then,

l1 � l01 � l2 � l02 � � � � � lL�1 � l0L�1 � lL ð5:26Þ

The eigenmatrix defined by L0
ðL�1Þ�ðL�1Þ ¼ v01v

0
2 � � � v0L�1

� �
is a unitary matrix that transforms

KðL�1Þ�ðL�1Þ into a diagonal matrix denote by D0
ðL�1ÞðL�1Þ with all the eigenvalues l01; l

0
2; . . . ; l

0
L�1

in its diagonal line such that

D0
ðL�1Þ�ðL�1Þ ¼ L0

ðL�1Þ�ðL�1Þ
� �T

KðL�1Þ�ðL�1ÞL
0
ðL�1Þ�ðL�1Þ ð5:27Þ
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Now, we define ~LL�L ¼ L0
ðL�1Þ�ðL�1Þ 0

0 1

� �
. Then

~KL�L ¼ ~L
T

L�LKL�L
~LL�L

¼
L0

ðL�1Þ�ðL�1Þ
� �T

KðL�1Þ�ðL�1ÞL
0
ðL�1Þ�ðL�1Þ L0

ðL�1Þ�ðL�1Þ
� �T

a

aTL0
ðL�1Þ�ðL�1Þ aLL

2

64

3

75

¼
D0

ðL�1Þ�ðL�1Þ L0
ðL�1Þ�ðL�1Þ

� �T

a

aTL0
ðL�1Þ�ðL�1Þ aLL

2

64

3

75

¼

l01 0 � � � 0 r01
0 l02 } 0 r02

..

.
} } 0 ..

.

0 � � � 0 l1L�1 r0L�1

r01 r02 � � � r0L�1 aLL

2

66666664

3

77777775

ð5:28Þ

According to (5.28), the Gershgorin disks obtained for ~KL�L are given by ri ¼ jr0ij for 1 � i �
L� 1 and rL ¼ 0. If there are p endmembers, then (5.28) becomes

~KL�L ¼

l01 0 0 � � � 0 0 r01

0 } 0 � � � � � � 0 ..
.

0 � � � l0p } } 0 r0p

..

.
} 0 s2

n 0 ..
.

0

0 0 } } } 0 ..
.

0 0 � � � � � � 0 s2
n 0

r01 � � � r0p 0 � � � 0 aLL

2

66666666666666664

3

77777777777777775

ð5:29Þ

where s2
n is noise variance. As a result, the Gershgorin disks ri ¼ 0 for pþ 1 � i � L� 1.

According to (5.29), it is clear to show that all the eigenvalue have been divided into two classes:

Gershgorin disks with nonzero radii that include eigenvalues resulting from signal sources and

Gershgorin disks with zero radii resulting from noise. Consequently the number of signal sources

can be estimated by counting the number of Gershgorin disks with nonzero radii.

Similarly, RL�L can also be expressed as

RL�L ¼ bij
� � ¼ RðL�1Þ�ðL�1Þ b

bT bL�L

� �
ð5:30Þ

where the Gershgorin radii are defined by

r̂i ¼
XL

j¼1; j 6¼i
jbijj for 1 � i � L ð5:31Þ
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Using the same arguments outlined by (5.28)–(5.31), we can also obtain

~RL�L ¼ �L
T

L�LRL�L
�LL�L ¼

l̂
0
1 0 � � � 0 r̂01

0 l̂
0
2 } 0 r̂02

..

.
} } 0 ..

.

0 � � � 0 l̂
0
L�1 r̂0L�1

r̂01 r̂02 � � � r̂0L�1 bLL

2

6666666666664

3

7777777777775

¼

l̂
0
1 0 0 � � � 0 0 r̂01

0 } 0 � � � � � � 0 ..
.

0 � � � l̂
0
p } } 0 r̂0p

..

.
} 0 s2

n 0 ..
.

0

0 0 } } } 0 ..
.

0 0 � � � � � � 0 s2
n 0

r̂01 � � � r̂0p 0 � � � 0 aLL

2

6666666666666666666664

3

7777777777777777777775

ð5:32Þ

where l̂
0
1 � l̂

0
2 � � � � � l̂

0
L�1 are (L� 1) eigenvalues obtained from RðL�1Þ�ðL�1Þ with

l̂1 � l̂
0
1 � l̂2 � l̂

0
2 � � � � � l̂L�1 � l̂

0
L�1 � l̂L ð5:33Þ

and �L
0
ðL�1Þ�ðL�1Þ ¼ �v01�v

0
2 � � � �v0L�1

� �
is a set of orthonormal eigenvectors corresponding to

l̂
0
1 � l̂

0
2 � � � � � l̂

0
L�1. As a result, the Gershgorin disks obtained for ~RL�L are given by r̂i ¼ jr̂0ij

for 1 � i � L� 1 and the Gershgorin disk radii r̂i ¼ 0 for pþ 1 � i � L.

5.3.5.1 Thresholding Gershgorin Radii

According to (5.32), the Gershgorin disks with radii greater than zero should embrace all signal

eigenvalues, while the Gershgorin disks with zero radii should include all noise eigenvalues.

Therefore, the number of signal sources is the largest number p that yields a nonzero Gershgorin

radius greater than zero.

VDGR
diskðeÞ ¼ arg max1�p�Ljr̂0pj � e

n o
for a given threshold e ð5:34Þ

5.3.5.2 Thresholding Difference Gershgorin Radii between RL�L and KL�L

Since the correlation matrix includes the sample mean, the correlation eigenvalue is generally

greater than or equal to its corresponding covariance eigenvalue, that is, l̂i � li for all

1 � i � L. Therefore, the Gershgorin radii of ~RL�L in (5.30), jr̂0ij, are usually greater than their

corresponding Gershgorin radii of ~KL�L in (5.32), jr0ij, for 1 � i � p. Using this fact, the
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number of signal sources can be estimated by finding the smallest number p to solve the fol-

lowing optimization problem:

VDGR
diffðeÞ ¼ arg min1�i�L jr̂0ij � jr0ij � e

� �� �
for a given threshold e ð5:35Þ

This criterion is reduced to the criterion described in Section 5.3.1.2, thresholding difference

between correlation eigenvalue and covariance eigenvalue.

5.3.6 HFC Method

Up to now, all the criteria described above manipulate eigenvalues to come up with a means of

determining VD. However, in order for eigenvalues to appropriately determine VD the signal sour-

ces must be effectively characterized by eigenvalues, that is, data variances. In hyperspectral imag-

ery signal sources such as endmembers, anomalies considered to be interesting are actually

insignificant in terms of eigenvalues due to their small sample pools. Consequently, their contribu-

tions to eigenvalues are generally limited and usually very little. As expected, using eigenvalues as

a criterion may not be an effective measure in determining VD. In order to address this issue Har-

sanyi et al. (1994a) proposed an approach, referred to as the HFC method, to resolve this dilemma.

The idea is very simple. It assumes that hyperspectral signatures of interest are unknown, non-

random and deterministic signal sources and noise is white Gaussian. Under this circumstance the

signal sources will be only contributed to the first-order statistics, which is the data sample mean.

This assumption seems reasonable. Despite that the noise in hyperspectral imagery is generally not

Gaussian such a non-Gaussian noise is generally caused by unknown interferers that are consid-

ered as structure noise, for example, clutters or small unidentified disturbed sources. If these struc-

ture noises are removed from the noise, the remainder must be completely random in which case it

must be white Gaussian. This is why the noise in communications is generally assumed to be white

Gaussian.

In order to materialize this concept, it first calculates the sample autocorrelation matrix,

RL�L ¼ PN
i¼1 rir

T
i , and sample autocovariance matrix, KL�L ¼

PN
i¼1 ri � mð Þ ri � mð ÞT . Then for

each 1 � l � L where the L is the number of spectral channels it finds the difference between

their corresponding eigenvalues, that is, {l̂1 � l̂2 � � � � � l̂L} and {l1 � l2 � � � � � lL}, which

are two sets of eigenvalues generated by RL�L and KL�L, called correlation eigenvalues and

covariance eigenvalues, respectively. If a hyperspectral signal source is present in the data, there

should be some spectral dimension l with 1 � l � L such that l̂l > ll due to the fact that the signal

source will contribute to the sample mean in the sample correlation matrix RL�L but not to the

sample covariance matrix KL�L that has removed the sample mean.

By assuming that signal sources are nonrandom unknown positive constants and noise is white

with zero mean, we can expect that

l̂l > ll for l ¼ 1; . . . ;VD ð5:36Þ
and

l̂l ¼ ll for l ¼ VDþ 1; . . . ; L ð5:37Þ

Using (5.36) and (5.37), the eigenvalues in the lth spectral channel can be related by

l̂l > ll > s2
nl
for l ¼ 1; . . . ;VD

and

l̂l ¼ ll ¼ s2
nl
for l ¼ VD þ 1; . . . ; L

ð5:38Þ

where s2
nl
is the noise variance in the lth spectral channel.
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In order to determine the VD, Harsanyi et al. (1994a) formulated the VD determination problem

as a binary hypothesis problem as follows:

H0 : zl ¼ l̂l � ll ¼ 0

versus

H1 : zl ¼ l̂l � ll > 0

for l ¼ 1; 2; . . . ; L ð5:39Þ

where the null hypothesis H0 and the alternative hypothesis H1 represent the case that the correla-

tion eigenvalue is equal to its corresponding covariance eigenvalue and the case that the correlation

eigenvalue is greater than its corresponding covariance eigenvalue, respectively. In other words,

when H1 is true (i.e., H0 fails), it implies that there is an endmember contributing to the correlation

eigenvalue in addition to noise, since the noise energy represented by the eigenvalue of RL�L in

that particular component is the same as the one represented by the eigenvalue of KL�L in its corre-

sponding component.

Let l̂l
� �L

l¼1
be the eigenvalues of the data sample correlation matrix RL�L and llf gLl¼1 be

the eigenvalues of the data sample covariance matrix KL�L. If we assume that the noise in

each spectral dimension has zero mean and variance, s2
nl
, then l̂l ¼ m2

l þ s2
nl

and ll ¼ s2
nl

where ml is the sample mean of the lth spectral dimension. Furthermore, suppose that the sig-

natures of interest in hyperspectral image analysis are material substances that generally can-

not be identified a priori or by visual inspection, such as endmembers, anomalies, man-made

objects, and so on. So, the set of data sample vectors specified by a hyperspectral signature of

such type, sl in the lth spectral dimension, denoted by Dsl, generally cannot be too large and its

number, jDsl j, is relatively small. So, the variance s2
sl
specified by the sample statistics resulting

from intrapixel spectral variability of sl within Dsl in terms of second-order statistics is consid-

ered to be very small and insignificant, approximately s2
sl
	 0. In this case, the sample mean

can be approximated by its signal energy s2l , that is, m
2
l 	 s2l . Consequently, the data variance

of the lth spectral dimension, s2
l , is nearly the same as its noise variance, s2

nl
. That is, l̂l ¼

m2
l þ s2

l 	 s2l þ s2
nl

and ll ¼ s2
l ¼ s2

sl
þ s2

nl
	 s2

nl
. In light of this interpretation a binary

hypothesis testing problem can be formatted as follows.

Despite the fact that the l̂l and ll in (5.36)–(5.38) are unknown constants, according to

Anderson (1984), we can model each pair of eigenvalues, l̂l and ll , under hypotheses H0 and

H1 as random variables by the asymptotic conditional probability densities given by

p0ðzlÞ ¼ pðzl jH0Þ ffi Nð0; s2
zl
Þ for l ¼ 1; 2; . . . ; L ð5:40Þ

and

p1ðzlÞ ¼ pðzl jH1Þ ffi Nðml ; s
2
zl
Þ for l ¼ 1; 2; . . . ; L ð5:41Þ

respectively, where ml is an unknown constant and the variance s2
zl

for l ¼ 1; 2; . . . ; L is

given by

s2
zl
¼ var l̂l � ll

� � ¼ var l̂l
� �þ var ll½ � � 2cov l̂l ; ll

� � ð5:42Þ

It has been shown that when the total number of samples N is sufficiently large, var l̂l
� � ffi 2l̂

2

l =N
and var ll½ � ffi 2l2l =N. Therefore, the noise variance s2

zl
in (5.38) can be estimated and approxi-

mated using (5.42).
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From (5.38), (5.41), and (5.42), we define the false alarm probability and detection power (i.e.,

detection probability) as follows:

PF ¼
Z 1

tl

p0ðzÞdz ð5:43Þ

PD ¼
Z 1

tl

p1ðzÞdz ð5:44Þ

An NP detector for l̂l � ll, denoted by d
NP(l ) for the binary composite hypothesis testing prob-

lem specified by (5.39), can be obtained by maximizing the detection power PD in (5.44), while the

false alarm probability PF in (5.43) is fixed at a specific value, a, which determines the threshold

value tl in (5.43) and (5.44). It is a randomized decision rule given by

dNPðzlÞ ¼
1; if LðzlÞ > tl

1 with probability k; if LðzlÞ ¼ tl

0; if LðzlÞ < tl

8
<

:
ð5:45Þ

where the likelihood ratio test LðzlÞ ¼ p1ðzlÞ=p0ðzlÞ with p0ðzlÞ and p1ðzlÞ given by (5.40) and

(5.41), respectively.

So, a case of l̂l � ll > tl indicates that dNPðzlÞ fails the test, in which case there is signal

energy assumed to contribute to the eigenvalue, l̂l , in the lth spectral dimension. It should be noted

that the test for (5.39) must be performed for each of L spectral dimensions. Therefore, for each

pair of l̂l � ll , the threshold t is different and should be dependent on spectral dimension, that is

tl. VD resulting from the binary hypothesis testing problem specified by the NP detector dNP(zl)
given by (5.45) is referred to as VDNP

HFCðPFÞ and given by

VDNP
HFCðPFÞ ¼

XL

l¼1
dNPðzlÞ½ � for a given false alarm probability PF ð5:46Þ

where PF is a predetermined false alarm probability and [x] is defined as the largest integer less

than or equal to x, that is, dðzlÞb c ¼ 1 only if dNPðzlÞ ¼ 1 and dðzlÞb c ¼ 0 if dNPðzlÞ < 1. More

specifically, (5.38) can be described by

l̂sðlÞ > lsðlÞ for l ¼ 1; 2; . . . ;VD

and

l̂nsðlÞ ¼ lnsðlÞ for l ¼ VD þ 1; . . . ; L

ð5:47Þ

where s(l) and ns(l) are the lth spectral dimensions that contain a signal source, that is, dNP zsðlÞ
� � ¼

1 and no signal source, that is, dNP znsðlÞ
� �

< 1, respectively. In general, sðlÞ 6¼ l and nsðlÞ 6¼ l.

Without loss of generality we can arrange for the first VD spectral dimensions to contain signal

sources by setting s(l)¼ l and the rest of spectral dimensions to contain no signal sources by

assuming ns(l)¼ l. Using (5.47) the eigenvalues in the lth spectral dimension can be reexpressed by

l̂l > ll > s2
nl
for l ¼ 1; . . . ;VD

and

l̂l ¼ ll ¼ s2
nl
for l ¼ VDþ 1; . . . ; L

ð5:48Þ

where s2
nl
is the noise variance in the lth spectral dimension.
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As noted above, the signature variance s2
sl
is generally very small and can be influenced by

interband covariances. To resolve this impact a preprocessing of noise whitening via a noise

covariance matrix estimated by a technique developed by Roger and Arnold (1996) can be per-

formed prior to the HFC method. The resulting HFC method is referred to as the noise-whitened

HFC (NWHFC) method and the resulting VD is defined as VDNP
NWHFCðPFÞ.

Several remarks on the HFC/NWHFC method are noteworthy.

1. In order for the HFC/NWHFC method to work effectively, the spectrally distinct signatures

defined in VD are those that do not have significant contributions to data variances. Such signa-

tures are generally characterized by three unique features. Firstly, the probabilities of their

occurrence are usually low. Secondly, when such signatures are present, their samples are not

too many. Thirdly, due to a small variance that is generally negligible such signatures are usu-

ally unique in terms of spectral distinction. In other words, the variance of a signature, sl, s
2
sl
, is

generally very small due to its very small sample size of data sample vectors characterized by

Dsl . Therefore, the presence of sl can only be detected by s
2
l not s

2
sl
.

2. By virtue of (5.48) the effectiveness of the HFC/NWHFC method is actually determined by

the strength of the signature energy, s2l , which only contributes to the sample mean of the lth

spectral dimension.

The HFC/NWHFC method does not provide a means of finding spectral signatures it detects;

hence, these signatures are determined by various algorithms designed for different applications.

As a result, VD estimated by the HFC/NWHFC method may work well for some applications but

may perform poorly for other applications. In other words, the HFC/NWHFC method should not

be considered as a one-size-fits-all technique for all applications.

5.3.7 Discussions on Data Characterization-Driven Criteria

When VD is performed to determine the value of p, a premise assumes that there is no a priori

knowledge about the data. Fortunately, hyperspectral imagery provides a wealth of spectral infor-

mation generated by hundreds of contiguous spectral bands. Accordingly, using such hyperspectral

information as data characterization becomes the only means that can be used to characterize sig-

nal sources of interest. A natural approach is to find the sample spectral correlation among data

sample vectors via either the sample spectral correlation matrix RL�L or sample covariance matrix

KL�L to capture statistics of signal sources. However, such sample spectral statistics should not be

confused with sample spatial statistics commonly used in spatial domain-based image processing

techniques. This is because the sample correlation matrix RL�L is invariant to any permutation

PðiÞf gNi¼1 of if gNi¼1, that is, RL�L ¼
PN

i¼1 rPðiÞr
T
PðiÞ where rif gNi¼1 ¼ rPðiÞ

� �N

i¼1
. This implies that

RL�L is an intrasample correlation matrix, not an intersample spatial correlation matrix. Bearing

this in mind it is not surprising to learn that all the data characterization-driven criteria described

above are based on sample spectral statistics to determine VD.

As a matter of fact, all of the data characterization-driven criteria derived above have their mer-

its in signal processing and communications and each one has it own right in a particular applica-

tion. For example, the information theoretic criteria, AIC and MDL, have been shown to be

effective in determining the number of signals arriving at an array of passive sensors and so is

Gershgorin radius when signal sources are considered to be indistinguishable and noise is i.i.d..

The eigen-analysis based on eigenvalue distribution has been widely used to determine the number

of principal components needed to be retained after PCA and so are both SVD and FA used in

Malinowski’s error theory. Unfortunately, as shown in the following experiments these approaches
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are generally ineffective. One major reason is that the signal sources of interest in hyperspectral

imagery are mostly small objects that provide crucial and important information compared to those

in multispectral imagery that are most likely patterns. In order to form a pattern there must be

sufficient data sample vectors closely related in terms of spectral correlation to constitute statistics

in which case its variance provides a good indication to represent this particular pattern. While

this may be true for multispectral imagery the same logic cannot be applied to hyperspectral

imagery. This is mainly due to the fact that there are too many spectrally distinct signal sources

of interest in hyperspectral imagery whose sample pools are too few to produce creditable vari-

ances for data processing. As a consequence, using eigenvalues to characterize variances of signal

sources in determining VD does not always work, specifically when signal sources of interest

have a relatively small number of samples such as endmembers, anomalies, man-made objects,

and so on.

Nevertheless, there is a catch between the HFC method and all other criteria. As noted in Chap-

ter 1, an effective hyperspectral imaging technique should be derived directly from an aspect of

hyperspectral imagery not multispectral imagery. This is also true for VD determination. Except

the HFC method all other data characterization-driven criteria follow traditional eigen-based spa-

tial domain approaches that use eigenvalues as data variance to characterize the data properties.

The HFC method was derived exactly different from this point of view. In order to illustrate this

critical difference we specifically use the PCA as an example to compare with the HFC method.

1. Despite that both PCA and the HFC method use eigenvalues to determine VD there is a key

difference between them. Compared to PCA that uses eigenvalues as data variances to charac-

terize the entire data as a whole the HFC method calculates the difference between correlation

eigenvalues and covariance eigenvalues to capture variation in spectral sample mean for each of

spectral dimensions, that is, one spectral dimension at a time.

2. The HFC method implements a binary hypothesis test for each spectral dimension to test if each

of spectral dimensions can be used to accommodate one signal source as opposed to PCA that

uses eigenvalues to determine the total number of signal sources instead of a signal source in an

individual spectral dimension.

3. PCA differs from the HFC method in that PCA uses the second-order statistics such as data

variance to determine VD while the HFC method uses the first-order statistics, which is the

sample mean vector to determine VD. Therefore, unless a hyperspectral signature is a random

signal that may contribute to second-order statistics PCA cannot be very effective in determin-

ing VD.

4. The signal sources of interest in hyperspectral data are generally “spectrally” distinct as defined

by VD and usually do not have a large pool of sample vectors present in the data. As a result, the

variances of these signal sources described by second-order statistics resulting from these sam-

ple vectors are relatively small and nearly negligible. On the other hand, these signal sources

generally contributed to the sample mean vector as first-order statistics. As a consequence, data

sample mean is more significant and crucial than the data variance. That is why background

signatures instead of signal sources are generally extracted in the first few principal components

produced by PCA due to their larger variances. On the contrary, the hyperspectral signatures of

major interest are usually deterministic signal sources that contribute to first-order statistics.

In this case, the HFC method can be very effective in determining a spectral dimension contain-

ing a signature. This also explains why the HFC method works effectively when signal signa-

tures are spectrally distinct and their sample pools are small in which case PCA fails because

the variances of such signal signatures are very small compared to that of background

signatures.
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5. Last but not least, one common issue arising in the use of VD is that users always believe in that

VD and the HFC method are tied together as a pair and think that VD can only be found by the

HFC method. This is certainly a misinterpretation of VD. In analogy with ID that defines the

minimum number of parameters to represent high-dimensional data VD is a concept that defines

an effective spectral dimensionality that is the number of “spectrally distinct” signatures

required to characterize and represent a hyperspectral image. In fact, the effectiveness of VD is

actually determined by various applications where different types of “spectral signatures” are

of major interest and the techniques used to find these signatures are the key to its success. The

HFC method is developed as “one” technique to determine VD in a similar manner as PCA is

used as “one” technique to determine ID. So, when the HFC method does not work effectively,

a new technique must be sought. It should not imply that VD is not correctly defined. This

simply indicates that the assumption made by the HFC method is not appropriate.

5.4 VD Determined by Data Representation-Driven Criteria

In Section 5.3, VD is determined by data characterization where all the developed criteria provide

no specific algorithms to find signal sources. Accordingly, VD remains the same if different applica-

tions are considered. Although some criteria can use a parameter such as error threshold e or false
alarm probability PF to fine-tune VD, this practice still has its limitations in real applications. For

example, the number of endmembers in endmember extraction is certainly different from the num-

ber of anomalies in anomaly detection. It seems that a constraint in using data characterization to

determine VD is the lack of algorithms to find signal sources that generally vary with applications.

In order to resolve this dilemma, one feasible approach is to use data representation to determine

VD where the basic elements to construct the entire data are those signal sources that determine

VD. In this case, VD is tied together with an algorithm to find these basic signal sources. The most

commonly used data representation is a linear regression model in multivariate data analysis where

data samples are modeled as linear combinations of a finite set of basic elements. For example, a

real number can be expressed by a binary representation where the basic elements are integer pow-

ers of 2. A one-dimensional signal can also be represented by a set of sinusoidal functions known as

Fourier transform/series or by a wavelet representation in multiple scales where basic elements are

mother wavelets such as Haar wavelet, Mexican hat wavelet, or Daubechies’ wavelets (Vetterli and

Kovacevic, 1995). A two-dimensional image can be represented by a set of basic elements that are

Walsh-Hadamard basis matrices (Gonzalez and Woods, 2002). Other linear data representations

include data represented by PCAwhere basic elements are principal components specified by eigen-

vectors in terms of data variances, that is, eigenvalues, and Fisher’s linear discriminant analysis

(LDA) where data samples are represented by a set of basic elements specified by feature vectors

(Duda and Hart, 1973). All aforementioned linear data representations share two key issues in com-

mon, namely, how to determine the number of basic elements, referred to as p, and how to select

appropriate basic elements. Obviously, none of these two issues is a trivial matter, not mentioning

nonlinear data representation, which is more complicated than linear data representation.

In what follows, two linear data representation-driven approaches are developed to

determine VD.

5.4.1 Orthogonal Subspace Projection (OSP)

Assume that there are p signal sources, s1; s2; . . . ; sp
� �

, present in the data to be processed and every

data sample vector ri can be expressed by a linear mixture of these p signal sources as follows:

ri ¼ Spai þ ni ð5:49Þ
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where Sp ¼ ½s1s2 � � � sp� is a signal matrix made up of the p signal sources, {s1; s2; . . . ; sp}, and ni
can be interpreted as the noise vector or model error vector.

Let Pp ¼ Sp STpSp

� ��1

STp be the p-signal projection matrix formed by the signal matrix Sp. It

can then be used to map all data sample vectors {r1; r2; . . . ; rN} into the space linearly spanned by

the p signal sources, {s1; s2; . . . ; sp}, denoted by hSpi ¼ hs1; s2; . . . ; spi. In other words, every data

sample vector ri can be expressed by a linear mixture of the p signal sources, {s1; s2; . . . ; sp}, spec-
ified by (5.49) via the p-signal projection matrix Pp where the noise ni in (5.49) is included to

account for the linear mixture model error. Since each sample vector produces a different model

error and residual, the sample mean vector is used to represent an averaged model error and resid-

ual. In this case, from (5.49) the sample mean vector m can be expressed by

m ¼ ð1=NÞ Sp
PN

i¼1 ai

� �þPN
i¼1 ni

 �

¼ Sp ð1=NÞPN
i¼1 ai

� �þ ð1=NÞPN
i¼1 ni

� � ¼ Sp�ap þ �n
ð5:50Þ

where �ap ¼ ð1=NÞPN
i¼1 ai and �n ¼ ð1=NÞPN

i¼1 ni with the covariance matrix given by

R�n ¼ ð1=NÞPN
i¼1 nin

T
i . Using (5.50) we can obtain

E Ppm
� �

Ppm
� �Th i

¼ E PpðSp�ap þ �n
� �

PpðSp�ap þ �nÞ� �Th i

¼ E Sp�ap�a
T
pS

T
p

h i
þ E Pp�n�n

TPp

� �
:

¼ Sp�ap�a
T
pS

T
p þ PT

pR�nPp

ð5:51Þ

There are two ways to find VDOSP as follows:

OSPð pÞ ¼ trace Sp�ap�a
T
pS

T
p þ PT

pR�nPp

n o

¼ E Ppm
� �T

Ppm
� �h i : ð5:52Þ

Or approximately to OSP( p) by

OSPð pÞ ¼ �aT
pS

T
pSp�ap ð5:53Þ

without involving noise covariance matrix estimation. Theoretically, the value of OSP(p) in (5.52)

increases as the value of p increases. For any given error threshold e, VD can be determined by a

stopping rule by e. The value of p determining the OSP(p) in (5.52) or (5.53) is denoted by VDOSP.

Two criteria are developed to detect the abrupt change of the OSP(p) value. One that is based on

the gradient, denoted by “r,” is defined by

VD
OSP;r
algorithmðeÞ ¼ arg min1�p�L

OSPðpþ 1Þ
OSPð pÞ � OSPð pÞ

OSPð p� 1Þ
����

���� < e
	 


ð5:54Þ

and the other that is based on the difference, denoted by minus “�,” is defined by

VD
OSP;�
algorithmðeÞ ¼ arg min1�p�L OSPð pþ 1Þ � OSPð pÞj j < e

� � ð5:55Þ

For the difference criterion, the sample mean vector m is normalized before orthogonal projection

so that the values of threshold e for these two criteria are comparable for analysis. The threshold e
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in (5.54) and (5.55) is generally selected according to a sudden drop or a clear gap between two

consecutive values of p in plots of the gradient in (5.54) and difference (5.55) versus the value of p.

It should be noted that (5.52), (5.54), or (5.55) actually involves two key parameters needed to

be addressed. One is the error threshold e, which is already included in (5.54) and (5.55). The other
parameter is the algorithm that is used to produce the p-signal matrix Sp, which is not particularly

specified in (5.54) and (5.55) but rather uses the term of “algorithm” in (5.54) and (5.55) for a

generic expression. Since the OSP method is derived from the linear spectral unmixing approach,

the spectral signal sources {s1; s2; � � � ; sp} in (5.49) determined by VDOSP are referred to as “virtue

endmembers” instead of image endmembers commonly used in linear spectral unmixing.

Apparently, a different algorithm will produce a different p-signal matrix Sp. As a result, the

value of VDOSP will also be different. For example, when the algorithm used to produce VDOSP is

an endmember extraction algorithm such as pixel purity index (PPI) (Boardman, 1994), N-finder

algorithm (N-FINDR) (Winter, 1999a,b), vertex component analysis (VCA) (Nascimento and

Bioucas-Dias, 2005), simplex growing algorithm (SGA) (Chang et al. 2006), and so on, the Sp
becomes an endmember matrix Ep formed by p endmembers {e1; e2; � � � ; ep}. In this case, VDOSP

PPI ,

VDOSP
N-FINDR, VD

OSP
VCA, and VDOSP

SGA are the number of endmembers estimated by specific endmember

extraction algorithms. However, if the algorithm used to produce VDOSP is not an endmember

extraction algorithm, but rather other algorithms such as an automatic target generation process

(ATGP) (Ren and Chang, 2003), the matrix Sp is then not necessarily an endmember matrix and

can be considered as a target signature matrix Mp. In this case, VDOSP
ATGP is actually the number of

target signatures of interest. So, when an algorithm is specified to produce Sp for VD
OSP in (5) or

(6), a specific algorithm will be included in the notation of VDOSP for clarity, such as VDOSP
UNCLSðeÞ

with the unsupervised nonnegativity constrained least squares (UNCLS) (Chang and Heinz,

2000a,b) to produce Sp, VDOSP
UFCLSðeÞ with the unsupervised fully constrained least squares

(UFCLS) (Heinz and Chang, 2001) to produce Sp, and VDOSP
ATGPðeÞ with ATGP to produce a target

signature matrix Mp. However, if no particular algorithm is specified in VDOSP, the SVD can be

used as a generic algorithm to produce Sp in which case it is VD
OSP
SVDðeÞ.

5.4.2 Signal Subspace Estimation (SSE)

When the OSP( p) is derived in (5.52), there is no assumption made on the noise

�n ¼ ð1=NÞPN
i¼1 ni. Using the model described by (5.49) with an assumption of Gaussian noise,

Bioucas-Dias and Nascimento (2005) derived the so-called SSE to determine the number of spec-

tral signal sources, p. In this case, the noise in (5.49) is Gaussian with zero mean and covariance

matrix given by K�n ¼ ð1=NÞPN
i¼1 E nin

T
i

� �
. If the signal is expressed as xi ¼ ri � ni from (5.49),

mean squared error (MSE), MSE pð Þ ¼ E �x� �̂xp
� �T

�x� �̂xp
� �j k

, where �̂xp ¼ P̂p�r and

�x ¼ 1=Nð ÞPN
i¼1 xi, can be calculated. The SSE estimates the number of spectral signal sources

based on the dimensionality of its found signal subspace by solving the following optimization

problem:

VDSSE ¼ arg min1�p�L �rT P̂
?
p �rþ 2 trace P̂pK�n=N

� �� �n o
ð5:56Þ

where P̂p ¼ SpS
T
p , �r ¼ 1=Nð ÞPN

i¼1 ri is obtained from (1), K�n is the covariance matrix of the

noise, and Sp is composed of p eigenvectors for the covariance matrix of signal xi, corresponding

to p largest magnitudes of eigenvalues.

Recently, an improved version of SSE, called hyperspectral signal subspace identification by

minimum error (HySime), was derived by Bioucas-Dias and Nascimento (2008). The difference
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between SSE and HySime is that the MSE in HySime is calculated in two steps, that is,

MSE pjxið Þ ¼ E xi � x̂i;p
� �T

xi � x̂i;p
� �jxi

j k
and MSEðpÞ ¼ E½MSEðpjxiÞ�, where x̂i;p ¼ P̂pri and

HySime projects individual signal vectors but not their means as done by SSE. This leads to the

following optimization problem:

VDOSP
Hysime ¼ arg min1�p�L trace P̂

?
p Kr

h i
þ 2 trace P̂pKn

� �� �n o
ð5:57Þ

where Kr is the covariance matrix of a sample vector r, Kn is the covariance matrix of the esti-

mated noise, and P̂p is the projection matrix same as that in (5.57). By further simplification,

HySime in (5.58) can be rederived as

VDOSP
Hysime ¼ arg min1�p�L

Xp

j¼1
�vj þ 2s2

j

� �j kn o
ð5:58Þ

where vj ¼ eTj Krej and s2
j ¼ eTj Knej for 1 � j � L and {e1; e2; . . . ; eL} are the eigenvectors of Kx,

the estimated covariance matrix of the signal vector x. Let dj ¼ �vj þ 2s2
j . The minimization in

(5.58) is achieved when all dj’s are negative and thus VD is the number of negative dj’s. Compared

to SSE one theoretical advantage of HySime over SSE is that HySime searches all possible permu-

tations of eigenvectors to find negative dj’s, while SSE projects data sample vectors onto the sub-

space linearly spanned by the eigenvectors that are obtained by descending eigenvalues (Bioucas-

Dias and Nascimento, 2008).

5.4.3 Discussions on OSP and SSE/HySime

The first technique ever developed to estimate VD is the HFCmethod. It formulates VD estimation as

a binary composite hypothesis testing problem and then designs an NP test to see if a spectral signal

source is present in a particular spectral dimension. The beauty of the HFCmethod is its performance

determined by the false alarm probability, PF. By tuning the value of PF according to different appli-

cations the value of VD also varies. However, there is a disadvantage of using the HFCmethod where

there is no guideline provided to find the spectral signal sources once the value of VD is determined.

The two techniques, VDOSP and VDSSE/HySime, presented in the previous section are developed for

this purpose in the sense of linear data representation by finding a best number of signatures, which

determines the VD, to represent all the data sample vectors in a linear form. The development of

VDOSP is inspired by this drawback. Its idea is based on LSMAwhere the entire data can be repre-

sented via a linear mixing model formed by a finite set of spectral signal sources that yields the mini-

mum mixing error. In this case, the number of spectral signal sources is VD and the spectral signal

sources can be considered as VEs as opposed to commonly used image endmembers in LSMA. It

should be noted that these VEs vary with algorithms that are used to find them.

Interestingly, VDOSP is not the only LSMA-based technique that can be used for VD estimation.

VDSSE and VDHySime also follow the same approach. However, there are six key differences

between VDOSP and VDSSE/HySime described below.

1. The projection matrix used in the VDOSP is Pp ¼ Sp STpSp

� ��1

STp as opposed to the projection

matrix used in VDSSE/HySime, P̂p ¼ SpS
T
p where the former is an OSP operator, while the latter

is not.

2. VDOSP is derived from Ppm ¼ Sp�ap in Sp
� �

compared to the error P̂pK�n=N resulting from the

noise covariance matrix K�n in VD
SSE/HySime.

3. The noise in VDSSE/HySime is assumed to be Gaussian, whereas the noise in VDOSP does

not make assumption of Gaussianity. As shown in Harsanyi and Chang (1994), the OSP
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does not make Gaussian assumption on the noise and Gaussian noise has little effect on its

performance. As a result, the well-known Gaussian maximum likelihood estimator used for

linear spectral unmixing becomes a special case of the OSP classifier. With the same inter-

pretation, VDSSE/HySime also turns out to be not as general as VDOSP due to the use of

Gaussian noise.

4. VDSSE/HySime is developed based on minimization of the error caused by the use of the linear

model in (5.49) in which case the model error is assumed to be described by a Gaussian noise,

whereas VDOSP is derived by minimizing the number of signatures to be used to best represent

the data in a linear form, that is, linear regression model. The error is measured by the principle

of orthogonality, not Gaussian noise used in the SSE/HySime.

5. The most important difference is that like the HFC method VDSSE/HySime does not provide a

constructive algorithm to find signals that form the signal subspace. It produces a fixed single

value for the image data regardless of applications. On the contrary, VDOSP is determined by

two key parameters, the error threshold e and the algorithm to be used to find p VEs

{s1; s2; � � � ; sp}. By adjusting the error threshold e and the algorithm to be used to find the

spectrally distinct signatures VDOSP
algorithmðeÞ varies. In other words, VDOSP

algorithmðeÞ can produce

different values determined by different applications, such as the number of endmembers,

the number of man-made signatures, and the number of anomalies, all of which are supposed to

have different values. Compared to VDOSP
algorithmðeÞ that varies with applications VDSSE/HySime is a

constant value for all different applications. So, from an exploitation point of view, the

SSE/HySime is not a practical criterion.

6. Finally, it is worth noting that the three VD estimation techniques, VDHFC/NWHFC,

VDOSP
algorithmðeÞ, and VDSSE/HySime, belong to three different categories. The VDHFC/NWHFC is

indeed VDHFC=NWHFCðPFÞ, which is specified by the error threshold parameter, false alarm

probability, PF. On the other hand, the value of VDOSP
algorithmðeÞ is a function of an application

that involves two parameters, error threshold e and the algorithm to be used to find signal sour-

ces in Sp compared to VDSSE/HySime whose value is fixed at a constant value regardless of

applications.

5.5 Synthetic Image Experiments

The synthetic images used for experiments conducted in this section are the six scenarios (three TI

scenarios, TI1, TI2, TI3, and three TE scenarios, TE1, TE2, TE3) designed in Chapter 4. A major

advantage of using these synthetic images is to allow users to simulate complete ground truth to

evaluate the effectiveness of algorithms to be designed and developed for quantitative study and

comparative analysis. In these six simulated scenarios there are 100 pure panel pixels, 20 mixed

panel pixels, and 10 subpixel panels simulated by five mineral signatures, alunite (A), buddington-

ite (B), calcite (C), kaolinite (K), and muscovite (M) in Figure 1.12(c) along with image back-

ground simulated by the sample mean. These 130 panel pixels are either implanted into the image

background to simulate the three scenarios TI1, TI2, and TI3, or embedded into the image back-

ground to simulate the three scenarios TE1, TE2, and TE3. So, technically speaking, there are only

five spectrally distinct pure signatures and one spectrally distinct mixed background signature used

to simulate synthetic images.

5.5.1 Data Characterization-Driven Criteria

The data characterization-driven criteria developed in Section 5.3 for VD estimation can be classi-

fied into two categories.
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1. Category I: criteria involving no parameters and producing a single constant value regardless of

applications

VDFA
RE;VD

FA
IE ;VD

FA
XE;VD

FA
EIF;VD

ITC
AIC;VD

ITC
MDL:

2. Category II: criteria involving one parameter, either error threshold e or false alarm probability

PF.

VD
eigen
l ða%Þ;VDeigen

l ðeÞ;VDl̂ eigenðeÞ;VDeigen

l̂�l
ðeÞ;VDSVD

l ðeÞ;VDl̂SVDðeÞ;VDSVD
l̂�l

ðeÞ;
VDGR

diskðeÞ;VDGR
diffðeÞ;VDNP

HFCðPFÞ;VDNP
NWHFCðPFÞ:

5.5.1.1 Target Implantation (TI) Scenarios

The 130 target panel pixels in the TI scenarios are implanted into the image background simulated

by the sample mean of the real Cuprite image scene in such a way that the background pixels are

removed to accommodate these implanted target panel pixels. As a consequence, the 10 subpixel

panels implanted in the three scenarios TI1, TI2, and TI3 shown in Figure 5.2 are nearly invisible.

Since TI1 is a scenario of clean target panel pixels implanted in a clean image background and is

the simplest case with no noise involvement, several criteria that use noise estimation will not be

applicable such as AIC and MDL. TI2 is a scenario that has clean target panel pixels implanted in

the image. So, technically speaking, TI2 has only five spectrally distinct pure signatures and one

spectrally distinct background signature that is a mixed signature in the scene in spite of the fact

that it has 100 pure panel pixels, 20 mixed panel pixels, and 10 subpixel panels. On the other hand,

TI3 is a scenario with an additive Gaussian noise to be added to scenario TI1. So, TI3 has no pure

target panel pixels because all the panel pixels and background signature are corrupted by the

added Gaussian noise.

Table 5.1 calculates the values of VD estimated by the criteria in Category I where an N/A

indicates a case to which a particular criterion is not applicable since scenario TI1 does not have

simulated noise but this criterion requires noise to perform noise estimation.

An interesting observation can be made from Table 5.1. For noise-free cases, that is, scenario

TI1, the four FA-based criteria, VDFA
RE, VD

FA
IE , VD

FA
XE, and VDFA

EIF, worked very effectively to

Figure 5.2 Three TI scenarios: TI1, TI2 and TI3 for TI.
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produce exactly five pure spectrally distinct mineral signatures in the way for which they are

designed. However, when there is noise present in the simulated image data, these four criteria

joined with VDITC
AIC, VD

ITC
MDL faild to produce correct values for VD.

Table 5.2 also calculates the values of VD estimated by the criteria in Category II with a param-

eter specified by either energy percentage a% or an error threshold e or false alarm probability PF.

As shown in Table 5.2, the best criterion was the one produced by the NWHFC method regard-

less of PF.

5.5.1.2 Target Embeddedness (TE) Scenarios

Unlike TI scenarios TE scenarios insert all the 130 target panel pixels in the image background as

embedded pixels shown in Figure 5.3 by being superimposed atop background pixels. As a result,

none of these target panel pixels are pure because they are mixed by background pixels.

Compared to the three TI scenarios in Figure 5.2, all the 130 panel pixels are nearly visible in

Figure 5.3 due to the superimposition of panel pixels over background pixels. Since the target

panel pixels are added to superimpose over background pixels, the background signature should be

considered as the sixth spectrally distinct signature. In this case, in all the three TE scenarios there

should have six spectrally distinct signatures, but none of them is pure. This is the key difference

between TI scenarios and TE scenarios. Similar to Tables 5.1 and 5.2, Tables 5.3 and 5.4 calculate

the values of VD estimated by criteria in Categories I and II.

Like scenario TI1 the four FA-based criteria, VDFA
RE, VD

FA
IE , VD

FA
XE and VDFA

EIF, actually per-

formed effectively for noise-free scenario TE1 in the way they are designed for by producing six

spectrally distinct signatures. Once again, the best ones were still NP detection-based criteria, HFC

with VD¼ 6 to represent six spectrally distinct signatures and NWHFC with VD¼ 5 to indicate

that there are five purest signatures in the scene.

Table 5.1 VD estimated for six scenarios by criteria in Category I

VDFA
RE VDFA

IE VDFA
XE VDFA

EIF VDITC
AIC VDITC

MDL

TI1 5 5 5 5 N/A N/A

TI2 188 1 188 3 1 1

TI3 188 1 188 3 1 1

Figure 5.3 Three TE scenarios: TE1, TE2 and TE3.
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Table 5.2 VD estimated for three TI scenarios by criteria in Category II

a% TI scenarios 99 98 97 96 95

VD
eigen
l ða%Þ TI1 3 3 2 2 2

TI2 176 169 164 159 154

TI3 176 169 164 159 154

e TI scenarios 10�6 10�5 10�4 10�3 10�2

VD
eigen

l̂�l
ðeÞ TI1 1 1 1 1 1

TI2 1 1 1 1 1

TI3 1 1 1 1 1

VDSVD
l̂-l

ðeÞ TI1 1 1 1 1 1

TI2 1 1 1 1 1

TI3 1 1 1 1 1

VD
eigen
l ðeÞ TI1 3 2 1 1 1

TI2 3 2 1 1 1

TI3 3 2 1 1 1

VDSVD
l ðeÞ TI1 6 6 6 2 1

TI2 4 4 3 2 1

TI3 4 4 3 2 1

VD
eigen
l ðeÞ TI1 6 5 5 5 3

TI2 22 4 4 3 2

TI3 189 4 4 3 2

VDSVD
l ðeÞ TI1 5 5 5 5 5

TI2 22 4 4 3 1

TI3 189 4 4 3 1

e TI scenarios 100 101 102 103 104

VDGR
diskðeÞ TI1 6 6 6 6 3

TI2 188 188 188 185 22

TI3 188 188 188 185 23

VDGR
diffðeÞ TI1 6 6 6 6 2

TI2 188 184 4 3 2

TI3 188 184 4 3 2

PF TI scenarios 10�1 10�2 10�3 10�4 10�5

VDNP
HFCðPFÞ TI1 99 67 59 47 39

TI2 7 4 3 3 3

TI3 7 4 3 3 3

VDNP
NWHFCðPFÞ TI1 117 83 66 52 48

TI2 5 5 5 5 5

TI3 5 5 5 5 5

VDNP
NSPðPFÞ TI1 30 30 30 30 30

TI2 78 72 67 62 59

TI3 78 72 68 62 59
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Table 5.3 VD estimated for six scenarios by criteria in Category I

VDFA
RE VDFA

IE VDFA
XE VDFA

EIF VDITC
AIC VDITC

MDL

TE1 6 6 6 6 N/A N/A

TE2 188 1 188 3 1 1

TE3 188 1 188 3 1 1

Table 5.4 VD estimated for three TE scenarios by criteria in Category II

a% TE scenarios 99 98 97 96 95

VD
eigen
l ða%Þ TE1 1 1 1 1 1

TE2 150 129 111 94 78

TE3 150 129 111 94 79

e TE scenarios 10�6 10�5 10�4 10�3 10�2

VD
eigen

l̂�l
ðeÞ TE1 1 1 1 1 189

TE2 1 1 1 1 1

TE3 1 1 1 1 1

VDSVD
l̂-l

ðeÞ TE1 1 1 1 1 1

TE2 1 1 1 1 1

TE3 1 1 1 1 1

VD
eigen
l ðeÞ TE1 3 2 1 1 1

TE2 3 2 1 1 1

TE3 3 2 1 1 1

VDSVD
l̂-l

ðeÞ TE1 6 6 6 2 1

TE2 4 4 3 2 1

TE3 4 4 3 2 1

VD
eigen
l ðeÞ TE1 6 6 5 2 1

TE2 4 4 3 2 1

TE3 4 4 3 2 1

VDSVD
l ðeÞ TE1 6 6 6 6 3

TE2 189 4 4 3 1

TE3 52 4 4 3 1

e TE scenarios 100 101 102 103 104

VDGR
diskðeÞ TE1 6 6 6 6 3

TE2 188 188 188 185 22

TE3 188 188 188 185 23

VDGR
diffðeÞ TE1 6 6 6 6 2

TE2 188 179 164 2 2

TE3 188 179 164 2 2

PF TE scenarios 10�1 10�2 10�3 10�4 10�5

VDNP
HFCðPFÞ TE1 7 6 6 6 5

TE2 7 5 5 3 2

TE3 7 5 5 2 2

VDNP
NWHFCðPFÞ TE1 6 5 5 5 5

TE2 5 5 5 5 5

TE3 5 5 5 5 5

VDNP
NSPðPFÞ TE1 34 34 33 33 33

TE2 77 71 66 62 57

TE3 76 71 66 61 58
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5.5.2 Data Representation-Driven Criteria

Analogous to data characterization-driven criteria, SSE/HySime corresponds to Category I that

produces a single constant value for the data regardless of applications, while the OSP-based

criteria belong to a third type, Category III, that includes criteria producing the values of VD

determined by two parameters, error threshold e and application-based algorithm, used to find

signal sources. When one of two parameters is fixed at a constant value, the criteria in Cate-

gory III are reduced to criteria in Category II. Similarly, if both parameters are fixed at con-

stant values the criteria in Category III become criteria in Category I. As noted in scenarios

TI1 and TE1, there is no simulated noise in the scenes to account for model error in linear

data representation specified by (5.49) in which case data representation-driven criteria are not

applicable. Therefore, TI1 and TE1 are not considered in this section. Table 5.5 calculates the

values of VD estimated by SSE and HySime where the HySime seemed to work better than the

SSE by producing VD¼ 5, which represents five pure signatures in TI scenarios and five most

purest signatures in TE scenarios.

Table 5.6 tabulates the values of VD estimated by OSP-based methods with two gradient

and difference criteria using various algorithms, ATGP, UNCLS, UFCLS, N-FINDR, SGA,

and VCA, where the values in parentheses were the values of error threshold e used in (5.54)

and (5.55).

Comparing Table 5.6 to Table 5.5, OSP-based methods seemed to produce higher numbers of

signal sources than SSE/HySime do.

As expected, different algorithms used by OSP-based methods generated different values of

VD in Table 5.6, which were difficult to be used for performance evaluation due to the lack of

information of extracted signal sources by different algorithms. These extracted pixels

Table 5.5 VD estimated for synthetic image by SSE and HySime

SSE HySime

TI2 2 5

TI3 2 5

TE2 6 5

TE3 6 5

Table 5.6 VD estimated for synthetic image by OSP

OSP-

SVD

OSP-

ATGP

OSP-

UNCLS

OSP-

UFCLS

OSP-

NFINDR

OSP-

SGA

OSP-

VCA

TI2 Gradient 4 (�120) 9 (�70) 12 (�60) 12 (�60) 11 (�60) 11 (�55) 8 (�60)

Diff 4 (�120) 11 (�50) 11 (�50) 12 (�50) 11 (�50) 11 (�50) 9 (�60)

TI3 Gradient 4 (�120) 16 (�70) 10 (�70) 14 (�70) 16 (�50) 8 (�50) 12 (�60)

Diff 4 (�120) 8 (�70) 6 (�70) 14 (�70) 7 (�50) 10 (�50) 12 (�60)

TE2 Gradient 6 (�120) 8 (�60) 12 (�60) 14 (�60) 8 (�50) 11 (�60) 12 (�60)

Diff 4 (�120) 8 (�50) 10 (�50) 15 (�60) 10 (�50) 2 (�60) 11 (�60)

TE3 Gradient 4 (�110) 5 (�60) 13 (�70) 19 (�70) 7 (�50) 8 (�60) 6 (�60)

Diff 4 (�110) 15 (�70) 13 (�70) 8 (�70) 10 (�50) 2 (�60) 10 (�60)

Virtual Dimensionality of Hyperspectral Data 149



provided crucial information on applications to which these algorithms were applied. In order

to address this issue, an application in endmember extraction is considered for illustration. Fig-

ure 5.4(a)–(d) lists all the pixels extracted by ATGP, UNCLS, UFCKS, N-FINDR, SGA, and

VCA for scenarios TI2, TI3, TE2, and TE3, respectively, where the number used to mark a pixel

Figure 5.4 Pixels extracted by OSP-ATGP, OSP-UNCLS, OSP-UFCLS, OSP-N-FINDR, OSP-SGA, and

OSP-VCA.
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was the order in which the particular pixel is extracted. Since N-FINDR extracted all the pixels

together at the same time, there were no numbers assigned to extracted pixels. In particular, in

TI2 both gradient and difference produced the same number of signatures, 11. So, there is only

one figure shown to represent both cases.

Figure 5.4 (Continued )
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As shown in Figure 5.4, the best OSP-based methods were those using ATGP and LSMA

algorithms, UNCLS and UFCLS, in all TI and TE scenarios that could extract panel pixels

that corresponded to all five distinct mineral signatures, while some endmember extraction

algorithms (EEAs) failed to extract panel pixels in row 3 corresponding to the mineral signa-

ture calcite, for example, OSP-N-FINDR, using gradient and difference criteria and OSP-VCA

in scenario TI2. The reason for EEAs missing the calcite signature was the fact that the calcite

has its spectral signature very close and similar to that of the sample mean used to simulate the

image background as shown in Figure 4.12(a) and (b). As a consequence, EEAs considered the

calcite as a contaminated sample mean signature. If the background signature was extracted

first, the calcite would not be extracted afterward as a distinct endmember. To further confirm

this finding, the upper and lower triangular arrays in Table 5.7 tabulate the similarity values

among these five mineral signatures and the sample mean calculated by the SAM and SID,

respectively, where the calcite and the sample mean have closest signatures with smallest

values.

Nevertheless, if there is a panel pixel extracted by an EEA to specify one of the five mineral

signatures, it was always extracted earlier than later. This indicated that panel pixels corresponding

to pure or purest signatures were more significant than other pixels. Accordingly, they were always

among those pixels that were extracted first.

As another application, linear spectral unmixing was considered for experiments. Since ATGP,

UNCLS, and UFCLS represent the same class of target detection algorithms compared to N-

FINDR, SGA, and VCA that belong to the same class of endmember extraction algorithms, ATGP

and N-FINDR were selected as their respective representatives and their extracted pixels were used

to form desired signature matrices M in (2.75) for supervised linear hyperspectral unmixing. Fig-

ure 5.5 shows the FCLS-unmixed results along with plots of their quantification results for scenar-

ios TI2, TI3, TE2, and TE3 using the pixels extracted in Figure 5.4 by OSP-ATGP and OSP-N-

FINDR. As noted above, the numbers of pixels extracted by OSP-N-FINDR using gradient and

difference criteria were different. In this case, the larger number was selected to extract pixels by

N-FINDR to achieve better background suppression, that is, TI2 (11 by both), TI3 (16 by gradient),

TE2 (10 by difference), and TE3 (10 by difference).

Several interesting observations can be made by examining the results in Figure 5.5, which have

shown great benefits of using synthetic images that cannot be obtained from real image

experiments.

1. TI2: Although the OSP-N-FINDR missed extraction of the calcite signature, the FCLS-unmixed

results using the OSP-N-FINDR extracted pixels demonstrated that the panel pixels in row 3

Table 5.7 SAM and SID measure of six signatures in Figure 5.5(a)

SAM A B C K M Sample mean

SID

A 0 0.1576 0.2038 0.0961 0.1421 0.1822

B 0.0320 0 0.0951 0.1733 0.0968 0.0656

C 0.0496 0.0097 0 0.2114 0.1108 0.0441

K 0.0126 0.0457 0.0600 0 0.1263 0.1923

M 0.0231 0.0115 0.0142 0.0232 0 0.0924

Sample mean 0.0405 0.0046 0.0025 0.0522 0.0103 0
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specified by the calcite signature could be still classified effectively even though only half of

abundance fractions in 20 pure panel pixels in the first two columns and small amounts of abun-

dance fractions in mixed and subpixel panels were detected.

2. TI3: This is the TI1 scenario corrupted by a Gaussian noise. Despite that both OSP-ATGP

and OSP-N-FINDR extracted the same number of signatures, 16, interestingly, most of their

extracted pixels were quite different. As a consequence, their FCLS-unmixed results were

also very different.

Figure 5.5 FCLS-unmixed results for panel pixels in five rows using pixels extracted by OSP-ATG and

OSP-N-FINDR.
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3. TE2: This scenario does not satisfy ASC constraint. As expected, the quantification of FCLS-

unmixed results would not be correct. However, the results in Figure 5.5(e) show a surprising

result that the FCLS using the 8 pixels extracted by OSP-ATGP produced nearly correct quanti-

fication results except subpanel pixels. On the other hand, FCLS using 10 pixels extracted by

OSP-N-FINDR produced worse results in Figure 5(f) than those in Figure 5(e), which only

used 8 OSP-ATGP-generated pixels. These experiments demonstrated that using more pixel

information did not necessarily improve results.

4. TE3: The results obtained from this scenario were completely opposite to those of TE2 scenario

with one conclusion in common. That is, more pixels did not provide more useful information

but rather conflicting information that may further deteriorate performance.

Figure 5.5 (Continued )
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5.6 VD Estimated for Real Hyperspectral Images

To conclude this chapter, this section presents experiments based on real image scenes described in

Section 1.7 of Chapter 1. According to the experimental results for synthetic images in Section 5.5,

only the HFC and NWHFC methods from data characterization-driven criteria have been shown to

be effective. Therefore, Table 5.8 tabulates the values of VD estimated by the HFC and NWHFC

Figure 5.5 (Continued )
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methods for three AVIRIS data sets: Cuprite data (reflectance and radiance data), Purdue data

with/out background (BKG), LCVF data, plus a 15-panel HYDICE data.

As for data representation-driven criteria Table 5.9 tabulates the values of VD estimated by SSE

and HySime for Cuprite data (reflectance and radiance data), Purdue data with/out background

(BKG), LCVF data, and 15-panel HYDICE data.

Comparing VD estimated by HFC/NWHFC in Table 5.8 to the VD estimated by SSE/HySime

in Table 5.9, the SSE/HySime-estimated values were found to be within the ranges of

Figure 5.5 (Continued )
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HFC/NWHFC-estimated VD values except the Purdue data with PF set to around 10
�3. It is known

that the samples in Purdue data are heavily mixed. It makes sense that various VD estimation tech-

niques produce a wide range of VD. Furthermore, Table 5.10 tabulates the values of VD estimated

by OSP-based methods with two different criteria for real images using various algorithms where

the chosen thresholds using dB unit are provided in the parentheses. For example, ATGP, UNCLS,

and UFCLS were used to find VD, OSP-ATGP, OSP-UNCLS, and OSP-UFCLS provided esti-

mates of the number of spectrally distinct signal sources for data representation. On the other

hand, when N-FINDR, SGA, and VCA were used to find VD, OSP-N-FINDR, OSP-SGA, and

OSP-VCAwere used to estimate the number of endmembers in the data.

Comparing the results in Table 5.10 to the results in Tables 5.8 and 5.9 VD-estimated values by

OSP-based methods were generally found to be higher than those by HFC/NWHFC and

SSE/HySime due to the fact that the former were specifically designed to find the number of spec-

trally distinct signatures for LSMA in which case signal sources considered to be VEs were gener-

ally more endmembers than required for endmember extraction, while the latter were designed to

estimate VD without considering any specific application.

Unlike the synthetic images considered in Section 5.5 that have complete knowledge of the

ground truth about the signatures real image data sets generally have only partial knowledge

Table 5.8 VD estimated for real images by HFC and NWHFC

PF 10�1 10�2 10�3 10�4

HYDICE HFC 14 11 9 9

NWHFC 20 14 13 13

Cuprite Reflectance HFC 34 30 24 22

NWHFC 32 29 25 23

Cuprite Radiance HFC 29 18 17 15

NWHFC 23 20 20 19

Purdue with BKG HFC 72 42 34 29

NWHFC 19 18 18 18

Purdue without BKG HFC 55 33 30 24

NWHFC 18 18 18 15

LCVF HFC 8 6 4 4

NWHFC 20 13 11 11

Table 5.9 VD estimated for real images by SSE and HySime

SSE HySime

HYDICE 10 20

Cuprite reflectance 27 16

Cuprite radiance 18 17

Purdue with BKG 8 13

Purdue without BKG 7 13

LCVF 12 11
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Table 5.10 VD estimated for real images by OSP

OSP-

SVD

OSP-

ATGP

OSP-

UNCLS

OSP-

UFCLS

OSP-

NFINDR

OSP-

SGA

OSP-

VCA

HYDICE gradient 16 (�110) 23 (�70) 15 (�70) 11 (�70) 10 (�50) 9 (�60) 19 (�60)

diff 16 (�110) 11 (�70) 15 (�70) 15 (�70) 10 (�50) 9 (�60) 14 (�60)

Cuprite Reflectance gradient 22 (�110) 16 (�70) 26 (�70) 31 (�70) 13 (�50) 19 (�60) 21 (�60)

diff 21 (�110) 17 (�70) 19 (�70) 13 (�70) 10 (�50) 17 (�70) 14 (�60)

Cuprite Radiance gradient 11 (�110) 18 (�70) 21 (�70) 14 (�70) 13 (�50) 13 (�60) 18 (�60)

diff 15 (�110) 13 (�70) 17 (�70) 14 (�70) 11 (�50) 6 (�70) 13 (�60)

Purdue with BKG gradient 11 (�110) 18 (�70) 26 (�70) 18 (�70) 13 (�60) 13 (�60) 16 (�60)

diff 8 (�110) 24 (�70) 19 (�70) 11 (�70) 15 (�60) 12 (�60) 16 (�60)

Purdue without

BKG

gradient 9 (�110) 15 (�70) 10 (�70) 13 (�70) 16 (�60) 8 (�60) 15 (�60)

diff 12 (�110) 13 (�70) 13 (�70) 20 (�70) 14 (�60) 8 (�60) 14 (�60)

LCVF gradient 14 (�110) 7 (�60) 10 (�70) 11 (�60) 5 (�50) 15 (�60) 5 (�60)

diff 5 (�110) 14 (�70) 14 (�70) 16 (�70) 10 (�50) 4 (�60) 8 (�60)

Figure 5.6 Pixels extracted by N-FINDR for the four image scenes, HYDICE, cuprite, Purdue, and LCVF.
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about signatures of interest from the ground truth. In this case, the true VD is never known. Conse-

quently, it is difficult to conduct fair comparative analysis among various VD estimation tech-

niques. Nevertheless, since the techniques are mainly developed from a perspective of data

representation in a linear form, LSMA seems an appropriate application to be used for perform-

ance evaluation in which case FCLS is used to perform spectral unmixing and the least-squares

error (LSE) is used as a criterion for quantitative analysis. Moreover, HFC/NWHFC and

SSE/HySime do not provide any algorithm to find VEs. In this case, N-FINDR considered in Chap-

ter 7 and ATGP are once again used to extract desired pixels to be used for FCLS. Figures 5.6 and

5.7 show pixels extracted by N-FINDR and ATGP where the PF for HFC and NWHFC is chosen to

be PF � 10�4.

Figure 5.8 also shows pixels extracted by OSP methods using various algorithms to find desired

signatures to form a linear mixing model for FCLS because the values of VD estimated by gradient

and difference were generally different; a larger value was selected as the number of VEs gener-

ated in Figure 5.7.

Figure 5.6 (Continued )
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Using the pixels found in Figures 5.6–5.8 to form a signature matrix for FCLS to perform

spectral unmixing, Tables 5.11 and 5.12 present the LSE values between FCLS-unmixed

abundance fractions and the real values of data sample vectors, where the numbers in

parentheses are the numbers of signatures used by FCLS to form signature matrices for linear

unmixing.

According to the results in Table 5.11, it seemed that NWHFC-ATGP and HySime-ATGP were

the best in most cases. Table 5.12 shows that OSP-UFCLS showed the best performance among all

OSP-based methods except the only case where OSP-ATGP produced a smaller MSE for the

HYDICE (64� 64) data than that by OSP-UFCLS. However, in this particular case, OSP-ATGP

required 23 signatures to outperform OSP-UFCLS, which only needed 15 signatures. If we further

Figure 5.7 Pixels extracted by ATGP for the four image scenes, HYDICE, cuprite, Purdue, and LCVF.
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compare OSP-UFCLS to NWHFC-ATGP and HySime-ATGP, the former performed better than the

latter with only one case that HySime-ATGP produced a smaller MSE for the HYDICE (64� 64)

data than that by OSP-UFCLS. But once again the HySime-ATGP required 20 signatures to out-

perform OSP-UFCLS using 15 signatures.

As a concluding remark, the experimental results in this section for the four real image scenes

suggested that the best method to estimate VD for LSMAwould be the OSP-UFCLS. This conclu-

sion makes sense because UFCLS is an unsupervised abundance fully constrained method particu-

larly designed for LSMA.

Figure 5.7 (Continued )

Virtual Dimensionality of Hyperspectral Data 161



Figure 5.8 VEs obtained by OSP-ATGP, OSP-UNCLS, OSP-UFCLS, OSP-N-FINDR, OSP-SGA, and OSP-

VCA: (a) HYDICE data, (b) cuprite reflectance data, (c) cuprite radiance data, (d) Pudure data with back-

ground, (e) Purdue data without background, (f) LCVF data.
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5.7 Conclusions

Estimating the number of signal sources/signatures is a crucial preprocessing step in hyperspectral

data exploitation. Its accuracy has significant impact on image analysis and interpretation.

Recently, the concept of VD proposed in Chang (2003a) and Chang and Du (2004) has shown

success in estimating the number of spectrally distinct signatures present in hyperspectral imagery.

Figure 5.8 (Continued )
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The exploration of VD was also investigated for many applications (Chang, 2006). This chapter

revisits the concept of VD and redefines it as a general terminology to deal with signal sources of

interest in various applications where the value of VD should vary with applications of interest and

should not be fixed at a single constant value that fits all applications. In order to address this need,

two types of criteria, data characterization-driven criteria and data representation-driven criteria,

are used to develop VD estimation techniques where the former is focused on data characterization

Figure 5.8 (Continued )
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in terms of spectral statistics regardless of applications as opposed to the latter that finds an optimal

number of signal sources to best represent data via a linear model. Tables 5.13 and 5.14 categorize

these two types of criteria according to their design rationales. Category I includes factor analysis-

based criteria, called real error (RE). Imbedded error (IE), extracted error (XE), and empirical indi-

cator function (EIF) proposed by Malinowski (1997a, 1977b) and two criteria arising in passive

array processing, an information theoretic criterion (AIC), minimum description length (MDL),

signal subspace estimation (SSE), and hyperspectral signal subspace identification by minimum

error (HySime) all produce single constant values for VD and have nothing to do with any applica-

tion or algorithm. Category II comprises criteria involving one parameter that can be adapted to

determine various values of VD, which include error threshold (e)-based methods (commonly used

eigenvalue-based energy methods and Gershgorin radius-based methods) and false alarm probabil-

ity (PF)-based methods. Category III is made up of OSP-based criteria that involve two parameters,

an error threshold e and an algorithm to be specified by a particular application to determine the

value of VD.

Table 5.11 LSE of VEs estimated for the four image scenes by IN-FINDR and ATGP

HFC-

INFINDR

HFC-

ATGP

NWHFC-

IN-FINDR

NWHFC-

ATGP

SSE-

IN-FINDR

SSE-

ATGP

HySime-

IN-FINDR

HySime-

ATGP

HYDICE 2325.1 (9) 2330.2 (9) 2148.1 (13) 1450.5 (13) 2395.2 (10) 1942.2 (10) 709.56 (20) 863.80 (20)

Cuprite

reflectance

6627.1 (22) 18311 (22) 5790.8 (23) 17352 (23) 8682.5 (27) 16634 (27) 8976.1 (16) 31084 (16)

Cuprite

radiance

1184.1 (15) 49254 (15) 860.53 (19) 33026 (19) 1579.3 (18) 33039 (18) 25890 (17) 33071 (17)

Purdue with

BKG

1532.4 (29) 1541.4 (29) 2343.0 (18) 2601.1 (18) 11330 (8) 6498.7 (8) 5906.8 (13) 3402.4 (13)

Purdue with-

out BKG

1480.3 (24) 929.84 (24) 1627.7 (15) 1072.7 (15) 2936.7 (7) 10205 (7) 1750.8 (13) 1125.8 (13)

LCVF 79.37 (4) 81.49 (4) 66.25 (11) 57.93 (11) 69.54 (12) 57.48 (12) 66.25 (11) 57.93 (11)

Table 5.12 LSE of VEs estimated for real image by OSP-ATGP, OSP-UNCLS, OSP-UFCLS, OSP-

NFINDR, OSP-SGA, and OSP-VCA

OSP-ATGP OSP-UNCLS OSP-UFCLS OSP-NFINDR OSP-SGA OSP-VCA

HYDICE

(64� 64)

792.90 (23) 1089.9 (15) 935.34 (15) 2596.0 (10) 1793.0 (9) 992.11 (19)

Cuprite

reflectance

30920 (17) 19671 (26) 2453.7 (31) 12777 (13) 6399.3 (19) 37851 (21)

Cuprite radiance 33039 (18) 638.07 (21) 1260.5 (14) 21666 (13) 2090.7 (13) 1207.6 (18)

Purdue with

BKG

1784.6 (24) 870.10 (26) 1198.3 (18) 1962.0 (15) 3074.1 (13) 1651.5 (16)

Purdue without

BKG

1072.7 (15) 1315.0 (13) 861.69 (20) 1150.8 (16) 3121.6 (8) 1340.9 (15)

LCVF 53.03 (14) 49.15 (14) 49.20 (16) 59.24 (10) 51.68 (15) 81.28 (8)
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Tables 5.15–5.17 further summarize all criteria in Category I, Category II, and Category III,

respectively, developed in this chapter based on assumptions, models, and parameters, where an

asterisk (�) indicates the best technique in a specified category.
For example, SSE/HySime is considered the best criterion in Category I while the NP detection-

based techniques are the best in Category II. Since there is only one technique in Category III and

the performance of VD actually depends upon the application to be specified, no asterisk (�) is
assigned to the best performance. Nevertheless, according to all experiments discussed in this

chapter, the techniques in Category III are generally better than the techniques in Categories I and II,

with some occasions where the NP detection-based techniques in Category II can do better.

Table 5.13 Data characterization-driven criteria

VD estimation Criteria Design rationale VD

category

Eigenvalue distribution (Eigen) Energy percentage Variance II (e)

Singular value decomposition

(SVD)

Singular value

percentage

Singular values II (e)

Malinowski’s error theory RE Factor analysis I

XE

IE

EIF

Information theoretic criteria

(ITC)

AIC Likelihood function I

MDL

Gershgorin radius (GR) Gershgorin disks Gershgorin circle theorem II (e)
Gershgorin radii

Neyman-Pearson (NP) detection HFC Binary composite hypothesis

testing

II (PF)

NWHFC

NSP

Table 5.14 Data representation characterization-driven criteria

VD estimation Criteria Design rationale VD category

Orthogonal sub-

space projection

(OSP)

SVD Linear model with a model error using

orthogonal subspace projection (OSP)

III (e, algorithm)

ATGP

UNCLS

UFCLS

N-FINDR

VCA

SGA

SSE Mean squared error Linear model with additive Gaussian

noise

I

HySime Mean squared error Linear model with additive Gaussian

noise

I
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Table 5.16 VD criteria in Category II

Methods for VD Noise

assumption

Noise

estimation

Error

threshold

Criterion Model

require

VD
eigen
l ðeÞ, VDSVD

l ðeÞ No No Yes (e) Covariance eigenvalue No

VD
eigen

l̂
ðeÞ, VDSVD

l̂
ðeÞ No No Yes (e) Correlation eigenvalue No

VD
eigen

l̂-l
ðeÞ, VDSVD

l̂-l
ðeÞ No No Yes (e) Difference eigenvalue No

VD
eigen
l ða%Þ No No Yes (a%) Covariance eigenvalue No

VDGR
diskðeÞ i.i.d No Yes (e) Gershgorin disk No

VDGR
diffðeÞ i.i.d No Yes (e) Difference in Gersh-

gorin radius

No

�VDNP
HFCðPFÞ No No Yes (PF) NP detection theory No

�VDNP
NWHFCðPFÞ No Yes Yes (PF) NP detection theory No

VDNP
NSPðPFÞ No Yes Yes (PF) NP detection theory No

Table 5.15 VD criteria in Category I

Criteria Noise assumption Noise estimation Parameters Criterion Model required

VDFA
RE i.i.d. No No RE FA

VDFA
XE i.i.d. No No RE FA

VDFA
IE i.i.d. No No IE FA

VDFA
EIF i.i.d. No No EIF FA

VDITC
AIC i.i..d. Gaussian No No AIC No

VDITC
MDL i.i..d. Gaussian No No MDL No

VDOSP
SSE Gaussian Yes No LSE LMM

Table 5.17 VD criteria in Category III

Methods for VD Noise assumption Error threshold Specified algorithm Criterion Model require

VDOSP
ATGPðeÞ No Yes ATGP SNR LMM

VDOSP
UFCLSðeÞ No Yes UFCLS SNR LMM

VDOSP
VCAðeÞ No Yes VCA SNR LMM

VDOSP
SGAðeÞ No Yes SGA SNR LMM
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6

Data Dimensionality Reduction

Dimensionality reduction (DR) has been used in hyperspectral data exploitation for various pur-

poses. In particular, it has been used as a preprocessing technique to reduce a very high-dimen-

sional data space to a manageable low-dimensional space in which data analysis can be performed

more effectively. Two common approaches are widely used for DR, here referred to as DR by

transform (DRT) and DR by band selection (DRBS). While the former utilizes a transform to com-

pact data in some optimal sense, the latter finds an appropriate band subset to represent data via a

certain optima criterion. Two types of transforms, components analysis (CA), and feature extrac-

tion (FE), are developed for DRT. A CA transform is generally considered as a transformation that

uses statistics as a criterion to de-correlate and convert data into a set of uncorrelated data compo-

nents for analysis. The transforms of this type include two commonly used second-order statistics

component transforms, data variance-based principal components analysis (PCA) and signal-to-

noise ratio (SNR)-based maximum noise fraction (MNF) transform as well as high-order

statistics-based CA transforms with criteria such as a third-order statistics-based skewness, a

fourth-order statistics-based kurtosis, plus statistical independence-based independent component

analysis (ICA) that requires infinite order of statistics. An FE transform uses a feature extraction-

based criterion to produce a set of feature vectors so that data can be represented by these feature

vectors. The transforms of this type include Fisher’s ratio-based linear discriminant analysis

(FLDA) and linear mixture model-based orthogonal subspace projection (OSP). All these transfor-

mation techniques can be very useful in processing of hyperspectral imagery and will be used in

later chapters in this book. A second approach to DR is DRBS. Unlike DRT that produces trans-

formed data DRBS seeks a band subset to represent the original data so that the data information of

interest can be preserved in the selected band subset. Interestingly, as will be seen, most of the

criteria designed for DRT are also applicable to DRBS.

6.1 Introduction

Hyperspectral images are collected by hundreds of contiguous spectral channels, and thus the data

volume to be processed is considered to be huge. With such high spectral resolution, spectral corre-

lation among bands is expected to be very high and the band-to-band spectral information may be

overlapped or shared in some aspects. To address this issue, two general techniques are commonly

used. One is DRT and the other is DRBS.

As for DRT, a general approach is to use component analysis (CA) transforms. It is known that

one of most frequently used CA transforms is the principal components analysis (PCA) that makes

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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use of eigenvalues to determine the significance of principal components (PCs) generated by PCA

so that DR is accomplished by selecting PCs in accordance with the magnitudes of their associated

eigenvalues. Unfortunately, such PCA-based DR (PCA-DR) may not be effective or appropriate

for hyperspectral image analysis as demonstrated in Wang and Chang (2006a). A similar approach,

called maximum noise fraction (MNF) (Green et al., 1988) or noise-adjusted principal components

(NAPC) transform (Lee et al., 1990), which was developed based on signal-to-noise ratio (SNR),

also suffers from the same drawbacks as PCA does. One major issue for both PCA and MNF is that

many subtle material substances that are uncovered by hyperspectral imaging sensors with very

high spectral resolution cannot be characterized by second-order statistics. This may be due to the

fact that sample pools of such substances are relatively small and their contribution to second-order

statistics is very little. Consequently, these substances may not be captured by the second-order

statistics-based PCA and MNF in their PCs. In order to address this issue, we must rely on high-

order statistics-based CA transforms that include third-order statistics-based skewness transform

(skewness-DR), fourth-order statistics-based kurtosis transform (kurtosis-DR), and statistical

independence-based independent component analysis (ICA) transform (ICA-DR). Interestingly,

using a criterion higher than variance or SNR to measure the significance of each transformed

component to perform DR has not been explored in the past until a recent work (Wang and Chang,

2006a; Ren et al., 2006), which showed that DR can be greatly benefited by using statistics of

orders higher than 2. For example, when CA transforms use criteria such as third-order statistics of

skewness and fourth-order statistics of kurtosis to perform DR, they are referred to as third-order

statistics-based skewness transform and fourth-order statistics-based kurtosis transform, respec-

tively. Specifically, for the case that the mutual information is used to measure statistical indepen-

dence, it becomes ICA transform. With this interpretation, the significance of a transformed

component measured by a DR criterion is referred to as priority score and this particular compo-

nent is then further prioritized and ranked by its associated priority score. As an example, the crite-

rion used in PCA-DR is data variance and the priority score of a PC is calculated by the magnitude

of its corresponding eigenvalue. So, all PCA-generated PCs are ranked by their associated priority

scores, data variances that is, magnitudes of eigenvalues. Unfortunately, when it comes to ICA, the

advantage of using component prioritization vanishes. This is because there is no specific criterion

to be used to measure the significance of each of the independent components (ICs) ICA generates,

and thus ICA cannot prioritize its generated ICs. For example, most algorithms designed to imple-

ment ICA, such as FastICA (Hyvarinen and Oja, 1997), make use of projection vectors randomly

generated to initialize algorithms. As a result, ICs generated earlier are not necessarily more signif-

icant than those generated later. Therefore, in order for ICA to be used for DR, a criterion must be

included in ICA algorithms to prioritize ICs in a similar way as PCA, MNF, skewness, and kurtosis

do. Three different approaches for IC prioritization are derived in Wang and Chang (2006a). One is

called statistics-prioritized ICA-DR (SPICA-DR) that is similar to those taken by PCA, MNF,

skewness, and kurtosis. It utilizes criteria that can characterize statistics of any order. Another is

considered as random ICA-DR (RICA-DR) that takes advantage of the nature in randomness

resulting from the use of random initial projection vectors in ICA and implements an ICA algo-

rithm in different runs to find their common intersection of ICs that will be used for DR. A third

approach is referred to as initialization-driven ICA-DR (IDICA-DR) that employs a custom-

designed initialization algorithm to produce an appropriate set of initial projection vectors that will

be used to prioritize ICs.

The purpose of DRT is to compact data through a transformation so that the transformed data

can preserve as much as data information measured by a certain criterion. An alternative way

to accomplish the same goal as DRT does is DRBS. However, unlike DRT that uses a specific

transformation to perform data compaction, DRBS does not perform data transformation but rather
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preserves original data information by selecting a subset of bands that are most likely to represent the

data in some optimal sense. In other words, with very high spectral resolution hyperspectral data

provide vast amount of data information that may be redundant or overlapped among adjacent bands,

which can be removed without significant loss of information. DRBS takes advantage of such high

inter-band correlation by selecting only representative bands to avoid band redundancy so as to

achieve DR. The bands to be selected are determined by the significance of data information con-

tained in these bands that are measured by a criterion for optimality. Despite the fact that DRT and

DRBS are considered to be different approaches, the criteria used for one are indeed applicable to the

other. In order to facilitate and simplify discussions in this chapter, we let q denote either the number

of dimensions to be retained DRTor the number of bands to be selected by DRBS.

6.2 Dimensionality Reduction by Second-Order Statistics-Based Component
Analysis Transforms

A CA transform generally transforms the image data into a set of data components so that the

correlation among the transformed data components is uncorrelated according to a criterion. More

specifically, a component transform represents a data space by a set of its generated data compo-

nents. Two second-order component transforms have been widely used in remote sensing image

processing, which are variance-based PCA transforms and SNR-based transforms and discussed as

follows.

6.2.1 Eigen Component Analysis Transforms

The simplest eigen-CA transforms are those based on data variance. PCA represents this type of

data variance-based CA transforms.

6.2.1.1 Principal Components Analysis

The principal components analysis (PCA), also known as Hotelling transform (Gonalez and

Woods, 2002) as well as principal components transformation (PCT) (Richards and Jia, 1999;

Schowengerdt, 1997), is an optimal transform to represent data in the sense of data variance. It can

be considered as a discrete time version of the Karhunen–Loeve transform (KLT) in signal process-

ing and communications (Poor, 1994) that is an optimal transform using eigenfunctions as basis

functions to represent and de-correlate a function in the sense of mean-squared error. It is generally

referred to as Karhunen–Loeve expansion that represents a function as a series in terms of eigen-

functions where these eigenfunctions are continuous-time functions. When they are sampled at

discrete time instants, eigenfunctions become eigenvectors in a discrete case, in which case KLT is

reduced to PCA. So, technically speaking, KLT used in hyperspectral data compression is indeed

the principal components analysis (PCA) not what it was originally developed in statistical signal

processing and communications in at least two major key aspects. The first and foremost is the

used criterion. While KLT is a mean-squared error (MSE)-based transform that assumes

the availability of data probability distribution to perform “mean” in terms of statistical expect-

ation, PCA makes use of the sample covariance matrix without assuming the data probability dis-

tribution in which case PCA should be considered as a “least squares error (LSE)”-based

transform, not an MSE-based transform where LSE is actually the sample variance. Secondly,

KLT is generally referred to as KL expansion in statistical signal processing where a signal can be

decomposed as a series of orthogonal functions, to be called eigenfunctions. For example, Fourier

transform is a special case of KLT where the used sinusoidal functions are basically eigenfunc-

tions. Therefore, in general, KLT is a continuous time transform function. By contrast, PCA is a
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matrix transform used to de-correlate data sample vectors into linear combinations of using eigen-

vectors as basis vectors for their data representations with eigenvalues as their corresponding coef-

ficients. In light of this interpretation PCA is indeed a discrete time of KL expansion.

Unfortunately, KLT has been widely abused in image processing where the image data are repre-

sented by matrices in which case KLT should be implemented as its discrete-time version, PCA. It

seems that such key differences have been overlooked in hyperspectral data compression. The idea

of PCA can be briefly described as follows.

Assume that S ¼ rif gNi¼1 is a set of L-dimensional image pixel vectors and m is the mean of

the sample pool S obtained by m ¼ 1=Nð ÞPN
i¼1 ri. Let X be the sample data matrix formed by

X ¼ r1r2 � � � rN½ �. Then the sample covariance matrix of the S is obtained by

K ¼ 1=Nð Þ XXT
� � ¼ 1=Nð Þ PN

i¼1 ri � mð Þ ri � mð ÞT� �
. If we further assume that llf gLl¼1 is the

set of eigenvalues obtained from the covariance matrix K and vlf gLl¼1 are their corresponding

unit eigenvectors, that is, jjvl jj ¼ 1, we can define a diagonal matrix Ds with variances s2
l

� �L

l¼1
along the diagonal line as

Ds ¼
s2
1 0 0

0 } 0

0 0 s2
L

2

4

3

5 ð6:1Þ

and an eigenvector matrix L specified by vlf gLl¼1 as

L ¼ v1v2 � � � vL½ � ð6:2Þ
such that

Ds ¼ LTKL ð6:3Þ

Using the eigenvector matrix L a linear transform jL defined by

jLðrÞ ¼ LTr ð6:4Þ

transforms every data sample ri to a new data sample, ~ri by

~ri � LTri ð6:5Þ

As a result, the mean of new jL-transferred data samples ~rif gNi¼1 becomes ~m ¼ 1=Nð ÞPN
i¼1 ~ri

and its resulting covariance matrix is reduced to a diagonal matrix given by

~K ¼ ð1=NÞ
XN

i¼1 ~ri � ~mð Þ ~ri � ~mð ÞT ¼ LTKL ¼ Ds ð6:6Þ

Equation (6.6) implies that the jL-transferred data matrix ~X ¼ ~r1~r2 � � �~rN½ � has been de-corre-

lated or whitened by the matrix L that is referred to as a whitening matrix (Poor, 1994). The trans-

form jL defined by (6.5) is generally called principal component transform and the lth component

of X̂ is formed by

jvl ðXÞ ¼ vTl X ð6:7Þ
and is called the lth principal component (PC) that consists of vTl ri

� �N

i¼1 that are jvl -transferred

data samples corresponding the lth eigenvalue ll. PCA is a process that implements the transform
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jL defined by (6.4) to obtain a set of principal components (PCs) via (6.5) or (6.7) with all

1 � l � L. In order to achieve DR, only the PCs specified by eigenvectors that correspond to first q

largest eigenvalues will be retained, while the PCs specified by eigenvectors corresponding to the

remaining (L–q) smaller eigenvalues will be discarded. The same process can be accomplished by

the singular value decomposition (SVD) to be described in Section 6.2.1.6.

6.2.1.2 Standardized Principal Components Analysis

In PCA, its focus is placed on the variances of the image pixel vectors rif gNi¼1. It has been shown

by Singh and Harison (1985) that in some applications in remote sensing, it may be more effective

to deal with data co-variances rather than data variances. Such co-variance-based PCA is called

standardized principal components analysis (SPCA).

Assume that the covariance matrix K is given by

K ¼

s2
1 s12 s13 � � � s1L

s21 s2
2 s23 � � � s2L

r31 s32 } } ..
.

..

.
} } s2

L�1 sðL�1ÞL
sL1 sL2 � � � sLðL�1Þ s2

L

2

6666664

3

7777775

ð6:8Þ

with the lth variance and (i,j)-covariance denoted by s2
l and sij, respectively. Now we define a

standard deviation matrix of K via (6.78) as D1=2
s that is the diagonal matrix of the form

D1=2
s ¼

s1 0 0

0 } 0

0 0 sL

2

4

3

5: ð6:9Þ

Then �ri ¼ D�1=2s ri is called a standardized sample of ri and K can be expressed as

K ¼ D1=2
s RKD

1=2
s orRK ¼ D�1=2s KD�1=2s ð6:10Þ

where RK is called the correlation coefficient matrix defined by

RK ¼

1 k12 k13 � � � k1L
k21 1 k23 � � � k2L

k31 k32 } } ..
.

..

.
} } 1 kðL�1ÞL

kL1 kL2 � � � kLðL�1Þ 1

2

6666664

3

7777775

ð6:11Þ

with kij ¼ sij=
ffiffiffiffiffiffiffiffi
sisj
p

and i 6¼ j. It should be noted that the RK in (6.11) is not the sample correla-

tion matrix R. The kij in RK is generally called the (i,j)th correlation coefficient of K.

Using (6.2) L ¼ v1v2 � � � vL½ � is the eigenvector matrix of K formed by its unit eigenvectors

vlf gLl¼1. Through (6.10) we can obtain

I ¼ LTRKL ¼ LTD�1=2s KD�1=2s L ð6:12Þ
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that is the L� L identity matrix. Combining the eigenvector matrix L in (6.2) and the diagonal

matrix D�1s obtained by (6.9) we can define a linear transform jD�1s L by

jD�1s LðriÞ ¼ D�1=2s L
� �T

ri ð6:13Þ

that is called standardized PCA (SPCA) and denoted by

rSPCAi � jD�1s LðriÞ ¼ D�1=2s L
� �T

ri ð6:14Þ

Using (6.12) and (6.14), the covariance matrix of the new data samples rSPCAi

� �N

i¼1 that are

obtained from rif gNi¼1 by the SPCA in (6.14) becomes an identity matrix.

Similarly, in analogy with the decomposition of K, its inverse matrix K�1 can be also decom-

posed as

K�1 ¼ D1=2
B RK�1D

1=2
B ð6:15Þ

where

D1=2
B ¼

z1 0 0

0 } 0

0 0 zL

2

4

3

5 ð6:16Þ

and z2l
� �L

l¼1 are variances of K
�1 and

RK�1 ¼

1 h12 h13 � � � h1L
h21 1 h23 � � � h2L

h31 h32 } } ..
.

..

.
} } 1 hðL�1ÞL

hL1 hL2 � � � hLðL�1Þ 1

2

6666664

3

7777775

ð6:17Þ

with hij being the (i,j)th correlation coefficient ofK
�1 and i 6¼ j. It turns out that the Bl in (6.16) can

be related to the sl in (6.9) by the following formula:

zl ¼ s�1l 1� y2l
	 
�1=2 ð6:18Þ

where y2l is a multiple correlation coefficient of the data in the lth dimension on all other

L� 1 dimensions obtained by using the multiple regression theory. So, y2l is the reciprocal of

a good noise variance estimate for the lth-dimensional data space. It should be noted that the

Dz in (6.16) is not an inverse of the Ds in (6.9), nor is RK�1 in (6.17). The major advantage

of using zl over sl is that as shown in (6.18), zl removes its correlation on other zl’s for l 6¼ k,

while sl does not. Like PCA, SPCA achieves DR by only retaining standard PCs correspond-

ing to eigenvectors that are associated with first q largest eigenvalues.

Data Dimensionality Reduction 173



6.2.1.3 Singular Value Decomposition

Another eigen-CA transform is the singular value decomposition (SVD). Unlike PCA that is

primarily designed to de-correlate the covariance matrix, SVD is one of most widely used

techniques in systems, communications, and signal processing to resolve issues caused by ill-

conditioned systems, such as underdetermined or overdetermined least squares system. It pro-

vides a matrix factorization of an arbitrary matrix into a product of two unitary matrices and a

diagonal matrix. More specifically, let Am�n be an m� n real matrix. Define two matrices

Bm�m ¼ Am�n Am�nð ÞT and Cn�n ¼ AT
m�nAm�n that can, respectively, be referred to as outer

product matrix and inner product matrix where both matrices Bm�m and Cn�n are symmetric,

semidefinite with non-negative real eigenvalues, and have the same rank. In particular, when

Am�n is an m-dimensional column vector x, the outer product matrix is an m�m matrix, xxT ,

and the inner product matrix xTx is a scalar, both of which have rank 1. In this case, the only

nonzero eigenvalue of the outer product matrix of xxT is specified by its inner product matrix

xTx.

Assume that the eigenvalues of Bm�m and Cn�n are lif gni¼1 and �li
� �n

i¼1 that can be arranged in

descending order in magnitude as follows:

l1 � l2 � � � � � lq > 0 ¼ lqþ1 � � � � � lr � � � � � lm
�l1 � �l2 � � � � � �l�q > 0 ¼ �l�qþ1 � � � � � �lr � � � � � �ln

ð6:19Þ

where r ¼ min m; nf g. Since both matrices Bn�n and Cm�m have the same rank and also identical

nonzero eigenvalues, q ¼ �q and lj ¼ �lj for all 1 � j � q. Then the set of square root of eigenval-

ues lif gri¼1 in (6.19)
ffiffiffiffiffi
l1

p
�

ffiffiffiffiffi
l2

p
� � � � � ffiffiffiffiffi

lq
p

> 0 ¼ ffiffiffiffiffiffiffiffiffi
lqþ1

p � ffiffiffiffiffiffiffiffiffi
lqþ2

p � � � � �
ffiffiffiffi
lr

p
ð6:20Þ

is called the singular values of the matrix Am�n (Chen, 1999). Now we can further decompose the

matrix Am�n into the following factorization form:

Am�n ¼ Fm�mDm�nGT
n�n ð6:21Þ

where Fm�m is an m�m unitary matrix with its column vectors being orthonormalized

eigenvectors of the m�m matrix Bm�m ¼ Am�n Am�nð ÞT so that F�1m�m ¼ FT
m�m, Gn�n is an n� n

unitary matrix with its column vectors being orthonormalized eigenvectors of the n� n matrix

Cn�n ¼ AT
m�nAm�n so that G�1n�n ¼ GT

n�n, and Dm�n is an m� n diagonal matrix Dm�n ¼
diag

ffiffiffiffiffi
l1
p

;
ffiffiffiffiffi
l2
p

; . . . ;
ffiffiffiffi
lr
p� �

with its diagonal entries specified by the singular values of Am�n and

arranged in descending order in magnitude,
ffiffiffiffiffi
l1
p � ffiffiffiffiffi

l2
p � � � � � ffiffiffiffi

lr
p

. Specifically, if the rank of

Am�n is r, then Dm�n is a square matrix of size r� r with q ¼ r.

In hyperspectral data exploitation, assume that rif gNi¼1 is a set of entire image pixel vectors or a

set of training samples in a hyperspectral image. Am�n in (6.21) can be considered by either a data

matrix formed by data samples/image pixel vectors with the subscript m and n denoting the total

number of spectral bands and the number of image pixel vectors (such as total number of image

pixel vectors or training samples), respectively, or a sample correlation/covariance matrix

KL�L/RL�L formed by the total number of data samples/image pixel vectors with m ¼ n ¼ L being

the total number of spectral bands, and q being the number of dimensions to be retained, respec-

tively. In the former case, the matrix Am�n in (6.21) is formed by data sample vectors, rif gNi¼1 with
the ith column vector specified by the ith image pixel vector ri. So, the resulting matrix is
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represented by AL�N ¼ r1r2 � � � rN½ � with q � r � min L;Nf g. In (6.21) FL�L and GN�N are called

left and right singular vector matrices of AL�N and they are generally different. The singular values

of AL�N are simply square root of non-negative eigenvalues of NRL�L,
ffiffiffiffiffi
l1
p � ffiffiffiffiffi

l2
p � � � � � ffiffiffiffiffi

lq
p

.

In other words, if we interpret eigenvalues as variances, the singular values are simply their stan-

dard deviations. As for the latter case, the matrix Am�n in (6.21) is formed by the data sample

correlation matrix, RL�L ¼ 1
N
AL�N AL�Nð ÞT , that becomes the outer product matrix of AL�N ,

AL�N AL�Nð ÞT scaled by a constant 1=Nð Þ. The singular values of AL�N AL�Nð ÞT are exactly the

same non-negative eigenvalues of RL�L, and the left and right singular vector matrices of

AL�N AL�Nð ÞT , FL�L, and GL�L turn out to be the same as the eigenvector matrix L described by

(6.2); (6.21) is reduced to (6.3), in which case SVD becomes PCA described in Section 6.2.1.1.

In order to further explore insights into the relationship between the SVD and PCA, let lj
� �L

j¼1

and l̂j
n oL

j¼1
be eigenvalues of the sample covariance matrix KL�L and the sample correlation

matrix RL�L with their corresponding eigenvectors vj
� �L

j¼1 and v̂j
� �L

j¼1, respectively. Also let

sdata;j
� �L

j¼1, sj
� �L

j¼1 and ŝj
� �L

j¼1 be the singular values of AL�N ¼ r1r2 . . . rN½ �, KL�L and RL�L

with their corresponding singular vectors udata; j
� �L

j¼1, uj
� �L

j¼1 and ûj
� �L

j¼1, respectively. The fol-
lowing relationships can be derived and summarized as follows.

1. sj ¼ lj
2.

sdata; jffiffiffi
N
p ¼ ffiffiffiffi

ŝj
p ¼

ffiffiffiffi
l̂j

q
where 1=

ffiffiffiffi
N
p	 


sdata; j is the squared root of the eigenvalue lj resulting from

the fact that the sample correlation/covariance matrix R/K is the outer product of the data

matrix with/out mean removed.

3. uj ¼ 	vj that implies that for each j uj and vj are either identical or differ by a sign. In the latter

case, uj and vj point to complete opposite directions. However, it is the sign difference that

distinguishes the SVD from PCA and makes both PCA and SVD two different transformations

that also yield different performances. In order for SVD to avoid such a sign issue of which one,

uj or vj ¼ �uj should be selected as the desired singular vector; we can map all data sample

vectors on the singular vector uj and sum all their projections by calculating their inner products

via hri; uji ¼ rTi uj . If the total sum of the projections is non-negative, that is,
PN

i¼1 r
T
i uj � 0 is

non-negative, the desired singular vector is set to uj and vj ¼ �ujotherwise, that is, vj ¼ �uj ifPN
i¼1 r

T
i uj < 0.

4. udata;j ¼ 	ûj and ûj 6¼ uj for 1 � j � L.

5. ûj ¼ 	v̂j , which implies that for each j, ûj and v̂j are either identical or differ by a sign. In the

latter case, ûj and v̂j point to complete opposite directions.

Finally, as an alternative, we can also find the singular values of the inner product matrix of the

matrix AL�N , AL�Nð ÞTAL�N with size of N � N. It turns out that both inner product matrix of

AL�N , AL�Nð ÞTAL�N and the outer product matrix of AL�N , AL�N AL�Nð ÞT have the same identical

non zero singular values with only difference in the number of zero singular values. This implies

that to perform DR for any matrix Am�n, either inner product matrix AL�Nð ÞTAL�N or outer prod-

uct matrix AL�N AL�Nð ÞT can be used for SVD. Apparently, in hyperspectral imaging the data sam-

ple correlation matrix RL�L ¼ 1
N
AL�N AL�Nð ÞT that is a 1=Nð Þ-scaled outer product matrix of a data

matrix AL�N is the most intuitive and logical way to be chosen for DR.

There are also other factorization forms similar to (6.6) that can be used in place of SVD, for

example, Cholesky decomposition, QR decomposition, and Householder transformation (Golub and

Van Loan, 1989), that can be used for real-time implementation (see Chapter 33 and Chang (2013)).
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6.2.2 Signal-to-Noise Ratio-Based Components Analysis Transforms

The PCA discussed in Section 6.2.1 is developed to arrange PCs in descending order of data vari-

ance. However, data variance does not mean image quality. In other words, PCA-ordered PCs are

not necessarily ordered by image quality as shown by Green et al. (1988). In order to address this

issue, Green et al. (1998) used an approach similar to PCA, called maximum noise fraction

(MNF), that was based on a different criterion, signal-to-noise (SNR), to measure image quality.

It was later shown by Lee et al. (1990) that MNF actually performed two stage processes, noise

whitening with unit variance followed by PCA. Because of that MNF was also referred to as

noise-adjusted principal component (NAPC) transform.

6.2.2.1 Maximum Noise Fraction Transform

The idea of MNF can be briefly described as follows. Assume that rif gNi¼1 is a set of entire image

pixel vectors in a hyperspectral image with size N ¼ nrnc when nr and nc denote the number

of rows and columns in the image, respectively. Let each image pixel vector also be denoted by an

L-dimensional column vector ri ¼ ri1; ri2; . . . ; riLð ÞT. Suppose that the lth band image can be repre-

sented by an N-dimensional column vector, bl ¼ rl1; rl2; . . . ; rlNð ÞT . It assumes that an observation

model

bl ¼ sl þ nl ð6:22Þ

where bl is an observation vector, sl is an N-dimensional signal column vector, and nl is an

N-dimensional column vector uncorrelated with sl.

Let s2
nl
and s2

sl
denote the noise variance and signal variance of bl, respectively. We define the

noise fraction (NF) of the lth band image vector bl to be the ratio of the noise variance, s
2
nl
in the lth

band image to the total variance, s2
bl
in the lth band image given by

NFl ¼ s2
nl
=s2

bl
ð6:23Þ

where s2
bl
¼ 1=Nð ÞPN

i¼1 ril � mlð Þ2 and ml ¼ 1=Nð ÞPN
i¼1 ril .

Assume that wl is an L-dimensional column vector that will be used to linearly transform the lth

band image vector bl ¼ rl1; rl2; . . . ; rlNð ÞT to a new lth band image described by ~bl ¼
~rl1;~rl2; . . . ;~rlNð ÞT via

~rli ¼ wT
l ri ¼

XL

k¼1 wlkrik ð6:24Þ

It is worth noting that the ith component of the lth band image vector ~bl, ~rli in (6.24) is obtained by
weighted sum over image pixels in all the L bands of the ith image pixel vector ri. So, MNF is to

find a transform specified by wMNF
l to maximize the NF defined by

maxwl
s2
~nl
=s2

~bl

n o
¼ maxwl

wT
l s2

nl

h i
wl

wT
l s2

bl

h i
wl

8
<

:

9
=

;
¼

wMNF
l

	 
T
s2
nl

h i
wMNF

l

wMNF
l

	 
T
s2
bl

h i
wMNF

l

ð6:25Þ

Let WMNF ¼ wMNF
1 wMNF

2 . . .wMNF
L

� �
be an MNF transform matrix such that ~X ¼ WMNF

	 
T
X

where X ¼ r1r2 � � � rN½ � and ~X ¼ ~r1~r2 � � �~rN½ �. Then we can obtain the lth MNF-transformed band
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image by ~bl ¼ ~rl1;~rl2; . . . ;~rlNð ÞT via ~rli ¼ wMNF
l

	 
T
ri ¼

PL
k¼1 w

MNF
lk rik specified by (6.24). Since

the criterion of NF given by (6.23) can be re-expressed as

NFl ¼
s2
nl

s2
bl

¼ s2
nl

s2
sl
þ s2

nl

¼ 1

s2
sl
=s2

nl

� �
þ 1
¼ 1

SNRl þ 1
ð6:26Þ

where SNRl ¼ s2
sl
=s2

nl
is signal-to-noise ratio defined in (6.25). As a consequence, maximizing the

NFl specified by (6.23) is equivalent to minimizing SNRl specified by (6.26). The Green et al.

developed MNF is to find a set of wMNF
l

� �L

l¼1 to maximize the noise fraction in each of bands and

then arrange MNF-transformed bands in descending order of maximum noise fractions according

to (6.23) or in ascending order of SNR according to (6.26).

6.2.2.2 Noise-Adjusted Principal Component Transform

Recently, Lee et al. (1990) re-interpreted MNF transform and showed that MNF transform was

nothing more than a two-stage process that first whitened noise variances of each band image to

unit variance, then performed PCA transform on the noise-whitened band images. As a result,

PCA-generated principal components can be arranged in the descending order of SNR that is the

reverse order arranged by MNF transform. With this new interpretation, MNF is further referred to

as noise-adjusted principal component (NAPC) transform. In other words, we can reinterpret MNF

transform that maximizes the NFl in (6.23) to minimize its reciprocal defined by

minwl
s2
~bl
=s2

~nl

n o
¼ minwl

wT
l s2

bl

h i
wl

wT
l s2

nl

h i
wl

8
<

:

9
=

;
ð6:27Þ

or maximize the SNR over the reciprocal of (6.26) defined by

maxwl
SNRlf g ¼ maxwl

s2
bl

s2
nl

( )

¼ maxwl

s2
sl
þ s2

nl

s2
nl

( )

¼ maxwl
s2
sl
=s2

nl

� �
þ 1

n o
¼ maxwl

SNRl þ 1f g
ð6:28Þ

As a result of (6.27) or (6.28), the obtained transform vectors arrange band images in ascending

order of noise fractions or descending order of SNR. Interestingly, MNF used in the popular ENVI

software is actually minimum noise fraction specified by (6.27).

The argument outlined above by (6.27) and (6.28) was based on Green et al.’s approach for

each band image bl, not an entire hyperspectral image cube. As noted, the lth MNF-transformed

band image vector ~bl is obtained by (6.24) whose ith component ~rli is actually calculated by a

weighted band correlation among the L bands within the ith image pixel vector via a particular

weight vector wl. It may not be conceptually clear and easy to be understood from a hyperspectral

image viewpoint as an image cube. However, the connection between Green et al.’s MNF trans-

form and Lee et al.’s NAPC can be better understood if a hyperspectral image is presented as a

data matrix as follows. Following the same notations used in the MNF transform, assume that an

L-band hyperspectral image has N image pixels denoted by rif gNi¼1 with N ¼ nrnc where nr and nc
denote the number of rows and columns in the image, respectively. Also, let bl ¼
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bl1; bl2; . . . ; blNð ÞT be an N-dimensional column vector that represents the lth band image of the

hyperspectral image. Then the relationship between L-dimensional image pixel vectors rif gNi¼1ri
and L band images blf gLl¼1can be related by the following data matrix X ¼ r1r2 � � � rN½ �:

X ¼ r1r2 . . . rN½ � ¼

r11 r12 . . . r1ðN�1Þ r1N
r11 r11 } } r2N

..

.
} } } ..

.

rðL�1Þ1 } } rðL�1ÞðN�1Þ rðL�1ÞN
rL1 rL1 . . . rLðN�1Þ rLN

2

666664

3

777775
¼

bT1
bT2

..

.

bTL�1
bTL

2

666664

3

777775
ð6:29Þ

and

blk ¼ rlk for 1 � l � L and 1 � k � N ð6:30Þ

According to (6.29) and (6.30), Green et al.’s MNF transform performs on the left-hand side of

(6.30) band-by-band images in a similar fashion as a remotely sensed image is stored by the Band

SeQuential (BSQ) (Schowengerdt, 1997, p. 25). On the other hand, Lee et al.’s NAPC transform

processes a hyperspectral image as the data matrix, that is, X ¼ r1r2 � � � rN½ � on the left-hand side

of (6.29) in the same way as a remotely sensed image is stored by the band-interleaved-by-pixel

(BIP) (Schowengerdt, 1997, p. 26). Therefore, in the NAPC transform, the sample data covariance

matrix is obtained by K ¼ 1=Nð Þ XXT
� �� �� mmT ¼ 1=Nð Þ PN

i¼1 ri � mð Þ ri � mð ÞT� �
and the

noise covariance matrix, Kn is estimated from the data matrix X (Lee et al. 1990). A fast algorithm

derived by Roger (1994) to implement NAPC transform is summarized as follows.

Algorithm for NAPC Transform

1. Find a whitening matrix F to orthonormalize Kn such that

FTKnF ¼ I and FTF ¼ D�1n ð6:31Þ

where Dn is the diagonal variance matrix of Kn.

2. Find the resulting noise-adjusted data covariance matrix given by Kadj ¼ FTKF.

3. Find an eigenvector matrix resulting from PCA operating on Kadj, denoted by H such that

HTKadjH ¼ Dadj andH
TH ¼ I ð6:32Þ

where Dadj is the diagonal variance matrix of Kadj.

4. Finally, the desired NAPC transform can be derived by

LNAPC ¼ HF ð6:33Þ

Now, let wNAPC
l

� �L

l¼1 be the NAPC transform vectors obtained from LNAPC in (6.33), that is,

LNAPC ¼ wNAPC
1 wNAPC

2 . . .wNAPC
L

� �
that is similar to (6.2). Then wNAPC

l

� �L

l¼1 arrange band

images in accordance with descending order of SNR.

According to (6.25) and (6.33), MNF transform and NAPC transform achieve DR by only retaining

first q projection vectors wMNF
l

� �q

l¼1 and wNAPC
l

� �q

l¼1 that correspond to the q largest SNRs
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One major disadvantage of implementing MNF or NAPC transform is estimation of noise

covariance matrix. Since it is based on the criterion of SNR, reliable noise estimation must be

guaranteed. For details of estimation of noise covariance matrix we refer to Section 17.3 in Chang

(2003a).

6.3 Dimensionality Reduction by High-Order Statistics-Based Components
Analysis Transforms

Recall that rif gNi¼1 is the set of image pixel vectors in a hyperspectral image where X ¼
r1r2 . . . rN½ � is a data matrix that represents an image cube as an L�N data matrix formed by

rif gNi¼1 with N ¼ nrnc. Let w be an L-dimensional column vector and assumed to be a desired

projection vector. Then z ¼ wTX ¼ z1; z2; . . . ; zNð ÞT is an N � 1 column vector that represents the

projection of the entire hyperspectral image pixel vectors rif gNi¼1 being mapped along the direction

of w. Now, assume that Fð�Þ is a function to be explored and defined on the projection space

z ¼ wTX. The selection of the function F depends on various applications. For example, in order

to detect small targets in a large unknown background, skewness and kurtosis are generally used as

criteria to measure asymmetry and flatness of a distribution, respectively. In this case, F(.) can be

defined by skewness (k3) as follows:

FðziÞ ¼ k3ðziÞ ¼ E zi � mð Þ3
h i� �

=s3

¼ E wTri � mð Þ3
h i� �

=s3
for each i ¼ 1; 2; . . . ;N ð6:34Þ

that is the normalized third central moment or kurtosis (k4)

FðziÞ ¼ k4ðziÞ ¼ E zi � mð Þ4
h i� �

=s4

¼ E wTri � mð Þ4
h i� �

=s4
for each i ¼ 1; 2; . . . ;N ð6:35Þ

that is the normalized fourth central moment. The m and s in (6.34) and (6.35) are the mean and

standard deviation of random variable zi, respectively. Since small targets can be characterized by

those pixels that cause maximal magnitude of asymmetry and ripples of a distribution, finding a

projection vector w that maximizes (6.34) and (6.35) is equivalent to finding a direction which

these pixels are most likely aligned with. By projecting all data samples rif gNi¼1 on the projection

vector w, the desired small targets can be detected by those pixels that yield the largest projection

along the direction of w.

If we assume that most of image background can be described by second-order statistics and the

statistical behaviors of targets of interest go beyond second-order statistics, a logical preprocessing

for detecting such targets will remove the image background prior to target detection. In doing so,

we first remove the sample mean and de-correlate the data matrix X by the sphering method

described as follows.

6.3.1 Sphering

The idea of sphering is to centralize the mean of the data samples rif gNi¼1 at the origin while nor-

malizing the data variances to one. This allows us to completely remove the first-order statistics

and all the second-order statistics and focus on statistics orders higher than 2. Here, a remark on

sphering is noteworthy. Despite that many choose “sphering” to equate “whitening,” a concept
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widely used in communications and signal processing, and consider both concepts to be the

same. Technically speaking, they are not equivalent. A whitening process or filter operates an

input process that can be any random process and outputs a white process (see (6.56)) that is a

zero-mean random process with all samples being uncorrelated (Therrien, 1992). In other

words, a white process is a random process whose mean is zero and power spectral density

function (power density spectrum) is a constant that implies that all samples resulting from a

white process are completely uncorrelated. With this interpretation, we consider “sphering” to

be different from “whitening” in the sense that the former make statistics of second order go

away by normalizing variances to one as opposed to the latter that only de-correlates the data

by nullifying co-variances while still retaining variances. Consequently, the covariance matrix

of the sphered data is an identity matrix compared to a whitened data whose covariance matrix

is a diagonal matrix, but not necessarily an identity matrix.

As a result of sphering the data, two sets of data samples can be categorized. One set is

made up of all data samples lying on the surface of a sphere centered at the origin with unit

radius. The set of these data samples represents uninteresting data samples that may include

most image background pixels. The second set of data samples contains all data samples that

are not on the sphere, that is, either inside or outside the sphere. Only these data samples are

of major interest and can be further explored by orders of statistics higher than variance. So,

working only on this set of data samples may exclude most of image background samples.

In order to perform sphering, we first remove the sample mean of data set by
~X ¼ X� m � 1T ¼ ½r1 � m; r2 � m; . . . ; rN � m�, where m ¼ 1=Nð ÞPN

i¼1 ri is the sample mean

vector and 1 ¼ ½11 � � � 1|fflfflffl{zfflfflffl}
N

�T is column vector with all ones in the components. Next step we will de-

correlate the zero-mean data sample matrix ~X.
Assume that fllgLl¼1 are the eigenvalues of the sample covariance matrix K~X ¼ 1=Nð Þ~X~X

T

formed by ~X and fvlgLl¼1 be their corresponding eigenvectors with jjvl jj ¼ 1. Suppose that L ¼
v1v2 . . . vL½ � is the eigenvector matrix formed by fvlgLl¼1. The covariance matrix can be decom-

posed into

LTKX̂L ¼ Dl ð6:36Þ

Let Dl ¼
l1 0 0

0 } 0

0 0 lL

2

4

3

5. Multiplying both sides of (6.36) by Dl results in

Dlð Þ1=2LTK~XL Dlð Þ�1=2 ¼ I ð6:37Þ

From (6.27), we obtain the desired sphering matrix A, given by

A ¼ L Dlð Þ�1=2 ð6:38Þ

so that ATK~XA ¼ I. The data set resulting from applying the sphering matrix A to the original data

set, rif gNi¼1, is denoted by ~rif gNi¼1 and the process of using (6.37) and (6.38) is called sphering that

is also known as a whitening process of X. In this case, the data matrix Y has zero mean and an

identity matrix as its covariance matrix.

If we replace the original data samples rif gNi¼1 with sphered data samples ~rif gNi¼1, then
~z ¼ wT ~X ¼ wT ~r1~r2 � � �~rN½ � ¼ wT~r1;w

T~r2; . . . ;w
T~rNð ÞT ¼ ~z1;~z2; . . . ;~zNð ÞT . Both the skewness in
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(6.34) and the kurtosis in (6.35) are reduced to

k3ð~ziÞ ¼ E wT~ri
	 
3h i

for each i ¼ 1; 2; . . . ;N ð6:39Þ

and

k4ð~ziÞ ¼ E wT~ri
	 
4h i

for each i ¼ 1; 2; . . . ;N ð6:40Þ

respectively where ~rif gNi¼1 are considered as random vectors.

6.3.2 Third-Order Statistics-Based Skewness

After the data are sphered, the next task is to search for a projection vector that is optimal in

some sense. If the skewness is used as a criterion, the projection vector should be the one that

points to the direction where the projected data has the most asymmetric histogram. If the

kurtosis is used as criterion, the projected data will yield the most heavy-tailed histogram. To

find the projector that yields the maximal skewness, we impose a constrained problem as

follows:

maxw 1=Nð ÞPN
i¼1 z

3
i

� �

¼ maxw 1=Nð ÞPN
i¼1 w

T~ri~r
T
i ww

T~ri
� � subject towTw ¼ 1 ð6:41Þ

where zi is the projection resulting from the sphered data sample yi via the projection vector w.

The constraint wTw ¼ 1 is used for normalization such that the skewness of the resulting data

after projection will not be affected by the magnitude of w. Using the Lagrange multiplier

method, an objective function is obtained by

JðwÞ ¼ E wT~ri~r
T
i ww

T~ri
� �� lðwTw� 1Þ ð6:42Þ

where the expectation of E wT~ri~r
T
i ww

T~ri
� �

in (6.42) replaces the sample average

1=Nð ÞPN
i¼1 w

T~ri~r
T
i ww

T~ri to indicate ~rif gNi¼1 are random vectors.

Differentiating (6.42) with respective w results in

@JðwÞ
@w

¼ 3E ~ri~r
T
i w~r

T
i

� �
w� 2lw ¼ 0 ð6:43Þ

Setting l0 ¼ 2=3ð Þl yields

E ~ri~r
T
i w~r

T
i

� �� l0I
	 


w ¼ 0 ð6:44Þ

Solving (6.44) is equivalent to finding the eigenvalue l0 of the matrix E ~ri~r
T
i w~r

T
i

� �
and its corre-

sponding eigenvector w
.
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6.3.3 Fourth-Order Statistics-Based Kurtosis

When the kurtosis is used as an optimal criterion, the constrained problem specified by (6.41)

becomes

maxw 1=Nð ÞPN
i¼1 z

4
i

� �

¼ maxw 1=Nð ÞPN
i¼1 w

T~ri~r
T
i ww

T~ri~r
T
i w

� � subject towTw ¼ 1 ð6:45Þ

and the Lagrangian is given by

JðwÞ ¼ E wT~ri~r
T
i ww

T~ri~r
T
i w

� �� lðwTw� 1Þ ð6:46Þ

Differentiating (6.46) with respect to w and setting l0 ¼ 1=2ð Þl results in

E ~ri~r
T
i ww

T~ri~r
T
i

� �� l0I
	 


w ¼ 0 ð6:47Þ

that once again is to solve the eigenvalue l0 and its associated eigenvector w
 of the matrix

E ~ri~r
T
i ww

T~ri~r
T
i

� �
. The obtained w
 is a desired projector that yields the maximum kurtosis.

6.3.4 High-Order Statistics

In Sections 6.3.2 and 6.3.3 we discussed DR transforms using skewness and kurtosis as optimal

criteria to find projection vectors. In this section, we extend their ideas to statistics of order higher

than 4. Using the fifth normalized central moment (refer to as fifth moment) as a criterion and

following the same derivation in Sections 6.3.2 and 6.3.3, (6.47) can be modified as

E ~ri~r
T
i ww

T~ri~r
T
i w~r

T
i

� �� l0I
	 


w ¼ 0 ð6:48Þ

Similarly, with the sixth normalized central moment (refer to as sixth moment) as a criterion,

(6.44) becomes

E ~ri~r
T
i ww

T~ri~r
T
i ww

T~ri~r
T
i

� �� l0I
	 


w ¼ 0 ð6:49Þ

Since ~rTi w ¼ wT~ri and it is a scalar, (6.48) and (6.49) can be expressed, respectively, as follows:

E ~ri ~r
T
i w

	 
3
~rTi

h i
� l0I

� �
w ¼ 0 ð6:50Þ

and

E ~ri ~r
T
i w

	 
4
~rTi

h i
� l0I

� �
w ¼ 0 ð6:51Þ

Therefore, using the kth normalized central moment as an optimal criterion for optimal projec-

tor is equivalent to solving the following eigenproblem

E ~ri ~r
T
i w

	 
k�2
~rTi

h i
� l0I

� �
w ¼ 0 ð6:52Þ
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Let w
 denote the eigenvector of E ~ri ~r
T
i w

	 
k�2
~rTi

h i
. Using the property of eigendecomposition,

(6.52) is reduced to

wT E ~ri ~r
T
i w

	 
k�2
~rTi

h i� �
w ¼ l0 ð6:53Þ

because of wTw ¼ 1. Simplifying the left-hand side of (6.53) yields

E wT~ri ~r
T
i w

	 
k�2
~rTi w

h i
¼ E ~rTi w

	 
kh i
¼ E ~zki

� � ð6:54Þ

So the corresponding eigenvalue l0 in (6.53) is the kth central moment of ~z ¼ w
ð ÞT ~X. If k ¼ 2,

(6.54) is reduced to E ~ri~r
T
i

� �
, that is, the sample covariance matrix K~X The w



is the eigenvector of

K~X and the l0 is the variance of ~z ¼ w
ð ÞT ~X, which is the standard principal components analysis

(SPCA) in Section 6.2.1.2.

6.3.5 Algorithm for Finding Projection Vectors

It should be noted that a single projection vector w
 that solves (6.44) for skewness, (6.47) for
kurtosis, or (6.52) for the kth moment represents only one component. In order to continuously

generate new components, a sequence of projections must be performed. In this case, when a pro-

jector vector w
 is found, the de-correlated data ~X is then mapped into the linear subspace hw
i?
orthogonal to hw
i that is the space spanned by w
. The next projection vector w
 is then found by

solving (6.44), (6.47), or (6.52) in the space hw
i?. The same procedure is then continued on until

a stop criterion is satisfied such as predetermined number of projections required to be generated.

An algorithm for finding a sequence of projection vectors is called projection vector generation

algorithm (PVGA) and can be described as follows.

Projection vector generation algorithm

1. Initially, sphere the original data set X via (6.36)–(6.38). The resulting data set is denoted by ~X.
2. Find the first projection vector w
1 by solving (6.44), (6.47), or (6.52) depending on which crite-

rion is used, skewness or kurtosis or the kth moment.

3. Use the found w
1 to generate the first projection image ~Z
1 ¼ w
1

	 
T ~X ¼ ~z1i j~z1i ¼ w
1
	 
T

~ri

n o
.

4. Apply the orthogonal subspace projector (OSP) specified by P?w

1
¼ I� w
1 w
1

	 
T
w1

� ��1
w
1
	 
T

to the data set ~X to produce the first OSP-projected data set, denoted by ~X
1
, ~X

1 ¼ P?w

1

~X.

5. Use the data set ~X
1
and find the second projection vector w
2 by solving (6.44), (6.47), or (6.52)

depending upon which criterion is used, skewness or kurtosis or the kth moment.

6. Use the foundw
2 to generate the second projection image ~Z
2 ¼ w
2

	 
T ~X
1 ¼ ~z2i j~z2i ¼ w
2

	 
T
~ri

n o
.

7. Apply P?w

2
¼ I� w
2 w
2

	 
T
w2

� ��1
w
2
	 
T

to the data set ~X
1
to produce the second OSP-

projected data set, denoted by ~X
2
, ~X

2 ¼ P?w

2

~X
1
that can be used to produce the third projection

vector w
3 by solving (6.44), (6.47), or (6.52). Or equivalently, we define a matrix projection

matrix W
2 ¼ w
1w


2

� �
and apply P?

W
2 ¼ I�W
2 W
2	 
T
W
2

� ��1
ðW
2ÞT to the original

sphered data set ~X to obtain ~X
2 ¼ P?

W
2
~X.
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8. Repeat the procedure of steps 5–7 over and over again to produce w
3; . . . ;w


k until a stopping

criterion is met. It should be noted that a stopping criterion can be either a predetermined num-

ber of projection vectors required to be generated or a predetermined threshold for the difference

between two consecutive projection vectors.

It should be noted that the implementation of steps 2 and 6 in the PVGA is not trivial. In order to

solve (6.44), (6.47), or (6.52) for the optimal projection vector w
1, the following iterative proce-

dure is proposed to execute the steps 2 and 6 where only the criterion (6.44) for skewness is used

for illustration. Similarly, the same implementation can be used for kurtosis and the kth moment

with (6.44) replaced with (6.47) and (6.52), respectively.

Implementation of steps 2 and 6 to execute (6.44) for skewness:

a. Initialize a random projector w
ð0Þ
1 and set k ¼ 0.

b. Calculate the matrix E ~ri~r
T
i w
ðkÞ
1 ~rTi

h i
and find an eigenvector v

ðkÞ
1 corresponding to the largest

magnitude of eigenvalues of the matrix E ~ri~r
T
i w
ðkÞ
1 ~rTi

h i
.

c. If the Euclidean distance jjwðkÞ1 � v
ðkÞ
1 jj > e and jjwðkÞ1 þ v

ðkÞ
1 jj > e, then let w

ðkþ1Þ
1 ¼ v

ðkÞ
1 and

k k þ 1; go to step (b). Otherwise, w
ðkÞ
1 is the desired projector w
1. Let w



1 ¼ w

ðkÞ
1 and return

to step 3 in the PVGA.

In order for a high-order statistics-based transform to achieve DR, we use PVGA to produce the first q

projection vectors w
1; . . . ;w


q. For example, the skewness transform achieves DR by using PVGA to

find only the first q projection vectors that repeatedly solve (6.41) using (6.44) via successive orthogo-

nal subspace projections, the kurtosis transform achieves DR by using the PVGA to find only the first q

projection vectors that repeatedly solve (6.45) using (6.47) via successive orthogonal subspace projec-

tions and the kth central moment transform achieves DR by using the PVGA to find only the first q

projection vectors w


that repeatedly solve (6.53) for l0 via successive orthogonal subspace projections.

6.4 Dimensionality Reduction by Infinite-Order Statistics-Based
Components Analysis Transforms

In Section 6.3, transforms using the kth order of statistics with any k � 2 as an optimal criterion

were presented. When the k becomes infinite, that is, statistics of infinite order, the approaches

using (6.44), (6.47), and (6.52) in Section 6.3 are no longer applicable for k ¼ 1. To address

this issue, two approaches have been investigated. One is Projection Pursuit (PP) discussed in

Chapter 16 in Chang (2003a) that uses a projection index as a criterion to find an optimal projec-

tion vector. When a projection index is specified by a criterion of the kth order of statistics for

k � 2, the PP is then reduced to transforms in Sections 6.2 and 6.3, particularly, PCA for k¼ 2,

skewness for k¼ 3, and kurtosis for k¼ 6. The other is independent component analysis (ICA)

that uses mutual information to de-correlate statistical dependency. Since a probability distribution

can be fully described by its moment-generating function with infinite number of moments, theo-

retically ICA can be viewed as a transform using an infinite-order logical extension of any kth

high-order component transforms and will be considered in this section.

ICA has received considerable interest in recent years because of its versatile applications rang-

ing from blind source separation, channel equalization to speech recognition, and functional mag-

netic resonance imaging (Hyvarinen et al., 2001). The key idea of ICA assumes that data are

linearly mixed by a set of separate independent signal sources and can then be used to demix these
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signal sources according to their statistical independency measured by mutual information. In

order to validate its approach, an underlying assumption is that at most one source in the mixture

model can be allowed to be a Gaussian source. This is due to the fact that a linear mixture of

Gaussian sources is still a Gaussian source. More precisely, let x be an L-dimensional mixed signal

source vector expressed by

x ¼ As ð6:55Þ

where A is an L� p mixing matrix and s is a p-dimensional signal source vector made up of p

signal sources. The purpose of ICA is to find a demixing matrix W that separates the signal source

vector s into a set of p sources that are statistically independent. Several different criteria have been

proposed to measure source independency (Hyvarinen and Oja, 2001). Nevertheless, they all origi-

nated from the concept of mutual information that is a criterion to measure the discrepancy

between two random sources (Cover and Thomas, 1991).

As a special case of (6.55), suppose that both x and y are zero-mean p-dimensional column

random signal source vectors with covariance matrices Sx ¼ 1=pð Þ xxT½ � and Sy ¼ 1=pð Þ yyT½ �,
respectively. In order to de-correlate x in a similar fashion as the x is demixed in (6.55), a whiten-

ing matrix S�1=2x defined by the inverse of the square root of the covariance matrix, Sx can be used

to whiten the signal source vector x. As a consequence, Sy ¼ S�1=2x

� �
Sx S�1=2x

� �T

¼ I and the

resulting source vector y becomes an un-correlated signal source vector in analogy with the signal

source vector s in (6.55) to become a statistical independent source vector resulting from a demix-

ing matrix W found by ICA via (6.55). In light of this interpretation, (6.55) is reduced to

x ¼ S1=2
x y) y ¼ S�1=2x x ð6:56Þ

where the mixing matrix A and the signal source vector s in (6.55) are replaced with the square-root

of the covariance matrix, S1=2
x and an uncorrelated random source vector y, respectively. By virtue of

(6.56), the statistical independency measured by ICA is reduced to the second-order statistics de-

correlation by PCA. Accordingly, ICA actually performs PCA on the p-dimensional correlated signal

source vector x via a whitening matrix S�1=2x to produce p uncorrelated PCs represented by the

uncorrelated signal source vector y in terms of second-order statistics. The process of de-correlating

the second-order statistics source vector x into an uncorrelated signal source vector y using (6.56) is

generally referred to as whitening in signal processing and communications (Poor, 1994), with S�1=2x

being used as a whitened matrix similar to (6.38) in Section 6.3.1. The only difference between

(6.55) and (6.56) is that the mixing matrix A in (6.55) is unknown as opposed to the covariance

matrix, S1=2
x in (6.56) that can be calculated directly from the observed signal source vector x.

More interestingly, if we further interpret the mixed signal source vector x, the mixing matrix A,

and s in (6.55) as a hyperspectral image pixel vector r, an image endmember matrix M and an

abundance vector a, respectively, (6.55) becomes

r ¼Ma ð6:57Þ

that is exactly the linear mixture model used in hyperspectral image analysis with no noise term

due to the fact that the noise source is considered as one of sources to be separated. More details

can be found in Chapter 15 of Chang (2003a).

Over the past years, DR is generally performed by PCA via (6.56) or (6.38). Interestingly, little

work of applying ICA to DR has been reported in the literature except Wang and Chang (2006a). One
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possible reason is that ICAwas not originally developed for the purpose of DR. A second reason may

be that the similarity and relationship among the three equations, (6.55)–(6.57), have not been recog-

nized. A third one is that the mixing matrices, S1=2
x in (6.56) andM in (6.57) are assumed to be known

or can be generated directly from the data compared to the mixing matrix A in (6.55) that is totally

unknown. Finally, unlike PCA that prioritizes its generated principal components according to the

magnitude of eigenvalues, there is no specific criterion to rank components produced by ICA. Since

ICA is a well-established technique, we will only focus on the above-described issues that arise in DR.

In order to implement ICA, the algorithm of FastICA developed by Hyvarinen and Oja (2001) is

used to find ICs where the deflation approach was applied to generate ICs one by one sequentially

and each of ICs is produced by maximizing the negentropy measured by kurtosis. Typically, non-

Gaussianity can be measured by the absolute value of kurtosis. But, the kurtosis also has some

drawbacks. It is very sensitive to outliers (Hyvarinen and Oja, 2001, p. 182) where a single sample

can make the kurtosis very large. To alleviate this problem, some other criteria such as negentropy

are introduced as a measure for non-Gaussianity. There are several approximations to negentropy

using various other nonlinear functions, such as skewness, tanh, etc. According to our applications

in hyperspectral target detection, the ICs of major interest are generally super-Gaussian that is

usually caused by outliers. In this case, the kurtosis seems to be an appropriate criterion to be used

to generate ICs. There is another symmetric approach (Hyvarinen and Oja, 2001, p. 194) that can

be used to find ICs. However, this approach does not offer any advantage over the deflation

approach in our applications. Therefore, it is not considered in this chapter.

For each spectral band image, it was converted to a vector. More specifically, assume that a

hyperspectral image cube has size of M � N � L where L is the number of spectral bands and MN

is the size of each spectral band image. The hyperspectral image cube can then be represented by a

data matrix X of size L�MN with L rows and MN columns. In other words, each row in the data

matrix X is specified by a particular spectral band image. As a result, a total of L ICs can be gener-

ated by FastICA. However, there are some issues in implementing FastICA. First of all, FastICA-

generated ICs are not necessarily in order of information significance as the way PCs are generated

by PCA or MNF in accordance with decreasing magnitude of eigenvalues or SNRs. Another is that

ICs generated by FastICA in different runs do not necessarily appear in the same order. These

issues are primarily due to the nature that the initial projection unit vectors used to produce ICs via

FastICA are randomly generated. Therefore, an IC generated earlier by FastICA is not necessarily

more significant than the one generated later.

In order to resolve the issue in the use of the random initial projection unit vectors by FastICA,

three approaches are developed. One is statistics-prioritized ICA-DR (SPICA-DR) that considers

each generated IC as a random variable. Using this interpretation, we assume that the ith ICi can be

described by a random variable zi with values taken by the gray-level value of the nth pixel in the

ICi, denoted by zin. In this case, FastICA-generated ICs can be ranked and prioritized by statistics-

based criteria. Another is referred to as Random ICA-DR (RICA-DR) that considers FastICA as a

random algorithm by taking advantage of the nature of randomness caused by initial unit projec-

tion vectors used by FastICA. Its idea is similar to that used for random endmember extraction

algorithms (REEAs) discussed in Chapter 10 and is to run FastICA a number of times to produce

sample average of all ICs where the ICs common in all runs will be considered as significant ICs

and used for DR. A third approach is called Initialization-Driven ICA-DR (IDICA-DR) that is an

approach complete opposite to RICA-DR. This idea is also similar to initialization-driven EEAs

developed in Chapter 9. It removes the random nature caused by the initial projection unit vectors

used by FastICA by using a custom-designed initialization algorithm to produce an appropriate set

of initial projection vectors to initialize FastICA. Consequently, the ICs are prioritized by the pro-

jection vectors generated by the initialization algorithm.
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6.4.1 Statistics-Prioritized ICA-DR (SPICA-DR)

Assume that the ith ICi can be described by a random variable zi with values taken by the gray-

level value of the nth pixel in the ICi, denoted by z
i
n.

SPICA-DR algorithm

1. Assume that the number of dimensions required to be retained is q.

2. Use FastICA to find 2q independent components, ICif g2qi¼1. It should be noted that for each IC

FastICA randomly generates a unit vector as an initial projection vector to produce the final

desired projection vector for that particular component.

3. Specify a statistics-based criterion J and calculate the Priority Score (PS), PSJðICiÞ for each of

ICif g2qi¼1.
4. Prioritize the ICif g2qi¼1 in accordance with PSJðICiÞ.
5. Select those ICs with the first p largest PSJðICiÞ to perform DR.

The statistics-based criterion used in step 3 of SPICA-DR can be chosen from one of the following

measures to produce priority scores (PS). Since the data has been sphered, the second-order statis-

tics are not included.

1. Sample mean of third-order statistics: skewness for zi.

PSskewbessðICiÞ ¼ k3i
� �2 ð6:58Þ

where k3i ¼ E z3i
� � ¼ 1=MNð ÞPMN

n¼1 zin
	 
3

is the sample mean of the third-order statistics in the

ICi.

2. Sample mean of fourth-order statistics: kurtosis for zi.

PSkurtosisðICiÞ ¼ k4i
� �2 ð6:59Þ

where k4i ¼ E z4i
� � ¼ 1=MNð ÞPMN

n¼1 zin
	 
4

is the sample mean of the fourth-order statistics in the

ICi.

3. Combination of third- and fourth-order statistics for zi:

PSJðICiÞ ¼ 1=12ð Þ k3i
� �2 þ 1=48ð Þ k4i � 3

� �2 ð6:60Þ

It should be note that (6.60) is taken from (6.35) in Hyvarinen and Oja (2001, p. 115), which is

used to measure the negentropy by high-order statistics.

4. Sample mean of kth-order statistics: kth moments for zi:

PSk�thmomentðICiÞ ¼ kki
� �2 ð6:61Þ

where kki ¼ E zki
� � ¼ 1=MNð ÞPMN

n¼1 zin
	 
k

is the sample mean of the kth moment of statistics in

the ICi.

5. Entropy

PSentropyðICiÞ ¼ �
XMN

j¼1 pij log pij ð6:62Þ

where pi ¼ pi1; pi2; . . . ; piGð ÞT is the probability distribution derived from the image histogram

of ICi and G is the total number of image gray scales.
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6. Information divergence (ID)

PSIDðICiÞ ¼
XMN

j¼1 pij log pij=qj

� �
ð6:63Þ

where pi ¼ pi1; pi2; . . . ; piMNð ÞT is the probability distribution derived from the image histogram

of ICi and qi ¼ qi1; qi2; . . . ; qiMNð ÞT is the probability distribution derived from the image histo-

gram of the sample mean image obtained by 1=Lð ÞPL
i¼1 ICi.

It is worth noting that SPICA-DR is supposed to run and prioritize all the ICs, then select the first p

prioritized ICs to achieve DR. However, in practice this is not necessary. Our experiments shows

that, 2q seems to provide a good upper bound for the number of ICs needed to be generated by

SPICA-DR.

6.4.2 Random ICA-DR

The idea of RICA-DR is to run FastICA a number of times where a run is defined as one imple-

mentation of running FastICA. Since the initial projection vectors randomly generated by FastICA

for each run are different, the orders of the generated ICs will be also different. Nevertheless, if the

information contained in an IC is significant, such information will always preserved in each run.

With this assumption, if FastICA is run in number of times, the ICs containing the common infor-

mation produced by all runs should be very close within a tolerance. In this case, the process is

terminated and the ICs that are common in all runs are the desired ICs for DR. The detailed imple-

mentation of RICA-DR is summarized as follows.

RICA-DR algorithm

1. Initialization: Set n¼ 0 and the number of dimensions to be retained to q.

2. At each n, run FastICA to find 2q independent components, IC
ðnÞ
i

n o2q

i¼1
, where each indepen-

dent component, IC
ðnÞ
i can be formed as a vector, denoted by v

ðnÞ
i . It should be noted that Fas-

tICA randomly generates a unit vector as an initial projection vector.

3. If n < 1, n nþ 1 and go to step 2. Otherwise, continue.

4. Find common ICs for all runs up to nth run. Two independent components for different runs,

IC
ð�nÞ
i and IC

ð~nÞ
j , are considered to be distinct if the spectral angle mapper (SAM) between their

corresponding vectors, v�ni and v~nj , is greater than a prescribed threshold e. Let \nm¼0 IC
ðmÞ
k

n o2q

k¼1
denote the common ICs obtained for all runs, 0 � m � n.

5. If \n�1m¼0 IC
ðmÞ
k

n o2q

k¼1
6¼ \nm¼0 IC

ðmÞ
k

n o2q

k¼1
, go to step 2. Otherwise, the algorithm is terminated

and \nm¼0 IC
ðmÞ
k

n o2q

k¼1
is the desired set of ICs for DR.

It is worth noting that RICA-DR automatically determine the value of q for DR. The use of the q

can be used to limit the number of ICs that FastICA should generate for each run to save time so

that FastICA does not have to run through all the ICs to find the common ICs. Like SPICA-DR,

empirically, a good upper bound for RICA-DR seems 2q.
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6.4.3 Initialization Driven ICA-DR

In SPICA-DR and RICA-DR, the initial projection unit vectors used by FastICA to produce each

of ICs are generated randomly. Therefore, the ICs produced by FastICA in different runs generally

appear in different orders. When it comes to DR, this becomes a serious issue because an IC that

appears earlier is not necessarily more important or significant than an IC produced later. In order

to resolve this issue, an initialization-driven ICA-DR (IDICA-DR) is developed where the initial

projection unit vector used to produce each of ICs are selected in a specific manner so that all the

ICs will always appear in a fixed order rather than a random order as produced by SPICA-DR or

RICA-DR. As a consequence, there is no need of using statistics-based criteria to prioritize ICs as

SPICA-DR does or it requires FastICA to run a number of times with different random orders as

the RICA-DR does to find the common ICs. A major advantage of using IDICA-DR is that all ICs

always appear in the same order regardless of how many runs FastICA is implemented. The algo-

rithm proposed to be used in IDICA-DR to generate a set of initial projector unit vectors is called

automatic target generation process (ATGP) that is derived from the automatic target detection and

classification algorithm (Ren and Chang, 2003, Chang, 2003a).

IDICA-DR algorithm

1. Assume that the number of dimensions required to be retained is q.

2. Perform sphering on the data matrix X and let the resulting sphered data matrix be denoted by X̂.

3. Apply ATGP to X̂ to find p target pixel vector tif gqi .
4. Use FastICA to find q independent components, ICif gqi¼1 where the ith ICi is generated by

FastICAwith the ith target pixel vector chosen to be the initial projection vector instead of being

generated randomly.

Two comments on IDICA-DR are noteworthy.

1. There is a good reason to choose ATGP to produce initial projection unit vectors for each of ICs.

This is because ATGP generates target pixels by a sequence of orthogonal subspace projection

(OSP) that is also used by FastICA to produce a sequence of ICs. Therefore, ATGP-generated

target pixels, tif gqi , are orthogonal to each other. This implies that one target pixel used as an

initial projection vector to generate an IC will not be used again as an initial projection vector

to generate other ICs.

2. It may seem intuitive to use eigenvectors as initial projection vectors to generate ICs.

Unfortunately, our experiments show that this approach does not always work and its results are

not consistent. On the other hand, the use of ATGP in IDICA-DR works better than the use of

eigenvectors. This is mainly due to the fact that ATGP-generated vectors are always real target

vectors from the data, while the eigenvectors are not but rather projection vectors used to spec-

ify components. Therefore, ATGP is chosen for IDICA-DR.

As a concluding remark, it is worthwhile discussing the three approaches developed in this section.

First of all, the algorithms derived from these three approaches do not need human intervention. In

particular, there is no try-out by users. These three approaches are also based on completely different

design rationales and each of them deserves its own merit. SPICA-DR prioritizes ICs according to a

statistics-based criterion. On the other hand, RICA-DR algorithm does not rely on any criterion.

Instead, it runs itself like a random algorithmwith an arbitrary set of random initial projection vectors

in a given run. It is then terminated when different runs of FastICA produce common ICs. Due to such
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a random nature, RICA-DR requires FastICA to run a number of times with different sets of randomly

generated projection vectors. In this case, the value of q is only used to estimate an upper bound on the

number of ICs that FastICA must generate in each run. Compared to SPICA-DR and RICA-DR that

use randomly generated vectors as initial projection vectors, IDICA-DR takes a completely opposite

approach. It makes use of an initialization algorithm called ATGP to produce an appropriate set of

initial projection vectors to be used for FastICA. Since the targets generated by ATGP are spectrally

distinct in terms of orthogonal subspace projection (OSP), each of these ATGP-generated targets rep-

resents one type of signal sources. FastICA then uses these ATGP-generated targets as initial projec-

tion vectors to make sure that these ATGP-generated target sources are separated in individual ICs so

no two or more ATGP-generated target sources are present in one single IC. Additionally, all the ICs

will be also prioritized in a simple way by the same order as the ATGP-generated targets are gener-

ated. One salient difference among the three ICA-DR algorithms is the number of components

required by FastICA to generate. SPICA-DR and RICA-DR are generally required to generate all the

ICs before IC selection. However, it is found empirically that twice the value of q provides a good

upper bound on the number of ICs required to be generated. Compared to SPICA-DR and RICA-DR,

IDICA-DR only has to generate q ICs without performing IC selection as do SPICA-DR and RICA-

DR. So, from a computational complexity point of view, IDICA-DR has least computing time and

RICA-DR may experience highest computation since it must run FastICA in a number of runs before

the algorithm is terminated. Moreover, SPICA-DR produces and then selects the first q ICs prioritized

by a statistics-based criterion. Like SPICA-DR, RICA-DR also produces 2q ICs. The difference is that

RICA-DR repeatedly runs FastICAwith different sets of random initial projection vectors and, in the

mean time, also finds their common set of ICs in all runs until the two consecutive runs produce the

same common set of ICs. So, there is no need for RICA-DR to select or prioritize ICs. On the contrary,

IDICA-DR generates q ICs by FastICA using a specific set of the q targets generated by the ATGP as

its initial projection vectors. In this case, the ICs are prioritized and selected by the order the q ATGP-

generated targets appear. As expected, the running time required for IDICA-DR is generally less than

that for SPICA-DR and RICA-DR because the latter must generate 2q ICs, while the former always

takes advantage of generating ICs one by one in sequence. Finally, we summarize comparison among

these three algorithms in Table 6.1, where q is the number of dimensions to be retained after DR.

6.5 Dimensionality Reduction by Projection Pursuit-Based Components
Analysis Transforms

The component analysis transforms discussed in Sections 6.3 and 6.4 are actually special cases of

projection pursuit (PP)-based component analysis transforms to be presented in this section where

projection vectors specified by various orders of statistics can be interpreted by a more general

concept called projection index (PI). This section investigates the idea of representing high-order

Table 6.1 Comparison among three algorithms, SPICA-DR, RICA-DR, and IDICA-DR

SPICA-DR RICA-DR IDICA-DR

Number of ICs required to generate 2q 2q q

Number of ICs required to select q Automatic q

Initial condition Random Random ATGP

Criterion for IC prioritization High-order statistics No ATGP

Criterion for IC selection Priority Automatic ATGP

Computation Low Moderate-high low

Algorithm used to generate ICA FastICA FastICA FastICA
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statistics-based component analysis transforms in the context of PP and further develops three

approaches similar to the three ICA-based component analysis transforms in discussed in Sections

6.6.1–6.6.3 to implement the PI-based PP. The first one is to use PI as a criterion to produce com-

ponents, referred to as projection index components (PIC). In light of this interpretation the PI

specified by data variance makes PP become PCAwith PICs reduced to PCs. On the other hand, if

the PI is specified by mutual information to measure statistical independence, the resulting PP

turns out to be ICA in which case PICs become independent components (ICs). While using ran-

dom initial conditions is the classical PP approach, it actually results in inconsistent PICs. So, the

second and third approaches are developed to mitigate this dilemma by eliminating the

inconsistency caused by the use of random initial condition, which are random projection index-

based projection pursuit (RPI-PI) that is similar to RICA-DR in discussed in Section 6.6.2 and

component prioritization-based PP. As for the latter approach two ways are designed to prioritize

PICs: PI-PRioritized PP (PI-PRPP) that uses PI as a criterion to prioritize PICs produced by an

arbitrary PI-based PP, and initialization-driven PP (ID-PP) that makes use of a custom-designed

initialization algorithm to produce a specific set of initial conditions for PP. It should be noted that

it requires two PIs used to implement PI-PP for DR with one used to generate PICs and the other

used to prioritize PICs. In general, these two PIs are not necessarily the same.

6.5.1 Projection Index-Based Projection Pursuit

This section presents a projection index (PI)-based dimensionality reduction technique known as

project pursuit (PP) that uses a PI as a criterion to find directions of interestingness of data to be

processed and then represents the data in the data space specified by these new interesting direc-

tions. With the context of PI PCA and ICA can be considered as special cases of PP in the sense

that PCA uses data variance as a PI to produce eigenvectors while ICA uses mutual information as

a PI to produce statistically independent projection vectors.

The term of “projection pursuit (PP)” was first coined by Friedman and Tukey (1974) that was

used as a technique for exploratory analysis of multivariate data. The idea is to project a high-dimen-

sional data set into a low-dimensional data spacewhile retaining the information of interest. It designs

a PI to explore projections of interestingness. Assume that there are N data points fxngNn¼1 each with
dimensionality K; X ¼ r1r2 . . . rN½ � is a K � N data matrix and a is a K-dimensional column vector

that serves as a desired projection. Then aTX represents an N-dimensional row vector that is the

orthogonal projections of all sample data points mapped onto the direction a. Now if we letHð�Þ be a
function measuring the degree of the interestingness of the projection aTX for a fixed data matrixX, a

projection index (PI) is a real-valued function of a, IðaÞ : RK ! R defined by

IðaÞ ¼ HðaTXÞ ð6:64Þ

The PI can be easily extended to multiple directions fajgJj¼1. In this case, A ¼ a1a2 . . . aJ½ � is a
K � J projection direction matrix and the corresponding projection index is also a real-valued func-

tion, IðAÞ : RK�J ! R is given by

IðAÞ ¼ HðATXÞ ð6:65Þ

The choice of the Hð�Þ in (6.64) and (6.65) is application dependent. Its purpose is to reveal interest-
ing structures within data sets, such as clustering. However, finding an optimal projection matrix A

in (6.65) is not a simple matter (Chapter 16, Chang, 2003a). In this section, we focus on PIs that are

specified by statistics of high orders such as skewness, kurtosis, etc. (Ren et al., 2006).

Assume that the ith projection index-projected component can be described by a random

variable zi with values taken by the gray level value of the nth pixel denoted by zin. A general form
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for finding projection vectors specified by the kth-order statistics: kth moment solves the eigen-

problem specified by (6.52). An algorithm that is similar to the one described in Section 6.6.5 for

finding a sequence of projection vectors to solve (6.52) can be also derived for PI-based PP (PIPP)

as follows.

Projection-index projection pursuit algorithm (PIPP)

1. Initially, assume that X ¼ r1r2 . . . rN½ � is data matrix and a PI is specified.

2. Find the first projection vector w
1 by maximizing the PI.

3. Use the found w
1to generate the first projection image Z1 ¼ w
1
	 
T

X ¼ z1i jz1i ¼ w
1
	 
T

ri

n o
to

detect the first endmember.

4. Apply the orthogonal subspace projector (OSP) specified by P?w1
¼ I� w1ðwT

1w1Þ�1wT
1 to the

data set X to produce the first OSP-projected data set denoted by X1, X1 ¼ P?w1
X.

5. Use the data set X1 and find the second projection vector w
2 by maximizing the same PI again.

6. Apply P?w2
¼ I� w2ðwT

2w2Þ�1wT
2 to the data set X1 to produce the second OSP-projected data

set denoted by X2, X2 ¼ P?w2
X1 that can be used to produce the third projection vector w
3 by

maximizing the same PI again. Or equivalently, we define a projection matrix W2 ¼ w1w2½ � and
apply P?

W2 ¼ I�W2 W2
	 
T

W2
� ��1

ðW2ÞT to the data set X to obtain X2 ¼ P?
W2X.

7. Repeat the procedure of steps 5 and 6 over and over again to produce w
3; . . . ;w


k until a stopping

criterion is met. It should be noted that a stopping criterion can be either a predetermined num-

ber of projection vectors required to generate or a predetermined threshold for the difference

between two consecutive projection vectors.

6.5.2 Random Projection Index-Based Projection Pursuit

As noted earlier, PI-PP described in Section 6.5.1 uses a randomly generated vector as an initial con-

dition to produce each of its desired projection vectors that are used to generate PICs. As a result, a

different randomly generated initial condition may converge to a different projection vector. Accord-

ingly, final produced projection vectors will be different and so are their generated PICs. In other

words, if a PP algorithm is performed at different times or by different users, the final PICs will be

different. In order to correct this problem, this section presents a random projection index-based pro-

jection pursuit (R-PIPP). The idea of R-PIPP is derived directly from the RICA-DR in Section 6.6.2.

It runs PI-PP a number of times where a run is defined as one implementation of PI-PP. Since the

initial projection vectors randomly generated by PI-PP for each run are different, the orders of the

generated PICs are also different. Nevertheless, if the information contained in a PIC is significant,

such information will always be preserved in each run. Consequently, R-PIPP is terminated when the

PICs generated by all runs contain nearly the same information. The detailed implementation of

R-PIPP is almost identical to that of the RICA-DR described in Section 6.4.2 and can be summarized

as follows.

R-PIPP algorithm

1. Initialization: Set n¼ 0 and the number of dimensions to be retained to q.

2. At each n, run the PI-PP to find 2q independent components, PIC
ðnÞ
i

n o2q

i¼1
where each indepen-

dent component, PIC
ðnÞ
i , can be formed as a vector denoted by v

ðnÞ
i .
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3. If n < 1, then n nþ 1 and go to step 2. Otherwise, continue.

4. Find common PICs for all runs up to nth run. Two independent components for different runs,

PIC
ð�nÞ
i and PIC

ð~nÞ
j , are considered to be distinct if the spectral angle mapper (SAM) between

their corresponding vectors, v�ni and v~nj , is greater than a prescribed threshold e. Let

\nm¼0 PIC
ðmÞ
k

n o2q

k¼1
denote the common PICs obtained for all runs 0 � m � n.

5. If \n�1m¼0 PIC
ðmÞ
k

n o2q

k¼1
6¼ \nm¼0 PIC

ðmÞ
k

n o2q

k¼1
, go to step 2. Otherwise, the algorithm is terminated

and \nm¼0 PIC
ðmÞ
k

n o2q

k¼1
is the desired set of PICs for DR.

Like RICA-DR that automatically determines the value of q for DR, R-PIPP also does the same.

However, in order to save computing time as well as ensure that no PICs are left out in the process,

a good empirical upper bound for R-PIPP can be chosen to be 2q.

6.5.3 Projection Index-Based Prioritized Projection Pursuit

An alternative to R-PIPP to remedy the randomness resulting from random initial conditions used

by PIPP is PI-based prioritized PP (PI-PRPP) that uses a PI as a prioritization criterion to rank PP-

generated PICs so that all PICs will be prioritized in accordance with the priorities measured by the

specific PI. In this case, the PICs will be always ranked and prioritized by this PI in the same order

regardless of what initial condition is used to produce a projection vector. It should be noted that

there is a major distinction in using a PI to generate PP and a PI to generate PI-PRPP. While PP

uses a PI as a criterion to produce a projection vector for each of PICs, PI-PRPP uses a PI to priori-

tize PICs that are already produced by PP using a different PI. Therefore, the PI used in both PP

and PI-PRPP is not necessarily the same. As a matter of fact, on many occasions, they are different

PIs in applications. In order to derive PI-PRPP various criteria similar to those specified by (6.58)–

(6.63) in Section 6.4.1 can be used to prioritize PI-PP generated PICs as follows.

Projection index (PI)-based criteria

1. Sample mean of third-order statistics: skewness for zj.

PIskewnessðPICjÞ ¼ k3j

h i2
ð6:66Þ

where k3j ¼ E z3j

h i
¼ 1=MNð ÞPMN

n¼1 zjn
	 
3

is the sample mean of the third-order statistics in the

PICj.

2. Sample mean of fourth-order statistics: kurtosis for zi.

PIkurtosisðPICjÞ ¼ k4j

h i2
ð6:67Þ

where k4j ¼ E z4j

h i
¼ 1=MNð ÞPMN

n¼1 zjn
	 
4

is the sample mean of the fourth-order statistics in

the PICj.

3. Sample mean of kth-order statistics: kth moments for zj.

PIk-momentðPICjÞ ¼ kkj

h i2
ð6:68Þ

where kkj ¼ E zkj

h i
¼ 1=MNð ÞPMN

n¼1 zjn
	 
k

is the sample mean of the kth moment of statistics in

the PICj.
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4. Negentropy: combination of third- and fourth-order statistics for zj:

PInegentropyðPICjÞ ¼ 1=12ð Þ k3j
h i2

þ 1=48ð Þ k4j � 3
h i2

ð6:69Þ

It should be note that (6.69) is taken from (6.35) in Hyvarinen and Oja (2001, p. 115), which is

used to measure the negentropy by high-order statistics.

5. Entropy

PIentropyðPICjÞ ¼ �
XMN

j¼1 pji log pj ð6:70Þ

where pj ¼ pj1; pj2; . . . ; pjMN

� �T

is the probability distribution derived from the image histo-

gram of PICi.

6. Information divergence (ID)

PIIDðPICjÞ ¼
XMN

j¼1 pji log pji=qi

� �
ð6:71Þ

where pj ¼ pj1; pj2; . . . ; pjMN

� �T

is the probability distribution derived from the image histo-

gram of PICi and qj ¼ qj1; qj2; . . . ; qjMN

� �T

is the Gaussian probability distribution with the

mean and variance calculated from PICi.

6.5.4 Initialization Driven Projection Pursuit

The PI-PRPP in Section 6.5.3 was intended to circumvent the issue that PICs may appear in a

random order due to the use of randomly generated initial conditions. PI-PRPP allows users to

prioritize PICs according to information significance measured by a specified PI. Despite the fact

that the PICs ranked by PI-PRPP may appear in the same order regardless of different sets of ran-

dom initial conditions, they are not necessarily identical because of randomness introduced by

their used initial conditions. Although the discrepancy in two corresponding PICs may be minor

compared to the appearance order of PICs without prioritization, the inconsistency may still cause

difficulty in data analysis. Therefore, this section further develops a new approach called initializa-

tion-drive PP (ID-PP) that custom-designs an initialization algorithm to produce a specific set of

initial conditions for PP so that the same initial conditions will be used all along in different runs

of PP. As a consequence, such ID-PP generated PICs are always identical. One such initialization

algorithm is ATGP used by the IDICA-DR in Section 6.4.3 and can be also used for the purpose of

ID-PP.

ID-PP algorithm

1. Assume that the number of dimensions required to be retained is q.

2. Perform sphering on the data matrix X and let the resulting sphered data matrix be denoted by X̂.

3. Apply the ATGP to X̂ to find p target pixel vector tif gqi .
4. Use the PP to find q PICs, PICif gqi¼1 where the ith PICi is generated by the PP with the ith

ATGP-generated target pixel vector chosen to be the initial projection vector instead of being

generated randomly. Since ID-PP uses the same initial condition all the time, it always produces

the same PICs in the same order.
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Finally, Figure 6.1 summarizes results in Sections 6.2–6.5.

6.6 Dimensionality Reduction by Feature Extraction-Based Transforms

Sections 6.2–6.4 present component transforms using criteria of statistics of any order. These

transforms find a new set of component images that can represent the image data where each com-

ponent image is specified by a projection vector produced by an appropriately selected criterion. In

this section, we consider another type of transforms, feature transforms, to perform DR. Instead of

representing image data by a set of component images, a feature transform projects image data into

a feature space specified by a set of feature vectors that are obtained by a feature extraction-based

criterion where each image data sample can be expressed in terms of its generated feature vectors.

Two feature-based transforms, discriminant analysis and classification, are of interest and will be

discussed in the following sections.

6.6.1 Fisher’s Linear Discriminant Analysis

PCA uses data variances as an indication to point out the directions where the data cloud will be

centered, but it does not necessarily point out the directions where different classes can be best

separated. In order to resolve this issue, an approach called canonical analysis is developed

(Richards and Jia, 1999) which uses a feature selection-based criterion that is the ratio of among-

class variances to within-class variances so as to achieve best possible class separability. For two-

class classification for image thresholding, the canonical analysis turns out to be exactly Otsu’s

thresholding method (Otsu, 1979) that is the most widely used to segment the foreground from the

image background. As for multiclassification problems, the canonical analysis becomes a special

case of Fisher’s linear discriminant analysis (FLDA) discussed in Section 2.6.1.1 of Chapter 2. An

application of FLDA to hyperspectral image classification was also explored (Du and Chang, 2001;

Chang, 2003a; Ji et al., 2004). It finds a set of feature vectors that maximize Fisher’s ratio

described by (2.35) or (2.42) where each feature vector specifies one dimension. Since the number

of feature vectors found by FLDA is determined by the number of classes, p, of interest, there are

only p� 1 decision boundaries, each of which is determined by a feature vector. As a result, FLDA
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Figure 6.1 Various criteria used for DRT.
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can achieve DR by letting q ¼ p� 1 and converting the original data to only represent their classi-

fication features in a (p� 1)-dimensional feature space, where the feature dimensionality is gener-

ally much smaller than the data dimensionality. However, it should be noted that these p� 1

feature vectors are used to specify boundaries among p classes, not p class features as discussed in

the OSP-based DR in the following section.

6.6.2 Orthogonal Subspace Projection

Another DR by feature transform is one recently proposed by Harsanyi and Chang (1994),

orthogonal subspace projection (OSP), discussed in Section 2.3.2.1. The idea is to assume that

each sample r in the original data can be represented by a linear mixture of a number of so-

called endmembers, say p endmembers m1;m2; . . . ;mp, that are assumed to be known a priori

with appropriate abundance fractions, a1; a2; . . . ; ap associated with their respective end-

members. As a result, the entire data can be represented by a p-dimensional endmember

space where each endmember is considered as a feature vector that one feature dimension. So,

in order for the OSP to achieve DR, q must be set to p and a key issue is reduced to how to

determine and find these p endmembers to represent the data. This issue will be addressed in

four subsequent chapters, Chapters 7–10, 17 of this book.

Finally, it is worth noting that there is a prominent difference between FLDA and OSP in terms

of feature transforms. FLDA represents data using p� 1 feature vectors to specify p� 1 class

boundaries, while OSP expresses data in a linear representation of p feature vectors that are end-

members assumed to be present in the data.

6.7 Dimensionality Reduction by Band Selection

Since different spectral bands provide different levels of information of interest the primary

goal of DRBS is to select an appropriate band subset from the original band set to represent

the original data in some sense of optimality. Therefore, the information preserved by DRBS

has significant impact on data analysis because the information of un-selected bands will be

completely lost after BS. So, a key success in DRBS is how to design effective criteria for the

BS to meet various applications. Solving a general BS problem generally requires an exhaus-

tive search for all possible
L

jVBSj
� 

¼ L!
L�jVBSjð Þ!jVBSj! combinations, with L and jVBSj being the

total number of spectral bands in VBS, respectively.

More specifically, assume that J(�) is a generic objective function of VBS for BS to be opti-

mized. For a given number of selected bands, nBS, a BS technique is to find an optimal band subset,

V
BS with jVBSj ¼ nBS, that satisfies the following optimization problem:

V
BS ¼ arg max=minVBS�V; jVBSj¼nBSJ VBSð Þ� � ð6:72Þ

Depending on how the objective function J(VBS) is designed, the optimization in (6.72) can be

performed by either maximization or minimization over all possible band subsets VBS in V with

jVBSj ¼ nBS.

According to (6.72), for a BS technique to be successful a key is how to define the objective

function J(VBS) that specifies an application of interest. An effective approach is to define a

certain feature or criterion that can be used to specify the significance of a spectral band. For

example, one of the most commonly criteria or features used for BS is to maximize data
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variance. Let KVBS
be the covariance matrix formed by all the bands selected in VBS. We can

define an objective function J(VBS) in (6.72) by

JtraceðVBSÞ ¼ tr KVBS
ð Þ ð6:73Þ

where the operator “tr” is a trace of a matrix and defined as sum of all its diagonal entries. The

optimal solution V
BS to (6.73) is the one that satisfies

V
BS ¼ arg maxVBS�V;jVBSj¼nBS tr KVBS
ð Þ� � ð6:74Þ

As an alternative, we can also perform PCA and then use data variance as a feature or criterion to

represent the significance of a spectral band. In this case, let s2
l be the data variance calculated

for the lth spectral band, denoted by Bl. Then the J(VBS) in (6.72) can be defined by

JvarianceðVBSÞ ¼
X

Bl2VBS

s2
l ð6:75Þ

Replacing (6.73) with (6.75) yields

V
BS ¼ arg maxVBS�V;jVBSj¼nBS
X

Bl2VBS

s2
l

h in o
ð6:76Þ

Since tr KVBS
ð Þ ¼P

Bl2VBS
s2
l , the solutions given by (6.74) and (6.76) are identical. So, for a

given nBS the optimal solution to (6.74) or (6.76) is the band subset V
BS that consists of the nBS
spectral bands corresponding to the first nBS largest data variances that turn out to be the first nBS
largest eigenvalues. Another common used criterion for the BS is to use an information-based

criterion such as entropy to define the J(VBS) in (6.72) by

JentropyðVBSÞ ¼ HðVBSÞ ð6:77Þ

where H(VBS) is the entropy of the image cube formed by selected bands in VBS. Over the past

few years, many BS techniques have been investigated by designing various criteria or features

to define J(VBS) in (6.72) (Mausel et al., 1990; Conese and Maselli, 1993; Stearns et al., 1993;

Chang, 1999b). In what follows, we describe a rather different BS technique, constrained band

selection algorithm, that has shown promise in BS.

6.8 Constrained Band Selection

By re-inventing a wheel Chang and Wang (2006) recently developed a new approach to BS,

called constrained band selection (CBS). Its idea was derived from the Linearly Constrained

Minimum Variance (LCMV) adaptive beamforming (Frost, 1972) and can be described as

follows.

Let VBS ¼ bBS;1; bBS;2; . . . ; bBS;nBS
� �

denote the selected band subset where for each 1 �
k � nBS the kth spectral band in VBS is represented by a column vector denoted by bBS,k.

Furthermore, let bl represent the lth spectral band as a column vector. Then the entire image

correlation matrix is defined by Q ¼PL
l¼1 blb

T
l . Following the LCMV approach outlined in

Chang (2002b; 2003a) we can consider a CBS problem by finding a Finite Impulse Response

(FIR) filter specified by a weighting matrix WBS that linearly constrains the selected bands in

VBS with a constraint matrix, C, while minimizing the band correlation matrix Q through the
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following optimization equation:

minWBS
WT

BSQWBS

� �
subject to BT

BSWBS ¼ C ð6:78Þ

where WBS ¼ wBS;1wBS;2 � � �wBS;nBS

� �
, BBS ¼ bBS;1; bBS;2; . . . ;bBS;nBS

� �
, and C is a nBS � nBS

constraint matrix. In light of the J(VBS) in (6.72) the constrained objective function is defined by

JðVBSÞ ¼WT
BSQWBS subject to the constraintBT

BSWBS ¼ C ð6:79Þ

The solution to (6.79), WLCMV
BS is given by

WLCMV
BS ¼ Q�1BBS BT

BSQBBS

	 
�1
C ð6:80Þ

Alternatively, we can exclude the selected band image correlation matrix 1
jVBSj

P
b2VBS

bbT from

the entire image correlation matrix Q and further define ~Q ¼ Q� 1
jVBSj

P
b2VBS

bbT as the selected

band image dependence matrix. Replacing Q in (6.78) or (6.79) with ~Q results in a similar CBS

problem given by

minWBS
WT

BS
~QWBS

� �
subject toBT

BSWBS ¼ C ð6:81Þ

where J(VBS) in (6.72) is now defined by

JðVBSÞ ¼WT
BS

~QWBS subject to the constraint BT
BSWBS ¼ C ð6:82Þ

The solution to (6.82), ~W
LCMV

BS is

~W
LCMV

BS ¼ ~Q
�1
BBS BT

BS
~Q
�1
BBS

� ��1
C ð6:83Þ

that is exactly the same as the one in (6.80) with Q replaced by ~Q.
Obviously, the major obstacle in using BS is to solve (6.72) for any given number of bands

needed to be selected, nBS. When nBS is increased, the bands selected by (6.72) for a smaller num-

ber nBS cannot be either included or used as prediction. The whole process of solving (6.72) must

be re-carried out again. This is a significant disadvantage of using BS. In Chapter 21, a new con-

cept called band prioritization is developed to resolve this issue where bands are prioritized and

selected in accordance with their priorities calculated by a certain criterion, in which case previ-

ously selected bands in a smaller band subset are always included in a larger band subset without

repeatedly solving (6.72) for different nBS.

6.9 Conclusions

Dimensionality reduction (DR) is a commonly used data preprocessing technique to cope with vast

amount of data volumes. This chapter presents two types of DR techniques: DR by Transform

(DRT) and DR by band selection (DRBS). Two transformed-based techniques are developed for

DR. One is statistics-based component transforms that represent image data by a set of component
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images that are statistically uncorrelated in terms of the used criterion. These include some

popular and well-known PCA, MNF, and ICA transforms. The other is feature transforms that

represent image data in a space specified by a set of feature vectors that can be obtained by a

feature extraction-based criterion. Two such feature transforms are of interest: Fisher’s linear

discriminant analysis (FLDA) and orthogonal subspace projection (OSP). These DR transforms

will be used as an initial pre-processing step in endmember extraction in PART II and exploi-

tation-based hyperspectral information compression in PART V where a new concept of

dimensionality prioritization (DP) extended from DRT will be introduced in Chapter 20 to per-

form progressive spectral dimensionality process (PSDP). In parallel to the development of

DRT, a similar treatment can be also carried out for DRBS and will be discussed in detail in

Chapter 21. Specifically, a concept similar to DP, referred to as band prioritization (BP), will

be introduced in Chapter 21 as a counterpart of DP to perform progressive band dimensionality

process (PBDP) as does DP for PSDP. However, there also exist other techniques developed for

DR such as feature extraction-based wavelet transforms (Bruce et al., 2002) that can be used

for the same purpose. The selection of DR techniques in this book is primarily based on the

need of later chapters; we will use them as a preprocessing step prior to image processing.

Finally, it should be noted that this chapter does not address a crucial and critical issue arising

in DR, which is determination of the number of dimensions to be retained after DR, q. How to

determine the value of the q can be investigated by a new concept called virtual dimensionality

(VD) recently developed in Chang (2003a) and Chang and Du (2004) that is revisited and

explored in detail in Chapter 5.

Data Dimensionality Reduction 199



II

Endmember
Extraction

Due to significantly improved high spatial and spectral resolution provided by hyperspectral imag-

ing sensors endmember extraction has become increasingly important in hyperspectral image anal-

ysis. According to the definition given in Schwengerdt (1997), an endmember is an idealized, pure

signature for a class, more specifically, spectral class. For multispectral imagery, an endmember

may be difficult to find, due to the fact that many image pixels are generally heavily mixed because

of its low spatial and spectral resolution. As a result, endmember extraction has received little

interest in the past and its importance has been overlooked. By contrast, with recent advances in

hyperspectral imaging sensors many subtle material substances that cannot be resolved by multi-

spectral imagery can now be uncovered by hyperspectral imagery. These substances are generally

not known a priori and can be only diagnosed by high spectral resolution. Endmembers are consid-

ered to be one of such substances. Their existence in image data cannot be generally detected by

human eye. Most importantly, once endmembers are present, they may be very likely to appear as

anomalies and their sample pools may be relatively small. Because of such characteristics, finding

endmembers is very challenging. Many algorithms have been developed for this purpose, such as

pixel purity index (PPI) (Boardman et al., 1995), N-finder algorithm (N-FINDR) (Winter, 1999a,b),

iterative error analysis (IEA) (Neville et al., 1999), automated morphological endmember extrac-

tion algorithm (AMEEA) (Plaza et al., 2004), unsupervised fully constrained least squares

(UFCLS) (Heinz and Chang, 2001), minimum volume transform (MVT) (Crag, 1994), convex

geometry (Boardman, 1994), convex cone analysis (CCA) (Ifarraguerri and Chang, 1999), vertex

component analysis (VCA) (Nascimento and Dias, 2005), simplex growing algorithm (SGA)

(Chang et al., 2006) and independent component analysis-based endmember extraction algorithm

(ICA-EEA) (Wang and Chang, 2006b), standardized principal components analysis (SPCA)-EEA,

fully constrained least squares-EEA (FCLS-EEA), an alternative N-FINDR (AN-FINDR)

(Ji, 2006), and statistics-based EEAs (Chu et al., 2007) that include PCA-EEA and high-order

statistics-based EEA.
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From an algorithmic implementation point of view, algorithms designed for endmember extrac-

tion can be performed in two different ways, simultaneous endmember extraction algorithms (SM-

EEAs) and sequential endmember extraction algorithms (SQ-EEAs), as depicted in Figure II.1

where SM-EEA includes PPI, N-FINDR, MVT, CCA, SPCA-EEA, FCLS-EEA, and AMEEA,

while the SQ-EEA includes IEA, VCA, SGA, UFCLS-EEA, and HOS-EEA.

Technically speaking, an optimal endmember extraction algorithm (EEA) must be an SM-EEA

since all the endmembers should be selected at the same time rather than sequentially by SQ-

EEAs. In general, finding all endmembers simultaneously requires tremendous computational

complexity as a result of exhaustive search. On the other hand, an SQ-EEA may not be as optimal

as an SM-EEA, but it may perform as well as an SM-EEA if the SQ-EEA is well-designed. Most

advantageously, an SQ-EEA can reduce computations significantly.

For endmember extraction, two major criteria are of interest: convexity geometry and statistics.

The criterion of convexity geometry can be further categorized into orthogonal projection (OP) and

simplex volume. The criterion of OP is to orthogonally project data samples on a set of selected

vectors so that the data samples whose orthogonal projections fall at the end (extreme) points of

these selected vectors will be considered as endmember candidates. Such OP-based EEAs include

PPI and VCA. The simplex volume criterion is to assume that a simplex formed by a set of pure

signatures as vertices should yield the maximum volume among all simplexes formed by the same

number of signatures as vertices. In this case, the vertices of the found simplex with the maximum

volume will be considered as desired endmembers. Such simplex-based EEAs include MVT, CCA,

N-FINDR, and SGA. Figure II.2 delineates various EEAs according to convexity geometry-based

criteria.

The criterion of statistics has shown success in a variety of applications such as the dimension-

ality reduction (DR) in Chapter 6. The use of these statistics-based criteria for endmember extrac-

tion relies on the fact that a set of endmembers constitute the most uncorrelated sample pool

among the same number of signatures where the correlation is measured by various statistics. Fig-

ure II.3 categorizes criteria of statistics into second-order statistics, statistical correlation and least

squares error (LSE), and high-order statistics (HOS), skewness by third-order statistics, kurtosis by

fourth-order statistics, kth moment by kth-order statistics, entropy specified by infinite order of

statistics, and statistical independency measured by mutual information.

From a perspective of algorithmic initialization, an EEA can be implemented and initialized by

two types of initial conditions: random initial endmembers and specific algorithm-generated initial

EEA 

SM-EEA 

PPI N-FINDR 

HOS-EEA 

SQ-EEA 

VCA SGA 

UFCLS-EEA IEA

SPCA- 
EEA 

FCLS-EEA
PCALSE 

Statistics-based
EEA 

MVT CCA

AMEEA

Figure II.1 Categorization of EEAs.
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endmembers. In endmember extraction, most EEAs use randomly generated vectors as initial end-

members for initialization, such as PPI, N-FINDR, VCA, ICA-EEA, etc. Unfortunately, due to

randomness a final set of endmembers produced by such an EEA is generally not repeatable. That

is, if the same EEA is implemented in different runs with one run defined as one implementation of

the EEA using one set of random initial endmembers, the final endmembers extracted by the same

EEA will be different. In order to avoid such inconsistency in the final selection of endmembers,

two approaches have been investigated and explored recently. One is to develop a custom-designed

endmember initialization algorithm (EIA) to find an appropriate set of initial endmembers for an

EEA, to eliminate uncertainty caused by randomness resulting from the use of random initial end-

members (Chang and Plaza, 2006a, 2006b). Such an EEA implemented in conjunction with an

initialization algorithm is called initialization-driven EEA (ID-EEA). Another is to make the dis-

advantage of random initial endmembers an advantage. The idea is to consider an EEA that uses

random initial endmembers as a random EEA where a single run resulting from a set of random

initial endmembers is viewed as a realization of such a random EEA. If there is an endmember

present in the data, it should eventually appear in the final set of endmembers generated by each

run regardless of what initial endmembers are used by an EEA. In other words, if an EEA is imple-

mented repeatedly with different sets of randomly generated initial endmembers, the desired end-

members should be among the common members in their final selection sets of endmembers

generated by all runs. An REEA is terminated once the final generated endmember set remains

unchanged in two consecutive runs. Such an EEA is called random EEA (REEA), also referred to

Convexity 
geometry 

OP Simplex volume 

PPI VCA N-FINDR MVT CCA

AN-FINDR

Figure II.2 Categorization of convexity geometry.

Statistics

FCLS-EEA IEA ICA-EEA 

Statistical
correlation

LSE Statistical 
independency 

Skewness Kurtosis kth order

Entropy 

HOS 

SPCA-EEA

 2nd-order statistics 

Figure II.3 Categorization of statistics.
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as automatic EEA (AEEA) in Chaudhry et al. (2006) and Wu and Chang (2006). Figure II.4 cate-

gorizes various EEAs according to initial conditions used in their algorithm design where IED-

EEA is referred to as initial endmember-driven EEA.

PART II includes four chapters (Chapters 7–10) presented in the order of SM-EEA, SQ-EEA,

ID-EEA, and REEA, and an additional chapter, Chapter 11, that is a comparative study and analy-

sis among EEAs. Chapter 7 is focused on SM-EEA that generates all endmembers simultaneously.

Algorithms of this type are PPI, N-FINDR, SPCA-EEA, FCLS-EEA, MVT, CCA, and AMEE.

Chapter 8 deals with the other type of algorithms, SQ-EEA, that generates endmember one at a

time sequentially, that is, one by one in succession. The group of this type is made up of UFCLS,

IEA, VCA, SGA, and HOS-EEA. Since initial endmembers play a key role in the final selection of

endmembers, two chapters, Chapters 9 and 10, are devoted to this issue. Chapter 9 develops cus-

tom-designed EIAs to produce an appropriate set of initial endmembers that can be used for an

EEA. As a result, all the EEAs developed in Chapters 7 and 8 that make use of random initial

endmembers can be extended to their counterpart ID-EEAs to resolve the inconsistency issue in

their final selected endmembers. Contrary to Chapter 9, Chapter 10 makes the disadvantage of

using random initial endmembers an advantage by extending all the EEAs using random initial

endmembers developed in Chapters 7 and 8 to their random counterparts where a realization of an

REEA is considered as an EEA using a particular set of random initial endmembers. By running an

REEA as many times as possible all realizations should eventually converge to a common set of

endmembers that should be the final set of desired endmembers.

Chapter 11 describes experiment-based comparative studies and analyses among EEAs and fur-

ther investigates their relationships. Of particular interest is a comprehensive study on PPI where

three versions of PPI, MATLAB-based PPI, ID-PPI, and RPPI are evaluated and an exploration of

relationships among the three algorithms, PPI, VCA, and ATGP that provides interesting sights

into rationales of algorithm design for EEA. More details are also discussed in Wu (2006, 2009).

In spite of an effort to categorize EEAs in what is believed to be logical, it is by no means the only

way to do so. For example, PPI and N-FINDR are the most commonly used algorithms developed

for endmember extraction. Many algorithms in the current literature, along with those discussed in

PART II, are sort of their variants in one form or another. Therefore, using these two algorithms as a

base for categorization many EEAs can be further categorized in Figures II.5 and II.6 where both

PPI and N-FINDR can be implemented in accordance with their algorithmic implementations laid

out in Chapters 7–10.

EEA 

IED-EEA R-EEA 

R-PPI R-N-FINDR R-VCAIED-N-FINDR IED-PPI IED-VCA 

R-statistics-
based-EEA 

IED-SGA IED-statistics-
based EEA 

R-SGA

IED-UFCLS IED-PCA IED-HOS R-UFCLS R-PCA R-HOS 

Figure II.4 Categorization of initial conditions, IED-EEA and REEA.
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PPI 

MARLAB-PPI R-PPI 

EIA-PPI SM-EEA 

VCA

SQ-EEA 

ID-VCA 
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Figure II.5 Various versions of PPI.

N-FINDR 

AN-FINDR RN-FINDR ID-N-FINDR 

SM-EEA 

SGA 

SC-EEA 

R-AN-FINDR 
ID-SGA R-SGA

EIA-N-FINDR 

Figure II.6 Various versions of N-FINDR.

Table II.1 Categories of various EEAs

SM-EEA

(random initial

conditions)

SQ-EEA

(random initial

conditions)

ID-EEA EIA-EEA REEA

PPI EIA-PPI R-PPI

VCA IED-VCA EIA-VCA RVCA

N-FINDR EIA-N-FINDR R-N-FINDR

SGA IED-SGA R-SGA

SPCA-EEA EIA-SPCA-EEA R-SPCA-EEA

PCA ID-PCA ID-PCA R-PCA

HOS-EEA IED-HOS-EEA EIA-HOS-EEA R-HOS

FCLS/IEA-EEA EIA-FCLS/IEA-EEA R-FCLS/IEA-EEA

UFCLS-EEA IED-UFCLS/IEA-EEA R-UFCLS/IEA-EEA

ATGP-EEA ID-ATGP-EEA R-ATGP-EEA
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Table II.1 summarizes all the EEAs presented in Chapters 7–10 in terms of categorization of

SM-EEA, SQ-EEA, ID-EEA, and REEA.

Finally, since details of implementing the original versions of PPI and N-FINDR are not availa-

ble in the literature, the PPI and the N-FINDR used to carry out all the experiments are those

developed in this book, referred to as MATLAB-PPI in Section 7.2.1 and iterative N-FINDR (IN-

FINDR) in Section 7.2.3.2. In particular, when the term of “N-FINDR” is used without specifica-

tion in this book, it is indeed the IN-FINDR, not the original version of N-FINDR developed by

Winter (1999a, b). As matter of fact, the two terms of “N-FINDR” and “IN-FINDR” are used inter-

changeably. Specifically, when IN-FINDR is referenced, it is the version of the single-replacement

IN-FINDR (1-IN-FINDR) derived in Section 7.2.3.3.1.

206 Hyperspectral Data Processing: Algorithm Design and Analysis



7

Simultaneous Endmember Extraction
Algorithms (SM-EEAs)

Endmembers provide fundamental understanding of hyperspectral data where an endmember is

defined as an idealized pure signature used to specify a particular spectral class. With the advent of

recently developed hyperspectral imaging sensors, which utilize hundreds of contiguous spectral

channels with significantly improved spatial and spectral resolutions, it is now possible to find

endmembers, an important and crucial task in hyperspectral data exploitation. On many occasions

endmembers appear as anomalies, rare substances, small unidentified targets, which cannot be

resolved by multispectral imaging sensors but in fact provide vital information. Over the past few

years, many endmember extraction algorithms (EEAs) have been developed and reported in the

public domain. One of the early developments in endmember extraction is pixel purity index (PPI)

developed by Boardman (1994). Since then it has emerged as one of the most widely used EEAs

due to its availability in the environment for visualizing images (ENVI) commercialized by the

analytical imaging and geophysics (AIG) (Research Systems Inc., 2001). In addition to PPI, many

other EEAs have also been developed, for example, minimum-volume transform (MVT) (Craig,

1994), convex cone analysis (CCA) (Ifarraguerri and Chang, 1999), N-finder algorithm (N-

FINDR) (Winter, 1999), automated morphological endmember extraction (AMEE) algorithm

(Plaza et al., 2002), iterative error analysis (IEA) developed by Neville et al. (1999), iterated con-

strained endmember (ICE) (Berman et al., 2004), vertex component analysis (VCA) (Nascimento

and Dias, 2005), independent component analysis-based EEA (ICA-EEA) (Wang and Chang,

2006), simplex growing algorithm (SGA) (Chang et al., 2006), and so on. Technically speaking, an

EEA must extract all the desired endmembers simultaneously, referred to as simultaneous EEA

(SM-EEA) in this book. However, practically speaking, finding all endmembers simultaneously is

generally associated with high computational cost because it involves a brute-force search among

all data sample vectors. This is particularly severe for hyperspectral data with enormous volumes.

Therefore, it is highly desirable if an EEA can be carried out to find endmembers sequentially,

while also producing endmembers as close as those produced by an SM-EEA in the sense of spec-

tral similarity. An EEA implemented in such a fashion is referred to as sequential EEA (SQ-EEA)

in this book. According to this categorization, PPI, N-FINDR, MVT, CCA, and AMEE are consid-

ered as SM-EEAs as opposed to VCA, ICA-EEA, and SGA, which are actually SQ-EEAs. These

two types of EEAs will be discussed in detail in two separate chapters: SM-EEA in this chapter
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followed by SQ-EEAs in Chapter 8. As will be seen in Chapter 8, SQ-EEAs are generally derived

from their SM-EEA counterparts to ease computational complexity.

7.1 Introduction

What makes endmember extraction unique in hyperspectral data exploitation is that an end-

member represents the purity of a spectral signature that can be used to specify a spectral

class. Interestingly, endmember extraction has not received much attention in multispectral

data analysis in the last decades because low spectral and spatial resolutions of multispectral

imaging sensors result in collected data sample vectors, which are more likely to be mixed

instead of being pure. Consequently, the likelihood of finding endmembers is rather small.

Under such circumstances, there is no reason to perform endmember extraction in multi-

spectral data other than conducting mixed data analysis. However, with the use of high spatial

and spectral resolution bands many subtle material substances that cannot be resolved by mul-

tispectral sensors can be now revealed by hyperspectral imaging sensors as pure signatures.

Such substances generally provide vital information in image analysis. One of such substances

is endmembers that may appear as mixed sample vectors in multispectral data but turn out to

be pure signature vectors in hyperspectral data. Accordingly, finding endmembers has emerged

as a fundamental and critical data preprocessing that offers basic understanding of hyperspec-

tral data. On the other hand, finding these substances is a big challenge since their existence

generally cannot be known by prior knowledge or visualized by inspection from their spatial

presence.

Despite the fact that many EEAs have been developed, several critical issues arising in end-

member extraction have been either overlooked or not appropriately addressed. The first and fore-

most is the issue in determining how many endmembers are assumed to be present in the image

data, denoted by p. This prior knowledge is usually not available and cannot be known a priori. It

must be obtained from the data itself by unsupervised means. Another issue that needs to be

addressed is how to find them once the value of p is determined. Over the past few years, algo-

rithms developed for endmember extraction have focused on the second issue while avoiding the

first issue by simply selecting p on an empirical basis or assuming that it is provided a priori by

inspection or given by prior knowledge. Interestingly, the first issue of determining p in endmem-

ber extraction has not been tackled until recently a series of publications (Chaudhry et al., 2006;

Chang and Plaza, 2007; Plaza and Chang, 2007; Chang et al., 2006) were reported on using a new

concept called virtual dimensionality (VD), which was first introduced in Chapter 17 in Chang

(2003a) as the number of spectrally distinct signatures and later published in Chang and Du

(2004). Due to the fact that endmembers are always spectrally distinct signatures, VD provides a

reasonable and good estimate for p even if it may not be accurate. Nevertheless, experiments show

that VD is probably as close as we can get when it comes to estimation of p.

Two main streams have been developed to design an EEA. One is derived from the principle of

orthogonal projection (OP). The well-known PPI (Boardman, 1994) was the first to materialize this

concept to find endmembers. It assumes that endmembers are more likely to be those whose

orthogonal projections on a set of randomly generated unit vectors, referred to as skewers, are

either minimal or maximal. As a result, these endmembers should appear at extreme points of

skewers due to convexity. In other words, when data sample vectors are orthogonally projected on

a set of skewers, the desired endmembers usually have either maximal or minimal projections

occurring at either end of skewers. The second mainstream for designing EEAs is to use minimal

/maximal simplex volume as a criterion to find a simplex that embraces all data samples with the

minimal volume such as minimal-volume transform (MVT) developed by Craig (1994) or a
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simplex that is embedded in the data space with the maximal volume such as N-finder algorithm

(N-FINDR) developed by Winter (1999).

In addition to OP and simplex volume there is a third criterion, least-squares error (LSE), that is

also derived from the notion of convexity geometry and can also be used to design EEAs. It is

derived from linear spectral mixture analysis (LSMA) and assumes that a set of endmembers used

for spectral unmixing produces the smallest LSE compared to the same number of data sample

vectors that are used for spectral unmixing. One representative is a fully constrained least-squares-

based EEA (FCLS-EEA) derived from the FCLS developed by Heinz and Chang (2001). There are

also several EEAs in this same category that are very close to FCLS-EEA, for example, iterative

error analysis (IEA) developed by Neville et al. (1999) and iterated constrained endmember (ICE)

by Berman et al. (2004).

A fourth criterion is to use sample spectral statistics for designing EEAs, which can be catego-

rized into second-order statistics and high-order statistics (HOS). Of particular interest in second-

order statistics are second-order component analysis (CA)-based criteria, which assume that a set

of endmembers produce the least possible spectral correlation among the same number of data

sample vectors. One of such EEAs is referred to as standardized PCA (SPCA)-EEA developed by

Ji and Chang (2006), which uses SPCA to find a set of endmembers that yield the least statistical

spectral correlation among a given number of data sample vectors. This type of criterion does not

satisfy the abundance constraints as FCLS does. As for HOS-based EEAs an independent compo-

nent analysis (ICA)-based EEA, recently developed by Wang and Chang (2006b), represents one

example in this category.

Most recently, a fifth criterion has also received interest where it uses sample spatial/spectral

correlation for searching endmembers, such as automated morphological endmember extraction

(AMEE) proposed by Plaza et al. (2002) and the one developed by Roggea et al. (2007).

While an EEA performs endmember extraction dimensionality reduction (DR) is required to

reduce data dimensionality to cope with the problem of the so-called curse of dimensionality.

Therefore, in addition to the number of endmembers, p, to be generated, another relevant issue is

the number of components or dimensions to be retained after DR, denoted by q. Interestingly, the

concept of VD presented in Chapter 5 has been also shown to be effective to estimate p (Chang and

Plaza, 2006; Plaza and Chang, 2006) as well as q (Wang and Chang, 2006).

7.2 Convex Geometry-Based Endmember Extraction

Due to the nature of a mixed sample vector in a linear mixing model, convex geometry has been

used as a major criterion behind EEA design. As a simple illustrative example, assume that e1 and

e2 are two endmembers. Any data sample vector x lying in a line segment connecting these two

endmembers as end points can be expressed as a point linearly mixed by e1 and e2 and described

in the form of x ¼ be1 þ ð1� bÞe2, with 0 < b < 1 based on convexity. For three endmembers

e1, e2, and e3, a data sample vector that is linearly mixed by these three endmembers must lie in a

triangle with e1, e2, and e3 as its three vertices. Similarly, a data sample vector within a triangular

pyramid/tetrahedron, square-pyramid, and p-vertex simplex is also considered to be linearly mixed

by its four vertices, five vertices, and p vertices, respectively, all of which are considered as end-

members. The OP and simplex volume are two principal criteria to materialize the concept of

convex geometry.

7.2.1 Convex Geometry-Based Criterion: Orthogonal Projection

PPI is a popular technique widely used in endmember extraction due to its availability in the ENVI

software provided by the Research Systems. Also due to its propriety and limited publication, its
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detailed implementation has never been made available in the public domain. Therefore, most peo-

ple who use PPI for endmember extraction either appeal for the ENVI software or implement their

own versions of PPI based on whatever available in the literature. Its idea is to use OP to determine

whether a data sample vector is an endmember. If a data sample is a potential endmember, its OP

on a random vector should be very likely to yield either maximal or minimal projection. In order to

produce such a vector, a random unit vector is generated by PPI, referred to as a skewer. Figure 7.1

shows that the three skewers. skewer1, skewer2, and skewer3, are randomly generated unit vectors

where data sample vectors are denoted by open circles and three endmembers e1, e2, and e3 by

solid circles located at three vertices of the triangles and a maximal or a minimal projection of an

endmember on a skewer is indicated by a cross “x.”

One of the major issues in PPI is sensitivity of two parameters used by PPI, which are K,

the number of so-called skewers required for implementation, and t, the cut-off threshold

value for the scores, that is, counts produced by PPI, to extract candidate pixel vectors for

final selection of endmembers. Another issue is the requirement of human intervention to

manually select a final set of endmembers via a visualization tool provided by ENVI. Most

importantly, PPI is a one-shot process, not an iterative process. Therefore, previous PPI-

generated results cannot be used for next-stage new generation of endmembers if the number

of skewers is increased.

This section presents our experience with PPI to offer our understanding of the ENVI’s PPI and

provide our version of its implementation so that those who are interested in PPI can easily imple-

ment them to repeat our experimental results without appealing for particular software. In the mean

time, we also investigate several issues resulting from its implementation. Since the MATLAB is

the major software in engineering, it is highly desirable to develop a MATLAB-based PPI algo-

rithm as described below to implement in the same way as ENVI’s PPI does.

One difference between the original PPI and the MATLAB-PPI is that the former provides no

guideline to select the number of dimensions or components required to be retained after DR,

while the latter uses VD to estimate the value of q for DR. In addition, the proposed MATLAB-

based PPI algorithm also allows users to keep track of the PPI count for each of sample pixel

vectors, which is defined as the number of skewers on which the pixel vector is orthogonally pro-

jected and falls at their ends, compared to the ENVI’s PPI that does not automatically provide PPI

counts for all the sample pixel vectors (i.e., we need to do it manually). Our MATLAB-based PPI is

verified by PPI in the ENVI in the sense that both produced very close results.

NPPI(e1)=1 
e1

NPPI(e3)=3 

NPPI (x)=1 

NPPI(e2)=2 

Maximal 

projection 

Minimal 

projection 

e2

Skewer
2

Maximal 

projection 

x

skewer
3

Skewer
1 e3

Figure 7.1 An illustration of PPI with three endmembers e1, e2, and e3.
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MATLAB PPI Algorithm

1. Initialization:

i. Use VD to determine the number of dimensions, q, required to be retained after DR.

ii. Apply a DR technique such as a maximum noise fraction (MNF) transform (Green et al.,

1988; Lee et al. 1990) to reduce the dimensionality of the data set to q component images.

iii. Randomly generate a set of K unit vectors, called “skewers,” fskewerkgKk¼1 where K is a

preassumed sufficiently large positive integer.

2. PPI count calculation:

Project all the data sample vectors orthogonally onto all the skewers fskewerkgKk¼1. Then for

each data sample vector r, find those skewers on which the r produces either the maximal or

minimal projection at their end points. These skewers form a set, called Sextrema(r), for the r.

The PPI count of the r is defined as the number of skewers in Sextrema(r), that is,

nPPIðrÞ ¼ jSextremaðrÞj ð7:1Þ

where jAj is defined as the number of elements in a set A.

3. Candidate selection:

Find an appropriate value t to threshold the PPI count nPPIðrÞ for all the sample vectors to select

potential candidates for endmembers.

4. Endmember extraction:

Extract all the sample vectors with nPPIðrÞ � t as endmembers.

In order to illustrate the steps implemented in the MATLAB PPI, let frigNi¼1 be a given set of data

sample vectors. For a given value of K a random generator is used to produce a set of K random

unit vectors, referred to as skewers, fskewerkgKk¼1, which cover K different random directions. All

the data sample vectors frigNi¼1 are then orthogonally projected on this randomly generated skewer

set, fskewerkgKk¼1. According to geometry of convexity, an endmember that is considered as a pure

signature should occur at end points of some of these skewers with either maximal or minimal

projection. For each sample vector ri we further calculate the number of skewers, denoted by

NPPI(ri), at which this particular sample vector occurs as an end point to tally the PPI count for ri.

As an example by letting K¼ 3, three skewers, skewer1, skewer2, and skewer3, are randomly

generated as shown in Figure 7.1. Assume that the data sample vectors are denoted by open circles.

Then each of these data sample vectors is projected on these three skewers to see whether it yields

maximal or minimal projection. For example, the data sample vector indicated by e3 has two maxi-

mal projections along skewers skewer1 and skewer2, and one minimal projection on skewer

skewer3. So, in this case, its PPI count is NPPI(e3)¼ 3. Similarly, the data sample vector indicated

by e2 produces minimal projections on two skewers, skewer1 and skewer2, but neither maximal

nor minimal projection on skewer3. This gives e2 a PPI count, NPPI(e2)¼ 2. In addition, the data

sample vector indicated by e1 produces maximal projection on skewer3, but neither maximal nor

minimal projection on the other two skewers, skewer1 and skewer2. As a result, its PPI count,

NPPI(e1)¼ 1. Except these three data sample vectors e1, e2, and e3 shown by solid circles none of

data sample vectors shown by open circles can produce nonzero PPI counts. Interestingly, there is a

data sample vector shown by a gray circle and specified by x that also produces NPPI(e1)¼ 1. How-

ever, if we calculate the volumes formed by various triangles with their vertices selected from three

out of these four data sample vectors, e1, e2, e3, and x, the only one triangle specified by dashed

lines and formed by the three vertices, e1, e2, and e3 produces the maximal volume. This indicates

that e1, e2, and e3 are the three desired endmembers.
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Because of convexity, all the sample vectors in Figure 7.1 inside the triangle are supposed to

have their PPI counts¼ 0, which implies that they are mixtures of the three endmembers at the

vertices of the triangle indicated by dashed lines. It should be noted that a projection can be posi-

tive or negative depending on whether the projection occurs in the same or opposite direction of a

skewer. A data sample with its maximal or minimal projection that occurred at a skewer is the one

that is a potential candidate for an endmember.

Obviously, the above PPI algorithm is not an iterative process. It is performed for a given set of

K skewers. Once it is done, the process is terminated. In order to ensure that our MATLAB PPI

algorithm operates in the same way as the ENVI’s PPI does, all the steps described above have

been verified via experiments by PPI in the ENVI 3.6 version with no use of a visualization tool

provided in ENVI’s PPI, in which case both versions produce the same results. Finally, PPI

extracts endmembers according to their PPI counts, which are thresholded by a value t that must

be determined a priori. As a result, all sample vectors whose PPI counts are higher than t will be

extracted as endmembers. In this case, many endmembers representing the same pure signature

may also be extracted.

In what follows, we summarize several drawbacks resulting from the PPI in ENVI.

1. Since the MATLAB-PPI algorithm is not an iterative process, it does not guarantee that all the

PPI-generated endmembers are actually true endmembers due to the fact that the K skewers are

randomly generated. Different runs of implementing PPI algorithm may produce different sets

of endmembers. Most importantly, for different values of K PPI must be re-run over again with-

out taking advantage of previous results.

2. The PPI in the ENVI uses MNF transformation (or noise-adjusted principal component

(NAPC)) to perform DR. Since PPI algorithm is very sensitive to noise, the noise estimation

in MNF transform is crucial. In addition, when MNF transform is implemented for DR in

the ENVI, no guidelines are provided to help users select the dimensions needed to be retained

after DR.

3. Besides, no criteria are provided for how to select appropriate values of two parameters K and

threshold t to determine the number of endmembers.

4. Finally, it requires human intervention to manually select endmembers via a visualization tool

available in ENVI.

Figures 7.2 and 7.3 show two runs of HYDICE data in Figure 1.15(a) results by MATLAB-PPI

using 200 and 1000 skewers, respectively, where four DR methods, PCA, MNF, SVD, and ICA,

were used to perform DR.

As shown in Figures 7.2 and 7.3, only PPI using ICA to perform DR could extract panel pixels,

representing five endmembers in both cases of 200 and 1000 skewers. Three interesting findings

observed from Figures 7.2 and 7.3 are worthwhile.

1. Inconsistency in finally selected endmembers resulting from the use of random initial

endmembers.

For example, PPI using 200 skewers and SVD for DR extracted three panel pixels in one run

with one set of random initial endmembers shown in Figure 7.2(a), but only two panel pixels in

another run with a second set of random initial endmembers shown in Figure 7.3.

2. Selection of an appropriate transform to perform DR, which is crucial in preserving endmem-

ber information.

Obviously, according to the above experiments ICA was the only effective DR transform to

achieve this goal. This is because compared to PCA, MNF, and SVD, which are all second-order
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Figure 7.2 Panel pixels extracted by MATLAB-PPI with 200 skewers with two different runs using PCA,

MNF, SVD, and ICA.

Figure 7.3 Panel pixels extracted by MATLAB-PPI with 1000 skewers with two different runs using PCA,

MNF, SVD and ICA.
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statistics-based transforms, ICA is a high-order statistics-based transform that can better capture

characteristics of subtle substances.

3. The impact of the number of skewers used by PPI on the performance.

Regardless of DR transform, PPI using 1000 skewers extracted three panel pixels in Figure 7.3

compared to only two panel pixels extracted in Figure 7.2 by PPI using 200 skewers except the

case of PPI using SVD. This evidence suggested that selecting a sufficiently large number of

skewers was crucial for PPI to succeed in endmember extraction.

7.2.2 Convex Geometry-Based Criterion: Minimal Simplex Volume

In addition to the OP criterion described in Section 7.2.1, another way to realize the convex

geometry is to use the simplex volume as a measure to determine whether a set of data sample

vectors are desired endmembers. If there are p endmembers in the data space, two criteria can

be used for simplex volume measure. One is to find a set of p endmembers whose simplex

volume is minimal among all possible p-vertex simplexes that embrace all data sample vectors.

In other words, it begins with an initial simplex that includes all data sample vectors and then

gradually deflates simplexes by replacing data sample vectors repeatedly until it reaches a sim-

plex with minimal volume while still embracing all data sample vectors, in which case the

vertices of the resulting simplex are assumed to be endmembers. This is an early approach

used in MVT (Crag, 1994) and CCA (Ifarragaerri and Chang, 1999), and will be briefly

described below.

7.2.2.1 Minimal-Volume Transform (MVT)

The minimal-volume transform (MVT) proposed by Craig (1994) is a nonorthogonal linear

transformation that transforms the image data to a new set of coordinates with the origin set to be

at so-called dark point so that the new coordinate planes can embrace the data as tightly as possi-

ble. In doing so, two linear nonorthogonal transforms, called dark-point-fixed (DPF) transform and

fixed-point-free (FPF) transform, are introduced to carry out the MVT transform. The DPF trans-

form is based on absolute coordinates centered at the origin, while the FPF transform is barycentric

center at the data. The connection of MVTwith linear unmixing is to find endmembers so that data

samples can be circumscribed by the minimal-volume data simplex formed by the set of

endmembers.

7.2.2.2 Convex Cone Analysis (CCA)

Convex cone analysis (CCA) was developed by Ifarragaerri and Chang (1999) for endmember

extraction. Their idea is very similar to MVT. It also models individual component spectral

signatures as vertices of a convex cone with spectra strictly non-negative. The vectors formed

by the spectra that are inside the cone region will be considered to be mixed spectra.

The objective of CCA is to find the boundaries of this region as defined by its vertices with

minimal possible volume. The corner spectra are then the desired endmembers. In other

words, CCA finds a convex cone with smallest possible volume that will embrace all data

sample vectors resulting from mixtures of its vertices. It imposes a non-negativity constraint

and finds the boundaries of the region that contains all positive linear combinations of

the first p eigenvectors of a sample spectral correlation matrix R formed by

R ¼ 1=Nð ÞXXT ¼ 1=Nð ÞPN
i¼1 rir

T
i , where p is the number of endmembers to be generated, N

is the total number of L-dimensional pixel vectors frigNi¼1 in the entire image data, L is the

total number of spectral bands, and X is a normalized data matrix formed by
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X ¼ r1r2 � � � rN½ �. For a given set of p L-dimensional eigenvectors fvjgpj¼1 of the matrix R

with vj ¼ ðvj1; vj2; . . . ; vjLÞT , CCA solves a set of L algebraic equations

v1l þ a1v2l þ � � � þ ap�1vpl ¼ 0 for l ¼ 1; 2; . . . ; L ð7:2Þ

for p–1 abundance fractions fajgp�1j¼1 with aj � 0 for 1 � j � p� 1. Since the exact solution for

fajgp�1j¼1 can be only found by exhausting p–1 equations among the L algebraic equations, there are
�
L

p� 1

�
combinations of equations that need to be solved for fajgp�1j¼1 . These solutions will

produce linear combinations of the eigenvectors that have at least p–1 zeros. So, a boundary occurs

when at least one of the vector elements in the linear combination of eigenvectors is zero while the

other elements are non-negative. It should be noted that MVT and CCA share the same concept in

the sense that the coordinate planes used in MVT to embrace data cloud correspond to the faces of

the convex cone used in CCA. However, both MVT and CCA are different in essence. MVT finds

endmembers that form a minimal-volume data simplex that circumscribes a mixing simplex

formed by the same set of endmembers via linear unmixing, whereas CCA looks for corners or

vertices of a convex cone that are as far away from each other as possible.

7.2.3 Convex Geometry-Based Criterion: Maximal Simplex Volume

As an alternative, a second simplex volume-based criterion is to find a simplex formed by a

p- endmember simplex embedded in a data space whose volume is maximal among all possible

p-vertex simplexes formed by any set of p data sample vectors. This approach can be considered

as a simplex inflation process as opposed to the simplex deflation process used by MVT. It starts

off with an initial simplex embedded in the data space and then keeps inflating simplexes within

the data space by replacing vertices with other data sample vectors until it reaches a simplex whose

volume is maximal, in which case the vertices of the found simplex are considered as endmembers.

The best representative using this criterion is Winter’s N-FINDR (Winter, 1999a,b). Since

N-FINDR is preferred to other simplex-volume criteria in the literature, it will be described in

detail in Section 7.2.4 along with its several variants.

The MVT and CCA described in Sections 7.2.2.1 and 7.2.2.2 make use of the nature in

linear spectral unmixing (LSU) to find a minimal-volume data simplex to embrace all data

sample vectors or data cloud via linear mixing. This section presents an idea slightly different

from that used in MVT and CCA. Rather than finding a minimal-volume simplex to embrace

data cloud from outside, it finds a maximal-volume simplex inside (i.e., embedded in) the data

cloud so that the desired simplex can include as many data sample vectors as possible. The

vertices of such found maximal-volume data simplex are designated as endmembers. In other

words, a simplex with its all vertices specified by endmembers has the maximal volume com-

pared to all simplexes embedded in the data space with same number of vertices. This is the

key idea behind the N-FINDR developed by Winter (1999a,b). More specifically, within

the data cloud N-FINDR finds a simplex whose volume is maximal among all simplexes with

the same number of vertices. In this case, the vertices of a simplex with maximal volume are

assumed to be endmembers. Unfortunately, a detailed step-by-step algorithmic implementa-

tion of N-FINDR was not provided in Winter (1999a,b). This is similar to the case of PPI

where its detailed implementation is also missing. Following the same logical approach, we

also develop several versions that can implement the Winter’s N-FINDR, which will be

referred to as simultaneous N-FINDR (SM N-FINDR).
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7.2.3.1 Simultaneous N-FINDR (SM N-FINDR)

In this section, we summarize the steps to implement Winter’s N-FINDR based on our

understanding and experience. It by no means claims that our interpreted N-FINDR is identical to

the one developed by Winter (1999a,b). Nevertheless, the idea used in both algorithms should be

the same.

SM N-FINDR

1. Preprocessing.

a. Let p be the number of endmembers to be generated.

b. Apply a DR transform such as MNF to reduce the data dimensionality from L to p–1, where

L is the total number of spectral bands.

2. Exhaustive search.

For any p data sample vectors e1; e2; . . . ; ep form a p-vertex simplex specified by

Sðe1; e2; . . . ; epÞ and define its volume, Vðe1; e2; . . . ; epÞ by

Vðe1; . . . ; epÞ ¼
det

1 1 . . . 1

e1 e2 . . . ep

� �����

����

p� 1ð Þ! : ð7:3Þ

Find a set of p data sample vectors, denoted by fe�1; e�2; . . . ; e�pg, that yields the maximal

value of (7.3), that is,

�
e�1; e

�
2; . . . ; e

�
pg ¼ arg

�
maxfe1;e2;...;epgVðe1; e2; . . . ; epÞg ð7:4Þ

3. Let fe�1; e�2; . . . ; e�pg be the desired set of endmembers.

Figure 7.4 depicts a flow chart of implementing the SM N-FINDR.

7.2.3.2 Iterative N-FINDR (IN-FINDR)

According to step 2 described in the above SM N-FINDR an exhaustive search must be conducted

via (7.4) by finding an optimal set of endmembers, fe�1; e�2; . . . ; e�pg that requires tremendous

computing time to accomplish this process. One way to mitigate this dilemma is to break up the

exhaustive search process into two processes, inner loop and outer loop, each of which can be

implemented iteratively. The resulting N-FINDR is called iterative N-FINDR (IN-FINDR) and can

be described as follows.

Iterative N-FINDR (IN-FINDR)

1. Preprocessing.

a. Let p be the number of endmembers to be generated.

b. Apply a DR transform such as MNF to reduce the data dimensionality from L to p–1, where

L is the total number of spectral bands.

2. Initialization.

Let feð0Þ1 ; e
ð0Þ
2 ; . . . ; e

ð0Þ
p g be a set of initial vectors randomly selected from the data. k ¼ 0.
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3. Outer Loop.

At iteration k � 0, find the volume of the simplex specified by the p vertices e
ðkÞ
1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p ,

VðeðkÞ1 ; e
ðkÞ
2 ; . . . ; e

ðkÞ
p Þ defined by (7.3).

4. Inner loop.

For 1 � j � p, we recalculate VðeðkÞ1 ; . . . ; e
ðkÞ
j�1; r; e

ðkÞ
jþ1; . . . ; e

ðkÞ
p Þ for all data sample vectors r. If

none of these p recalculated volumes, Vðr; eðkÞ2 ; . . . ; e
ðkÞ
p Þ, VðeðkÞ1 ; r; e

ðkÞ
3 ; . . . ; e

ðkÞ
p Þ,. . .,

VðeðkÞ1 ; . . . ; e
ðkÞ
p�1; rÞ, is greater than VðeðkÞ1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p Þ, no endmember in e

ðkÞ
1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p

will be replaced. The algorithm is terminated. Otherwise, continue.

5. Replacement rule.

The endmember that is absent in the largest volume among the p simplexes, Sðr; eðkÞ2 ; . . . ; e
ðkÞ
p Þ,

SðeðkÞ1 ; r; e
ðkÞ
3 ; . . . ; e

ðkÞ
p Þ, . . . , SðeðkÞ1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p�1; rÞ, will be replaced by the sample vector

r. Assume that such an endmember is denoted by e
ðkþ1Þ
j . A new set of endmembers is then

produced by letting e
ðkþ1Þ
j ¼ r and e

ðkþ1Þ
i ¼ e

ðkÞ
i for i 6¼ j. Let k  k þ 1 and go to step 3.

Figure 7.5 describes a flow chart of implementing IN-FINDR step by step in two loops, inner

and outer loops.

Interestingly, a recent version of N-FINDR developed in Winter (2004) is actually implemented

in two loops in a reverse order of the two loops carried out by the IN-FINDR.

Figure 7.4 A flow chart of SM N-FINDR implementation.
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It should be noted that the IN-FINDR developed in this section is generally not as optimal as SM

N-FINDR. However, it can be considered as nearly optimal. The similarity between SM N-FINDR

and IN-FINDR can be illustrated by the similarity between finding double integral and iterated inte-

grals where the region to be integrated is generally a 2D dimensional space compared to the regions to

be calculated by iterated integrals, which are usually one-dimensional space. Using this context as

interpretation, the exhaustive search implemented in SM N-FINDR is similar to finding a multiple

integral that integrates a multidimensional region in the original data space, whereas the inner and

outer loops carried out in IN-FINDR iteratively are similar to finding iterated integrals over one-

dimensional space. In most cases, the results obtained by iterated integrals are the same as those

obtained by directly finding multiple integrals according to Fubini’s theorem (Reed and Simon, 1972).

7.2.3.3 Various Versions of Implementing IN-FINDR

The replacement rule described in steps 4 and 5 of IN-FINDR is a general concept. For prac-

tical implementation the replacement rule can be designed to ease computation depending on

how endmembers are replaced. There are several versions that can be designed to implement

the replacement rule used by IN-FINDR. In this section, three variants of IN-FINDR are

developed: single-replacement N-FINDR (1-IN-FINDR), multiple-replacement IN-FINDR,

and successive IN-FINDR (SC IN-FINDR).

Single-Replacement IN-FINDR
The IN-FINDR presented in this section uses a simple replacement rule that replaces one endmem-

ber at a time. The resulting IN-FINDR is referred to as 1-IN-FINDR and the IN-FINDR described

in Section 7.2.4.2 can be further specified as follows.
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Figure 7.5 A flow chart of IN-FINDR implementation.
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Single-Replacement IN-FINDR (1-IN-FINDR)

1. Preprocessing.

a. Let p be the number of endmembers to be generated.

b. Apply a DR transformation to reduce the data dimensionality from L to p–1, where L is the

total number of spectral bands.

2. Initialization.

Let feð0Þ1 ; e
ð0Þ
2 ; . . . ; e

ð0Þ
p g be a set of initial vectors randomly generated from the data. Let k ¼ 0

3. Form a simplex SðeðkÞ1 ; . . . ; e
ðkÞ
j ; . . . ; e

ðkÞ
p Þ with e

ðkÞ
1 ; . . . ; e

ðkÞ
j ; . . . ; e

ðkÞ
p as the p vertices and

define VðeðkÞ1 ; e
ðkÞ
2 ; . . . ; e

ðkÞ
p Þ as its volume defined by (7.3).

4. For 1 � j � p find e
ðk;�Þ
j that yields the maximal volume of VðeðkÞ1 ; . . . ; e

ðkÞ
j�1; r; e

ðkÞ
jþ1; . . . ; e

ðkÞ
p Þ

over all sample vectors r, that is,

e
ðk;�Þ
j ¼ maxrVðeðkÞ1 ; . . . ; e

ðkÞ
j�1; r; e

ðkÞ
jþ1; . . . ; e

ðkÞ
p Þ; ð7:5Þ

while fixing other endmembers e
ðkÞ
l with l 6¼ j.

5. Check whether

e
ðkÞ
j ¼ e

ðk;�Þ
j for all jswith 1 � j � p: ð7:6Þ

If yes, the algorithm is terminated. Otherwise, let e
ðkþ1Þ
j ¼ e

ðk;�Þ
j . Set k  k þ 1 and go to step 3.

Multiple-Replacement IN-FINDR
In the 1-IN-FINDR described above, the replacement carried out in step 5 is done by one single

endmember at a time for each iteration, which is the endmember e
ðk;�Þ
i found in step 4. It is a

suboptimal algorithm to perform endmember replacement in step 5 to save computational com-

plexity. A possible extension of 1-IN-FINDR is to replace two endmembers at a time rather than

single replacement implemented in 1-IN-FINDR. The following algorithm is designed for this pur-

pose. It is a two-replacement IN-FINDR (2-IN-FINDR) where the single endmember replacement

process carried out in steps 4 and 5 in 1-IN-FINDR is replaced by two endmembers at a time for

each iteration described in the following steps 4 and 5.

Two-Replacement IN-FINDR (2-IN-FINDR)

4. For each pair (i,j) with 1 � i < j � p, find a pair of ðeðk;�Þi ; e
ðk;�Þ
j Þ that yields the maximum vol-

ume of VðeðkÞ1 ; . . . ; e
ðkÞ
i�1; r; e

ðkÞ
iþ1; . . . ; e

ðkÞ
j�1; r

0; eðkÞjþ1; . . . ; e
ðkÞ
p Þ over all sample vectors r, that is,

ðeðk;�Þi ; e
ðk;�Þ
j Þ ¼ maxðr;r0ÞVðeðkÞ1 ; . . . ; e

ðkÞ
i�1; r; e

ðkÞ
iþ1; . . . ; e

ðkÞ
j�1; r

0; eðkÞjþ1; . . . ; e
ðkÞ
p Þ; ð7:7Þ

while fixing other endmembers e
ðkÞ
l with l 6¼ i; j. It generally requires an extensive search for an

optimal pair ðeðk;�Þi ; e
ðk;�Þ
j Þ to satisfy (7.7), which is very time-consuming. One way to alleviate

such a searching process is to solve two endmembers successively as follows:

ðeðk;�Þi ; e
ðk;�Þ
j Þ ¼ maxr0 maxr VðeðkÞ1 ; . . . ; e

ðkÞ
i�1; r; e

ðkÞ
iþ1; . . . ; e

ðkÞ
j�1; r

0; eðkÞjþ1; . . . ; e
ðkÞ
p Þ

h in o
; ð7:8Þ

where the ðeðk;�Þi ; e
ðk;�Þ
j Þ obtained by (7.8) may not be the same pair of ðeðk;�Þi ; e

ðk;�Þ
j Þ obtained from

(7.5), but their volumes are generally very close.
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5. Check whether

e
ðkÞ
l ¼ e

ðk;�Þ
l for all lswith 1 � l � p: ð7:6Þ

If yes, the algorithm is terminated. Otherwise, let e
ðkþ1Þ
i ¼ e

ðk;�Þ
i and e

ðkþ1Þ
j ¼ e

ðk;�Þ
j . Then set

k k þ 1 and go to step 3.

Once a 2-IN-FINDR is developed, it can be easily extended to multiple-replacement IN-FINDR

where more than two endmembers can be replaced in steps 4 and 5 in 2-IN-FINDR. More specifi-

cally, for any given integer s with 2 < s � p the multiple-replacement IN-FINDR can replace

s endmembers simultaneously to generate its new endmembers for next iteration, referred to as s-

IN-FINDR described below.

s-Replacement IN-FINDR (s-IN-FINDR)

4. For any given set of s components j1; . . . ; jsð Þ with 1 � j1 < � � � < js � p find a set of s

components of ðeðk;�Þj1
; . . . ; e

ðk;�Þ
js
Þ that yields the maximal volume of VðeðkÞ1 ; . . . ; e

ðkÞ
j1�1;

r1; e
ðkÞ
j1þ1; . . . ; e

ðkÞ
j2�1; r2; e

ðkÞ
j2þ1; . . . ; e

ðkÞ
js�1; rs; e

ðkÞ
jsþ1; . . . ; e

ðkÞ
p Þ over all s vector sample vectors

r1; r2; . . . ; rs, that is,

ðeðk;�Þj1
; . . . ; e

ðk;�Þ
js
Þ

¼ maxr1;...;rsV e
ðkÞ
1 ; . . . ; e

ðkÞ
j1�1; r1; e

ðkÞ
j1þ1; . . . ; e

ðkÞ
j2�1; r2; e

ðkÞ
j2þ1; . . . ; e

ðkÞ
js�1; rs; e

ðkÞ
jsþ1; . . . ; e

ðkÞ
p

� � ð7:9Þ

while fixing other endmembers e
ðkÞ
l with l =2 fj1; . . . ; jsg. It generally requires an extensive search

for an optimal pair ðeðk;�Þj1
; . . . ; e

ðk;�Þ
js
Þ to satisfy (7.6), which is very time-consuming. One way to

alleviate such a searching process is to solve two endmembers successively as follows:

ðeðk;�Þj1
; . . . ; e

ðk;�Þ
js
Þ

¼ maxrs maxrs�1 � � � maxr1 V e
ðkÞ
1 ; . . . ; e

ðkÞ
j1�1; r1; e

ðkÞ
j1þ1; . . . ; e

ðkÞ
js�1; rs; e

ðkÞ
jsþ1; . . . ; e

ðkÞ
p

� �h in on on o
;

ð7:10Þ
where ðeðk;�Þj1

; . . . ; e
ðk;�Þ
js
Þ obtained by (7.10) may not be the same set of ðeðk;�Þj1

; . . . ; e
ðk;�Þ
js
Þ obtained

from (7.7), but their volumes are generally very close.

5. Check whether

e
ðkÞ
l ¼ e

ðk;�Þ
l for all l’swith 1 � l � p: ð7:6Þ

If yes, the algorithm is terminated. Otherwise, let

e
ðkþ1Þ
j1

¼ e
ðk;�Þ
j1

; . . . ; e
ðkþ1Þ
js

¼ e
ðk;�Þ
js

: ð7:11Þ

Then set k  k þ 1 and go to step 3.

It should be noted that as s is increased, the computational complexity of s-IN-FINDR also

grows exponentially until it reaches p, that is, when s ¼ p the s-IN-FINDR becomes the original

version of IN-FINDR that replaces p endmembers simultaneously specified by (7.10).

Successive IN-FINDR (SC IN-FINDR)
As noted in the s-IN-FINDR, a major issue in its implementation is computational cost, which is

expected to be very high. In order to mitigate this problem, an alternative suboptimal version of
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s-IN-FINDR can be derived as follows by replacing the simultaneous replacement of s end-

members in step 5 implemented in the s-IN-FINDR with a successive s-endmember replacement

that is analogous to (7.10) but more efficient at the expense of optimality.

s-Successive replacement N-FINDR (s-SC IN-FINDR)

1. Preprocessing.

a. Let p be the number of endmembers to be generated.

b. Apply a DR transformation to reduce the data dimensionality from L to p�1, where L is the

total number of spectral bands.

2. Initialization.

Let
�
e
ð0Þ
1 ; e

ð0Þ
2 ; . . . ; e

ð0Þ
p

�
be a set of initial vectors randomly generated from the data. Set k ¼ 0

3. Form a simplex SðeðkÞ1 ; . . . ; e
ðkÞ
j ; . . . ; e

ðkÞ
p Þ with e

ðkÞ
1 ; . . . ; e

ðkÞ
j ; . . . ; e

ðkÞ
p as its p vertices with its

volume VðeðkÞ1 ; e
ðkÞ
2 ; . . . ; e

ðkÞ
p Þ defined by (7.3).

4. For any given set of s components j1; . . . ; jsð Þ with 1 � j1 < � � � < js � p find e
ðk;�Þ
jl

that

yields the maximal volume of VðeðkÞ1 ; . . . ; e
ðkÞ
jl�1�1; e

ðkÞ
jl�1

; e
ðkÞ
jl�1þ1; . . . ; e

ðkÞ
jl�1; rjl ; e

ðkÞ
jlþ1; . . . ; e

ðkÞ
p Þ over

all sample vectors rjl , while fixing other endmembers e
k;�ð Þ
ji

with i < l and e
ðkÞ
i with

i =2 fj1; j2; . . . ; jl�1g. That is,

e
ðk;�Þ
jl
¼ maxrV e

ðkÞ
1 ; . . . ; e

ðkÞ
jl�1�1; e

ðk;�Þ
jl�1

; e
ðkÞ
jl�1þ1; . . . ; e

ðkÞ
jl�1; rjl ; e

ðkÞ
jlþ1; . . . ; e

ðkÞ
p

� �
: ð7:12Þ

5. Check whether the stopping rule specified by (7.6) is satisfied. If yes, the algorithm is termi-

nated. Otherwise, let

e
ðkþ1Þ
jl

¼ e
ðk;�Þ
jl

: ð7:13Þ
Set k  k þ 1 and go to step 3.

In particular, if s ¼ p, steps 4 and 5 in the above s-SC IN-FINDR can be further modified as

follows

p-Successive replacement N-FINDR (p-SC IN-FINDR)

4. For 1 � j � p find e
ðk;�Þ
j that yields the maximum volume of Vðeðk;�Þ1 ; . . . ; e

ðk;�Þ
j�1 ;

r; e
ðkÞ
jþ1; . . . ; e

ðkÞ
p Þ over all sample vectors r, while fixing other endmembers e

ðk;�Þ
i with i < j and

e
ðkÞ
i with i > j.

That is,

e
ðk;�Þ
j ¼ maxrV e

ðk;�Þ
1 ; . . . ; e

ðk;�Þ
j�1 ; r; e

ðkÞ
jþ1; . . . ; e

ðkÞ
p

� �
: ð7:14Þ

5. Check whether the stopping rule specified by (7.6) is satisfied. If yes, the algorithm is termi-

nated. Otherwise, use (7.13) and set k k þ 1. Then go to step 3.

The major difference between s-IN-FINDR and s-SC IN-FINDR is the equation used to gener-

ate a new endmember that yields the maximal simplex volume, (7.8) in s-IN-FINDR and (7.12)

in s-SC IN-FINDR. More specifically, in (7.8) the endmembers other than e
ðkÞ
j are fixed at the

original endmembers e
ðkÞ
i for i =2 fj1; . . . ; jsg. However, in (7.12), only the endmembers in (7.7)

after e
ðkÞ
jl

are fixed at e
ðkÞ
i for i > jl or i =2 fj1; . . . ; jsg, while those endmembers e

ðkÞ
i with
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i 2 fj1; . . . ; jl�1g are updated and replaced by setting e
ðkÞ
i ¼ e

ðk;�Þ
i for i 2 fj1; . . . ; jl�1g. As a

result, with s ¼ p an EEA, which implements step 4 without step 5 in the version of p-SC

IN-FINDR, can be considered as a SQ-EEA which will be discussed in Chapter 8 in detail.

Nevertheless, since both versions implement step 5 to avoid a possible trap in local optima,

they both eventually produce close results except that p-SC IN-FINDR may converge faster

than p-IN-FINDR.

7.2.3.4 Discussions on Various Implementation Versions of IN-FINDR

The main reason for developing various approaches to implementing IN-FINDR is the follow-

ing. Since SM N-FINDR must conduct an exhaustive search among all data sample vectors to

ensure that an optimal set of endmembers is produced at the end, even for a moderate size of

hyperspectral data, this approach is nearly impossible to accomplish within limited computing

resources. This is an inevitable issue encountered in most of SM-EEAs, specifically convex

hull-based EEAs such as MVT and CCA. As an example, for N-FINDR to be an optimal

EEA, it must find all p endmembers simultaneously among all possible combinations,

N

P

	 

¼ N!

ðN � pÞ!p! of p endmembers with N being the total number of data sample vectors.

As N grows very large, its computational complexity becomes increasingly formidable in

reality. One way to resolve this dilemma is to limit its search process to a feasible region in

which the desired endmembers are most likely to occur. In doing so, two loops are designed

to replace the exhaustive search required by N-FINDR, which results in IN-FINDR. This can

be seen in the two loops designed for s-IN-FINDR and s-SC IN-FINDR, both of which use

inner loop indexed by jl in step 4 and outer loop indexed by k in step 5 to accomplish what

the SM N-FINDR does. The inner loop runs 1 � l � s by replacing the (jl)th endmember e
ðkÞ
jl

with the most probable endmember e
ðk;�Þ
j1

that yields the maximal volume of

VðeðkÞ1 ; . . . ; e
ðkÞ
jl�1�1; e

ðkÞ
jl�1

; e
ðkÞ
jl�1þ1; . . . ; e

ðkÞ
jl�1; rjl ; e

ðkÞ
jlþ1; . . . ; e

ðkÞ
p Þ in s-IN-FINDR via (7.10) or

VðeðkÞ1 ; . . . ; e
ðkÞ
jl�1�1; e

ðk;�Þ
jl�1

; e
ðkÞ
jl�1þ1; . . . ; e

ðkÞ
jl�1; rjl ; e

ðkÞ
jlþ1; . . . ; e

ðkÞ
p Þ in s-SC IN-FINDR via (7.12).

When l¼ s, s-IN-FINDR and s-SC IN-FINDR check whether the stopping rule described by

(7.6) is satisfied. If it is, then s-IN-FINDR and s-SC IN-FINDR are terminated. Otherwise,

they go to the outer loop indexed by k by implementing a replacement rule described by (7.6)

for s-IN-FINDR or (7.13) for s-SC IN-FINDR and setting k k þ 1 to go back to the inner

loop again in step 4. According to our extensive experimental studies it seems that the p-SC

IN-FINDR is the best in the sense that the outer loop is designed to accomplish the same task

as IN-FINDR does by repeatedly replacing a set of p endmembers found by the inner loop in

a successive manner until it obtains the maximal simplex volume.

Interestingly, as discussed in Chapter 8, when only the inner loop of s-SC IN-FINDR is imple-

mented without iterating the outer loop, s-SC IN-FINDR becomes a successive EEA, specifically

s¼ p, s-SC IN-FINDR is reduced to SC IN-FINDR discussed in Section 7.2.3.3, while with s ¼ 1

s-SC IN-FINDR is reduced to SC N-FINDR in Section 8.2.

7.2.3.5 Comparative Study Among Various Versions of IN-FINDR

In order to see how each of various versions of IN-FINDR works in terms of its performance and

computation, it is worthwhile conducting experiments using the same computing environment. The

data to be used for illustration is the HYDICE image in Figure 1.15. Since IN-FINDR requires a
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DR, four DR techniques, singular value decomposition (SVD), principal components analysis

(PCA), MNF, and independent component analysis (ICA) discussed in Chapter 6, are used for

experiments. Additionally, according to the results in Chapter 5, the effective dimensionality to be

retained after DR is estimated by VD to be 9. Therefore, q¼ 9 is used for our experiments. Finally,

due to the use of random initial endmembers by IN-FINDR the experiments are also conducted

using two different sets of random initial conditions to demonstrate inconsistency in final selected

endmembers as shown in Figures 7.6–7.8, which present the nine endmember extraction results of

two runs from two different sets of random initial endmembers along with their computing times in

parentheses.

As demonstrated in Figures 7.6–7.8, 9-SC IN-FINDR required the least time of 11.4 s on

average as expected, while 1-IN-FINDR had the worst time of about 42.5 s on average, which

was roughly four times in computation compared to that needed by 9-SC IN-FINDR. It is

also demonstrated that all the three versions of IN-FINDR using ICA to perform DR could

extract all the five endmembers regardless of what random initial endmembers were used for

initialization. In addition, inconsistent results were clearly shown by two different runs. It is

particularly evidential for the three versions of IN-FINDR with SVD used to reduce dimen-

sionality where two endmembers were extracted in one run while three endmembers were

extracted in another run.

7.2.3.6 Alternative SM N-FINDR

Also interestingly, SM N-FINDR can be modified by introducing a scale parameter d that controls
effectiveness of the abundance sum-to-one constraint (ASC) imposed on selected endmembers.

The resulting SM N-FINDR is called alternative SM N-FINDR (ASM N-FINDR) and its idea is

summarized in the following algorithmic implementation.

Figure 7.6 1-IN-FINDR.
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Figure 7.7 2-IN-FINDR.

Figure 7.8 9-SC IN-FINDR.

224 Hyperspectral Data Processing: Algorithm Design and Analysis



ASM N-FINDR Algorithm

1. Set p to the number of endmembers to be generated; L is the number of bands.

Let feð0Þ1 ; e
ð0Þ
2 ; . . . ; e

ð0Þ
p g be set of initial endmembers.

2. Let feðkÞ1 ; e
ðkÞ
2 ; . . . ; e

ðkÞ
p g be the set of p endmembers generated at iteration k � 0 and E

ðkÞ
L�p ¼

e
ð0Þ
1 ; e

ð0Þ
2 ; . . . ; e

ð0Þ
p

h i
be an L� p kth p-endmember matrix. We define an ðLþ 1Þ � p matrix

�E
ðkÞ
ðLþ1Þ�pðdÞ by augmenting the matrix E

ðkÞ
L�p using 1p ¼ ð1; 1; . . . ; 1ÞT|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

p

, which is a p-dimensional

unity vector as follows:

�E
ðkÞ
ðLþ1Þ�pðdÞ ¼

dE
ðkÞ
L�p

1Tp

2

4

3

5 ¼ de
ðkÞ
1 de

ðkÞ
2 � � � de

ðkÞ
p�1 de

ðkÞ
p

1 1 � � � 1 1

" #

; ð7:15Þ

where d is a scalar parameter that is used to control effectiveness of the ASC. Generally, d can be

chosen to be d ¼ 10�maxrilfrilgð Þ�1, where ri ¼ ri1; ri2; . . . ; riLð ÞT for 1 � i � N and N is the

total number of image pixels in the image. Now we can form a p� p matrix by

���RðkÞp�pðdÞ
���
1=2

¼
��� �E

ðkÞ
L�pðdÞ

� �T
�E
ðkÞ
L�pðdÞ

� ����
1=2

¼
����EðkÞL�pðdÞ

���; ð7:16Þ

where
��� �E

ðkÞ
L�pðdÞ

� �T

j ¼
����EðkÞL�pðdÞj and jRðkÞp�pð1Þj1=2 ¼ VðeðkÞ1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p Þðp� 1Þ! from (7.3).

The criterion used by ASM N-FINDR is to iterate the p endmembers and make the determinant,

jRðkÞp�pj, as large as possible where the iterative process can be carried out in the same manner as

described in steps 3–5 in SM N-FINDR with (7.4) being replaced by (7.16).

7.2.4 Convex Geometry-Based Criterion: Linear Spectral Mixture Analysis

Linear spectral mixture analysis (LSMA) has been widely used in remote sensing image classi-

fication where the least-squares error (LSE) is considered as an optimal criterion for LSMA. It

is highly desirable if it can be also used as a criterion for endmember extraction. Two LSMA-

based techniques are of interest and take completely opposite approaches. Assume that there

are p endmembers present in the data. One was proposed by Berman et al. (2004), referred to

as iterated constrained endmember (ICE) to minimize the unmixed error resulting from a p-

vertex simplex while constraining the size of a simplex via the sum of Euclidean distance

among all p selected endmembers instead of the simplex volume used by MVT and N-FINDR.

The other approach developed in this section is based on an underlying assumption that the

unmixed error using all p endmembers via LSMA is always greater than that caused by using

any set of p signatures for LSMA regardless of whether or not these signatures are pure or

mixed. Such resulting unmixed LSE is referred to as maximal linear spectral unmixed error

(MLSUE). Furthermore, two abundance constraints, sum-to-one and non-negativity, must be

also imposed on LSMA to satisfy the constraint of convexity. This leads to a natural choice

proposed in Ji (2005), referred to as FCLS-EEA, which is derived from the fully constrained

least-squares (FCLS) developed in Heinz and Chang (2001). FCLS-EEA is also known as

unsupervised fully constrained least squares (UFCLS) in Chang (2003a). It first starts with p

randomly select endmembers and then calculates error vectors from the difference between the

endmembers and the linear mixture model mixed by other endmembers with abundance
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estimated by the FCLS. The error vectors are used as projection vectors to find a new endmem-

ber that has the maximal length on the projections. The details of the algorithm are described

as follows.

FCLS-EEA Algorithm

1. Initialization.

Let p be the number of endmembers to generate and
�
e
ð0Þ
1 ; e

ð0Þ
2 ; . . . ; e

ð0Þ
p

�
be a set of randomly

generated initial endmembers.

2. At iteration k � 0, for each 1 � j � p we assume that e
ðkÞ
j is a mixed pixel and can be repre-

sented by ê
ðkÞ
j that is generated by the remaining p�1 endmembers,

�
e
ðkÞ
i

�p

i¼1;j using the

FCLS, that is, ê
ðkÞ
j ¼ a

ðkÞ
1 e

ðkÞ
1 þ a

ðkÞ
2 e

ðkÞ
2 þ � � � þ a

ðkÞ
j�1e

ðkÞ
j�1 þ a

ðkÞ
jþ1e

ðkÞ
jþ1 þ � � � þ a

ðkÞ
p e

ðkÞ
p ; where the

p�1 abundance fractions �aðkÞi

�p

i 6¼j;i¼1 are obtained by the FCLS.
3. Subtract ê

ðkÞ
j from e

ðkÞ
j to form an error vector eðkÞj ¼ e

ðkÞ
j � ê

ðkÞ
j , which will be used as a projec-

tion vector.

4. Project all image pixels onto the projection vector eðkÞj and find the pixel, e�j that yields the maxi-

mum length, that is, e�j ¼ maxr
�
rTeðkÞj

� ¼ maxr
�
rTe
ðkÞ
j � rTj ê

ðkÞ
j

�
. Let j� ¼ arg

�
maxje

�
j

�
. We

form a new set of p endmembers by letting e
ðkþ1Þ
i ¼ e

ðkÞ
i for 1 � i � p; ij�and eðkþ1Þj� ¼ e�j�

5. If
�
e
ðkþ1Þ
1 ; e

ðkþ1Þ
2 ; . . . ; e

ðkþ1Þ
p

� ¼ �
e
ðkÞ
1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p

�
. Otherwise, let k k þ 1. Go to step 2.

Figure 7.9 shows the results of nine endmembers extracted by FCLS-EEA using two different

sets of random initial endmembers where inconsistency caused by random initial conditions in

final selected endmembers was also evidential with two panel pixels extracted in the first run and

only one panel pixel extracted in the second run.

From Figure 7.9, it can be seen that FCLS-EEA did not work as well as it was designed for.

Three major factors contribute to such poor performance.

1. According to Heinz and Chang (2001) and Chang (2003a) it required at least more than

30 target pixels for FCLS to perform well. Obviously the number of endmembers used by

FCLS-EEA, which was 9 estimated by VD, was simply not large enough for FCLS-EEA

to work effectively.

Figure 7.9 Nine endmembers extracted by the FCLS-EEA on the HYDICE data with two different runs.
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2. The new endmembers found by different error vectors were usually the same. This is because

these error vectors behaved like skewers used by PPI, which were independent of each other.

3. The stopping rule made the algorithm stop too early since the data sample vector at same

position was usually replaced by the same endmember at the second iteration.

In order to alleviate the second and third problems, OSP is applied as a new learning rule

and the difference between error vectors in length is used as a stopping rule. Here, OSP is

chosen to find a new endmember because it can find the most distinct candidate from the

existing ones. Unlike the error vectors, the new endmember generated by OSP will not be

the same at different iterations. In this case, the stopping rule takes advantage of an under-

lying principle for LSMA, that is, the error between a new real endmember found at (k þ 1)

st iteration and any data sample vector linearly unmixed by using previously found endmem-

bers at the kth iteration is maximal. If the new endmember found at (k þ 1)st iteration does

not satisfy the condition, then the stopping rule terminates the algorithm. The above FCLS-

EEA can be modified as follows.

FCLS-EEA Algorithm

1. Initialization.

Set p to be the number of endmembers to be generated.

Let e
ð0Þ
1 ; e

ð0Þ
2 ; . . . ; e

ð0Þ
p be a set of initial endmembers and Uð0Þ ¼ e

ð0Þ
1 e

ð0Þ
2 � � � eð0Þp

h i
be its corre-

sponding endmember matrix.

2. At iteration k � 0, apply an orthogonal subspace projector P?
UðkÞ

to all data sample vectors r and

find a sample vector eðk;�Þ that yields the maximum orthogonal projection by

eðk;�Þ ¼ arg maxr P?
UðkÞr

� �T

P?
UðkÞr

� �� �� 
: ð7:17Þ

3. For 1 � j � p, assume that the jth endmember at the kth iteration, e
ðkÞ
j m; is not a pure signature

but rather a mixed sample ê
ðkÞ
j expressed as a linear mixture of all other endmembers, p�1

endmembers,
�
e
ðkÞ
i

�p

i¼1;i 6¼j given by

ê
ðkÞ
j ¼ a

ðkÞ
1 e

ðkÞ
1 þ � � � þ a

ðkÞ
j�1 e

ðkÞ
j�1 þ a

ðkÞ
jþ1 e

ðkÞ
jþ1 þ � � � þ aðkÞp eðkÞp ; ð7:18Þ

where faðkÞi g
p

i¼1;i 6¼j are abundance fractions obtained by FCLS.
4. Calculate the error between the pure signature e

ðkÞ
j and the mixed signature ê

ðkÞ
j by eðkÞj ¼ e

ðkÞ
j �

ê
ðkÞ
j and find the index that yields the smallest error, that is, j� ¼ argfminjjeðkÞj jg.

5. Now calculate the error vector eðkÞ ¼ eðk;�Þ � e
ðkÞ
j� and check whether e�j j � eðkÞj�

���
���,

6. If it is, the algorithm is terminated and UðkÞ ¼ e
ðkÞ
1 e

ðkÞ
2 � � � eðkÞp

h i
is the set of the final end-

members. Otherwise, let e
ðkþ1Þ
i ¼ e

ðkÞ
i for 1 � i � p; i 6¼ j� and e

ðkþ1Þ
j� ¼ eðk;�Þ; go to step 2.

Figure 7.10 shows the results of the modified FCLS-EEA with two different runs. The improve-

ment is very obvious from these results.
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7.3 Second-Order Statistics-Based Endmember Extraction

Based on the nature of pure signatures using the concept of convexity geometry as a criterion

to find endmembers seems natural and logical, but may not be the only way to accomplish

the task of endmember extraction. Instead of appealing for geometric features such as convex

hull, convex cone, and simplex described above, a rather different approach that uses the

statistical spectral profile of a signature as a base to determine an endmember is of interest.

More specifically, a set of spectrally distinct endmembers should constitute the least statisti-

cal spectral correlation among all possible data sets with the same number of data samples.

In other words, if there is a data sample that is a mixture of other data samples in the same

set, the statistical spectral correlation among members in this set should be greater than that

of a set with the same number of data samples that are all endmembers. In this section, we

explore such statistics-based approaches to endmember extraction. In particular, we are inter-

ested in second-order statistics with two criteria, statistical sample spectral correlation and

LSE that can be used to design EEAs.

The second-order statistical sample correlation was previously explored by Singh and

Harison (1985) who expressed the second-order statistics information in terms of correlation

coefficients. Their idea was used by Eklundh and Singh (1993) to develop the so-called stan-

dardized principal components analysis (SPCA). Here, we further take advantage of SPCA

developed by Eklundh and Singh to derive an approach to endmember extraction, called stan-

dardized PCA-based EEA (SPCA-EEA). The key idea behind the proposed SPCA-EEA is to

assume that the information represented by correlation coefficients among endmembers is

minimal. More specifically, for a given set of p signatures the least amount of second-order

statistical information among all possible p signatures is one that is formed by p distinct

endmembers. If one of p signatures is a mixed signature by the other (p�1) endmembers, the

shared second-order statistical information must be at least equal to or greater than that

represented by the p endmembers.

More specifically, let fejgpj¼1 be a set of p endmembers and mj and sj be the mean and standard

deviation of the jth endmember ej. E ¼ e1 � m1ð Þ=s1 e2 � m2ð Þ=s2 � � � ep � mp

� �
=sp

� �
be a nor-

malized endmember matrix. Then we can define an inner product of E as K ¼ ETE. Assume that

fljgpj¼1 are eigenavlues of K. Then the determinant of K is given by detðKÞ ¼ Qp
j¼1 lj and can be

used as a criterion to design an SPCA-based EEA as follows.

Figure 7.10 Nine endmembers extracted by the modified FCLS-EEA on the HYDICE data with two

different runs.
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SPCA-EEA Algorithm

1. Initialization.

Set p to be the number of endmembers to be generated.

Assume that feð0Þ1 ; e
ð0Þ
2 ; . . . ; e

ð0Þ
p g is a set of initial endmembers.

2. Outer loop index by k

At iteration k � 0, for 1 � j � p we normalize �e
ðkÞ
j to zero mean and unit variance by

�e
ðkÞ
j ¼ ðeðkÞj � m

ðkÞ
j Þ=sðkÞj , where m

ðkÞ
j and s

ðkÞ
j are the mean and standard deviation of e

ðkÞ
j . Now

we form a p� p normalized endmember matrix KðkÞe ¼ �E
ðkÞ� �T

�E
ðkÞ
. Define the determinant of

KðkÞe by

BðkÞ
�
e
ðkÞ
1 ; e

ðkÞ
2 ; . . . ; eðkÞp

�
¼ det KðkÞe

� �
: ð7:19Þ

3. Inner loop index by j

For j � 1, we calculate BðkÞ e
ðkÞ
1 ; . . . ; e

ðkÞ
j�1; r; e

ðkÞ
jþ1; . . . ; e

ðkÞ
p

� �
via (7.19) for all image pixels r

and find

e�j ¼ arg maxr BðkÞ e
ðkÞ
1 ; . . . ; e

ðkÞ
j�1; r; e

ðkÞ
jþ1 . . . ; e

ðkÞ
p

� �h in o
: ð7:20Þ

4. If BðkÞ e
ðkÞ
1 ; . . . ; e

ðkÞ
j�1; e

�
j ; e
ðkÞ
jþ1; . . . ; e

ðkÞ
p

� �
> BðkÞ e

ðkÞ
1 ; . . . ; e

ðkÞ
j�1; e

ðkÞ
j ; e

ðkÞ
jþ1; . . . ; e

ðkÞ
p

� �
, then let e

ðk;jÞ
j

¼ e
ð�Þ
j and Bðk;jÞ ¼ BðkÞ e

ðkÞ
1 ; . . . ; e

ðkÞ
j�1; e

�
j ; e
ðkÞ
jþ1; . . . ; e

ðkÞ
p

� �
. Increase j by one by setting j  j þ 1

and go to step 4. Otherwise, let e
ðk;jÞ
j ¼ e

ðkÞ
j and Bðk;jÞ ¼ BðkÞ e

ðkÞ
1 ;J; e

ðkÞ
j�1; e

ðkÞ
j ; e

ðkÞ
jþ1; . . . ; e

ðkÞ
p

� �

and continue.

5. If j < p, then go to step 4. Otherwise, continue.

6. Let j� ¼ argfmax1�j�pfBðk;jÞgg with Bðk;j
�Þ ¼ BðkÞ e

ðkÞ
1 ; . . . ; e

ðkÞ
j��1; e

ðk;j�Þ
j� ; e

ðkÞ
j�þ1; . . . ; e

ðkÞ
p

� �
. Define

e
ðkþ1Þ
j� ¼ e

ðk;j�Þ
j� and e

ðkþ1Þ
j ¼ e

ðkÞ
j for j 6¼ j�. If the newly obtained (kþ 1)st endmember set

feðkþ1Þ1 ; . . . ; e
ðkþ1Þ
j� ; . . . ; e

ðkþ1Þ
p g is identical to the kth endmember set feðkÞ1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p g,

that is, feðkþ1Þ1 ; . . . ; e
ðkþ1Þ
j� ; . . . ; e

ðkþ1Þ
p g ¼ feðkÞ1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p g, the algorithm is terminated. Oth-

erwise, let k  k þ 1. Go to step 2.

To demonstrate the utility of SPCA-EEA in endmember extraction Figure 7.11 shows nine end-

members extracted by SPCA-EEA using three different sets of random initial endmembers where

only two panel pixels in rows 3 and 5 were extracted to correspond to two endmembers.

In order to take into account the mixing coefficients of endmembers constrained by convexity,

an FCLS method developed by Heinz and Chang (2001) is included in the proposed SPCA-EEA to

ensure that all the SPCA-EEA found endmembers encompass all possible data samples as their

mixing signatures.

In order to take care of the sum-to-one constraint into the algorithm, a p-dimensional column

vector 1p ¼ ð1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p

ÞT should be included. This is similar to FCLS and N-FINDR. That is, let

E ¼ e1 e2 � � � ep
� �

be an L� p endmember matrix and 1p ¼ ð1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p

ÞT be a p-dimensional unity
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vector. We introduce an ðLþ 1Þ � p matrix �E
D
ðLþ1Þ�p by augmenting the matrix E by including a

p-dimensional unity vector 1p as follows:

�E
D
ðLþ1Þ�p ¼

E

D1Tp

" #

¼
e1 e2 � � � ep�1 ep

D D � � � D D

" #

¼

e11 e12 � � � e1ðp�1Þ e1p
e21 e22 � � � e2ðp�1Þ e2p

..

.
} } ..

. ..
.

eL1 eL2 } eLðp�1Þ eLp
D D � � � D D

2

666664

3

777775
ð7:21Þ

where the parameter D is included to control the effect of ASC. It should be noted that (7.21) is the

same matrix used in FCLS algorithm in Heinz and Chang (2001), the same endmember matrix E

used in N-FINDR and E
ðkÞ
L�p used in step 2 of AN-FINDR. In this case, the p-dimensional q

ðkÞ
l ¼

e
ðkÞ
l1 ; e

ðkÞ
l2 ; . . . ; e

ðkÞ
lp

� �T

column vector used in step 2 of the PCA-EEA is extended to a (pþ1)

-dimensional column vector defined by �q
ðkÞ
l ¼ e

ðkÞ
l1 ; e

ðkÞ
l2 ; . . . ; e

ðkÞ
lp ;D

� �T

.

A note is worthwhile. One may wonder “why cannot we use the commonly used PCA instead of

SPCA to design an EEA?”. The answer to this question can be very enlightening. PCA only considers

data variances while discarding co-variances that are crucial in endmember extraction. On the other

hand, SPCA explores statistical correlation by correlation coefficients that are indeed obtained from

both variances and co-variances. However, since an endmember is relatively rare, its presence may be

more appropriately characterized by high-order statistics (HOS) rather than second-order statistics

such as variance. This fact gives rise to the possibility of using HOS as criteria to develop EEAs,

which will be discussed in Chapter 8. One disadvantage of using HOS is that there is no analytical

form that can be derived for an HOS-based SM-EEA in a similar way that PCA solves the characteris-

tic polynomial equation to find all eigenvalues simultaneously. Instead, an HOS-based EEAmust rely

on a numerical algorithm to generate one projection vector to find one endmember at a time. There-

fore, an HOS-based EEA is an SQ-EEA and cannot be an SM-EEA.

7.4 Automated Morphological Endmember Extraction (AMEE)

The AMEE algorithm is an endmember extraction algorithm that makes simultaneous use of spa-

tial and spectral information via multi-channel morphological processing (Plaza et al., 2002). The

input to AMEE is the full image data cube, with no need of dimensionality reduction. Let r denote

the input data cube and r(x,y) denote the pixel vector at spatial location (x,y). Similarly, let K be a

Figure 7.11 Nine endmembers extracted by SPCA-EEA using random initial conditions in three different

runs.
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kernel defined in the spatial domain of the image (the x–y plane). This kernel, usually called struc-

turing element (SE) in mathematical morphology terminology, is translated over the image. The

SE acts as a probe for extracting or suppressing specific structures of the image objects, according

to the size and shape of the SE. Having the above definitions in mind, AMEE method is based on

the application of multichannel erosion and dilation operations to the data. The above operations

are defined as follows:

r	 Kð Þ x; yð Þ ¼ arg min s;tð Þ2K
P

s

P
tSAM rðx; yÞ; rðxþ s; yþ tÞð Þ� �� �

r
 Kð Þ x; yð Þ ¼ arg max s;tð Þ2K
P

s

P
tSAM rðx; yÞ; rðx� s; y� tÞð Þ� �� � ð7:22Þ

where SAM is the spectral angle mapper (SAM). Multichannel erosion (respectively, dilation)

selects the pixel vector that minimizes (respectively, maximizes) a cumulative distance-based

cost function, based on the sum of the SAM distance scores between each pixel in the spatial

neighborhood and all the other pixels in the neighborhood. As a result, multichannel erosion

extracts the pixel vector that is more similar to its neighbors as opposed to multichannel

dilation, which extracts the most spectrally distinct pixel in the neighborhood (endmember

candidate). It should be noted that, according to the definition of morphological erosion and

dilation, the above operations are sensitive to the size and shape of the SE used in the com-

putation. In our application, a morphological eccentricity index (MEI) is defined for each

endmember candidate by calculating the SAM distance between the pixel provided by the

dilation operation and the pixel provided by the erosion. This operation is repeated for all

the pixels in the scene, using SEs with a range of different sizes, until a final MEI image is

generated. Endmember selection is then accomplished by a fully automated approach that

consists of two steps (Plaza et al., 2002): (1) automated segmentation of the MEI image

using Otsu’s method (Otsu, 1979; Chang et al., 2006); (2) spatial/spectral region growing of

resulting regions. Like PPI that extracted pixels according to PPI counts, AMEE also extracts

all pixels according to their MEIs. As a result, both PPI and AMEE generally extract more

than one endmember, usually many endmembers representing a single signature. In practical

implementation, the AMEE is modified by including a process such as OSP-based classifier

to select only one endmember representing each signature, while discarding redundant end-

members that also represent the same signature.

7.5 Experiments

This section presents experimental studies on performance analysis of six SM-EEAs representing

four different criteria, that is, PPI from convexity geometry via OP, N-FINDR and AN-FINDR

from finding maximum simplex volume, SPCA-EEA from statistical correlation, FCLS-EEA from

LSE-based fully abundance-constrained spectral unmixing, and AMEE from morphology. Three

sets of experiments are conducted for performance evaluation, which are (1) six synthetic image-

based scenarios discussed in Chapter 4, (2) AVIRIS and (3) HYDICE real image experiments.

Since MNF is one of the most widely used techniques to perform DR in the literature, it is used for

all EEAs that require DR.

7.5.1 Synthetic Image Experiments

The synthetic images used for experiments were the three scenarios of target implantation (TI),

TI1, TI2, and TI3, and the three scenarios of target embeddedness, (TE), TE1, TE2, and TE3, are

described in Chapter 4 and reproduced in Figure 7.12 for reference.
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Six SM-EEAs, MATLAB-PPI (PPI) with 500 skewers, 1-IN-FINDR, AN-FINDR, SPCA-EEA,

FCLS-EEA, and AMEE, were implemented on these six scenarios to extract endmember pixels.

Based on the ground truth in Figure 4.2 and Tables 4.1 and 4.2, there are 100 pure pixels, 20 mixed

pixels, and 10 subpixels, all of which are simulated by five distinct pure mineral signatures. So,

there are a total of six spectrally distinct signatures, five endmembers fmig5i¼1 plus a mixed back-

ground signature b. Therefore, two sets of experiments were conducted by assuming that p¼ 5 to

represent only five endmembers (pure signatures) and p¼ 6 to indicate that there are six spectrally

distinct signatures (five endmembers plus a mixed background signature) present in the data. Two

preprocesses were generally required for SM-EEAs: (1) DR and (2) use of a random generator to

produce initial endmembers. So, in all experiments MNF was used to perform DR for TI2, TI3,

TE2, and TE3, while PCA was used for TI1 and TE1 because MNF was not applicable to noise-

free scenarios TI1 and TE1. Furthermore, the reduced dimensionality is set to the same value as p.

In addition, to demonstrate inconsistent results caused by the use of random initial endmembers,

two sets of randomly generated initial endmembers were used to initialize the six EEAs for

illustration.

It should be also noted that in the following experiments the results of FCLS-EEA are absent in

scenarios of TI1, TE1, TI2, and TE2 due to the fact that the endmember matrix found by FCLS for

spectral unmixing was not of full rank. This is particularly true for TI and TE1 because no noise is

present in the data and the number of bands is greater than the number of endmembers unless a DR

is performed to reduce the data dimensionality to the number of endmembers. In scenarios of TI2 and

TE2, the same issue may occur to FCLS-EEA when randomly generated initial endmembers hap-

pened to be pixels in the same target panel. Since scenarios TI3 and TE3 have simulated noise added

to all image pixels including endmember panel pixels, there is no issue of ill rank in FCLS-EEA.

7.5.1.1 Scenario TI1 (Endmembers Implanted in a Clean Background)

Scenario TI1 is an idealistic case where pure panel pixels considered as endmember pixels are

implanted in a clean (i.e., noise-free) background. So, there are five endmembers fmig5i¼1 plus a

mixed background signature b. Figure 7.11 shows respective results of five SM-EEAs, PPI with

500 skewers, 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, and AMEE using two different sets of

randomly genertaed initial endmembers with p¼ 5 where extracted endmembers are marked by

yellow circles. Interestingly, in this noise-free scenario none of five SM-EEAs extracted all five

endmembers representing five distinct pure mineral signatures. Also, a comparison among results

in Figures 7.13 and 7.14 shows that the results obtained by two different sets of random initial

endmembers were not consistent.

The results produced by PPI were also worth noting. Due to no noise present in the data, the

background signature dominated the entire data and was considered as a pure signature. As a

result, in this scenario the PPI counts of all background pixels produced by PPI were constant

and greater than the PPI counts of the five pure mineral signatures. So, the PPI image shown in

Figure 7.6 is actually a PPI count map of all image pixels, which turns out to be a binary image

Figure 7.12 Three scenarios designed for TI, TI1, TI2, and TI3 and three scenarios of TE, TE1, TE2, and TE3.
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with black pixels and white pixels representing panel pixels and background pixels, respectively.

This scenario demonstrated a crucial fact that the PPI count of an endmember did not necessarily

yield the highest value. On the contrary, in many cases the PPI counts of endmembers were usually

very low but they were never equal to zero.

If the same experiments are repeated for p¼ 6, the results are shown in Figure 7.14 where the

performance of the five SM-EEAs was not improved but rather worse than those obtained by p¼ 7.

7.5.1.2 Scenario TI2 (Endmembers Implanted in a Noisy Background)

In scenario TI2, pure panel pixels considered as endmembers are implanted into a Gaussian noise

background with SNR¼ 20 : 1. Like scenario TI1, this particular synthetic image scene has

100 pure pixels, 20 mixed pixels, and 10 subpixels, all of which are simulated by five distinct pure

mineral signatures fmig5i¼1. Similar to scenario TI1, this scenario also has a total of five endmem-

bers plus a mixed signature, b. Figures 7.15 and 7.16 show the results of endmembers extracted by

the five EEAs, PPI with 500 skewers, 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, and AMEE, with

Figure 7.14 Results of endmember pixels extracted from TI1 by PPI along with six endmembers extracted

by N-FINDR, AN-FINDR, SPCA-EEA, and AMEE using random initial endmembers.

Figure 7.15 Results of endmember pixels extracted from TI2 by PPI along with five endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, and AMEE using random initial endmembers.

Figure 7.13 Results of endmember pixels extracted from TI1 by PPI along with five endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, and AMEE using two sets of random initial endmembers.
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two different sets of randomly generated initial endmembers for p¼ 5 and p¼ 6, respectively,

where extracted endmembers are marked by yellow circles.

As shown in Figures 7.15 and 7.16, all the five endmembers representing five distinct pure min-

eral signatures were successfully extracted by all the evalauted EEAs except SPCA-EEA. These

results provide evidence that p¼ 5 is sufficient for SM-EEAs to be able to find all required five

endmembers in Figure 7.15. This is because the performance was not necessarily improved

if p¼ 6 is used, as shown in Figure 7.16. However, as discussed in Chapter 8, it will require p¼ 6,

not p¼ 5, for an SQ-EEA to extract all the desired five endmembers because a background pixel

will be always extracted before the last and fifth endmembers. Also noted in Figures 7.15 and 7.16

are PPI-extracted endmmembers, which included not only all 100 pure panel pixels but also many

background pixels. This is because all pixels extracted by PPI had their PPI counts greater than

zero and the PPI counts of many background pixels were actually higher than the PPI counts of

panel pixels.

7.5.1.3 Scenario TI3 (Noisy Endmembers Implanted in a Noisy Background)

Scenario TI3 is simulated by directly adding a Gaussian noise with SNR¼ 20 : 1 to scenario TI1

where all the pure panel pixels are noise-corrupted signatures and no longer pure signatures. In this

case, there are no endmembers in this synthetic image scene. Under such circumstances, an EEA

intends to find the purest signatures in the image scene. Nevertheless, this scenario still contains a

total of six spectrally distinct signatures, which are the five noise-corrupted endmembers plus a

mixed background signature. Figures 7.17 and 7.18 show the results of endmembers extracted by

the six EEAs, PPI with 500 skewers, N-FINDR, AN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE

with two different sets of randomly generated initial endmembers for p¼ 5 and p¼ 6, respectively,

where extracted endmembers are marked by yellow circles.

Since the experimental results in Figures 7.17 and 7.18 were very similar to those obtained in

Figures 7.15 and 7.16, the conclusions drawn for TI2 also hold for TI3. Only difference between

TI2 and TI3 is that FCLS-EEA, which was absent in Figure 7.15 due to an ill-rank of the

Figure 7.16 Results of endmember pixels extracted from TI2 by PPI along with six endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, and AMEE using random initial endmembers.

Figure 7.17 Results of endmember pixels extracted from TI3 by PPI along with five endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE using random initial endmembers.
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endmember signature matrix used for spectral unmixing, performed at least as well as any other

SM-EEAs in extracting all the five endmembers.

7.5.1.4 Scenario TE1 (Endmembers Embedded into a Clean Background)

This scenario has 25 simulated panels added to and superimposed on background pixels. There-

fore, there are no pure target endmember pixels in this scenario; rather six spectrally distinct signa-

tures and five background-superimposed pure signatures can be considered as the purest

signatures. The experiments conducted for Scenario TI are also performed for TE1 and the results

are shown in Figures 7.19 and 7.20 for p¼ 5 and p¼ 6 using two different sets of randomly gener-

ated initial endmembers where the extracted endmembers by five SM-EEAs, PPI with 500 skew-

ers, 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, and AMEE, are marked by yellow circles. As

evident from these results, only AMEE was able to extract all the five endmembers.

7.5.1.5 Scenario TE2 (Endmembers Embedded into a Noisy Background)

TE1 is different from TE1 in that it embeds clean signatures into noisy background instead of

clean background. Nevertheless, TE2 still has six spectrally distinct signatures and five noise-

added and background-superimposed pure signatures can be also considered as the purest

Figure 7.19 Results of endmember pixels extracted from TE1 by PPI along with five endmembers extracted

by N-FINDR, AN-FINDR, SPCA-EEA, and AMEE using random initial endmembers.

Figure 7.20 Results of endmember pixels extracted from TE1 by PPI along with six endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, and AMEE using random initial endmembers.

Figure 7.18 Results of endmember pixels extracted from TI3 by PPI along with six endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE using random initial endmembers.
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signatures. Figures 7.21 and 7.22 show the results of endmembers extracted by the five EEAs, PPI

with 500 skewers, N-FINDR, AN-FINDR, SPCA-EEA, and AMEE, with two different sets of ran-

domly generated initial endmembers for p¼ 5 and p¼ 6, respectively, where extracted endmem-

bers are marked by yellow circles. As shown in Figures 7.21 and 7.22, despite that the pure

signaures have been added by noise-corrupted background signatures, the two SM-EEAs, PPI and

A1-IN-FINDR, still managed to extract all five endmember pixels for p¼ 5 and p¼ 6, while 1-IN-

FINDR misses one endmember pixel in the third row for p¼ 5 but extracts it for p¼ 6, AMEE

failed to extract one endmember pixel in the third row for both endmember pixels in the second

and fourth rows for both p¼ 5 and p¼ 7. The experiments show that except for N-FINDR increas-

ing p from 5 to 6 did not really help.

7.5.1.6 Scenario TE3 (Noisy Endmembers Embedded into a Noisy Background)

In this scenario, a white Gaussian noise is added to Scenario TE1 where pure signatures and

background signatures are corrupted by noise. In this case, the pure signatures are no longer

clean as they are in TE2, but noise-corrupted. Nevertheless, these five noise-corrupted as

well as background-superimposed pure signatures can be considered as the purest signatures.

Figures 7.23 and 7.24 show the results of endmembers extracted by the five EEAs, PPI with

500 skewers, N-FINDR, AN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE with two different

sets of randomly generated initial endmembers for p¼ 5 and p¼ 6, respectively, where

extracted endmembers are marked by yellow circles. As expected, the results in Figures 7.23

and 7.24 were not be as good as but comparable to those obtained for TE2, where PPI and

AN-FINDR were the only two SM-EEAs able to extract endmember pixels in all the five

rows for p¼ 5 and 7. Like TE2, N-FINDR misses endmember pxiels in the third row for

p¼ 5, but picks it up for p¼ 7. Both SPCA-EEA and FCLS-EEA missed endmember pixels in

one row for both p¼ 5 and p¼ 6, whereas AMEE missed endmember pixels in two rows for

p¼ 5 and one row for p¼ 7.

Figure 7.21 Results of endmember pixels extracted from TE2 by PPI along with five endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, and AMEE using random initial endmembers.

Figure 7.22 Results of endmember pixels extracted from TE2 by PPI along with six endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, and AMEE using random initial endmembers.
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7.5.2 Cuprite Data

In analogy with the experiments conducted for the simulated data the six EEAs, PPI with

1000 skewers, N-FINDR, AN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE are imple-

mented on the Cuprite image scene in Figure 1.11(a) with initial endmembers randomly

generated and the number of endmembers, p, estimated by VDHFC
NP ðPF ¼ 10�4Þ ¼ 22 in

Chapter 5. The results using two different sets of randomly generated initial endmembers

are shown in Figure 7.25 where target pixels extracted by algorithms are marked by yellow

circles, pixels marked by yellow crosses “x” are the five ground truth mineral pixels, and

the pixels marked by yellow triangles are identified by SM-EEAs corresponding to the five

true mineral signatures.

As shown in Figure 7.25, the endmember pixels extracted by SM-EEAs and labeled by “lower

case letters” are not necessarily the same ground truth pixels labeled by “upper case letters.” These

endmember pixels are identified using the correlation matched filter-based distance (RMFD)

developed by Chang and Liu (2004), which is similar to (16.21) in Chapter 16 and defined as

RMFDðti; tjÞ ¼ tTi R
�1tj ð7:23Þ

and has been shown to perform significantly better and more effectively than the commonly used

pixel level-based SAM in discrimination and identification of subpixels and mixed pixels for real

hyperspectral images. In (7.23) the matrix R is the sample correlation matrix and ti and tj are two

target pixels to be discriminated. Therefore, the RMFD was used to identify the 22 target pixels

against the five minerals of interest, A, B, C, K, and M by RMFD via (7.23) where the signatures

of the five minerals in Figure 1.11(c) were used.

7.5.3 HYDICE Data

The HYDICE scene shown in Figure 1.15(a) is also used for experiments. Figures 7.26(a)–(f) and

7.27(a)–(f) show results obtained by PPI using k¼ 1000 skewers, 1-IN-FINDR, A1-IN-FINDR,

Figure 7.24 Results of endmember pixels extracted from TE3 by PPI along with six endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE using random initial endmembers.

Figure 7.23 Results of endmember pixels extracted from TE3 by PPI along with five endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE using random initial endmembers.
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Figure 7.25 Results of endmember pixels extracted by PPI along with 22 endmembers extracted by

1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE using one set of random initial

endmembers.

Figure 7.26 Results of endmember pixels extracted by PPI and AMEE along with nine endmembers

extracted by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE using one set of random ini-

tial endmembers.
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SPCA-EEA, FCLS-EEA, and AMEE for p¼ 9, and 10, respectively, where none of six SM-EEAs

could extract panel pixels in row 2.

The results in Figures 7.26 and 7.27 demonstrate that no matter what value of p was

selected, p¼ 9 or 10, the six EEAs had difficulty with extracting panel pixels in row 2. This

is mainly due to the fact that panel pixels in rows 2 and 3 are made by the same fabrics with

slightly different paints, Oliver and light Oliver. As a result, the spectral signatures of panel

pixels in row 2 are very close to those in row 3. In this case, if a panel pixel in row 3 was

extracted earlier, the panel pixels in row 2 were considered as the same signature with small

variations, in which case no panel pixels in row 2 would be extracted later. A similar phe-

nomenon is also witnessed in Figure 4.12(a) and (b) where the calcite was very close to the

sample mean used as the background signature so that EEAs failed to extract it once the

background signature was extracted first.

7.6 Conclusions

SM-EEAs are always desirable for endmember extraction. Unfortunately, a genuine SM-EEA is

generally impractical because of its very high computational cost resulting from an exhaustive

search, specifically when the number of endmembers, p, is large and data volume is huge. In addi-

tion, an SM EEA also suffers from several drawbacks: (1) requirement of precise knowledge about

p, which is practically unknown; (2) assumption of endmembers present in the data, which is gen-

erally not true in many real applications; (3) necessity of dimensionality reduction (DR) due to

enormous data volume, in which case selecting an effective DR transform is crucial; and

(4) inconsistent results caused by the use of randomly generated initial endmembers. While some

drawbacks such as p that can be estimated by the virtual dimensionality in Chapter 5, some

Figure 7.27 Results of endmember pixels extracted by PPI and AMEE along with 10 endmembers extracted

by 1-IN-FINDR, A1-IN-FINDR, SPCA-EEA, FCLS-EEA, and AMEE using random initial endmembers.
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other drawbacks such as computational complexity inheriting from the algorithm design. Table 7.1

summarizes design criteria of SM-EEAs discussed in this chapter and their drawbacks and

disadvantages.

Table 7.1 Summary of design criteria of SM-EEAs and their drawbacks and disadvantages

SM-EEAs Design criteria Drawbacks/disadvantages

MATLAB-PPI Orthogonal projection 1. Determination of the number of skewers, K

2. Determination of a threshold for PPI counts, t

3. Determination of the number of dimensions, q, for DR

4. Inconsistent results due to the use of random conditions

5. Many falsely extracted endmembers

SM N-FINDR,

IN-FINDR, ASM

N-FINDR

Maximal simplex

volume

1. Precise knowledge about p

2. Determination of the number of dimensions, q, for DR

3. High computational complexity

4. Inconsistent results due to the use of random conditions

5. Assumption on presence of pure signatures

MVT Minimal simplex

volume

CCA Convex cone 1. Precise knowledge about p

2. Determination of the number of dimensions, q, for DR

3. High computational complexity

4. Assumption on presence of pure signatures

SPCA-EEA Statistical spectral

correlation

1. Precise knowledge about p

2. Inconsistent results due to the use of random conditions

3. Less effective

FCLS-EEA Linear spectral

unmixing

1. Precise knowledge about p

2. High computational complexity

3. Ill-rank of endmember signature matrix

4. Inconsistent results due to the use of random conditions

AMEE Morphology 1. Precise knowledge about p

2. All endmembers of the same type are extracted before

endmembers of another type

3. Inconsistent results due to the use of random conditions

4. A process is needed to discriminate extracted

endmembers

240 Hyperspectral Data Processing: Algorithm Design and Analysis



8

Sequential Endmember Extraction
Algorithms (SQ-EEAs)

One major disadvantage of implementing a simultaneous endmember extraction algorithm (SM-

EEA), as discussed in Chapter 7, is its high computational complexity and exceedingly high com-

puting cost. This is because of the fact that an SM-EEA does not use the results produced by previ-

ous searches and a new full search must be resumed as long as previously found endmembers are

not desired ones. In addition, its searching process must be conducted in an exhaustive manner for

which the computation will become formidable once the number of endmembers to generate grows

large. The sequential EEAs (SQ-EEAs), presented in this chapter, are the result of a need for

addressing these two issues. An SQ-EEA is developed to sequentially find one endmember after

another to address the first issue, where previously generated endmembers can be retained and

included as part of a subsequent search for a new endmember. Because an SQ-EEA can only find

one endmember at a time, its computational complexity is tremendously reduced which also

resolves the second issue. The outcome of these two advantages is that an SQ-EAA may not neces-

sarily produce an optimal solution as does an SM-EEA. Nevertheless, experiments demonstrate

that the trade off is small and an SQ-EEA can perform almost equally like an SM-EEA provided

that an SQ-EEA is appropriately designed to match its SM-EEA version. Interestingly, many

SQ-EEAs have actually been derived from their SM-EEA counterparts in Chapter 7. Examples

include vertex component analysis (Nascimento and Dias, 2005) from PPI, SQ N-FINDR (Wu

et al., 2008), and simplex growing algorithm (Chang et al., 2006) from N-FINDR and unsupervised

fully constrained least-squares (Heinz and Chang, 2002) from FCLS-EEA.

8.1 Introduction

In order to find endmembers, two general approaches have been used in the past. One approach

extracts all required endmembers simultaneously, referred to as simultaneous endmember extraction

algorithm (SM-EEA) that has already been studied in Chapter 7. The other approach extracts end-

members one at a time sequentially, referred to as sequential EEA (SQ-EEA) which will be dis-

cussed in this chapter. In general, extraction of endmembers must be performed by finding all

endmembers at once. Hence, an optimal EEA should be an SM-EEA. Unfortunately, this also

requires an SM-EEA to conduct an exhaustive search for an optimal set of endmembers. Computa-

tionally speaking, this may not be a good option because the process will be extremely slow,
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especially when the number of endmembers grows. On the other hand, an SQ-EEA can become

an acceptable alternative even if it may not be as optimal as an SM-EEA. As will be demon-

strated by experiments, in most cases, an SQ-EEA is comparable to an SM-EEA with regard

to performance of endmember extraction. Most importantly, two benefits gained by an

SQ-EEA can really remedy two major drawbacks suffered from an SM-EEA. One benefit is

significant reduction in computing time resulting from SQ-EEA that only needs to find one

endmember at a time sequentially without finding all endmembers simultaneously as required

by SM-EEA. The second benefit is that SQ-EEA retains previously generated endmembers

while continuing to add new endmembers, an advantage that cannot be gaineded from SM-

EEA. In particular, if the total number of endmembers to be extracted changes, SM-EEA

must resume its exhaustive search as a new process for finding all new endmembers, and

endmembers previously generated by SM-EEA for a small number of endmembers cannot be

used as part of new endmembers. By contrast, SQ-EEA can always use previously generated

endmembers as the starting point and continue to produce new endmembers afterwards. Inter-

estingly, as will be shown in this chapter, an SM-EEA can always find its SQ-EEA counter-

part so that both algorithms can produce similar results.

As noted in Chapter 7, for an EEA to be optimal it ought to be an SM-EEA that must conduct an

exhaustive search for all endmembers at once. For example, for the N-FINDR to produce p end-

members among N data sample vectors a total of
N

p

� �
¼ N!
ðN�pÞ!p! searches must be conducted and

the simplex volume specified by (7.5) must be recalculated for each of the searches. If the value of N

becomes large, the computational complexity will increase exponentially and become formidable

very quickly and going out of control. Therefore, two options can be adopted to alleviate this

dilemma. One option narrows down a searching region to a feasible range. This practice is actually

exercised in step 5 in SM N-FINDR, steps 4 and 5 in SPCA-EEA, and step 4 in FCLS-EEA dis-

cussed in Chapter 7, where their replacement rules are carried out in two loops (inner and outer

loops) instead of being performed simultaneously. However, even in this case, the computation task

can still be very high. Thus, a more pragmatic solution is to convert an SM-EEA into an SQ-EEA so

that the computation can be reduced greatly by finding endmembers one at a time rather than all

endmembers being generated at the same time. For example, we may implement an SM N-FINDR

via its inner loop without running its outer loop, as discussed in Section 7.2.3.4. However, this is

easier said than done. It is, in general, not a trivial matter since we need to make ensure that such an

SM-EEA-to-SQ-EEA conversion via the use of only the inner loop will not be traded for poor per-

formance. This chapter deals with this issue and develops such SQ-EEAs for this reason.

Like SM-EEA, the first issue that needs to be addressed for SQ-EEA is to determine how many

endmembers, p, are required for SQ-EEA to generate before it is terminated. The virtual dimen-

sionality (VD) developed in Chapter 5 that is used to determine the value of p for SM-EEAs in

Chapter 7 is also applicable to SQ-EEAs. Once the p is determined, the second issue is to design

an algorithm that can search endmembers one by one sequentially. Four types of SQ-EEAs are of

particular interest and will be presented in this chapter.

The first type of SQ-EEAs is orthogonal projection (OP)-based EEAs. A representative is vertex

component analysis (VCA) that has recently developed by Nascimento and Dias (2005). This

implements a similar idea to that used in the MVT and CCA to find a maximal projection convex

hull, but has two different aspects. One is that VCA is an SQ-EEA, not an SM-EEA, as MVT and

CCA are. The other is that VCA performs OP to find endmembers instead of finding the maximal

simplex volume, as performed by MVT and CCA. Because VCA uses OP in the same manner

as PPI, developed in Chapter 7, which also uses OP to find endmembers, it can be considered an

SQ-EEA counterpart of PPI. Their relationship will be further explored further in Chapter 11. In
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addition, as a result of its use of a sequential search via OP rather than solving maximal simplex

volume optimization, VCA is considered to be among the fastest EEAs that are currently being

used in the literature. However, its performance is generally not as good as what we expect due to

the fact that finding maximal OP does not necessarily yield a convex hull with maximal-volume.

A second type of SQ-EEAs of interest is sequential versions of IN-FINDR, as proposed in

Chapter 7. One is called successive IN-FINDR (SC IN-FINDR) presented in Section 7.2.3. Since

IN-FINDR repeatedly searches for a set of new p vertices simultaneously by using two loops until

it finds a p-vertex simplex with maximal volume, it can be viewed as simultaneous N-FINDR (SM-

N-FINDR). So, if the number p is large, IN-FINDR becomes very slow. In this case, SC IN-FINDR

can be used instead to reduce computing time. The other is called the simplex growing algorithm

(SGA) developed by Chang et al. (2006), which finds a desired p-dimensional simplex with maxi-

mal volume by gradually growing simplexes with maximal volumes vertex by vertex. In other

words, instead of directly finding a p-vertex simplex with maximal volume as N-FINDR and its

variants do, it first finds a two-vertex simplex with largest volume from which it begins to grow

new simplexes with largest volumes by increasing vertices from 2 to p. Since it generates desired

endmembers one by one by a simplex growing process, SGA is indeed an SQ-EEA. Using such a

simplex growing implementation, SGA only has to find one endmember at a time until it reaches a

desired number of endmembers, p. This is completely different from IN-FINDR that replaces verti-

ces of simplexes in the outer loop with a complete new set of vertices repeatedly obtained from its

inner loop. Like VCA, SGA is also among the fastest EEAs due to its use of a sequential search

process. However, since the OP used in VCA requires less amount of computing time than the

calculation of a simplex volume used by SGA, VCA performs faster than SGA in computation.

Nevertheless, it should be noted that a faster EEA is not necessarily a better EEA. As demonstrated

by experiments, SGA actually performed better than VCA in terms of endmember extraction per-

formance at the expense of higher computation.

The third type of SQ-EEAs is least-squares error (LSE)-based EEAs that include automatic tar-

get generation process EEA (ATGP-EEA) originated by Ren and Chang (2003) which implements

successive orthogonal subspace projections (OSPs) to find endmembers, unsupervised nonnegativ-

ity least-squares EEA (UNCLS-EEA) derived by Chang and Heinz (2000) that uses the abundance

nonnegativity constraint to find successive endmembers, unsupervised fully constrained least-

squares EEA (UFCLS-EEA) developed by Heinze and Chang (2001) that is derived from FCLS-

EEA in Chapter 7, iterative error analysis-EEA (IEA-EEA) proposed by Neville et al. (1999) that

is essentially identical to UFCLS-EEA in the sense that both use a full abundance constrained

spectral unmixing technique to find endmembers.

Finally, the fourth type of SQ-EEAs is projection pursuit (PP)-based EEAs that include high-

order statistics (HOS)-based EEAs and independent component analysis (ICA)-based EEAs; both

of them have no SM-EEA counterparts in Chapter 7 but can be derived from dimensionality reduc-

tion by transform as discussed in Chapter 6. SQ-EEAs of this type produce a sequence of succes-

sive components characterized by projection indices, such as skewness specified by the third-order

statistics, kurtosis described by the fourth-order statistics, kth moment, statistical independence

measured by mutual information so that each component can be used to extract a particular end-

member. The idea behind PP-based EEAs is to assume that endmembers can be characterized by

statistics of high orders due to their rarity, small sample pool, and occurrence with low probabilit-

ies. This rationale is based on several observations. First, since distinct endmembers represent dif-

ferent spectral classes, their statistical dependency must be least correlated. Second, because the

nature of endmembers is of pure signatures the probability of occurrence of endmembers is gener-

ally low. Third, when endmembers do occur, the spatial extent of their presence is usually very

limited and small. Of particular interest among HOS-based EEAs is the ICA (Hyvarinen et al.,
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2001), which is a blind source separation technique that unmixes a linear mixture of statistically

independent signal sources. If the signal sources to be unmixed are interpreted as sources of pure

signatures, its applicability to endmember extraction seems natural and justifiable (Wang and

Chang, 2006b).

8.2 Successive N-FINDR (SC N-FINDR)

As noted in the s-SC IN-FINDR in Chapter 7, a major issue in its implementation is computational

cost that is expected to be very high. In order to mitigate this problem, a sequential version of s-SC

IN-FINDR developed in Section 7.2.3.3 can be derived by replacing simultaneous s endmembers

carried out in step 5 of the s-SC IN-FINDR with successive p endmember replacements to achieve

more computational efficiency at the expense of optimality. The resulting sequential version of

p-SC IN-FINDR is referred to as SuCcessive N-FINDR (SC N-FINDR).

Successive N-FINDR (SC N-FINDR)

1. Preprocessing:

a. Let p be the number of endmembers required to generate.

b. Apply a DR transform such as MNF to reduce the data dimensionality from L to p–1, where

L is the total number of spectral bands.

2. Initialization:

Let feð0Þ1 ; e
ð0Þ
2 ; . . . ; e

ð0Þ
p g be a set of initial vectors randomly generated from the data.

3. For 1 � j � p, find e
ð�Þ
j which yields the maximum volume of Vðeð�Þ1 ; . . . ; e

ð�Þ
j�1; r; e

ð0Þ
jþ1; . . . ; e

ð0Þ
p Þ

defined by (7.3) over all sample vectors r, while fixing other endmembers e
ðk;�Þ
i with i < j and

e
ð0Þ
i with i > j. That is,

e
ð�Þ
j ¼ maxrV e

ð�Þ
1 ; . . . ; e

ð�Þ
j�1; r; e

ð0Þ
jþ1; . . . ; e

ð0Þ
p

� �
ð8:1Þ

The major difference between s-SC IN-FINDR in Section 7.2.3.3 and SC N-FINDR described

above is that SC N-FINDR only executes the inner loop indexed by j in s-SC IN-FINDR without

going through s-SC IN-FINDR’s outer loop indexed by k. Specifically, the equations used to gen-

erate an endmember that yields the maximal simplex volume, that is, (7.8) in s-IN-FINDR and

(7.12) in s-SC IN-FINDR, are replaced by (8.1). In addition, even in the best case where the origi-

nal initial endmembers turn out to be final desired endmembers and no replacements are required,

(8.1) still needs to be calculated p times.

8.3 Simplex Growing Algorithm (SGA)

In this section, we present an SQ-EEA, called SGA developed by Chang et al. (2006), which can

be considered another sequential version of SM N-FINDR. Unlike SC N-FINDR, which starts with

a randomly generated p-vertex simplex and then successively replaces one vertex at a time via

(8.1), SGA starts with one vertex and then begins to grow a simplex by one vertex at a time until it

reaches p.

The key to making SGA work hinges on how to appropriately select new vertices to augment

growing simplexes. According to N-FINDR for a given positive integer p, a simplex formed by p

endmembers is the one that produces the maximal volume among all possible simplexes formed by

any set of p data sample vectors. Using this as a criterion, SGA grows the current k-vertex simplex

Sðeð0Þ; eð1Þ; . . . ; eðk�1ÞÞ to a (kþ 1)-vertex simplex Sðeð0Þ; eð1Þ; . . . ; eðk�1Þ; eðkÞÞ by finding a new
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(kþ 1)st vertex e(k) so that the new (kþ 1)-vertex simplex Sðeð0Þ; eð1Þ; . . . ; eðk�1Þ; eðkÞÞ produces its
volume that is not less than volumes of all possible (kþ 1)-vertex simplexes

Sðeð0Þ; eð1Þ; . . . ; eðk�1Þ; rÞ augmented by any other data sample vector r. The detailed implementa-

tion of the above growing simplex process is summarized as follows.

Simplex Growing Algorithm (SGA)

1. Initialization:

a. Let p be the number of endmembers to be generated.

b. There are two ways to generate random initial endmembers for SGA.

i. Select a data sample vector randomly as an initial endmember e(0) and set k ¼ 0. In this

case, SGA is referred to as 1-SGA.

ii. Select a pair of two data sample vectors (e(0), e(1)) randomly to form a random degener-

ate two-dimensional simplex that is a line segment connecting e(0) and e(1). Set k ¼ 1. In

this case, SGA is referred to as 2-SGA.

2. At k � 0 and for each sample vector r, we calculate Vðeð0Þ; . . . ;eðkÞ; rÞ defined by

Vðeð0Þ; . . . ; eðkÞ; rÞ ¼
det

1 1 � � � 1 1

eð0Þ eð2Þ � � � eðkÞ r

� �����

����

k!
ð8:2Þ

which is the volume of the simplex specified by vertices eð0Þ; eð1Þ; . . . ; eðkÞ; r, denoted by

Sðeð0Þ; eð1Þ; . . . ; eðkÞ; rÞ. Since the matrix det
1 1 � � � 1 1

eð0Þ eð1Þ � � � eðkÞ r

� �
in (8.2) is not necessar-

ily a square matrix, a dimensionality reduction technique, such as PCA or MNF, is required to

reduce the original data dimensionality L to the dimension k.

3. Find e(kþ1) that yields the maximum of (8.3), that is,

eðkþ1Þ ¼ arg maxr Vðeð0Þ; . . . ; eðkÞ; rÞ
h in o

: ð8:3Þ
4. Stopping rule:

If k ¼ p� 1, then k k þ 1 and go to step 2. Otherwise, the final set of

feð1Þ; eð2Þ; . . . ; eðpÞg is the desired p endmembers.

Figure 8.1 shows growing simplexes of finding the first four endmembers, e1, e2, e3, and e4,

by 1-SGA and 2-SGA.

Despite that both SGA and SC N-FINDR can be viewed as sequential versions of SM N-FINDR,

two fundamental differences are noteworthy. One difference is that SGA grows simplexes via (8.3)

starting from a single-vertex simplex compared to SC N-FINDR, which performs in a completely

opposite manner in the sense that it actually shrinks simplexes by reducing the number of new

vertices to be found via (8.1). More specifically, SC N-FINDR starts off a p-vertex simplex whose

vertices are randomly generated. Then, it begins to replace these random vertices one by one with a

new vertex that maximizes the volume of the simplex with a reduced number of vertices remaining

to be replaced while keeping those new found vertices in tact. The advantage of SGA over SC N-

FINDR is that SGA keeps previously found vertices in tact while growing its simplexes as p is

increased, whereas SC N-FINDR must restart the entire process once p is changed. In other words,

SGA finds its new generated endmembers and works its way up one at a time by growing
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 (b) 2-SGA finding first two random endmembers e
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Figure 8.1 Growing simplexes of finding the first four endmembers, e1, e2, e3, and e4, by 1-SGA (a, b, c, d)

and (a0, b, c, d) by 2-SGA.



simplexes versus SC N-FINDR, which works its way down one at a time by shrinking simplexes in

order to reduce the number of new endmembers to be found. Nevertheless, from a computational

complexity viewpoint, both SGA and SC N-FINDR require the same number of comparisons,

pðp� 1Þ=2 for each data sample vector. Another fundamental difference is the use of random ini-

tial conditions. SGA only requires one randomly generated endmember to initialize the algorithm,

compared to SC N-FINDR that needs p randomly generated endmembers for initialization. In this

case, both SGA and SC N-FINDR share one thing in common that is, their performance is deter-

mined by their initial conditions. As a result, judicious selection of initial conditions becomes a

key issue that is the major topic of Chapter 9.

8.4 Vertex Component Analysis (VCA)

The VCA developed by Nascimento and Dias (2005) is also designed to reduce costly computa-

tional complexity suffered in MVT and CCA by replacing simple volume calculation with OP and

growing convex hulls vertex by vertex until it reaches a p-vertex convex hull instead of replacing

p-vertex convex hulls all together as MVT and CCA do. Its idea is similar to SGA in the sense that

VCA also grows convex hulls one vertex at a time sequentially in succession, but has a major

difference from that of SGA in how to find a vertex to grow a convex hull. More specifically, VCA

grows convex hulls with maximal orthogonal projections instead of simplexes with maximal vol-

ume used by SGA. In other words, VCA appeals for the maximum orthogonal projection as a

criterion as PPI does to grow its convex hulls compared to SGA that uses the maximal volume of a

simplex as a criterion to grow simplexes as N-FINDR does. In light of this interpretation, VCA can

be considered a sequential version of PPI, and SGA can be viewed as a sequential version of N-

FINDR. A comparative analysis between VCA and SGA was conducted by Chang et al. (2006)

with more details to be discussed in Chapters 9 and 11. The algorithmic implementation of VCA

can be described as follows.

Vertex Component Analysis (VCA)

1. Let the number of endmembers to be generated be p. Set a counter to k ¼ 0.

2. Perform a dimensionality reduction transform to reduce the original space X with dimensional-

ity L to a reduced data space X̂ with dimensionality p.

3. Set the initial vector, eð0Þ ¼ ð0; 0; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
p

Þ, and let a p� p auxiliary matrix A(0) be

Að0Þ ¼ eð0Þ 0 � � � 0

 �

.

4. At iteration, k � 0, generates a Gaussian random vector, wk, to be used to produce fk:

fðkÞ ¼ I� Aðk�1Þ Aðk�1Þ
� �#

� �
wk

� ���
ðI� Aðk�1Þ Aðk�1Þ

� �#


�
wk



�
ð8:4Þ

5. Find e(k) that maximizes fðkÞ
T

x̂ over x̂ 2 X̂, that is,

eðkÞ ¼ arg maxx̂2X̂ jfðkÞ
T

x̂j
h in o

: ð8:5Þ

6. Use e(k) to replace the kth column of A(k) to let AðkÞ ¼ eð1Þ � � � eðkÞ0 � � � 0
 �
.

7. If k ¼ p� 1, the algorithm is terminated. Otherwise, let k  k þ 1 and go to step 4.
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According to the above algorithm, VCA repeatedly performs orthogonal subspace projections

to produce a sequence of convex hulls from which convex hulls can gradually grow vertex by

vertex to find new vertices. It should be noted that the description of the above algorithm

may be slightly different from that proposed by Nascimento and Dias (2005); the main ideas

should be the same.

8.5 Linear Spectral Mixture Analysis-Based SQ-EEAs

In Section 7.2.4, a linear spectral mixture analysis (LSMA)-based SM-EEA is developed on the

basis of LSE, called FCLS-EEA, where a set of endmembers are found simultaneously by max-

imizing LSE among all possible subsets that contain the same number of samples. Since all the

endmembers must be found simultaneously, full abundance constraints, ASC and ANC, should be

imposed on the searching process. However, in a case of successive endmember extraction, there is

no need for imposing both ASC and ANC on SQ-EEAs. So, in this section, three second-order

statistics-based SQ-EEAs will be presented, all of which are LSE-based spectral unmixing tech-

niques with/without abundance constraints.

The first LSMA-based SQ-EEA of interest is an unconstrained-abundance least-squares algo-

rithm, called ATGP developed by Ren and Chang (2003), which makes use of a sequence of OSP

to find target sample vectors successively. In other words, ATGP extracts endmembers from a

sequence of nested orthogonal subspaces with reduced dimensionality. It can be considered an

unsupervised OSP (UOSP) that extends OSP developed by Harsanyi and Chang (1994) to an

unsupervised version of OSP (Chang et al., 1998a; Chang, 2003a). A second LSMA based SQ-

EEA is an unsupervised abundance nonnegativity constrained least-squares algorithm, called

UNCLS, which is based on nonnegativity constrained least-squares (NCLS) developed by Chang

and Heinz (2000). Since it also uses OSP to perform linear unmixing, it can be considered a par-

tially abundance constrained ATGP. A third LSMA-based SQ-EEA is a successive version of

FCLS-EEA, called UFCLS-EEA, which imposes an additional abundance sum-to-one constraint

on UNCLS. In this case, the UFCLS can also be considered a fully abundance constrained ATGP.

An algorithm, recently developed by Neville et al. (1999), called the IEA, also uses LSE as a crite-

rion, and is a fully abundance constrained linear spectral unmixing technique to find endmembers

one by one sequentially. It turns out to be that both IEA and UFCLS-EEA are essentially the same

technique in the sense that they use an LSE-based fully abundance constrained linear unmixing

technique to find endmembers one at a time. So, in the context of OSP, all these LSE-based algo-

rithms are actually OSP-based techniques. In what follows, the implementation of each of these

SQ-EEAs is described.

8.5.1 Automatic Target Generation Process-EEA (ATGP-EEA)

ATGP is previously developed to find potential target pixels that can be used to generate a target

signature matrix used in an OSP approach (Harsanyi and Chang, 1994; Chang, 2003a, 2003b). It is

one of the two processes used in the automatic target detection and classification algorithm devel-

oped by Ren and Chang (2003). It repeatedly makes use of an orthogonal subspace projector

defined by Harsanyi and Chang (1994) and Chang (2003a)

P?U ¼ I� UU# withU# ¼ UTU
� ��1

UT ð2:78Þ
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to find data sample vectors of interest from the data without prior knowledge regardless of what

types of data sample vectors are. It can be described as follows.

Assume that t(0) is an initial data sample vector. ATGP begins with the initial data sample vector

t0 by applying an orthogonal subspace projector P?
tð0Þ, specified by (2.86) with U(0)¼ [t(0)], to all data

sample vectors. Then, it finds a data sample vector, denoted by t(1) with the maximum orthogonal

projection in the orthogonal complement space, denoted by tð0Þ
� �?

that is orthogonal to the space,

tð0Þ
� �

spanned linearly by t(0). The reason for this selection is that the selected t(1) has, in general, the

most distinct features from t(0) in the sense of orthogonal projection because t(1) has the largest mag-

nitude of the projection in tð0Þ
� �?

produced by P?
tð0Þ. A second data sample vector t(2) can be found

by applying an orthogonal subspace projector P?½tð0Þtð1Þ� with U(1)¼ [t(0)t(1)] to the original data set,

and a data sample vector that has the maximum orthogonal projection in tð0Þ; tð1Þ
� �?

is selected

as t(2).

The above procedure is repeated many times to find a third data sample vector t(3), a fourth data

sample vector t(4), etc., until a certain stopping rule is satisfied. The stopping rule is determined by

the number of data sample vectors required to generate, p, which is estimated by the VD. Using p

as a stopping criterion, ATGP can be implemented in the following steps.

Algorithm for Automatic Target Generation Process-EEA (ATGP-EEA)

1. Initial condition:

Let p be the number of endmembers to be generated and t(0) be a randomly generated initial

endmember. Set k ¼ 0.

2. At k � 1 iteration, apply P?
tð0Þ via (2.86) to all data sample vectors r and find the kth data sample

vector t(k) that has the maximum OP defined by

tðkÞ ¼ arg maxr P?½Uðk�1Þtð0Þ�r
� �T

P?½Uðk�1Þtð0Þ�r
� �� �� �

ð8:6Þ

where Uðk�1Þ ¼ tð1Þtð2Þ � � � tðk�1Þ
 �
is the data matrix and Uðk�1Þ ¼ ; if k � 1 ¼ 0.

3. Stopping rule:

If k � 1 < p, let UðkÞ ¼ Uðk�1ÞtðkÞ

 � ¼ tð1Þtð2Þ � � � tðkÞ
 �

be the kth data matrix, go to step 2. Oth-

erwise, continue.

4. At this stage, ATGP is terminated. At this point, the data matrix is U(p� 1), which contains p� 1

data sample vectors as its column vectors, that do not include the initial vector t(0).

When ATGP is terminated, the final set of data sample vectors produced by ATGP at step 4 is

the desired set of endmembers fe1; e2; . . . ; epg that comprises p data sample vectors,

ftð0Þ; tð1Þ; tð2Þ; . . . ; tðp�1Þg ¼ ftð0Þg [ ftð1Þ; tð2Þ; . . . ; tðp�1Þg ¼ ftð0Þg [ Uðp�1Þ, found by repeatedly

using (8.6).

8.5.2 Unsupervised Nonnegativity Constrained Least-Squares-EEA
(UNCLS-EEA)

The UNCLS-EEA uses the NCLS method developed by Chang and Heinz (2000) for generating a

set of potential data sample vectors, which can be considered endmembers. It first randomly picks

an initial data sample vector denoted by t(0). Then, it assumes that all other data sample vectors are

pure data sample vectors consisting of t(0) with 100% abundance. Of course, this is, in general, not

true. Therefore, it next finds a data sample vector that has the largest LSE from the t(0), and selects

Sequential Endmember Extraction Algorithms (SQ-EEAs) 249



it as a first data sample vector denoted by t(1). Because the LSE between t(0) and t(1) is the largest, it

can be expected that t(1) is most distinct from t(0). NCLS is then used to estimate the abundance

fractions for t(0) and t(1), denoted by â
ð1Þ
0 ðrÞ and âð1Þ1 ðrÞ, for each data sample vector r, respectively.

Here, r is included in the estimated abundance fractions â
ð1Þ
0 ðrÞ and â

ð1Þ
1 ðrÞ to emphasize that

â
ð1Þ
0 ðrÞ and â

ð1Þ
1 ðrÞ are the functions of r and vary with r. The superscript indicates the number of

iterations already executed. Now, we find an optimal constrained linear mixture of t0 and t1,

â
ð1Þ
0 ðrÞtð0Þ þ â

ð1Þ
1 ðrÞtð1Þ, to approximate the r. Once again, it calculates the LSE between r and its

estimated linear mixture â
ð1Þ
0 ðrÞtð0Þ þ â

ð1Þ
1 ðrÞtð1Þ for all data sample vectors r. A pixel that yields

the largest LSE from its estimated linear mixture will be selected as a second data sample vector

t(2). As expected, such a selected data sample vector has the largest OP to the space linearly

spanned by t(0) and t(1). The same procedure of using the NCLS algorithm is repeated until the

number of data sample vectors reaches the desired number of endmembers, p, which is preset in

advance. The above-outlined procedure is called unsupervised NCLS (UNCLS)-EEA, which can

be summarized as follows.

Algorithm for UNCLS-EEA

1. Initial condition:

Let p be the number of endmembers to be generated and t0 be a randomly generated initial

endmember. Set k ¼ 0.

2. Let k  k þ 1 and find tðkÞ ¼ argfmaxr LSEðkÞðrÞ
 �g, where the kth least-squares error

LSE(k)(r) is defined by

LSEðkÞðrÞ ¼ r�
Xk

i¼0 â
ðkÞ
i ðrÞtðiÞ

h i� �T

r�
Xk

i¼0 â
ðkÞ
i ðrÞtðiÞ

h i� �
ð8:7Þ

3. Apply the NCLS method with the endmember matrix MðkÞ ¼ tð0Þtð1Þ � � � tðk�1Þ
 �
to estimate the

abundance fraction of tð0Þ; tð1Þ; . . . ; tðk�1Þ, âðkÞ0 ðrÞ; âðkÞ1 ðrÞ; . . . ; âðkÞk�1ðrÞ. If k ¼ p, the algorithm

is terminated; otherwise, go to step 2.

When the UNCLS algorithm is terminated at step 3, the final generated set

ftð0Þ; tð1Þ; tð2Þ; . . . ; tðp�1Þg ¼ ftð0Þg [ ftð1Þ; tð2Þ; . . . ; tðp�1Þg is the desired endmembers

fe1; e2; . . . ; epg.
8.5.3 Unsupervised Fully Constrained Least-Squares-EEA (UFCLS-EEA)

The UFCLS-EEA presented in the following is identical to UNCLS-EEA described in Section

8.5.2 with the exception that NCLS used in UNCLS-EEA is replaced by the FCLS method devel-

oped by Heinz and Chang (2001).

Algorithm for Unsupervised FCLS (UFCLS)-EEA

1. Initial condition:

Let p be the number of endmembers to be generated and t(0) be a randomly generated initial

endmember. Set k ¼ 0.

2. Let k  k þ 1 and find tðkÞ ¼ argfmaxr LSEðkÞðrÞ
 �g, where the kth least-squares error

LSE(k)(r) is defined in (8.5).

3. Apply FCLS with the endmember matrix MðkÞ ¼ tð0Þtð1Þ � � � tðk�1Þ
 �
to estimate the abundance

fraction of tð0Þ; tð1Þ; . . . ; tðk�1Þ, âðnÞ0 ðrÞ; âðnÞ1 ðrÞ; . . . ; âðnÞk�1ðrÞ. If k ¼ p, the algorithm is termi-

nated; otherwise, go to step 2.
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8.5.4 Iterative Error Analysis-EEA (IEA-EEA)

The IEA was originally proposed by Neville et al. (1999) for endmember extraction. In analogy

with UFCLS-EEA, it also makes use of constrained linear spectral unmixing to search for possible

endmembers. In addition, it does not produce all endmembers simultaneously as an SM-EEA does.

It calculates the sample mean and uses it to initialize the algorithm. Then, it repeatedly performs

constrained linear spectral unmixing procedures for producing a sequence of data sample vectors

in succession, which are considered endmembers by IEA. Interestingly, there are major differences

between IEA and UFCLS-EEA. One difference is the initial data sample vector generated by the

algorithms. While the IEA calculates the sample mean vector for initialization, UFCLS-EEA finds

a pixel with the largest vector length to be used as its initial pixel to start the algorithm. Another

difference is that UFCLS-EEA generates a new data sample vector that has the largest least-

squares error in terms of a fully constrained least-squares linear mixture described by (8.5). On the

contrary, IEA uses an error image resulting from linear constrained linear unmixing after each

spectral unmixing and finds the mean of the pixels with the largest least-squares error that are

farthest from the previously selected endmembers. As a result, the endmembers sought by

UFCLS-EEA are actually pixels, as opposed to signatures found by IEA that produces sample

means as endmembers. In the latter case, the IEA-generated signatures are not necessarily image

pixels. A third difference is that UFCLS-EEA does not need any prior knowledge, except

the knowledge of the number of data sample vectors, p or a prescribed error threshold to terminate

the algorithm. As for IEA, three parameters are required to be determined a priori, p, the desired

number of endmembers, NR(u)
(k), the number of pixels in R(k)(u), where R(k)(u) is the set of data

sample vectors with the largest errors in an error data set E(k) after the kth spectral unmixing and u

is a spectral angle to be used to find data sample vectors that will be averaged to generate an

endmember signature. Since no specific constrained spectral unmixing method was mentioned by

Neville et al. (1999), the FCLS developed by Heinz and Chang (2001) will be used in IEA for our

version of interpreting IEA.

Algorithm for IEA-EEA

1. Set values for three parameters p, R, and u.

2. Initialization:

Generate randomly an initial endmember, denoted by t(0).

3. Perform constrained linear spectral unmixing of t(0) to find an error data set E(0).

4. For k � 0, find a set of data sample vectors in R(i) that are within the spectral angle u and far-

thest from the obtained kth error data set E(i) in terms of the Euclidean distance (i.e., vector

length). Finally, calculate the average of data sample vectors in R(k)(u) and use it as the (kþ 1)

st endmember, denoted by t(kþ1).
5. If the used stopping rule is satisfied, the algorithm is terminated. Otherwise, perform con-

strained linear spectral unmixing on the kth endmember set, EðkÞ ¼ ftð0Þ; tð1Þ; . . . ; tðk�1Þg, and
find its error data set E(k). Let k k þ 1, and go to step 4. It should be noted that the stopping

rule used in this step can be implemented in two ways. One way is to predetermine the number

of endmember, p, in advance. Another way is to predetermine the unmixing error.

As noted, since the endmembers generated by the IEA-EEA are the averaged value of a set of data

sample vectors in R(k)(u), they are not real data sample vectors in the data. In order to make a fair

comparison with other EEAs, we set NR
(k)¼ 1 and u¼ 0 for our experiments. In this case, the IEA-

generated endmembers are actually real data sample vectors in the data.
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8.6 High-Order Statistics-Based SQ-EEAS

In Section 7.3, a second-order statistics SM-EEA, SPCA-EEA, is derived to find a set of endmem-

bers that yield the least statistical correlation. However, there are no HOS SM-EEAs that are simi-

lar to SPCA-EEA developed in Chapter 7. The reason for this is that no analytic form can be

derived for HOS-EEAs in the same way as SPCA-EEA that solves a characteristic polynomial

equation to find all eigenvalues simultaneously. In this case, instead of solving a known equation

such as the characteristic polynomial equation, HOS-based EEAs must appeal for an algorithm that

allows one to find projection vectors similar to eigenvectors found by SPCA-EEA through eigen-

values and each of such projection vectors can only be found one at a time. Then, each projection

vector produces an HOS component from which an endmember can be extracted. An EEA design,

based on this approach, is called an HOS-based SQ-EEA.

More specifically, we assume that the ith HOS component, denoted by CHOS
i , can be described

by a random variable zi with values taken by the gray level value of the nth pixel in the component

CHOS
i , denoted by zin. Therefore, criteria used to generate various HOS components in Section 6.3

are also used here to generate HOS components for endmember extraction as follows. However,

it should be noted that since only HOS is of interest, a process, called sphering discussed in

Section 6.3, should be first applied as a preprocessing to remove second-order statistics prior to

finding HOS components.

8.6.1 Third-Order Statistics-Based SQ-EEA

The first HOS is the third-order statistics, also known as skewness, which measures asymmetry of a

probability distribution. The third-order statistics component is generated by a projection vector

w�, which solves the following optimization:

maxw 1=Nð ÞPN
i¼1 z

3
i

� �

¼ maxw 1=Nð ÞPN
i¼1 w

T~ri~r
T
i ww

T~ri
� � subject towTw ¼ 1 ð8:8Þ

which is equivalent to solving the following equation:

E ~ri~r
T
i w~r

T
i


 �� l0I
� �

w ¼ 0 ð8:9Þ

by finding the eigenvalue l0 of the matrix E ~ri~r
T
i w~r

T
i


 �
and its corresponding eigenvector w�.

8.6.2 Fourth-Order Statistics-Based SQ-EEA

The second HOS is the fourth-order statistics, also known as kurtosis, that measures the flatness

of a probability distribution. Similarly to (8.8), the fourth-order statistics component is generated

by a projection vector w� that solves the following optimization:

maxw 1=Nð ÞPN
i¼1 z

4
i

� �

¼ maxw 1=Nð ÞPN
i¼1 w

T~ri~r
T
i ww

T~ri~r
T
i w

� � subject towTw ¼ 1 ð8:10Þ
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which is equivalent to solving the following equation:

E ~ri~r
T
i ww

T~ri~r
T
i


 �� l0I
� �

w ¼ 0 ð8:11Þ

by finding the eigenvalue l0 of the matrix E ~ri~r
T
i w~r

T
i


 �
and its corresponding eigenvector w�.

8.6.3 Criterion for kth Moment-Based SQ-EEA

In analogy with (8.9) and (8.11), HOS can be extended to the kth-order statistics: kth moment by

solving the following eigenproblem:

E ~ri ~r
T
i w

� �k�2
~rTi

h i
� l0I

� �
w ¼ 0 ð8:12Þ

8.6.4 Algorithm for Finding Projection Vectors

It should be noted that a single projection vector w�, which solves (8.9) for skewness, (8.11) for

kurtosis, or (8.12) for the kth moment, represents only one component. In order to continuously

generate new components, a sequence of projections must be performed. In this case, when a pro-

jector vector w� is found, the de-correlated data ~X are mapped into the linear subspace w�h i?
orthogonal to w�h i that is the space spanned linearly by w�. The next projection vector w� is then
found by solving (8.9), (8.11), or (8.12) in the space w�h i?. The same procedure is then continued

until a stop criterion, that is, the predetermined number of projections required to be generated, is

satisfied. An algorithm for finding a sequence of projection vectors is called the projection vector

generation algorithm (PVGA) and can be described as follows.

Projection Vector Generation Algorithm (PVGA)

1. Initially, sphere the original data set X via (6.36)–(6.38). The resulting data set is denoted

by ~X.
2. Find the first projection vector w�1 by solving (8.9) or (8.11) or (8.12) depending on which

criterion is used, skewness or kurtosis, or the kth moment.

3. Using the obtained w�1, generate the first projection image ~Z
1 ¼ w�1

� �T ~X ¼ f~z1i j~z1i ¼ w�1
� �T

~rig,
which can be used to detect the first endmember.

4. Apply the OSP specified by P?w1
¼ I� w1ðwT

1w1Þ�1wT
1 to the data set ~X to produce the first

OSP-projected data set denoted by ~X
1
, ~X

1 ¼ P?w1

~X.

5. Use the data set ~X
1
and find the second projection vector w�2 by solving (8.9), (8.11), or (8.12)

that depends on which criterion is used, skewness or kurtosis, or the kth moment.

6. Apply P?w2
¼ I� w2ðwT

2w2Þ�1wT
2 to the data set ~X

1
to produce the second OSP-projected data

set denoted by ~X
2
, ~X

2 ¼ P?w2

~X
1
, which can be used to produce the third projection vector w�3 by

solving (8.9), (8.11), or (8.12). Or, equivalently, we define a matrix projection matrix W2 ¼
w1w2½ � and apply P?

W2 ¼ I�W2 W2
� �T

W2
� ��1

ðW2ÞT to the original sphered data set ~X to

obtain ~X
2 ¼ P?

W2
~X.

7. Repeat the procedure of steps 5 and 6 many times to produce w�3; . . . ;w
�
k until a stopping crite-

rion is met. It should be noted that a stopping criterion can either be a predetermined number of

projection vectors required to be generated or be a predetermined threshold for the difference

between two consecutive projection vectors.
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It should be noted that the implementation of step 2 in PVGA is not trivial. In order to solve (8.9),

(8.11), or (8.12) for the optimal projection vector w�1, the following iterative procedure is proposed

to execute step 2, where only the criterion (8.9) for skewness is used for illustration. Similarly, the

same implementation can also be used for kurtosis and the kth moment with (8.9) replaced by

(8.11) and (8.12), respectively.

Implementation of step 2 to execute (8.9) for skewness:

2(a) Initialize a random projector w
ð0Þ
1 and set k ¼ 0

2(b) Calculate the matrix E ~ri~r
T
i w
ðkÞ
1 ~rTi

h i
and find an eigenvector v

ðkÞ
1 corresponding to the largest

magnitude of eigenvalues of the matrix E ~ri~r
T
i w
ðkÞ
1 ~rTi

h i
.

2(c) If the Euclidean distance w
ðkÞ
1 � v

ðkÞ
1


 > e and w

ðkÞ
1 þ v

ðkÞ
1


 > e, then let w

ðkþ1Þ
1 ¼ v

ðkÞ
1 and

k  k þ 1, go to step 2(b). Otherwise, w
ðkÞ
1 is the desired projector w

ð�Þ
1 . Let w�1 ¼ w

ðkÞ
1 and

return to step 3 in the PVGA.

8.6.5 ICA-Based SQ-EEA

This section presents an ICA-based EEA, called ICA-EEA. The idea is to select the first p priori-

tized ICs for endmember extraction and to further use the same selected p prioritized ICs for abun-

dance quantification for all image pixels. In other words, each IC represents a specific class of data

sample vectors extracted from the image data. Thus, it can be used to serve as an abundance frac-

tion map for this particular class. Most EEAs extract all desired endmembers in a single map to

show their spatial presence in the image in a similar way that a classification algorithm produces a

class map. The following proposed ICA-based endmember extraction algorithm performs other-

wise. It uses the FastICA-generated ICs that separate all extracted endmember pixels in individual

components so that no two endmember pixels that represent two different classes will be present in

the same IC component.

ICA-Based Endmember Extraction Algorithm (ICA-EEA)

1. Let p be the number of ICs needed to be generated.

2. Implement either HOS-ICPA or ID-ICPA to find first p prioritized ICs in accordance with their

priority scores.

3. For each of the selected p FastICA-generated IC images, find a pixel with the maximal absolute

value, which is referred to as the endmember pixel. The spectral signature of such a found pixel

is then selected as an endmember.

4. The p endmember pixels produced in step 3, denoted by fejgpj¼1, are the final set of endmember

pixels whose spectral signatures are our desirable endmembers.

It should be noted that there may have been more than one endmember pixel extracted in a single

IC, in which case all the extracted endmember pixels are considered to be in the same class, which

will be shown in our experiments.

8.7 Experiments

The experiments conducted in this section follow the same experiments conducted in Section

7.5 so that a comparative analysis on performance evaluation between SM-EEAs in Chapter 7

and SQ-EEAs in this chapter can be performed by comparing their respective experimental
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results, where the same six synthetic image-based scenarios, Cuprite image and HYDICE

image are used for experiments. Four categories of SQ-EEAs are selected for performance

evaluation, (1) OP-based EEA, VCA, (2) simplex-based EEA, SGA, SC N-FINDR, (3) second-

order statistics least-squares error-based EEAs, ATGP-EEA, UNCLS-EEA, UFCLS-EEA,

and (4) high-order statistics-based EEAs, HOS-EEAs (skewness-EEA, kurtosis-EEA),

ICA-EEA. So, a total of nine SQ-EEAs, VCA, SC N-FINDR, SGA, ATGP-EEA, UNCLS-

EEA, UFCLS-EEA, skewness-EEA, kurtosis-EEA, and ICA-EEA are actually studied in this

section for comparative analysis. Several comments on the selection of these eight SQ-EEAs

are worth noting.

1. SC N-FINDR is derived as an SQ-EEAversion of N-FINDR in Chapter 7.

2. SGA can also be considered as another SQ-EEA version of N-FINDR in Chapter 5, which has

two versions, 1-SGA and 2-SGA, depending on one or two endmembers randomly generated for

initialization.

3. VCA can be considered as an SQ-EEA of PPI in Chapter 7.

4. As will also be shown in Chapter 11, PPI, VCA, and ATGP-EEA are actually closely related

through OP. With this interpretation, VCA can be considered as an SQ-EEA version of PPI and

a random version of ATGP-EEA.

5. UFCLS-EEA can be considered as an SQ-EEA version of FCLS-EEA. Since IEA-EEA is very

similar to UFCLS-EEA, only UFCLS-EEA is selected for evaluation.

6. In comparison with UFCLS-EEA, which imposes full abundance constraints on endmembers, it

is interesting to see endmember extraction performance if abundance constraints are not fully

implemented, in which case ATGP-EEA is fully unconstrained and UNCLS-EEA is partially

constrained by imposing only abundance nonnegativity constraints. So, these three least-

squares-based EEAs cover three possible scenarios: unconstrained, partially constrained, and

fully constrained cases.

7. Since no significant difference can be gained by statistics higher than 4, only the third- and

fourth-order statistics-based EEAs, that is, skewness-EEA, kurtosis-EEA, are considered to rep-

resent HOS-EEAs.

8. Finally, for those EEAs such as SC N-FINDR, SGA, and VCA, which require dimensionality

reduction, four different transforms, SVD, PCA, MNF, and ICA, can be used to perform DR.

Since SVD, PCA, and MNF are second-order statistics-based transforms and perform similarly,

only experiments using MNF are presented.

8.7.1 Synthetic Image Experiments

The same six scenarios, TI1, TI2, and TI3 for target implantation (TI) and TE1, TE2, and

TE3 for target embeddedness (TE) studied in Section 7.5 were also used for experiments to

conduct comparative studies where eight SQ-EEAs, SC N-FINDR, 1-SGA/2-SGA, VCA,

ATGP-EEA, UFCLS-EEA, UNCLS-EEA, skewness-EEA, and kurtosis-EEA, were evaluated

for performance analysis. For the three SQ-EEAs, SC N-FINDR, SGA, and VCA, MNF and

ICA were used to perform DR because MNF is more effective than PCA, in general, in terms

of second-order statistics and ICA is the most widely used HOS-based DR transform. It is

also noted that SC N-FINDR was used as an SQ N-FINDR due to its simple implementation.

Since the number of endmembers to be extracted for six scenarios was estimated to be either

p¼ 5 or 6, the dimensionality to be retained after DR was set to q¼ 6. Furthermore, since

SQ-EEAs extracted endmembers one after another in a sequential order, numerals were used

to indicate the orders that the pixels were extracted as endmembers and the endmembers
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extracted by SQ-EEAs using p¼ 5 were part of endmembers extracted by SQ-EEAs using

p¼ 6 by setting q¼ 6. Figures 8.2–8.7 show that with six endmembers extracted by SC

N-FINDR, 1-SGA/2-SGA, VCA, ATGP-EEA, UFCLS-EEA, UNCLS-EEA, skewness-EEA,

and kurtosis-EEA using one set of random initial endmembers.

Among six scenarios is TI2, which represents the most realistic one for endmember extraction

because pure pixels are inserted into the noisy image background. In this particular scenario, all the

eight SQ-EEAs except 2-SGAwere able to extract five endmembers if p¼ 6. However, when p¼ 5,

Figure 8.2 Results for scenario TI1 with six endmembers extracted by SC N-FINDR, 1-SGA, 2-SGA, VCA,

ATGP-EEA, UFCLS-EEA, UNCLS-EEA, skewness-EEA, and kurtosis-EEA using one set of random initial

endmembers.
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only HOS-based EEAs and those SQ-EEAs using ICA except 1-SGA to perform DR could extract

all five endmembers in the first five pixels. This implies that HOS characterizes endmembers more

effectively than second-order statistics. The same conclusions could also be drawn for TI1, TI3,

TE2, and TE3. An interesting observation is scenarios of TI1 and TE1 where no noise is present in

the image. In this case, all pixels, including background pixels, are clean and considered to be pure.

As a result, SC N-FINDR had difficulty with determining which one was really a pure signature as

an endmember. As a matter of fact, all SQ-EEAs using maximal simplex or convex hull volume as

a criterion such as SGA or VCA had the same problem compared to other criteria, which did not

have such a difficulty with finding endmembers as target of interest.

Figure 8.3 Results for scenario TI2 with six endmembers extracted by SC N-FINDR, 1-SGA, 2-SGA, VCA,

ATGP-EEA, UFCLS-EEA, UNCLS-EEA, skewness-EEA, kurtosis-EEA, and ICA-EEA using one set of ran-

dom initial endmembers.
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8.7.2 Real Hyperspectral Image Experiments

The same two real hyperspectral image data sets, Cupritre data in Figures 1.12(a) and (b) and the

HYDICE image scene in Figures 1.15(a) and (b), were also used for experiments here.

8.7.2.1 Cuprite Data

The value of p estimated by VD for the reflectance data of the Cuprite scene in Figures 1.12

(a) and (b) is 22, which has been used in Chapter 7 to evaluate SM-EEAs. However, based on

SSE its estimate is 28. Since SQ-EEAs generate endmembers sequentially, in this case we use

a large value of p to generate endmembers so that the first smaller number of endmembers

Figure 8.4 Results for scenario TI3 with six endmembers extracted by SC N-FINDR, 1-SGA, 2-SGA, VCA,

ATGP-EEA, UFCLS-EEA, UNCLS-EEA, skewness-EEA, kurtosis-EEA, and ICA-EEA using one set of ran-

dom initial endmembers.
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would be those generated by a smaller value of p. Figure 8.8 shows nSSE¼ 28 (nVD¼ 22)

endmembers extracted by eight SQ-EEAs, including two veriosns of SGA, 1-SGA and

2-SGA, where endmember pixels extracted by algorithms are marked by yellow circles, the

pixels marked by upper cases of “A, B, C, K, M” are the five ground truth mineral pixels,

and the pixels marked by yellow triangles with lower cases of “a, b, c, k, m” are identified by

SQ-EEAs corresponding to the five true mineral signatures and are listed in the parenthesis

underneath each figure.

Figure 8.5 Results for scenario TE1 with six endmembers extracted by SC N-FINDR, 1-SGA, VCA, ATGP-

EEA, UFCLS-EEA, UNCLS-EEA, skewness-EEA, and kurtosis-EEA using one set of random initial

endmembers.
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Comparing the results in Figure 8.8 extracted by SQ-EEAs with those in Figure 7.25 extarcted

by SM-EEAs, we find that the results were similar and close if an SQ-EEA was modified from its

SM-EEA counterpart such as SC N-FINDR. As expected, using HOS-based SQ-EEAs or ICAs to

perform DR did improve the performance of endmember extarction. Interestingly, ATGP- and

LSE-based SQ-EEAs were shown to perform better than convex geometry-based SQ-EEAs.

8.7.2.2 HYDICE Data

Following the same experiment as conducted for the cuprite data, Figure 8.9 shows 10 endmem-

bers extracted by eight SQ-EEAs including two versions of SGA, 1-SGA and 2-SGA, where the

Figure 8.6 Results for scenario TE2 with six endmembers extracted by SC N-FINDR, 1-SGA, 2-SGA,

VCA, ATGP-EEA, UFCLS-EEA, UNCLS-EEA, skewness-EEA, kurtosis-EEA, and ICA-EEA using one set

of random initial endmembers.
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value of p was chosen to be a larger vaule of nSSE¼ 10 and nVD¼ 9. In the figure, the endmember

pixels extracted by algorithms are marked by yellow circles and the pixels marked by yellow trian-

gles are identified by SQ-EEAs corresponding to the five panel signatures and listed in the paren-

thesis underneath each figure.

Comparing Figure 8.9 with Figure 7.27, we observe that SQ-EEAs performed at least equally as

SM-EEAs, including their counterpart, N-FINDR, and FCLS-EEA. Also, analogous to the Cuprite

experiments, using HOS-based SQ-EEAs or ICAs to perform DR did improve the performance of

endmember extarction.

Figure 8.7 Results for scenario TE3 with six endmembers extracted by SC N-FINDR, 1-SGA, 2-SGA,

VCA, ATGP-EEA, UFCLS-EEA, UNCLS-EEA, skewness-EEA, kurtosis-EEA, and ICA-EEA using one set

of random initial endmembers.
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8.8 Conclusions

SM-EEAs considered in Chapter 7 extract endmembers simultaneously for a given number of end-

members, p. One major difficulty of implementing SM-EEAs is finding all the endmembers at

once, which results in high computational complexity. Another difficulty is that once the value of

p is changed an SM-EEA must be reimplemented. In other words, all the previously generated

Figure 8.8 Results for cuprite reflectance with nSSE¼ 28 (nVD¼ 22) endmember extracted by SC N-FINDR,

1-SGA, 2-SGA, VCA, UFCLS-EEA, ATGP-EEA, skewness-EEA, kurtosis-EEA, and ICA-EEA using one set

of random initial endmembers.
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endmembers by an SM-EEA cannot be used and new endmembers must be regenerated. Such a

circumstance arises when p is not known precisely, and must be tested on a trial-and-error basis.

This chapter has addressed these two issues by developing SQ-EEAs that implement SM-EEAs in

a sequential manner. More specifically, an SQ-EEA finds one endmember at a time and one after

another sequentially rather than all endmembers together simultaneously as an SM-EEA does.

Figure 8.9 Results for the HYDICE scene with nSSE¼ 10 (nVD¼ 9) endmember extracted by SC N-FINDR,

1-SGA, 2-SGA, VCA, UFCLS-EEA, ATGP-EEA, skewness-EEA, kurtosis-EEA, and ICA-EEA using one set

of random initial endmembers.
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Most importantly, an SQ-EEA adapts its ability to numbers of endmembers, p, which can also be

adaptive. It uses previously generated endmembers as part of future endmembers as the number of

endmembers, p, grows. As a result, computational complexity can greatly be reduced. In addition,

most SQ-EEAs do not require dimensionality reduction as SM-EEAs do. Finally, Table 8.1

summarizes design criteria of various SQ-EEAs presented in this chapter and their advantages and

disadvantages.

Table 8.1 Summary of design criteria of SQ-EEAs and their advantages and disadvantages

SQ-EEAs Design criteria Advantages Disadvantages

SC N-FINDR Maximum simplex

volume

Less computation Precise knowledge about p

SGA Maximum simplex

volume

Less computation Precise knowledge about p

VCA Orthogonal projection Less computation 1. Precise knowledge about p

2. Random initial conditions

ATGP-EEA Unconstrained OSP 1. Fast computation 1. Precise knowledge about p

2. Effective in finding spec-

trally distinct targets

2. Computational complexity

3. Presence of pure signatures

UNCLS-EEA ANC-constrained

OSP

Effective in finding spectrally

distinct targets

1. Precise knowledge about p
2. Computational complexity

UFCLS-EEA Fully abundance-

constrained OSP

Effective in finding spectrally

distinct targets

1. Precise knowledge about p

2. Computational complexity

3. Ill-rank of endmember

matrix

Skewness-

EEA

Third-order statistics Effective in finding small

targets

1. Determination of number

of components, p

2. Random initial conditions

Kurtosis-EEA Fourth-order statistics Effective in finding small

targets

1. Determination of number

of components, p

2. Random initial conditions

ICA-EEA Statistical

independency

Effective in finding small

targets

1. Determination of number

of components, p

2. Random initial conditions
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9

Initialization-Driven Endmember
Extraction Algorithms (ID-EEAs)

One major issue arising in all the endmember extraction algorithms (EEAs) developed in Chapters 7

and 8 is the use of randomly generated initial endmembers to initialize algorithms. Accordingly the

final set of selected endmembers are generally not the same and the results are not repeatable. Such

inconsistency certainly causes discrepancies during data analysis. Another issue is that EEAs are

also sensitive to how initial endmembers are chosen. Unfortunately, very little effort has been

devoted to deal with these problems until recent works by Chang and Plaza (2006) and Plaza and

Chang (2006). Interestingly, a good initial condition can not only reduce computing time signifi-

cantly but also produce consistent final results. An appropriately selected set of initial endmembers

can make tremendous improvement in performance and computational complexity on the endmem-

ber extraction process. To address such initialization issues, this chapter introduces initialization-

driven (ID) EEAs (ID-EEAs) where their initial conditions can be selected by a custom-designed

process. Two procedures are developed for such a selection of initial endmembers. One procedure is

called the initial endmember-driven (IED) initialization that is generally used by SQ-EEAs to pro-

duce the first initial endmember. The other procedure introduces a new concept of endmember ini-

tialization algorithm (EIA) that is particularly designed to generate an appropriate set of initial

endmembers for SM-EEAs. Furthermore, an EEA implemented in conjunction with EIA-generated

initial endmembers can also significantly reduce the number of endmember replacements as well as

computing time during the course of searching new endmembers. As a surprising finding, many of

the EIA-generated initial endmembers turn out to be final desired endmembers.

9.1 Introduction

As demonstrated by the experiments in Chapters 7 and 8, one common issue in implementation of

SM-EEA and SQ-EEA is their use of randomly selected data sample vectors as initial endmembers

to initialize an EEA. As a consequence, the final set of selected endmembers by an EEA varies.

More specifically, two different sets of random initial endmembers may produce different final

sets of endmembers. Such inconsistency results from the nature of randomness caused by the use

of random initial endmembers. Interestingly, very little attention was paid to this issue in the past

until a recent work reported in Plaza and Chang (2006). Although Berman et al. (2004) also real-

ized the problem of starting points (i.e., initial condition) when their iterated constrained
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endmember (ICE) was developed, they did not specifically address this issue. Nevertheless, the

ICE mitigated this problem by using PPI-generated endmembers as candidate points for their algo-

rithm initialization in which case PPI can be considered as an EIA.

It is known that the ultimate goal of an EEA is to find pure spectrally distinct signatures present

in the data. Despite that much effort has been devoted to the design and development of EEAs, it

seems that very little has been done in addressing the issue of algorithm initialization which in fact

has a significant impact on the final endmembers selected by an EEA. Such an initialization issue is

also encountered in vector quantization where an algorithm may be trapped locally by an

inappropriate selection of initial code words (Gersho and Gray, 1992) as well as in pattern classifi-

cation where an unsupervised clustering process, called ISODATA (Duda and Hart, 1973) and also

known as the C-means/K-means clustering algorithm, makes use of randomly generated initial data

samples as its initial cluster means.

Generally, three primary factors play a key role in effectiveness of an EEA. One is how to adopt

an appropriate criterion to design an EEA. As noted in Chapters 7 and 8, most effective ones are

orthogonal projection (OP) used by PPI and VCA, and maximal/minimal simplex volume (MSV)

used by N-FINDR and simplex growing algorithm (SGA). Another is to preset an appropriate num-

ber of endmembers, p, for an EEA to generate. In this case, determination of p becomes crucial and

critical. If p is set too small, the extracted endmembers may not represent the data well. On the

other hand, if p is set too large, some endmembers may not be pure signatures and can be either

mixed or interfering signatures. This issue is applied to both SM-EEAs and SQ-EEAs. Once the

value of p is determined, a third relevant issue is initialization of an EEA, especially, how to select

a set of appropriate p initial endmembers to speed up the searching process while avoiding the

process being trapped in local optima. From an algorithm design point of view, a good and effec-

tive algorithm should not depend on initial conditions which can only affect the algorithm conver-

gence rate but cannot alter the final results if the process is run indefinitely. Unfortunately, this is

generally not true for many algorithms that are implemented in a finite number of runs. For exam-

ple, Newton’s method will never converge if an initial condition is selected incorrectly (Hamming,

1989). As will also be demonstrated by experiments, an EEA also suffers from similar problems.

As noted in Chapter 7, an SM-EEA requires an exhaustive search which is very computationally

expensive. To circumvent this issue many EEAs developed in the literature are actually not SM-

EEAs because their implemented searching processes are neither simultaneous nor exhaustive, but

rather focused on sequential searches or narrowed their searches in selective feasible regions. As a

consequence, an initial set of endmembers selected for algorithm initialization may ultimately

determine the final result of endmembers. Accordingly, how to select a set of desired initial end-

members becomes a crucial step in design of EEAs.

This chapter introduces a new type of EEAs, called initialization-driven EEAs (ID-EEAs),

which use specific initial conditions for algorithm initialization. Depending on how initial

conditions are generated, ID-EEAs can be further categorized into initial endmember-driven EEAs

(IED-EEAs) which are essentially designed for those EEAs that only require the first initial end-

member to initialize the algorithms and endmember initialization algorithm (EIA)-driven EEAs

(EIAD-EEAs) which are primarily designed for those EEAs that generally require a complete set

of p initial endmembers for algorithm initialization.

9.2 Initialization Issues

From a viewpoint of algorithm design, three major issues determine the performance of an algo-

rithm: initial conditions, stopping criteria, and learning rules. On some occasions, stopping criteria

that set thresholds to terminate an algorithm are also closely related to initial conditions. Over the

past few years, EEAs have been designed for finding endmembers which are mainly focused on the
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third issue, that is, learning rules. However, little work has been devoted to deal with algorithm

initialization issues, which can be as important as learning rules as described in the following

section.

9.2.1 Initial Conditions to Terminate an EEA

There are generally two initial conditions that can be used to terminate an EEA. One is to preset an

error threshold, e, to terminate an algorithm. Since the selection of an appropriate e is usually data

dependent, it is generally difficult to do so without prior knowledge about the data. If the value of e
is too small, the algorithm may take a long time to converge and may also run into a stability

problem with fluctuating results. Besides, it may generate more endmembers than are actually

needed. On the contrary, if the value of e is too large, the algorithm may terminate earlier than it

should. In this case, the set of generated endmembers may be insufficient and some desired end-

members will have to be left out. As an alternative, we may preset the number of endmembers

needed to be generated, p. In this case, an alternative approach to selection of an error threshold e
is to determine an appropriate value for p, that is, how many endmembers are required for an EEA

to generate. On one hand, if the value of p is too small, not all desired endmembers will be

extracted. On other hand, if the value of p is too large, some extracted endmembers may turn out

to be unwanted signatures which are not pure. Therefore, the same dilemma encountered in the

selection of an appropriate value for e also arises in the selection of an appropriate value for p.

However, using a recently developed new concept of virtual dimensionality (VD) introduced in

Chapter 5 finding an appropriate value of p seems more feasible and doable by setting VD¼ p

because the VD provides a good estimate of the number of spectrally distinct signatures in the data

and can be used to resolve the issue in determining the value of p. Therefore, this chapter assumes

that the value of p is estimated by VD, and this VD-estimated p will be used to determine how

many endmembers are required for an EEA to generate.

9.2.2 Selection of an Initial Set of Endmembers for an EEA

After the number of endmembers, p, is determined for an EEA, a follow-up step is to find an ade-

quate set of initial endmembers
�
e
ð0Þ
1 ; e

ð0Þ
2 ; . . . ; e

ð0Þ
p

�
to initialize the EEA. It is interesting to note

that except the works reported in Chang and Plaza (2006), Plaza and Chang (2006), and Chang

et al. (2006), very little has been done in the literature regarding how to select an initial set for an

EEA. In fact, an appropriate selection of initial endmembers can be very beneficial. On some

occasions, it is critical to produce correct final results, and in the mean time it also speeds up the

endmember searching process. This indicates that finding appropriate initial conditions becomes

necessary and highly desirable for algorithm design, for example, vector quantization

(Katsavounides et al., 1994). Without a specific set of initial conditions a general practice to imple-

ment an EEA often starts with any set of initial endmembers, most likely, randomly generated. If

an EEA conducts an exhaustive search for p endmembers, then the final results should not depend

on the initial endmembers that are selected for initialization because all possible p combinations

will be eventually exhausted for the endmember search. The only issue is its computing time

which is largely determined by the number of searches, which is ðN
p
Þ ¼ N!

p!ðN�pÞ!. Unfortunately, an
exhaustive search generally suffers from several drawbacks. First, it is computationally very

expensive, in particular, for hyperspectral imagery with large volumes of data sample vectors, N.

Second, it has to exhaust all p combinations before finding an optimal set of endmembers even

though such set may likely to be found in a very early stage. Third and most importantly, it is not

feasible in practical applications. So, an efficient and effective EEA should not perform a fully

exhaustive search, but rather a search for endmembers in certain feasible regions or should use an
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iterative search by taking advantage of previous search results as a base to improve the next search.

However, the success of such approaches is heavily determined by initial conditions to be used for

the initial search. If the initial conditions are poorly chosen, the algorithm may be trapped in local

optima or may not even converge. Therefore, for an EEA to be efficient as well as effective, the

selected initial endmembers must be representative and cannot be arbitrary. Interestingly, this issue

has not received much attention in the past. As will be demonstrated by the experiments, EEAs are

indeed sensitive to the initial endmembers and a judicious selection of initial endmembers is cru-

cial for an EEA to be successful in producing the final results of endmembers.

9.2.3 Issues of Random Initial Conditions Demonstrated by Experiments

To illustrate the issue caused by random initial conditions in data analysis, this section presents real

image experiments to show how difficult interpretation can be when inconsistent results are pro-

duced by different sets of random initial conditions. Four major EEAs, PPI, and IN-FINDR in

Chapter 7 and VCA and SGA in Chapter 8, all of which use random initial conditions, are used for

illustration.

9.2.3.1 HYDICE Experiments

First, we demonstrate inconsistent results of endmembers extracted by PPI, N-FINDR, and VCA

using two different sets of randomly generated initial endmember pixels in two separate runs

where the numbers of endmembers are chosen to be 9 and 10 because of VDNP
HFC ¼ 9 with PF �

10�3 and VDSSE¼ 10. Figures 9.1 and 9.2 show the results of endmember pixels extracted and

marked with circles by PPI using 1000 skewers, IN-FINDR, VCA, and SGA in two different runs

for p¼ 9 and 10, respectively, where MNF was used for DR.

For p¼ 9, PPI produced four panel pixels p11, p311, p412, and p521 in one run and another

four panel pixels p11, p312, p412, and p521 with one panel pixel different which is p312. All the

four panel pixels represented four distinct panel signatures, p1, p3, p4, and p5, as endmembers,

Figure 9.1 Endmember pixels extracted by PPI, IN-FINDR, VCA, and SGAwith MNF in two different runs

for p¼ 9.
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but their PPI counts were different. On the other hand, for p¼ 10, PPI only extracted three

panel pixels, p11, p412, and p521, in one run and four panel pixels, p11, p411, p412, and p521, in

another run. All the extracted panel pixels represented three distinct panel signatures, p1, p4,
and p5, as endmembers which were one short of four endmembers with p¼ 9. These interesting

experiments demonstrated one important observation. That is, a larger p¼ 10 did not necessar-

ily guarantee to perform better than a smaller p¼ 9. This is mainly due to two major reasons.

One is that unlike an SQ-EEA, which can take advantage of endmembers extracted for a

smaller value of p as part of endmembers generated for a larger value of p, PPI is an SM-EEA

and must regenerate all endmembers for different values of p. The other reason is that PPI

produced different PPI counts for endmembers in different runs. In this case, the panel pixel

p311 which appeared in one run may also disappear in another run due to its low PPI count.

Similarly, among all the pixels extracted by IN-FINDR in the case of p¼ 9 only two were real

endmember pixels, p311 and p521, representing two distinct panel signatures p3 and p7. How-

ever, among all the pixels extracted by IN-FINDR for p¼ 10 three panel pixels, p311, p412, and

p521, were extracted in one run and two panel pixels, p311 and p521, were extracted in another

run. Figures 9.1 and 9.2 show that VCA suffered from the same dilemma encountered in PPI

and IN-FINDR where only two panel pixels which might be different are extracted by all the

cases. Since the VCA is an SQ-EEA, the pixels in Figures 9.1 and 9.2 labeled by numbers

indicate the order in which these pixels were extracted in sequence by VCA. It is also interest-

ing to note that the VCA extracted a different set of distinct panel signatures in two different

runs, {p3,p5} and {p3,p4}, for p¼ 9, while the same two distinct panel signatures, p3 and p4,

were extracted for p¼ 10. Finally, SGA performed comparably to IN-FINDR and VCA for

p¼ 9 but slightly better than VCA for p¼ 10 where SGA extracted three panel pixels p311,

p412 and p521 in one run compared to only two panel pixels p311, p412 extracted by VCA in

both runs. These experiments demonstrate that the value of p actually has a large compact on

endmember extraction.

Figure 9.2 Endmember pixels extracted by PPI, IN-FINDR, VCA, and SGAwith MNF in two different runs

for p¼ 10.
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9.2.3.2 AVIRIS Experiments

For the following AVIRIS experiments, p was chosen to be 22 and 28 for comparative analysis.

Experiments similar to those conducted for the HYDICE image scene in Section 9.2.3.1 were also

performed for the Cuprite image scene in Figure 1.11(b). Figures 9.3 and 9.4 demonstrate that the

same dilemma encountered in the HYDICE experiments also occurred in the AVIRIS experi-

ments for the PPI, SM N-FINDR, and VCA with MNF used for DR where their final

results produced by two different runs were inconsistent for both p¼ 22 and 29. In these fig-

ures, the pixels marked by open circles were extracted by EEAs and the pixels marked by the

lowercases of “a, b, c, k, m” with triangles were the desired endmember pixels corresponding

to the five ground truth mineral endmembers provided in Figure 1.11(b) and marked by the

uppercases of “A, B, C, K, M” with yellow crosses “x” in the sense of spectral similarity

measured by the spectral angle mapper (SAM) (Chang, 2003a). Therefore, only spatial loca-

tions of the extracted endmember pixels were identified and shown in the figures. Additionally,

the numerals in open parentheses underneath the figures indicate the numbers of extracted end-

member pixels that were identified in correspondence with ground truth mineral pixels by the

SAM. The pixels in Figure 9.4 labeled by the numbers indicate the order in which these pixels

were extracted in sequence by VCA. It should also be noted that the PPI implemented here

used 500 skewers for computational convenience.

As shown in Figures 9.3 and 9.4, PPI and IN-FINDR extracted different numbers of ground-

truth-corresponding endmember pixels, 5 and 4, in two different runs for p¼ 22 and 29. It was

also true for the VCA with p¼ 29. Moreover, these extracted ground-truth-corresponding end-

member pixels were generally not the same. This is mainly due to the fact that there were other

pixels whose spectral signatures were also similar and very close to ground truth mineral sig-

natures. As a result, a different run was very much likely to extract different pixels correspond-

ing to ground truth pixels. This evidence was demonstrated in Figure 1.11(a) where the two

sets of three endmember pixels corresponding to alunite (A), buddingtonite (B), and calcite

(C) produced by the VCA in Figure 1.11(a) for p¼ 22 in two separate runs were different.

Figure 9.3 Endmember pixels extracted by PPI, IN-FINDR, VCA, and SGAwith MNF in two different runs

for p¼ 22.
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9.3 Initialization-Driven EEAs

Thus far, we have described two types of EEAs, SM-EEAs in Chapter 7 and SQ-EEAs in Chapter 8,

both of which make use of initial endmembers randomly selected from the data. As demonstrated in

experiments, the use of random initial endmembers results in inconsistent final selections of end-

members. An ID-EEA for PPI was first developed by Chang and Plaza (2006) to cope with this

particular issue and more general issues were later investigated in Plaza and Chang (2006). Due to

the natural difference in implementation of an SM-EEA and an SQ-EEA, how to find a specific set

of initial endmembers for an SM-EEA and an SQ-EEA is also different. For a given number of

endmembers, p, an initial set of endmembers for an SM-EEA needs p endmembers altogether to

initialize an SM-EEA. On the other hand, an SQ-EEA produces one endmember at a time sequen-

tially. In this case, an initial set of endmembers used to initialize an SQ-EEA is generally a singleton

set which consists of only one endmember instead of p endmembers. As a result, finding an appro-

priate set of initial endmembers for an SQ-EEA is reduced to looking for a specific data sample that

not only can speed up the endmember-searching process but also can produce consistent final

results. So, an EEAwhich only requires the first endmember to be generated for its initial condition

is called IED-EEA. When an EEA is an SQ-EEA using a specific data sample as an initial endmem-

ber, it is called IED-SQ-EEA. On the other hand, an SM-EEA requires a set of p initial endmembers

to be specified. In this case, it needs an algorithm to produce a good set of initial endmembers which

can speed up the search process implemented in an EEA to converge rapidly to the desired final

results. An algorithm designed for this purpose is called EIA. An EEA makes use of an EIA to

produce its initial condition called an EIA-driven (EIAD)-EEA. In particular, when an EEA is an

SM-EEA using an EIA as an initialization algorithm to produce an initial set of p-specific endmem-

bers, it is called an EIAD-SM-EEA. Interestingly, an SQ-EEA can also be used to serve as an EIA.

This is because an SQ-EEA is not necessarily optimal but provides very close final results. Conse-

quently, an SM-EEA using an SQ-EEA as an EIA may be the best way to produce a final set of

desired endmembers in terms of computational complexity and consistency in final results.

Figure 9.4 Endmember pixels extracted by PPI, IN-FINDR, VCA, and SGAwith MNF in two different runs

for p¼ 28.
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9.3.1 Initial Endmember-Driven EEAs

In Chapter 8, six SQ-EEAs are developed, SC N-FINDR, SGA, VCA, UFCLS/IEA-EEA, ATGP-

EEA, and HOS-EEAs, each of which represents a specific category associated with one particular

criterion. These SQ-EEAs can be implemented as IED-EEAs by specifying their first initial end-

member in two ways.

9.3.1.1 Finding Maximum Length of Data Sample Vectors

The idea of finding a data sample vector that yields the maximum length among all data sample

vectors came from the automatic target detection and classification algorithm developed by Ren

and Chang (2003), that is,

t0 ¼ arg maxrr
Tr

� �
; ð9:1Þ

where r runs over all data sample vectors. Since there is no prior knowledge regarding what

signatures of interest we are looking for, a best hope is to search for a data sample vector

with the most spectrally distinct signature which may be more likely to be an endmember.

Equation (9.1) provides such a signature t0 that can be used to replace the randomly generated

initial endmember by EEAs. Using (9.1) to specify their initial endmembers, EEAs of this

type include ATGP-EEA, UNCLS, UFCLS-EEA, VCA, and HOS-EEAs, which result in IED-

ATGP-EEA, IED-UNCLS, IED-UFCLS, IED-VCA, and IED-HOS-EEAs. However, there is a

different way for IED-VCA and IED-HOS-EEAs to implement (9.1). In step 4 of the VCA

algorithm described in Section 8.4, a Gaussian random vector is used to generate an initial

vector to produce an initial endmember every time after an endmember is generated. As also

shown, the VCA can also be implemented using a uniform random variable to replace the

Gaussian random vector. To implement VCA as IED-VCA, the random variable used by VCA

must be replaced by specifically chosen initial endmembers as described in the following.

IED-VCA (step 4 implemented in VCA is replaced by the following step):

1. At the nth iteration, the randomly generated Gaussian random vector, wn, used in

(8.1) is replaced by finding the maximum of rTr with r 2< Aðn�1Þ>?, that is,

wðnÞ ¼ arg maxr2<Aðn�1Þ>?r
Tr

� �
.

As noted in the above IED-VCA, it requires a new random initial projection vector every time a

new search is initiated for a new endmember. Compared to IED-VCA, IED-ATGP only needs one

initial random projection vector for initialization. Once IED-ATGP is initialized, the algorithm

automatically carries out the rest of orthogonal projections without any more random projection

vectors. This difference sheds light on how to resolve the issue in the use of random projection

vectors frequently occurred in projection pursuit (PP)-based algorithms including VCA in Section

8.4, high-order statistics-based EEA (HOS-EEA) in Section 8.6, and independent component anal-

ysis-based EEA (ICA-EEA) in Section 8.6.5. Using exactly the same ideas of extending VCA to

IED-VCA in Section 9.3.1.1, HOS-EEA and ICA-EEA can also be extended in the same fashion.

In other words, HOS-EEA and ICA-EEA can be extended to IED-HOS-EEA and IED-ICA-EEA

by specifying the brightest pixel with the highest intensity as their initial projection vector every

time they search for a new endmember.

Unlike VCA and HOS-EEA, which only need to specify one initial endmember, the SGA

described in Section 8.3 requires two initial endmembers for initialization since the minimum

number of forming a simplex is two vertices. In this case, a best pair of two initial endmembers
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that can be used to form a two-dimensional simplex is made up of two data samples (e(0),e(1))

that yield the maximum Euclidean distance among all possible pairs of data sample vectors in

a reduced one-dimensional data space obtained by a DR transform. This is because such a pair

represents the maximum volume of two-dimensional simplexes. Using this pair of data samples

(e(0),e(1)) to replace the random initial endmember used in step 1 of SGA, we can obtain the follow-

ing IED-SGA.

IED-2-SGA (step 1 in 1-SGA is replaced by the following step):

1. Initialization

a. Let p be the number of endmembers to be generated.

b. Find (e(0),e(1)) which produce the maximum distance in a one-dimensional data space

obtained by any DR transform and set k ¼ 2.

It should be noted that the above IED-SGA is slightly different from the SGA developed in

Chang et al. (2006), which uses the first endmember selection process described below.

First Endmember Selection Process for 1-SGA.

1. Randomly generate a target sample vector, denoted by t.
2. Find a pixel e(0) that yields the maximum of absolute determinant of the matrix, det

1 1

t r

� �����

����

over all sample vectors r, that is, eð0Þ ¼ arg maxr det
1 1

t r

� �����

����

� �� �
where PCA or MNF is required

to reduce the original data dimensionality L to dimension 2 to find the maximum.

The generation of the above first endmember pixel e(0) is determined by the randomly gener-

ated target sample vector t. A different target sample vector t may result in a different e(0).

Interestingly, such a generated e(0) is always a sample vector that has either a maximum or a

minimum value in the first component after dimensionality reduction transform. Therefore, the

target sample vector t has no effect on the final set of endmembers. Furthermore, it also shows

that the e(0) which is generated by the above first endmember selection process and the e(1)

which has the maximum distance from the e(0) turn out to be exactly the same pair (e(0), e(1))

obtained by step 1(b) in IED-2-SGA. This indicates that the above IED-2-SGA is essentially the

same SGA as developed in Chang et al. (2006). It is also interesting to note that the computa-

tional complexity of producing the first two endmembers by IED-1-SGA is N � ðN � 1Þ com-

pared to
N

2

	 

¼ N � ðN � 1Þ

2!
, which is the computational complexity of producing the first two

endmembers by IED-2-SGA where N is the total number of data sample vectors. This also

implies that IED-2-SGA only conducts half of searches required by IED-1-SGA. Consequently,

IED-1-SGA and IED-2-SGA generally perform differently since initial conditions determine

final results of extracted endmembers.

9.3.1.2 Finding Sample Mean of Data Sample Vectors

The IEA discussed in Section 8.5.4 is not really the one developed by Neville et al. (1999) since the

initial endmember used by Neville et al.’s IEA was not selected randomly. As a matter of fact,

Neville et al.’s IEA calculates the data sample mean as an initial target vector, e(0), and find a set

of pixels in R(0) that are within the spectral angle u and farthest from the obtained mean, t0, denoted

by R(0)(u). Then they further calculate the average of pixels in R(0)(u) and use it as the first end-

member, denoted by e(1). So, according to its specific selection of an initial endmember, Neville

et al.’s IEA is actually IED-IEA for consistency in notation. Since the sample mean is basically a
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mixture of all data sample vectors, it is expected that it cannot be an endmember in which case

using the sample mean may not be a good candidate to be selected as an initial endmember.

9.3.2 Endmember Initialization Algorithm for SM-EEAs

As noted previously, an SQ-EEA may not be an optimal EEA as an SM-EEA is. So, its final end-

members produced may not be all desired endmembers. But according to experiments, many of

SQ-EEA-generated endmembers eventually turn out to be the desired true endmembers. By taking

advantage of this fact, an SQ-EEA can be also used as an effective EIAwhich provides a better set

of initial endmembers that help an SM-EEA converge to final results rapidly. Nevertheless, the

issue arising in inconsistency caused by randomness remains unsolved if an SQ-EEA also uses

random initial endmembers.

In Section 9.3.1, an SQ-EEA is extended to an IED-SQ-EEA by specifying a particularly

selected data sample as an initial endmember to initialize an SQ-EEA to avoid inconsistency

resulting from the use of random initial endmembers. This is because an SQ-EEA finds one

endmember at a time and only one sample is needed to initialize an SQ-EEA. However, the

same strategy is not applicable to an SM-EEA due to the fact that an SM-EEA needs a set of p

initial endmembers to initialize an SM-EEA instead of a single specific initial endmember only

required by an SQ-EEA. In this case, we need to develop an algorithm, EIA, that allows us to

produce a good set of candidates used for initial endmembers. Interestingly, an SQ-EEA, no

matter whether it is an SQ-EEA using a random initial endmember or an IED-SQ-EEA, can

also be used to serve as the purpose of EIA. Since an SQ-EEA may not be necessarily an opti-

mal EEA, its extracted endmembers may not be all desired endmembers. But, according to

experiments, many of its extracted endmembers turn out to be desired endmembers. Using a set

of an SQ-EEA-extracted endmembers as an initial endmember to initialize an SM-EEA yields

fast convergence to a final set of desired endmembers. In this section, we describe three types of

algorithms, SQ-EEAs including IED-SQ-EEAs, Maxmin-distance algorithm (Tou and

Gonzalez, 1974), and ISODATA (Duda and Hart, 1973) that can be used as EIAs.

9.3.2.1 SQ-EEAs

Despite the fact that all the SQ-EEAs developed in Chapter 8 are suboptimal EEAs, many of SQ-

EEA-generated endmembers eventually turn out to be desired true endmembers. This suggests that

an SQ-EEA can be used as an EIA with three benefits. One is to produce better sets of initial

endmembers for an SM-EEA without random search in initialization. Another is to avoid

unnecessary search for undesired endmembers so as to achieve fast convergence. The third

benefit is that in many cases, the SQ-EEA-generated endmembers may actually end up as the final

endmembers for an SM-EEA; this indicates that an SM-EEA, implemented in conjunction with an

SQ-EEA used as an EIA, not only can produce optimal results, but also can reduce computational

complexity tremendously in a significant order.

An EIA shares with an SQ-EEA some features which are not shared with an SM-EEA. First of

all, when an SM-EEA is implemented, it assumes that the number of endmembers is known in

advance and produces p endmembers simultaneously. So, for a different value of p, an SM-EEA

generally produces a different set of endmembers. In other words, for any given number of end-

members, p, an SM-EEA must recalculate all the endmembers and cannot take advantage of a set

of p� 1 endmembers previously generated by the same algorithm. Also, these p� 1 endmembers

do not necessarily constitute a subset of the set of p endmembers generated in the end. On

the other hand, an EIA produces a set of target pixels in sequential order. As a result, a set of
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p EIA-generated pixels always includes the set of previously generated p� 1 target pixels. This

feature is highly desirable for an EIA because it can save tremendous computational time.

9.3.2.2 Maxmin-Distance Algorithm

In this subsection, we describe a very simple EIA called the Maxmin-distance algorithm, which has

been commonly used in pattern recognition applications (Tou and Gonzalez, 1974). It can generate

a reasonably good set of initial endmembers. Let the first initial endmember be obtained as the

pixel vector with the maximum length, that is, e1 ¼ arg maxrr
Trf g. Then, for each 2 � j � p, the

jth endmember ej with the largest distance to the set Sj�1 ¼ fe1; e2; � � � ; ej�1g is defined and found

by the following expression: ej ¼ arg maxrdðr; Sj�1Þ
� �

, where the distance d(r, Sj�1) is defined by

dðr; Sj�1Þ ¼ min1�k�j�1dðr; ekÞ ¼ min dðr; e1Þ; dðr; e2Þ; . . . ; dðr; ej�1Þ
� �

: ð9:2Þ
It is worth noting that when j ¼ 2, then S1 ¼ fe1g, in which case e2 ¼ arg maxrdðr; e1Þf g. It

should also be noted that the distance measure used in the Maxmin-distance algorithm can be

any spectral similarity measure such as the Euclidean distance, SAM, or spectral information

divergence (Chang, 2000, 2003b). In this work, we rely on SAM to produce a set of initial end-

members e
ð0Þ
1 ; e

ð0Þ
2 ; . . . ; e

ð0Þ
p

n o
using the Maxmin-distance algorithm.

9.3.2.3 ISODATA

The ISODATA (Duda and Hart, 1973), also known as the k-means or c-means method, is an

unsupervised clustering algorithm which has been widely used in image classification and segmen-

tation. Its implementation can be briefly described as follows.

ISODATA Algorithm

1. Initialization

Determine the number of pattern classes p and randomly select p class means m
ðnÞ
i for 1 �

i � p and let n ¼ 0.

2. At the n � 0 iteration, compute the distance of each sample pixel vector from all class means,

m
ðnÞ
i for 1 � i � p and assign the sample vector to the class whose mean has the shortest dis-

tance to the sample vector.

3. Compute the means of reclustered sample vectors for each class, m̂
ðnÞ
i for 1 � i � p.

4. If there is any mean changed, that is m̂
ðnÞ
i 6¼ m

ðnÞ
i for some 1 � i � p, let m

ðnÞ
i  m̂

ðnÞ
i and

n nþ 1. Go to step 2. Otherwise, the obtained m
ðnÞ
i

n op

i¼1
are the desired class means and the

algorithm is terminated.

Now, if we use m
ðnÞ
i

n op

i¼1
obtained by ISODATA as an initial set of endmember to initialize an

SM-EEA, the ISODATA becomes an EIA.

9.3.3 EIA-Driven EEAs

An EEA implemented in conjunction with an EIA to produce an appropriate set of initial endmem-

bers is called EIA-EEA. When an EEA is an SM-EEA, it is referred to as EIA-SM-EEA. Similarly,

when an EEA is an SQ-EEA, it is also referred to as EIA-SQ-EEA. As examples, using ATGP-

EEA as an EIA SC N-FINDR and VCA can be extended to ATGP-SC N-FINDR and ATGP-VCA

as follows.
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ATGP-SC N-FINDR (step 2 implemented in the SC N-FINDR algorithm is replaced by the fol-

lowing step 2):

1. Initialization

Let e
ð0Þ
1 ; e

ð0Þ
2 ; . . . ; e

ð0Þ
p

n o
be generated by ATGP-EEA and be a set of initial vectors ran-

domly generated from the data.

ATGP-VCA (steps 3 and 4 implemented in VCA algorithm is replaced by the following

steps 3 and 4):

2. Set the initial vector eð0Þ ¼ ð0; 0; . . . ; 1Þ
|fflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflffl}

p

and let a p� p auxiliary matrix A(0) be

Að0Þ ¼ eð0Þ 0 � � � 0� 
. Also implement ATGP-EEA to produce a set of p initial endmembers,

denoted by eðkÞ
� �p

k¼1.
3. At the nth iteration, the randomly generated Gaussian random vector wk used in (8.1) is

replaced by wðk�1Þ ¼ eðkÞ, where eðkÞ
� �p

k¼1 are ATGP-generated target pixels.

Figure 9.5 shows results for the TI1 scenario with six endmembers extracted by various ID-

EEAs, IED-VCA, IED-1-SGA, IED-2-SGA, IED-UFCLS-EEA, IED-ATGP-EEA, ATGP-PPI,

Maximin-PPI, ISODATA-PPI, ATGP-N-FINDR, Maxmin-N-FINDR and ISODATA-N-FINDR.

As we can see from the figure, all IED-EEAs were able to extract all five mineral signatures except

PPI using IED and N-FINDR using Maxmin and ISODATA as IED. These experiments made

sense. The reason that PPI using IED did not work was because PPI required a large number of

skewers to find directions of endmembers. Using IED simply did not provide enough directions.

Furthermore, the experiments in Figures 9.5(j) and 9.5(k) also showed that using the maxmin and

ISODATAwhich are popular in traditional image processing as IED did not work. This implies that

not any unsupervised method can be used for the purpose of IED.

Figure 9.5 Results for the TI1 scenario with six endmembers extracted by various ID-EEAs.
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Generally, the ATGP-EEA used in step 3 of the above ATGP-VCA can be replaced by any EIA.

However, the reason that the ATGP is chosen for EIA-VCA is simply based on the fact that both

ATGP and VCA are OP-based techniques. It is very much likely that an ATGP-generated initial

endmember tn turns out to be the same as a VCA-generated endmember e(k) solved by (8.5).

As similar examples, HOS-EEA and ICA-EEA can also be extended to EIA-HOS-EEA and

EIA-ICA-EEA in the same manner in which VCA is extended to EIA-VCA described above. If

the EIA used in EIA-HOS-EEA and EIA-ICA-EEA is chosen to be ATGP-EEA to produce a set of

p projection vectors that can be used as initial projection vectors for each of p searches for new

endmembers, the EIA-HOS-EEA and EIA-ICA-EEA are referred to as ATGP -HOS-EEA and

ATGP-ICA-EEA. Figure 9.6 provides a block diagram of SQ-EEAs in Chapter 8 which can be

implemented as IED-EEAs and SM-EEAs in Chapter 7 which include an EIA as their initialization

algorithm to become EIA-SM-EEAs.

Two comments are noteworthy:

1. There are two ways to implement VCA as ID-VCA, one is IED-VCA and the other is

EIA-VCA.

2. Although both SC N-FINDR and SGA discussed in Sections 8.2 and 8.3 are sequential versions

of SM N-FINDR, SC N-FINDR requires a complete set of p endmembers for initialization.

In this case, the IED approach that works for SGA cannot be applied to SC N-FINDR in which

case the latter needs an algorithm that can produce a good set of p data sample vectors for its

initialization.

EIA 

Maxmin EIA-PPI 

EIA-VCA 

EIA-HOS-EEA 

EIA-N-FINDR 

EIA-FCLS-EEA 

EIA-SPCA-EEA skewmess 

kurtosis 

kth moment 

IED-ATGP 

IED-SQ-EEA 

EIA-SM-EEA 

IED-UFCLS IED-VCA IED-SGA 

IED-IEA 

IED-SQ-EEA 

SM-EEA 

EIA-ICA-EEA 

SQ-EEA 

ISODATA 

Figure 9.6 Block diagram of various ID-EEAs.
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9.4 Experiments

The experiments presented in this section continue to repeat the same experiments as presented

in Section 7.5 and Section 8.7 to ensure that a fair comparative analysis on performance evalu-

ation can be conducted among SM-EEAs in Chapter 7, SQ-EEAs in Chapter 8, and ID-EEAs

in this chapter where the same three sets of data, synthetic images, Cuprite image, and

HYDICE image are also used for experiments. Two categories of ID-EEAs, IED-SQ-EEAS

and EIA-EEAs, are evaluated for performance analysis. In the category of IED-SQ-EEAs,

IED-VCA, IED-SGA, IED-UFCLS, IED-ATGP, IED-HOS-EEA, and IED-ICA-EEA are consid-

ered for evaluation. The category of EIA-EEAs is further divided into two classes, EIA-SQ-

EEAs and EIA-SM-EEAs, where four EIAs, IED-ATGP (or ATGP), IED-UFCLS, Maxmin,

and ISODATA, are used to initialize two major SM-EEAs, PPI and N-FINDR, and three SQ-

EEAs of interest, ATGP-VCA, ATGP-HOS-EEA, and ATGP-ICA-EEA. Several remarks are

noteworthy:

1. It should be noted that VCA, HOS-EEAs, and ICA-EEA can be considered as PP-EEAs where

projection vectors specified by projection indexes that point to the direction of endmembers are

generated successively. These EEAs are SQ-EEAs which start with a random initial projection

vector every time they search for a new endmember. Therefore, there are two ways to initialize

such PP-EEAs. One is IED-PP-EEA, which only initializes the initial projection vector one at a

time. The other is EIA-PP-EAAs, which use an EIA to provide PP-EEAs with a set of p initial

projection vectors where p is the number of new searches for p endmembers.

2. It is also noted that any SQ-EEA developed in Chapter 8 can also be used as an EIA for the

purpose of initialization. Specifically, Maxmin and ISODATA cannot be used as EIA because

they are developed as spatial domain-based clustering techniques.

3. Since ATGP-EEA, UNCLS-EEA, and UFCLS-EEA only require the first random initial end-

member to be initialized, there is no EIA version for their counterparts. However, they do have

EIA-FCLS-EEA because FCLS-EEA is an SM-EEA.

9.4.1 Synthetic Image Experiments

The experiments presented in this section follow the ones presented in Sections 7.5 and 8.7 so that

a comparative analysis on performance evaluation among SM-EEAs in Chapter 7, SQ-EEAs in

Chapter 8, and ID-EEAs in this chapter can be conducted by comparing their respective experi-

mental results. The six scenarios TI1, TI2, TI3 and TE1, TE2, TE3 are used to evaluate various

ID-EEAs with two categories: (1) IED EEAs: IED-VCA, IED-1-SGA, IED-2-SGA, IED-UFCLS-

EEA, IED-ATGP-EEA, IED-skewness-EEA, IED-kurtosis-EEA, IED-ICA-EEA and (2) EIA-

driven EAAs: ATGP-PPI, Maxmin-PPI, ISODATA-PPI, ATGP-N-FINDR, Maxmin-N-FINDR,

ISODATA-N-FINDR, ATGP-skewness-EEA, ATGP-kurtosis-EEA, ATGP-ICA-EEA. It should be

noted that there are no experiments conducted for HOS-based EEA, skewnes-EEA, kurtoiss-EEA,

and ICA-EEA on TI1 and TE1 scenarios because these HOS-based EEAs require no noise to work.

Since six spectral signatures are used to simulate these six scenarios, p¼ 6 is used in all the follow-

ing experiments.

The results in Figure 9.6 show that when there is no noise simulated in TI1 with clean panel

pixels and image background, the second-order statistics-based EEAs extracted all five panel

pixels as endmembers and outperform all other EEAs including PPI and N-FINDR.

According to the results in Figure 9.7, three interesting observations are worth being mentioned.

First, PPI did not work even when an EIA tried to find an appropriate set of initial endmembers, but

this EIA approach did work for N-FINDR. This is mainly due to the fact that PPI required a large
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Figure 9.7 Results for the TI2 scenario with six endmembers extracted by ID-EEAs.
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number of skewers to cover as many directions as it could and it did not work for small values of p.

Second, all the second-order statistics-based EEAs performed effectively. Third, it is found that

while all HOS-based EEAs worked well, only the kurtosis-based EEA failed. But this was not true

for TI3 where all HOS-based EEAs did perform well.

The results in Figure 9.8 show an interesting finding, that is, except PPI and N-FINDR all other

ID-EEAs worked effectively. This made sense because all the panel pixels in TI3 have been cor-

rupted by noise and they are not of 100% purity.

Comparing the results in Figures 9.9–9.11 to those in Figures 9.1–9.3 the conclusions drawn for

TI scenarios can also be applied to TE scenarios. Interestingly, despite that TE1–TE3 contain no

pixels of 100% purity due to target embeddedness all the ID EEAs could successfully extract five

panel pixels as endmembers in Figures 9.9–9.11 except ID-PPIs and ID-kurtosis-EEA. Once again,

Figure 9.8 Results for the TI3 scenario with six endmembers extracted by ID-EEAs.
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the reason why PPI failed was that six specific directions generated by EIAs were not enough for

PPI to find all endmembers.

9.4.2 Real Image Experiments

The same real image data sets, the 15-panel HYDICE image scene, and Cuprite image used in

Chapters 7 and 8 are also used for experiments for comparisons. Figure 9.12 shows 22 pixels

extracted by various ID-EEAs where the x/y in parenthesis underneath each figure indicates that x

is the number of endmembers corresponding to the five mineral signatures, A, B, C, K, and M, that

are extracted and y is the mineral signature that a particular algorithm fails to extract, specifically,

(5/0) indicating that all five minerals extracted as endmembers are extracted.

As shown in Figure 9.12, all tested ID-EEAs extracted at least four mineral signatures except

PPI. The reason why PPI did poorly in Figure 9.12(i–k) was that the PPI required a large number

of skewers to cover random directions and the number of endmembers determined by VD was too

small to carry out this task unless there was a custom-designed EIA to find possible endmember

directions instead of random directions.

As another example, the same HYDICE 15-panel image scene was also used for experiments.

Figure 9.13 shows nine pixels extracted by various ID-EEAs where the pixels in the parenthesis

underneath each figure were panel pixels in the five rows extracted by a particular algorithm.

Since most panels of interest as endmember pixels in this particular image scene have a size of

one pixel or two pixels, these panel pixels cannot be either captured by spatial domain-based meth-

ods such as ISODATA in Figure 9.13(k, n) and Maxmin in Figure 9.13(j, m) or those algorithms

characterized by second-order statistics such as UFCLS in Figure 9.13(d). Most interestingly, two

most popular EEAs, PPI and N-FINDR, along with their sequential versions, VCA and SGA, failed

to extract panel pixels that correspond to all the five endmembers. This indicated that the

Figure 9.9 Results for TE1 scenario with six endmembers extracted by ID-EEAs.
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effectiveness of endmember extraction was not only determined by the number of endmembers, p,

but also by the size of an endmember sample pool. Unfortunately, these two issues are not really

addressed in design and development of EEAs. Specifically, when an endmember sample size was

too small such as panel pixels in the HYDICE data, PPI and N-FINDR became ineffective and

broke down as demonstrated in Figure 9.13, where PPI may had tremendous difficulty in finding

appropriate skewers to identify directions of such a small number of endmembers. Similarly, the

same phenomenon is also applied to N-FINDR where the simplex volume of endmembers speci-

fied by panel pixels was not necessarily maximal as will be shown in Section 11.4. Under such

circumstances, the desired endmembers can be only characterized by high-order statistics (HOS).

The results produced by HOS-EEAs in Figure 9.13(f–h, o–q) reflected this interesting fact.

Figure 9.10 Results for the TE2 scenario with six endmembers extracted by ID-EEAs.
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9.5 Conclusions

When an algorithm, specifically an iterative algorithm, is implemented without prior knowledge,

how to select an appropriate initial condition is a crucial step in convergence as well as reduction

of computing time. Due to the lack of prior information a general and common practice is to use

randomly generated initial conditions to initialize an algorithm. Such an approach seems natural

and well accepted in algorithm design. However, associated with it three issues are needed to be

addressed. First, there is a convergence issue. A bad initial condition may cause an algorithm to be

divergent such as Newton’s method or to be trapped in local optimality. This issue has received

considerable interest such as vector quantization. Another is an inconsistency issue. Different

random initial conditions generally result in different results in the end. A good example is the

ISODATA, also known as K-means or C-means clustering techniques. To resolve this dilemma, it

Figure 9.11 Results for the TE3 scenario with six endmembers extracted by ID-EEAs.
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generally runs an algorithm with a number of different random initial conditions and their results

are then averaged to be used for final results. This does not guarantee that the obtained results are

the desired results. The third and last issue is high computational complexity. A search using a

random initial condition can take a long journey to find its destiny. An appropriate initial condition

can facilitate a searching process and cut convergence rate significantly. Unfortunately, all these

three issues have not been investigated for EEAs over the past years until recently (Plaza and

Figure 9.12 Results for cuprite scene with 22 pixels extracted by ID-EEAs.
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Figure 9.13 Results for the HYDICE scene with nine pixels extracted by ID-EEAs.
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Chang, 2006). This chapter addresses the issue in the use of random initial endmembers and further

derives ID-EEAs which implement specific initial endmembers for EEAs developed in Chapters 7

and 8. Since there are two types of EEAs, that is, SM-EEAs in Chapter 7 and SQ-EEAs in

Chapter 8, ID-EEAs are also considered by two types. One is IED-EEAs developed for

SQ-EEAs where a random initial endmember is specified by one at a time successively. The other

is EIA-EEAs developed for an EEA such as SM-EEAwhich requires an EIA to produce p specific

initial endmembers to initialize the algorithm where p is the number of endmembers for an EEA to

generate. In both types of ID-EEAs, one needs to know the value of p. This issue can be resolved

by taking advantage of VD introduced in Chapter 5. According to our experiments, VD provides a

good estimate of the number of endmembers. Experimental results reveal that an EIA not only

speed up algorithm performance, but also produces a set of initial endmembers, many of which

turn out to be final endmembers.
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10

Random Endmember Extraction
Algorithms (REEAs)

The initialization-driven endmember extraction algorithms (ID-EEAs) developed in Chapter 9

intend to address the issue arising in the use of random initial endmembers, which causes

inconsistency in final results. Interestingly, this disadvantage can become an advantage if we

look at this issue from a different point of view. This chapter presents a rather different

approach that allows an EEA to take advantage of the randomness to produce a set of desired

endmembers. The idea is to implement an EEA using random initial endmembers as a ran-

dom algorithm where a single run of a random EEA is defined as a process of running an

EEA using a set of random initial endmembers and the results produced by a single run are

considered as a realization. If there is an endmember, it should appear in realizations regard-

less of what random initial endmembers are used. In light of this interpretation, taking the

intersection of realizations eventually converges to a common set made up of the desired

endmembers in which case an EEA is terminated and the number of endmembers is then

automatically determined by this set without appealing for any criterion. An EEA imple-

mented in such a manner is called random EEA (REEA).

10.1 Introduction

In Chapters 7 and 8, we have witnessed the inconsistency in final results produced by an EEA

using random initial conditions. This dilemma can be resolved by ID-EEAs developed in Chapter 9,

which use a set of specific initial endmembers generated by a custom-designed initialization

algorithm. This chapter investigates an idea completely opposite to that used in ID-EEAs. It makes

the disadvantage of using random initial endmembers an advantage for an EEA. Its idea originates

from the concept of a random variable where realizations resulting from physical experiments con-

ducted for a random variable constitute an ensemble of outcomes produced by the random varia-

ble. The following example will shed light on how an EEA using random initial conditions can be

considered as a random algorithm.

Now consider a problem of estimating the bias of a coin, which is defined as the probability of a

head turned up, u. Then a process of flipping the coin in a fixed N trials (i.e., N times) can be

considered a random algorithm where the randomness is caused by the uncertainty with the bias

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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specified by the parameter u. In order to estimate the value of u, we flip the coin N times, which

produces N outcomes, each of which is either a head or a tail. So, a single run resulting from such a

N-coin flipping experiment produces a realization which consists of N outcomes. Then the parame-

ter u can be estimated from a realization by an estimator ûðyÞ ¼ nHðyÞ=N where y ¼
ðy1; y2; . . . ; yNÞ represents N outcomes resulting from N coin flips with yi being either a head or a

tail and nHðyÞ is the number of heads turned up in the occurrence of N outcomes, y1; y2; . . . ; yN ,
specified by y. Let the number of runs implemented by the random algorithm be denoted by n and

the random algorithm be represented by the estimator ûðyÞ; then ûðyðnÞÞ indicates the nth run by the

random algorithm ûðyÞ. As a result, the average of a total of n runs by ûðyÞ converges to u, that is,

1=nð ÞPn
k¼1 nH û

ðkÞðyðkÞÞ
� �

! u as n!1.

In light of the above interpretation, we can view an EEA that uses random initial endmembers

as a random endmember extraction algorithm (REEA) where a single run is defined by implement-

ing an REEA using one set of random initial endmembers and the result produced by a single run is

considered as one realization. In this case, all realizations constitute an ensemble of final endmem-

bers extracted by a REEA using all possible sets of random initial endmembers. According to the

asymptotic equipartition property theorem in information theory (Cover and Thomas, 1991), a

realization that contains final endmembers can be considered a typical realization so that the prob-

abilities of such typical realizations will approximately be equally likely. This suggests that the

average of a total number of n runs can be interpreted as an intersection of all n runs. The under-

lying assumption is that if a certain piece of information carried by a random variable is crucial,

this information will be preserved in its realizations. Keeping this in mind, if the information of

endmembers is considered as important information, the endmembers should appear in the final

selected set of endmembers in realizations regardless of what initial endmembers are used for algo-

rithm initialization. In other words, if an EEA is implemented repeatedly with different sets of

random initial endmembers, all the resulting realizations shall eventually converge to a common

set, which should be the desired set of the true endmembers. That is, the intersection of the final

endmembers generated by all different runs should include true endmembers in the set. Using this

criterion, an REEA is terminated when the final sets of endmembers produced by consecutive runs

converge to the same set of endmembers in which case an REEA automatically finds endmembers

without knowing the value of p a priori, a requirement for most EEAs reported in the literature.

But this price is also traded for high computational complexity, which is a result of running an

EEA multiple times. However, given that it is nearly impossible to know an exact number of end-

members in real-world problems, this paid-off may be worthwhile.

This chapter extends the two most popular SM-EEAs, pixel purity index (PPI) and N-FINDR, in

Chapter 7, along with their two sequential counterparts, VCA and SGA, in Chapter 8, to their

random algorithm counterparts referred to as random PPI (RPPI), random N-FINDR (RN-FINDR),

random VCA (RVCA), and random SGA (RSGA), respectively. Using a similar approach, all the

statistics-based and linear-spectral-unmixing-based EEAs can also be extended to their random

versions.

10.2 Random PPI (RPPI)

In order to implement PPI in Section 7.2.1, first, one must know how many skewers, K, are needed

to be generated. This value of K is generally determined an empirical basis. Second, it also needs to

know how many dimensions, denoted by q to be retained after dimensionality reduction. Third,

despite the fact that PPI does not need the knowledge of the number of endmembers, p, to be

generated, it does require a parameter t to be used to threshold PPI counts it generates to extract
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endmembers. Finally, it requires human intervention to manually select final endmembers from

those data sample vectors whose PPI counts are thresholded by t. Most importantly, for PPI to

work effectively, the skewers must also be generated in such a random manner that the skewers

can cover as many directions on which the data samples are projected as possible. However, this

practice also comes with a drawback, that is, the results obtained from different sets of same-num-

ber skewers are different. Consequently, it must be interpreted by human analysts who manipulate

results to produce best possible sets of endmembers.

The RPPI presented in this section is originally derived from its earlier version, called the auto-

matic PPI (APPI), developed in Chaudhry et al. (2006). It also inherits the original structure of PPI

but remedies the above-mentioned drawbacks suffered in PPI. It does not require dimensionality

reduction (DR) as does the APPI. More specifically, RPPI converts the disadvantage of using ran-

dom vectors as skewers to an advantage that can surprisingly resolve all the above-mentioned

issues except that it still needs to know the value of K that must be selected prior to PPI implemen-

tation. The idea can be illustrated by the coin flipping example described in the introduction. If

each of the N trials conducted for the coin flipping experiment is considered as a skewer, the num-

ber of N trials is the same as the number of skewers, K. If we further interpret that the outcome of a

head turned up is the outcome of a data sample vector r falling at one of two ends of a skewer, then

the number of heads turned up in the N trials, nH, can be interpreted as the number of skewers on

which a data sample vector occurred at one of their end points after orthogonal projection. This

number is exactly the PPI count of the data sample vector r, nPPIðrÞ, defined by (7.1). Within this

context, we can interpret that PPI using K skewers is a random experiment carried out by a random

algorithm that makes use of K randomly generated skewers. In this case, a single run produced by

PPI using one random set of skewers can be considered as a realization of such a random algo-

rithm. The underlying assumption is that if there is an endmember present in the data, it should

appear in every realization produced by PPI. If this is not true for one set of skewers used

by PPI, a user who happens to generate this particular set of skewers may not be able to find

this endmember after all. If PPI is implemented repeatedly using different sets of random

initial endmembers, all the resulting realizations shall eventually converge to a common set,

which is supposed to be the set of the true endmembers. As a result, the intersection of the

final endmembers generated by all different runs should include all the true endmembers. PPI

is then terminated when the final sets of endmembers produced by consecutive runs converge

to the same set of endmembers. Accordingly, PPI automatically finds endmembers without

appealing for any criterion to determine the p. PPI implemented in such a random fashion is

called RPPI, which can be described as follows.

RPPI Algorithm

1. Let K be the number of skewers to be fixed.

2. Initially, set k¼ 0 and generate a set of K skewers, denoted by K(0). Run PPI using K(0) to pro-

duce an initial endmember set, E 0ð Þ ¼ S 0ð Þ ¼ rjNPPIðrÞ > 0f g defined by a set made up of all

data sample vectors with their PPI counts greater than 0.

3. For k � 1 generate a kth skewer set of K skewers, denoted by SKEWER SETðKÞðkÞ, and run

PPI using the K(k) to produce PPI counts for all data sample vectors and form an kth endmember

set SðkÞ ¼ rjNPPIðrÞ > 0f g.
4. Let EðkÞ ¼ \km¼1SðmÞ ¼ \k�1m¼1S

mð Þ� � \ SðkÞ ¼ Eðk�1Þ \ SðkÞ and k  k þ 1. If k < 3, go to step

3. Otherwise, continue.

5. If EðkÞ 6� Eðk�1Þ, go to step 3. Otherwise, the algorithm is terminated. In this case, EðkÞ ¼ Eðk�1Þ

and the sample pixel vectors in E(k) are the desired true endmembers.
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It should be noted that for a given set of K skewers, a cycle of implementation of steps 3–5 is

considered as a single run for PPI.

There are four advantages of using RPPI over PPI. One is that RPPI automatically determines

the actual number of endmembers, p. Second, the number of pixels corresponding to endmembers

extracted by RPPI is generally much smaller than that extracted by PPI. Third, there is no need of

performing dimensionality reduction. Finally and most importantly, RPPI does not use a threshold

value to threshold PPI count of each data sample vector to produce endmembers as required by

PPI. This is a significant advantage since determining an appropriate threshold for the PPI

count is a key success for PPI. Intuitively, the higher the PPI count of a sample vector, the

more likely the sample vector to be an endmember. Unfortunately, according to our extensive

experiments this is generally not true, but it is true that endmembers must have their PPI

counts at least greater than 0. This is the main reason that Sk in step 3 of RPPI is found by

all data sample vectors r with NPPIðrÞ > 0. In the ENVI’s PPI this requires an appropriate

selection of a threshold value and human involvement to manually determine the final selec-

tion of endmembers. The only disadvantage of implementing RPPI is its computational com-

plexity resulting from multiple runs by repeatedly implementing PPI.

10.3 Random VCA (RVCA)

VCA in Chapter 7 can be considered as a sequential version of PPI since it also uses OP as a

criterion to find one endmember at a time by growing a series of convex hulls whose vertices can

be used to identify endmembers. Because the initial endmembers used by VCA are generated by

Gaussian random variables, VCA can be viewed as Gaussian VCA. However, according to experi-

ments conducted in Chapter 7, the use of a Gaussian random variable is not crucial and can be

replaced with any other random variable such as uniform random variable, which also serves as

well as a Gaussian random variable does. In this case, we use a random generator to generate

random initial conditions as do all the random EEAs to be designed in this chapter. The details of

random VCA can be described as follows.

Random VCA Algorithm

1. Let VD to determine p. Set E(1)¼ 0 and k ¼ 0.

2. Apply VCA to generate p random initial endmembers, denoted by SðkÞ ¼ e
ðkÞ
1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p

n o
.

3. If k ¼ 1, let k  k þ 1 and go step 2. Otherwise, continue.

4. Find the intersection of EðkÞ ¼ Eðk�1Þ \ SðkÞ. It should be noted that due to spectral variation in

real data, a perfect match is nearly impossible. In this case, a spectral measure such as spectral

angle mapper (SAM) or SID is used to measure spectral similarity within a given tolerance.

5. If EðkÞ 6¼ Eðk�1Þthen k k þ 1 and go step 2. Otherwise, the algorithm is terminated and the

endmembers in E(k) is the desired set of final endmembers.

10.4 Random N-FINDR (RN-FINDR)

The idea of RN-FINDR can also be illustrated by the coin flipping example described in the intro-

duction in the same way as RPPI is interpreted in Section 10.2. In this case, the number of N trials

is the total number of data sample vectors. Since the randomness of N-FINDR is caused by its use

of p random initial endmembers and not by the number of endmembers, which is fixed at p, the

number of the heads turned up in N trials used by the coin flipping experiment, nH, is then inter-

preted as the number of times a data sample vector r extracted by N-FINDR as an endmember,

denoted as nN-FINDR(r) where each trial represents one single run and N trials indicates that
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N-FINDR has run N times. So, a single run is defined by implementing N-FINDR using one ran-

dom set of p initial endmembers and the set of its final p extracted endmembers is called a realiza-

tion of N-FINDR resulting from a random set of p initial endmembers. An algorithm implementing

N-FINDR in such a manner is RN-FINDR.

Random N-FINDR (RN-FINDR)

1. Initialization

Assume that nVD is the value estimated by VD and p. Let k ¼ 0 denote a counter to dictate the

number of runs required to implement N-FNDR and E(1)¼ 0 and n
ð0Þ
N�FINDRðrÞ ¼ 0 for all data

sample vectors, r, and let k¼ 1.

2. At the kth run, apply N-FINDR on the sphered data cube to generate p random endmembers,

denoted by SðkÞ ¼ e
ðkÞ
1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p

n o
.

3. Calculate N-FINDR count, NN-FINDR(r), for each data sample vector r by

n
ðkÞ
N-FINDRðrÞ ¼

n
ðk�1Þ
N-FINDRðrÞ þ 1 if r 2 SðkÞ

n
ðk�1Þ
N-FINDRðrÞ if r =2 SðkÞ

:

8
<

:
ð10:1Þ

4. If k ¼ 1, let k  k þ 1 and go to step 2. Otherwise, continue.

5. Find the intersection of EðkÞ ¼ Eðk�1Þ \ SðkÞ. It should be noted that due to spectral variation in

real data, a perfect match is nearly impossible. In this case, a spectral measure such as SAM is

used to measure spectral similarity within a given tolerance.

6. Stopping rule

If EðkÞ 6¼ Eðk�1Þ then k k þ 1 and go to step 2. Otherwise, the algorithm is terminated and the

endmembers in E(n) are the desired set of endmembers. In this case, let n denote nN-FINDR and

the desired endmember set is E
ðkÞ
N-FINDR ¼ rjnðkÞN-FINDRðrÞ ¼ k

n o
.

Several remarks are noteworthy.

i. It should be noted that RN-FINDR does not require VD to estimate the value of the p, that is,

the number of endmembers. This p is ultimately determined by step 6 automatically.

However, we can always use the knowledge provided by VD to reduce computing time by

setting p¼ 2nVD. This is based on the fact that nVD has been shown to be a reasonable estimate

of p and using 2p guarantees that no endmembers will be left out in taking intersection of all

runs. However, if there is no limitation on computer power, the full data dimensionality, L, can

be used instead. This indicates that the upper bound on the number of endmembers, p, cannot

be greater than the total number of spectral bands, L.

ii. The only disadvantage of RN-FINDR is the burden on computing time resulting from repeat-

edly implementing N-FINDR over and over again for different runs. This is the major reason

that the p¼ 2nVD is used in the algorithm for reducing computational complexity.

iii. RN-FINDR does not require dimensionality reduction. In this case, the determinant used in

(7.3) to calculate the simplex volume becomes ill-rank in which case the pseudo-inverse is

used for this purpose.

iv. Although the data on which RN-FINDR operates are the sphered data, it can also be applied to

the original data. According to our experiments, the results obtained for both sets of data are

similar and close. However, using the sphered data significantly reduces computing time as

well as the number of runs required for IN-FINDR to implement.
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v. In order to further reduce computational burden, N-FINDR implemented in RN-FINDR can be

replaced by IN-FINDR, SQ N-FINDR, or SC N-FINDR in step 2. The resulting N-FINDR is

called random IN-FINDR (RIN-FINDR), random SQ N-FINDR (RSQ N-FINDR), and ran-

dom SC N-FINDR (RSC N-FINDR). There is a computational advantage of using SC

N-FINDR over IN-FINDR because RSC N-FINDR works in the same way as the outer loop

of IN-FINDR does except that IN-FINDR re-runs SC N-FINDR using the p endmember gener-

ated in a previous run as its initial endmembers, whereas RSC N-FINDR re-runs SC N-FINDR

using a complete different set of random p initial endmembers. As a result, IN-FINDR still

depends upon the random p initial endmembers used by SC N-FINDR in its inner loop, while

RSC N-FINDR does not. This is because RSC N-FINDR already takes care of the outer loop

run by IN-FINDR by running another set of random initial endmembers over again in such a

way that IN-FINDR implements SC N-FINDR in its inner loop and runs SC N-FINDR over

again in its outer loop using the final endmembers generated in its inner loop as inputs.

10.5 Random SGA (RSGA)

What VCA is viewed as a sequential version of PPI is exactly what SGA is considered as a sequen-

tial version of N-FINDR in the sense that SGA finds one endmember at a time when it grows a

series of simplexes with maximal volumes. Similarly, SGA can also be extended to its random

version, called RSGA, in the same way as both RSQ N-FINDR and RSC N-FINDR are extended

with SGA used in each run.

Random SGA (RSGA)

1. Initialization

a. Assume that the number of endmembers required to be generated is p.

b. Let e be the given tolerance value of spectral similarity.

c. Set E(1)¼ 0 and k ¼ 1.

2. Randomly generate two data sample vectors as two initial endmembers, e
ðkÞ
1 ; e

ðkÞ
2 .

3. Apply SGA to generate p endmembers, denoted by SðkÞ ¼ e
ðkÞ
1 ; e

ðkÞ
2 ; . . . ; e

ðkÞ
p

n o
.

4. If k ¼ 2, let k  k þ 1 and go to step 2. Otherwise, continue.

5. Find the intersection of EðkÞ ¼ Eðk�1Þ \ SðkÞ. In this case, a spectral measure such as SAM is

used to measure spectral similarity. If SAM ei; ej
� �

< e, then ei and ej are considered to repre-

sent the same endmember class.

6. Stopping rule

If EðkÞ 6¼ Eðk�1Þ, then let k k þ 1 and go to step 2. Otherwise, the algorithm is terminated

and the endmembers in E(k) is the desired set of endmembers.

It should be noted that two initial endmembers instead of one initial endmember are randomly

generated in step 2 of RSGA due to the fact that the smallest dimensionality of a simplex is 2.

10.6 Random ICA-Based EEA (RICA-EEA)

The idea of RICA-EEA is derived from a recent work on an independent component analysis

(ICA)-based approach to DR (Wang and Chang, 2006a) where FastICA developed by Hyvarinen

and Oja (1997) is used to generate independent components (ICs). Since FastICA also uses random

projection vectors as its initial condition to initialize its algorithm, it also encounters the same

problem as both PPI and N-FINDR do. Because the initial projection vector for each IC is
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randomly generated by FastICA for each run, the ICs generated by each run are also different.

Nevertheless, if the information contained in an IC is significant, such an IC will always appear in

each run. With this assumption, if FastICA is repeatedly implemented, the ICs that are common in

all runs should be the desired ICs for endmember extraction. The detailed implementation of

RICA-EEA is summarized as follows.

RICA-EEA Algorithm

1. Initialization

Assume that the number of initial endmembers is p. Set n ¼ 0.

2. At each n, run FastICA to find p independent components, IC
ðnÞ
i

n op

i¼1
, where each independent

component, IC
ðnÞ
i ; can be formed as a vector denoted by v

ðnÞ
i . It should be noted that FastICA

randomly generates a unit vector as an initial projection vector.

3. If n < 1, n nþ 1 and go to step 2. Otherwise, continue.

4. Find common ICs for all runs up to the nth run. Two independent components for different runs,

IC
ð�nÞ
i and IC

ð~nÞ
j , are considered to be distinct if the SAM between their corresponding vectors,v�ni

and v~nj , is greater than a prescribed threshold e. Let \nm¼0 IC
ðmÞ
k

n op

k¼1
denote the common ICs

obtained for all runs, 0 � m � n.

5. If \n�1m¼0 IC
ðmÞ
k

n o2p

k¼1
6¼ \nm¼0 IC

ðmÞ
k

n o2p

k¼1
, go to step 2. Otherwise, the algorithm is terminated

and \nm¼0 IC
ðmÞ
k

n o2p

k¼1
is the desired set of ICs for endmembers.

6. For each of FastICA-generated IC images in \nm¼0 IC
ðmÞ
k

n o2p

k¼1
, find a pixel with maximum

absolute value, which is referred to as endmember pixel. The spectral signature of such found

pixel is then selected as an endmember.

7. The spectral signatures of the endmember pixels produced in step 6 are our desirable

endmembers.

Like RPPI and RN-FINDR, VD is only used to provide a good reasonable upper bound on the

number of random initial endmembers to be used for RICA-EEA.

10.7 Synthetic Image Experiments

Once again the synthetic images described in Chapter 4 were used for experiments to evaluate the

performance of the proposed REEAs. Scenarios TI1 and TE1 were not included in the experiments

because there is no randomness caused by noise, in which case REEAs do not work in this scenario

due to the fact that they are designed as random algorithms. Three component transform tech-

niques, PCA, MNF and ICA, were used to perform DR to reduce the original data space to a

reduced data space with data dimensionality determined by VD.

10.7.1 RPPI

The experiments of RPPI were implemented by 500 skewers on two data sets, a reduced data cube

by DR and the original data without DR where the data dimensionality to be retained after DR was

nVD¼ 5 estimated by the NWHFC method with PF¼ 10�4. Figures 10.1(a) and (b) and 10.2(a) and
(b) show the results for TI2 and TI3 produced by PPI and RPPI, respectively, where pixel vectors in

Figures 10.1(a) and 10.2(a) marked by open circles were extracted by PPI with PPI counts greater
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than zero and all pixel vectors in Figures 10.1(b) and 10.2(b) were those in the intersection of

all runs by RPPI. As shown in Figures 10.1 and 10.2, the number of pixels extracted by RPPI

as endmembers was significantly reduced with only less than 10 falsely alarmed endmembers

in Figures 10.1(a) and 10.2(a) compared to a very large number of pixels extracted by PPI in

Figures 10.1(a) and 10.2(a) as endmembers with hundreds of falsely alarmed pixels.

PCA                                MNF                                 ICA                                Original

(a) PPI

 PCA                                MNF                                 ICA                                Original

(b) RPPI

Figure 10.1 Endmembers extracted by PPI and RPPI in scenario TI2.

PCA                                MNF                                 ICA                                Original
(a) PPI

PCA                                MNF                                 ICA                                Original
(b) RPPI

Figure 10.2 Endmembers extracted by PPI and RPPI in scenario TI3.
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Similarly, Figures 10.3(a) and (b) and 10.4(a) and (b) show the results for TE2 and TE3

produced by the PPI and RPPI, respectively, where pixel vectors in Figures 10.3(a) and 10.4(a)

marked by open circles were extracted by the PPI with PPI counts greater than zero and all pixel

vectors in Figures 10.3(b) and 10.4(b) were those in the intersection of all runs by RPPI. Since there

are no pure pixels present as endmembers in TE2 and TE3, PPI and RPPI made attempt to extract

pixels that represent purest signatures. As expected, more falsely alarmed endmember pixels

than those in Figures 10.1(b) and 10.2(b) were extracted as shown in Figures 10.3(b) and 10.4(b).

PCA                                MNF                                 ICA                                   Original
(a) PPI

PCA                                MNF                                 ICA                                  Original

(b) RPPI

Figure 10.3 Endmembers extracted by PPI and RPPI in scenario TE2.

     PCA                                MNF                                 ICA                                Original
(a) PPI

          PCA                                MNF                                 ICA                                Original

(b) RPPI

Figure 10.4 Endmembers extracted by PPI and RPPI in scenario TE3.
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Interestingly, in the case of TE3 RPPI missed all the pure pixels in row 3 if it is imple-

mented directly on the original data without DR. Besides, if PCA was used for DR, RPPI

missed all the 16 purest panel pixels in the first column of row but it did extract panel pixels

in the second column. This is mainly due to the fact that the calcite signature is very similar

and close to the sample mean used to simulate the image background. As a result, the calcite

was considered as a variant of the background signature and thus was not extracted as purest

signature in Figure 10.4(b) by RPPI.

Table 10.1 tabulates the number of iterations and the computing time in seconds for RPPI to

converge. As expected, except TE3 RPPI operating on the original data space without DR gener-

ally required the maximal computing time, while RPPI required the least amount of computing

time if the ICAwas used for DR.

10.7.2 Various Random Versions of IN-FINDR

A random version of N-FINDR, RN-FINDR, is quite different from RPPI presented in Section

10.6.1. First is the prior knowledge. RN-FINDR needs to know the number of endmembers, p, to

be generated, which is not required for PPI but is traded off for two must-be-known parameters, the

number of skewers, K, and the threshold t. Second is data to be processed. PPI generally requires

DR as a preprocessing to reduce data dimensionality to compact information as well as reduce

computational complexity. On the other hand, RN-FINDR does not perform DR. Instead, it spheres

the data to remove the statistics of the first and second order to enhance and improve endmember

extraction. In order to illustrate RN-FINDR for the performance evaluation, the experiments con-

ducted in this section were particularly designed to address two main issues: (1) inconsistency

caused by the use of two randomly generated sets of initial conditions, and (2) two different data

sets to be used for processing, the original data and sphered data. Three random versions of

N-FINDR were used for a comparative study, RIN-FINDR, RSC N-FINDR, and RSGA, all

of which were implemented without DR. The number of endmembers required to be generated by

Table 10.1 Computing time and the number of iterations of RPPI running in different data sets

Computing time (s) Number of iterations

Scenario TI2

PCA 5.26 4

MNF 5.44 4

ICA 4.12 3

Original 10.40 4

Scenario TI3

PCA 7.81 5

MNF 7.77 5

ICA 10.6 7

Original 15.40 6

Scenario TE2

PCA 15.34 11

MNF 19.08 13

ICA 5.41 4

Original 15.79 6

Scenario TE3

PCA 19.85 13

MNF 21.64 15

ICA 10.35 7

Original 17.19 6
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RN-FINDR for all the four synthetic image-based scenarios, TI2, TI3, TE2, and TE3, was deter-

mined by VD, which was 2nVD¼ 10 for all the algorithms.

10.7.2.1 Scenario TI2

Figures 10.5–10.10 show the results of IN-FINDR, SC N-FINDR, and SGA along with their corre-

sponding random counterparts, RIN-FINDR, RSC N-FINDR, and RSGA for TI2. There were

two sets of endmembers generated in Figures 10.5, 10.7, and 10.9 by operating IN-FINDR, SC N-

FNDR, and SGA on the original data and sphered data to illustrate inconsistent final results from

the use of two randomly generated initial conditions. In contrast, Figures 10.6, 10.8, and 10.10,

respectively, show the consistent final results of operating the RIN-FINDR, RSC N-FINDR, and

one run                         another run                                one run                           another run
 (a) Original data                                  (b) Sphered data 

Figure 10.5 Results of IN-FINDR with two different runs for TI2.

(a) Original data   (b) Sphered data 
τ = 0.005 τ = 0.005τ = 0.05 τ = 0.05

Figure 10.6 Results of RIN-FINDR with two different thresholds for TI2.
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Figure 10.7 Results of SC N-FINDR with two different runs for TI2.
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RSGA on the original data and sphered data using two thresholds t¼ 0.05 and 0.005. It should be

noted that since SC N-FINDR and SGA are SQ-EAAs, the endmembers were labeled by numbers

to indicate the orders in which they were generated. However, there were no numbers associated

with IN-FINDR-generated endmembers because these endmembers were generated iteratively at

the same time.

Comparing the results in above figures, it is interesting to note that it only required the first five

pixels for SC N-FINDR and the first six pixels for SGA to extract all the five mineral signatures as

endmembers where the first pixels extracted by SGAwere always background pixels. Nevertheless,

with p set by 2nVD¼ 10 all the algorithms successfully extracted pixels that specify all the five

mineral signatures as endmembers. Table 10.2 tabulates the computing time and the number of

(a) Original data                                                                   (b) Sphered data 
τ = 0.005 τ = 0.005 τ = 0.05τ = 0.05

Figure 10.8 Results of RSC N-FINDR with two different thresholds for TI2.
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(a) Original data                                                                   (b) Sphered data  
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Figure 10.9 Results of SGAwith two different runs for TI2.

(a) Original data (b) Sphered data 
τ = 0.05τ = 0.05τ = 0.005 τ = 0.005

Figure 10.10 Results of RSGAwith two different thresholds for TI2.

298 Hyperspectral Data Processing: Algorithm Design and Analysis



iterations required for a random algorithm to complete its search where RSGA required the least

amount of computing time which was only one-seventh of time required by RIN-FINDR. However,

it should be noted that the computing time needed by REEAs was heavily determined by the num-

ber of iterations required to complete the endmember search.

10.7.2.2 Scenario TI3

Despite that the 100 pure panel pixels in TI3 have been Gaussian noise-corrupted, these pure panel

pixels no longer represent pure signatures but they are still those with purest signatures. Figures

10.11–10.16 show that for p¼ 2nVD¼ 10, IN-FINDR, SC N-FINDR, and SGA along with their

random versions, RIN-FINDR, RSC N-FINDR, and RSGA were all able to extract panel pixels

which represented most purest signatures corresponding to the five distinct minerals. However, the

threshold value, t, used by the random versions of N-FINDR should have a greater threshold toler-

ance to accommodate the added Gaussian noise such as t¼ 0.05. If the threshold value was set too

small, e.g., t¼ 0.005 used for TI2, random versions of N-FINDR would miss one mineral signa-

ture, M in row 5 in Figures 10.12, 10.14, and 10.16.

Table 10.3 tabulates the computing time and the number of iterations required for a random

algorithm to complete its search, where RSGA required the least amount of computing time. The

computing time documented in the table was essentially determined by the number of iterations

required to complete the endmember search.

Table 10.2 Computing time and number of iterations for RN-FINDR, RSC N-FINDR, and RSGA

T Computing time (s) Number of iterations

RN-FINDR Original 0.005 1592.8 4

0.05 752.10 2

Sphered data 0.005 763.84 2

0.05 762.79 2

RSC N-FINDR Original 0.005 259.12 3

0.05 171.15 2

Sphered data 0.005 174.51 2

0.05 169.45 2

RSGA Original 0.005 153.11 3

0.05 101.03 2

Sphered data 0.005 152.53 3

0.05 101.97 2

          
one run                         another run                            one run                       another run 

(a) Original data                                                                   (b) Sphered data 

Figure 10.11 Results of IN-FINDR with two different runs.
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(a) Original data
τ = 0.005 τ = 0.005τ = 0.05 τ = 0.05

(b) Sphered data  

Figure 10.12 Results of RIN-FINDR with two different thresholds.

one run                         another run                                one run                           another run
(a) Original data                                                                   (b) Sphered data 
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Figure 10.13 Results of SC N-FINDR with two different runs.

(a) Original data                                                                   (b) Sphered data 
τ = 0.005 τ = 0.005τ = 0.05 τ = 0.05

Figure 10.14 Results of RSC N-FINDR with two different thresholds.
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Figure 10.15 Results of SGAwith two different runs.
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10.7.2.3 TE2

Following the same treatment carried out for TI2, experiments were also conducted for TE2. The

only difference is that the pure panel pixels are superimposed over the background pixels in which

case no pure signatures are present in TE scenarios. Nevertheless, the purest pixels in TE2 were

still the same as the pure panel pixels in TI2. Figures 10.17–10.22 show that all algorithms were

able to extract panel pixels corresponding to the five distinct mineral signatures. Specifically, the

(a) Original data
τ = 0.005 τ = 0.05 τ = 0.005 τ = 0.05

(b) Sphered data 

Figure 10.16 Results of RSGAwith two different thresholds.

Table 10.3 Computing time and number of iterations for RIN-FINDR, RSC N-FINDR, and RSGA

t Computing time (s) Number of iteration

RIN-FINDR Original 0.005 1669.6 5

0.05 751.18 2

Sphered data 0.005 1018.7 3

0.05 679.51 2

RSC N-FINDR Original 0.005 430.08 5

0.05 173.43 2

Sphered data 0.005 2510.76 3

0.05 174.57 2

RSGA Original 0.005 154.20 3

0.05 102.79 2

Sphered data 0.005 153.49 3

0.05 103.60 2

one run                             another run                            one run                         another run
(a) Original data                                                                   (b) Sphered data 

Figure 10.17 Results of IN-FINDR with two different runs.
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(a) Original data
τ = 0.005 τ = 0.005τ = 0.05 τ = 0.05

(b) Sphered data 

Figure 10.18 Results of RIN-FINDR with two different thresholds.
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(a) Original data                                                                   (b) Sphered data 
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Figure 10.19 Results of SC N-FINDR with two different runs.

       

(a) Original data                                                                   (b) Sphered data 
τ = 0.005 τ = 0.005τ = 0.05 τ = 0.05

Figure 10.20 Results of RSC N-FINDR with two different thresholds.

one run another run one run another run
(a) Original data                                                                   (b) Sphered data 
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Figure 10.21 Results of SGAwith two different runs.

302 Hyperspectral Data Processing: Algorithm Design and Analysis



RIN-FINDR and RSC N-FINDR extracted the same identical five panel pixels that corresponded to

the five distinct pure mineral signatures.

Table 10.4 tabulates the computing time and the number of iterations required for a random algo-

rithm to complete its search where once again RSGA required the least amount of computing time.

10.7.2.4 TE3 Scenario

TE3 is an additive Gaussian noise-corrupted scenario of TE2. Figures 10.23–10.28 show the results

of IN-FINDR, SC N-FINDR, and SGA along with their random counterparts. Analogous to TI3, it

(a) Original data
τ = 0.005 τ = 0.005 τ = 0.05τ = 0.05

(b) Sphered data 

Figure 10.22 Results of RSGAwith two different thresholds.

Table 10.4 Computing time and number of iterations for RN-FINDR, RSC N-FINDR, and RSGA

t Computing time (s) Number of iterations

RN-FINDR Original 0.005 503.07 2

0.05 505.39 2

Sphered data 0.005 764.11 2

0.05 680.15 2

RSC N-FINDR Original 0.005 255.48 3

0.05 170.37 2

Sphered data 0.005 171.44 2

0.05 169.37 2

RSGA Original 0.005 201.73 4

0.05 101.38 2

Sphered data 0.005 151.15 3

0.05 100.78 2

one run another run one run another run
(a) Original data (b) Sphered data 

Figure 10.23 Results of IN-FINDR with two different runs.
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(a) Original data (b) Sphered data 
t =0.05t =0.005t =0.005 t =0.05

Figure 10.24 Results of RIN-FINDR with two different thresholds.
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Figure 10.25 Results of SC N-FINDR with two different runs.

(a) Original data                                                                   (b) Sphered data 
τ = 0.005 τ = 0.005τ = 0.05 τ = 0.05

Figure 10.26 Results of RSC N-FINDR with two different thresholds.

one run                         another run                              one run                           another run
(a) Original data                                                                   (b) Sphered data 
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Figure 10.27 Results of SGAwith two different runs.
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was expected that a larger threshold value, t¼ 0.05, was also required for random versions of N-

FINDR to combat the added Gaussian noise so that panel pixels with the purest signatures that

represented the five distinct mineral signatures could be extracted as shown in Figures 10.24,

10.26, and 10.28.

Table 10.5 tabulates the computing time and the number of iterations required for a random algo-

rithm to complete its search where once again RSGA required the least amount of computing time.

10.8 Real Image Experiments

The synthetic image experiments conducted in Section 10.6 demonstrate the effectiveness of

REEAs in extracting endmembers. This section further provides evidence of the ability of REEAs

in endmember extraction. Due to the availability of the ground truth only the HYDICE 15-panel

scene in Figure 1.15(a) and cuprite data in Figure 1.12 were used for experiments.

10.8.1 HYDICE Image Experiments

With the ground truth given in Figure 1.15(b) there are 19 panel pixels marked by red that are

assumed to be pure pixels specified by five panel signatures in Figure 1.16. Using this information,

a quantitative study of extracted endmembers by various algorithms was performed for analysis.

As usual, VD used for the HYDICE data was 9. So, the data dimensionality reduction performed

(a) Original data
τ = 0.005 τ = 0.05 τ = 0.005 τ = 0.05

(b) Sphered data 

Figure 10.28 Results of RSGAwith two different thresholds.

Table 10.5 Computing time and number of iterations for RIN-FINDR, RSC N-FINDR, and RSGA

t Computing time (s) Number of iteration

RIN-FINDR Original 0.005 918.26 3

0.05 669.42 2

Sphered data 0.005 675.30 2

0.05 675.95 2

RSC N-FINDR Original 0.005 254.20 3

0.05 1610.34 2

Sphered data 0.005 258.72 3

0.05 172.14 2

RSGA Original 0.005 199.74 4

0.05 110.35 2

Sphered data 0.005 151.20 3

0.05 101.54 2
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for PPI was reduced to 9, and the number of endmembers required for RPPI and random versions

of N-FINDR was set to twice VD, 2nVD¼ 18.

10.8.1.1 RPPI

Figure 10.29(a) and (b) shows the results of operating PPI and RPPI using 2000 skewers on the

original data and reduced nine-dimensional data sets where data samples marked by circles are

those with their PPI counts greater than 0 in Figure 10.30(a) with the total number tallied in the

parentheses and the final intersection produced by the RPPI in Figure 10.30(b) with the total num-

ber tallied in the parentheses. As noted, the total number of K skewers, 2000, was selected empiri-

cally. It is interesting to note that compared to PPI, which could find all the five panel signatures,

only the four panel signatures p1, p3, p4, and p5 were found by RPPI except the one using the ICA

to perform DR. This may be due to the fact that the panel signature p2 is not really pure at all as

shown in Chang et al. (2004, Tables III and IV). In this case, p2 did not appear in every realization

produced by RPPI as other four panel signatures did. According to the results obtained in Chang

et al. (2004), only the four panel signatures p1, p3, p4, and p5 could be considered as endmembers

in terms of the purest signatures in which case RPPI was the best and worked exactly as it is

designed for. It has also been shown in Wang and Chang (2006a) that when ICAwas used for DR,

all the five panel signatures could be extracted because ICA can preserve small targets character-

ized by high-order statistics such as panel pixels.

10.8.1.2 RN-FINDR

Once again, using 2nVD¼ 18 for RIN-FINDR, RSC N-FINDR, and RSGA to generate 18 end-

members, Figures 10.31–10.36 show the results of IN-FINDR, SC N-FINDR, and SGA along with

their random counterparts where 18 endmembers were extracted by IN-FINDR in two runs using

two different sets of random initial conditions. Unlike the experiments conducted for the TI and TE

scenarios where the results are the same by operating IN-FINDR on the original data and sphered

Figure 10.29 Endmembers extracted by PPI and RPPI in HYDICE data with 2000 skewers.
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one run                             another run                              one run                             another run 

(a) Original data                                                                   (b) Sphered data  
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Figure 10.31 Results of IN-FINDR with two different runs.

τ = 0.005                              τ = 0.05                              τ = 0.005                              τ = 0.05 

(a) Original data                                                                   (b) Sphered data  

Figure 10.32 Results of RIN-FINDR with two different thresholds.

Figure 10.30 Endmembers extracted by PPI and RPPI in HYDICE data.
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Figure 10.33 Results of SC N-FINDR with two different runs.

τ = 0.005                              τ = 0.05                              τ = 0.005                              τ = 0.05 

(a) Original data                                                                   (b) Sphered data  

Figure 10.34 Results of RSC N-FINDR with two different thresholds.
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Figure 10.35 Results of SGAwith two different runs.

τ = 0.005                              τ = 0.05                              τ = 0.005                              τ = 0.05 

(a) Original data                                                                   (b) Sphered data  

Figure 10.36 Results of RSGAwith two different thresholds.
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data, there were 6 panel pixels in the first column extracted by IN-FINDR from the sphered data

in Figure 10.31(b) compared to five and four panel pixels in the first column extracted from the

original data in two separate runs in Figure 10.31(a). Figure 10.32(a) and (b) also shows similar

results produced by RIN-FINDR using two different thresholds, t¼ 0.005 and 0.05, where the

notation x/y indicates that a total of y endmembers were extracted by RIN-FINDR, among which

x pixels were panel pixels corresponding to pure mineral signatures. Interestingly, RIN-FINDR

performed exactly the same as IN-FINDR in terms of extracting six panel pixels in the first col-

umn when both algorithms operated on the sphered data in Figure 10.31(b), but was worse than

that obtained by operating IN-FINDR on the original data. Similar results were also observed in

Figures 10.33 and 10.34 produced by operating SC N-FINDR and RSC N-FINDR on the original

data and sphered data, respectively. In the latter case, RSC N-FINDR was able to produce the

same results as RIN-FINDR did when the threshold t was set to 0.05. As shown in Figure 10.34

(b), RSC N-FINDR missed one panel pixel in row 2 if t was set too small, 0.005. This made

sense since the panel signature p2 is not really pure at all as shown in Chang et al. (2006). In this

case, p2 was considered as a mixed signature and a variation of p3. So, p2 did not appear in every

realization produced by RSC N-FINDR as other four panel signatures did. According to the

results obtained in Chang et al. (2006), only the four panel signatures p1, p3, p4, and p5 could be

considered as endmembers in terms of the purest signatures in which case RSC N-FINDR was the

best and worked exactly as it is designed for. However, there is an interesting finding in Figure

10.33(a) where SC N-FINDR was able to extract all the five panel pixels in the first column in

both runs, while IN-FINDR missed one panel pixel in row 4 in one run in Figure 10.31(a). This

evidence shows an important impact of the use of initial conditions on the final results. Similarly,

all the conclusions drawn for SC N-FINDR and RSC N-FINDR were also applied to SGA and

RSGA as shown in Figures 10.35 and 10.36. Finally, according to Figures 10.31–10.36, all the

considered algorithms were able to extract panel pixels that represented all the five panel signa-

tures if the data to be processed was sphered data.

It should be noted that all the extracted pixels were measured by SAM between the extracted

pixels and the 19 panel pixels in Figure 1.15(b) to see if the five endmembers corresponding to

five panel signatures were successfully extracted. They were not performed by visual inspection.

The experiments in Figures 10.31–10.36 show that all the extracted endmembers were identical

to their corresponding (same) panel pixels specified by the ground truth in Figure 1.15(b) in

which case their SAM values were zero. Since all other pixels extracted by RIN-FINDR and RSC

N-FINDR were background pixels, they were of no interest to be included from a viewpoint of

endmember extraction.

10.8.2 AVIRIS Image Experiments

The Cuprite data used for experiments in this section was a real image scene with reflectance val-

ues. VD estimated for this scene was nVD¼ 22. So, the data dimensionality reduction performed

for PPI was reduced to 22, and the number of endmembers required for random versions of

N-FINDR was set to twice VD, which is 2nVD¼ 44.

10.8.2.1 RPPI

Figure 10.37(a-b) shows the data sample vectors extracted by operating PPI and RPPI on three DR-

reduced image cubes by PCA, MNF, and ICA, and the original data space where the data samples

marked by circles are those with PPI counts greater than 0 and PPI-extracted pixels considered to

be endmembers are labeled by lowercase letters compared to the ground truth samples labeled by

uppercase letters. The numbers in the parentheses underneath each of figures indicate the number
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of endmembers extracted out of data sample vectors with their PPI counts greater than 0 in Figure

10.37(a) and the number of endmembers extracted out of data sample vectors found in the final

intersection by RPPI in Figure 10.37(b). Comparing Figure 10.37(b) and 10.37(a), we found that

RPPI produced much fewer data sample vectors than PPI did, while also performing as well as PPI

in the original data space and its ICA-reduced image data cube by finding pixels that specified all

the five mineral signatures for endmember extraction.

Table 10.6 tabulates the computing time and the number of iterations required by RPPI to run

HYDICE and Cuprite image data scenes where the computing time required by PPI can be found

by dividing the time required by RPPI by the number of iterations.

10.8.2.2 RN-FINDR

Figures 10.38–10.43 show data sample vectors extracted by IN-FINDR and SC N-FINDR and

SGA along with their random counterparts where the number of endmembers required to be

generated was 2p¼ 44 by setting p¼ 22. In Figures 10.39, 10.41, and 10.43, the numbers x/y

in the parentheses underneath the figures indicate that a total of y endmembers were extracted
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Figure 10.37 Endmembers extracted RPPI and PPI in cuprite data with 2000 skewers.

Table 10.6 Computing time and the number of iterations of RPPI running in different data sets

Computing time (s) Number of iterations

HYDICE data PCA 1.61 9

MNF 1.92 12

ICA 0.48 3

Original 1.66 6

Cuprite reflectance data PCA 41.68 8

MNF 25.66 5

ICA 41.73 8

Original 104.44 12
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Figure 10.38 Results of IN-FINDR with two different runs.
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Figure 10.39 Results of RIN-FINDR with two different thresholds.
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Figure 10.40 Results of SC N-FINDR with two different runs.
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Figure 10.41 Results of RSC N-FINDR with two different thresholds.
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by an algorithm among which x pixels were endmembers corresponding to pure mineral signa-

tures. As we can see from the figures, both IN-FINDR and SC N-FINDR were able to extract

the pixels corresponding to the five distinct pure mineral signatures in different runs in Figures

10.38 and 10.40, while SGA missed the alunite signature in Figure 10.42 in one of two runs

where the uppercase letters A, B, C, K, and M and the lowercase letters a, b, c, k, and m are

used to indicate the ground truth pixels and pixels extracted by the algorithms, respectively.

However, if the data to be used was sphered data, all the three algorithms could do equally

well by finding all the five signature endmembers.

It is worth noting from Figures 10.38–10.43 that the extracted pixels corresponding to the

ground truth pixels were not necessarily the same and their similarity was measured by SAM

and MSE. Since only five mineral signatures were of major interest and represented five end-

members in the image scene, only those pixels extracted in Figures 10.38–10.43 were identi-

fied to be the closest to these five endmembers in terms of SAM and MSE. As a matter of fact,

the spatial locations of the pixels corresponding to the same mineral signature provided by a

ground truth pixel may be far away from each other. This is particularly true for those pixels

extracted from the original data and sphered data.

Tables 10.7 and 10.8 tabulate the computing time and the number of iterations required by RIN-

FINDR, RSC N-FINDR, and RSGA to run HYDICE and Cuprite image data scenes, respectively,

where the computing time required by PPI was calculated by dividing the time required by RPPI

by the number of iterations.
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Figure 10.42 Results of SGAwith two different runs.
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Figure 10.43 Results of RSGAwith two different thresholds.
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10.9 Conclusions

An EEA generally requires a set of initial endmembers for algorithm initialization. In doing so a

random generator is usually used to produce a set of random initial endmembers for this purpose.

Unfortunately, this practice affects the reproducibility of final results. Two approaches are explored

to address this issue. One is considered in Chapter 9 where various custom-designed initialization

algorithms are developed to produce specific sets of initial conditions that can lead to good results.

The other adopts a completely opposite approach discussed in this chapter, by taking advantage of

random initial conditions to convert an EEA into a random EEA. In order to materialize this idea,

two most popular and widely used EEAs, PPI and N-FINDR, are extended as random PPI (RPPI)

Table 10.7 Computing time and number of iterations required for HYDICE data by RIN-FINDR, RSC

N-FINDR, and RSGA

t Computing time (s) Number of iterations

RIN-FINDR Original data 0.005 486.44 5

0.05 476.43 5

Sphered data 0.005 446.83 3

0.05 446.92 3

RSC N-FINDR Original data 0.005 88.95 4

0.05 92.29 4

Sphered data 0.005 71.66 3

0.05 72.69 3

RSGA Original data 0.005 52.59 4

0.05 54.12 4

Sphered data 0.005 40.28 3

0.05 28.60 2

Table 10.8 Computing time and number of iterations required for cuprite data by RN-FINDR, RSC

N-FINDR, and RSGA

t Computing time (s) Number of iterations

RN-FINDR Original data 0.005 4.6063� 105 8

0.05 1.7548� 106 8

Sphered data 0.005 1.7380� 105 3

0.05 1.7379� 105 2

RSC N-FINDR Original data 0.005 9.4422� 104 9

0.05 5.6226� 104 6

Sphered data 0.005 8.7037� 104 8

0.05 4.8172� 104 5

RSGA Original data 0.005 2.6691� 104 7

0.05 3.0511� 104 8

Sphered data 0.005 2.3454� 104 6

0.05 1.5644� 104 4
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and random N-FINDR (RN-FINDR) and the the same treatment can be also applied to other EEAs

to derive their random counterparts.

PPI has become a standard technique for endmember extraction due to its popularity and

availability in the ENVI software. This chapter investigates several practical issues in imple-

menting PPI. Among them two major issues are particularly severe. One is in-reproducibility

caused by the use of randomly generated vectors, called skewers where different sets of the

same number of skewers produce different results. Another is the requirement of a visualiza-

tion tool for users to manually manipulate the final selection of endmembers. As a result, a

novice and an experienced user will produce different results. To resolve these issues, this

chapter develops an RPPI that implements PPI as a random algorithm in the sense that PPI

using one set of skewers is considered as a single run of RPPI and its result is considered as a

realization. With this interpretation, the disadvantage of using random initial endmembers

becomes an advantage that actually resolves two major long standing issues: determination of

the number of endmembers, p, required for PPI to generate and inconsistent selection of final

endmembers. The study shows that RPPI can be as competitive as PPI.

In addition to PPI, the N-finder algorithm (N-FINDR) is also another algorithm that has been

widely used for endmember extraction. In analogy with PPI, it also suffers from a number of issues

that have prevented it from being used in practical implementation; the use of random initial end-

members for algorithm initialization is the only issue both PPI and N-FINDR share. As a result, an

approach that is used to derive RPPI can also be applied to N-FINDR to develop a random version

of N-FINDR. However, N-FINDR is a very computationally expensive algorithm, discussed in

Chapter 7, and implementing such an N-FINDR repeatedly as a RN-FINDR is formidable. It must

be redesigned to mitigate this dilemma. To accomplish this goal, two sequential versions of the N-

FINDR, iterative N-FINDR (IN-FINDR) and SuCcessive N-FINDR (SC N-FINDR) developed in

Chapter 8, can be used to replace N-FINDR for this purpose. Then the use of random initial
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Figure 10.44 Endmember extraction results of (a) ATGP, (b) ATGP-SQ-N-FINDR, (c) ATGP-IN-FINDR,

and (d) ATGP-SC-N-FINDR.
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conditions by N-FINDR can be resolved by further extending IN-FINDR and SC N-FINDR to

random IN-FINDR (RIN-FINDR) and random SC N-FINDR (RSC N-FINDR) in such a way that

an algorithm using one random set of initial endmembers is considered as a single run of the algo-

rithm and the result obtained by a single run constitutes one realization. Accordingly, the RIN-

FINDR and RSC N-FINDR convert the random issue to an advantage that eventually resolves the

problem of inconsistency in final results. Besides, to further improve the computational complexity

and performance of RN-FINDR, the original data are sphered to enhance the extractability of

endmembers.

Since both ID-EEAs and REEAs are designed by two completely opposite rationales to cope

with the inconsistency issue of random initial endmembers, it is interesting to compare their rela-

tive performance in terms of endmember extraction. In doing so, the HYDICE data are chosen for

experiments and the automatic target generation process (ATGP) is used as the endmember initial-

ization algorithm (EIA) to generate an appropriate set of initial endmembers for N-FINDR because

ATGP has been shown to be the best among EIA-EEAs in Chapter 9. Figure 10.44 shows the

endmember extraction results of ATGP, ATGP-SQ-N-FINDR, ATGP-IN-FINDR, and ATGP-SC-

N-FINDR where all the EIA-EEAs could extract all the five panel signatures if the sphered data

are used, but only three panel signatures if the original data are used.

Comparing the results in Figure 10.44 to those in Figures 10.32, 10.34, and 10.36, we found that

RIN-FINDR performed better than ATGP-N-FINDR on original data and worked as effectively as

the ATGP-N-FINDR if the sphered data was used. Nevertheless, this benefit was traded for high

computational complexity. So, the preference of one approach over another is determined by the

users.
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11

Exploration on Relationships among
Endmember Extraction Algorithms

Chapters 7–8 provide a series of studies on development and design of endmember extraction

algorithms (EEAs) from an algorithmic implementation’s point of view where Chapter 7 presents

various simultaneous EEAs (SM-EEAs) that find all the desired endmembers simultaneously as

opposed to sequential EEAs (SQ-EEAs) in Chapter 8 that find all the desired endmembers one

after another in sequence. Due to the use of random initial endmembers SM-EEAs and SQ-EEAs

produce final extracted endmembers that are inconsistent and not repeatable. To address this issue,

two completely opposite approaches are investigated: initialization-driven EEAs (ID-EEAs) in

Chapter 9 with initial endmembers generated by a custom-designed algorithm and random EEAs

(REEAs) in Chapter 10 with random initial endmembers considered as realizations of a random

algorithm. Despite that each of these four types of EEAs, that is, SM-EEAs, SQ-EEAs, ID-EEAs,

and REEAs, is treated in individual chapters it is very interesting to investigate and explore their

correlations and relationships. In particular, the two most widely used EEAs, PPI and N-FINDR,

can be actually implemented in various versions derived from these four types of EEAs. This chap-

ter is included for this purpose to further explore insights into the EEAs derived in Chapters 7–10.

11.1 Introduction

Awide variety of algorithms have been developed for endmember extraction in recent years. One

of early developed EEAs is the so-called pixel purity index (PPI) proposed by Boardman (1994),

which has become one of most popular EEAs due to its availability in the software, environment

for visualizing images (ENVI). The design rationale of PPI is based on the concept of convex

geometry, especially on the fact that a line segment connected by two points includes all the points

mixed by the two end points as a result of convexity in which case two end points are considered as

pure points, whereas the points right in between can be obtained by mixing these end points with

appropriate portions. In order to make it work, PPI randomly generates a set of unit vectors to be

considered as line segments, called skewers, and then use these skewers as basis vectors onto

which all data sample vectors are projected. The number of times a data sample vector orthogo-

nally projected at end points of these skewers is defined as its PPI count that will be used to deter-

mine if this data sample vector is an endmember (see Figure 7.1). Theoretically speaking, higher

the PPI count of a data sample vector, more likely the data sample vector to be an endmember. As

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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already demonstrated in the experiments of six scenarios conducted in Chapter 4, this is generally

not the case. Nevertheless, it is usually true that the PPI count of an endmember is always nonzero,

that is, greater than 0, but could be also a very small value such as one. There are several issues

arising in implementing PPI. One is the number of skewers to be used must be sufficiently large to

cover all possible random directions that an endmember can be orthogonally projected. (There is

no guideline provided regarding how large this number should be. It must be done on a trial-and-

error basis.) As a trade-off, many data sample vectors are also falsely extracted as endmembers.

Another drawback resulting from the use of PPI counts is that all data sample vectors with PPI

counts greater than a threshold will be extracted as endmembers in which case a large number of

data sample vectors corresponding to the same type of endmembers are also extracted. Such a large

number of extracted endmembers usually cause confusion to image analysts. Besides, PPI also

requires human intervention to adjust a value to appropriately threshold PPI counts. As a result,

different users may produce different results. Despite that in Nascimento and Dias (2005) the

authors did not specify their developed EEA, called vertex component analysis (VCA), as a variant

of PPI, the same concept of orthogonal projection (OP) on skewers used by PPI is also used by

VCA except that VCA implemented Gaussian random variables to produce skewers as initial con-

ditions and then generated a successive set of projection vectors in sequence onto which data sam-

ple vectors can be orthogonally projected. So, from an algorithmic implementation view point

VCA can be considered as a sequential version of PPI because it does not simultaneously use all

projection vectors to find all endmembers as the way PPI does by thresholding PPI counts of all

data sample vectors in one shot operation. Instead, VCA generates an orthogonal projection vector

to find one endmember at a time in sequence. Since VCA inherits the concept of skewers to per-

form OP, it also suffers from the same drawback that requires a large number of random projection

vectors to be able to cover all possible directions resulting from OP. In a rather different applica-

tion, the concept of OP was also used by an algorithm developed by Ren and Chang (20003) called

automatic target generation process (ATGP), to find targets of interest via a series of successive

orthogonal projections. As already shown in Chapter 8, when ATGP is used for endmember extrac-

tion as ATGP-EEA, many of such ATGP-generated targets turned out to be endmembers. So, it

should not be surprising to see that PPI, VCA, and ATGP actually belong to the same family.

As an alternative to the use of OP as a criterion to extract endmembers, another popular EEA,

called N-FINDER algorithm (N-FINDR) developed by Winter (1999), uses the concept of simplex

volume. Unlike PPI, which uses a large set of skewers to generate a PPI count for each of data

sample vectors via OP to find endmembers, N-FINDR extends line segments to simplexes with a

line segment being regarded as a two-dimensional (2D) degenerated simplex. In order to realize its

applicability to endmember extraction, N-FINDR borrows the concept from Craig’s minimal vol-

ume transform (MVT) (Craig, 1994) that used the minimal simplex volume as a criterion to find

endmembers. Rather searching for a simplex that embraces all data sample vectors with the mini-

mal simplex volume as MVT does, N-FINDR finds a simplex that is embedded within data space

with the maximal simplex volume. More specifically, for a given positive integer p designated as

the number of endmembers a p-vertex simplex that yields the maximal volume among all possible

p-vertex simplexes embedded in a data space should have all of its vertices specified by endmem-

bers. Using PPI as an example, the two points connecting a line segment with maximal length are

more likely to be endmembers since this pair of end points produce the maximal volume among all

2D degenerated simplexes (line segments) embedded in a data space.

Since OP and simplex volume are two basic principles of convex geometry that can be used to

find endmembers, they have been widely used to design and develop most EEAs reported in the

literature. However, there are several drawbacks when PPI and N-FINDR are implemented as

SM-EEAs. One is very high computational cost resulting from an exhaustive search for all
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endmembers simultaneously as noted in Chapter 7. Another is inconsistency in final results due to the

use of random initial conditions. A third one is that the number of endmembers, p, which is practi-

cally unknown, must assume to be known a priori before data processing takes place. Chapter 8

address the first issue by making an SM-EEA a sequential EEA (SQ-EEA) that can be implemented

to extract one endmember at a time in a sequential manner to reduce computational complexity at

the expense of optimality. In particular, VCA and ATGP-EEA developed in Chapter 8 can be consid-

ered as sequential versions of PPI, while the sequential N-FINDR (SQ N-FINDR) (Wu et al., 2008)

and simplex growing algorithm (SGA) (Chang et al., 2006) developed in Chapter 8 can be viewed as

sequential versions of N-FINDR. Chapter 9 address the second issue by developing initialization-

driven EEAs (ID-EEAs) to produce consistent results in endmember extraction where an initial con-

dition is produced by a custom-designed algorithm either selecting specific data sample vectors or

using endmember initialization algorithm (EIA) to generate appropriate sets of p initial endmembers.

Finally in order to address the third issue, the concept of virtual dimensionality (VD) discussed in

Chapter 5 is used to provide an estimate on the number of endmembers for SM-EEAs in Chapter 7,

SQ-EEAs in Chapter 8, and ID-EEAs in Chapter 9, all of which require this knowledge a priori. By

taking an opposite approach, Chapter 10 considers an EEA using random initial endmembers as a

random EEA (REEA) where a single run is defined as results of running an REEA using one set of

random initial endmembers. With this interpretation, a single run of an REEA is simply viewed as a

realization of an REEA. If there is a true endmember present in the data, theoretically speaking, it

should appear in realizations. With this assumption an REEA can find desired endmembers by taking

intersection of realizations resulting from a number of runs. In this case, the total number of end-

members will be automatically determined by the intersection set and there is no need of VD to

determine the number of endmembers a priori as required by SM-EEAs, SQ-EEAs, and ID-EEAs.

While four types of EEAs, SM-EEAs, SQ-EEAs, ID-EEAs, and REEAs, are treated in separate and

individual chapters, some interesting relationships connecting one to another were not be able to be

discussed in these chapters. This chapter explores insights into ideas used to design EEAs, especially

OP used by PPI and simplex volume used by N-FINDR and their algorithm development.

11.2 Orthogonal Projection-Based EEAs

In this section, we further show that PPI, VCA, and ATGP-EEA are essentially the same type of

algorithms that rather appear in different forms. All of these three EEAs use the OP derived from

the principle of orthogonality to find endmembers. OP is one of most widely used concepts in

statistical signal processing and plays a key role in mean squared error or least squares error-based

approaches (Poor, 1994). It basically says that any new or innovations information must be orthog-

onal in the sense of mean squared error or least squares error to the information that is already

known or the information that can be inferred from the data samples that were already processed.

A best example of using OP is the orthogonal subspace projection (OSP) approach developed for

linear spectral mixture analysis (Harsanyi and Chang, 1994; Chang, 2003a; Chang, 2005) as well

as ATGP used for target detection and classification (Ren and Chang, 2003; Chang, 2003a). Inter-

estingly, the first use of OP in endmember extraction is PPI, which assumes that the more likely the

data sample to be an endmember, the better chance the data sample to be orthogonally projected at

end points of a skewer where a skewer is a randomly generated unit vector. A further use of OP is

exploited by VCA that selects a data sample vector with the maximal OP in the OSP-projected

space as a potential endmember. Interestingly, PPI, ATGP, and VCA share the same idea of using

OP to find endmembers, but their relationships are never realized and explored until Wu et al.

(2007). As a matter of fact, these three seemingly different EEAs are indeed closely related. The

following section reinterprets them from an OP perspective in a unified framework.
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11.2.1 Relationship among PPI, VCA, and ATGP

The idea of PPI is very simple and intuitive. It assumes that for a given “right” vector an

endmember should have its OP falling at one of two end points of the vector with either

maximal or minimal OP. A key issue is how to find such a “right” vector. Since there is no

prior knowledge about endmembers, the best way is to randomly generate as many vectors as

needed to find “right” vectors so that endmembers can be orthogonally projected at as many

their end points as possible. A vector randomly generated with unit length for this purpose is

called a skewer. In order to accomplish its goal, PPI requires a large number of skewers, K,

and then assigns a count to each of data sample vectors, to be called the PPI count, by count-

ing the number of skewers on which the data sample vector is projected orthogonally as their

end points. Hopefully, the higher PPI count of a data sample vector, the more likely it is an

endmember. Despite that such an approach is elegant, two major drawbacks need to be

addressed. First is how large the number of skewers is sufficient. Second is how to determine

an appropriate cut-off value for PPI counts to produce a desired set of endmembers.

Unfortunately, none of these two issues is easy to deal with.

The development of ATGP is originally designed to find targets of interest in data when

no prior target knowledge is available. It repeatedly implements orthogonal projections to

produce a nested sequence of decreasing orthogonal complement subspaces, each of which

can be used to extract a specific target with maximal orthogonal projection. As shown in

Chapter 8, most of ATGP-generated target pixels indeed ended up desired endmembers. This

is certainly not a surprise because the concept behind ATGP is OP that is exactly the same

criterion used by PPI. Nevertheless, there are two exceptions. First is that PPI requires a very

large number of skewers to find maximal or minimal OP compared to ATGP that finds targets

of interest from a sequence of orthogonal projection subspaces with maximal projections.

Accordingly, PPI simultaneously extracts all endmembers compared to ATGP that extracts

targets sequentially one after another. Second is that PPI takes advantage of random nature

in skewers to uncover all possible endmembers as opposed to ATGP that takes a determinis-

tic approach to search for definite directions of maximal projections to find possible target

candidates in a sequence of orthogonal projection subspaces. Nonetheless, both PPI and

ATGP share the same principle and implement OP to find what they are designed for. The

goal of VCA is to improve PPI by replacing the skewers with Gaussian random vectors,

which can be viewed as Gaussian skewers, and then repeatedly using OP as the way ATGP

does to generate a sequence of subspaces via OP in which data with the maximal OP are

extracted as an endmember. In addition to the use of Gaussian skewers to produce initial end-

members, VCA also differs from PPI in three aspects. VCA does not need a large number of

Gaussian skewers, but it does require prior knowledge about the number of endmembers needed

to be generated. Another is that VCA is a SQ-EEA and can be considered as a sequential version

of PPI which is in fact an SM-EEA. ATGP actually fills the gap between PPI and VCA. Finally, in

order to ensure that endmembers to be extracted are non-negative, i.e., satisfying abundance non-

negativity constraint (ANC), VCA restricts its search region in the first quadrant, while PPI

selects skewers from all possible random directions.

11.2.1.1 Relationship Between PPI and ATGP

As noted in the introduction, PPI and ATGP-EEA share the principle of orthogonality to find their

targets of interest, that is, endmembers in our case. In what follows, we conduct an item-by-item
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in-depth comparative study between these two. For the sake of simplicity the ATGP-EEA is

replaced with ATGP throughout the chapter.

1. Dimensionality reduction (DR): PPI requires DR to reduce computational complexity, while

ATGP does not. However, in fact, PPI does not necessarily require DR as shown by RPPI. Its

inclusion of DR is simply for the purpose of computation relief.

2. Initial process: PPI requires a random generator as an initial process to produce a set of skew-

ers, while ATGP selects a data sample with maximal length as an initial target to initialize the

algorithm.

3. For each skewerk PPI calculates skewnerkð ÞTx for all x 2 X and finds its maximal OP and

minimal OP, denoted by max(skewnerk) and min(skewnerk), respectively. Then for each

x 2 X, PPI count of the x is calculated by counting the number of skewers such that either

skewnerkð ÞTx ¼ maxðskewnerkÞ or skewnerkð ÞTx ¼ minðskewnerkÞ is true. It should be

noted that OP performed by PPI on a skewer can be along the same direction or opposite

direction of the skewer depending on whether the OP is the maximal or minimal projection as

illustrated in Figure 7.1. However, according to (8.6), which is always non-negative, ATGP only

finds maximal projections every time when it searches a new endmember. Compared to the

PPI, the ATGP finds t(k) via (8.6) from a sequence of decreasing projection subspaces,

hUð0Þi? � hUð1Þi? � � � � � hUðkÞi ? .

4. PPI requires an appropriate value to simultaneously threshold PPI counts of all data sample

vectors to produce a set of endmembers. Unfortunately, there is no provided criterion for such

threshold selection. As a result, PPI generally extracts a large number of endmembers and many

of them turn out to be not real endmembers. By contrast, ATGP produces targets of interest one

at a time sequentially until the total number of extracted targets reaches the required number of

endmembers. So, PPI can be considered as an SM-EEA as opposed to ATGP that is an SQ-EEA.

The above-mentioned relationship between PPI and ATGP was not explored in Chang and Plaza

(2006) and Plaza and Chang (2006), but their conducted experiments did show that most of final

PPI-selected endmembers are the same data sample vectors produced by ATGP.

11.2.1.2 Relationship Between PPI and VCA

The relationship between PPI and VCA is more obvious than that between PPI and ATGP

described above.

1. Dimensionality reduction: Both require DR with the principal components analysis (PCA) or

maximum noise fraction (MNF) for PPI and singular value decomposition (SVD) for VCA.

Same comment made on item 1 in Section 11.2.1.1 is also applicable to this item. Both PPI and

VCA do not really need DR. However, it should be noted that an appropriate DR can actually

improve their performance such as using ICA to perform DR in Chapter 8.

2. Initial process: PPI uses a random generator to produce unit vectors as skewers, while VCA

uses Gaussian random vectors as Gaussian skewers.

3. PPI generates all skewers at the same time, while VCA find the desired targets one at a time

from a sequence of orthogonal projection subspaces with dimensionality reduced by one at a

time, that is, hAð0Þi? � hAð1Þi? � � � � � hAðkÞi ? .

4. A skewer skewerk in PPI plays the same role as f(k) does in VCA where PPI uses a random

generator to produce skewers all together at the same time as opposed to VCA that makes use

of Gaussian variables to initialize the algorithm every time it searches for a new endmember.

5. The OP calculated by skewerkð ÞTx is identical to the OP performed by
�
fðkÞ

�T
x.
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6. The only difference between PPI and VCA is that PPI performs skewernð ÞTx for all skewers and
finds all desired endmembers simultaneously, while VCA performs ðfðkÞ�Tx sequentially one

after another, that is, fð0Þ; fð1Þ; . . . ; fðkÞ.
7. For each data sample vector x, PPI first finds both

nmaxðx̂Þ ¼ # of skewers that yield the maximal projection for x

¼ # skewerkj skewerkð ÞTx � skewerkð ÞTy for all y 2 X
� �

and

nminðxÞ ¼ # of skewers that yield the minimal projection for x

¼ # skewerkj skewerkð ÞTx � skewerkð ÞTy for ally 2 X
� � ;

and calculate its PPI count of the data sample vector x by NPPIðxÞ ¼ nmaxðxÞ þ nminðxÞ, then
uses a prescribed value to threshold PPI counts of all data sample vectors to produce desired

endmembers. By contrast, VCA finds e(k) via (8.5) to find the one with maximal projection at a

time.

8. PPI finds all endmembers simultaneously by thresholding PPI counts of each data sample vec-

tor, whereas VCA produces endmembers, one after another sequentially, eð0Þ; eð1Þ; . . . ; eðkÞ.

11.2.1.3 Relationship Between ATGP and VCA

The relationship between ATGP and VCA was first noted in Wu et al. (2007) and later in Greg

(2010). Technically speaking, both ATGP and VCA are essentially the same algorithm in terms of

design rationale as they can be interpreted one from another as follows.

1. Dimensionality reduction: VCA requires SVD to perform DR that is not required by ATGP. In

this case, the notations of r and x are used to indicate sample vectors in the original data space

and the DR-reduced space, respectively, for distinction. As noted above, the DR is not crucial to

VCA and can be skipped.

2. ATGP uses
�
P?
Uðk�1Þr

�T�
P?
Uðk�1Þr

�
to produce the maximal projection, while VCA uses

fðkÞ
� �T

x̂ ¼ P?
Aðk�1Þw

ðkÞ
� �

= P?
Aðk�1Þw

ðkÞ
���

���
� �

x ð11:1Þ

to produce the maximal projection with P?
Uðk�1Þ in ATGP corresponding to P?

Aðk�1Þ in VCA. The

only difference between these two is that a randomly generated Gaussian vector w(k) is used in

f(k) in conjunction with data sample vector x in VCA compared to the same data vector r used in
�
P?
Uðk�1Þr

�T�
P?
Uðk�1Þr

�
for ATGP. So, if we replace w(k) in (11.1) with x̂, that is,

fðkÞ
� �T

x̂ ¼ P?
Aðk�1Þ x̂

� �
= P?

Aðk�1Þ x̂
���

���
� �

x̂ ð11:2Þ

then VCA becomes a variant of ATGP.

3. ATGP produces a sequence of target pixels of interest

tð0Þ
n o

� tð0Þ; tð1Þ
n o

� � � � � tð0Þ; tð1Þ; . . . ; tðkÞ
n o

ð11:3Þ
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from which a sequence of projection subspaces that are orthogonal to the target sequence in

(11.3) can be also produced as follows:

htð0Þi? � htð0Þ; tð1Þi? � � � � � htð0Þ; tð1Þ; . . . ; tðkÞi ? ð11:4Þ

Analogous to ATGP, VCA also generates a sequence of endmembers

eð0Þ
n o

� eð0Þ; eð1Þ
n o

� � � � � eð0Þ; eð1Þ; . . . ; eðkÞ
n o

ð11:5Þ

from which a sequence of projection subspaces that are orthogonal to the endmember sequence

in (11.5) can be also produced in the same fashion as that carried out by ATGP as follows:

hAð0Þi? � hAð1Þi? � � � � � hAðkÞi ? ð11:6Þ

11.2.1.4 Discussions

VCA suffers from the uncertainty caused by the use of random initial endmembers, as PPI

does. In order resolve this issue, VCA requires a large number of initial endmembers as PPI

does to constitute reliable statistics. Therefore, the number of vertices required for VCA must

be sufficiently large. As a consequence, it may result in more vertices than VCA needs. Such a

dilemma is avoided by PPI that provides a visualization tool to allow users to manually per-

form what VCA cannot do. ATGP introduces a deterministic approach to correct this random

issue and uses a VD-estimated value to generate a desired set of target sample vectors. Such an

approach is adopted by PPI and referred to as fast iterative PPI (FIPPI) in Chang and Plaza

(2006) and will be referred to as ATGP-PPI for consistency in this chapter. A similar approach

can be also applied to VCA, called ATGP-VCA, to mitigate the same issue caused by the use

of Gaussian random variables by VCA.

Figure 11.1 summarizes the relationships among PPI, ATGP, and VCA along with ATGP-

PPI and ATGP-VCA, both of which implement ATGP as their initialization algorithm to pro-

duce an initial set of endmembers. As noted, VCA, ATGP-VCA, and ATGP-PPI play a role

bridging PPI and ATGP.

The insights into relationships in Figure 11.1 have never been investigated in the literature. As a

matter of fact, VCA is nothing more than an orthogonal projection-based endmember extraction

algorithm that can be considered as a variant of PPI or ATGP. However, the connection between

PPI and VCA is not clear until ATGP is used to bridge the gap between these two. Since both PPI

and VCA use randomly generated vectors as their initial endmembers, two issues become

PPI
random and

simultaneous 

skewers

VCA
random Gaussian
and sequential 

ATGP
deterministic and

sequential 

ATGP-PPI ATGP-VCA

Figure 11.1 Relationships among the PPI, VCA, and ATGP.
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evidential: inconsistency in final results and insufficient statistics to cope with randomness. In

order to cope with these two issues, ATGP-PPI and ATGP-VCA are introduced to produce a set of

ATGP-generated target sample vectors that can be used as initial endmembers.

Over the past years, VCA has been a well-accepted endmember extraction algorithm in the liter-

ature. However, the insights into the design rationale into VCA have not been explored. In this

section, we trace back to its origin and show that VCA is actually a variant of ATGP and is derived

from the concept of PPI. Furthermore, as shown in Chang et al. (2006), Chapter 8 and the follow-

ing experiments in Section 11.2.2 the performance of VCA is generally not as good as many peo-

ple expect. Specifically, as an endmember extraction algorithm, VCA generally cannot compete

against simplex-based methods such as N-FINDR, SGA. This is because its used criterion is maxi-

mal orthogonal subspace projection not maximal simplex volume. As a result, VCA does not sat-

isfy the sum to one abundance constraint (ASC) compared to simplex volume criterion which

satisfies both convexity constraints, ANC and ASC imposed on extraction of endmembers. On the

other hand, due to the fact that both VCA and ATGP use maximal orthogonal subspace projection,

ATGP indeed performs better than VCA does in endmember extraction on many cases because

ATGP finds the maximal orthogonal projection over the entire data space orthogonal complement

to the space linearly spanned by already found endmembers compared to VCA which restricts its

search region to convex hulls in the first quadrant. This may result in the fact that some ATGP-

extracted samples may not be in the first quadrant. But according to our experiments, such case did

not occur often. Additionally, as an unsupervised target detection algorithm, VCA does not perform

as well as ATGP. Consequently, in either case of endmember extraction or unsupervised target

detection, ATGP is generally doing better than VCA. Finally, as for computational complexity,

both VCA and ATGP perform orthogonal projections and their computing time is very fast.

Because of that, VCA may have an edge over simplex volume-based techniques in the sense that

only orthogonal projections are performed compared to calculating matrix determent for a simplex

volume. But this advantage is poorly traded for its performance in endmember extraction.

11.2.2 Experiments-Based Comparative Study and Analysis

In order to conduct a comprehensive comparative analysis, two data sets from the real AVIRIS

Cuprite image data shown in Figure 1.12(c) and (d) are used to simulate TI2. Since TI1 has no

noise simulated in the image and TI3 contains endmembers corrupted by Gaussian noise, only TI2

is selected for experiments because it simulates exactly pure signatures as endmembers implanted

in the image scene.

11.2.2.1 Synthetic Image Experiment: TI2

The reflectance data of Figure 1.12(c) is used for experiments where the VD estimated for this data

set by the Hrasanyi–Farrend–Chang method is nVD¼ 6 with PF � 10�1. In this case, the value of 6

is used as the number of endmembers, p¼ 6, as well as the number of dimensions or components

required for DR, q¼ 6. But in fact, q ¼ p�1. So in experiments, these two values are used for

experiments.

Reflectance Data
Table 11.1 tabulates endmember pixels extracted by three OP-based EEAS along with two versions

of PPI and VCA using ATGP-generated pixels as initial endmembers, ATGP-PPI and ATGP-VCA,

respectively, where four transforms, PCA, MNF, SVD, and ICA, are implemented for DR with

q¼ 6 (Note: the DR techniques used by the original VCA is SVD). Here, an endmember pixel is

defined as a pixel whose spectral signature is an endmember and the number of skewers used by

PPI is K¼ 200.
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Interestingly, the level of knowledge required by the three algorithms, PPI, ATGP, and VCA,

can be closely related to one another. Despite that PPI does not require the knowledge of the num-

ber of endmembers, p, it does need to know the value of q, the number of dimensions or compo-

nents when it performs DR. Quite oppositely, VCA and ATGP only require to know the number of

target pixels they must generate, in which case this number was set to p and q was set to be equal

to p, that is, p¼ q.

According to the results of Table 11.1, all the five algorithms performed comparably. In particu-

lar, the results demonstrated that p¼ 6 was sufficient for the five algorithms to successfully extract

all the five mineral endmembers. It is also worth noting that since both the PPI and the VCA used

p randomly generated vectors as their initial endmembers, the final results were not consistent. As

a result, on some occasions, they may not extract all the five endmembers. The results of the PPI

and VCA in Table 11.1 were obtained by their best runs.

Radiance Data
As another example, a second synthetic image was simulated by radiance data in exactly the same

manner as the first synthetic image, TI2, except that the five mineral signatures were the radiance

data in Figure 1.12(d) instead of the reflectance data used in Figure 1.12(c).

Interestingly, VD estimated for this radiance data-based synthetic image, TI2, was nVD¼ 5 with

PF � 10�1 instead of six estimated for the reflectance data-based synthetic image. In other words,

the background simulated by the sample mean of the radiance data-based synthetic image was not

considered as an endmember as it was where the background was simulated by the sample mean of

the reflectance data-based synthetic image due to our belief that the reflectance data are calibrated.

So, the value of p was set to 5 and the number of dimensions or components required for DR was

also set to q¼ 5.

Table 11.1 Endmembers extraction by PPI, ATGP, VCA, ATGP-PPI, and ATGP-VCA (TI2 with reflectance

data)

EEAs Endmembers corresponding to five minerals

K¼ 200 p¼ 6

PPI PCA

(q¼ 6)

MNF

(q¼ 6)

ICA

(q¼ 6)

SVD

(q¼ 5)

N/A

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k, m a, b, c, k,

m

ATGP N/A a, b, c, k, m

VCA N/A PCA

(q¼ 6)

MNF

(q¼ 6)

ICA

(q¼ 6)

SVD

(q¼ 6)

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

ATGP-

PPI

N/A PCA

(q¼ 6)

MNF

(q¼ 6)

ICA

(q¼ 6)

SVD

(q¼ 6)

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

ATGP-

VCA

N/A PCA

(q¼ 6)

MNF

(q¼ 6)

ICA

(q¼ 6)

SVD

(q¼ 6)

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m
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Table 11.2 tabulates endmember pixels extracted by three OP-based EEAS along with two ver-

sions of the PPI and VCA using ATGP-generated pixels as initial endmembers, ATGP-PPI and

ATGP-VCA, respectively, where three transforms, PCA, MNF, and ICA, were implemented for DR

with q¼ 5 and the results highlighted by shade indicate failures of extracting all five endmembers.

As shown in the table, the best performance was ATGP, while the worst one was VCA. Two

observations are noteworthy. One is that ATGP-VCA using ATGP as its initialization algorithm did

not improve its performance over VCA with the use of random initial endmembers even though

ATGP was the one that yields the best performance. This implies that the target sample vectors

generated by ATGP that were supposed to be endmember pixels were actually compromised by the

process of finding the maximal OP implemented in VCAwhere ATGP-generated target pixels were

replaced by the data sample vectors that yielded the maximal OPs at each iteration but turned out to

be not endmembers. This finding further demonstrated that the maximal OP used by VCA as a

criterion was ineffective and may not be as good as the criterion of using maximal simplex volume.

On the contrary, ATGP did improve PPI with PCA where ATGP-generated target sample vectors

helped PPI find correct projection directions due to the reason that PCA compromised endmembers

by retaining second-order statistics in a few principal components, while endmembers should be

characterized by high-order statistics. A comparison of results between Tables 11.1 and 11.2 indi-

cates that the radiance data set presented more challenges for an EEA than the reflectance data set.

11.2.2.2 Real Image Experiments

In this section, we repeat the same synthetic image experiments conducted in Section 11.2.2.1.3 for

two real hyperspectral image scenes, HYDICE data in Figure 1.15 (a) and Cuprite data in Figure

1.11(b) for experiments. It has been shown in Chang (2003a), Chang and Du (2004), and Chang et

al. (2006) that a good VD estimate for the HYDICE data was nVD¼ 9 with PF equal to or smaller

Table 11.2 Endmembers extraction by PPI, ATGP, VCA, ATGP-PPI, and ATGP-VCA (TI2 with radiance

data)

EEAs Endmembers corresponding to five minerals

K¼ 200 p¼ 5

PPI PCA

(q¼ 5)

MNF

(q¼ 5)

ICA

(q¼ 5)

SVD

(q¼ 5)

N/A

b, c, k, m a, b, c, k, m a, b, c, k,

m

a, b, c, k,

m

ATGP N/A a, b, c, k, m

VCA N/A PCA

(q¼ 5)

MNF

(q¼ 5)

ICA

(q¼ 5)

SVD

(q¼ 5)

b, k, m a, b, c, k,

m

a, b, c, k,

m

b, k, m

ATGP-

PPI

N/A PCA

(q¼ 5)

MNF

(q¼ 5)

ICA

(q¼ 5)

SVD

(q¼ 5)

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

ATGP-

VCA

N/A PCA

(q¼ 5)

MNF

(q¼ 5)

ICA

(q¼ 5)

SVD

(q¼ 5)

b, k, m a, b, c, k,

m

a, b, c, k,

m

b, m
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than 10�3 by the HFC method. By letting p¼ q¼ 9 Table 11.3 tabulates the extracted endmembers

by PPI with K¼ 200, ATGP, VCA, ATGP-PPI, and ATGP-VCA that correspond to the five panel

signatures in Figure 1.16.

According to Table 11.3, it is obvious that for PPI, ATGP-PPI, and ATGP-VCA to be able to

extract all the five panel signatures ICA must be used to perform DR prior to endmember extraction

except the case that VCA used alone with ICA as DR extracted only four not five panel signatures.

More interestingly, without using ICA as DR none of PPI and VCA along with their ATGP versions

could extract more than three panel signatures if any of PCA, MNF, and SVD was used to perform

DR. This simple example demonstrates two important facts. One is that DR is a crucial preprocess-

ing step for endmember extraction. The other is that endmembers can be better characterized by

high-order statistics-based DR transforms than second-order statistics-based DR transforms.

As for Cuprite image scene in Figures 1.11(b) and 1.12 with reflectance data and radiance data

it has been shown in Chang et al. (2006) and Chapter 4 that for the image with reflectance data

nVD¼ 22 with PF¼ 10�4 is a good estimate for the number of endmembers, p¼ 22. In order to

make a fair comparison, the same false alarm probability PF¼ 10�4 chosen for the image with

reflectance data was also selected for the real image with radiance data, in which case the nVD¼ 15

according to Table 11.4.

Tables 11.5 and 11.6 tabulate endmember pixels extracted by PPI, ATGP, and VCA along with

two versions of the PPI and VCA using ATGP-generated pixels as initial endmembers, ATGP-PPI

Table 11.3 Endmembers extraction by PPI, ATGP, VCA, ATGP-PPI, and ATGP-VCA (HYDICE data)

EEAs Endmembers corresponding to five minerals

K¼ 200 p¼ 9

PPI PCA

(q¼ 9)

MNF

(q¼ 9)

ICA

(q¼ 9)

SVD

(q¼ 9)

N/A

p3, p4, p5 p1, p4, p5 p1, p2, p3,

p4, p5

p1, p3, p5

ATGP N/A p1, p3, p5

VCA N/A PCA

(q¼ 9)

MNF

(q¼ 9)

ICA

(q¼ 9)

SVD

(q¼ 9)

p3, p5 p3, p5 p1, p3, p4,

p5

p3, p5

ATGP-

PPI

N/A PCA

(q¼ 9)

MNF

(q¼ 9)

ICA

(q¼ 9)

SVD

(q¼ 9)

p1, p3, p5 p1, p3, p5 p1, p2, p3,

p4, p5

p1, p3, p5

ATGP-

VCA

N/A PCA

(q¼ 9)

MNF

(q¼ 9)

ICA

(q¼ 9)

SVD

(q¼ 9)

p1, p3, p5 p3, p4, p5 p1, p2, p3,

p4, p5

p3, p5

Table 11.4 VD-estimated value for the Cuprite scene with various false alarm probabilities

nVD PF¼ 10�1 PF¼ 10�2 PF¼ 10�3 PF¼ 10�4 PF¼ 10�5

Reflectance data 34 30 24 22 20

Radiacne data 29 18 17 15 15
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and ATGP-VCA, respectively, where four transforms, PCA, MNF, SVD, and ICA, were imple-

mented for DR with q¼ 22 in Table 11.5 and q¼ 15 in Table 11.6. The results highlighted by shade

in Tables 11.5 and 11.6 indicate that the algorithm failed to extract all the five mineral signatures.

In analogy with synthetic image experiments the results obtained for real image data in Tables

11.5 and 11.6 also confirmed that the real image with radiance data were generally more difficult

Table 11.5 Endmembers extraction by PPI, ATGP, VCA, ATGP-PPI, and ATGP-VCA (reflectance data)

EEAs Endmembers corresponding to five minerals

K¼ 1000 p¼ 22

PPI PCA

(q¼ 22)

MNF

(q¼ 22)

ICA

(q¼ 22)

SVD

(q¼ 22)

N/A

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

ATGP N/A a, b, c, k, m

VCA N/A PCA

(q¼ 22)

MNF

(q¼ 22)

ICA

(q¼ 22)

SVD

(q¼ 22)

b, c, k, m a, b, c, k,

m

a, b, c, k,

m

a, b, c, m

ATGP-

PPI

N/A PCA

(q¼ 22)

MNF

(q¼ 22)

ICA

(q¼ 22)

SVD

(q¼ 22)

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

a, b, c, k,

m

ATGP-

VCA

N/A PCA

(q¼ 22)

MNF

(q¼ 22)

ICA

(q¼ 22)

SVD

(q¼ 22)

a, c, k, m a, c, k a, b, c, k,

m

b, c, k, m

Table 11.6 Endmembers extraction by PPI, ATGP, VCA, ATGP-PPI, and ATGP-VCA (radiance data)

EEAs Endmembers corresponding to five minerals

K¼ 1000 p¼ 15

PPI PCA

(q¼ 15)

MNF

(q¼ 15)

ICA

(q¼ 15)

SVD

(q¼ 15)

N/A

a, b, c, k,

m

a, b, k, m a, b, c, k,

m

a, b, k

ATGP N/A a, b, k, m

VCA N/A PCA

(q¼ 15)

MNF

(q¼ 15)

ICA

(q¼ 15)

SVD

(q¼ 15)

a, c, k, m a, c, m a, b, c, k,

m

a, k, m

ATGP-

PPI

N/A PCA

(q¼ 15)

MNF

(q¼ 15)

ICA

(q¼ 15)

SVD

(q¼ 15)

a, b, k, m a, b, k, m a, b, k, m a, b, k, m

ATGP-

VCA

N/A PCA

(q¼ 15)

MNF

(q¼ 15)

ICA

(q¼ 15)

SVD

(q¼ 15)

k, m a, b, c, k,

m

a, b, k, m a, c, k, m
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and challenging to deal with than the real image with reflectance data. Four interesting and intrigu-

ing findings are also observed in Tables 11.5 and 11.6.

1. VCA has received attention recently and shown promise in endmember extraction. The experi-

ments conducted in this chapter demonstrated otherwise. The results in both synthetic and real

image experiments suggested that VCA was always the worst among all the three OP-based

algorithms (i.e., PPI, ATGP, and VCA). Moreover, PPI with a sufficient number of skewers and

ATGP seemed to produce best results in general. Two causes may be attributed to the poor

performance of VCA. One is its use of random initial endmembers, and the other is an insuffi-

cient number of vertices required by VCA. In fact, these two causes are closely related. In order

to overcome the uncertainty resulting from the use of random initial endmembers, the number

of vertices to be used by VCA must be sufficiently large. That explains why PPI requires a large

number of skewers to perform well and better than VCA. On the other hand, in order to elimi-

nate randomness caused by the use of random initial endmembers, an appropriate set of initial

endmembers must be preselected for VCA to perform well if the number of vertices to be used

is small and the selected initial endmembers must be more reliable and less random. This is the

main reason why ATGP performed well and better than VCA. Unfortunately, VCA inherits the

nature of PPI that is the use of random initial endmembers as well as another nature from ATGP

that is a small number of endmembers determined by VD, p; both actually contradicts each

other. This implies that if random endmembers are used, its number should be sufficiently large

to overcome randomness. Such a dilemma can be resolved in two ways. One is that more verti-

ces must be needed to deal with the use of random initial endmembers as required by PPI at the

expense of more falsely alarmed endmembers. The other is to use an initialization algorithm to

produce an appropriate set of initial endmembers to remove randomness as ATGP does. In this

case, a reliable and accurate estimate of the number of endmembers, p, must be provided a

priori. Generally, VD provides a good estimate of p as shown by experiments conducted for the

synthetic images and real image data with reflectance values. However, for real image experi-

ments with radiance values, this number seemed insufficient. So, if the value of p is chosen to be

2p¼ 30, that is, twice the value estimated by VD, VCA as well as ATGP-VCA indeed per-

formed well and successfully extracted all endmembers as shown in Table 11.7. A transform

such as PCA or ICA is appropriately selected for DR.

2. Secondly, as also demonstrated in above-mentioned experiments, ATGP generally performs bet-

ter than VCA. However, an unexpected and interesting finding is that ATGP-VCA could not

improve the performance of VCA. The reason for this is the following. VCA finds endmembers

Table 11.7 Endmembers extraction by ATGP, VCA, ATGP-PPI, and ATGP-VCA (radiance data)

EEAs Endmembers corresponding to five minerals

p¼ 30

ATGP a, b, c, k, m

VCA PCA (q¼ 30) MNF (q¼ 30) ICA (q¼ 30) SVD (q¼ 30)

a, b, c, k, m a, b, c, k a, b, c, k, m a, b, k, m

ATGP-PPI PCA (q¼ 30) MNF (q¼ 30) ICA (q¼ 30) SVD (q¼ 30)

a, b, c, k, m a, b, c, k, m a, b, c, k, m a, b, c, k, m

ATGP-VCA PCA (q¼ 30) MNF (q¼ 30) ICA (q¼ 30) SVD (q¼ 30)

a, b, c, k, m a, c, k, m a, b, c, k, m a, c, k, m
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via growing convex hulls by a sequence of maximal orthogonal projections. Its found convex

hulls do not necessarily produce maximal volumes as N-FINDR which produces simplexes

with maximal volumes. Therefore, VCA-found vertices may not be the same as those found by

N-FINDR. As a result, technically speaking, VCA-found maximal volume is based on a

sequence of successively generated convex hulls and is actually not the true maximal volume

for a given number of endmembers, p. That is the reason why ATGP-generated pixels used

initial endmember pixels that are supposed to be endmember pixels but are unfortunately

replaced by subsequent VCA-generated pixels that are not endmember pixels during the process

because VCA looks for endmembers to produce maximal orthogonal projections not maximal

convex hull volumes.

3. Thirdly, ATGP, which is originally developed for target detection and classification and never

considered as an EEA, can be made a very effective EEA. On many occasions, it even outper-

forms VCA.

4. Fourthly, according to the results provided by Tables 11.5 and 11.6, ICA is the best DR trans-

form among all four DR transforms used for endmember extraction regardless of which end-

member extraction algorithm is used. However, it should be mentioned that ATGP alone does

not require DR.

In summary, this section investigates three seemingly different algorithms PPI, VCA, and

ATGP, in endmember extraction and explores their relationships. The insights into such relation-

ships are very enlightening. In particular, it has shown that VCA is nothing more than an orthogo-

nal projection-based endmember extraction algorithm that can be considered as a variant of PPI

and ATGP in either way. However, the connection of PPI to VCA is not clear until ATGP fits in

between and bridges their gap. In doing so, this section re-interprets PPI, ATGP, and VCA from

the principle of orthogonality. Most importantly, an in-depth study is also conducted to reveal close

relationships among these three algorithms via orthogonal projection. Since both PPI and VCA use

randomly generated vectors as their initial endmembers, two issues become evidential:

(1) inconsistency in final results resulting from random initial conditions and (2) accurate number

of endmembers, p. In order to address the first issue, two variants of PPI and VCA are also intro-

duced in this chapter, called ATGP-PPI and ATGP-VCA that implements the ATGP as their initial-

ization algorithm to produce a set of target pixels to be used as their initial endmembers. It is also

interesting to note that the ATGP alone can also be considered as an initialization algorithm for any

arbitrary EEA to produce a better set of initial endmembers. Finally, these five algorithms are fur-

ther evaluated and compared via synthetic and real image experiments for performance analysis.

The results showed that using such ATGP-generated target sample vectors as initial endmembers

for any EEA resulted in only a small change in final selected set of endmembers. A surprising

finding is that ATGP that is primarily developed for automatic target detection and classification

indeed performed very well in endmember extraction and even outperformed VCA in most cases.

A second surprising finding is that according to conducted experiments VCA did not perform as

well as it was originally designed for. Similar observations are also demonstrated in Chang et al.

(2006) and Wu et al. (2009).

Finally, if we further construct two p-vertex simplexes with their p vertices specified by

the p endmembers obtained by ATGP and VCA, respectively, we can calculate their corre-

sponding simplex volumes via (7.3) in comparison with the volume calculated from a sim-

plex formed by the p endmembers generated by N-FINDR. If the volume of ATGP-generated

simplex is close to that of N-FINDR-generated simplex, it implies that the p ATGP-generated

endmembers can be considered as desired endmembers, even though these endmembers may

not be the same as the endmembers generated by N-FINDR. Similarly, it can be also applied

to VCA-generated simplex.
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11.3 Comparative Study and Analysis Between SGA and VCA

Two major design criteria, OP and simplex volume, have been widely used to design EEAs. In

Section 11.2, relationships among three popular algorithms, PPI, VCA, and ATGP, were explored

from a perspective of OP. As also demonstrated in Section 11.2, simplexes formed by VCA-found

endmembers did not necessarily yield maximal simplex volumes. This is because maximal OP

does not imply maximal simplex volume. This fact is further confirmed and supported in the fol-

lowing experiments. In this section, we follow a similar treatment from a perspective of simplex

volume. Despite that there are several simplex volume-based EEAs, N-FINDR remains the most

popular EEA that has been used as a base to derive new EEAs. However, as discussed in Chapter

7, N-FINDR has several difficulties with practical implementation. As a matter of fact, many sim-

plex volume-based algorithms claimed to be implemented as N-FINDR are not its original version

but actually sequential versions of N-FINDR. Recently, a rather different sequential algorithm,

called simplex growing algorithm (SGA) proposed by Chang et al. (2006), finds endmembers one

after another by growing simplexes with the maximal volumes one vertex at a time. It can be con-

sidered as a sequential N-FINDR in the same way as VCA is considered as PPI by growing convex

hulls with the maximal orthogonal projections one vertex at a time. This similarity allows us to

make a fair and very interesting comparison between these two criteria via their respective growing

convex hull algorithm, VCA and growing simplex algorithm SGA. Those who are interested in

comparisons between SGA and N-FINDR should refer to Chapters 7 and 8 as well as Chang et al.

(2006) and Wu et al. (2009).

Once again, three airborne visible/infrared imaging spectrometer (AVIRIS) Cuprite data sets are

used to conduct comparative study and analysis between VCA and SGA. One set is the reflectance

laboratory data consisting of five mineral spectra with 224 bands, alunite (A), buddingtonite (B),

calcite (C), kaolinite (K), and muscovite (M), shown in Figure 1.9 and replotted in Figure 11.2,
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Figure 11.2 Spectra of five pure pixels corresponding to minerals: alunite (A), buddingtonite (B), calcite

(C), kaolinite (K), and muscovite (M) provided by the USGS plus a background signature obtained by equally

mixing all the five mineral spectra.
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along with a background signature obtained by equally mixing all the five mineral spectra. Two

other data sets obtained directly from the real AVIRIS Cuprite image data shown in Figure 1.12(a)

and (b) with their corresponding reflectance values and radiance values shown in Figure 1.12(c)

and (d) will be also used for experiments. Figure 11.3 is a reproduction of Figure 1.12(a)–(d) for

reference.

By means of these three data sets five different scenarios are designed to show interesting and

quite different results produced by SGA and VCA.

Scenario 1 (using the data in Figure 11.2)

First of all, we generate a synthetic image that has the size of 200� 200 pixel vectors with

25 panels of various sizes that are arranged in a 5� 5 matrix and located at the center of the scene

shown in Figure 11.4(a).

The five mineral spectral signatures, mif g5i¼1 in Figure 11.2 were used to simulate these 25

panels where each row of five panels was simulated by the same mineral signature and each col-

umn of five panels has the same size. Among 25 panels are five 4� 4-pure pixel panels for end-

member extraction, pi4�4 for i ¼ 1; . . . ; 5 in the first column, 5 2� 2-pure pixel panels for training

samples, pi2�2 for i ¼ 1; . . . ; 5 in the second column, five 2� 2-mixed pixel panels,
�
pi3;jk

�2;2

j¼1;k¼1

for i ¼ 1; . . . ; 5 in the third column for mixed pixel classification, five subpixel panels, pi4;1 for

Figure 11.3 (a) Spectral band number 170 of the cuprite AVIRIS image scene; (b) spatial positions of

five pure pixels corresponding to minerals: alunite (A), buddingtonite (B), calcite (C), kaolinite (K), and

muscovite (M); (c) reflectances of five minerals marked in (b) in wavelengths; (d) radiances of five

minerals marked in (b).
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i ¼ 1; . . . ; 5 in the fourth column for subpixel classification, and five sub-pixel panels, pi5;1 for i ¼
1; . . . ; 5 in the fifth column for subpixel classification. The reason that the five panels in the second

column are included in the image scene is to use them as training samples for supervised classifica-

tion. The purpose of introducing five panels in the third column is to conduct a study and analysis

on five mineral signatures with different mixing in a pixel. Table 11.8 tabulates the mixing details

of mineral composition in 20 panels.

The inclusion of the panels in the fourth and fifth columns is to investigate subpixel effects on

endmember extraction, and their simulated abundance fractions are tabulated in Table 11.9 where

Table 11.9 Simulated 20 mixed panel pixels in the third column

Row Fourth column Fifth column

Row 1 p14;11 ¼ 0:5Aþ 0:5BKG p15;11 ¼ 0:25Aþ 0:75BKG

Row 2 p24;11 ¼ 0:5Bþ 0:5BKG p25;11 ¼ 0:25Bþ 0:75BKG

Row 3 p34;11 ¼ 0:5Cþ 0:5BKG p35;11 ¼ 0:25Cþ 0:75BKG

Row 4 p44;11 ¼ 0:5Kþ 0:5BKG p45;11 ¼ 0:25Kþ 0:75BKG

Row 5 p54;11 ¼ 0:5Mþ 0:5BKG p55;11 ¼ 0:25Mþ 0:75BKG

Figure 11.4 Scenario 1: (a) 25 simulated panels; (b) a synthetic image having the 25 panels simulated

in (a) implanted in the background with an additive Gaussian noise to achieve SNR 20 : 1.

Table 11.8 Simulated 20 mixed panel pixels in the third column

Row 1 p13;11 ¼ 0:5Aþ 0:5B p13;12 ¼ 0:5Aþ 0:5C

p13;21 ¼ 0:5Aþ 0:5K p13;22 ¼ 0:5Aþ 0:5M

Row 2 p23;11 ¼ 0:5Aþ 0:5B p23;12 ¼ 0:5Bþ 0:5C

p23;21 ¼ 0:5Bþ 0:5K p23;22 ¼ 0:5Bþ 0:5M

Row 3 p33;11 ¼ 0:5Aþ 0:5C p33;12 ¼ 0:5Bþ 0:5C

p33;21 ¼ 0:5Cþ 0:5K p33;22 ¼ 0:5Cþ 0:5M

Row 4 p43;11 ¼ 0:5Aþ 0:5K p43;12 ¼ 0:5Bþ 0:5K

p43;21 ¼ 0:5Cþ 0:5K p43;22 ¼ 0:5Kþ 0:5M

Row 5 p53;11 ¼ 0:5Aþ 0:5M p53;12 ¼ 0:5Bþ 0:5M

p53;21 ¼ 0:5Cþ 0:5M p53;22 ¼ 0:5Kþ 0:5M
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the background (BKG) is simulated by mixing 20% of each of five mineral signatures, A, B, C, K,

and M, that is, 20%Aþ20%Bþ20%Cþ20%Kþ20%M shown in Figure 11.2. So, there are 100

pure pixels, 20 mixed pixels, and 10 subpixels, all of which are simulated by five distinct pure

mineral signatures. These 25 panels in Figure 11.4(a) are then implanted in the image background

in a way that the background pixels are replaced with the implanted panel pixels shown in Fig-

ure 11.4(b) where the image background is specified by BKG.

Scenario 2 (using the data in Figure 11.3(c))

This scenario is exactly the same as Scenario 1 except that the reflectance laboratory data in

Figure 11.2 used to simulate the synthetic image in Figure 11.4 was replaced with the reflectance

spectra of the real image in Figure 11.3(c). The resulting images are shown in Figure 11.5.

Scenario 3 (using the data in Figure 11.2 and sample mean in Figure 11.3(b)).

This scenario is more interesting than Scenarios 1 and 2 in the sense that the background signa-

ture was not simulated by equally mixing the five mineral signatures. Instead, the background

signature was simulated by the sample mean of the entire real image in Figure 12.3(b), while all

the implanted 25 panels are exactly the same as those simulated in Scenario 2. The images result-

ing from Scenario 3 are shown in Figure 11.6.

Figure 11.6 also shows a comparison between the spectral signatures of the two background

signatures used in Scenarios 2 and 3.

Scenario 4 (using the data in Figure 11.3(d))

Figure 11.6 Reflectance spectra of two background signatures used in Scenarios 2 and 3.

Figure 11.5 Scenario 2: (a) 25 simulated panels; (b) a synthetic image having the 25 panels simulated

in (a) implanted in the background with an additive Gaussian noise to achieve SNR 20 : 1.
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This scenario is exactly the same as Scenario 2 except that the reflectance data in Figure 11.3(c)

used to simulate the synthetic image in Figure 11.5 was replaced with the radiance spectra of the

real image in Figure 11.3(d). The resulting images are shown in Figure 11.7.

Scenario 5 (using the sample mean in Figure 11.3(b) and data in Figure 11.3(d))

This scenario is also exactly the same as Scenario 3 with the reflectance data in Figure 11.3(c)

replaced with the radiance spectra in Figure 11.3(d). The images resulting from Scenario 5 are

shown in Figure 11.8.

Figure 11.9 shows a comparison between the spectral signatures of the two background signa-

tures used in Scenarios 4 and 5.

Table 11.10 tabulates different values of p estimated by VD with various false alarm probabilit-

ies, PF as well as by signal subspace estimation (SSE) developed by Bioucas-Dias and Nascimento

Figure 11.7 Scenario 4: (a) 25 simulated panels; (b) a synthetic image having the 25 panels simulated

in (a) implanted in the background with an additive Gaussian noise to achieve SNR 20 : 1.

Figure 11.8 Scenario 5: (a) 25 simulated panels; (b) a synthetic image having the 25 panels simulated

in (a) implanted in the background with an additive Gaussian noise to achieve SNR 20 : 1.
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(2005) for the five scenarios. Despite that an improved version of SSE, called hyperspectral signal

subspace identification by minimum error (HySime), was also developed by the same authors

(Bioucas-Dias and Nascimento, 2008) in Section 5.4.2, we include SSE instead of HySime in the

following experiments for the simple reason that both SSE and VCAwere developed by the same

authors nearly at the same time. However, for those who are interested in these two criteria more

detailed discussions can be found in Sections 5.4.2 and 5.4.3.

Figures 11.10 and 11.11 show endmember extraction results by VCA and SGA, respectively,

using four different dimensionality reduction techniques, PCA, MNF, SVD, and ICA for visual

assessment where the numbers labeling the pixels in the figures indicate the order that the pixels

are extracted by algorithms and the numbers in parentheses are values of the p estimated by either

SSE or VD.

As we can see from Figures 11.10 and 11.11, the best among five scenarios was Scenario 3 for

which both SGA and VCA produced their best results, while both criteria also worked at their best

in estimating the values of p. Coincidently, Scenario 3 is exactly the case discussed in Chang et al.

(2006) when it is designed for experiments. In addition, several interesting and intriguing findings

are noteworthy.

1. VD always produced better estimates than SSE did regardless of which scenario is used. Inter-

estingly, the five scenarios produced different values of p. This implies that the determination of

Table 11.10 Values of p estimated by VD and SSE

VD

(PF¼ 10�1)

VD

(PF¼ 10�2)

VD

(PF¼ 10�3)

VD

(PF¼ 10�4)

SSE

Scenario 1

Lab data (signature mean) 4 4 4 4 3

Scenario 2

Reflectance (signature mean) 3 3 3 3 2

Scenario 3

Reflectance (sample mean) 6 6 6 6 5

Scenario 4

Radiance (signature mean) 5 4 4 4 1

Scenario 5

Radiance (sample mean) 5 5 5 5 2

Figure 11.9 Radiance spectra of two background signatures used in Scenarios 4 and 5.
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p was heavily dependent on the data to be processed. Additionally, it also demonstrated that

estimation of the p by VD and SSE for scenarios using sample means as background was better

than those using signature means. This made sense since the sample mean is a mixture of all

signatures in the entire image that is generally more spectrally distinct from the five mineral

signatures than the signature mean that contains 20% of each of five mineral signatures. There-

fore, in this case, the sample mean represents a spectral class corresponding to the background,

and thus may be considered as an endmember even if it may not be a pure signature. This

explained why the background signature was extracted as an endmember in many cases in Sce-

narios 3 and 5. Therefore, the simulated synthetic scene should have six endmembers, five of

which represent five distinct mineral signatures and one endmember specifies the background.

Also, Scenario 3 is only the case that the value of the p estimated by SSE was correct. However,

it has been shown in Chang et al. (2006) and Wu et al. (2009) that in this particular scenario

there was no way to extract all the five minerals by either SGA or VCA using p¼ 5 because the

last extracted mineral signature is always the sixth signature to be extracted. In other words, a

background pixel was always among the first five pixels extracted by SGA and VCA. This indi-

cates that the background must be considered and included as one endmember. So, when VD

estimated the value of p to be 6, all the five distinct mineral signatures could be successfully

extracted by SGA and VCA.

2. When reflectance data are used (Scenarios 1–3), the values estimated by SSE were always one

less than the values estimated by VD. However, for radiance data used in Scenarios 4–5 SSE

seemed to not work at all, while VD still worked well. This implies that VD was a much more

reliable technique in estimating the value of p than SSE when data to be processed are real data.

3. For any estimated value of the p, SGA performed at least as well as VCA did. As a matter of

fact, on many occasions SGA actually outperformsed the VCA.

4. There are two reasons that VCA could not perform as well as SGA did. One was its use of a

random initial endmember every time it generated a new endmember. In order to improve its

performance, VCA must need more than p vertices to find a desired set of endmembers.
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Figure 11.10 Panel pixels extracted as endmembers by VCA.
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According to our extensive experiments, if VCA used twice the value of p as the number of

vertices it needed to generate, all the desired p endmembers would be among the 2p vertices.

However, in this case, not all the vertices extracted by VCA were true endmembers. This was

the same drawback also found in PPI that requires as many skewers as possible to cover all

potential directions on which endmembers may be projected. Another was its used criterion for

endmember extraction which is maximal orthogonal projection not maximal simplex volume

used by SGA. Therefore, it could be expected that its performance is not as good as SGA.

5. Based on our experiments, the best among all the four dimensionality reduction techniques,

PCA, MNF, ICA, and SVD, was ICA and SVD seemed to be the worst in most of cases. It

was also noted that VCA used in this chapter was provided by one of the authors in Nasci-

mento and Dias (2005) who actually used SVD in their VCA. The experiments suggested

that VCA using ICA could certainly improve their original version of VCA. There are rea-

sons for it. One is that, in many cases, endmembers can be considered as anomalies that

can be only captured by high-order statistics not second-order statistics such as variance,

(a) Values of p estimated by SSE
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Figure 11.11 Panel pixels extracted as endmembers by SGA.
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signal-to-noise ratio. Another is that the presence of endmembers has low probability that

cannot be described by second-order statistics. A third reason is that when endmembers

appear, their sample pools are generally small. As a result, the statistics constituted by end-

members can only contribute very little to second-order statistics.

6. The best performance among all the five scenarios was always the one that implemented SGA

in conjunction with ICA and the value of p was estimated by VD. This conclusion is also sup-

ported by the real image experiments conducted in Chang et al. (2006).

Despite that all the experiments are conducted above based on synthetic images, their studies

provide very useful guidelines and reference when it comes to real image experiments, such as

which method can estimate the value of p more reliably and accurately, which algorithm is more

appropriate for endmember extraction, and which dimensionality reduction technique is more

effective in preserving information of endmembers.

Scenario 1 (VD=4)     Scenario 2 (VD=3)    Scenario 3 (VD=6)     Scenario 4 (VD=4)    Scenario 5 (VD=5)
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Figure 11.11 (Continued)
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11.4 Does an Endmember Set Really Yield Maximum Simplex Volume?

One of commonly used criteria for finding an endmember set is to assume that for a given number

of endmembers, p, a p-vertex simplex with its vertices specified by p endmembers always yields

the maximal volume. Since there are also other criteria that have been widely used for endmember

extraction, an issue of interest is “does an endmember set really produce a simplex with maximal

volume?” In other words, using the criterion of maximal simplex volume is a better and more

effective measure than other criteria currently being used by EEAs such as OP fully constrained

least squares-based spectral unmixing, etc. This section explores this issue by investigating a num-

ber of popular EEAs that are designed by different criteria. An extensive experiment-based study is

also conducted for comparative analysis.

Endmember extraction has received considerable interest recently. Many EEAs have been also

developed for this purpose based on different philosophies, of which three major criteria are of

interest. One is convex geometry-based methods that include finding extreme points of convexity

via orthogonal projection such as PPI, VCA ATGP. Another is finding a simplex with the minimal

volume that embraces all data samples such as MVT, CCA, or a simplex with the maximal volume

that includes as many data samples as possible such as N-FINDR. A third one is least squares

error-based constrained spectral unmixing methods such as iterative error analysis (IEA) (Neville

et al., 1999) and fully constrained least squares method (FCLS) (Heniz and Chang, 2001). An

interesting issue of which criterion is more appropriate for finding true endmembers has been never

investigated. According to the endmember definition (Schowengerdt, 1997) an endmember is con-

sidered as a pure, idealized signature for a spectral class. So, if there are p endmembers are

assumed to be present in the data, all data samples linearly mixed by these p endmembers should

be embraced inside a p-vertex simplex with its vertices completely specified by these p endmem-

bers. Such a p endmember-vertex simplex will produce the maximal volume among all possible p-

vertex simplexes. In other words, a simplex with all vertices specified by endmembers has its vol-

ume greater than or equal to the volume of any simplex with the same number of vertices. So,

intuitively, using the maximal volume of a simplex seems to be the most effective measure to

determine whether a group of signatures is an endmember set. However, is it true? This section

intends to answer this question by investigating other popular criteria and conducting a compara-

tive study via an extensive set of experiments including computer simulations and real data.

Five endmember extraction algorithms (EEAs) are selected and used to conduct experiments to

investigate the issue of using maximum simplex volume to find an optimal endemember set. These

algorithms are categorized into three classes of EEAs, which are (1) maximal volume-based EEAs,

N-FINDR and SGA; (2) OP-based EEAs, PPI, VCA and ATGP; (3) spectral unmixing-based EEA,

unsupervised FCLS (UFCLS). Two notes on the selection of these EEAs are worthy being men-

tioned. In the first class of maximal simplex volume-based EEAs, N-FINDR and SGA are selected.

This is because the N-FINDR is designed to find the maximal simplex volume for a given number

of endmembers simultaneously, while the SGA is developed to find the maximal simplex volume

successively by growing simplexes one at a time starting with two endmembers until it reaches to

the given number of endmembers. Interestingly, according to our experiments, it turned out that for

a given number of endmembers the maximal simplex volumes produced by the SGA is generally

much smaller than that yielded by the N-FINDR, but both extract the same number of endmem-

bers. However, the computational cost saved by the SGA compared to the N-FINDR is not only

significant but rather tremendous. This intriguing finding is noteworthy. With very much the same

reason for selecting N-FINDR and SGA in the first class of EEAs, three EEAs, PPI, VCA and

ATGP are also selected in the second class of OP-based EEAs since they are shown to have very

close relationship in Section 11.2.1.
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First of all, VD and SSE were used to estimate number of dimensions, q, required for dimension-

ality reduction. Figures 11.11–11.16 show the endmembers extracted by PPI with 500 skewers, N-

FINDR, SGA, VCA, ATGP, and UFCLS. It should be noted that the PPI, N-FINDR, VCA, and

SGA required dimensionality reduction (DR) as a preprocessing. Three DR transforms, PCA,

MNF, and ICAwere used to reduce the original data dimensionality 169 to q with results shown in

Figures 11.11(a)–(c)–11.16(a)–(c). Since PPI may generate more than one panel pixel representing

the same panel signature, the results shown in Figure 11.11 for the PPI were obtained by those panel

pixels that yielded the maximal volumes among all PPI-found pixels for each panel signature.

Table 11.11 also tabulates EEA-extracted pixels corresponding to panel pixels found in Fig-

ures 11.11–11.16 where the best results were those obtained by using ICA to perform DR, in

which case all five panel signatures could be extracted. If other transforms were used for DR,

Scenario 1 (SSE=3)     Scenario 2 (SSE=2)   Scenario 3 (SSE=5)   Scenario 4 (SSE=1)    Scenario 5 (SSE=2)

PCA
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Figure 11.12 Endmember pixels extracted by PPI using three different DR transforms and 500 skewers.
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Scenario 1 (VD=4)     Scenario 2 (VD=3)    Scenario 3 (VD=6)     Scenario 4 (VD=4)    Scenario 5 (VD=5) 
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Figure 11.12 (Continued)

PCA MNF  ICA

Figure 11.13 Endmember pixels extracted by N-FINDR using three different DR transforms.
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the best obtained results were only three panel signatures that were extracted by N-FINDR

with PCA, SGA with PCA and ATGP.

Table 11.12 calculates the volumes of simplexes formed by extracted pixels for p¼ 9 by six

EEAs where the numbers shown in the fourth column are used to rank EEA in descending order of

the calculated volumes.

Since N-FINDR is designed to find a maximal volume simplex for a given number of vertices, it

is always being ranked “1” shown in Table 11.12 while its performance was also among the best in

most cases. On the other hand, UFCLS seemed the one that always produced a simplex with the

PCA MNF ICA

Figure 11.14 Endmember pixels extracted by SGA using three different DR transforms.
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Figure 11.15 Endmember pixels extracted by VCA using three different DR transforms.

PCA MNF ICA

1

2

3

4

5

6

7
8

9

1

2

3

45

6

7

8

9

Figure 11.16 Endmember pixels extracted by ATGP and UFCLS.
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least volume with worst performance. These observations imply that using the criterion of maximal

simplex volume was indeed a good and reasonable measure to find endmembers. However, it did

not imply that for an EEA to be effective, it must yield maximal volumes. According to

Table 11.12, for a given DR transform, there was always at least one EEA that yielded smaller

volumes could perform as well as N-FINDR. For example, SGAwas always ranked after N-FINDR

but performed as well as N-FINDR with much less computational complexity, as demonstrated in

Chang et al. (2006). On the other hand, despite the fact that ATGP was one of the two EEAs

produced the smallest volumes but it performed as well as or even better than N-FINDR did.

Table 11.11 Pixels extracted by six EEAs

Extracted R panel pixels

PPI PCA p312, p521
MNF p311, p521
ICA p11, p221, p312, p411, p521

N-FINDR PCA p11, p312, p521
MNF p311, p521
ICA p11, p221, p312, p411, p521

SGA PCA p11, p312, p521
MNF p311, p521
ICA p11, p221, p312, p411, p521

VCA PCA p312, p521
MNF p312, p521
ICA p11, p221, p311, p411, p521

ATGP p11, p312, p521
UFCLS p312, p521

Table 11.12 A comparative analysis on simplex volumes among six EEAs

DR EEA Volumes Rank

Number of extracted

R panel pixels

PCA PPI 3.3202� 1023 2 2

N-FINDR 4.3536� 1023 1 3

SGA 1.7306� 1023 3 3

VCA 1.0978� 1023 4 2

ATGP 11.7049� 1022 5 3

UFCLS 3.1084� 1022 6 2

MNF PPI 6.0338� 1017 2 2

N-FINDR 6.8626� 1017 1 2

SGA 4.1013� 1017 3 2

VCA 6.5567� 1016 4 2

ATGP 7.7128� 1015 6 3

UFCLS 6.2375� 1016 5 2

ICA PPI 2.9075� 106 3 5

N-FINDR 3.7913� 107 1 5

SGA 2.0113� 107 2 5

VCA 7.8153� 104 4 5

ATGP 39.5323 5 3

UFCLS 0.6267 6 2
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Two comments are noteworthy. Although ATGP and UFCLS did not require a DR transform to

perform endmember extraction, they did use the same DR transforms performed by other EEAs to

calculate the volumes of their found simplexes for a fair comparative analysis. Additionally,

according to Table 11.12, the simplexes formed by extracted endmembers using PCA or MNF

always produced larger simplex volumes compared to those obtained by ICA, which usually

yielded the least simplex volumes. However, the performance in endmember extraction using ICA

has been shown to be better than those using PCA or MNF in all cases. This fact demonstrates that

for a given EEA, the one used for DR was not always the one that produced simplexes maximal

volumes. However, as noted above, for a given DR transform, an EEA that produced simplexes

with maximal volumes was always one, but probably not only one that performed the best.

In summary, for a given DR transform, an EEA that produced a maximal simplex volume was

always a desired one, but not necessarily the only one. On the other hand, for a given EEA, a DR

transform that produced a maximal simplex volume was not always the one that performed the best

in endmember extraction. These conclusions imply that the DR transform used by an EEA plays a

key role in its performance, while using maximum simplex volume as a criterion to extract end-

members seems always a good measure for an EEA.

11.5 Impact of Dimensionality Reduction on EEAs

Finally, this section investigates the impact of DR on the performance of EEAs. Most endmember

extraction algorithms require dimensionality reduction to reduce computation complexity. For

example, in order to calculate simplex volumes N-FINDR, SGA, and VCA need DR to reduce

data dimensionality of a simplex or convex hull to avoid singularity problems in which case the

number of components, q, to be retained after DR is set to the number of extracted endmembers, p.

However, several questions may arise: does “p¼ q” always give the best performance? If more

components are used to extract the same number of endmembers, that is, q > p, will it improve the

performance of EEAs? The 15-panel HYDICE data in Figure 1.15(a) and (b) provide an excellent

example to explore insights into these issues. The EEAs to be tested for performance evaluation are

N-FINDR, SC N-FINDR, and SGA, all of which require simplex volume calculation that is closely

related to data dimensionality reduction. Furthermore, because the inconsistency of these algo-

rithms caused by the random initial endmembers might result in biased comparisons, ATGP is

used as an EIA to generate the same initial endmembers shown in Figure 11.17 to initialize N-

FINDR and SC N-FINDR, while IED-SGA is used to run SGA in the following experiments.

(a) ATGP (b) UFCLS

Figure 11.17 Nine endmembers generated by ATGP used to initialize the N-FINDR and SC N-FINDR in the

following experiments.
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Since VD estimated for this HYDICE data was p¼ 9 with PF � 10�3, q was set to q¼ p, 2p, 4p

and q¼ full number of bands, 169. Figures 11.18–11.21 show nine endmember extraction results

of using q components resulting from four different DR transforms, PCA, MNF, SVD, and ICA,

respectively, where extracted panel pixels that correspond to endmembers are listed in parenthesis
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Figure 11.18 Nine endmembers extracted by (a)–(d) N-FINDR; (e)–(h) SC N-FINDR; (i)–(l) SGA on

several numbers of components generated by the PCA-DR transform.

 (a) q = 9 (p11,p312,p521) (b) q = 18 (p11,p312,p521) (c) q = 36 (p11,p312,p521) (d) q = 169 (p11,p312,p521)

 (e) q = 9 (p521) (f) q = 18 (p11,p312,p521) (g) q = 36 (p11,p312,p521) (h) 169 PCs (p11,p312,p521)

 (i) q = 9 (p11,p312,p521)  (j) q = 18(p11,p312,p521) (k) q = 36 (p11,p312,p521) (l) q = 169 (p11,p312,p521)
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Figure 11.19 Nine endmembers extracted by (a)–(d) N-FINDR; (e)–(h) SC N-FINDR; (i)–(l) SGA

on different numbers of components generated by the MNF-DR transform.
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underneath each figure. As shown in Figure 11.18, using q¼ 18 components allows SC N-FINDR

to extract two more panel pixels, but it did not improve results after q > 18. On the other hand,

N-FINDR and SGA did not improve their performance q > 9.

Interestingly, the results in Figure 11.19 show that when MNF was used to perform DR all the

three EEAs could only extract two panel pixels when q¼ 9 but their performance was significantly

improved to extract four panel pixels when q � 18.

Figure 11.20 shows nine endmembers extracted by the three EEAs using SVD to reduce data

dimensionality from 169 to various values of q. The results were similar to those in Figure 11.18

with only difference in the case of q¼ 9.

Comparing results in Figures 11.18–11.20, it is very clear that when DR was required, MNF

outperformed PCA and SVD. However, when ICA was used to perform DR, Figure 11.21 clearly

shows that q¼ 9 was sufficiently enough for all the three EEAs to be able extract five panel pixels,

p11, p221, p312, p411, and p521, corresponding to five endmembers except only one case that SC N-

FINDR using nine ICs extracts p311 instead of p312.

Comparing results in Figure 11.21 to results in Figures 11.18–11.20, ICA-DR provided the best

results for the HYDICE data. So, it is expected that if EEAs performs on the sphered image cube,

which uses similar concept as ICA does to retain high-order statistics, the results should be better

than the original data without being sphered. Figure 11.22 shows the results by using the full bands

(a) q = 9 (p311,p521) (b) q=18 (p11,p312,p412,p521) (c) q=36 (p11,p312,p412,p521) (d) q=169 (p11,p312,p412,p521)

 (e) q=9 (p311,p521) (f) q=18 (p11,p312,p412,p521) (g) q=36(p11,p312,p412,p521) (h) q=169 (p11,p312,p412,p521) 

(i) q=9 (p311,p521) (j) q=18 (p11,p311,p412,p521) (k) q=36 (p11,p312,p412,p521) (l) q=169 (p11,p312,p412,p521) 
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Figure 11.20 Nine endmembers extracted by (a)–(d) N-FINDR; (e)–(h) SC N-FINDR; (i)–(l) SGA on differ-

ent numbers of components generated by the SVD-DR transform.
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of the original image cube and sphered image cube where the effect of using sphered data was the

same as that of using q independent components in Figure 11.21 in which five panel pixels can be

also extracted to be identified as five endmembers.

As a concluding remark on the above-mentioned experiments, an interesting finding from com-

paring results in Figures 11.18–11.22 is worth mentioning. It seems a common sense that EEAs

using original data should perform better than using reduced data since the information in the

reduced data is either being lost, such as band selection, or compressed, such as DR. Apparently,

this may not be true if we compare the results obtained by using full bands in Figures 11.18–11.20

to the results in Figure 11.21; all the three EEAs performed significantly better using q ICA-DR

components than using the original data with 169 bands. This is because DR basically performs

data compaction into a low dimensional space while still preserving certain crucial endmember

information. More interestingly, according to Figure 11.22 EEAs using sphered data performed

better than using the original data. These experiments provide evidence that endmember informa-

tion can be better characterized by high-order statistics because of its rarity and purity and cannot

be effectively captured and preserved by the second-order statistics-based DR transforms such as

PCA, MNF, and SVD in fewer DR components. Moreover, Figure 11.22 also suggests that second-

order data statistics may also obscure and overwhelm endmember information that can be only

(a) q = 9 (p311,p521) (b) q = 18 (p11,p312,p521)  (c) q = 36 (p11,p312,p521) (d) q = 169 (p11,p312,p521)

(e) q = 9 (p311,p521) (f) q = 18 (p11,p312,p521) (g) q = 36 (p11,p312,p521) (h) q =1 69 (p11,p312,p521) 

(i) q = 9 (p312,p521) (j) q = 18 (p11,p312,p521) (k) q = 36 (p11,p312,p521) (l) q = 169 (p11,p312,p521)
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Figure 11.21 Nine endmembers extracted by (a)–(d) N-FINDR; (e)–(h) SC N-FINDR; (i)–(l) SGA on differ-

ent numbers of components generated by the ICA-DR transform.
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revealed after data being sphered by removing the first two data statistics. This explains why

removing first- and second-order statistics in sphered data can enhance subtle information provided

by endmembers.

11.6 Conclusions

This chapter is a culmination of previous chapters in PART II and concludes endmember

extraction with exploration of insights into relationships among several recently developed

popular EEAs, PPI, N-FINDR, VCA, SGA, and ATGP. With appropriate interpretations VCA

and SGA can be considered sequential versions of PPI and N-FINDR, respectively, with

ATGP bridging the gap between PPI and VCA. On the other hand, the relationship between

VCA and SGA is derived from the same idea of growing convex hulls for VCA and growing

simplexes for SGA by adding a new endmember at a time as a new vertex in sequence, with

the only difference that VCA follows PPI to use maximal orthogonal projection as a criterion

as opposed to SGA, which follows N-FINDR to use maximal simplex volume as a criterion.

This difference leads to an interesting issue: What is the best criterion to design EEAs? As

investigated in this chapter it turns out that using the maximal simplex volume as a criterion

is a better measure to design EEAs due to the fact that simplex volume satisfies full

 (a) 9 ICs (5) (b) 18 ICs  (5)  (c) 36 ICs (5)                    (d) 169 ICs (5)

(e) 9 ICs (5)        (f) 18 ICs  (5)                    (g) 36 ICs (5)                    (h) 169 ICs (5)

 (i) 9 ICs (5) (j) 18 ICs  (5)  (k) 36 ICs (5)                    (l) 169 ICs (5)
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Figure 11.22 Nine endmembers extracted by N-FINDR in (a)–(d), SC N-FINDR (e)–(h), and SGA (i)–(l)

from the sphered image cube.
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abundance constraints, abundance sum-to-one constraint (ASC) and abundance nonnegativity

constraint (ANC), while convex hull volume only satisfies ANC. Details on this will be found

in Section 33.2 and Chang (2013). Since most EEAs require dimensionality reduction (DR)

to reduce data volumes, the impact of DR on endmember extraction is also investigated

in this chapter. The experimental results demonstrate that high-order statistics-based DR

transforms such as independent component analysis (ICA) or data sphering can significantly

improve performance over second-order statistics-based DR transforms such as PCA and

MNF.
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III

Supervised Linear
Hyperspectral
Mixture Analysis

Linear spectral mixture analysis (LSMA) is a theory developed for linear spectral unmixing (LSU).

It assumes that data sample vectors can be represented by linear mixtures of a finite number of

basic component constituent spectra, known as endmembers. More specifically, let fmjgpj¼1
be p

such basic component constituent spectra and r be the spectral signature of a data sample vector.

The LSMA models r as r ¼ Pp
j¼1 ajmj þ n with aj being the abundance fraction of mj resident in

the data sample vector r where the term n is included to account for a model error or a noise factor.

So, according to LSMA, there are two sets of parameters, fmjgpj¼1
and fajgpj¼1

needed to be solved

and LSU is developed as a technique to find fajgpj¼1
associated with fmjgpj¼1

. As a consequence, in

order to carry out LSU effectively, three-stage processes must be performed in sequence. The first-

stage process is to estimate the parameter p. As discussed in Chapter 5, this can be accomplished

by VD. This is followed by a second-stage process to find the p endmembers fmjgpj¼1
. Finally, a

third-stage process is to perform LSU after fmjgpj¼1
are known. Techniques developed for LSU

have been reported extensively in the literature, for example, Chang (2003a). So, in general, there

are two approaches to implementing LSMA to be discussed in PART III and PART IV. One is to

assume that fmjgpj¼1
is known a priori or provided by ground truth in which case, there is no need

of implementing the first two-stage processes. Such LSMA is referred to as supervised LSMA

(SLSMA). The main focus of PART III is devoted to this topic. The other is to assume that there is

no prior knowledge about the data in which case all the three stage processes discussed above are

required. Such LSMA is referred to as unsupervised LSMA (ULSMA). Since ULSMA is more

involved and presents great challenges in algorithm design, it will be discussed in great detail in

PART IV, specifically, Chapter 17.

The SLSMA in PART III assumes that the prior knowledge of fmjgpj¼1
is given. So, LSU imple-

mented by SLSMA is nothing more than unmixing the spectral signature r of a data sample

vector into a set of abundance fractions, fajðrÞgpj¼1
represented by a fractional abundance vector
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aðrÞ ¼ a1ðrÞ;a2ðrÞ; . . . ;apðrÞ
� �T

where each component of a(r), aj(r) represents an appropriate

abundance fraction associated with the jth endmember mj. In other words, by means of LSU the r
can be represented by a p-dimensional unmixed abundance fractional vector a(r). Consequently,
the entire data set is further represented by a set of p fractional abundance maps, each of which is a

abundance fraction map of one particular endmember. Unlike a hard decisions-made classifier

which performs class membership labeling to produce classification maps the LSU-produced

abundance fraction maps are real-valued and can be considered as soft decisions yielded by an

abundance estimator.

In Chang (2003a) four techniques are developed for LSMA to perform LSU: the signal-to-noise

ratio (SNR)-derived orthogonal subspace projection (OSP) (Harsanyi and Chang, 1994) and three

least squares (LS)-based techniques, least squares orthogonal subspace projection (LSOSP) (Tu et

al., 1997), non-negativity constrained least squares (NCLS) (Chang and Heinz, 2000), and fully

constrained least squares (FCLS) (Heinz and Chang, 2001). Since it has been shown in Chang

(1998, 2003a) that OSP can be also derived by the least squares error (LSE) criterion, it can be

also considered as an unconstrained least squares-based LSU technique. Consequently, SLSMA

using OSP, LSOSP, NCLS, and FCLS is referred to as LS-SLSMA, which will further be investi-

gated in several different aspects in four chapters, Chapters 12–15.

Despite the fact that OSP has been discussed in great detail in Chapter 3 in Chang (2003a),

many different insights into OSP are yet to be explored. Chapter 12 revisits and re-derives OSP

from three signal processing perspectives in context of a priori and a posteriori information. It

shows that when complete prior knowledge is provided, LS-SLSMA and Gaussian maximum like-

lihood classification are indeed equivalent to OSP in the sense of their functionality. Moreover,

another widely used technique, constrained energy minimization (CEM) developed by Harsanyi in

his dissertation (1993) and a commonly used anomaly detection algorithm, RX detector (RXD)

developed by Reed and Yu (1990), can be also interpreted as variants of OSP using partial and no

prior knowledge, respectively. Interestingly, an alterative interpretation of OSP from an informa-

tion process point of view can be also found in Chang (2007c, i.e., Chapter 3 in Chang (2007a)

and Section 33.3.1.

While OSP is derived using SNR as a criterion for optimality, Settle (1996) and Chang (1998)

also showed that OSP and the Gaussian maximum likelihood classifier (GMLC) were essentially

the same and both operated the same function forms subject to a constant that actually accounts for

unmixed error. In other words, OSP can be further re-derived by LSE as Least Squares OSP

(LSOSP) that was shown to be identical to GMLC by Tu et al. (1997) along with its various forms

also derived in Chang et al. (1998) and Chang (2003a). With this interpretation LSE was further

used to derive least squares abundance constrained LSU methods such as partially abundance-

constrained method, called non-negativity constrained least squares (NCLS) derived by Chang and

Heinz (2000), and fully abundance-constrained method, called fully constrained least squares

(FCLS) developed by Heinz and Chang (2001).

Although SNR and LSE are shown to derive the same operator in the sense of LSU with SNR for

detection and LSE for estimation, they are apparently not designed for classification. So, from a view

point of pattern classification, the four LS-SLSMA techniques, OSP, LSOSP, NCLS, and FCLS, may

not be best in terms of classification. It is known that one of best pattern classification techniques is

Fisher’s linear discriminant analysis (FLDA) designed on Fisher’s ratio. Chapter 13 extends FLDA to

an LSU technique, called Fisher’s LSMA (FLSMA). One earlier attempt was made by Du and Chang

(2000) where an extended version of Fisher’s linear discriminant analysis (FLDA), called linearly

constrained discriminant analysis (LCDA), was used to perform mixed pixel classification. However,

the criterion used in LCDA is still a distance-based measure, not Fisher’s ratio. So, technically
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speaking, LCDA is not a Fisher ratio-based mixed pixel classification technique. Nevertheless, it can

be further shown in Chapter 13 that it is indeed an alternative form of FLSMA.

In a comparison between LS-LSMA and FLSMA there is a key difference in terms of how LSE

is weighted in abundance fraction estimation. In order to take care of classification error FLSMA

introduced a within-class scatter matrix obtained from Fisher’s ratio to account for errors resulting

from unmixing, whereas LS-LSMAweighs LSE on all abundance fractions equally likely without

taking into account difficulty levels of unmixing different endmembers. Chapter 14 generalizes

LS-LSMA and FLSMA to weighted abundance-constrained LSMA (WAC-LSMA) by including

a weighting matrix A into LSE that includes LS-LSMA and FLSMA as its special cases. For

example, when A¼ the identity matrix, WAC-LSMMA is simplified to LS-LSMA. On the other

hand, when A¼within-class scatter matrix, WAC-LSMA is reduced to FLSMA.

Since the linear mixing model used by LSMA may not be effective in solving linear nonsepar-

able problems, a feasible solution is to introduce a nonlinear kernel into LSU in a similar manner

that a kernel-based support vector machine (SVM) is derived in Section 2.3.1.2.1 in Chapter 2. To

accomplish this goal Chapter 15 extends four LS-SLSMA techniques, OSP, LSOSP, NCLS, and

FCLS, to their kernel counterparts, KOSP, KLSOSP, KNCKLS, and KFCLS. Figure III.1 depicts

the relationships among all the four versions of SLSMA.

K-LSMA, Chapter 15  

WAC-LSMA, Chapter 14  

FLSMA, Chapter 13  

LS-LSMA, Chapter 12  SLSMA  

Figure III.1 Relationships among LS-LSMA, FLSMA, WAC-LSMA, and K-LSMA
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12

Orthogonal Subspace Projection
Revisited

The orthogonal subspace projection (OSP) approach has received considerable interests in hyper-

spectral image classification since it was first developed in 1994 (Harsanyi and Chang, 1994). It

has been shown to be a versatile technique for a wide range of applications in subpixel detection

(Chang, 2003a), mixed classification (Chang, 2003a), dimensionality reduction in Chapter 6, vir-

tual dimensionality (VD) estimation in Chapter 5, and variable-number variable-band selection

(VNVBS) in Chapter 27. Unfortunately, insights into its design rationale have not been explored in

the past. In this chapter, we revisit this technique and study OSP from several signal processing

perspectives. In particular, we further conduct an in-depth investigation in an issue of how to effec-

tively operate OSP using different levels of a priori target knowledge for target detection and

classification. Additionally, we also look into various assumptions made on OSP, which result in

filters with different forms, some of which turn out to be well-known and popular target detectors

and classifiers. Interestingly, we also show how OSP is related to the commonly used least-squares-

based linear spectral mixture analysis (LSMA) and how OSP takes advantage of Gaussian noise to

arrive at the Gaussian maximum likelihood detector/estimator and likelihood ratio test. Extensive

experiments are also conducted to simulate scenarios to illustrate the utility of OSP operating

under various assumptions and different degrees of target knowledge.

12.1 Introduction

Hyperspectral imagery provides additional benefits over multispectral imagery in many applica-

tions, such as detection, discrimination, classification, quantification, identification, etc. In early

days, hyperspectral imagery has been processed and analyzed by multispectral image processing

algorithms via preprocessing such as feature extraction, dimensionality reduction, and band selec-

tion. Such multispectral-to-hyperspectral approaches have achieved some success and may have

led to a brief that hyperspectral imaging is nothing more than a straightforward extension of multi-

spectral image processing. As we will see, this is apparently not the case. When the spectral resolu-

tion is low as multispectral images are, the used image processing techniques are generally

developed to explore spatial information such as geographical information system (GIS)

(Jensen, 1996) for spatial domain analysis. Therefore, as spectral resolution is increased signifi-

cantly like hyperspectral imagery, such spatial domain-based multispectral imaging techniques
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may be found to be less effective in certain applications. In particular, if targets of interest only

account for a small population with very limited spatial extent, the techniques based on spatial

information can easily break down. In some cases where the target size may be even smaller than

the pixel resolution, for example, rare minerals in geology, special species in agriculture and ecol-

ogy, small vehicles in battlefields, etc., the data analysis must rely on spectral information provided

by a single pixel. Under certain circumstances, the analysis can be only performed at the subpixel

level. In order to address this problem, spectral unmixing has been developed to exploit pixel-level

spectral information for image analysis. Its success in both multispectral and hyperspectral image

analyses has been demonstrated in many applications (Chang, 2003a).

In order to further facilitate spectral unmixing applications in hyperspectral imagery, Harsanyi

and Chang developed a hyperspectral image classification technique, referred to as OSP from a

viewpoint of hyperspectral imagery (Harsanyi and Chang, 1994). Their idea is based on two

aspects: (1) how to best utilize the target knowledge provided a priori and (2) how to effectively

make use of hundreds of available contiguous spectral bands. With regard to aspect (1), the prior

target knowledge is characterized in accordance with target signatures of interest, referred to as the

desired target signature, d, and undesired target signature matrix U formed by those target signa-

tures that are not wanted in image analysis. We believe that OSP is the first approach proposed to

separate d from the U in a signal detection model, and then eliminate the undesired target signa-

tures in U prior to detection of d so as to improve signal detectability. As for aspect (2), the issue of

how to effectively use available spectral bands can be best explained by the well-known pigeon-

hole principle in discrete mathematics (Epp, 1995) as discussed in Section 1.3.2. The following

example may help readers understand the concept behind OSP.

Suppose that there are 13 pigeons flying into a dozen of pigeon holes (nests). The pigeon-hole

principle says that there must exist at least one pigeon hole that should accommodate at least two

or more pigeons. Now, if we interpret target signatures of interest and the number of spectral bands

as the pigeons and the number of pigeon holes, respectively, then we can use one spectral band to

accommodate a distinct target signature for separation. In order to make sure that no more than one

target signature is accommodated in a single spectral band, a spectral band that has been used to

accommodate a target signature must be disposed. In doing so, the principle of orthogonality is

introduced as a mechanism to separate one spectral band from another so that target signatures

accommodated in two separate spectral bands are orthogonal to each other. In this case, one band

will not share target information with another band. However, for this approach to be effective, the

number of spectral bands must be no less than the number of target signatures of interest. For

hyperspectral imagery this requirement seems to be met automatically and the pigeon-hole princi-

ple is always valid. Unfortunately, using spectral dimensionality as a means to perform target

detection, classification and identification is generally not applicable to multispectral imagery,

which usually has fewer spectral bands than the number of target signatures of interest. For

instance, a SPOT image data has three spectral bands that can be used for data analysis. If more

than three target signatures need to be analyzed, the idea of using spectral bands for target detec-

tion and classification may not work effectively (Chang and Brumbley, 1999). To circumvent this

difficulty, Ren and Chang developed a generalized OSP that included a dimensionality expansion

technique to expand the number of spectral bands nonlinearly for OSP to have sufficient spectral

dimensions to carry out orthogonal projection (Ren and Chang, 2000). Its utility was further

extended to magnetic resonance (MR) image classification (Wang et al., 2001, 2002; Wang, 2002),

Wong (2010) and Chapter 32 in this book.

Many OSP-based algorithms have been developed for various applications (Chang, 2003a)

since OSP was introduced in 1994 (Harsanyi and Chang, 1994) and its potential in hyperspectral

data exploitation is yet to be explored. For example, the noise assumption is not necessarily
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Gaussian as commonly assumed. If the noise is assumed to be Gaussian, it has been shown (Settle,

1996; Chang, 1998; Chang et al., 1998) that Harsanyi and Chang’s OSP classifier performed essen-

tially like the Gaussian maximum likelihood estimator (Settle, 1996). Nevertheless, from a techni-

cal point of view, the design concepts of these two techniques are different. Harsanyi and Chang’s

OSP classifier is derived from the signal-to-noise ratio (SNR) using a signal detection approach

compared to the Gaussian maximum likelihood estimator that is a parametric estimation-based

approach. So, technically speaking, Harsanyi and Chang’s OSP classifier is a soft decision-made

detector to be used to perform classification, more specifically, unmixing. Interestingly, Harsanyi

and Chang’s OSP can be further shown to perform as a least-squares estimator by including a

scaling constant to account for LS estimation error, which is identical to the least squares solution

derived from least squares OSP (LSOSP) (Tu et al., 1997; Chang, 1998; Chang et al., 1998).

When OSP was first developed, it required the full knowledge of endmembers to form a linear

mixing model to be used to unmix data sample vectors. Such complete a priori information may be

difficult to obtain in reality, if not impossible. Two approaches have been developed to mitigate

this dilemma. One is to develop unsupervised algorithms to obtain the necessary endmember infor-

mation directly from the data to be processed (Chang, 2003a: Chapter 5). This type of information

is referred to as a posteriori information as opposed to a priori information provided in advance

prior to data processing. Since the accuracy of the a posteriori information is closely related to the

unsupervised method to be used to generate the information, it may not be always reliable. To

avoid this problem, a second approach is to suppress unknown information without actually know-

ing it. One way to do so is the constrained energy minimization (CEM) developed by Harsanyi in

his dissertation (Harsanyi, 1993), which only needs the knowledge of the desired signal source.

Other than this desired signal source, no knowledge is required. This approach is particularly use-

ful and attractive in the case that the image background is not unknown or very difficult to charac-

terize. CEM was later extended to the target-constrained interference-minimized filter (TCIMF)

(Ren and Chang, 2001), which characterized signal sources into three separate information

sources, desired, undesired, and interference. Using this three-source model, TCIMF could detect

multiple desired signal sources, annihilate undesired signal sources, while suppressing interference

caused by unknown signal sources at the same time. Comparing to OSP that only deals with

desired and undesired signal sources and CEM that only considers the desired signal source with-

out taking into account other signal sources, TCIMF combines both OSP and CEM into one filter

operation and includes them as its special cases, respectively. Interestingly, as will be shown, CEM

and TCIMF can be viewed as various versions of OSP operating different degrees of target knowl-

edge. In other words, OSP can be considered as a spectral correlation-whitened version of

TCIMF, while TCIMF can be thought of as OSP-version of CEM that eliminates rather than sup-

presses the undesired signatures. Specifically, when the sample spectral correlation matrix in

TCIMF is whitened (i.e., de-correlated), TCIMF performs as if it was OSP. On the other hand,

when CEM operates in the same way that OSP eliminates the undesired target signatures,

CEM becomes TCIMF. In either case, both CEM and TCIMF are derived from OSP and can be

regarded as variants of OSP based on the knowledge used in their filter design. Various relation-

ships among these approaches have been documented in Chang (2002a), Chang (2003b), and

Chang (2005).

With all things considered as above, we investigate two intriguing issues in this chapter, which

are “to what extent can OSP be applied?” and “how does OSP operate on prior target knowledge?”

The first issue will be addressed by deriving OSP from three signal processing perspectives, signal

detection, linear discriminant analysis, and parameter estimation that provide evidence that OSP is

indeed a versatile technique for a variety of applications. In doing so, we introduce two new signal

models, called (d,U)-model and OSP model. The former separates a desired signal source d from
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undesired signal sources in U based on knowledge provided a priori so that these two different

types of signal sources can be taken care of separately. The latter annihilates the undesired signal

sources in U from the (d,U)-model via an OSP operator to reduce the interference caused by the U

so that the detectability of d can be further enhanced and increased. The second issue will be

investigated by looking into how target information is used in OSP. Of particular interest is an issue

of “how does CEM perform compared to OSP, provided that the undesired signal sources are also

known a priori and can be annihilated before CEM is applied?.” More specifically, “how does

CEM perform compared to OSP if OSP-model is used?” While addressing this issue, many inter-

esting results can be obtained based on such OSP-model. Interestingly, under this circumstance,

the commonly used least squares-based linear spectral mixture analysis turns out to be OSP.

Additionally, we will also show how OSP can be implemented without prior knowledge where

OSP takes advantage of the sample spectral correlation to approximate the information that is sup-

posed to be provided by prior knowledge but is not available at the time of data processing.

As a result, OSP operates the same form of the RX algorithm developed by Reed and Yu (1991).

Furthermore, the low probability detector developed in (Harsanyi, 1993) can, therefore, also be

interpreted as a variant of OSP from this aspect by assuming the unity vector as a desired target

signature vector.

12.2 Three Perspectives to Derive OSP

Suppose that L is the number of spectral bands and r is an L-dimensional image pixel vector.

Assume that there are p targets, t1; t2; . . . ; tp andm1;m2; . . . ;mp denote their corresponding signa-

tures, which are generally referred to as digital numbers (DN). A linear mixture of r models the

spectral signature of r as a linear combination ofm1;m2; . . . ;mp with appropriate abundance frac-

tions specified by a1;a2; . . . ;ap. More precisely, r is an L� 1 column vector and M is an L� p

target spectral signature matrix, denoted by m1;m2; . . . ;mp

� �
, where mj is an L� 1 column vector

represented by the spectral signature of the jth target tj resident in the pixel vector r. Let a ¼
a1;a2; . . . ;ap

� �T
be a p� 1 abundance column vector associated with r, where aj denotes the

abundance fraction of the jth target signaturemj present in the pixel vector r.

A classical approach to solving a mixed pixel classification problem is linear unmixing, which

assumes that the spectral signature of the pixel vector r is linearly mixed by m1;m2; . . . ;mp, the

spectral signatures of the p targets, t1; t2; . . . ; tp as follows:

r ¼ Maþ n ð12:1Þ

where n is noise or can be interpreted as a measurement or model error.

Equation (12.1) represents a standard model for signal detection in noise as sþ n, where Ma is

considered as a desired signal vector s¼Ma needed to be detected and n is a corrupted noise.

Since we are interested in detecting one target at a time, we can divide the set of the p targets,

t1; t2; . . . ; tp into a desired target, say tp and a class of undesired targets, t1; t2; . . . ; tp�1. In this

case, a logical approach is to eliminate the effects caused by the undesired targets t1; t2; . . . ; tp�1

that are considered as interferers to tp before the detection of tp takes place. With annihilation of

the undesired target signatures, the detectability of tp can therefore be enhanced. In doing so, we

refine the signal detection in noise, sþ n¼Maþ n by first separating mp from m1;m2; . . . ;mp in

M and rewrite (12.1) as

r ¼ dap þ Ugþ n ð12:2Þ
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where d ¼ mp is the desired spectral signature of tp and U ¼ m1m2 � � �mp�1

� �
is the undesired

target spectral signature matrix made up of m1;m2; . . . ;mp�1 that are the spectral signatures of

the remaining p� 1 undesired targets. Here, without loss of generality we assume that the desired

target is a single target tp and refer (12.2) to the (d,U)-model.

12.2.1 Signal Detection Perspective Derived from (d,U)-Model and OSP-Model

Using the (d,U)-model specified by (12.2) we can design an orthogonal subspace projector to

annihilate U from the pixel vector r prior to detection of tp. One such a desired orthogonal

subspace projector is derived in Harsanyi and Chang (1994) and given by

P?
U ¼ I� UU# ð12:3Þ

where U# ¼ UTU
� ��1

UT is the pseudo-inverse of U. The notation P?
U indicates that the projector

P?
U maps the observed pixel vector r into the orthogonal complement of hUi, denoted by hUi?.
Applying P?

U to (d,U)-model results in a new signal detection in noise model

P?
Ur ¼ P?

Udap þ P?
Un ð12:4Þ

where the undesired signatures in U have been annihilated and the original noise n has been also

suppressed to ~n ¼ P?
Un. The model specified by (12.4) will be referred to as the OSP-model there-

after in this chapter.

At this point, it is noteworthy to comment on distinction among the three models specified by

(12.1), (12.2), and (12.4). The model in (12.1) is a general signal detection in noise model that only

separates a signal source Ma from noise n. The (d,U)-model is a signal model derived from the

general signal detection in noise model by breaking up the considered signal sources into two types

of signal sources d and U provided by prior knowledge. It is a two signal-source (d,U)-model that

allows us to deal with these two types of signal sources, d,U separately. The OSP-model is a single

desired-signal source (d) detection in noise model derived from the (d,U)-model with the U in the

(d,U)-model annihilated by P?
U. Therefore, OSP-model can be considered as a custom-designed

signal detection in noise model from (12.1) where the signal and noise sources in (12.1) have been

preprocessed by P?
U for signal enhancement as well as noise suppression.

If we operate a linear filter specified by a weighting vector w on the OSP-model, the filter output

is given by wTP?
Ur ¼ wTP?

Udap þ wTP?
Un. One commonly used optimal criterion is maximization

of the filter output SNR over the weighting vector w defined by

SNRðwÞ ¼ wTP?
Ud

� �T
a2
p dTP?

Uw
� �

wTP?
UE½nnT �P?

Uw
ð12:5Þ

If we further assume that n is an additive and zero-mean white noise with variance s2, (12.5) can

be further reduced to SNRðwÞ ¼ a2
p=s

2
� �

wT P?
Udð Þ½ �2

wTP?
Uw

where P?
U is an idempotent projector, that is,

P?
U

� �2 ¼ P?
U (Scharf, 1991). The maximum of SNR(w) in (12.5) over w can be obtained by

Schwarz’s inequality:

wT P?
Ud

� ��� �� � wk k P?
Ud

		 		 ð12:6Þ
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where jjxjj is defined by xk k � xTxð Þ1=2 and the equality holds if and only if w ¼ kP?
Ud for some

constant k. That is, a linear optimal filter specified by the weighting vector w� ¼ kP?
Ud produces

the maximum filter output SNR given by maxwSNRðwÞ ¼ SNRðw�Þ ¼ a2
p=s

2
� �

dTP?
Ud. Such a

filter can be realized by a matched filter,MP?
Ud

defined by

MP?
Ud
ðxÞ ¼ k P?

Ud
� �T

x ¼ kdTP?
Ux for some nonzero constant k ð12:7Þ

with the matched signal specified by P?
Ud. Applying the matched filter MP?

Ud
to the OSP-model

results in

MP?
Ud

P?
Ur

� � ¼ kdTP?
Udap þ kdTP?

Un ð12:8Þ

that yields the maximum SNR, a2
p=s

2
� �

dTP?
Ud.

Using (12.8) we can design a linear optimal signal detector for (d,U)-model, denoted by

dOSPD(r) by first implementing an undesired target signature rejecter P?
U followed by a matched

filterMP?
Ud

with the matched signal P?
Ud as follows:

dOSPDðrÞ ¼ MdP
?
Ur ¼ kdTP?

Ur ð12:9Þ

that is exactly the one derived in Harsanyi and Chang (1994) with k¼ 1.

If dOSPD(r) operates the (d,U)-model in (12.2), then the result is identical to (12.8). This sug-

gests that if the (d,U)-model is used, the optimal linear filter in (12.9) requires two filters, P?
U and

Md to achieve maximum SNR compared to a single matched filter MP?
Ud

when OSP-model is used

with P?
U used as a preprocessing of model (12.1).

12.2.2 Fisher’s Linear Discriminant Analysis Perspective from OSP-Model

The OSP-model described by (12.4) can be also interpreted as a two-class classification problem,

signal~s ¼ apP
?
Ud and noise ~n ¼ P?

Un, respectively. Letm~s and S~s be the mean vector and covariance

matrix of ~s ¼ apP
?
Ud, and m~n and S~n be the mean vector and covariance matrix of ~n ¼ P?

Un. Let

a linear discriminant function y(x) be denoted by a linear form specified by yðxÞ ¼ wTx. Fisher’s

ratio criterion as Rayleigh quotient defined in Duda and Hart (1973) is given by

JðwÞ ¼ wT m~s � m~nð Þ m~s � m~nð ÞT� �
w

wT S~s þ S~n½ �w ð12:10Þ

where m~s � m~nð Þ m~s � m~nð ÞT and S~s þ S~n are called between-class and within-class scatter matri-

ces, respectively. So, finding the Fisher linear discriminant function yðxÞ ¼ wFisher
� �T

x with the

weighting vector specified by wFisher is equivalent to maximizing (12.10) over the w, which is in turn

to solve the following generalized eigenvalue problem (Stark and Woods, 2002, Theorem 5.5.1, pp.

259–260):

S~s þ S~n½ ��1 m~s � m~nð Þ m~s � m~nð ÞTwFisher ¼ lwFisher ð12:11Þ

If we further assume that the signal ~s ¼ apP
?
Ud is deterministic and the noise is zero-mean,

m~s ¼ ~s ¼ apP
?
Ud, m~n ¼ 0, S~s ¼ 0, and S~n ¼ E ~n~nT

� � ¼ s2P?
U . Equation (12.10) becomes (12.5)

and (12.11) is also further reduced to
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s2P?
U

� ��1
P?
Uda

2
pd

TP?
U

h i
w ¼ ap=s

� �2
ddT
� �

P?
Uw ¼ lw ð12:12Þ

Since the rank of the matrix ddT in (12.12) is one, the only nonzero eigenvalue is the maximum

eigenvalue lmax that turns out to be the solution to (12.12). Now, we substitute ~w ¼ kd for w in

(12.12), (12.5), and (12.10) and obtain

lmax ¼ a2
p=s

2
� �

dTP?
Ud 6¼ 0 ð12:13Þ

SNRð~wÞ¼maxw SNRðwÞf g ¼ ap=s
� �2 kdð ÞTP?

Ud
� �T

kdð ÞTP?
Ud

� �

kdð ÞTP?
U kdð Þ

¼ ap=s
� �2

dTP?
Ud 6¼ 0

ð12:14Þ

and

Jð~wÞ¼
k dð ÞT apP

?
Ud

� �
apP

?
Ud

� �Th i
k dð Þ

k dð ÞTs2P?
U k dð Þ ¼ ap=s

� �2 k dð ÞT P?
Udd

TP?
U

� �
kdð Þ

kdð ÞTP?
U kdð Þ

¼ ap=s
� �2 k2 dTP?

Ud
� �

dTP?
Ud

� �

k2 dTP?
Ud

� � ¼ ap=s
� �2

dTP?
Ud 6¼ 0

ð12:15Þ

All of these three equations (i.e., (12.13–12.15)) produce the same result a2
p=s

2
� �

dTP?
Ud. This

implies that ~w ¼ kd is a desired eigenvector that yields the maximum eigenvalue lmax and can be

used to solve both (12.10) and (12.12), in which case ~w becomes wFisher, that is, ~w ¼ wFisher. As a

result, Fisher’s linear discriminant function for (12.10) or (12.12), denoted by dFisher(r), can be

derived as

dFisherðrÞ ¼ wFisher
� �T

r ¼ kdTP?
Urwithw

Fisher ¼ kd ð12:16Þ

The above approach to arriving at the Fisher’s discriminant function in (12.16) was the same one

actually used by Harsanyi and Chang (1994) to derive the OSP classifier, dOSP(r) given by

dOSPðrÞ ¼ wOSP
� �T

P?
Ur ¼ dTP?

Urwithw
OSP ¼ d ð12:17Þ

Interestingly, the solution w� ¼ kP?
Ud obtained from the signal detection perspective is different

from OSP solution wOSP ¼ d and the solution wFisher ¼ kd obtained from Fisher’s linear discrimi-

nant function in that the undesired target signature projector P?
U appearing in w� is absent in wOSP

and wFisher. However, if we substitute w� ¼ kP?
Ud for w in (12.12), (12.13)–(12.15), we still obtain

the same result, lmax ¼ a2
p=s

2
� �

dTP?
Ud. This implies that both wFisher ¼ kP?

Ud and w� ¼ kP?
Ud

produce the same maximum eigenvalue, lmax ¼ a2
p=s

2
� �

dTP?
Ud. Therefore, OSP-based signal

detector, dOSPD(r) specified by (12.9) is actually dFisher(r) and Harsanyi–Chang’s OSP, dOSP(r) speci-
fied by (12.16) and (12.17) subject to a constant k.

It should be also noted that if the between-class scatter matrix and within-class scatter matrix in

Fisher’s Rayleigh quotient or ratio given in (12.10) are replaced with the data covariance matrix S
and noise covariance matrix as follows:
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JðwÞ ¼ wT S½ �w
wT S~n½ �w ð12:18Þ

then using the same assumptions made for (12.12) (i.e., m~s ¼ ~s ¼ apP
?
Ud, m~n ¼ 0, S~s ¼ 0

and S~n ¼ E ~n~nT
� �

) maximizing (12.18) over w is identical to solving (12.12) for w. In this case,

Fisher’s Rayleigh quotient or ratio in (12.10) can be interpreted as SNR.

12.2.3 Parameter Estimation Perspective from OSP-Model

In signal detection the primary task is to detect the desired target tp in noise using (12.1). As shown

in the above derivations, using OSP-model specified by (12.4) can improve and increase signal

detectability of using (12.1). In pattern classification, the desired target signal tp is discriminated

from noise using a between-class scatter matrix/within-class scatter matrix criterion specified by

(12.10). Both of these approaches do not intend to estimate its desired signature abundance fraction

ap. In this subsection, we look into a least squares (LS) approach to estimating the abundance

fraction ap of the desired target signature d. Using OSP-model and least squares error (LSE) as a

criterion for optimality, we can show that the LS estimate of ap, d
LS
ap
ðrÞ minimizing

minap P?
Ur� P?

Udap

� �T
P?
Ur� P?

Udap

� �n o
ð12:19Þ

is also the LS solution to LSMA using (12.1) as a model to perform spectral unmixing.

Differentiating (12.19) with respect to ap and setting it to zero results in

P?
Ur� P?

Udap

� �
dLSap ðrÞ

¼ 0 ð12:20Þ

that yields the solution to (12.19), denoted by dLSap ðrÞ and given by

dTP?
Udd

LS
ap
ðrÞ ¼ dTP?

Ur ) dLSap ðrÞ ¼ dTP?
Ud

� ��1
dTP?

Ur ð12:21Þ

Comparing dLSap
ðrÞ to dOSP(r), there is a scaling constant dTP?

Ud
� ��1

appearing in dLSap ðrÞ, but absent
in dOSP(r). In other words, (12.17) and (12.21) are related by

dLSap ðrÞ ¼ dTP?
Ud

� ��1
dOSPðrÞ ð12:22Þ

where the scaling constant dTP?
Ud

� ��1
is the consequence of LSE resulting from the estimation

problem using the OSP-model in (12.19). This constant is included to account for estimation accu-

racy, not treated as a normalization constant as commonly assumed.

It should be noted that the approach presented above to re-derive dOSP(r) is different from that

developed in (Tu et al., 1997; Chang, 1998, 2003a; Chang et al., 1998), all of which use the oblique

subspace projection (Scharf, 1991).

12.2.4 Relationship Between dLSap ðrÞ and Least-Squares Linear Spectral
Mixture Analysis

In order to see how dLSap ðrÞ is related to the commonly used LS-LSMA, we minimize the LSE

resulting from (12.1) as follows:

mina r�Mað ÞT r�Mað Þ
 � ð12:23Þ
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The LS solution to (12.23), denoted by âLSðrÞ is given by Scharf (1991)

âLSðrÞ ¼ MTM
� ��1

MTr ð12:24Þ

The major difference between dLSap ðrÞ and âLSðrÞ is that the former is a scalar parameter estimate of

ap, whereas the latter is a vector parameter estimate of the abundance vector a. It has been shown

in Settle (1996) that âLSðrÞ can be decomposed as âLSðrÞ ¼ ĝLSðrÞ; âLS
p ðrÞ

� �
with

âLSðrÞ ¼ MTM
� ��1

MTr ¼
ĝLSðrÞ
âLS
p ðrÞ

 !

¼
UTU
� ��1 þ bU#ddT U#

� �T �bU#d

�bdT U#
� �T

b

2

4

3

5
UT

dT

 !

r

¼ U# þ bU#ddTUU# � bU#ddT

bdT � bdTUU#

 !

r ¼ U# � bU#ddTP?
U

bdTP?
U

 !

r

ð12:25Þ

where ĝLSðrÞ is the LS estimated abundance vector of a1;a2; . . . ;ap�1

� �T
and b ¼ dTP?

Ud
� ��1

.

Combining (12.22) and (12.25) results in

âLS
p ðrÞ ¼ dTP?

Ud
� ��1

dTP?
Ur ¼ dLSap

ðrÞ ð12:26Þ

where âLS
p ðrÞ is the pth component of âLSðrÞ in (12.25) and also the LS estimate of ap in (12.22).

The same argument can be carried out for all other abundance fractions, a1;a2; . . . ;ap�1. If we let

âLSðrÞ ¼ âLS
1 ðrÞ; âLS

2 ðrÞ; . . . ; âLS
p ðrÞ

� �T
and dLSa ðrÞ ¼ dLS1 ðrÞ; dLS2 ðrÞ; . . . ; dLSp ðrÞ

� �T
, then

âLSðrÞ ¼ dLSa ðrÞ ð12:27Þ

where dLSaj ðrÞ ¼ âLS
j ðrÞ for j ¼ 1; 2; . . . ; p.

Now, we further introduce the jth component projection function 1 j defined by

1j âLSðrÞ� � ¼ âLS
j ðrÞ; ð12:28Þ

then we can rewrite (12.27) as

1j âLSðrÞ� � ¼ 1j dLSa ðrÞ� �) âLS
j ðrÞ ¼ dLSaj ðrÞ for j ¼ 1; 2; . . . ; p ð12:29Þ

where (12.26) is its particular case.

In light of (12.29), (12.25)–(12.28), if dLSaj
ðrÞ operates on every individual signature with m

being the jth signature in M, it becomes the commonly used linear spectral unmixing solution,

âLS
j ðrÞ. Compared to âLSðrÞ that solves for all p abundance fractions as a vector, the advantage of

using dLSaj
ðrÞ over âLSðrÞ is conceptually easy to understand and mathematically simple to imple-

ment. In other words, if we are interested in detection or estimation of a target signature of particu-

lar interest, all we have to do is (1) to designate this target signature as d, (2) to annihilate all

signatures other than d in U by P?
U, and (3) to extract d using a matched filter with the matched
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signature specified by d. This is equivalent to using OSP-model to estimate the abundance fraction

of d after the undesired target signatures have been annihilated by P?
U rather than using âLSðrÞ to

directly estimate the entire abundance fractions a1;a2; . . . ;ap via (12.24). More specifically, if the

LS estimation is performed for (12.24) using OSP-model, then (12.24) is reduced to

âj

� �LS
P?
Ur

� � ¼ 1j âLSðrÞ� � ¼ âLS
j ðrÞ ¼ dLSaj

ðrÞ for j ¼ 1; 2; . . . ; p ð12:30Þ

where âj

� �LS
is the LS estimate of aj based on the (d,U)-model in (12.2) with d replaced by m j

and U set by U ¼ m1 � � �mj�1mjþ1 � � �mp

� �
. As a consequence, (12.30) is exactly identical to

(12.29). Both (12.29) and (12.30) suggest two different ways to estimate the abundance fraction aj

for j ¼ 1; 2; . . . ; p. In other words, (12.30) first projects the data to the space that is orthogonal to

the space linearly spanned by the undesired target signatures in U using P?
U , then LS estimates the

abundance fraction of the desired target signature, d. This is actually the approach taken by OSP in

(12.17). In contrast, (12.29) is the commonly used LS-LSMA that performs a vector parameter

estimation, then uses a projection function defined by (12.28) to yield the abundance fraction of

the desired target signature, d. The relationship between these two equations is delivered by

(12.28) and (12.30), which were overlooked in the past. This is very important because many sub-

space-based vector parameter estimation methods can be interpreted by OSP via (12.25), (12.25)–

(12.30). A diagram to illustrate relationships among OSP, the least squares OSP and the LS-LSMA

is depicted in Figure 12.1 where the abundance fraction aj is estimated.

As a concluding remark, it is worth noting that the idea of using OSP-model to re-derive OSP

provides new insights into OSP, particularly, the approaches to linear discriminant analysis and

parameter estimation, and the relationship between OSP and the LS-LSMAvia OSP-model.

12.3 Gaussian Noise in OSP

The noise assumed in (12.1) is nothing more than additive, zero-mean, and white. More precisely,

the noise assumed in (12.1) is uncorrelated with target signatures in M and is a zero-mean

de-correlated (i.e., the noise covariance matrix is an identity matrix) random process. These two

assumptions are not crucial and can be relaxed by data preprocessing. The assumption of additivity

can be achieved by an estimation technique such as LS methods (Tu et al., 1997; Chang et al.,

1998; Chang, 2003a) to remove correlation between target signal subspace and noise subspace.

( ) rMMM
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U
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( ) )(ˆ)(ˆ
LSLS

rrα1
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jT

T
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ˆ=

dd

rd

U

U

( ) 1
dd

U
P

T

Md

)(ˆ
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rα

α

α

r
Least squares OSP

Least squares linear spectral mixture analysis

OSP

Figure 12.1 Diagram of relationships among OSP, least-squares OSP and least-squares LSMA.
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The assumption of zero-mean white noise can be accomplished by a prewhitening process

described in Section 6.3.1, a widely used technique in communications and signal processing com-

munity (Poor, 1994). Since SNR is generally very high in hyperspectral imagery, the correlation of

the noise subspace with the target signature subspace is significantly reduced compared to that in

multispectral imagery. This may be one of the major reasons that OSP has been successful even

though it violates the additivity assumption and white noise, but the consequence does not cause

much performance deterioration. Nevertheless, by taking advantage of the Gaussian assumption

many research efforts have produced satisfactory results (Tu et al., 1997; Chang et al., 1998;

Chang, 2003a; Manolakis, 2001) as follows.

12.3.1 Signal Detector in Gaussian Noise Using OSP-Model

In this section, we investigate the role of Gaussian noise assumption in OSP. Specifically, when

OSP-model is cast as a two-hypothesis (signal and noise) problem, OSP becomes a maximum

likelihood detector. Moreover, if OSP is used as a signal estimator, it can further be shown to be

equivalent to the maximum likelihood estimator, which includes the two-class Gaussian discrimi-

nant function as a special case.

In what follows, we assume that the noise in (12.1) is zero-mean Gaussian with the covariance

matrix given by Sn. In this case, the probability distribution of r in (12.1) is a Gaussian distribution

p(rjMa)¼N(Ma,Sn) with mean vector and covariance matrix given by Ma and Sn, respectively.

Similarly, we can obtain the probability distribution for P?
Ur in OSP-model specified by (12.4),

which is pðP?
UrjP?

UdapÞ ¼ NðP?
Udap;S~nÞ with S~n ¼ P?

USn P?
U

� �T
. Using the OSP-model as a sig-

nal detection model, a standard signal detection problem can be formed by the following binary

hypothesis test:

H0 : ~n 	 p0ðzÞ ¼ N 0;S~nð Þ
versus

H1 : P
?
Udap þ ~n 	 p1ðzÞ ¼ N P?

Udap;S~n

� � ð12:31Þ

where z ¼ P?
Ur and ~n ¼ P?

Un. Following a standard derivation in Poor (1994) a likelihood ratio test

(LRT) L(z) resulting from (12.31) can be obtained by

LðzÞ ¼ log
p1ðzÞ
p0ðzÞ
� 

¼ apP
?
Ud

� �T
S
�1
n̂ z ¼ apd

TS
�1
n̂ r ð12:32Þ

However, any color Gaussian noise can further be simplified by the whitening process (Poor, 1994,

pp. 58–60) or in Section 6.3.1 and reduced to a white Gaussian noise (WGN) with Sn ¼ s2I. In

this case, the LRT L(z) in (12.32) becomes LðzÞ ¼ aps
�2dTz ¼ aps

�2dTP?
Ur that has the same

filter structure as dOSPD(r) specified by (12.9) and dOSP(r) specified by (12.17). Let the false alarm

probability be denoted by PF and define FðxÞ ¼ 1=
ffiffiffiffiffiffi
2p

p� � Ð x
�1 e�t2=2dt, then

PF ¼
ð

LðzÞ
t

p0ðzÞdz ¼
1
ffiffiffiffiffiffi
2p

p
ð1

t ap=sð Þ�1
e
� 1

2

�
t

s
ffiffiffiffiffiffiffiffiffiffi
dTP?

Ud
p

�2

dt ð12:33Þ

that produces the threshold

t ¼ s�1ap dTP?
Ud

� �1=2
F�1ð1� PFÞ ð12:34Þ
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The detection probability

PD¼
Ð
LðzÞ
t

p1ðzÞdz
¼ 1�F�1 F�1ð1� PFÞ � s�1ap dTP?

Ud
� �1=2� � ð12:35Þ

turns out to be identical to the one derived in Tu et al. (1997), Chang et al. (1998), and Chang

(2003a).

12.3.2 Gaussian Maximum Likelihood Classifier Using OSP-Model

Once again, OSP-model is used with z ¼ P?
Ur. Let C0 and C1 represent two classes corresponding

to noise and signal, respectively. Their discriminant functions can be specified by their correspond-

ing a posteriori probability distributions given by yiðzÞ ¼ PðCijzÞ for i ¼ 0; 1. In other words, z is
assigned to class C1, that is, z 2 C1 if PðC1jzÞ ¼ PðC0jzÞ, and z 2 C0, otherwise. In this case, we

can derive

PðC1jzÞ > PðC0jzÞ)PðzjC1ÞPðC1Þ > PðzjC0ÞPðC0Þ

)PðzjC1Þ
PðzjC0Þ >

PðC0Þ
PðC1Þ

)LðzÞ � log
p1ðzÞ
p0ðzÞ
� 

> log
PðC0Þ
PðC1Þ
� 

ð12:36Þ

where PðC1jzÞ ¼ PðC0jzÞ and p0ðzÞ ¼ PðzjC0Þ, and PðC0Þ and PðC1Þ are prior probabilities of C0

and C1, respectively. Equation (36) turns out to be the LRT L(z) in (12.31) with the threshold given
by logðPðC0Þ=PðC1ÞÞ. If we further assume that the prior probabilities PðC0Þ and PðC1Þ
are equally likely, the discriminant function described by (12.36) is reduced to the maximum like-

lihood detector given by

PðzjC1Þ > PðzjC0Þ , p1ðzÞ > p0ðzÞ , z 2 C1 ð12:37Þ

With the Gaussian noise assumption (12.37) can be calculated and expressed as follows:

� z� P?
Udap

� �T
S
�1
~n z� P?

Udap

� �

2s2
> � zTS

�1
~n z

2s2
, z 2 C1 ð12:38Þ

zTP?
Udap ¼ dTP?

Uzap > dTP?
Uda

2
p=2 , z 2 C1 ð12:39Þ

dTP?
Ud

� ��1
dTP?

Uz > ap=2 , z 2 C1 ð12:40Þ

Equation (12.40) makes sense since we assume that the noise is zero-mean and the prior probabilit-

ies of the noise class C0 and the signal class C1 are equally likely. If we substitute P?
Ur for z in

(12.40), then (12.40) becomes

dTP?
Ud

� ��1
dTP?

Ur > ap=2 , P?
Ur 2 C1 ð12:41Þ

where the left-hand side of (12.41) is exactly dLSap ðrÞ given by (12.22). In this case, Equation (12.41)
can be considered as Gaussian discriminant function for (d,U)-model.
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12.3.3 Gaussian Maximum Likelihood Estimator

Using the Gaussian noise assumed in OSP-model, the maximum likelihood estimate of the abun-

dance fraction ap, d
GML
ap

ðzÞ is then given by

dGML
ap

ðzÞ ¼ maxap
pðzjP?

UdapÞ

 � ð12:42Þ

where z ¼ P?
Ur, S~n ¼ P?

USn P?
U

� �T
, and pðzjP?

UdapÞ ¼ NðP?
Udap;S~nÞ as defined in (12.31). Solv-

ing (12.42) is equivalent to minimizing the following the Mahalanobis distance (Fukunaga, 1990):

dGML
ap

ðzÞ ¼ minap z� P?
Udap

� �T
S
�1
~n z� P?

Udap

� �n o
ð12:43Þ

that yields the solution

dGML
ap

ðzÞ ¼ dTS
�1
~n d

� ��1

dTS
�1
~n z ð12:44Þ

Substituting z ¼ P?
Ur and using P?

U

� �2 ¼ P?
U we obtain

dGML
ap

ðP?
UrÞ ¼ dTS

�1
~n d

� ��1

dTS
�1
~n r ¼ dTS

�1
~n d

� ��1

dTS
�1
~n r ð12:45Þ

Now, if the Gaussian noise is whitened, that is, S~n ¼ s2I, (12.45) becomes

dGML
ap

ðP?
UrÞ ¼ dTP?

Ud
� ��1

dTP?
Ur ¼ dGML

ap
ðrÞ ð12:46Þ

that is exactly the same one derived in Settle (1996), Chang et al. (1998), and Chang (2003a). The

abundance fraction of the desired target signature d is estimated by dGML
ap

ðrÞ that can be obtained

directly from the Gaussian maximum likelihood estimator dGMLðrÞ ¼ MTM
� ��1

MTr and is identi-

cal to (12.24). The preprocessing of using P?
U to annihilate the undesired target signatures is not

necessary for dGML(r) since it has been already taken care of in the LS estimator shown in (12.25).

Once again, (12.46) includes a constant dTP?
Ud

� ��1
that accounts for the LS estimation error and is

absent in dOSP(r) given by (12.17).

12.3.4 Examples

In what follows, we conduct experiments to examine the noise assumption used in OSP. Two

scenarios will be simulated: white Gaussian noise versus white uniform noise (WUN) and color

Gaussian noise versus white Gaussian noise.

EXAMPLE 12.1

(White Gaussian Noise vs. White Uniform Noise)

This example demonstrates that the Gaussian noise is an unnecessary assumption for OSP. The set of five

reflectance spectra shown in Figure 1.8 is used for illustration and contains five reflectance spectra: dry grass,

red soil, creosote leaves, blackbrush, and sagebrush. A signature matrixM is formed by the dry grass, red soil,

and creosote leaves signatures, M ¼ m1 m2 m3½ � with their associated abundance fractions denoted by
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a ¼ a1; a2; a3ð ÞT . The simulation consisted of 401 mixed pixel vectors. We started the first pixel vector with

100% red soil and 0% dry grass, then began to increase 0.25% dry grass and decrease 0.25% red soil every

pixel vector until the 401st pixel vector that contained 100% dry grass. We then added creosote leaves to pixel

vector numbers 198–202 at abundance fractions 10% while reducing the abundance of red soil and dry grass

by multiplying their abundance fractions by 90%. For example, after addition of creosote leaves, the resulting

pixel vector 200 contained 10% creosote leaves, 45% red soil, and 45% dry grass. Two types of noise were

simulated, white zero-mean Gaussian noise with variance s2and white zero-mean uniform noise with its prob-

ability density function defined on [�a, a] and variance s2 ¼ a3=6. They were added to each band to achieve

the signal-to-noise ratio (SNR) defined in Harsanyi and Chang (1994) as 50% reflectance divided by the stan-

dard deviation of the noise. Figures 12.2 and 12.3 show the results of OSP detector, dOSP(r) and OSP estimator

dLSap
ðrÞ in these two types of noise, Gaussian noise and uniform noise with SNR¼ 30:1, 20:1, and 10:1.

As we can see from these figures, there was no visible difference between Gaussian noise and uniform

noise. Table 12.1 also tabulates their corresponding results of dOSP(r) and dLSap ðrÞ in detecting creosote leaves

where there was little difference in terms of LSE in abundance fractions between WGN and WUN produced

by dOSP(r) and dLSap ðrÞ.
Nevertheless, the abundance fractions detected by dOSP(r) and estimated by dLSap ðrÞ were quite different

where dLSap ðrÞ produced much more accurate estimates of abundance fractions than does dOSP(r). This was

because the scale constant dTP?
Ud

� ��1
in dLSap ðrÞ was included to effectively account for estimation error.

EXAMPLE 12.2

(Gaussian–Markov Noise)

According to the model specified by (12.1) the noise is assumed to be zero-mean and white. More specifically,

the noise assumed in the (d,U)-model is additive and zero-mean. Its covariance matrix is also an identity

matrix that implies that the band-to-band noise within a hyperspectral image pixel vector is uncorrelated.
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Figure 12.2 Detection results of dOSP(r) in white Gaussian noise and white uniform noise with various

SNRs.
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Interestingly, to the author’s best knowledge, most of OSP-based techniques do not include a whitening pro-

cess, but still successfully achieve their goals. These also include Harsanyi and Chang’s OSP (Harsanyi and

Chang, 1994). The reason is that due to high spectral resolution the signal-to-noise ratio is generally very high

in hyperspectral imagery. In this case, the noise has little impact on OSP performance. Whether or not the

noise is white becomes immaterial. This evidence is shown in the following experiments where the whitening

process does improve the performance, but the gain is very small.

According to the OSP-model, the whitening was only performed on interband spectral correlation at the

pixel level. In this case, a first-order zero-mean Gaussian–Markov noise (GMN) with the between-band corre-

lation coefficient (CC) specified by r was added to each pixel vector simulated in Example 12.1 to achieve

various levels of SNRs. The covariance matrix of such Gaussian–Markov noise has the form given by

Sn ¼ rji�jj� �
, that is:
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Figure 12.3 Detection results of dLSap
ðrÞ in white Gaussian noise and white uniform noise with various SNRs.

Table 12.1 Detected abundance fractions of “creosote leaves” at 198–202 pixels by dOSP(r) and dLSap rð Þ
SNR 198 199 200 201 202 LSE

dOSP(r) (WGN) 10:1 0.2616 0.1850 0.2531 0.2518 0.2167 0.093,424

20:1 0.2436 0.2053 0.2393 0.2386 0.2211 0.084,988

30:1 0.2375 0.2120 0.2347 0.2343 0.2226 0.082,672

dLSap rð Þ (WGN) 10:1 0.1160 0.0820 0.1122 0.1116 0.0961 0.00,087,834

20:1 0.1080 0.0910 0.1061 0.1058 0.0980 0.00,021,959

30:1 0.1053 0.0940 0.1041 0.1039 0.0987 0.000,097,594

dOSP(r) (WUN) 10:1 0.1851 0.2088 0.1842 0.1828 0.2769 0.064,323

20:1 0.2053 0.2172 0.2049 0.2042 0.2512 0.069,532

30:1 0.2121 0.2200 0.2117 0.2113 0.2427 0.072,167

dLSap rð Þ (WUN) 10:1 0.0821 0.0926 0.0817 0.0811 0.1228 0.0015,905

20:1 0.0910 0.0963 0.0908 0.0905 0.1114 0.00,039,763

30:1 0.0940 0.0975 0.0939 0.0937 0.1076 0.00,017,672
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Sn ¼
1 r � � � rL�1

r 1 r rL�2

..

.
r } r

rL�1 � � � r 1

2

6664

3

7775
ð12:47Þ

Figures 12.4 and 12.5 show the results of dOSP(r) and dLSap
ðrÞ operating in first-order Gaussian–

Markov noise with different correlation coefficients specified by r in (12.47) and SNRs.
Table 12.2 also tabulates the detection results of creosote leaves by dOSP(r) and dLSap ðrÞ along with their

respective LSEs. In addition, compared to Figures 12.2 and 12.3 and Table 12.1, dOSP(r) and dLSap ðrÞ performed
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Figure 12.4 Detection results of dOSP(r) in GMN with different correlation coefficients and SNRs.
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slightly better in white nose than they did in color noise, but the improvements were very limited. The results

also demonstrated that the performance of dOSP(r) and dLSap ðrÞ was deteriorated as the CC was increased.

Furthermore, in order to see the effect of noise whitening, Figure 12.6 shows the results of dOSP(r) and

dLSap ðrÞ where the Gaussian–Markov noise with CC¼ 0.8 was not whitened and also whitened by using the

square-root matrix of S�1
~n , S

�1=2
~n analytically (Poor, 1994, p. 60).

As shown in Figure 12.6, the whitening had slight impact on the performance of dOSP(r) and dLSap
ðrÞ in the

sense that the abundance fractions of creosote leaves and background signatures were detected more accu-

rately. This was particularly visible for dOSP(r). These simple experiments also demonstrated that OSP per-

formance could be improved by a whitening process, but might not be significant. So, the pay-off may not be

great given that a reliable estimation of noise covariance may be difficult to obtain.
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Figure 12.5 Detection results of dLSap
ðrÞ in GMN with different correlation coefficients and SNRs.
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12.4 OSP Implemented with Partial Knowledge

In Sections 12.2 and 12.3, OSP assumes the complete knowledge of target signatures,

m1;m2; . . . ;mp. In many practical applications, obtaining such full knowledge is generally very

difficult if not impossible, specifically, when the image background is not known. In this section,

we investigate an issue of how to implement OSP when there is no full knowledge available, par-

ticularly, for the case that we are only interested in specific targets, but not image background or

other natural signatures.

In his dissertation (Harsanyi, 1993), Harsanyi relaxed the requirement of complete knowl-

edge for OSP by developing an approach called CEM to circumvent this dilemma. The idea

is to constrain the desired target signature, d with a specific gain while minimizing inter-

fering effects caused by unknown signal sources. Since the undesired target signatures in U

used by OSP are assumed to be unknown, the undesired target signatures in U are suppressed

by minimizing their energies instead of being annihilated by a specific operator such as P?
U

used in OSP. Despite the fact that the relationship between OSP and CEM was reported in

Chang 2003a, 2003b) and Du et al. (2003), this section takes an alternative approach to show

that with the same assumptions made for OSP, CEM actually performs exactly as does the

least squares OSP, dLSap ðrÞ.

Table 12.2 Detected abundance fractions of “creosote leaves” at 198–202 pixels by dOSP(r) and dLSap ðrÞ with
LSEs

SNR CC 198 199 200 201 202 LSE

dOSP(r) (GMN) 10:1 0.5 0.2419 0.1819 0.2617 0.1642 0.2054 0.068,228

0.6 0.2439 0.1790 0.2655 0.1550 0.2012 0.067,641

0.7 0.2462 0.1749 0.2697 0.1405 0.1924 0.065,953

0.8 0.2477 0.1683 0.2737 0.1141 0.1759 0.062,597

20:1 0.5 0.2337 0.2037 0.2436 0.1949 0.2155 0.071,598

0.6 0.2347 0.2023 0.2455 0.1903 0.2134 0.070,798

0.7 0.2359 0.2002 0.2476 0.1830 0.2090 0.069,052

0.8 0.2366 0.1968 0.2496 0.1698 0.2007 0.06,545

30:1 0.5 0.2310 0.2110 0.2376 0.2051 0.2188 0.07,357

0.6 0.2317 0.2100 0.2389 0.2020 0.2174 0.072,923

0.7 0.2324 0.2087 0.2402 0.1972 0.2145 0.071,559

0.8 0.2329 0.2064 0.2416 0.1884 0.2090 0.06,873

dLSap
rð Þ (GMN) 10:1 0.5 0.1072 0.0807 0.1160 0.0728 0.0911 0.0015,011

0.6 0.1082 0.0794 0.1177 0.0687 0.0892 0.0018,998

0.7 0.1092 0.0776 0.1196 0.0623 0.0853 0.0026,091

0.8 0.1098 0.0746 0.1214 0.0506 0.0780 0.0041,221

20:1 0.5 0.1036 0.0903 0.1080 0.0864 0.0955 0.0003,752

0.6 0.1041 0.0897 0.1089 0.0844 0.0946 0.0004,749

0.7 0.1046 0.0888 0.1098 0.0811 0.0926 0.0006,522

0.8 0.1049 0.0873 0.1107 0.0753 0.0890 0.0010,305

30:1 0.5 0.1024 0.0936 0.1053 0.0909 0.0970 0.0001667

0.6 0.1027 0.0931 0.1059 0.0896 0.0964 0.0002,110

0.7 0.1031 0.0925 0.1065 0.0874 0.0951 0.0002,899

0.8 0.1033 0.0915 0.1071 0.0835 0.0927 0.0004,580
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12.4.1 CEM

Despite that CEM has been discussed in Section 2.2.3 it is a good idea for our subsequent treatment

to recap its approach again as follows.

Let a remotely sensed image be a collection of image pixel vectors, denoted by r1; r2; . . . ; rN

 �

where ri ¼ ri1; r
i
2; . . . ; r

i
L

� �T
for 1 � i � N is an L-dimensional pixel vector, N is the total number

of pixels in the image, and L is the total number of spectral channels. The goal is to design a finite

impulse response (FIR) linear filter with L filter coefficients w1;w2; . . . ;wLf g, denoted by an

L-dimensional weighting vector w ¼ w1;w2; . . . ;wLð ÞT that minimizes the filter output energy

subject to the constraint dTw ¼ wTd ¼ 1.

More specifically, let yi denote the output of the designed FIR filter resulting from the input ri.

Then yi can be expressed by

yi ¼
XL

l¼1
wlr

i
l ¼ wð ÞTri ¼ ri

� �T
w ð12:48Þ
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Figure 12.6 Results of dOSP(r) and dLSap ðrÞ where the GMN with CC¼ 0.8 with/without being whitened.
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and the average energy of the filter output is given by

1

N

XN

i¼1
yi
� �2 ¼ 1

N

XN

i¼1
ri
� �T

w
� �T

ri
� �T

w

� �

¼ wT 1

N

XN

i¼1
ri ri
� �T

� �
w ¼ wTRw

ð12:49Þ

where R ¼ 1
N

PN
i¼1 r

i rið ÞT
h i

is the autocorrelation sample matrix of the image. CEM is developed

to solve the following linearly constrained optimization problem:

minw wTRw

 �

subject to dTw ¼ wTd ¼ 1 ð12:50Þ
The optimal solution to (12.50) can be derived in Harsanyi (1993) and Chang (2002) by

wCEM ¼ R�1d

dTR�1d
ð12:51Þ

With the optimal weighting vector wCEM specified by (12.51) a CEM filter, dCEM(r) was derived in
Harsanyi (1993) and given by

dCEMðrÞ ¼ wCEM
� �T

r ¼ R�1d
dTR�1d

� �T
r ¼ dTR�1r

dTR�1d
ð12:52Þ

Four special cases are of interest and described as follows.

12.4.1.1 d Is Orthogonal to U (i.e., P?
Ud ¼ d) and R ¼ I (i.e., Spectral Correlation is

Whitened)

In this case, the noise in the image data to be processed is whitened and assumed to be zero-mean

and de-correlated. So, the sample spectral correlation matrix R is reduced to the identity matrix I

and dTRd ¼ dTd. As a result, CEM becomes a normalized spectral matched filter, that is, R¼ I.

On the other hand, if the desired target signature d is further assumed to be orthogonal to U, that is,

P?
Ud ¼ d, then dOSPðrÞ ¼ dTP?

Ur ¼ P?
Ud

� �T
r ¼ dTr. This implies that CEM is identical to OSP

subject to a normalization constant k ¼ dTd
� ��1

. Thus, both OSP and CEM can be considered as

the same detector and reduced to a commonly used matched filter with the designated matched

signature specified by d.

12.4.1.2 An Alternative Approach to Implementing CEM

Comparing dCEM(r) in (12.52) to dOSPD(r) in (12.9), dOSP(r) in (12.17) and dLSap
ðrÞ in (12.22), we

will discover that there is a very close relationship between P?
U and R�1. Since the knowledge of

the undesired target signature matrix U assumed to be known in P?
U in dOSPD(r), dOSP(r), and dLSap

ðrÞ
is not available in dCEM(r), dCEM(r) must estimate P?

U directly from the image data. One way of

doing so is to approximate the “P?
U” in the sense of minimum LSE by the inverse of the sample

spectral information, R�1 that can be obtained directly from the image data. More specifically,

dCEM(r) makes use of the a posteriori information, R�1 to approximate the a priori information P?
U

to accomplish what dOSPD(r), dOSP(r) and dLSap
ðrÞ do. The only difference is the scaling constant k.

Since both dOSPD(r) and dOSP(r) are used only for abundance detection, k is set to 1. To the con-

trary, aLS
p ðrÞ is an abundance estimator and the scaling constant k ¼ dTP?

Ud
� ��1

is included to

account for estimation error (Settle, 1996; Chang et al., 1998; Chang, 2003a). In this case, if we

replace P?
U in (12.22) with R�1, dLSap

ðrÞ becomes dCEM(r). This suggests that dCEM(r) can be
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considered as dLSap ðrÞ with the partial knowledge specified by the desired target signature d and the

sample spectral information provided by R�1 used to replace the unknown signature matrix P?
U .

As noted above, the a posteriori information R�1 used in dCEM(r) is intended to approximate

the a priori information P?
U used in dOSP(r). However, the P?

U excludes the information provided

by the desired target signature d, which is included in R�1. This observation suggests that a more

accurate data sample correlation matrix used by dCEM(r) should be the one that removes all the

pixel vectors specified by d from R. We let ~R be such a matrix that excludes all target pixel vectors

specified by d and be defined by

~R ¼ R� 1

N

X
i
ai
pdd

T ð12:53Þ

where the superscript “i” runs through all target pixel vectors whose signatures are specified by d

and ai
p indicates their respective abundance fractions contained in pixel vector ri. Equation (12.53)

allows us to rewrite wTRw in (12.49) as

wTRw ¼ wT ~Rwþ 1

N
wT

X
i
ai
pdd

T
� �

w ð12:54Þ

Because of the constraint wTd ¼ 1, wTdð ÞT wTdð Þ ¼ 1. In addition, the second term in the right-

hand side of (12.54), 1
N

P
ia

i
pw

TddTw ¼ 1
N

P
ia

i
p, is independent of w. Solving (12.50) is equivalent

to solving the following optimization problem:

minw wT ~Rw

 �

subject towTd ¼ 1 ð12:55Þ
with the optimal solution given by

w� ¼ dT ~R
�1
d

� ��1
~R
�1
d ð12:56Þ

where the w� can be obtained by wCEM in (12.51) by simply replacing R�1 with ~R
�1
. Therefore,

technically speaking, (12.56) should be a more appropriate form for CEM, which is also demon-

strated in Chang (2003a, pp. 63–67). Nevertheless, the CEM solution outlined by (12.50), (12.50)–

(12.52) is still desirable in two aspects. One is that if the number of target pixel vectors specified by

the desired signature d is small, the impact of without removing these pixel vectors will be little and

not be significant. Another is that in many practical applications, finding all pixel vectors that are

specified by the desired signature d may not be realistic, particularly, if the d is a mixed pixel vector.

12.4.1.3 CEM Implemented in Conjunction with P?
U

More interestingly, when the U is actually known, CEM should be able to take advantage of this

knowledge to annihilate the undesired signatures via P?
U instead of suppressing these signatures. In

this case, the resulting r in (12.48) becomes P?
Ur and the desired target signature d is also projected

to P?
Ud. Consequently, the constraint wTd ¼ 1 and the object function wTRw in (12.50) must be

replaced with wT P?
Ud

� � ¼ 1 and wT P?
Ud

� �
P?
Ud

� �Th i
w, respectively, which results in

wT P?
Ur

� �
P?
Ur

� �Th i
w

¼ a2
pw

T P?
Ud

� �
P?
Ud

� �Th i
wþ wT E P?

Un
� �

P?
Un

� �T� �h i
w

¼ a2
pw

T P?
Ud

� �
P?
Ud

� �Th i
wþ wTS~nw ¼ a2

p þ wTK~nw

ð12:57Þ
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where K~n ¼ E½~n~nT � ¼ E P?
Un

� �
P?
Un

� �Th i
the cross-term dTE½~n� vanishes if n is zero-mean. As a

consequence, (12.50) is reduced to

minw wTSn̂w

 �

subject towT P?
Ud

� � ¼ 1 ð12:58Þ
In order to see the relationship between OSP and CEM, we use (12.5) to obtain the filter output

SNR as follows:

SNRðwÞ ¼
wT P?

Ur
� �

P?
Ur

� �Th i
w

wTS~nw
¼

a2
pw

T P?
Ud

� �
P?
Ud

� �Th i
wþ wTS~nw

wTS~nw

¼
a2
pw

T P?
Ud

� �
P?
Ud

� �Th i
w

wTS~nw
þ 1

ð12:59Þ

So, solving (12.58) is equivalent to finding the solution to the following constrained optimization

problem:

maxw SNRðwÞf g subject towT P?
Ud

� � ¼ 1 ð12:60Þ
Now, we use the Largrangian multiplier method by differentiating the following Largrangian:

JðwÞ ¼ wTS~nwþ l wTP?
Ud� 1

� � ð12:61Þ

with respective to w and setting it to 0, and obtain

@JðwÞ
@w

����
w�

¼ 2S~nw
� þ lP?

Ud ¼ 0 ð12:62Þ

and

S~nw
� ¼ �ð1=2ÞlP?

Ud ð12:63Þ
with

l ¼ �2 dTS
�1
~n d

� ��1

ð12:64Þ

derived by the constraint wT P?
Ud

� � ¼ 1. Substituting (12.64) for l into (12.63) yields

w� ¼ S
�1
~n dTS

�1
~n d

� ��1

P?
Ud ð12:65Þ

CEM specified by (12.65) is called CEM implemented in conjunction with P?
U and denoted by

dCEM
P?
U

ðrÞ.

12.4.1.4 CEM Implemented in Conjunction with P?
U in White Noise

If we further assume that the noise in (12.60) is white and given by S~n ¼ s2I, (12.60) is reduced to

finding a weighting vector w with the minimum vector length subject to the constraint

wT P?
Ud

� � ¼ 1, namely,

minw wTw

 �

subject towT P?
Ud

� � ¼ 1 ð12:66Þ
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and (12.65) becomes

w� ¼ dTP?
Ud

� ��1
P?
Ud ð12:67Þ

Let the filter specified by (12.67) be denoted by dCEM
P?
U ;white

ðrÞ in which case, CEM assumes that

noise is white and the knowledge of the U is provided a priori. Implementing in conjunction with

the undesired signature projector P?
U, d

CEM
P?
U ;white

ðrÞ becomes the LS estimator dLSap ðrÞ given by (12.22)
as well as the Gaussian maximum likelihood estimator dGML

ap
ðrÞ given by (12.46), respectively. This

implies that if the noise is zero mean and white, and the undesired target signatures are annihilated

by P?
U, then d

CEM
P?
U ;white

ðrÞ performs as if it is an abundance fraction estimator.

12.4.2 TCIMF

CEM is originally designed to detect a single target signature. If there are multiple targets to be

detected, the detection must be carried out one target at a time. In order to extend CEM to a multi-

ple-target detection technique, a TCIMF was recently developed by Ren and Chang (2001) that can

be viewed as a generalization of OSP and CEM.

Let D ¼ d1d2 � � �dnD½ � denote the desired target signature matrix and U ¼ u1u2 � � � unU½ � be
the undesired target signature matrix where nD and nU are the number of the desired target

signatures and the number of the undesired target signatures, respectively. Now, we can develop an

FIR filter that passes the desired target signatures in D using an nD � 1 unity constraint vector

1nD�1 ¼ ð1; 1; . . . ; 1ÞT
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

nD

while annihilating the undesired target signatures in U using an nU � 1 zero

constraint vector 0nU�1 ¼ ð0; 0; . . . ; 0ÞT
|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}

nU

. In doing so, the constraint in (12.50) is replaced by

DU½ �Tw ¼ 1nD�1

0nU�1

� �
ð12:68Þ

and the optimization problem in (12.50) becomes the following linearly constrained optimization

problem:

minw wTRw

 �

subject to DU½ �Tw ¼ 1nD�1

0nU�1

� �
ð12:69Þ

The filter solving (12.69) is called target-constrained interference-minimized filter (TCIMF) (Ren

and Chang, 2001) and given by

dTCIMFðrÞ ¼ wTCIMF
� �T

r ð12:70Þ

with the optimal weighting vector, wTCIMF given by

wTCIMF ¼ R�1 DU½ � DU½ �TR�1 DU½ �� ��1 1nD�1

0nU�1

� �
ð12:71Þ

A discussion on the relationship between OSP and CEM via TCIMF can be found in Chang

2002, 2003a). In what follows, we describe more details about this relationship by considering

three special cases of dTCIMF(r).
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12.4.2.1 D ¼ mp ¼ d with nD ¼ 1 and U ¼ m1m2 � � �mp�1

� �
with nU ¼ p� 1

In this case, dTCIMF(r) performs like dCEM
P?
U

ðrÞ. However, there is a difference in the sense of algo-

rithm implementation. The former performs extraction of the desired signaturemp and annihilation

of the undesired signatures m1;m2; . . . ;mp�1 simultaneously, whereas the latter performs the

undesired signature annihilation using P?
U followed by CEM, dCEM(r) in sequence. Therefore,

despite the fact that both filters may produce the same results, they should be considered as sepa-

rate filters. In particular, dTCIMF(r) can be carried out in real time as noted in Chang (2003a) and

Chang et al. (2001).

12.4.2.2 D ¼ mp ¼ d with nD ¼ 1 and U ¼ m1 m2 � � �mp�1

� �
with nU ¼ p� 1 and R ¼ I

In this case, dTCIMF(r) performs like dOSP(r), but in the mean time, it also suppresses all signatures

other than desired and undesired target signatures, an operation that OSP does not do. Let the

resulting weighting vector be denoted by wTCIMF
R¼I and its corresponding TCIMF be denoted by

dTCIMF
R¼I ðrÞ. As derived in Chang (2002) and Chang (2003a), the dTCIMF

R¼I ðrÞ can be shown to be equiv-
alent to dLSap ðrÞ or dOSP(r) as follows:

wTCIMF
R¼I ¼ I�1 dU½ � dUð ÞTI�1 dUð Þ� ��1

1

0ðp�1Þ�1

 !

¼ dU½ �
dTd dTU

UTd UTU

" # !�1
1

0ðp�1Þ�1

 !

¼ dU½ �
k kdT U#

� �T

�kU#d UTU
� ��1 þ kU#ddT U#

� �T

2

4

3

5
1

0ðp�1Þ�1

 !

¼ dU½ �
k

�kU#d

 !

¼ kd� kU#Ud ¼ k I � UU#
� �

d ¼ kP?
Ud

ð12:72Þ

where k ¼ dTRd
� ��1

, and

dTCIMF
R¼I ðrÞ ¼ dLSap ðrÞ ¼ kdOSPðrÞ ð12:73Þ

It should be noted that the extra constant k in (12.73) is a result of interference/noise suppression

from TCIMF that OSP does not have.

12.4.2.3 D ¼ d and U ¼ Ø (i.e., Only the Desired Signature d is Available)

In this case, TCIMF is further reduced to CEM given by

dTCIMF
D¼d;U¼ØðrÞ ¼ wTCIMF

D¼d;U¼Ø

� �T
r ¼ dCEMðrÞ ð12:74Þ

So, on one end, OSP and CEM can be considered as special cases of TCIMF by virtue of (12.71). On

the other end, OSP can be also interpreted as a noise-whitened version of TCIMF with interferen-

ce/noise suppression in (12.72). In addition, CEM can be also considered as an undesired target signa-

ture-suppressed version of TCIMF in (12.74). Nevertheless, there is a subtle and substantiate

distinction between TCIMF and other filters such as OSP and CEM. TCIMF can be implemented to
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detect and classify multiple targets, annihilate undesired targets, and suppress unknown signal sour-

ces in one-shot operation in real time (Chang et al. 2001), whereas dCEM(r) and dCEM
P?
U

ðrÞ must be

carried out for detection of a single target at a time.

12.4.3 Examples

In this subsection, we conduct a comparative analysis between OSP and CEM with the undesired

signatures annihilated by OSP.

EXAMPLE 12.3

(Comparative Study Between (d,U)-Model and OSP-Model)

This example assumed that the complete knowledge of target signatures was available. We study how the

undesired signatures in U affect the performance of dCEM
P?
U

ðrÞ. The same 401 simulated pixels used in Exam-

ple 12.1 were also used in this example with added SNR 30:1 white Gaussian noise so that the results of

dOSP(r) and dLSap
ðrÞ derived in Example 12.1 can be used for comparison. Two scenarios were studied. One

was the U made up of dry grass and red soil. Figure 12.7 shows the detection results of dCEM(r) and dCEM
P?
U

ðrÞ
with dry grass and red soil annihilated by P?

U. Table 12.3 tabulates their respective LSEs.

As we can see from Table 12.3, dCEM
P?
U

ðrÞ with the dry grass and red soil annihilated performed slightly

better than dCEM(r) that only suppressed the dry grass and red soil. However, if we further considered another

scenario which included the sagebrush in the U as another undesired signature even if it was absent in the 401

simulated pixel vectors to repeat the same experiment.

Figure 12.8 shows the detection results of dCEM(r) and dCEM
P?
U

ðrÞ with dry grass, red soil, and sagebrush

annihilated.
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Figure 12.7 Detection results of dCEM(r) and dCEM
P?
U

ðrÞ with dry grass and red soil annihilated by P?
U.

Table 12.3 Comparison of detected abundance fractions between dCEM(r) and dCEM
P?
U

ðrÞ with dry grass and
red soil annihilated by P?

U

SNR 198 199 200 201 202 LSE

dCEM(r) 30:1 0.0614 0.0597 0.0668 0.0771 0.0633 0.0060,883

dCEM
P?
U

ðrÞ 30:1 0.0630 0.0606 0.0671 0.0782 0.0651 0.0056,946
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As we can see clearly from Figure 12.8, dCEM
P?
U

ðrÞ with the annihilation of U performed poorly compared to

its counterpart dCEM(r). This was because the signature of the sagebrush was so close to that of creosote leaves
as shown in Chang (2000) and Chang (2003a) that the annihilation of sagebrush also eliminated most part of

the signature of the creosote leaves, which resulted in significant deterioration of signal detectability of

dCEM
P?
U

ðrÞ. This example demonstrated a significant difference between annihilation of undesired signatures and

suppression of undesired signatures.

EXAMPLE 12.4

(Partial Knowledge)

The same 401 simulated pixel vectors used in Example 12.1 were once again used for the following

experiments except that the blackbrush and sagebrush were added to pixel vector numbers 98–102 and

pixel numbers 298–302, respectively, at abundance fractions 10% while reducing the abundance of red

soil and dry grass by multiplying their abundance fractions by 90%. In this case, there were three target

signatures of interest, blackbrush, creosote leaves, and sagebrush with two background signatures, red

soil, and dry grass. In this example, the complete knowledge of targets of interest, blackbrush, creosote

leaves, and sagebrush was also assumed to be available and the background signatures, soil and dry grass

were unknown and considered to be interferers as interference. We also let d be the desired target signa-

ture and U consists of the other two known target signatures. Like Example 12.3, CEM was implemented

in conjunction with/without P?
U , d

CEM
P?
U

ðrÞ and dCEM(r), respectively. Figure 12.9 shows the detection

results of dOSP(r), dLSap
ðrÞ, dCEM(r), and dCEM

P?
U

ðrÞ where figures labeled by (a), (b), and (c) are detection

results of blackbrush, creosote leaves and sagebrush, respectively, with the U formed by the other two

signatures that serve as undesired signatures.

As shown in Chang (2000, 2003a), the three target signatures, blackbrush, creosote leaves, and sagebrush,

were very similar. As a consequence, annihilating any two of these three signatures would certainly have

tremendous impacts on the detection performance of the third signature. The results of Figures 12.9 confirmed

what we expected. That is, detecting one signature also detected the other two signatures. Additionally, it also

significantly deteriorated the ability of dLSap
ðrÞ in estimating abundance fractions as shown in Figure 12.9

where the estimated abundance fractions of each of the three signatures were far more being accurate as tabu-

lated in Table 12.4.
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Figure 12.8 Detection results of dCEM(r) and dCEM
P?
U

ðrÞ with drygrass, redsoil, and sagebrush annihilated

by P?
U.

380 Hyperspectral Data Processing: Algorithm Design and Analysis



0.04

0.05

0.06

0.07

0.08

0.09

0.1

Pixel vector

–0.66

–0.64

–0.62

–0.6

–0.58

–0.56

–0.54

Pixel vector

0.06

0.07

0.08

0.09

0.1

0.11

0.12

Pixel vector

(a)                                                (b)                              (c)

δ

δ

δ

δα

OSP(r)

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Pixel vector #

–3

–2.9

–2.8

–2.7

–2.6

–2.5

–2.4

–2.3

Pixel vector #

1.6

1.8

2

2.2

2.4

2.6

2.8

3

3.2

Pixel vector #

(a)                                                (b)                                               (c)

(r)
LS

p

0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 450 0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 450

0 50 100 150 200 250 300 350 400 4500 50 100 150 200 250 300 350 400 450

–0.02

–0.04

–0.06

–0.08

0

0.02

0.06

0.06

0.08

0.1

0.12

Pixel vector #

–0.04

–0.02

0

0.02

0.04

0.06

0.08

Pixel vector #

–0.04

–0.02

0

0.02

0.04

0.06

0.08

0.1

Pixel vector #

(a)                                                (b)                                               (c)
CEM(r)

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

–0.2

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

Pixel vector # Pixel vector #

–0.15

–0.1

–0.05

0

0.05

0.1

0.15

0.2

Pixel vector #

(a)                                                (b)                                               (c)

(r)CEM

UP

Figure 12.9 Detection results of dOSP(r), dLSap
ðrÞ, dCEM(r), and dCEM

P?
U

ðrÞ with dry grass, red soil, and sage-

brush annihilated by P?
U.
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Surprisingly, the detection of creosote leaves was quite different from that of blackbrush and sagebrush, as

dOSP(r) and dLSap ðrÞ were implemented. The detection of creosote leaves also detected significant amounts of

blackbrush and sagebrush signatures by suppressing the background signatures even if it was not supposed to

do so. The detection of blackbrush and sagebrush showed very similar results and also detected visible

amounts of the three signatures except that different amounts of abundance fractions of the background signa-

tures, drygrass, and redsoil were detected. Similar phenomena were also observed from the detection results of

dCEM(r) and dCEM
P?
U

ðrÞ where detection of one signature also picked up the other signatures. Because the spectra
of these three signatures were very similar, P?

U used in dCEM
P?
U

ðrÞ also annihilated part of the desired signature

before the detection of the desired signature. Consequently, dCEM
P?
U

ðrÞ performed poorly compared to dCEM(r).
Since the soil and dry grass were used as interference, TCIMF was implemented in two scenarios.

One was with d¼ a single desired target signature and U¼ [drygrass redsoil], and the other was with

D¼ [blackbrush, creosote leaves, sagebrush] and U¼ [drygrass redsoil]. Figure 12.10 shows their

Table 12.4 Comparison of detected abundance fractions by dOSP(r), dLSap
rð Þ, dCEM(r), and dCEM

P?
U

ðrÞ with
P?
U-annihilation

198 199 200 201 202 LSE

dOSP(r) �0.5534 �0.5613 �0.5560 �0.5529 �0.5496 12.143

dLSap
rð Þ �12.5008 �12.5366 �12.5124 �12.4986 �12.4837 33.9685

dCEM(r) 0.0676 0.0618 0.0551 0.0757 0.0626 0.0065,128

dCEM
P?
U

ðrÞ 0.1171 0.0678 0.0177 0.0912 0.0903 0.0082,764
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Figure 12.10 Detection results of dTCIMF(r) with D ¼ [blackbrush (B), creosote leaves (C), sagebrush (S)].
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detection results of dTCIMF(r) where Figure 12.10(a)–(c) was detection results of blackbrush, creosote

leaves, and sagebrush, respectively, and Figure 12.10(d) was the simultaneous detection result of the

three signatures blackbrush, creosote leaves and sagebrush with D¼ [blackbrush (B), creosote leaves

(C), sagebrush (S)].

As indicated previously, when TCIMF was implemented with a single target signature designated as the

desired signature D¼ d, it would perform as it were dCEM
P?
U

ðrÞ. This was verified by comparing the results

of dCEM
P?
U

ðrÞ in Figure 12.9 to dTCIMF(r) in Figure 12.10(a)–(c). Interestingly, it was not true as shown in

Figure 12.10(d) when dTCIMF(r) was implemented with D¼ [blackbrush, creosote leaves, sagebrush] and U¼ [

dry grass, red soil] where it performed significantly better than dCEM
P?
U

ðrÞ.

12.5 OSP Implemented Without Knowledge

As OSP was originally developed in Harsanyi and Chang (1994), it required complete endmem-

ber knowledge about the image data. Unfortunately, such requirement is seldom satisfied in real-

ity. In order to resolve this issue, two approaches are developed previously. One is to generate

desired complete knowledge directly from the image data in an unsupervised means so that the

obtained unsupervised knowledge can be used as if it was provided a priori (Chang, 2003a,

Chang et al., 2001) to make (d,U)-model applicable where the undesired target signature projec-

tor P?
U can be constructed from the generated U. Due to the fact that such generated

unsupervised knowledge may not be accurate or reliable, an alternative approach is to implement

OSP without appealing for unsupervised knowledge. One such approach is CEM described in

Section 12.4.1 where only the desired target knowledge, d, is required. Instead of trying to find

unknown signatures in U for annihilation, CEM suppresses all signatures other than the signature

of interest. To accomplish that, CEM makes use of the inverse of the sample correlation matrix,

R�1 to approximate the complete knowledge provided by P?
U in OSP. As a result, OSP and CEM

can be related by (12.72)–(12.74) using TCIMF to bridge the gap. Another approach is to imple-

ment OSP without prior knowledge. As noted, (d,U)-model requires the knowledge of the

desired target signature d and the undesired target signature matrix U. When both the d and the

U are not available, OSP must be implemented whatever it can obtain directly from the data.

According to (12.72) and (12.73), when the knowledge about the U is not available, the sample

spectral correlation matrix R�1 can be used to approximate P?
U . Moreover, if the knowledge of

the d is further not provided, the only available information that can be used for OSP is the

image pixel vector r. In this case, the matched signatures used in OSP must be replaced by the

d. So, substituting r and R�1 for d and P?
U in (12.9), respectively, results in a new filter that can

be used for anomaly detection. Such a filter is referred to as OSP anomaly detector (OSPAD),

denoted by dOSPAD(r) and given by

dOSPADðrÞ ¼ rTR�1r ð12:75Þ

It should be noted that if we replace the d in CEM in (12.52) with the image pixel r, the
resulting form would be the constant 1 for all the image pixel r, that is, rTR�1r

� ��1
rTR�1r ¼ 1.

This is because CEM performs as an estimator rather than a detector as OSP does. Since no

desired signature d needs to be estimated, the quantity of rTR�1r
� ��1

that is included in CEM

to account for the estimation accuracy varies with the image pixel r. Therefore, CEM cannot be

used to derive for anomaly detection as we did for OSP in (12.75). That also explains why OSP
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has better generalization properties than CEM and CEM can be considered as partial-knowledge

version of OSP.

Interestingly, if we replace r and R�1 in dOSPAD(r) with r�m and K�1 where m and K are the

sample mean and the sample covariance matrix, the resulting filter dOSPAD(r) turns out to be the

well-known anomaly detector, referred to as RX detector (RXD), dRXD(r) developed by Reed and

Yu (1990) and also known as Mahalanobis distance (Fukunaga, 1990):

dRXDðrÞ ¼ r� mð ÞTK�1 r� mð Þ ð12:76Þ

If we once again replace the matched signature rT in (12.75) and (12.76) with the L-dimensional

unity vector 1T ¼ ð1; 1; . . . ; 1|fflfflfflfflfflffl{zfflfflfflfflfflffl}
L

Þ, dOSPAD(r) becomes so-called low probability detection (LPD),

dLPD(r) in (Harsanyi, 1993; Wang and Chang, 2004) given by

dLPDðrÞ ¼ 1TR�1r ð12:77Þ

that was developed in Harsanyi’s dissertation (Harsanyi, 1993) and uniform target detector

dUTD(r):

dUTDðrÞ ¼ 1� mð ÞTK�1 1� mð Þ ð12:78Þ

that was derived in Chang (2003a). More details about dLPD(r) and dUTD(r) can be found in Chang

(2003a) and Wang and Chang (2004).

As discussed in Section 12.4, we may sometimes have partial knowledge about target signatures

that are not wanted, such as background. In this case, we may think that removing this knowledge

prior to anomaly detection could improve anomaly detectability. As will be explained later, this is

not necessarily true.

Following a similar treatment in Section 12.4, suppose that the knowledge aboutU is provided.We

can implement dOSPAD(r) in conjunction with the undesired signature annihilator, P?
U in the sameway

that it is implemented in dOSP(r) to remove the undesired target signatures before anomaly detection.

The resulting detector is called P?
U-OSP anomaly detector (P?

U-OSPAD), d
OSPAD
P?
U

ðrÞ defined by

dOSPAD
P?
U

ðrÞ ¼ P?
Ur

� �T
R�1 P?

Ur
� � ð12:79Þ

Similarly, RXD can be also implemented in conjunction with P?
U , called P?

U-RXD and denoted by

dRXD
P?
U

ðrÞ as follows:

dRXD
P?
U

ðrÞ ¼ P?
Ur� P?

Um
� �T

K�1 P?
Ur� P?

Um
� � ð12:80Þ

Surprisingly, according to the conducted experiments, dOSPAD(r) and dRXD(r) will be shown to per-

form very closely regardless of whether or not P?
U is included in detection. This is because anomaly

detectors are generally designed to extract pixels whose signatures spectrally distinct from their
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surroundings rather than suppress signatures as OSP does. Another reason is that since R�1 can be

viewed as an approximation of P?
U , an additional inclusion of P

?
U does not improve the performance

of dOSPAD(r) and dRXD(r), both of which already perform a similar task to P?
U that is carried out by

R�1 in (12.79)–(12.80).
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(d) creosote leaves at pixel number 195-205

Figure 12.11 Detection results of dOSPAD(r), dRXD(r), dLPD(r) with SNR 30:1 and abundance fraction 10%.
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EXAMPLE 12.5

(Anomaly Detection)

In this example, several experiments were conducted to evaluate dOSPAD(r) specified by (12.75), dRXD(r) spec-
ified by (12.76) and dLPD(r) specified by (12.77). The same 401 simulated pixel vectors with added SNR 30:1

white Gaussian noise in Example 12.1 were used to detect the creosote leaves as an anomalous target.
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Figure 12.12 Detection results of creosote leaves at pixel number 200 by dOSPAD(r) and dRXD(r) with

various SNRs.
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Figure 12.11(a)–(d) shows the detection results of dOSPAD(r), dRXD(r), and dLPD(r) when the pixels of the

creosote leaves with abundance 10% were expanded from one pixel (pixel number 200), three pixels (pixel

numbers 199, 200, 201), five pixels (pixel numbers, 198–202) to 11 pixels (pixel numbers 195–205). As we

can see from Figure 12.11(a)–(d), the performance of anomaly detection in creosote leaves was deteriorated as

the number of creosote leaves was increased.

As a matter of fact, according to our experiments, in order for the creosote leaves to qualify as an anoma-

lous target, the number of pixels should not exceed 3. Figure 12.11 also shows that dLPD(r) could not be used

to detect anomalies, but only for background detection. Table 12.5 also tabulates their respective detected

abundance fractions where dOSPAD(r) performed slightly better than dRXD(r).

Figures 12.12 and 12.13 also show how SNR (10:1, 20:1, and 30:1) and abundance fractions (10%, 20%,

and 30%) affected the performance of anomaly detection for dOSPAD(r) and dRXD(r), respectively.
As shown in Figures 12.12 and 12.13, the higher the SNR, the better the anomaly detection, and the more

the abundance fractions of anomaly, the better the anomaly detection. Additionally, all these three figures (i.e.,

Figs. 12.11–12.13) demonstrated that both dOSPAD(r) and dRXD(r) performed comparably in terms of detected

abundance fractions.

The next experiment was designed to see how many anomalies could be detected as distinct targets by

dOSPAD(r) and dRXD(r) if the same 401 simulated pixels with added SNR 30:1 white Gaussian noise in Exam-

ple 12.1 were also used. Figure 12.14 shows the detection results of dOSPAD(r) and dRXD(r) where two of three

target signatures, blackbrush, creosote leaves, and sagebrush were selected with same abundance 10% at pixel

number 100 and pixel number 300. Table 12.6 tabulates the detected abundance fractions of dOSPAD(r) and
dRXD(r) in Figure 12.14 for three target signatures, blackbrush, creosote leaves, and sagebrush with same

abundance 10% at pixel number 100 and pixel number 300.

As we can see from Table 12.6, the results were not as good as Figure 12.11(a), but the pixel number

300 was always detected. Interestingly, if the three target signatures, blackbrush, creosote leaves, and

sagebrush were present at pixel numbers 100, 200, and 300 with same abundance 10%, Figure 12.15

shows that both dOSPAD(r) and dRXD(r) failed to detect these three target signatures but only the one at

pixel number 200.

Table 12.7 tabulates the detection abundance fractions of dOSPAD(r) and dRXD(r) in Figure 12.15 for the

three target signatures where the detected amounts of both creosote leaves and sagebrush were close.

However, from a visual inspection of Figure 12.15, only creosote leaves could be detected. This experi-

ment provided evidence that an anomaly could not be simply determined by the detected amount of its abun-

dance fraction. Rather, anomaly detection must be performed by comparing the detected abundance fraction

Table 12.5 Abundance fractions detected by dOSPAD(r) and dRXD(r) in Figure 12.11

pixel # 197 198 199 200 201 202 203 LSE

dOSPAD 200 0.714 0.510

199–201 0.494 0.548 0.594 0.244

198–202 0.496 0.422 0.473 0.544 0.470 0.246

195–205 0.425 0.456 0.374 0.396 0.459 0.406 0.460 0.179

dOSP 200 0.711 0.506

199–201 0.492 0.546 0.592 0.242

198–202 0.494 0.419 0.470 0.542 0.468 0.244

195–205 0.422 0.454 0.371 0.399 0.457 0.403 0.458 0.177

dLPD 200 �5.609 3782

199–201 �3.120 �12.260 �3.008 39167

198-202 �12.921 �1.497 �0.561 �1.471 �3.002 39641

195-205 �0.482 �12.269 �0.792 0.343 �0.547 �12.181 1.443 0.459
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of an anomaly against the abundance fractions detected in its surrounding neighborhood. The investigation of

this issue was discussed in Hsueh and Chang (2004) and Hsueh (2004) and will be investigated in Chang

(2013). Figure 12.15 and Table 12.7 demonstrate that anomaly detection could not be blindly implemented

without some extra care.
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Figure 12.13 Detection results of creosote leaves at pixel number 200 by dOSPAD(r) and dRXD(r) with vari-

ous abundance fractions.
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Table 12.6 Abundance fractions of two signatures detected by dOSPAD(r) and dRXD(r)

Blackbrush Creosote leaves Sagebrush

dOSPAD Figure 12.14(a) 0.3319 0.7020

Figure 12.14(b) 0.3523 0.6220

Figure 12.14(c) 0.5800 0.5452

dOSP Figure 12.14(a) 0.3296 0.6995

Figure 12.14(b) 0.3500 0.6195

Figure 12.14(c) 0.5775 0.5428
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Figure 12.14 Detection results of dOSPAD(r) and dRXD(r) with various signatures at different pixel numbers.
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12.6 Conclusions

OSP has become a standard hyperspectral imaging technique (Schwengerdt, 1997; Chang, 2003a)

that can be used in many versatile applications. Despite the fact that various relationships among

OSP, CEM, and the RXD have been studied (Chang, 2003a, 2003b; Du et al., 2003), this chapter

investigates many interesting issues resulting from OSP that are not explored in Chang (2003a,

2003b) and Du et al. (2003). It revisits OSP from several signal processing perspectives and offers

many insights into its design rationales that have not been investigated previously. In particular, it

shows that OSP can be derived from various view points of signal detection, linear discriminant

analysis, and parameter estimation where the LS OSP is essentially equivalent to LS-LSMA via

the proposed OSP-model. It further studies effects of the Gaussian noise and white noise assump-

tions on the performance of OSP. Finally, it derives various forms of OSP when OSP is provided by

different information levels of target knowledge. As shown in this chapter, some well-known and

popular filters such as CEM, TCIMF, and the RX anomaly detector can be considered as members

of OSP family. Since many experiments conducted based on real hyperspectral images using vari-

ous forms of OSP have been reported in the literature and can be also found in Chang (2003a), real

hyperspectral image experiments are not included here.

Table 12.7 Abundance fractions of three signatures detected by dOSPAD(r) and dRXD(r) in Figure 12.15

Blackbrush Creosote leaves Sagebrush

dOSPAD 0.3202 0.5956 0.5204

dRXD 0.3179 0.5931 0.5179
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Figure 12.15 Detection results of blackbrush at pixel number 100, creosote leaves at pixel number 200, and

sagebrush at pixel number 300 by dOSPAD(r) and dRXD(r).
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13

Fisher’s Linear Spectral
Mixture Analysis

A commonly used criterion to design techniques for linear spectral mixture analysis (LSMA)

is least squares error (LSE) and referred to as least squares (LS)-LSMA. It is also shown in

Chapter 12 that the functional form of a matched filter carried out by unconstrained LS-LSMA is

essentially identical to that operated by the orthogonal subspace projection (OSP) approach using

signal-to-noise ratio (SNR) as a criterion. Unfortunately, it is also known that both criteria are not

necessarily optimal for pattern classification. This chapter presents a new and alternative approach

to LSMA, called Fisher’s LSMA (FLSMA). It extends the well-known pure-pixel-based (i.e., hard

decision-based) Fisher’s linear discriminant analysis (FLDA) to perform LSMA. Interestingly,

what can be derived for LSMA can also be developed for FLSMA. In particular, two types of

constrained approaches to LSMA, target signature-constrained mixed pixel classification

(TSCMPC) and target abundance-constrained mixed pixel classification (TACMPC) derived in

Chang (2002b) and Chang (2003a), can also be developed in parallel for FLSMA, to be called

feature vector constrained FLSMA (FVC-FLSMA) and abundance-constrained FLSMA (AC-

FLSMA), respectively. Since Fisher’s ratio used by FLSMA is a more appropriate criterion than

LSE and SNR in classification, both FVC-FLSMA and AC-FLSMA can improve LS-LSMA and

SNR-based OSP in mixed pixel classification and abundance fraction quantification.

13.1 Introduction

LSMA has been widely used in subpixel analysis and mixed pixel classification. Many algorithms

have been developed for LSMA such as LS-LSMA, SNR-based OSP, and Mahalanobis distance-

based Gaussian maximum likelihood estimation (GMLE). However, according to Juang and

Katagiri (1992), LSE is not necessarily the best criterion to measure classification error and neither

is SNR. Instead, FLDA is one of the major techniques widely used in pattern classification (Duda

and Hart, 1973). It makes use of the so-called Fisher’s ratio also known as Rayleigh quotient,

which is the ratio of between-class scatter matrix to within-class scatter matrix, as a criterion to

generate a set of feature vectors that constitute a feature space for better classification. A similar

approach to FLDA was developed by Soltanian-Zadeh et al. (1996) who replaced Fisher’s ratio

with the ratio of interdistance to intradistance and aligned the generated feature vectors along

mutual orthogonal directions. This approach has been shown to be successful in magnetic

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
� 2013 John Wiley & Sons, Inc. Published 2013 by John Wiley & Sons, Inc.

391



resonance (MR) image classification. Most recently, Soltanian-Zadeh et al.’s approach was further

extended to linearly constrained discriminant analysis (LCDA) by Du and Chang for hyperspectral

image classification to improve LSMA classification (Du and Chang, 2001a; Chang 2003b). Tech-

nically speaking, the feature vectors obtained by Soltanian-Zadeh et al. (1996) as well as those by

Du and Chang (2001a) are not actually Fisher’s feature vectors because Soltanian-Zadeh et al.’s

interdistance to intradistance ratio is not Fisher’s ratio.

FLDA is a traditional class membership-labeling technique. When it is used as an LSMA tech-

nique, it is implemented in a simple and straightforward manner on a pure pixel basis. Conse-

quently, FLDA produces class maps different from fractional abundance maps generated by

LSMA-based techniques that are gray-scale images. This chapter revisits FLDA and presents a

new approach, to be called FLSMA. It directly extends pure pixel-based FLDA to a mixed pixel-

based technique so as to perform subpixel detection and mixed pixel classification. It constrains

FLDA in a way that the Fisher ratio-generated feature vectors are aligned along mutual orthogonal

directions in the same way that both Soltanian-Zadeh et al.’s approach and LCDA align the feature

vectors generated by the interdistance to intradistance ratio. Analogous to other mixed pixel-based

techniques, FLSMA also generates fractional abundance maps with gray scales representing abun-

dance fractions of classes to be classified. As discussed in Chang (2002b) and Chang (2003a), there

are two types of constrained approaches, called TSCMPC and TACMPC, developed for LSMA.

The TSCMPC constrains target signatures of interest along desired directions to derive a linearly

constrained minimum variance (LCMV) approach (Chang, 2002b) that includes constrained

energy minimization (CEM) as its special case, whereas TACMPC implements abundance sum-to-

one constraint (ASC) and abundance non-negativity constraint (ANC) to derive three least squares

abundance-constrained LSMA approaches: sum-to-one constrained least squares (SCLS), non-

negativity constrained least squares (NCLS), and fully constrained least squares (FCLS). Interest-

ingly, approaches similar to both TSCMPC and TACMPC can also be developed for FLSMA.

One approach is called FVC-FLSMA derived from TSMPC. It replaces the sample correlation

matrix used in LCMV with the within-class scatter matrix. In particular, it can be shown that the

classifiers derived by both FVC-FLSMA and LCDA are essentially the same. In addition, because

FVC-FLSMA uses Fisher’s ratio as a classification criterion as opposed to LCMV that uses LSE as

a classification measure, FVC-FLSMA generally performs better than LCMV in classification as

expected.

The other approach is abundance constrained least squares FLDA (ACLS-FLDA) derived from

TACMPC. It is referred to as AC-FLSMA and implements Fisher’s ratio to carry out mixed pixel

classification while using the least squares error to perform abundance fraction estimation. Accord-

ingly, in analogy with abundance-constrained LSMA (AC-LSMA), there are also three types of

AC-FLSMA that can further be derived: abundance sum-to-one constrained least squares FLSMA

(ASCLS-FLSMA), abundance non-negativity constrained least squares FLSMA (ANCLS-

FLSMA), and abundance fully constrained least squares FLSMA (AFCLS-FLSMA). As will be

demonstrated, AC-FLSMA generally performs better than its counterpart, AC-LSMA, to produce

more accurate abundance fractions. It should be noted that the AC-FCLS is the same as FCLS

developed in Heinz and Chang (2001) used in other chapters. The inclusion of “AC” in front of

FCLS and FLSMA is simply to emphasize the constraints imposed on abundance fractions to dis-

tinguish from the FVC-FLSMAwhich imposes constraints on the feature vectors.

13.2 Feature Vector-Constrained FLSMA (FVC-FLSMA)

In this section, we extend FLDA discussed in Section 2.3.1.1 of Chapter 2 to an LSMA technique

using Fisher’s ratio as an unmixing criterion, referred to as FLSMA. One difficulty in doing so is
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that the FLDA-generated feature vectors are not endmembers to form a signature matrix M for

LSMA Instead, they are discriminant vectors that are used to determine decision boundaries

among classes. In particular, the number of such FLDA-generated discriminant feature vectors is

one lower than the number of endmembers inM.

FLDA finds a set of feature vectors via Fisher’s ratio or Rayleigh’s quotient defined as

JðwÞ ¼ wTSBw

wTSWw
ð2:35Þ

by solving a generalized eigenvalue problem specified by

S�1
W SBw ¼ lw ð13:1Þ

where SB and SW are referred as between-class and within-class scatter matrices, respectively. Due

to the fact that the rank of the between-class scatter matrix SB is only p� 1, there are only p� 1

nonzero eigenvalues associated with (13.1). However, in order to implement LSMA, we need p fea-

ture vectors that can be used to form an endmember matrix M rather than discriminant vectors gen-

erated by (13.1). One way to mitigate this dilemma was proposed by Soltanian-Zadeh et al. (1996)

and Du and Chang (2001a) who replaced Fisher’s ratio with the ratio of interdistance to intradistance

while constraining the class means along orthogonal directions. As a result, the interdistance was

shown to be constant so that it could be removed from consideration in (2.35) and (13.1). Accord-

ingly, the criterion of (2.35) is reduced to the within-class scatter matrix SW that describes the scat-

tering variances centered at each of the p class means. As a consequence, there are p signatures that

can be used to form an endmember matrix for LSMA as shown in Du and Chang (2001a).

Unfortunately, the criterion used in both Soltanian-Zadeh et al. (1996) and Du and Chang (2001a) is

not really Fisher’s ratio. Therefore, they cannot be considered as FLDA-based approaches. The

approach presented here is indeed derived from Fisher’s ratio. It is called FVC-FLSMA that directly

extends FLDA in a similar way that LCDAwas derived in Du and Chang (2001a) except that FVC-

FLSMA constrains Fisher ratio-generated feature vectors along mutual orthogonal directions.

To be more precise, let wj be the jth feature vector that maximizes Fisher’s ratio subject to a

constraint that the jth feature vector must be aligned not only with the jth class mean, mj, but also

orthogonal to other feature vectors, mkf gpk¼1;k 6¼j . In other words, the FVC-FLSMA problem must

solve for 1 � j; k � p,

maxwj

wT
j SBwj

wT
j SWwj

( )

subject to the constraintwT
j mk ¼ djk ð13:2Þ

Using the same derivation in Du and Chang (2001a), the numerator wT
j SBwj can be further simpli-

fied by

wT
j SBwj ¼ wT

j

Pp
k¼1 nk mk � mð Þ mk � mð ÞT� �

wj

¼ nj � 2
Pp

k¼1 nkdjkw
T
j mþPp

k¼1 nk wT
j m

� �
wT

j m
� �T ð13:3Þ

with m being the global mean of the sample training data. Since

2
Xp

k¼1
nkdjkw

T
j m ¼ 2

Xp

k¼1
nkdjk wT

j ð1=ntÞ
Xp

k¼1
nkmk

j k
¼ 2n2j =nt ð13:4Þ
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and

Xp

k¼1
nk wT

j m
� �

wT
j m

� �T

¼
Xp

k¼1
nk nj=nt
� �2 ¼ n2j =nt ð13:5Þ

wT
j SBwj in (2.35) can further be reduced to

wT
j SBwj ¼ nj � 2 n2j =nt

� �
þ n2j =nt

� �
¼ nj � n2j =nt

� �
ð13:6Þ

which is independent of wj. As a consequence, the FVC-FLSMA problem specified by (13.2) is

equivalent to the one finding wFVC-FLSMA
j that satisfies the following constrained optimization prob-

lem, for 1 � j; k � p:

minwj
wT

j SWwj subject tow
T
j mk ¼ djk ð13:7Þ

In order to solve the above problem, we define a Lagrangian for each wj given by

JðwjÞ ¼ wT
j SWwj þ

Xp

k¼1
llk wT

j mk � djk

� �
ð13:8Þ

where ljk
n op;p

k¼1;j¼1
are Largrange multipliers. Differentiating (13.8) with respect to wl yields

@JðwjÞ
@wj

����
wFVC-FLSMA

j

¼ 2SWwFLSMA
j þ

Xp

k¼1
ljkmk ¼ 0 ð13:9Þ

which results in

2SWwFVC-FLSMA
j þPp

k¼1 l
j
kmk ¼ 2SWw

FVC-FLSMA
j þMlj ¼ 0

) wFVC-FLSMA
j ¼ �ð1=2ÞS�1

W Mlj
ð13:10Þ

Using the constraint that wFVC�FLSMA
j

� �T

mj ¼ djk for 1 � j; k � p, the Largrange multiplier lj can
be obtained by

lj ¼ �2 MTS�1
W M

� ��1
1j ð13:11Þ

and the jth weight vector wFVC�FLSMA
j in (13.11) becomes

wFVC�FLSMA
j ¼ S�1

W M MTS�1
W M

� ��1
1j ð13:12Þ

and

wFVC�FLSMA
j

� �T

SW wFVC�FLSMA
j

� �
¼ 1Tj MTS�1

W M
� ��1

1j ¼ �1=2ð Þ1Tj lj ð13:13Þ

where the last equality in (13.13) is obtained by (13.11).
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We can further derive a matrix form for all the optimal solutions wFVC�FLSMA
j

n op

j¼1
for (13.7).

Let WFVC-FLSMA ¼ wFVC-FLSMA
1 wFVC-FLSMA

2 � � �wFVC-FLSMA
p

h i
and G ¼ l1l2 � � � lp	 


the constraints

in (13.7) can be expressed in the following matrix form:

WFVC�FLSMA
� �T

M ¼ I ð13:14Þ

and (13.10) becomes

WFVC�FLSMA ¼ �ð1=2ÞS�1
W MG ð13:15Þ

Using (13.15) and the constraint specified by (13.14) we obtain

�ð1=2ÞGTMTS�1
W M ¼ I ) GT ¼ �2 MTS�1

W M
� ��1 ð13:16Þ

Substituting (13.16) into (13.15) we obtain the FVC-FLSMA solution in a matrix form given by

WFVC�FLSMA ¼ S�1
W M MTS�1

W M
� ��T ¼ S�1

W M MTS�1
W M

� ��1 ð13:17Þ

where X�T is defined by X�T � X�1
� �T

. Applying theWFVC-FLSMA to a sample vector r, the abun-

dance vector aFVC-FLSMA(r) associated with r can be expressed as

aFVC�FLSMAðrÞ ¼ WFVC�FLSMA
� �T

r ¼ MTS�1
W M

� ��1
MTS�1

W r ð13:18Þ

A comment is worthwhile. Since the FVC-FLSMA specified by (13.17) performs mixed pixel clas-

sification, it produces a fractional abundance image for each of classes for classification. There-

fore, the FVC-generated fractional abundance images generally require a threshold method such

as ones in Chang (2003a) to calculate classification rates.

13.3 Relationship Between FVC-FLSMA and LCMV, TCIMF, and CEM

Recalling the LCMV in Chang (2002b) and Chang (2003a), its weighting matrix (11.16) in Chang

(2003a) or (6) in Chang (2002b) is given by

WLCMV ¼ R�1M MTR�1M
� ��T

C ¼ R�1M MTR�1M
� ��1

C ð13:19Þ

where the matrix C is the constraint matrix and R is the data correlation matrix.

Now, let I be the p� p identity matrix and express it as

I ¼

1 0 � � � 0

0 1 } ..
.

..

.
} } 0

0 . . . 0 1

2

6664

3

7775

p�p

¼ 1112 � � � 1p
	 


p�p
ð13:20Þ
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where 1l is the lth p-dimensional unit vector specified by 1l ¼ ð0; . . . ; 0; 1|{z}
l

; 0; . . . ; 0ÞT. By means

of (13.20), we can rewrite (13.17) as

WFVC�FLSMA ¼ S�1
W M MTS�1

W M
� ��T ¼ S�1

W M MTS�1
W M

� ��1
Ip�p ð13:21Þ

Comparing (13.21) to the LCMV-generated weighting matrix specified by (13.19), an immediate

finding is that the FVC-FLSMA-generated weighting matrix given by (13.21) has the same form as

does (13.19) with the within-class scatter matrix SW and I in the FVC-FLSMA corresponding to R

and the constraint matrix C in the LCMV, respectively, where the constraint matrix I used in

(13.21) is exactly the same p constraints wT
l mj ¼ dlj used in (13.8). Similarly, when the constraint

matrix I in (13.21) is replaced with a constraint vector, the lth p-dimensional unit vector 1l, the

resulting weighting matrixWFVC-FLSMA becomes a weighting vector:

wFVC-FLSMA
l ¼ S�1

W M MS�1
W M

� ��T
1l ¼ S�1

W M MTS�1
W M

� ��1
1l ð13:22Þ

which corresponds to the target-constrained interference-minimized filter (TCIMF) (Chang,

2002b, 2003a) with the within-class scatter matrix SW in (13.22) replaced by R. If there is only

one desired target signature d constrained by dTw ¼ 1 via (13.11) and (13.12), (13.12) turns out to

be the same functional form implemented by the constrained energy minimization (CEM) in

Chang (2002b) and Chang (2003a) where the within-class scatter matrix SWand ml are replaced by

the sample correlation matrix R and d used in the CEM.

13.4 Relationship Between FVC-FLSMA and OSP

If we replace S�1
W in (13.12) with P?

U defined in (2.86), then the resulting weight vector

wFVC�FRLSMA
l becomes the least squares OSP (LSOSP) in Tu et al. (1997) and Chang (2003a):

wLSOSP
l ¼ P?

UM MTP?
UM

� ��1
1l ð13:23Þ

With this interpretation, FVC-FLSMA can be considered as a discriminant analysis version of

OSP. Additionally, P?
U is also idempotent. We can define a linear transformation by ~r ¼ P?

Ur and
~M ¼ P?

UM where r is an image pixel vector. The resulting image with pixel vectors described by ~r
is called the P?

U-whitened hyperspectral image. Let ~ml be the P
?
U-whitened lth class mean defined

by ~ml ¼ P?
Uml. Equation (13.23) is reduced to

wLSOSP
l ¼ ~M ~M

T ~M
� ��1

1l ¼ ~ml
TP?

~U
~ml

� ��1

P?
~U
~ml ð13:24Þ

where ~U ¼ ~m1 � � � ~ml�1 ~mlþ1 � � � ~mp

h i
and ~mj ¼ P?

~U
mj for 1 � j � p. If we further let P?

~U
¼ I,

(13.24) is reduced to wLSOSP
l ¼ ~mT

l ~ml

� ��1
~ml , which is exactly the same matched filter used by

LSOSP with the matched signature specified by the desired signature ~ml .

13.5 Relationship Between FVC-FLSMA and LCDA

Recently, a constrained linear discriminant analysis approach, called linearly constrained dis-

criminant analysis (LCDA), was developed by Du and Chang (2001a) where the within-class

and between-class scatter matrices were replaced by intradistance and interdistance,
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respectively, and the class means were also aligned with orthogonal directions. As shown in

Du and Chang (2001a), LCDA solution has the same equation specified by (13.21). So,

LCDA is essentially FVC-FLSMA. Furthermore, the total scatter matrix ST is the sum of

within-class scatter matrix SW and between-class scatter matrix SB in (2.35) and is a constant

matrix. The problem specified by (13.7) can be further shown to be equivalent to finding wl

that satisfies

minwl
wT

l STwl subject tow
T
l mj ¼ dlj for 1 � j � p ð13:25Þ

The solution to (13.25) can be obtained by w�
l ¼ S�1

T M MTS�1
T M

� ��1
1l that turns out to be

the same as (13.12). As shown in Chang (2003a), the total scatter matrix ST is related to the

data training sample covariance matrix Kt by ST ¼ NKt where N is total number of training

samples. Using this fact, the problem specified by (13.25) is also equivalent to the following

problem:

minwl
wT

l Ktwl subject tow
T
l mj ¼ dlj for 1 � j � p: ð13:26Þ

The solution to (13.26) is also w�
l ¼ Ktð Þ�1M MT Ktð Þ�1M

� ��1

1l that is also similar to (13.12).

13.6 Abundance-Constrained Least Squares FLDA (ACLS-FLDA)

It should be noted that the FVC-FLDA solution (13.12) is not abundance-constrained in the

sense that there is no constraint imposed on the abundance vector a. Therefore, the FVC-

FLDA solution does not guarantee that a � 0, that is, aj � 0 for all 1 � j � p. In order to

obtain an abundance-constrained FLDA, we first consider the following unconstrained LSE

problem with a weighting matrix given by the within-class scatter matrix SW that minimizes

the LSE:

r�Mað ÞTS�1
W r�Mað Þ over a ð13:27Þ

Using this square-root form, the LSE in (13.27) can be further expressed as

r�Mað ÞTS�1=2
W S

�1=2
W r�Mað Þ ¼ r�Mað ÞT S

�1=2
W

� �T

S
�1=2
W r�Mað Þ

¼ S
�1=2
W r� S

�1=2
W Ma

� �T

S
�1=2
W r� S

�1=2
W Ma

� � ð13:28Þ

Now, if we let ~r ¼ S
�1=2
W r and ~M ¼ S

�1=2
W M, (13.28) can be further reduced to one that minimizes

the following unconstrained LSE:

~r� ~Ma
� �T

~r� ~Ma
� �

over a ð13:29Þ

which is exactly the same least squares mixing problem considered in LSMA. By virtue of

(13.29) we can impose a � 0 or
Pp

j¼1 aj ¼ 1 on (13.27) to obtain the following three types of

abundance-constrained least squares FLDA (ACLS-FLDA) problems: sum-to-one constrained

least squares (SCLS), non-negativity constrained least squares (NCLS), and fully constrained

least squares (FCLS) problems.
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(i) Abundance sum-to-one constrained least squares FLDA (ASCLS-FLDA) problem:

mina ~r� ~Ma
� �T

~r� ~Ma
� �n o

subject to
Xp

j¼1
aj ¼ 1 ð13:30Þ

(ii) Abundance non-negativity-constrained least squares FLDA (ANCLS-FLDA) problem:

mina ~r� ~Ma
� �T

~r� ~Ma
� �n o

subject to a � 0 ð13:31Þ

(iii) Abundance fully constrained least squares FLDA (AFCLS-FLDA) problem:

mina ~r� ~Ma
� �T

~r� ~Ma
� �n o

subject toa � 0 and
Xp

j¼1
aj ¼ 1 ð13:32Þ

The solutions to (13.30)–(13.32) can be obtained exactly by the same methods that solve the

SCLS, NCLS, and FCLS mixing problems in Chang (2003a).

13.7 Synthetic Image Experiments

This section conducts two sets of experiments, synthetic image and real image experiments, to

demonstrate the utility of FLSMA in mixed pixel classification and quantification. For AC-FLSMA,

only AFCLS-FLSMA that is abundance fully constrained FLSMA is conducted to compare its coun-

terpart of LSMA, AC-FCLS which is actually the FCLS developed by Heinz and Chang (2001).

In order to substantiate FLSMA, a synthetic image similar to the real scene in Figure 1.15(a)

was simulated. It has the size of 64� 64 pixel vectors and 20 panels with various sizes arranged in

a 5� 4 matrix and located at the center of the scene shown in Figure 13.1(a). The five panel signa-

tures in Figure 1.16 were used to simulate these 20 panels.

For row i, the panel signature pi was used to simulate four panels in each of columns

where the panels are a 2� 2-pixel panel, {pi1;11,p
i
1;12,p

i
1;21,p

i
1;22} in the first column, a

1� 2-pixel panel, {pi2;11,p
i
2;12} in the second column, a one-pixel panel, pi3;1 in the third col-

umn, and a one-pixel panel, pi4;1 in the fourth column. While the pixels in all the 2� 2-pixel

panels and the 1� 2-pixel panels were pure pixels simulated by 100% panel signature pi, the

Figure 13.1 A synthetic image, (a) 20 simulated panels; (b) background simulated by a grass signature

corrupted by an additive Gaussian noise with SNR 20:1, (c) a synthetic image with the 20 simulated panels in

(a) implanted in the background simulated in (b).
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panels, pi3;1 and pi4;1 were subpixel panels simulated by (50%pi, 50%bA) and (25%pi, 75%bA)

where the background signature, bA was a grass signature obtained by averaging all the pix-

els in the area located at the right and marked by “A” in Figure 13.2.

This simulated synthetic image is particularly designed to mimic the image scene in

Figure 1.15(a) with the size for comparative analysis. Figure 13.1(b) is the image background

simulated by the grass signature bA plus an additive white Gaussian noise with the signal-to-

noise ratio 20:1 defined in Harsanyi and Chang (1994). Figure 13.1(c) is a synthetic image

with these 20 panels in Figure 13.1(a) implanted in the image background in Figure 13.1(b).

Three experiments were conducted to compare FLSMA to LSMA in mixed pixel classifica-

tion and quantification.

EXAMPLE 13.1

(FVC-FLSMA vs. FLDA, LSOSP)

The purpose of this example is to demonstrate the improvement achieved by FVC-FLSMA over the com-

monly used unconstrained classifiers, FLDA and LSOSP, where FLDA is the best-known classical pure-pixel

classifier and LSOSP is a well-known least squares linear spectral mixture analysis. Since both FVC-FLSMA

and FLDA required training samples for classification, the set of panels, pi1;11; p
i
1;12; p

i
1;21; p

i
1;22

n o5

i¼1
in the

first column in Figure 13.1(a) were used as training data. For LSOSP, the used target signature matrix was

formed by MA ¼ p1 p2 p3 p4 p5 bA½ 	 with the panel signatures pif g5i¼1 in Figure 1.16. Figure 13.3(a)–(c)

shows the classification results of the 20 panels in Figure 13.1(c) produced by FVC-FLSMA, FLDA, and

LSOSP, respectively.

Since both FVC-FLSMA and LSOSP are mixed pixel classifiers, they produced gray-scale fractional abun-

dance images for each of five panel classes in Figure 13.3(a) and Figure 13.3(c), respectively. On the contrary,

FLDA is a pure pixel-based class-labeling classifier. So, the images shown in Figure 13.3(b) are five classifica-

tion maps, one for each of panel classes. As shown in Figure 13.3(a)–(c), FVC-FLSMA was the best among

the three classifiers where all the 20 panels were detected with small detected abundance fractions of other

pixel vectors, specifically in detection of panels in row 2. However, if an appropriate threshold value was

selected to threshold the gray-scale images, the small abundance fractions detected for other pixel vector

would be cleaned out. Compared to FVC-FLSMA, FLDA detected all pure pixel vectors but missed all sub-

pixels. Additionally, it also generated a few falsely alarmed pixels. This shows that FLDA had difficulty with

the subpixel detection. Despite the fact that the LSOSP generated more noisy classification images than those

produced by the FVC-FLSMA, it still detected most of the 20 panels including the subpixel panels that were

not detected by FLDA. This example shows that a pure pixel-based classifier may work well for pure pixels

but not subpixels.

Figure 13.2 HYDICE image scene with training samples marked by areas, A, B, and C.
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EXAMPLE 13.2

(FVC-FLSMA vs. TCIMF and CEM)

Unlike Example 13.1 that compared FVC-FLSMA to unconstrained classifiers, this example was

designed to compare FVC-FLSMA against two target signature-constrained classifiers, TCIMF and

CEM (Chang, 2002b, 2003b). The FVC-FLSMA implemented in this example was the same as that in

Example 13.1. TCIMF was implemented in a similar manner that LSOSP was implemented in Exam-

ple 13.1, where TCIMF also used MA as its target signature matrices with p¼ 1, that is, the desired

signature d was a single target signature. CEM was also implemented by considering each of panel

signatures, pif g5i¼1 as a desired target signature d. Figure 13.4(a) and (b) shows the classification

results of TCIMF and CEM, respectively, where all the 20 panels were detected with a small number

of false alarms for CEM.

Compared to the classification of FVC-FLSMA in Figure 13.3(a), TCIMF performed slightly better

than did FVC-FLSMA in terms of more clean background due to TCIMF’s ability in noise suppres-

sion. Nevertheless, both performed comparably. However, the CEM-generated fractional abundance

images had exhibited interfering effects resulting from other panel signatures since CEM could only

suppress, but could not eliminate interference caused by signal sources other than the desired signal

source. This is particularly evident in detection of the panels in rows 2 and 3 due to the fact that both

signatures, p2 and p3, are close. Compared to CEM such effects were significantly reduced by TCIMF

since TCIMF eliminated rather than suppressed other five signatures as did CEM.

Figure 13.3 Classification results of the 20 panels in Figure 13.1(c) produced by FVC-FLSMA, FLDA, and

LSOSP, respectively.
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EXAMPLE 13.3

(AFCLS-FLSMA vs. FCLS)

In Example 13.2, a comparative analysis between FVC-FLSMA and two target signature-constrained

classifiers, TCIMF and CEM was performed. This example considers another type of constrained classifiers,

which are target abundance-constrained classifiers. FLSMA implemented in this example was AFCLS-

FLSMA and compared to the target abundance-constrained classifier, FCLS (Heinz and Chang, 2001; Chang,

2003a). Figure 13.5(a) and (b) shows the classification results of the 20 panels in Figure 13.1(c) produced by

the AFCLS-FLSMA and FCLS, respectively.

Surprisingly, comparing Figures 13.5(b) and 13.3(c), FCLS significantly improved LSOSP where all the

20 panels were detected. From visual inspection of Figure 13.5(a) and (b), both AFCLS-FLSMA and FCLS

performed very similarly. However, if we tabulate the abundance fractions obtained for images in Figure 13.5

Figure 13.4 Classification results of the 20 panels in Figure 13.1(c) produced by the TCIMF and CEM,

respectively.

Figure 13.5 Classification results of the 20 panels in Figure 13.1(c) produced by the AFCLS-FLSMA and

FCLS.
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(a) and (b) in Table 13.1, all the two abundance-constrained classifiers detected 100% for all pure panel pixels,

pi1;11; p
i
1;12; p

i
1;21; p

i
1;22

n o5

i¼1
and pi2;11; p

i
2;12

n o5

i¼1
in the first and second columns.

But quantitatively, AFCLS-FLSMA apparently performed better than FCLS in terms of quantifying the

abundance fractions of the subpixel panel pixels, pi3;11

n o5

i¼1
and pi4;11

n o5

i¼1
in the third and fourth columns.

13.8 Real Image Experiments

In this section, real hyperspectral image experiments were conducted based on the 15-panel

HYDICE image scene in Figure 13.2 (see Figure 1.15(a)). One major difference between the

real HYDICE image scene in Figure 13.2 and the simulated synthetic image in Figure 13.1(c)

is that there is very little knowledge of the image background in Figure 13.2 compared to the

image background in Figure 13.1(b) that was simulated by complete knowledge. As expected,

FLSMA may not perform as well as it did for the synthetic image if the image background in

Figure 13.1(b) was not well characterized. In order to demonstrate this fact, two scenarios are

used to characterize the image background as follows. Additionally, we also assume that

the knowledge of the 9 R pixels in the 3 m� 3 m and 5 R pixels in 2 m� 2 m panels in

Figure 1.15(b) is available a priori. So, the panel signatures in Figure 13.2 and 14 R pixels

in both the 3 m� 3 m and 2 m� 2 m panels are considered to be prior knowledge according

to the ground truth in Figure 1.15(b).

13.8.1 Image Background Characterized by Supervised Knowledge

By viewing the scene in Figure 13.2, a large portion of the image background is made up of

one-fourth of a forest on the left and three-fourth of a large grass field. Using this supervised

knowledge, we conducted two experiments to represent the image background. One is to use

the area B to characterize the image background. In this case, a single background signature

bB used for LSOSP was obtained by averaging all the pixels in the area B and the training

samples used for FLDA and FVC-FLSMA were all the pixels in the area B for one back-

ground class. In this case, we can compare the results of real image experiments to those of

the synthetic image experiments. Another is to use the area marked by A and the area

Table 13.1 Quantitative results produced by the AFCLS-FLSMA and FCLS

First row p11;11 p11;12 p11;21 p11;22 p12;11 p12;12 p13;11 p14;11

AFCLS-FLDA 1 1 1 1 1 1 0.503 0.249

FCLS 1 1 1 1 1 1 0.502 0.212

Second row p21;11 p21;12 p21;21 p21;22 p22;11 p22;12 p23;11 p24;11
AFCLS-FLDA 1 1 1 1 1 1 0.483 0.256

FCLS 1 1 1 1 1 1 0.492 0.268

Third row p31;11 p31;12 p31;21 p31;22 p32;11 p32;12 p33;11 p34;11
AFCLS-FLDA 1 1 1 1 1 1 0.494 0.237

FCLS 1 1 1 1 1 1 0.492 0.24

Fourth row p41;11 p41;12 p41;21 p41;22 p42;11 p42;12 p43;11 p44;11
AFCLS-FLDA 1 1 1 1 1 1 0.485 0.247

FCLS 1 1 1 1 1 1 0.498 0.207

Fifth row p51;11 p51;12 p51;21 p51;22 p52;11 p52;12 p53;11 p54;11
AFCLS-FLDA 1 1 1 1 1 1 0.497 0.244

FCLS 1 1 1 1 1 1 0.485 0.242
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marked by C in Figure 13.2 to represent the image background. In this case, two single back-

ground signatures bA and bC used for LSOSP were obtained by averaging all the pixels in

the areas A and C separately and the training samples used for FLDA and FVC-FLSMA

were all the pixels in the areas A and C for two background classes, forest and grass.

EXAMPLE 13.4

(FVC-FLSMA vs. FLDA, LSOSP, TCIMF, and CEM) and (AFCLS-FLSMA vs. FCLS)

Like Examples 13.1 and 13.2, we implemented FVC-FLSMA, FLDA, LSOSP, TCIMF, and CEM with the

image background considered as a single class. So, the training samples used for FVC-FLSMA and FLDA

were the R pixels in the 3 m� 3 m and 2m� 2m panels in Figure 13.2 (see Figure 1.15(b)) and background

pixels in the area B. For LSOSP and TCIMF with p¼ 1, the used target signature matrix M1 is formed by

M1 ¼ p1 p2 p3 p4 p5 bB½ 	 where the panel signatures pif g5i¼1 are shown in Figure 1.16. Figure 13.6(a)–(e)

shows the classification results of the 15 panels in Figure 13.2 produced by FVC-FLSMA, FLDA, LSOSP,

TCIMF, and CEM, respectively, with a single-class background.

As we can see from Figure 13.6, FLDA performed surprisingly well compared to LSOSP and CEM in

detection of pure pixels. For the overall performance, TCIMF seemed to produce the best results in terms of

panel pixel detection including the detection of subpixel panels and the LSOSP was the worst.

Figure 13.6 only shows qualitative results for classification. For quantitative analysis AFCLS-FLSMA and

FCLS were implemented for comparison. Fig. 13.7 shows their quantification results in gray scales, which are

unmixed in Table 13.2 for the abundance fractions of 19 panel pixels. As we can see in Figure 13.7 and

Table 13.2, AFCLS-FLSMA performed significantly better than FCLS.

Now, we repeated the same experiments except that two background classes were used. In this case, the train-

ing samples used for the background for FVC-FLSMA and FLDA were the pixels in areas A and C, whereas

the target signature matrix M2 used for the LSOSP and TCIMF was formed by M2 ¼ p1 p2 p3 p4 p5 bA bC½ 	.

Table 13.2 Quantitative results produced by the AFCLS-FLSMA and

FCLS with a one-class background

AFCLS-FLSMA FCLS

p11 1 0.76,169

p12 0.85,046 0.58,071

p13 0.29,045 0.07,407

p211 1 0.90,912

p221 1 0.78,833

p22 0.96,217 0.77,286

p23 0.32361 0.75,824

p311 0.98,743 0.94,059

p312 1 0.90,582

p32 0.84,462 0.17,028

p33 0.4375 0

p411 1 0.50,936

p412 0.99,869 0.6555

p42 0.92,917 0.79,783

p43 0.22,415 0.08,977

p511 0.8945 0.82,314

p521 1 1

p52 0.95,603 0.89,426

p53 0.21,056 0
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Figure 13.8(a)–(d) shows the classification results of the 15 panels in Figure 13.2 produced by FVC-FLSMA,

FLDA, LSOSP, and TCIMF, respectively, with a two-class background. Once again, AFCLS-FLSMA and FCLS

were implemented for quantitative analysis. Fig. 13.9 shows their quantification results in gray scales for the

abundance fractions of 19 panel pixels which are unmixed and tabulated in Table 13.3. As shown in Figure 13.9

and Table 13.3 FCLS was significantly improved compared to its counterpart results obtained in Figure 13.7 and

Table 13.2 and so was AFCLS-FLSMA. These experiments demonstrate that image back information is very

important and crucial for FLSMAwork effectively.

It should be noted that CEM only required one of panel signatures, wT
l mj ¼ dlj as a desired target

signature d while suppressing all signal sources other than the d. So, it had the same performance

regardless of how many background classes were used. In this case, the same result produced by CEM

Figure 13.6 Classification results of the 15 panels in Figure 13.2 produced by FVC-FLSMA, FLDA,

LSOSP, TCIMF, and CEM, respectively, with a single-class background.
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in Figure 13.6(e) was applied to this experiment, but not included in Figure 13.8. The results produced

by FLDA in Figure 13.8(b) were pretty much the same as those in Figure 13.6(b). Interestingly, the

performance of FVC-FLSMA in Figure 13.8(a) was slightly deteriorated compared to that in Figure 13.6(a).

By contrast, TCIMF improved slightly if we compare Figure 13.8(d) to Figure 13.6(d). Once again, LSOSP

was still the worst and did not improve very much. This is because there were still not sufficient endmembers

to represent the background.

13.8.2 Image Background Characterized by Unsupervised Knowledge

In Section 13.7.1, we have seen that FVC-FLSMA did not perform as well as FLDA. This is

mainly due to the fact that the image background in Figure 13.2 cannot be fully characterized by

one single class or two classes. Since the image background is not well characterized, the perform-

ance of FLSMA was not as good as it did for the synthetic image in Section 13.7.1. In order to

improve its performance, we need to find an appropriate set of background pixels that can well

represent the image background. According to Chang (2003a) and Chang and Du (2004), the num-

ber of spectrally distinct signatures in the scene in Figure 13.2 is estimated to be 18. Apparently,

using one or two background classes to describe the image background is far from being complete.

This implies that we need at least 13 distinct signatures to characterize the image background in

addition to the five panel signatures in Figure 1.16. In this case, we used an algorithm, referred to

as automatic target generation process (ATGP), developed for the automatic target detection and

classification algorithm (ATDCA) (Chang, 2003a; Ren and Chang, 2001) to generate 13 target

pixels, denoted by tkf g13k¼1 shown in Figure 13.10 that could be used to find training samples to

represent the image background.

Since each of the 13 target pixels represent one single distinct class and they are not sufficient

to be used for training samples, SAM was used to find pixels that are similar to each of the 13 target

Table 13.3 Quantitative results produced by the AFCLS-FLSMA and

FCLS with a two-class background

AFCLS-FLSMA FCLS

p11 1 0.76,169

p12 0.95,109 0.57,429

p13 0.22,928 0.08,378

p211 0.99,931 0.90,912

p221 1 0.78,833

p22 0.97,827 0.82,227

p23 0.31,634 0.41,548

p311 0.98,742 0.92,294

p312 1 0.90,582

p32 0.93,698 0.31,199

p33 0.55,418 0.29,653

p411 1 0.50,936

p412 1 0.34,952

p42 0.96,166 0.80,963

p43 0.23,799 0.15656

p511 0.9506 0.8301

p521 1 1

p52 0.96,799 0.91,744

p53 0.27,907 0.11,203
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Figure 13.7 Classification results of the 15 panels in Figure 13.2 produced by the FVC-FLSMA, FLDA,

LSOSP, and TCIMF, respectively, with a two-class background.

Figure 13.8 Classification results of the 15 panels in Figure 13.2 produced by produced by the AFCLS-

FLSMA and FCLS with a one-class background.
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pixels to form a set of training data for each of the 13 classes, Cif g13i¼1. Then the means of each of

the 13 classes were further calculated, mif g13i¼1 to form part of a target signature matrix M for

LSOSP and TCIMF. In our experiments, the threshold for SAM was set to 0.04 and the total num-

ber of found training sample was 698 that included the 14 R pixels in both the 3 m� 3 m and

2 m� 2 m panels in Figure 13.2.

EXAMPLE 13.5

(FVC-FLSMA vs. FLDA, LSOSP, TCIMF, and CEM)

Now we repeated the same experiments conducted for Example 13.4 where 13 classes are used to characterize

the image background. Figures 13.11 and 13.12 show the results of FVC-FLSMA, FLDA, LSOSP, TCIMF,

and CEM.

There are several interesting observations. One is that comparing the results in Figure 13.11(a) to

those in Figures 13.6(a) and 13.8(a), the performance of FLSMA was not improved; even more back-

ground classes were included. Another is that LSOSP was slightly improved and its performance was

comparable to that of FVC-FLSMA. But this is not the case as shown in Figures 13.6 and 13.8 where

FVC-LSMA performed much better than LSOSP. Additionally, by comparing the results in Figure 13.11

to those in Figures 13.6 and 13.8, we can see that the performance of TCIMF was also slightly

improved, while FLDA performed better than the results in Figures 13.6 and 13.8 with a few false

Figure 13.9 Classification results of the 15 panels in Figure 13.1(b) produced by produced by the AFCLS-

FLSMA and FCLS with a two-class background.

Figure 13.10 13 ATGP-generated target pixels.
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Figure 13.11 Classification results of the 15 panels in Figure 13.2 produced by FVC-FLSMA, FLDA,

LSOSP, and TCIMF, respectively, with unsupervised background generated by ATGP.

Figure 13.12 Classification results of the 15 panels in Figure 13.2 produced by produced by the AFCLS-

FLSMA and FCLS, respectively, with unsupervised background generated by ATGP.
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alarms occurring on the left edge. Interestingly, similar conclusions cannot be drawn if abundance

constrained classifiers were used. It should be noted that the poor performance of FVC-FLSMA in

Figure 13.11 resulted from the used training samples, which may not well represent the image back-

ground, not the technique itself. The issue of finding an appropriate set of training data is a great chal-

lenge to unsupervised mixed pixel classification. Now we further implemented AFCLS-FLSMA and

FCLS for quantitative analysis. Fig. 13.12 shows their quantification results in gray scales. As we can

see, FCLS was significantly improved and its performance was very comparably to AFLCS-FLSMA in

Figure 13.12 by visual inspection. However, if we tabulate the unmixed abundance fractions of 19 panel

pixels in Table 13.4, AFCLS-FLSMA still outperformed FCLS.

13.9 Conclusions

This chapter presents a new approach to LSMA, referred to as FLSMA, which directly extends the

well-known FLDA to LSMA in two different ways. One is called FVC-FLSMA that constrains the

Fisher ratio-generated feature vectors to mutual orthogonal directions. Another is called AC-FLSMA

that imposes the sum-to-one and non-negativity constraints on abundance fractions in the least squares

sense. It has been shown that FVC-FLSMA operates in the same way as LCMV does, with the only

difference that the data correlation matrix used in LCMV is replaced by the within-class scatter matrix

in FLSMA. Because the within-class scatter matrix is a more effective measure than the data correla-

tion matrix in pattern classification, FVC-FLSMA performs better than LCMV in mixed pixel classifi-

cation. Additionally, it also shows that LCDA is essentially the same as FVC-FLSMA. There are also

three types of AC-FLSMA that can be derived in parallel in the same fashion as three types of con-

strained least squares methods are developed for LSMA in Chang (2003a). They are called ASCLS-

FLSMA, ANCLS-FLSMA, and AFCLS-FLSMAwith their respective counterparts in the abundance-

Table 13.4 Quantitative results produced by the AFCLS-FLSMA and

FCLS with unsupervised background generated by ATGP

AFCLS-FLSMA FCLS

p11 1 0.86,787

p12 0.77,781 0.57,333

p13 0.21,253 0.00,666

p211 1 0.79656

p221 0.99,009 0.52,329

p22 0.96,129 0.8766

p23 0.29,875 0.47,608

p311 0.98,231 0.91,616

p312 1 0.92,114

p32 0.7857 0.61,241

p33 0.42,957 0.406

p411 1 0.67,791

p412 1 0.40,816

p42 0.91,463 0.77,807

p43 0.22,955 0.19,144

p511 0.89,007 0.85,038

p521 1 0.85,472

p52 0.93,611 0.94,691

p53 0.20,823 0.17,809
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constrained least squares LSMA, SCLS, non-negativity constrained least squares (NCLS), and FCLS.

Since the mixed pixel classification is performed by AC-FLSMA using Fisher’s ratio as a classifica-

tion measure and least squares error as an abundance estimation criterion, AC-FLSMA also performs

better than abundance-constrained least squares-based LSMA (ACLS-LSMA) and abundance-

unconstrained FVC-FLSMA. Two concluding remarks are noteworthy. FLSMA presented in this

chapter can be extended to unsupervised FLSMA (UFLSMA) in a similar manner as unsupervised

knowledge is generated to characterize unknown background in Ji et al. (2004), where UFLSMA

performed as well as FLSMA if the unsupervised generated training sample pool provided sufficient

representative samples for each of classes. Another remark is that the performance of FLSMA relies

heavily on the provided training samples. If the image is ill-represented by a given sample pool,

FLSMA may perform poorly.
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14

Weighted Abundance-Constrained
Linear Spectral Mixture Analysis

Linear spectral mixture analysis (LSMA) has been used in a wide range of applications. It is, in

general, implemented without constraints due to mathematical tractability. However, it has been

shown that abundance-constrained LSMA (AC-LSMA) can improve abundance-unconstrained

LSMA, specifically in quantification when accurate estimates of abundance fractions are neces-

sary. As long as AC-LSMA is considered, two constraints are generally imposed: abundance sum-

to-one constraint (ASC) and abundance nonnegativity constraint (ANC). A general and common

approach to solving AC-LSMA is to estimate abundance fractions in the sense of least squares

error (LSE) while satisfying desired imposed abundance constraints. Since the LSE resulting from

each individual band in abundance estimation is not weighted in accordance with significance of

each of full bands in the signatures used to unmix data sample vectors, the effect caused by LSE is

assumed to be uniform over all bands, which is, in general, not necessarily true in practical appli-

cations. This chapter extends the commonly used AC-LSMA to three types of weighted AC-LSMA

(WAC-LSMA) from three different perspectives: parameter estimation, pattern classification, and

orthogonal subspace projection (OSP). As demonstrated by experiments, WAC-LSMA generally

performs better than unweighted AC-LSMA where the latter can be considered a special case of

WAC-LSMAwith the weighting matrix chosen to be the identity matrix.

14.1 Introduction

LSMA has shown success in solving a variety of problems, such as subpixel detection, mixed pixel

classification, quantification, etc. It assumes that there are p image endmembers, m1; m2; . . . ; mp,

and any image pixel vector r is a linear mixture of these p endmembers with appropriate abun-

dance fractions, a1; a2; . . . ; ap, with aj corresponding to the abundance fraction of the jth end-

membermj as follows:

r ¼ Maþ n ð12:1Þ

where n is interpreted as a model or measurement error and M ¼ m1 m2 ; . . . ; mp

� �
is the end-

member matrix formed bym1; m2; . . . ; mp. Because of mathematical tractability, LSMA is widely

implemented without imposing any constraint on the abundance fractions a1; a2; . . . ; ap of the

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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image endmembers m1; m2; . . . ; mp. However, it has been shown in the literature, for example,

Chang (2003a), that AC-LSMA can improve abundance-unconstrained LSMA in many aspects,

such as subpixel detection, mixed pixel classification, identification, specifically quantification

that requires accurate abundance fraction estimation. As AC-LSMA is considered, two abundance

constraints can be imposed on a1; a2; . . . ; ap in (12.1): ASC, that is,
Pp

j¼1 aj ¼ 1 and abundance

non-negativity-constraint (ANC), a � 0, that is, aj � 0 for all 1 � j � p. A general and common

approach to solving AC-LSMA is to estimate abundance fractions in the sense of LSE while satis-

fying the imposed constraints. Such an approach is referred to as LSE-based AC-LSMA or simply

least squares AC-LSMA (LS AC-LSMA). More specifically, by virtue of the model in (12.1) an

LSE problem can be described as follows:

r�Mað ÞT r�Mað Þ ð14:1Þ

with n in (12.1) modeled as LSE, while constraining the abundance fractions a1; a2; . . . ; ap on

the model in (12.1) to find LSE solutions. Three types of LSE-based abundance-constrained

LSMA are generally considered to solve (14.1) (Heinz and Chang 2001; Chang, 2003a), namely,

sum-to-one constrained least squares (SCLS) that implements only ASC, nonnegativity con-

strained least squares (NCLS) that implements only ANC, and fully constrained least squares

(FCLS) that implements both ASC and ANC. Despite the fact that AC-LSMA may require

more sophisticated algorithmic implementations, the pay-off is sometimes worthwhile, specifi-

cally, for material substance quantification since it generally produces more accurate abundance

fraction estimation.

According to (14.1), LSE is equally weighted for all bands by assuming a uniform effect on

each band. In general, this may not be necessarily true. To generalize this concept, we consider a

weighted LSE approach to (14.1) by introducing a weighting matrix A that is positive definite into

(14.1) so that LSE is weighted by A via

r�Mað ÞTA r�Mað Þ: ð14:2Þ

So, if A¼ I, identity matrix, (14.2) is reduced to (14.1). A key to success in using (14.2) is how

to find an appropriate weighting matrix A that accounts for each of individual bands. As inspired

by the three signal processing perspectives studied in Chang (2005) for LSMA, the weighting

matrix A used for (14.2) can also be selected based on the same three signal processing perspec-

tives for LSE AC-LSMA. One is a parameter estimation perspective derived from the well-known

Mahalanobis distance or the Gaussian maximum likelihood estimator (GMLE). In this case, the

weighting matrix A is selected to be the inverse of the data sample covariance matrix K, K�1, in

which case (14.2) becomes the Mahalanobis distance (MD) (Fukunaga, 1990) or the Gaussian

maximum likelihood estimator (Richards and Jia, 1999). The resulting LSE AC-LSMA is called

MD-weighted AC-LSMA. As an alternative, if A in (14.2) is replaced with R�1 (i.e., the inverse of

data sample correlation matrix R), (14.2) is reduced to a form of the linearly constrained minimum

variance (LCMV) (Chang 2002b, 2003b) that is referred to as LCMV-weighted AC-LSMA. As a

second approach, a selection of A can be derived from a view of pattern classification perspective

based on Fisher’s linear discriminant analysis (FLDA), as discussed in Chapters 2 and 13 where

the within-class scatter matrix S�1
W is used for the weighting matrix A in (14.2) that yields weighted

abundance-constrained Fisher’s LSMA (WAC-FLSMA), referred to as S�1
W -weighted AC-LSMA.

A third approach is derived from a signal detection perspective. It selects a weighting matrix A

arising from OSP. It is shown in Section 12.4 of this book, Chang (2003a) and Chang (2005), that

the undesired signature rejection matrix, P?
U , used in the OSP detector (12.9) can be approximated
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by R�1 if prior knowledge of the undesired signatures in U is not available. Using this interpreta-

tion substituting P?
U for the weighting matrix A in (14.2) results in OSP-weighted AC-LSMA. An

interesting finding is that if the weighting matrix A is selected by the signature subspace projection

(SSP) matrix (Tu et al., 1997; Chang et al., 1998) formed by the endmember matrix M in (12.1) or

(14.1), the resulting SSP-weighted AC-LSMA can be shown to be identical to the unweighted AC-

LSMA in (14.1), in which case A is the identity matrix due to the fact that both the SSP approach

and LSMA are LSE-based methods and the weighted matrix specified by SSP does not provide any

additional advantage. Nevertheless, as will be demonstrated by experiments, all these three types

of weighted AC-LSMA specified by appropriate selections for the weight matrix A in (14.2) gener-

ally perform better than unweighted AC-LSMA described by (14.1).

14.2 Abundance-Constrained LSMA (AC-LSMA)

When the abundance-unconstrained LSMA specified by (12.1) is considered, its unconstrained

LSE solution to (14.2) is given by

âðrÞ ¼ ðMTMÞ�1MTr ð14:3Þ

A commonly used least squares method is to minimize the LSE problem specified by (12.1)

over the abundance vector a ¼ a1;a2; . . . ;ap

� �T
subject to the constraints imposed by ASC and/or

ANC on a. If we impose either ASC or ANC or both on (14.1), three LSE problems derived from

AC-LSMA can be formulated as follows (Heinz and Chang 2001; Chang, 2003b).

i. Abundance sum-to-one constrained LSMA (ASCLS-LSMA) problem:

mina r�Mað ÞT r�Mað Þ� �
subject to

Xp

j¼1
aj ¼ 1 ð14:4Þ

ii. Abundance nonnegativity-constrained LSMA (ANCLS-LSMA) problem:

mina r�Mað ÞT r�Mað Þ� �
subject to a � 0 ð14:5Þ

iii. Abundance fully constrained LSMA (AFCLS-LSMA) problem:

mina r�Mað ÞT r�Mað Þ� �
subject to a � 0 and

Xp

j¼1
aj ¼ 1 ð14:6Þ

The solutions to (14.4)–(14.6) were well documented by Heinz and Chang (2001) and

Chang (2003a) and will be referred to as SCLS, NCLS, and FCLS solutions, respectively.

14.3 Weighted Least-Squares Abundance-Constrained LSMA

It should be noted that the LSE specified by (14.1) does not include a weighting matrix to account

for significance of bands in signatures used to form the M, in which case the identity matrix I is

used in (14.4)–(14.6). However, this is not necessarily an optimal way to impose LSE since it

weights LSE caused by each band equally significant. If a weighting matrix A is included in (14.2)

to account for LSEs resulting from different bands (i.e., replacing I in (14.1) with A), then an

A-weighted LSE problem is to find a solution that solves

mina r�Mað ÞTA r�Mað Þ� � ð14:7Þ
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Suppose that A is a positive-definite and symmetric matrix; we can use A1=2 that is, the square-

root form of A to whiten the LSE in (14.7) as follows:

r�Mað ÞTA1=2A1=2 r�Mað Þ ¼ r�Mað ÞT A1=2
� 	T

A1=2 r�Mað Þ
¼ A1=2r� A1=2Ma

� 	T

A1=2r� A1=2Ma
� 	 ð14:8Þ

Using a linear transformation defined by

_
r ¼ A1=2r and

_
M ¼ A1=2M ð14:9Þ

an A-whitened LSE can be obtained by

mina
_
r � _

Ma
� 	T

_
r � _

Ma
� 	
 �

ð14:10Þ

which is reduced to minimization of (14.2), except that both the image pixel vector r̂ and the

matrix
_
M have been whitened by the weighting matrix A via (14.9). Following the same approach

that derives (14.4)–(14.6), we can also consider three types of A-weighted AC-LSMA similar to

(14.4)–(14.6) as follows.

i. A-weighted abundance sum-to-one constrained LSE problem:

mina
_
r � Ma

� 	T
_
r � _

Ma
� 	
 �

subject to
Xp

j¼1
aj ¼ 1 ð14:11Þ

ii. A-weighted abundance nonnegativity-constrained LSE problem:

mina
_
r � _

Ma
� 	T

_
r � _

Ma
� 	
 �

subject toa � 0 ð14:12Þ

iii. A-weighted abundance fully constrained LSE problem:

mina
_
r � _

Ma
� 	T

_
r � _

Ma
� 	
 �

subject to a � 0 and
Xp

j¼1
aj ¼ 1 ð14:13Þ

As shown in Chapter 12 (Chang 2003a; 2005), LSMA can be interpreted from three different

perspectives: signal detection that results in OSP, parameter estimation that results in MD or

GMLE, and pattern classification that results in FLDA. In what follows, these three same perspec-

tives can also be used to develop three different approaches for AC LSMA by appropriately select-

ing a weighted matrix A used in (14.2).

14.3.1 Weighting Matrix Derived from a Parameter Estimation Perspective

There are several natural approaches to selection of the weighting matrix A in (14.2) that accounts

for spectral correlation used in parameter estimation. One is the sample covariance spectral matrix

K and the other is the sample correlation spectral matrix R.
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14.3.1.1 MD-Weighted AC-LSMA

One well-known example using a weighted mean squared error is MD, which is also known as

GMLE that uses the data covariance matrix K�1 as a weighting matrix that turns out to be a whit-

ening matrix in signal processing and communications. Substituting K�1 for A in to (14.7) yields

mina r�Mað ÞTK�1 r�Mað Þ� � ð14:14Þ

Using a linear transformation similar to (14.9), we can define

r̂ ¼ K�1=2r and M into M̂ ¼ K�1=2M ð14:15Þ

Then, the resulting K�1-whitened LSE is found by

mina r̂� M̂a
� �T

r̂� M̂a
� �n o

ð14:16Þ

that is similar to (14.10). By virtue of (14.16), we can also consider three types of MD-weighted

AC-LSMA similar to (14.11)–(14.13) as follows.

i. MD-weighted abundance sum-to-one constrained LSE problem:

mina r̂� M̂a
� �T

r̂� M̂a
� �n o

subject to
Xp

j¼1
aj ¼ 1 ð14:17Þ

ii. MD-weighted abundance nonnegativity-constrained LSE problem:

mina r̂� M̂a
� �T

r̂� M̂a
� �n o

subject to a � 0 ð14:18Þ

iii. MD-weighted abundance fully constrained LSE problem:

mina r̂� M̂a
� �T

r̂� M̂a
� �n o

subject to a � 0 and
Xp

j¼1
aj ¼ 1 ð14:19Þ

The solutions to (14.17)–(14.19) are referred to as MD-weighted SCLS, MD-weighted NCLS,

and MD-weighted FCLS, respectively.

14.3.1.2 LCMV-Weighted AC-LSMA

The LSE in (14.14) is derived from MD or GMLE. If we replace the sample covariance spectral

matrix K in (14.14) with the sample correlation spectral matrix R, we can also derive an LCMV-

based abundance-constrained LSE problem given by

mina r�Mað ÞTR�1 r�Mað Þ� � ð14:20Þ
which uses the data correlation matrix R as a weighting matrix to replace the data sample

covariance matrix K. Once again, using a linear transformation similar to (14.9) by mapping r into

r ¼ R�1=2r andM ¼ R�1=2M, we can also obtain an R�1-whitened LSE problem given by

mina r�Ma
� �T

r�Ma
� �n o

ð14:21Þ
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which is another correlation-based least-squares error problem, referred to as an LCMV-weighted

abundance-constrained LSE problem. Similarly to (14.11)–(14.13), we can also consider three

types of LCMV-weighted AC-LSMA as follows.

i. LCMV-weighted abundance sum-to-one constrained LSE problem:

mina r�Ma
� �T

r�Ma
� �n o

subject to
Xp

j¼1
aj ¼ 1 ð14:22Þ

ii. LCMV-weighted abundance nonnegativity-constrained LSE problem:

mina r�Ma
� �T

r�Ma
� �n o

subject to a � 0 ð14:23Þ

iii. LCMV-weighted abundance fully constrained LSE problem:

mina r�Ma
� �T

r�Ma
� �n o

subject toa � 0 and
Xp

j¼1
aj ¼ 1 ð14:24Þ

The solutions to (14.23)–(14.25) are referred to as LCMV-weighted SCLS, LCMV-weighted

NCLS, and LCMV-weighted FCLS, respectively.

14.3.2 Weighting Matrix Derived from Fisher’s Linear Discriminant Analysis
Perspective

FLDA is one of most widely used pattern classification techniques in pattern recognition and has

been considered in Chapters 2 and 13, where a Fisher’s ratio-based LSE problem could be formu-

lated as

mina r�Mað ÞTS�1
W r�Mað Þ� � ð13:27Þ

with the weighting matrix A in (14.7) being replaced by S�1
W . So, with the transformation defined

by ~r ¼ S
�1=2
W r and ~M ¼ S

�1=2
W M via (13.28), (13.27) can be whitened in the sense of classification

by S�1
W and becomes

mina ~r� ~Ma
� �T

~r� ~Ma
� �n o

ð13:29Þ

Therefore, we can also obtain three types of S�1
W -weighted AC-LSMA, also referred to as abun-

dance-constrained least-squares FLDA (ACLS-FLDA) in Chapter 13, as follows:

i. S�1
W -weighted abundance sum-to-one constrained LSE problem:

mina ~r� ~Ma
� �T

~r� ~Ma
� �n o

subject to
Xp

j¼1
aj ¼ 1 ð14:25Þ

ii. S�1
W -weighted abundance nonnegativity-constrained LSE problem:

mina ~r� ~Ma
� �T

~r� ~Ma
� �n o

subject to a � 0 ð14:26Þ
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iii. S�1
W -weighted abundance fully constrained least LSE problem:

mina ~r� ~Ma
� �T

~r� ~Ma
� �n o

subject toa � 0 and
Xp

j¼1
aj ¼ 1 ð14:27Þ

The solutions to (14.25)–(14.27) are referred to as S�1
W -weighted SCLS, S�1

W -weighted NCLS,

and S�1
W -weighted FCLS, respectively.

14.3.3 Weighting Matrix Derived from an Orthogonal Subspace Projection
Perspective

As we have seen in Sections 14.3.1 and 14.3.2, the weighting matrix A can be selected by either the

sample spectral covariance/correlation matrix or Fisher’s ratio. In this section, we present another

selection of the weighting matrix A by criteria based on OSP.

14.3.3.1 OSP-Weighted AC-LSMA

According to the signal-decomposed interference-annihilated (SDIA) model in Du and Chang

(2004), the signal sources can be decomposed into signal sources and unwanted signal sources. If

we let U be the unwanted signature matrix formed of such interferers, we can project all image

pixels onto the space hUi? that is orthogonal to the space linearly spanned by the signal sources in

U and then perform the LSE problem specified by (14.1) in hUi?. In doing so, the weighting matrix

A in (14.7) is designed by the unwanted signature rejector P?
U defined by

P?
U ¼ I� UðUTUÞ�1UT : ð2:86Þ

The resulting LSE problem is obtained by replacing A in (14.7) with P?
U in (2.86) and given by

mina r�Mað ÞTP?
U r�Mað Þ� �

: ð14:28Þ

Since P?
U is idempotent, P?

U ¼ P?
U

� �2
and P?

U

� �T ¼ P?
U . This implies that

r�Mað ÞTP?
U r�Mað Þ ¼ r�Mað ÞT P?

U

� �2
r�Mað Þ

¼ r�Mað ÞT P?
U

� �T
P?
U r�Mað Þ ¼ P?

Ur� P?
UMa

� �T
P?
Ur� P?

UMa
� �

:
ð14:29Þ

Using a linear transformation similar to (14.9) by mapping r into
^
r ¼ P?

Ur and M into
^
M ¼ P?

UM, we can also obtain a similar form to (14.10) given by

mina
^
r� ^

Ma
� 	T

^
r� ^

Ma
� 	
 �

ð14:30Þ

which is referred to as the OSP-weighted abundance-constrained LSE problem. Consequently, we

can also consider three types of OSP-weighted AC-LSMA as follows:

i. OSP-weighted abundance sum-to-one constrained LSE problem:

mina
^
r� ^

Ma
� 	T

^
r� ^

Ma
� 	
 �

subject to
Xp

j¼1
aj ¼ 1 ð14:31Þ
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ii. OSP-weighted abundance nonnegativity-constrained LSE problem:

mina
^
r� ^

Ma
� 	T

^
r� ^

Ma
� 	
 �

subject toa � 0 ð14:32Þ

iii. OSP-weighted abundance fully constrained LSE problem:

mina
^
r� ^

Ma
� 	T

^
r� ^

Ma
� 	
 �

subject to a � 0 and
Xp

j¼1
aj ¼ 1 ð14:33Þ

The solutions to (14.31)–(14.33) are referred to as OSP-weighted SCLS, OSP-weighted NCLS,

and OSP-weighted FCLS, respectively. In order for the OSP-weighted ACLSMA to work effec-

tively, the unknown signal sources in the matrix U must be found appropriately in an unsupervised

means. One such an algorithm is the automatic target generation process (ATGP) developed by

Ren and Chang (2003), and Chapter 8 can be used for this purpose.

14.3.3.2 SSP-Weighted AC-LSMA

As an alternative to (14.28), we can also formulate an LSE problem by performing abundance

estimation in the space that is linearly spanned by the signal sources in the signature matrix M

exclusively. This can be done by replacing P?
U in (14.28) with a signature subspace projector, PM,

defined in Scharf (1991) by

PM ¼ MðMTMÞ�1MT ð14:34Þ

and the resulting LSE problem is referred to as SSP-weighted AC-LSMA that finds a solution to

the following optimization problem:

mina r�Mað ÞTPM r�Mað Þ� � ð14:35Þ

Since PM is idempotent, PMð Þ2 ¼ PM and PMð ÞT ¼ PM. Using a linear transformation similar

to (14.9) by mapping r into r̂ ¼ PMr and M̂ ¼ PMM ¼ M, we can also obtain the following form

similar to (14.28):

mina r̂�Mað ÞT r̂�Mað Þ
n o

ð14:35aÞ

Interestingly, the solution to (14.35) is

âðr̂ Þ ¼ ðMTMÞ�1
MT r̂ ¼ ðMTMÞ�1

MTPMr

¼ ðMTMÞ�1MTMðMTMÞ�1MTr ¼ ðMTMÞ�1MTr ¼ âðrÞ ð14:36Þ

which turns out to be identical to the abundance-unconstrained least-squares LSMA solution given

by (14.4). As a result, the three types of SSP-weighted AC-LSMA are essentially the same ASC-

LSMA, ANC-LSMA, and AFC-LSMA described by (14.4)–(14.6). This is because the weighted

matrix specified by the SSP does not provide any additional advantage, as shown in (14.36) and

PMM ¼ M.
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14.4 Synthetic Image-Based Computer Simulations

To evaluate performance of WAC-LSMA, a synthetic image similar to Figure 13.1 is simulated in

Figure 14.1, where an area marked by “A” was used to simulate the image background.

This synthetic image scene to be simulated has size of 64� 64 pixel vectors and 20 panels

with various sizes arranged in a 5� 4 matrix and located at the center of the scene, as shown

in Figure 14.2(a).

The five panel signatures in Figure 1.16 are used to simulate these 20 panels. For row i, the

panel signature pi was used to simulate four panels with a 2� 2-pixel panel, {pi1;11,p
i
1;12,p

i
1;21,p

i
1;22}

in the first column, a 1� 2-pixel panel, {pi2;11,p
i
2;12} in the second column, a one-pixel panel, pi3;1

in the third column, and a one-pixel panel, pi4;1 in the fourth column, respectively. While the pixels

in all the 2� 2-pixel panels and the 1� 2-pixel panels are pure pixels simulated by 100% panel

signature pi, the panels, pi3;1 and pi4;1, are subpixel panels simulated by (50%pi, 50%bA) and

(25%pi, 75%bA), where the background signature bA is a grass signature obtained by averaging

all the pixels in the area “A” marked in Figure 14.1.

Figure 14.2(b) is a synthetic image simulated by implanting the 20 panels in Figure 14.2(a) in

the grass signature bA-generated image background. Unlike Figure 13.1(c) that was simulated by

implanting panel pixels in the image background in the same way as the scenario TI2 is simulated

as described in Chapter 4, Figure 14.2(c) was simulated by adding a Gaussian noise to the syn-

thetic image in Figure 14.2(b) in the same way as the scenario TI3 was simulated as described in

Chapter 4 with the signal-to-noise ratio 20:1 defined in Harsanyi and Chang (1994). If we com-

pare Figure 14.2(c) with Figure 13.1(c), the panel pixels in Figure 14.2(c) are invisible because

Figure 14.1 A HYDICE image scene with background signature marked by A.

Figure 14.2 A synthetic image with 20 implanted panels.
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these panel pixels are corrupted by Gaussian noise as compared to those in Figure 13.1(c), which are

clean and visible in the noise image background. Thus, estimating abundance fractions of the panel

pixels in the synthetic image in Figure 14.2(c) should be more difficult than those in Figure 13.1(c).

Since full constraints, that is, ASCþANC on abundance fractions are of major interest in this

section, the algorithms to be evaluated for comparative analysis are weighted fully abundance

constrained LSMA that are MD-weighted AC-LSMA, LCMV-weighted AC-LSMA, S�1
W -weighted

AC-LSMA, and OSP-weighted AC-LSMA plus the FCLS that is the unweighted AC-LSMA (i.e.,

A¼ I, unweighting AC-LSMA) and also turns out to be the SSP-weighted AC-LSMA (i.e., A�1¼
PM, unweighting AC-LSMA).

EXAMPLE 14.1

(with Complete Knowledge of Panel Signatures and Background Signature)

This example assumes that complete knowledge of the five panel signatures in Figure 1.16 and the back-

ground signature bA is given a priori. Figure 14.3 shows the abundance fractions of the 20 panels in

Figure 14.2(c) unmixed by the following six methods, (a) MD-weighted AC-LSMA, (b) LCMV-weighted

AC-LSMA, (c) S�1
W -weighted AC-LSMA, (d) OSP-weighted AC-LSMA, (e) FCLS, and (f) unconstrained

LSOSP, respectively, with additional results produced by the unconstrained LSOSP being included in Figure

14.3 for comparison.

As shown in Figure 14.3, all the weighted AC-LSMA methods produced very comparable results and

performed significantly better than the unconstrained LSOSP did. It should be noted that the S�1
W -weighted

AC-LSMA requires a training set to implement. For our experiments, the training samples were selected and

consisted of the pixels in the 2� 2-pixel panels in the first column of five rows in Figure 14.2(a) and all back-

ground pixels in the right strip marked by “A” in Figure 14.2(c). Also, when the OSP-weighted AC-LSMA

was implemented, the threshold chosen for the SAM to find interferers was set to 0.03 that resulted in 18

interferers. For quantitative analysis, Table 14.1 tabulates abundance fractions unmixed by the supervised

MD-weighted AC-LSMA, LCMV-weighted AC-LSMA, S�1
W -weighted AC-LSMA, and OSP-weighted AC-

LSMA, FCLS, and unconstrained LSOSP, where the quantification results provide further evidence that the

S�1
W -weighted AC-LSMA was the best in producing accurate abundance fractions in most of the 20 panels.

This is due to the fact that the S�1
W -weighted AC-LSMA took advantage of training samples to perform classi-

fication based on Fisher’s ratio.

Figure 14.4 graphically plots the abundance fractions of the 20 panels in Table 14.1 for visual assessment.

According to Figure 14.4, both MD-weighted AC-LSMA and LCMV-weighted AC-LSMA labeled by (a) and

(b) performed in a very similar way. Surprisingly, the OSP-weighted AC-LSMA labeled by (d) did not per-

form as good as did the MD-weighted AC-LSMA and LCMV-weighted AC-LSMA. On the other hand, the

FCLS labeled by (e) seemed to perform very well and slightly better than the MD-weighted AC-LSMA and

LCMV-weighted AC-LSMA in quantification of full panel pixels, but not for subpixel panels.

EXAMPLE 14.2

(with No Prior Knowledge About Panel Signatures and Background Signature)

Unlike Example 14.1, no prior knowledge about the synthetic image in Figure 14.2(c) was assumed. In partic-

ular, there was no knowledge about how many signatures would represent the image scene. In this case, we

ought to find a set of these signatures directly from the data in an unsupervised manner. First, we need to

determine the number of signatures required to be generated for the scene. The virtual dimensionality (VD)

developed in Chapter 5 provided a good estimate of the number of spectrally distinct signatures, p, in hypepr-

spectral image data where the Harsanyi–Farrand–Chang (HFC) and noise-whitened HFC (NWHFC) methods

were used in this example to determine p. Table 14.1 tabulates the VD estimated by the HFC and NWHFC
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methods in accordance with various false-alarm probabilities indicated by PF. According to Table 14.2, a good

estimate for p was set to 6.

In order to produce a set of six desired signatures for the synthetic scene, the iterative N-finder algorithm

(IN-FINDR) in Chapter 7 was used to find six endmembers, fejg6j¼1
, as shown in Figure 14.5 that included five

panel pixels specified by all the five different panel signatures, fpig5i¼1, and one background pixel.

The spectral signatures of these six pixels were then used to form the desired signature matrix M. In addi-

tion, according to Chapter 5 in Chang (2003a), the performance can be improved by eliminating interference

prior to classification. In this case, ATGP was applied to find all potential interferers and terminated when a

Figure 14.3 Abundance fraction results of 20 panels estimated by the supervised five AC-LSMA methods

and unconstrained LSOSP.
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warning sign of matrix singularity was flagged. Since some of the ATGP-generated target pixels may also be

very similar or identical to IN-FINDR-generated endmembers, these ATGP-generated target pixels could not

be considered interferers. Thus, when OSP-weighted AC-LSMA was implemented, the unwanted signature

matrix U would be formed of all the ATGP-generated target pixels by excluding those that were also IN-

FINDR generated endmembers. In this case, SAM was set to 0.04 to determine if an ATGP-target pixel was

also an endmember. As a result, 22 interferers were found for OSP annihilation. On the other hand, when

S�1
W -weighted AC-LSMAwas implemented, a set of training samples was required. In this case, SAM was set

to 0.04 to find pixels that were similar to each of the six endmembers, fejg6j¼1
, to form a set of training data for

each of the p classes, fCjg6j¼1
. Then, the means of each of the p classes were further calculated, fmjg6j¼1

, to

form the desired signature matrixM. With knowledge provided byM and the training samples by fCjg6j¼1
, six

Table 14.1 Quantitative results produced by the supervised MD-weighted AC-LSMA, LCMV-weighted AC-

LSMA, S�1
W -weighted AC-LSMA, OSP-weighted AC-LSMA, FCLS, and unconstrained LSOSP

First row p11;11 p11;12 p11;21 p11;22 p12;11 p12;12 p13;11 p14;11

MD-weighted AC-LSMA 0.979 0.975 0.98 0.943 0.953 0.947 0.481 0.252

LCMV-weighted AC-LSMA 0.975 0.975 0.985 0.941 0.954 0.95 0.481 0.258

S�1
W -weighted AC-LSMA 0.989 0.998 0.997 0.981 0.933 0.927 0.482 0.226

OSP-weighted AC-LSMA 0.983 0.992 0.986 0.915 1 0.968 0.486 0.201

FCLS 0.994 1 0.991 0.926 0.991 0.972 0.519 0.211

unconstrained LSOSP 1.017 1.044 1.131 1.015 1.049 0.923 0.537 0.219

Second row p21;11 p21;12 p21;21 p21;22 p22;11 p22;12 p23;11 p24;11
MD-weighted AC-LSMA 0.911 0.918 0.974 0.957 0.964 0.97 0.504 0.259

LCMV-weighted AC-LSMA 0.928 0.919 0.976 0.954 0.962 0.964 0.489 0.268

S�1
W -weighted AC-LSMA 0.972 0.977 0.997 0.99 0.941 0.926 0.47 0.216

OSP-weighted AC-LSMA 0.909 0.903 1 0.993 0.971 0.924 0.337 0.247

FCLS 0.902 0.983 1 0.968 0.997 0.892 0.52 0.185

unconstrained LSOSP 1.037 1.131 1.096 1.059 0.845 0.982 0.566 0.127

Third row p31;11 p31;12 p31;21 p31;22 p32;11 p32;12 p33;11 p34;11
MD-weighted AC-LSMA 0.923 0.957 0.969 0.984 0.942 0.952 0.498 0.236

LCMV-weighted AC-LSMA 0.925 0.954 0.97 0.981 0.943 0.95 0.502 0.229

S�1
W -weighted AC-LSMA 0.976 0.992 1 0.99 0.984 0.953 0.487 0.207

OSP-weighted AC-LSMA 0.923 0.992 0.937 0.914 1 0.923 0.014 0.086

FCLS 0.962 0.983 0.984 0.981 0.995 0.971 0.491 0.215

Unconstrained LSOSP 0.955 1.028 1.064 1.02 1.132 1.058 0.531 0.241

Fourth row p41;11 p41;12 p41;21 p41;22 p42;11 p42;12 p43;11 p44;11
MD-weighted AC-LSMA 0.968 0.921 0.97 0.941 0.933 0.958 0.481 0.215

LCMV-weighted AC-LSMA 0.968 0.919 0.972 0.943 0.934 0.957 0.48 0.216

S�1
W -weighted AC-LSMA 0.995 0.974 1 0.99 0.954 0.976 0.496 0.222

OSP-weighted AC-LSMA 0.958 0.914 0.882 0.988 0.96 0.984 0.475 0.139

FCLS 0.984 0.892 0.953 0.98 0.926 0.94 0.493 0.172

Unconstrained LSOSP 0.992 0.906 1.024 0.985 1.072 0.972 0.618 0.23

Fifth row p51;11 p51;12 p51;21 p51;22 p52;11 p52;12 p53;11 p54;11
MD-weighted AC-LSMA 0.973 0.955 0.969 0.951 0.99 0.962 0.478 0.246

LCMV-weighted AC-LSMA 0.96 0.953 0.959 0.954 0.989 0.963 0.477 0.245

S�1
W -weighted AC-LSMA 0.999 1 0.996 0.996 1 1 0.477 0.243

OSP-weighted AC-LSMA 0.958 1 0.955 0.987 0.999 0.999 0.385 0.221

FCLS 0.989 1 0.964 0.993 0.987 1 0.419 0.229

Unconstrained LSOSP 0.848 0.966 1 1.039 1.079 1.053 0.526 0.317
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Figure 14.4 Graphical representation of abundance fractions of panel pixels in Figure 14.3 for visual

assessment.

Table 14.2 VD estimated by the HFC and NWHFC methods with various false-alarm probabilities PF

PF¼ 10c1 PF¼ 10�2 PF¼ 10�3 PF¼ 10�4

HFC 15 7 5 4

NWHFC 6 6 6 6

Figure 14.5 Six endmembers found by the N-FINDR.
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methods, MD-weighted AC-LSMA, LCMV-weighted AC-LSMA, S�1
W -weighted AC-LSMA, OSP-weighted

AC-LSMA, FCLS, and unconstrained LSOSP labeled by (a–f) were implemented for comparison. Figure 14.6

shows their corresponding abundance fraction results of the 20 panels in Figure 14.2(c) with full abundance

constraints (i.e., ASCþANC), respectively, where the S�1
W -weighted AC-LSMA clearly outperformed all the

other five methods and the unconstrained LSOSP was the worst.

Figure 14.6 Abundance fraction results of 20 panels estimated by unsupervised five AC-LSMA methods

and unconstrained LSOSP.
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Table 14.3 tabulates the abundance fractions of the 20 panels obtained by the six methods (a)–(f) in

Figure 14.6, using unsupervised knowledge for quantitative analysis.

According to the quantification results, the S�1
W -weighted AC-LSMA in Figure 14.6(c) was the only one

that produced most accurate abundance fractions of all the 20 panels and performed in a way that was very

much comparable to its supervised counterpart in Example 14.1. Unfortunately, it was not the case for all

other five methods in Figures 14.6(a) and (b) and 14.6(d)–(f) that apparently could not be compared with

their supervised counterparts in Example 14.1. For a better visual assessment, Figure 14.7 graphically

plots the abundance fractions of the 20 panels in Table 14.1.

Table 14.3 Quantitative results produced by the unsupervised MD-weighted AC-LSMA, LCMV-weighted

AC-LSMA, S�1
W -weighted AC-LSMA, OSP-weighted AC-LSMA, FCLS, and unconstrained LSOSP, with

endmembers generated by IN-FINDR

First row p11;11 p11;12 p11;21 p11;22 p12;11 p12;12 p13;11 p14;11

MD-weighted AC-LSMA 0.752 0.746 1 0.745 0.746 0.757 0.431 0.283

LCMV-weighted AC-LSMA 0.75 0.746 1 0.745 0.753 0.76 0.433 0.288

S�1
W -weighted AC-LSMA 1 0.998 0.999 0.986 0.964 0.973 0.493 0.229

OSP-weighted AC-LSMA 0.768 0.723 1 0.761 0.809 0.713 0.392 0.149

FCLS 0.713 0.707 1 0.738 0.777 0.718 0.37 0.193

Unconstrained LSOSP 0.714 0.713 1 0.739 0.791 0.711 0.362 0.177

Second row p21;11 p21;12 p21;21 p21;22 p22;11 p22;12 p23;11 p24;11
MD-weighted AC-LSMA 0.615 0.628 1 0.669 0.678 0.671 0.416 0.222

LCMV-weighted AC-LSMA 0.617 0.618 1 0.656 0.668 0.657 0.408 0.229

S�1
W -weighted AC-LSMA 0.963 0.952 0.986 0.993 0.992 0.977 0.488 0.226

OSP-weighted AC-LSMA 0.279 0.366 1 0.559 0.383 0.444 0.301 0.262

FCLS 0.488 0.576 1 0.693 0.631 0.65 0.407 0.257

Unconstrained LSOSP 0.345 0.413 1 0.547 0.448 0.482 0.353 0.33

Third row p31;11 p31;12 p31;21 p31;22 p32;11 p32;12 p33;11 p34;11
MD-weighted AC-LSMA 0.711 0.754 0.766 1 0.713 0.726 0.492 0.302

LCMV-weighted AC-LSMA 0.711 0.754 0.766 1 0.713 0.725 0.493 0.302

S�1
W -weighted AC-LSMA 0.962 0.993 1 0.995 0.993 0.994 0.485 0.216

OSP-weighted AC-LSMA 0.859 0.842 0.858 1 0.923 0.855 0.262 0.33

FCLS 0.886 0.907 0.886 1 0.916 0.882 0.508 0.235

Unconstrained LSOSP 0.842 0.842 0.866 1 0.912 0.885 0.479 0.239

Fourth row p41;11 p41;12 p41;21 p41;22 p42;11 p42;12 p43;11 p44;11
MD-weighted AC-LSMA 0.784 0.741 1 0.779 0.762 0.787 0.452 0.241

LCMV-weighted AC-LSMA 0.786 0.745 1 0.782 0.763 0.787 0.456 0.238

S�1
W -weighted AC-LSMA 0.999 0.983 1 0.987 0.979 0.995 0.496 0.235

OSP-weighted AC-LSMA 0.722 0.643 1 0.77 0.58 0.754 0.459 0.114

FCLS 0.723 0.63 1 0.757 0.604 0.72 0.44 0.148

unconstrained LSOSP 0.67 0.566 1 0.687 0.604 0.678 0.441 0.129

Fifth row p51;11 p51;12 p51;21 p51;22 p52;11 p52;12 p53;11 p54;11
MD-weighted AC-LSMA 1 0.759 0.802 0.763 0.819 0.792 0.376 0.207

LCMV-weighted AC-LSMA 1 0.765 0.808 0.783 0.827 0.81 0.378 0.202

S�1
W -weighted AC-LSMA 1 1 0.992 0.996 0.997 1 0.48 0.24

OSP-weighted AC-LSMA 1 0.726 0.807 0.856 0.782 0.837 0.129 0.133

FCLS 1 0.902 0.806 0.917 0.76 0.911 0.109 0

unconstrained LSOSP 1 0.716 0.772 0.805 0.677 0.812 0.112 0.024
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14.5 Real Image Experiments

In this section, the 15-panel HYDICE image scene in Figure 1.15(a) was used for experiments.

One major difference between the real HYDICE image scene in Figure 1.15(a) and the simu-

lated synthetic image in Figure 14.1(c) was that very little knowledge of the image background

in Figure 1.15(a) was known compared to the image background in Figure 14.1(b), which was

simulated by complete knowledge. As we may expect, an AC-LSMA classifier may not per-

form as well as it did for the synthetic image if the image background in Figure 1.15(a) was

not well characterized. In order to demonstrate this fact, two scenarios were used to character-

ize the image background as follows. In addition, we also assumed that knowledge of the 9 R

pixels in the 3 m� 3 m and 5 R pixels in the 2 m� 2 m panels in Figure 1.15(b) was available

a priori. This is because the panels in the 3rd column are subpixel panels which cannot be visual-

ized to obtain as priori knowledge. Thus, the panel signatures in Figure 1.16 and 14 R pixels in

both the 3 m� 3 m and 2 m� 2 m panels were considered to be prior knowledge.

By viewing the scene in Figure 14.2, a large portion of the image background is formed of one-

fourth of a forest on the left and three-fourth of a large grass field. Using this supervised knowl-

edge, we conducted two experiments to represent the image background. One experiment was to

Figure 14.7 Graphical representation of abundance fractions of panel pixels in Figure 14.6 for visual assessment.
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use the area A to characterize the image background. In this case, a single-background signature

bA was used for experiments and the training samples used for S�1
W -weighted AC-LSMA were all

the pixels in the area A for one background class, as done in Example 14.1. Another scenario

was to use the automatic target generation process (ATGP) to produce necessary background

knowledge in an unsupervised manner.

EXAMPLE 14.3

(Scenario 1: Single-Background Signature)

Like Example 1, the signature matrix M used for experiments is formed by M ¼ p1p2p3p4p5bA½ �. The
14 R pixels in both the 3 m� 3 m and 2 m� 2 m panels and pixels in the area A provided training

samples for S�1
W -weighted AC-LSMA. Six methods labeled by five AC-LSMA methods, MD-weighted

AC-LSMA, LCMV-weighted AC-LSMA, S�1
W -weighted AC-LSMA, OSP-weighted AC-LSMA, FCLS,

and unconstrained LSOSP were evaluated for comparative analysis. Figure 14.8 shows their

respective abundance fraction results of the 15 panels in Figure 14.2(c) with full abundance constraints

(i.e., ASCþANC), respectively.

Once again, the unconstrained LSOSP was the worst and the three weighted AC LSMA, MD-weighted

AC-LSMA, LCMV-weighted AC-LSMA, and S�1
W -weighted AC-LSMA seemed among the best. To further

justify our conclusions, Table 14.4 tabulates the quantification results obtained for the abundance fractions of

the 14 pure R panel pixels (i.e., p11, p12, p211, p221, p22, p311, p312, p32, p411, p412, p42, p511, p521, p52) and the 5

R panel subpixels (i.e., p13, p23, p33, p43, p53) in Figure 14.8(a)–(f). The quantification results show that the

S�1
W -weighted AC-LSMA in Figure 14.8(c) was the best in the sense that it produced the most accurate abun-

dance fractions of the 19 panel pixels.

Table 14.4 Quantitative results produced by the MD-weighted AC-LSMA, LCMV-weighted AC-LSMA,

S�1
W -weighted AC-LSMA, OSP-weighted AC-LSMA, FCLS, and unconstrained LSOSP with a single-

background signature

MD-weighted

AC-LSMA

LCMV-weighted

AC-LSMA

S�1
W -weighted

AC-LSMA

OSP-weighted

AC-LSMA

FCLS Unconstrained

LSOSP

p11 1 1 1 0.971 0.762 1.284

p12 0.731 0.731 0.85 0.654 0.581 0.716

p13 0.186 0.187 0.29 0.169 0.074 0.322

p211 1 1 1 0.961 0.909 1.175

p221 0.994 0.991 1 0.945 0.788 1.243

p22 0.968 0.969 0.962 0.851 0.773 0.582

p23 0.25 0.251 0.324 0.303 0.758 0.887

p311 0.993 0.994 0.987 1 0.941 1.29

p312 1 1 1 1 0.906 1.468

p32 0.733 0.733 0.845 0.709 0.17 0.243

p32 0.393 0.397 0.438 0.448 0 0.002

p411 1 1 1 1 0.509 1.193

p412 1 1 0.999 0.815 0.655 0.85

p42 0.912 0.913 0.929 0.859 0.798 0.957

p43 0.184 0.183 0.224 0.251 0.09 0.744

p511 0.874 0.874 0.894 0.862 0.823 0.92

p521 1 1 1 1 1 1.253

p52 0.901 0.901 0.956 0.879 0.894 0.828

p53 0.166 0.167 0.211 0.122 0 �0.238
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Figure 14.8 15-panel abundance fraction results of the supervised five AC-LSMA methods and

unconstrained LSOSP.
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Figure 14.9 provides the graphical plots of quantification values in Table 14.4 for an easy visual assessment

where the visual inspection of Figure 14.8 may not provide reliable quantification estimates of abundance

fractions.

EXAMPLE 14.4

(Scenario 2: Unsupervised Background Knowledge)

As demonstrated in Example 14.3, a single-background signature could not completely characterize the

image background. As a result, AC-LSMA performance was not as good as it did for the synthetic

image in Example 14.1, where only one signature was used to simulate the image background. In order

to improve its performance, we need to find an appropriate set of background pixels that can well rep-

resent the image background. According to VD, the number of spectrally distinct signatures in the

scene in Figure 14.1 is nVD¼ 9, which was used as the number of endmembers for M. To determine

additional background signatures, the number of total signatures in the scene was set to 2nVD¼ 18. A

reason for selecting 2nVD will be explained and provided in Chapter 17 as well as Chapter 22. This

implies that we need at least 13 spectrally distinct signatures to characterize the image background in

addition to the five panel signatures in Figure 14.1. In this case, IN-FINDR was applied to find the 18

endmembers, fejg18j¼1
, as shown in Figure 14.10 to form the desired signature matrix M, where the

Figure 14.9 Graphical representation of abundance fractions of 19 R panel pixels in Figure 14.8 for visual

assessment.

Figure 14.10 Eighteen endmembers produced by IN-FINDR.
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found pixels labeled by numbers 3, 5, 9, 15, and 17 in Figure 14.10 represented five panel signatures in

five different rows in Figure 1.15(a) or Figure 14.1.

In analogy with Example 14.2, ATGP was also implemented to find potential interferers until a warning

sign of matrix singularity was flagged. In our experiments, there are 169 target pixels. Since some of such

Figure 14.11 Unsupervised 15-panel abundance fraction results of five AC-LSMA methods and

unconstrained LSOSP.
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ATGP-generated target pixels may also be very similar or identical to the 18 IN-FINDR generated endmem-

bers, these ATGP-generated target pixels could not be considered interferers. So, when OSP-weighted

AC-LSMA was implemented, the unwanted signature matrix U would be formed of all the ATGP-generated

target pixels, except those that were also IN-FINDR-generated endmembers. In this case, SAM was set to 0.06

to determine if an ATGP-target pixel was also an endmember. On the other hand, S�1
W -weighted AC-LSMA

required a set of training samples. In this case, SAM was set to 0.025 to find pixels that were similar to each

of the 18 endmembers, fejg18j¼1
, to form a set of training data for each of the 18 classes, fCjg18j¼1

, where the

Table 14.5 Quantitative results produced by the MD-weighted AC-LSMA, LCMV-weighted AC-LSMA,

S�1
W -weighted AC-LSMA, OSP-weighted AC-LSMA, FCLS, and unconstrained LSOSP with endmembers

generated by N-FINDR

MD-weighted

AC-LSMA

LCMV-weighted

AC-LSMA

S�1
W -weighted

AC-LSMA

OSP-weighted

AC-LSMA

FCLS Unconstrained

LSOSP

p11 1 1 1 1 1 1

p12 0.443 0.442 0.477 0.492 0.361 0.461

p13 0.175 0.175 0.185 0.149 0 0.109

p211 0.75 0.756 0.986 0.879 0.406 0.903

p221 0.723 0.729 0.977 0.845 0.2 0.991

p22 1 1 0.978 1 1 1

p22 0.205 0.204 0.3 0.349 0.494 0.436

p311 0.735 0.737 0.998 0.92 0.865 0.855

p312 1 1 1 1 1 1

p32 0.494 0.491 0.583 0.601 0.532 0.6

p32 0.308 0.31 0.395 0.339 0.357 0.331

p411 1 1 1 1 1 1

p412 0.666 0.666 0.871 0.872 0.36 0.83

p42 0.655 0.655 0.772 0.831 0.738 0.837

p43 0.175 0.175 0.241 0.229 0.212 0.315

p511 0.648 0.648 0.725 0.586 0.719 0.67

p521 1 1 1 1 1 1

p52 0.646 0.646 0.789 0.516 0.778 0.697

p53 0.123 0.123 0.161 0 0.14 0.095

Figure 14.12 Graphical representation of abundance fractions of 19 R panel pixels in Figure 1(b) for visual

assessment.
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total number of found training samples was 3714. Then, the means of training samples in each of the 18

classes were further calculated, fmjg18j¼1
, to form the desired signature matrix M. Six methods, AC-LSMA

methods, MD-weighted AC-LSMA, LCMV-weighted AC-LSMA, S�1
W -weighted AC-LSMA, OSP-weighted

AC-LSMA, FCLS, and unconstrained LSOSP labeled by (a-f) were evaluated for comparative analysis.

Figure 14.11 shows their respective abundance fraction results of the 15 panels in Figure 14.1 with full

abundance constraints (i.e., ASCþANC), where the S�1
W -weighted AC-LSMAwas the best compared to the

unconstrained LSOSP that was the worst. Unlike Example 14.3 that only used one background signature,

the use of additional 12 background signatures to find training samples made a significant difference for the

S�1
W -weighted AC-LSMA. As shown in Figure 14.11, the S�1

W -weighted AC-LSMA labeled by (c) clearly

outperformed all other five AC-LSMA methods. Interestingly, the FCLS seemed to perform well in detec-

tion of 19 R panel pixels visually shown in Figure 14.11 at the expense of many falsely alarmed pixels.

However, their quantitative results tabulated in Table 14.5 show otherwise. Figure 14.12(a) and (b) plots

quantified abundance fractions of 14 R pure panel pixels and 5 R panel subpixels in Figure 14.11, respec-

tively, where the MD-weighted AC-LSMA and LCMV-weighted AC-LSMA labeled by (a) and (b) unmixed

abundance fractions more accurately than FCLS for most panel pixels. Nevertheless, the S�1
W -weighted AC-

LSMA from Figure 14.11(c) was still the best according to Table 14.5 in terms of quantifying abundance

fractions of panel pixels.

Figure 14.12 further provides the graphical plots of quantification values in Table 14.5 for a better visual

assessment compared to the results in Figure 14.11.

A remark on the threshold used for SAM is noteworthy. This threshold was selected empirically for SAM

in our experiments. It is based on our experience gained while working on laboratory and real data. Since

laboratory data are generally used for simulations, its tolerance to the threshold is more robust than real data.

Thus, the threshold selected for simulations can be higher than that chosen for real data. The interval of [0.02,

0.03] for simulated data and the interval of [0.03, 0.05] for real data seemed reasonable ranges from which a

threshold can be selected. As for the threshold used by SAM to find undesired signatures for OSP-weighted

LSMA, it was set to 0.06 that was a little bit higher than the thresholds used to find endmembers. This is

because undesired signatures are not necessarily as subtle as endmembers are. Nonetheless, the threshold

selection is generally sensitive to spectral characteristics of signatures to be analyzed. It is advised that several

trial-and-errors of selecting different values in this range may be worthwhile.

As a concluding comment, despite the fact that S�1
W -weighted AC-LSMAwas shown to be the best among

the six evaluated methods, it required a good set of training samples to produce the within-class matrix SW.

If the sample pool is not well representative like Example 14.3, it will not perform effectively. To the contrary,

if the training samples are selected judiciously as the way was done in Example 14.4, S�1
W -weighted AC-

LSMA could be one of the best AC-LSMA methods. Finally, the threshold values used in our experiments for

SAM were not optimal, but rather empirical selections.

14.6 Conclusions

Abundance-constrained linear spectral mixture analysis (AC-LSMA) using LSE as a criterion

has been studied extensively in the literature. It is, in general, referred to as least-squares AC-

LSMA. However, including a weighting matrix in the least-squares AC-LSMA to account for

Table 14.6 Summary of unweighted AC-LSMA (FCLS) and four weighted AC-LSMA methods

Weighting

matrix A

Training

samples

Signature

matrixM

Undesired signature

matrix U

Unweighted AC-LSMA (FCLS) I No Yes No

MD-weighted AC-LSMA K�1 No Yes No

LCMV-weighted AC-LSMA R�1 No Yes No

S�1
W -weighted AC-LSMA S�1

W Yes Yes No

OSP-weighted AC-LSMA P?
U No Yes Yes
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significance of individual bands has not been explored in the past few years until Chang and Ji,

(2006a). This chapter investigates weighted AC-LSMA in terms of LSE and further develops

three approaches to weighted AC-LSMA, each of which can be obtained by the commonly

used criteria, Mahalanobis distance or Gaussian maximum likelihood estimation, Fisher’s ratio,

and OSP. In particular, the least-squares AC-LSMA can be considered an unweighted AC-

LSMA. The experimental results demonstrate that weighted AC-LSMA generally performs

better than unweighted AC-LSMA.

Finally, we summarize the advantages and disadvantages of the unweighted AC-LSMA

(i.e., FCLS), along with all the four weighted AC-LSMA methods considered in Table 14.6 in

this chapter.
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15

Kernel-Based Linear Spectral
Mixture Analysis

Linear spectral mixture analysis (LSMA) has been widely used in remote sensing community

for spectral unmixing and has enjoyed great success in material detection, classification, and

identification. Recently, it has been extended in various approaches to linear spectral random

mixture analysis (Chapter 15, Chang 2003a), Fisher’s LSMA (FLSMA) in Chapter 13 and

weighted abundance-constrained LSMA (WAC-LSMA) in Chapter 14 so as to enhance its per-

formance. All these extensions also inherit drawbacks and limitations of LSMA when it

comes to solving linear nonseparable problems. This chapter develops a kernel-based LSMA

(KLSMA) to resolve the issue of nonlinear separability. By mapping the original data to

a feature space via a nonlinear kernel, LSMA extensions can be further expanded to their

kernel-based counterparts, specifically, the three backbone least squares-based LSMA

(LS-LSMA) techniques (Chang 2003a), least squares orthogonal subspace projection

(LSOSP), non-negativity constrained least squares (NCLS), and fully constrained least

squares (FCLS), are readily extended to their corresponding kernel versions, KLSOSP,

KNCLS, and KFCLS. Interestingly, according to experiments conducted based on synthetic

and real images, KLSMA can be more effective than LSMA only for cases where data sam-

ple vectors are heavily mixed, specifically for multispectral imagery which will be discussed

in Chapters 31 and 32.

15.1 Introduction

Linear mixture analysis is a theory developed for solving linear problems. It has found

many successes in a wide range of applications, such as linear regression analysis in multi-

variate data analysis, blind source separation in signal processing, and partial volume esti-

mation in magnetic resonance imaging (see Chapter 32). Specifically, LSMA has been

widely used in remote sensing community to perform spectral unmixing (Chapters 12–14)

where a data sample vector is linearly mixed by a number of so-called endmembers as a

linear mixture from which it can be further unmixed as abundance fractions in terms of

these endmembers. Using the same notations in Section 12.2 and Eq. (12.2) let r be an L-

dimensional data sample vector and m1;m2; . . . ;mp be signatures of interest that are used to

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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unmix the sample vector r. To carry out spectral unmixing, a linear mixing model is

required to represent r in terms of the following form:

r ¼ Maþ n ð15:1Þ
where M ¼ m1;m2; . . . ;mp

� �
is a signature matrix, n is a noise vector and can be used to

describe a model or measurement error, and a ¼ a1;a2; . . . ;ap

� �T
is an unknown p-dimensional

abundance vector needed to be found and is associated with m1;m2; . . . ;mp with aj representing

the abundance fraction of the jth endmember mj present in the sample vector r. Due to physical

constraints, two abundance constraints are generally imposed on (15.1), which are abundance

sum-to-one constraint (ASC) specified by
Pp

j¼1 aj ¼ 1 and abundance non-negativity constraint

(ANC) specified by aj � 0 for all 1 � j � p. The LSMA develops techniques to perform the

so-called linear spectral unmixing (LSU) that solves a linear inverse problem of (15.1) by

unmixing a data sample vector r via a set of p endmembers, m1;m2; . . . ;mp, through finding

their respective abundance fractions a1;a2; . . . ;ap with/without the abundance constraints,

ASC, and ANC.

Over the past years, LSMA has been extended in various directions to enhance its capabil-

ity in spectral unmixing. For example, in order for LSMA to deal with random signals, a

random version of LSMA called linear spectral random mixture analysis (LSRMA) based on

projection pursuit was developed in Chang et al. (2002) and Chang (2003a). Since LSE is

generally not an optimal criterion used for classification, a different version of LSMA based

on Fisher’s ratio, called FLSMA, is also derived from Fisher’s linear discriminant analysis in

Chapter 13 (Chang and Ji, 2006b). Interestingly, it is also shown in Chapter 14 as well as in

Chang and Ji (2006a) that introducing a weighting matrix into the LSE criterion results in a

new LSMA technique, called WAC-LSMA that includes LS-LSMA and FLSMA as its special

cases. However, all such extensions intend to increase and enhance their ability for linear

separability. Unfortunately, due its nature in inherent constraints resulting from the use of a

linear mixing model this is probably the best we can do with LSMA without going beyond

linear approaches. To resolve this dilemma two approaches seem feasible. One is to directly

use a nonlinear mixture model, called intimate spectral mixture (Hapke, 1981) to perform

spectral unmixing. Such an approach was investigated in Guilfoyle et al. (2001) and

Guilfoyle (2003) where radial basis function (RBF) neural networks were used to approxi-

mate the unknown parameters used in a nonlinear mixing model. The other approach can be

considered as a compromise between linear and nonlinear models. It maps the non-linear

decision boundaries made by a classifier via a nonlinear function into a generally high-

dimensional feature space in which non-linear separability problems can be solved by linear

decisions. The use of such a nonlinear function is similar to nonlinear activation functions

used in neural networks for network’s internal learning. The approach of this type is known

as a kernel-based technique where nonlinear functions are modeled as nonlinear kernels.

Interestingly, using kernels to extend the LSMA has not received much attention until a ker-

nel approach developed by Kwon and Nasrabadi (2005) who extended the orthogonal sub-

space projection (OSP) developed by Harsanyi and Chang (1994) to its kernel counterpart,

called kernel-based OSP (KOSP). Later at nearly the same time another LSMA technique,

NCLS, and FCLS were further extended to their counterparts, called kernel-based NCLS

(KNCLS) and kernel-based FCLS (KFCLS) in Broadwater et al. (2007) and Liu et al.

(2009). It should be noted that when the versions of KNCLS and KFCLS were derived in

Liu et al. (2009) the details of KNCLS and KFCLS in Broadwater et al. (2007) were not

available at that time but only published later in a book chapter (Camps-Valls and L. Bruz-

zone, 2009). The detailed derivations in Liu et al. (2009) provide a direct extension of
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LSOSP, NCLS, and FCLS to their respective kernel counterparts. In essence, the works

reported in Broadwater et al. (2007), Camps-Valls and L. Bruzzone (2009), and Liu et al. (2009)

are actually derived independently. Nevertheless, this chapter along with Liu et al. (2012) are

believed to be the first that derives kernel counterparts of all the three backbone LS-LSMA tech-

niques, LSOSP, NCLS, and FCLS, in a unified framework.

Despite that kernel-based approaches have shown promising in many remote sensing applica-

tions it does not imply that KLSMA always has advantages over LSMA in hyperspectral image

analysis. As a matter of fact, it will be shown that kernel-based techniques do not necessarily

improve classification performance for hyperspectral digital imagery collection experiment

(HYDICE) data. This gives rise to an interesting question: Under what circumstances will KLSMA

techniques be effective when they are used for spectral unmixing? This chapter tries to answer this

question by providing experiments conducted based on two data sets, the visible/infrared imaging

spectrometer (AVIRIS) Purdue Indiana Indian Pine data and the HYDICE data to demonstrate that

kernel-based approaches can significantly improve performance if hyperspectral data have low

spatial resolution such as AVIRIS data, but they cannot do the same for high spatial resolution

HYDICE even both data sets do have the same spectral resolution.

15.2 Kernel-Based LSMA (KLSMA)

This section revisits and extends the three least squares-based techniques, OSP/LSOSP, NCLS, and

FCLS, that have shown success in hyperspectral unmixing (Chang, 2003a) to their corresponding

kernel-based counterparts, each of which represents three categories of techniques implementing

LSMA. One is the category of abundance-unconstrained methods that include the well-known

Gaussian maximum likelihood (GML) estimation and OSP, both of which have been shown essen-

tially the same technique in Chapter 12. Another is the category of partially abundance-constrained

methods, of which the NCLS method developed for constrained signal detection by Chang and

Heinz (2000) is a representative. A third category of fully abundance-constrained methods among

which the fully constrained least squares (FCLS) method developed by Heinz and Chang (2001) is

the most widely used method for this purpose. So, when it comes to extend LSMA to kernel-based

LSMA (KLSMA), it is natural to consider these three methods for kernel extension. The works in

Kwon and Nasrabadi (2005b), Broadwater et al. (2007), and Liu and Chang (2009) are early

attempts to accomplish this goal.

In what follows, we follow the work in Liu et al. (2012) to develop a unified kernel theory for

extending LSMA to KLSMA by first developing the kernel-based LSOSP (KLSOSP) that is

derived directly from the structure of the OSP. This KLSOSP is then used to derive a KNCLS that

is in turn to be used to further derive KFCLS. It is our belief that this section provides most detailed

derivations for kernel versions of the four LSMA, OSP, LSOSP, NCLS, and FCLS, including step-

by-step algorithmic implementations.

15.2.1 Kernel Least Squares Orthogonal Subspace Projection (KLSOSP)

A kernel version of OSP was first derived in Kwon and Nasrabadi (2005b) for hyperspectral LSU.

The idea is to use single value decomposition (SVD) to partition the undesired signature matrix U

as U ¼ BDCT so that P?
U in (2.78) or (12.3) can be decomposed and simplified to

P?
U ¼ I� UU# ¼ I� U UTU

� ��1
UT

¼ I� BDCT CDTDCT
� ��1

CDTBT ¼ I� BBT
ð15:2Þ
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where I is an L� L identity matrix, B, C are orthogonal matrices, and D is a diagonal matrix.

The purpose of (15.2) is to form dot products so that the kernel trick (Hofmann et al., 2008)

can be applied without a need for performing matrix inversion. Since the used kernel mapping

function is a positive-definite kernel, so is the output mapping matrix. As a result, the matrix

resulting from the kernel trick should be in fact nonsingular and invertible. Using this fact,

the kernel trick can be directly applied to P?
U specified by (15.2) without using SVD where

KðUTUÞ� ��1
is obtained from mapping ðUTUÞ�1

in (15.2) into a feature space via a positive

definite kernel and is always invertible. Consequently, a much simpler approach can be

derived as follows.

First, let a nonlinear kernel be specified by f. Then P?
U in (15.2) mapped into the feature space

can be expressed as

P?
fðUÞ ¼ IfL�L

� fðUÞfðUÞ#

¼ IfL�L
� fðUÞ fðUÞTfðUÞ� ��1

fðUÞT
ð15:3Þ

Now, âOSP
p ¼ dTP?

Ur specified by (12.9) is mapped into a kernel version of OSP induced by f in a

feature space as

aKOSP
p ðrÞ ¼ fðdÞTP?

fðUÞfðrÞ
¼ fðdÞTIFL�L

fðrÞ � fðdÞTfðUÞ fTðUÞfðUÞ� ��1
fðUÞTfðrÞ

¼ fðdÞfðrÞ � fðdÞTfðUÞ fðUÞTfðUÞ� ��1
fðUÞTfðrÞ

ð15:4Þ

where P?
fðUÞ in (15.3) is used to derive the second equality. It should be noted that the identity

mapping fðdÞTIfL�L
fðrÞ in (15.4) can be simplified into fðdÞTfðrÞ based on the bilinearity proper-

ties from which each kernel function inherits according to Hofmann et al.’s work (Hofmann et al.

2008). That is,

Kðd; IFL�L
Þ;KðIFL�L

; rÞh i ¼ Kðd; rÞ ð15:5Þ

Using (15.5) and the kernel trick described by

Kðx; yÞ ¼ f xð Þ;f yð Þh i ¼ fðxÞTfðyÞ ¼ f xð Þ � f yð Þ ð15:6Þ

where K is a kernel function defined in the original data, (15.4) can be rewritten as

aKOSP
p ðrÞ ¼ Kðd; rÞ � Kðd;UÞKðU;UÞ�1

KðU; rÞ ð15:7Þ

Since âOSP
p is obtained by a matched filter designed for signal detection not estimation, OSP is

further extended to LSOSP (Tu et al., 1997) as abundance estimator as âLSOSP
p by including an

abundance correction term, dTP?
Ud

� ��1
in âOSP

p as

âLSOSP
p ¼ dTP?

Ud
� ��1

dTP?
Ur ð15:8Þ
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So, by taking advantage of (15.7) a kernel-based LSOSP (KLSOSP) can be further derived as

aKLSOSP
p ðrÞ ¼ aKOSP

p ðrÞ
Kðd; rÞ � Kðd;UÞKðU;UÞ�1

KðU; dÞ ð15:9Þ

which is not derived in Kwon and Nasrabadi (2005b).

15.2.2 Kernel-Based Non-Negative Constraint Least Square (KNCLS)

One of the major issues in implementing OSP is that it produces negative values for abundance

fractions that are supposed to be non-negative. To mitigate this problem, ANC must be imposed

as part of solving the optimization problem. An approach, called abundance NCLS, was recently

developed by Chang and Heinz (2000). It minimizes an objective function, ðMa� rÞTðMa� rÞ
by constraining aj � 0 for j 2 f1; 2; . . . ; pg. In doing so it introduces a Lagrange multiplier vector

l ¼ l1 l2 � � � lp�T
�

in the following constrained optimization problem:

J ¼ 1

2
ðMa� rÞTðMa� rÞ þ lða� cÞ ð15:10Þ

where c ¼ c1 c2 . . . cp�T
�

and cj for 1 � i � p are constraints. With a ¼ c it follows that

â ¼ ðMTMÞ�1MTr� ðMTMÞ�1l ð15:11Þ

and

l ¼ MTr�MTMâ ð15:12Þ

Since there is no closed form that can be derived from (15.10), we ought to rely on a numerical

algorithm for finding an optimal abundance vector âNCLSðrÞ for the abundance vector a that should

iterate two equations specified by (15.11) and (15.12) while satisfying the following Kuhn–Tucker

conditions:

li ¼ 0; i 2 P

li < 0; i 2 R
ð15:13Þ

where P and R represent passive and active sets that contain indices representing negative or posi-

tive abundances, respectively. By replacing dot products in (15.11) and (15.12) using kernel tricks

(15.6), âKNCLSðrÞ can be derived by
âKNCLSðrÞ ¼ KðM;MÞð Þ�1

KðM; rÞ � KðM;MÞð Þ�1
l ð15:14Þ

and

l ¼ KðM; rÞ � KðM;MÞâKNCLSðrÞ ð15:15Þ

Since KðM;MÞð Þ�1
KðM; rÞ can be considered as kernel LSOSP estimator and aKLSOSP(r) speci-

fied by

âKLSOSPðrÞ ¼ âKLSOSP
1 ðrÞ; âKLSOSP

2 ðrÞ; . . . ; âKLSOSP
p ðrÞ

� �T

ð15:16Þ
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KNCLS actually makes use of KLSOSP as its initial guess to iterate two equations (15.14) and

(15.15) to find its final KNCLS solution as follows.

KNCLS algorithm:

1. Initialization: set the passive set Pð0Þ ¼ 1; 2; . . . ; pf g and active set Rð0Þ ¼ f, that is, empty set.

Let k ¼ 0.

2. Compute âKLSOSP and let âKNCLSðkÞ ¼ âKLSOSP.

3. At the jth iteration. If all components in âKNCLSðkÞ are positive, the algorithm is terminated.

Otherwise, continue.

4. Let k ¼ k þ 1.

5. Move all indices in Pðk�1Þ that correspond to negative components of âKNCLSðk�1Þ to Rðk�1Þ and
the resulting index sets are denoted by PðkÞ and RðkÞ, respectively. Create a new index set SðkÞ

and set it equal to RðkÞ.
6. Let aRðkÞ denote the vector consisting of all components âKLSOSP in RðkÞ.
7. Form a steering matrix FðkÞ

a by deleting all rows and columns in the matrix KðM;MÞð Þ�1
that

are specified by PðkÞ.
8. Calculate lðkÞ ¼ FðkÞ

a

� ��1

âRðkÞ . If all components in lðkÞ are negative go to step 15.

Otherwise, continue.

9. Find l
ðkÞ
max ¼ maxjl

ðkÞ
j and move the index in RðkÞ that corresponds to lðkÞmax to P

ðkÞ.
10. Calculate a new lðkÞ, as shown in step 8, with the new RðkÞ and PðkÞ index sets.
11. Form another matrixC

ðkÞ
l by deleting every column of KðM;MÞð Þ�1

specified by PðkÞ.
12. Set âSðkÞ ¼ aKLSOSP �C

ðkÞ
l lðkÞ.

13. If any components of âSðkÞ in SðkÞ are negative, then move these components from PðkÞ to RðkÞ.
Go to step 6.

14. Form another matrixC
ðkÞ
l by deleting every column of KðM;MÞð Þ�1

specified by PðkÞ.
15. Set âKNCLSðkÞ ¼ âKLSOSP �C

ðkÞ
l lðkÞ. Go to step 3.

15.2.3 Kernel-Based Fully Constraint Least Square (KFCLS)

According to Heinz and Chang (2001) one simple approach to implementing ASC in conjunction

with ANC is to introduce a new signature matrix N and an auxiliary vector s into the NCLS with

N ¼ dM

1T

� 	
and s ¼ dr

1

� 	
ð15:17Þ

where 1 ¼ 1; 1; . . . ; 1ð ÞT is a p-dimensional vector and d controls the rate of convergence for FCLS

algorithm. By replacing the M and r in KNCLS with modified signature matrix N and the new

vector s in (15.17), respectively, a KFCLS algorithm can be derived as follows.

KFCLS algorithm:

1. Initialization: Generate the modified signature matrix, N and modified pixel vector s based on

(15.16). Set the passive set Pð0Þ ¼ 1; 2; . . . ; pf g and active set Rð0Þ ¼ f, that is, empty set. Let

k ¼ 0.

2. Compute âKNCLS and let âKFCLSðkÞ ¼ âKNCLS.

3. At the jth iteration. If all components in âKFCLSðkÞ are positive, the algorithm is terminated.

Otherwise, continue.
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4. Let k ¼ k þ 1.

5. Move all indices in Pðk�1Þ that correspond to negative components of âKNCLSðk�1Þ to Rðk�1Þ and
the resulting index sets are denoted by PðkÞ and RðkÞ, respectively. Create a new index set SðkÞ

and set it equal to RðkÞ.
6. Let aRðkÞ denote the vector consisting of all components âKNCLS in RðkÞ.
7. Form a steering matrix FðkÞ

a by deleting all rows and columns in the matrix KðN;NÞð Þ�1
that

are specified by PðkÞ.
8. Calculate lðkÞ ¼ FðkÞ

a

� ��1

âRðkÞ . If all components in lðkÞare negative go to step 15. Otherwise,
continue.

9. Find l
ðkÞ
max ¼ maxjl

ðkÞ
j and move the index in RðkÞ that corresponds to lðkÞmax to P

ðkÞ.
10. Calculate a new lðkÞ, as shown in step 8, with the new RðkÞ and PðkÞ index sets.
11. Form another matrixC

ðkÞ
l by deleting every column of KðN;NÞð Þ�1

specified by PðkÞ.
12. Set âSðkÞ ¼ âKNCLS �C

ðkÞ
l lðkÞ.

13. If any components of âSðkÞ in SðkÞ are negative, then move these components from PðkÞ to RðkÞ.
Go to step 6.

14. Form another matrixC
ðkÞ
l by deleting every column of KðN;NÞð Þ�1

specified by PðkÞ.
15. Set âKFCLSðkÞ ¼ âKNCLS �C

ðkÞ
l lðkÞ. Go to step 3.

As a concluding note, the KNCLS and KFCLS presented above are also independently derived

in Broadwater et al. (2007) and later published in Camps-Valls and Bruzzone (2009) as a book

chapter where the KNCLS was only used as a means of deriving the KFCLS and was not used

in their experiments at all. In addition, many details presented here are not available in these

two references.

15.2.4 A Note on Kernelization

The key idea of kernelization is the use of the kernel trick that has not been really clarified in

many reported efforts when it is used. As a consequence, there is always confusion. As an

example, support vector machine (SVM) is originally developed as a binary classifier to find a

hyperplane maximizing the distance between support vectors in two separate classes and has

nothing to do with kernelization. The introduction of kernelization into SVM allows SVM to

make linear decisions in a feature space to resolve linear nonseparability problems. As a matter

of fact, SVM used in the literature is indeed kernel-based SVM (KSVM) not SVM without

using kernel. In general, there two ways to use the kernel trick to perform kernelization. One

is to kernelize a transformation to map all data samples in a high-dimensional feature space.

Examples of this type include kernel-based principal components analysis (PCA) and kernel-

based RX detector, both of which require all data samples for kernelization of the sample

covariance matrix. The advantage of this approach is no prior knowledge is needed since all

data sample are involved for kernelization. But its major disadvantage is computational com-

plexity which is exceedingly expensive. Unfortunately, most of the reported research efforts

along this line have avoided addressing this issue. To mitigate this dilemma, an alternative

approach is to use a specifically selected of data samples to perform kernelization such as

kernel-based Fisher’s linear discriminant analysis and KSVM. Consequently, the computational

complexity is reduced to that required to perform kernelization only on these selected samples.

However, this also comes with a price of how to judiciously select data samples for kerneliza-

tion. This is a very challenging issue. A third approach is the approach proposed in this chapter

which kernelizes a classifier instead of training samples. More specifically, KLSMA only ker-

nelizes the signatures used by OSP, LSOSP, NCLS, and FCLS that are used to perform spectral
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unmixing where these signatures are provided a priori not necessarily training samples. This is

quite different from existing kernel-based techniques as described above which operate entire

data samples or training samples to be mapped into a high dimensional feature space. More

importantly, the computational cost saving is tremendous because the number of the signatures

kernelized by KLSMA is generally very small compared to other kernel-based methods which

requires a large number of training samples such as SVM or Fisher’s linear discriminant analy-

sis or the entire data samples such as PCA.

15.3 Synthetic Image Experiments

The synthetic image has the five mineral spectral signatures, A, B, C, K, M, marked by circles

in Figure 1.12(b) are used to simulate 25 panels shown in Figure 15.1 with five panels in each

row simulated by the same mineral signature and five panels in each column having the same

size. Among 25 panels are five 4� 4 pure-pixel panels for each row in the first column and

five 2� 2 pure-pixel panels for each row in the second column, the five 2� 2-mixed pixel

panels for each row in the third column and both the five 1� 1 subpixel panels for each row

in the fourth column and the fifth column where the mixed and subpanel pixels are simulated

according to legends in Figure 15.1. So, a total of 100 pure pixels (80 in the first column and

20 in second column), referred to as endmember pixels are simulated in the data by the five

endmembers, A, B, C, K, M.

These 25 panels are then inserted in a synthetic image with size of 200� 200 pixels in two

ways. One is the background pixels removed to accommodate the inserted target pixels that

result in target implantation (TI). The other is the inserted target panels directly superimposed

over the background pixels that result in target embededness (TE). In both cases the back-

ground is simulated by the sample mean of the real image scene in Figure 1.12(a). Depending

upon how a Gaussian noise is added to the TI and TE, three scenarios for each case are also

simulated with details descried in Section 4.3. The goal of synthetic image experiments pre-

sented in this section is to study the role that kernelization plays in LSMA for hyperspectral

imagery as well as its impact on unmixing performance. The six scenarios described in

Chapter 4, TI1, TE2, TI3 and TE1, TE2, TE3 are simulated by the information provided in

Figure 15.1 for performance evaluation.

Since all six scenarios produced similar results only the results for TE3 is selected as a repre-

sentative example for illustration. Figure 15.2 shows the unmixed results of 130 panel pixels in TE

A 

100% 

50% signal + 50% any other four  

50% signal + 50% background 

25% signal + 75% background 

B 

C 

K 

M 

Figure 15.1 A set of 25 panels simulated by A, B, C, K, M.
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Figure 15.2 LSMA and K-LSMA resulting image of synthetic linear mixture experiments.
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3 by LSOSP, NCLS, FCLS, and their kernel counterparts with RBF kernels used to perform kerne-

lization where a Gaussian noise with SNR 20:1 is added to the target panel pixels which are

directly superimposed over the background pixels.

Through visual inspection of the results in Figure 15.1 only KLSOSP could slightly improve the

detection of the panel pixels in the third row compared to its counterpart without using kerneliza-

tion. Other than that it seemed that LSMAwas not really benefited from kernelization in the sense

of unmixing. To further support this conclusion, a 3D ROC analysis developed in Chapter 3 was

performed on the unmixed results in Figures 15.2 and 15.3 show a 3D ROC curves of (PD,PF,t),

2D ROC curves of (PD,PF), 2D ROC curves of (PD,t), and 2D ROC curves of (PF,t) where it was

surprising to observe that the best results were not those produced by using kernelization.

To see the whole picture of performance analysis conducted for six scenarios, Tables 15.1–15.3

tabulate the averaged detection rates of 130 panel pixels over the six scenarios resulting from 3D

ROC analysis where the results indeed confirmed that the best results were those produced by

LSMA shown in Tables 15.1 and 15.2 in terms of areas under the 2D ROC curves of (PD,PF) and

2D ROC curves of (PD,t). According to the areas of 2D ROC curves of (PF,t) in Table 15.3 kerne-

lization did help LSMA reduce false alarm rates.

The above synthetic image experiments demonstrate an important fact that kernelization did not

necessarily improve LSMA performance as we expected when the target pixels of interest were
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Figure 15.3 3D ROC analysis of TE3 scenario, (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of

(PD,PF); (c) 2D ROC curves of (PD,t); (d) 2D ROC curves of (PF,t).
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only lightly mixed in which case FCLS was always preferred to any other LSMA techniques

regardless whether or not they were kernelized. This conclusion is further supported by the follow-

ing experiments using two real data sets, AVIRIS Purdue data where data sample vectors are gener-

ally heavily mixed and HYDICE data where data sample vectors are less mixed.

15.4 AVIRIS Data Experiments

To demonstrate how much benefit can be gained from using kernel-based LSMA in hyperspec-

tral classification, two real hyperspectral data sets were described in Chapter 1, Purdue Indiana

Indian Pine test site in Figure 1.13 and HYDICE data scene in Figure 1.15 will be used for

experiments for this purpose. In this section, we first study the AVIRIS data of Purdue Indiana

Table 15.1 Areas under 2D ROC curves of PD versus PF for TI and TE

TI 1 TI 2 TI 3 TE 1 TE 2 TE3

LSOSP 0.9967 0.9978 0.9978 0.9967 0.9977 0.9958

NCLS 0.9967 0.9972 0.9972 0.9967 0.9968 0.9974

FCLS 0.9967 0.9980 0.9980 0.9960 0.9963 0.9959

K-LSOSP 0.9307 0.9261 0.9261 0.9400 0.9400 0.9400

K-NCLS 0.9307 0.9261 0.9261 0.9400 0.9400 0.9400

K-FCLS 0.9900 0.9856 0.9856 0.9966 0.9966 0.9966

Table 15.2 Areas under 2D ROC curves of (PD vs. t) for TI and TE

TI 1 TI 2 TI 3 TE 1 TE 2 TE3

LSOSP 0.8300 0.8400 0.8400 0.8300 0.8423 0.7982

NCLS 0.8300 0.8323 0.8323 0.8300 0.8350 0.7770

FCLS 0.8300 0.8427 0.8427 0.8407 0.8517 0.8215

K-LSOSP 0.7363 0.7350 0.7350 0.7343 0.7343 0.6792

K-NCLS 0.7363 0.7350 0.7350 0.7343 0.7343 0.6792

K-FCLS 0.7477 0.7483 0.7483 0.7620 0.7620 0.7252

Table 15.3 Areas under 2D ROC curves of (PF vs. t) for TI and TE

Linear synthetic mixture

TI 1 TI 2 TI 3 TE 1 TE 2 TE3

LSOSP 0.0250 0.1124 0.1124 0.0250 0.1133 0.1353

NCLS 0.0250 0.0709 0.0709 0.0250 0.0760 0.0644

FCLS 0.0250 0.1090 0.1090 0.0350 0.0805 0.0915

K-LSOSP 0.0550 0.0586 0.0586 0.0250 0.0250 0.0250

K-NCLS 0.0550 0.0586 0.0586 0.0250 0.0250 0.0250

K-FCLS 0.0250 0.0305 0.0305 0.0251 0.0251 0.0251
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Indian Pine test site in Figure 1.15. According to the provided ground truth there are 17 classes

in this image scene shown in Figure 1.13(c) including the background labeled by class 17 that

includes a wide variety of targets such as highways, railroad, houses/buildings, and vegetation

that may not be of interest in agriculture applications. The spatial locations of all the 17 clas-

ses are shown in Figure 1.13(d) where the number in a parenthesis after a class label in Figure

1.13(d) is the total number of data samples in that particular class. The total number of data

samples in the scene is 145� 145 ¼ 21025. Two sets of experiments were conducted based on

this scene to evaluate the KLSMA performance. One was mixed pixel classification to show

the superior performance of KLSMA to that of LSMA without using kernels where data sam-

ple vectors are heavily mixed. The other was to use a three-dimensional receiver operating

characteristics (3D ROC) analysis developed in Chapter 3 to conduct a quantitative analysis of

classification performance of 16 classes to evaluate the selection of three kernels and their used

parameters.

The following experiments were conducted by randomly selecting 10% of data samples of

each of 16 classes as training samples to produce the class sample means that are further

used as endmembers, m1;m2; . . . ;m16 in model (15.1). Figure 15.4(a) and (b) shows compar-

ative 16-class classification results produced by LSOSP and KLSOSP using the RBF kernel

with s¼ 3000 where the KLSOSP significantly improved the LSOSP in classification by

visual inspection. Those classes missed in Figure 15.4(a) were clearly classified in Figure

15.4(b). It should be noted that the values of the parameter s were empirically selected to

only illustrate the benefit of using kernels by LSMA. Their values were not optimal. The

issue in selection of kernels with various parameters will be discussed later. Nevertheless,

finding optimal value for s is an optimization issue which is very challenging and beyond

the scope of this chapter.

Similar experiments were also conducted to compare the relative performances of NCLS and

FCLS to their kernel-based counterparts. The results are shown in Figures 15.5 and 15.6, respec-

tively, where the results using RBF kernels in Figures 15.5(b) and 15.6(b) showed improvement

over their counterparts without using kernels in Figures 15.5(a) and 15.6(a). Specifically, a great

improvement was witnessed in Figure 15.6(b) compared to that in Figure 15.6(a). However, it was

interesting to note that there was appreciable visual difference between the NCLS and KNCLS by

comparing results in Figure 15.5(a) and (b). This implied that NCLS had better classification abil-

ity without using kernels.

The results of Figures 15.4–15.6 showed visual classification to provide qualitative analy-

sis. To further conduct quantification analysis the ground truth of 16 classes provided in

Figure 1.13(d) was used for this purpose. Since LSMA is basically designed to unmix the

abundance fraction of each of endmembers that formed a linear mixing model (15.1) it is a

soft decision-made classifier which must convert an unmixed real-valued abundance fraction

to a binary decision to perform hard-decision classification. To resolve this dilemma, the 3D

ROC analysis once again was used for performance evaluation. More specifically, a 3D ROC

curve is a curve of three parameters, detection power, PD, false alarm probability, PF and a

threshold parameter t where extends the commonly used 2D ROC curve of PD and PF by

including the parameter t as a third dimension. By virtue of the parameter t the unmixed

abundance fractions were thresholded by the t to binary values so as to achieve detection. As

a result, a soft decision-made LSMA classifier can produce a 3D ROC curve of (PD,PF,t)

from which three 2D ROC curves of (PD,PF), (PD,t) and (PF,t) can be also plotted for detec-

tion. By virtue of such a 3D ROC analysis we can actually evaluate the classification per-

formance of KLSMA versus LSMA according to three types of commonly used kernels in

the following sections.
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Figure 15.4 Comparative results produced by LSOSP and KLSOSP classification results using RBF kernel.
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Figure 15.5 Comparative results produced by NCLS and KNCLS classification results using RBF kernel.
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Figure 15.6 Comparative results produced by FCLS and KFCLS classification results using RBF kernel.
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15.4.1 Radial Basis Function Kernels

The RBF kernels are mostly widely used in kernel-based approaches since this type of kernels

have been shown to be more effective than other types of kernels in the literature. This is also

the case in our experiments. The kernels are parameterized by the width s of Gaussian kernels.

Figures 15.7–15.9 show 3D ROC curves in (a) along with their corresponding 2D ROC curves

in (b–d) of 3 LSMA classifiers, LSOSP, NCLS, and FCLS along with their kernel counterparts,

KLSOSP, KNCLS, and KFCLS, respectively. The five values of the parameter s were empiri-

cally chosen to demonstrate their relative performance. Tables 15.4–15.6 also calculate the

area under each of 2D ROC curves, Az for quantitative analysis where the shade rows indicate

the best values for the s according to the 2D ROC curves of (PD,PF) for each classifier versus

its kernel counterpart.

As shown in Figures 15.7–15.9 and Tables 15.4–15.6, it was clear that in order for a kernel-

based LSMA classifier to perform better than its counterpart without kernels the selection of the

value for the parameter s was crucial. However, the experimental results also showed that the

effectiveness of using kernels also depended upon the classifier to be used for mixed pixel

(a) 3D ROC curves of (PD,PF,τ) (b) 2D ROC curves of (PD,PF) 

(c) 2D ROC curves of (PD,τ) (d) 2D ROC curves of(PF,τ)  
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Figure 15.7 LSOSP/KLSOSP curves obtained by 16 classes average classification rate using RBF kernel

with different s(a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of (PD,PF); (c) 2D ROC curves of

(PD,t); (d) 2D ROC curves of (PF,t).
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(a) 3D ROC curves of (PD,PF,τ) (b) 2D ROC curves of (PD,PF) 

(c) 2D ROC curves of (PD,τ) (d) 2D ROC curves of (PF,τ)
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Figure 15.8 NCLS/KNCLS curves obtained by 16 classes average classification rate using RBF kernel with

different s(a) 3D ROC curves of (PD,PF,t);(b) 2D ROC curves of (PD,PF); (c) 2D ROC curves of (PD,t); (d)

2D ROC curves of (PF,t).

Table 15.4 Values of Az under three 2D ROC curves in Figure 15.7

PD versus PF PD versus t PF versus t

LSOSP 0.6406 0.5498 0.4714

KLSOSP (s¼ 10000) 0.7030 0.5524 0.4376

KLSOSP (s¼ 8000) 0.7209 0.5658 0.4402

KLSOSP (s¼ 5000) 0.7228 0.5916 0.4254

KLSOSP (s¼ 3000) 0.7412 0.5675 0.3909

KLSOSP (s¼ 1000) 0.6465 0.3626 0.2346

Table 15.5 Values of Az under three 2D ROC curves in Figure 15.8

PD versus PF PD versus t PF versus t

NCLS 0.7285 0.4083 0.2354

KNCLS (s¼ 10000) 0.7161 0.3973 0.2245

KNCLS (s¼ 8000) 0.7198 0.4036 0.2267

KNCLS (s¼ 5000) 0.7296 0.4115 0.2409

KNCLS (s¼ 3000) 0.7091 0.4152 0.2495

KNCLS (s¼ 1000) 0.6286 0.3286 0.2073
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classification. For example, worst cases for KLSOSP and KFCLS were those with s¼ 1000 and 1,

respectively, where LSOSP was nearly as worst as KLSOSP with s¼ 1000 and KFCLS was the

worst classifier. However, the above phenomena were completely reversed for NCLS where

NCLS without using kernels could perform as well as the best KNCLS did with s¼ 5000.

These experiments demonstrated that the only LSMA classifier could compete against kernel-

based LSMA classifier was NCLS. The results also suggested that using appropriate RBF ker-

nels could indeed improve mixed pixel classification, when pixels are heavily mixed.

(a) 3D RO C curves of (PD,PF,τ) (b) 2D ROC curves of (PD,PF) 

(c) 2D ROC curves of (PD,τ)  (d) 2D ROC curves of (PF,τ)
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Figure 15.9 FCLS/KFCLS curves obtained by 16 classes average classification rate using RBF kernel with

different s(a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of (PD,PF); (c) 2D ROC curves of (PD,t); (d)

2D ROC curves of (PF,t).

Table 15.6 Values of Az under three 2D ROC curves in Figure 15.9

PD versus PF PD versus t PF versus t

FCLS 0.5933 0.5064 0.4376

KFCLS (s¼ 1) 0.6526 0.5425 0.4295

KFCLS (s¼ 0.5) 0.6919 0.5303 0.4231

KFCLS (s¼ 0.1) 0.7258 0.3545 0.0783

KFCLS (s¼ 0.05) 0.7163 0.3310 0.0758

KFCLS (s¼ 0.01) 0.6636 0.1792 0.0597
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15.4.2 Polynomial Kernels

The parameter used by polynomial kernels was the degree, p. Figures 15.10–15.12 show 3D ROC

curves in (a) along with their corresponding 2D ROC curves in (b–d) of three LSMA classifiers,

LSOSP, NCLS, and FCLS along with their kernel counterparts, KLSOSP, KNCLS, and KFCLS,

respectively. The five values of the parameter p were empirically chosen, p¼ 2, 3, 5, 8, 10 for

KLSOSP, KNCLS and 10, 20, 30, 40 50 for KFCLS to demonstrate their relative performance.

Tables 15.7–15.9 also calculate the area under each of 2D ROC curves, Az for quantitative analysis

where the shade rows indicate the best values for the p according to ROC curves of (PD,PF) for

each classifier versus its kernel counterpart.

As shown in Figures 15.10–15.12 and Tables 15.7–15.9, it was clear that the KLSMA using

polynomial kernels did not perform as well as KLSMA using RBF kernels except the case of

NCLS that actually showed the benefit of using kernels by KNCLS compared to their correspond-

ing KNCLS using RBF kernels. However, this was the only case that NCLS using polynomial

kernels did better than those using RBF kernels. We believe that such improvement resulted from

NCLS itself not from the kernels it used. The same phenomenon could be also seen and demon-

strated by the case of using sigmoid kernels in the following section. Also, from Figure 15.10 and

Table 15.7 LSOSP showed better performance than KLSOSP regardless of what degrees were

used.

(a) 3D ROC curves of (PD,PF,τ) (b) 2D ROC curves of (PD,PF) 
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Figure 15.10 LSOSP/KLSOSP curves obtained by 16 classes average classification rate using polynomial

kernel with different p (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of (PD,PF); (c) 2D ROC curves

of (PD,t); (d) 2D ROC curves of (PF,t).
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(a) 3D ROC curves of (PD,PF,τ) (b) 2D ROC curves of (PD,PF)

(c) 2D ROC curves of (PD,τ)  (d) 2D ROC curves of (PF,τ)
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Figure 15.11 NCLS/KNCLS curves obtained by 16 classes average classification rate using Polynomial ker-

nel with different p (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of (PD,PF); (c) 2D ROC curves of

(PD,t); (d) 2D ROC curves of (PF,t).

Table 15.7 Values of Az under three 2D ROC curves in Figure 15.10

PD versus PF PD versus t PF versus t

LSOSP 0.6406 0.5498 0.4714

KLSOSP (p¼ 2) 0.6069 0.5042 0.4286

KLSOSP (p¼ 3) 0.6110 0.5116 0.4396

KLSOSP (p¼ 5) 0.5981 0.4806 0.4221

KLSOSP (p¼ 8) 0.5790 0.4401 0.3955

KLSOSP (p¼ 10) 0.5511 0.4193 0.3910

Table 15.8 Values of Az under three 2D ROC curves in Figure 15.11

PD versus PF PD versus t PF versus t

NCLS 0.7285 0.4083 0.2354

KNCLS (p¼ 2) 0.7364 0.4186 0.2352

KNCLS (p¼ 3) 0.7584 0.4229 0.2396

KNCLS (p¼ 5) 0.7489 0.3770 0.2099

KNCLS (p¼ 8) 0.7176 0.3326 0.1855

KNCLS (p¼ 10) 0.6884 0.3053 0.1709
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15.4.3 Sigmoid Kernels

The b0 and b1 of the sigmoid kernels used for experiments were set to b0 ¼ 1 and b1 ¼
c=maxðxTyÞ with the parameter c where x and y are taken over all the pixel vectors. Figures

15.13–15.15 show 3D ROC curves in (a) along with their corresponding 2D ROC curves in (b–d)

of 3 LSMA classifiers, LSOSP, NCLS, and FCLS along with their kernel counterparts, KLSOSP,

KNCLS, and KFCLS, respectively. The five values of the parameter c were empirically chosen as

(a) 3D ROC curves of (PD,PF,τ)

τ

τ τ

(b) 2D ROC curves of (PD,PF) 

(c)  2D ROC curves of (PD,τ) (d) 2D ROC curves of (PF,τ) 
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Figure 15.12 FCLS/KFCLS curves obtained by 16 classes average classification rate using polynomial ker-

nel with different p (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of (PD,PF); (c) 2D ROC curves of

(PD,t); (d) 2D ROC curves of (PF,t).

Table 15.9 Values of Az under three 2D ROC curves in Figure 15.12

PD versus PF PD versus t PF versus t

FCLS 0.5933 0.5064 0.4376

KFCLS (p¼ 10) 0.6702 0.5749 0.4625

KFCLS (p¼ 20) 0.6773 0.4825 0.3429

KFCLS (p¼ 30) 0.6963 0.5519 0.4130

KFCLS (p¼ 40) 0.6948 0.4255 0.2556

KFCLS (p¼ 50) 0.6288 0.4643 0.3103
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indicated in Tables 15.10–15.12 to demonstrate their relative performance where Tables 15.10–

15.12 calculate the area under each of 2D ROC curves, Az, for quantitative analysis and the shade

rows indicate the best values for the c according to the 2D ROC curves of (PD,PF) for each classi-

fier versus its kernel counterpart.

According to Figures 15.13–15.15 and Tables 15.10–15.12, the kernel-based LSMA classi-

fier using sigmoid kernels performed much worse than KLSMA using RBF kernels and also

worse than KLSMA using polynomial kernels. In analogy with KLSMA using polynomial

(a) 3D ROC curves of (PD,PF,τ) (b) 2D ROC curves of (PD,PF) 
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Figure 15.13 LSOSP/KLSOSP curves obtained by 16 classes average classification rate using sigmoid ker-

nel with different s (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of (PD,PF); (c) 2D ROC curves of

(PD,t); (d) 2D ROC curves of (PF,t).

Table 15.10 Values of Az under three 2D ROC curves in Figure 15.13

PD versus PF PD versus t PF versus t

LSOSP 0.6406 0.5498 0.4714

KLSOSP (c¼ 0.1) 0.5581 0.4552 0.4174

KLSOSP (c¼ 0.5) 0.5719 0.5135 0.4740

KLSOSP (c¼ 1) 0.5754 0.5146 0.4649

KLSOSP (c¼ 1.5) 0.5707 0.5481 0.4958

KLSOSP (c¼ 2) 0.5457 0.5131 0.4720
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kernels, NCLS was the only case that KNLCS could perform well but only had a slight

improvement over KNCLS. As also noted earlier, this was mainly due to NCLS but not from

the use of the kernels because the effectiveness of NCLS in mixed pixel classification has been

demonstrated in previous experiments.

Finally, in order to further compare the relative performance of KLSMA using three different

types of kennels, Figures 15.16–15.18 show 3D ROC curves in (a) along with their corresponding

2D ROC curves in (b–d) of the best performance resulting from each of KLSOSP, KNCLS, and

KFCLS along with their counterparts, LSOSP, NCLS, and FCLS without using kernels for
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Figure 15.14 NCLS/KNCLS curves obtained by 16 classes average classification rate using sigmoid kernel

with different s (a) 3D ROC curves of (PD,PF,t) (b) 2D ROC curves of (PD,PF) (c) 2D ROC curves of (PD,t)

(d) 2D ROC curves of (PF,t).

Table 15.11 Values of Az under three 2D ROC curves in Figure 15.14

PD versus PF PD versus t PF versus t

NCLS 0.7285 0.4083 0.2354

KNCLS (c¼ 0.1) 0.7321 0.4178 0.2449

KNCLS (c¼ 0.5) 0.7313 0.4112 0.2306

KNCLS (c¼ 1) 0.6899 0.4061 0.2495

KNCLS (c¼ 1.5) 0.7083 0.4139 0.2512

KNCLS (c¼ 2) 0.6528 0.3872 0.2436
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comparison. Tables 15.13–15.15 calculate the area under each of 2D ROC curves, Az for quantita-

tive analysis where the shade rows indicate the best KLSMA classifier according to the 2D ROC

curves of (PD,PF) plotted in Figures 15.16–15.18.

As shown in Figures 15.16–15.18 and Tables 15.13–15.15, the best kernel used for LSMA clas-

sifiers was RBF kernels except NCLS that used the polynomial kernel.
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Figure 15.15 FCLS/KFCLS curves obtained by 16 classes average classification rate using sigmoid kernel

with different s (a) 3D ROC curves of (PD,PF,t) (b) 2D ROC curves of (PD,PF) (c) 2D ROC curves of (PD,t)

(d) 2D ROC curves of (PF,t).

Table 15.12 Values of Az under three 2D ROC curves in Figure 15.15

PD versus PF PD versus t PF versus t

FCLS 0.5933 0.5064 0.4376

KFCLS (c¼ 10e7) 0.6327 0.4980 0.4407

KFCLS (c¼ 20e8) 0.6193 0.5360 0.4774

KFCLS (c¼ 3� 10e8) 0.5531 0.5220 0.4898

KFCLS (c¼ 5� 10e8) 0.6327 0.5128 0.4545

KFCLS (c¼ 10e9) 0.4826 0.5722 0.5720
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(a) 3D ROC curves of (PD,PF,τ) (b) 2D ROC curves of (PD,PF)

(c) 2D ROC curves of (PD,τ) (d) 2D ROC curves of (PF,τ)
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Figure 15.16 LSOSP/KLSOSP curves obtained by 16 classes average classification rate using three kernel

function with appropriate parameters (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of (PD,PF); (c) 2D

ROC curves of (PD,t); (d) 2D ROC curves of (PF,t).

Table 15.13 Values of Az under three 2D ROC curves in Figure 15.16

PD versus PF PD versus t PF versus t

LSOSP 0.6406 0.5498 0.4714

KLSOSP (RBF, s¼ 3000) 0.7412 0.5675 0.3909

KLSOSP (polynomial, p¼ 3) 0.6110 0.5116 0.4396

KLSOSP (sigmoid, c¼ 1) 0.5581 0.4552 0.4174

Table 15.14 Values of Az under three 2D ROC curves in Figure 15.17

PD versus PF PD versus t PF versus t

NCLS 0.7285 0.4083 0.2354

KNCLS (RBF, s¼ 5000) 0.7296 0.4115 0.2409

KNCLS (Polynomial, p¼ 3) 0.7584 0.4229 0.2396

KNCLS (sigmoid, c¼ 0.5) 0.7313 0.4112 0.2306
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By concluding this section, KLSMAwith an appropriate use of RBF kernels has shown poten-

tial in mixed pixel classification via the Purdue Indiana Indian Pine test site in which the image

pixel vectors are heavily mixed. Such a heavy mixing may be also nonlinear in which case LSMA

may not work effectively. However, as will be shown in the following section, when the sample

vectors in a data set are not mixed as much as those in the Purdue’s data, the advantages gained

from the use of kernels by LSMAvanish.
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Figure 15.17 NCLS/KNCLS curves obtained by 16 classes average classification rate using three kernel

function with appropriate parameters (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of (PD,PF); (c) 2D

ROC curves of (PD,t); (d) 2D ROC curves of (PF,t).

Table 15.15 Values of Az under three 2D ROC curves in Figure 15.18

PD versus PF PD versus t PF versus t

FCLS 0.5933 0.5064 0.4376

KFCLS (RBF, s¼ 0.1) 0.7258 0.3545 0.0783

KFCLS (polynomial, p¼ 30) 0.6963 0.5519 0.4130

KFCLS (sigmoid, c¼ 5� 108) 0.6327 0.5128 0.4545
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15.5 HYDICE Data Experiments

In this section, we used another real hyperspectral data set, HYDICE scene in Figure 1.15 for

experiments that will show completely opposite results from those obtained from Purdue Indiana

Indian Pine data set. First of all, VD estimated for this scene was used as p¼ 9 with the false alarm

probability PF � 10�3. In this case, nine signatures were used for classification. These include five

panel signatures in Figure 1.15(b) and other four undesired signatures, referred to as grass, road,

tree, and interferer as identified in Figure 1.17. The LSMA performance was evaluated by detection

of the 19 R panel pixels shown in 1.15(b) based on their abundance fractions unmixed by LSMA.

The same 3D ROC analysis was also used for performance evaluation. Since the experiments on

mixed pixel classification conducted for the HYDICE scene are previously reported in Chang

(2003a), their results are not included here. Furthermore, the HYDICE experiments were performed

in an exactly same manner that was conducted for Purdue data in Section 15.3. In this case, only

those results similar to Figures 15.16–15.18 and Tables 15.13–15.15 are shown in Figures 15.19–

15.21 and Tables 15.16–15.18 to avoid unnecessary redundancy where the unmixed results of

KLSOSP, KNCLS, and KFCLS were obtained from the best empirical selection of their correspond-

ing parameters as they were done for Purdue’s data with shaded rows representing the best cases.

According to the results in Figures 15.19–15.21 and Tables 15.16–15.18 it was very obvious

that using kernels did not provide any benefit for LSMA to perform better than LSMA without
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Figure 15.18 FCLS/KFCLS curves obtained by 16 classes average classification rate using three kernel

function with appropriate parameters (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of (PD,PF); (c) 2D

ROC curves of (PD,t); (d) 2D ROC curves of (PF,t).
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Figure 15.19 LSOSP/KLSOSP curves obtained by 19 R panel pixels with averaged classification rate using

three kernel functions with appropriate parameters (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of

(PD,PF); (c) 2D ROC curves of (PD,t); (d) 2D ROC curves of (PF,t).

Table 15.16 Values of areas under 2D ROC curves for Figure 15.19

PD versus PF PD versus t PF versus t

LSOSP 0.9760 0.7895 0.3637

KLSOSP (RBF, s¼ 100000) 0.9602 0.7776 0.3408

KLSOSP (polynomial, p¼ 2) 0.9739 0.7579 0.3237

KLSOSP (sigmoid, c¼ 0.1) 0.9763 0.7974 0.3661

Table 15.17 Values of Az under three 2D ROC curves in Figure 15.20

PD versus PF PD versus t PF versus t

NCLS 0.9851 0.7711 0.2896

KNCLS (RBF, s¼ 100000) 0.9616 0.7250 0.2807

KNCLS (polynomial, p¼ 2) 0.9878 0.7447 0.2559

KNCLS (sigmoid, c¼ 0.1) 0.9863 0.7763 0.2896

Kernel-Based Linear Spectral Mixture Analysis 461



using kernels for the HYDICE scene as it did for the Purdue data. The main reason for this is

because the panel pixels in the HYDICE image scene are mostly pure and least mixed even if

they are not pure.

15.6 Conclusions

This chapter introduces a kernel version of LSMA, called kernel-based LSMA (KLSMA) to per-

form spectral unmixing in a feature space transformed by a nonlinear kernel function. Despite that

a kernel-based OSP was also proposed by Kwon and Nasrabadi (2005) the derivation for the KOSP

or KLSOSP presented in this chapter is much simpler than the one in Kwon and Nasrabadi (2005).

Most importantly, it can be used as a base to extend NCLS and FCLS to KNCLS and KFCLS

which were not developed in Kwon and Nasrabadi (2005). The kernel versions of NCLS and FCLS

derived in this chapter are independent of that developed in Broadwater et al. (2007). In particular,

the details of derivations for the three kernel-based algorithms, KLSOSP, KNCLS, and KFCLS

including their step-by-step algorithmic implementations provided in this chapter are by far most

comprehensive and can serve as guidelines for those who are interested in their implementations. It

is also worth being mentioned that since the fundamental framework of kernelizing LSMA is laid

out in this chapter, extensions of FLSMA in Chapter 13 and WACLSMA in Chapter 14 to their

kernel counterparts can be carried out by a treatment similar to the one in extending LSMA to

KLSMA presented in this chapter, but more complicated matrix manipulations are involved in their
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Figure 15.20 NCLS/KNCLS curves obtained by 19 R panel pixels with averaged classification rate using

three kernel functions with appropriate parameters (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of

(PD,PF); (c) 2D ROC curves of (PD,t); (d) 2D ROC curves of (PF,t).
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derivations (Liu, 2011). Nevertheless, such extensions may not be as trivial as expected. In addition,

to conduct quantification analysis for performance evaluation, a 3D ROC analysis is also used for

this purpose. As expected, KLSMA should perform better than LSMA. While this is generally true

for multispectral imagery, it may not be true for hyperspectral images as demonstrated by experi-

ments conducted based on two rather different real hyperspectral image data sets, Purdue Indiana

Indian Pine test site and HYDICE scene where the kernel-based classifiers can only significantly

improve performance than those without using kernels only when the data sample vectors are heav-

ily mixed. This is an interesting finding which may help those who design and develop hyperspec-

tral imaging algorithms. In Chapters 31 and 32, multispectral image experiments will be also

conducted for land cover classification where results provide evidence that the kernel-based

approaches can be found to be more effective in multispectral image analysis than hyperspectral

image analysis.
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(a) 3D ROC curves of (PD,PF,τ) (b) 2D ROC curves of (PD,PF)

(c) 2D ROC curves of (PD,τ) (d) 2D ROC curves of (PF,τ)

Figure 15.21 FCLS/KFCLS curves obtained by 19 R panel pixels with averaged classification rate using

three kernel functions with appropriate parameters (a) 3D ROC curves of (PD,PF,t); (b) 2D ROC curves of

(PD,PF); (c) 2D ROC curves of (PD,t); (d) 2D ROC curves of (PF,t).

Table 15.18 Values of areas under 2D ROC curves for Figure 15.21

PD versus PF PD versus t PF versus t

FCLS 0.9646 0.6724 0.0406

KFCLS (RBF, s¼ 1) 0.9643 0.6671 0.0404

KFCLS (polynomial, p¼ 2) 0.9642 0.6697 0.0411

KFCLS (sigmoid, c¼ 106) 0.9646 0.6724 0.0406
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IV

Unsupervised
Hyperspectral
Image Analysis

Unsupervised target analysis is one of principal strengths that hyperspectral imaging has edge over

multispectral image processing. This is due to its high spectral resolution that allows users to

uncover and reveal many unknown signal sources such as subtle material substances, subpixel tar-

gets, mixed constituent compositions, anomalies, etc. However, this advantage also comes at a

price that target analysis must be performed by unsupervised means because such targets of inter-

est generally cannot be identified by visual inspection or prior knowledge. Three specific applica-

tions are of particular interest in hyperspectral data exploitation: target discrimination,

unsupervised target detection, and unsupervised target classification. In unsupervised target detec-

tion target, knowledge is not provided a priori in which case potential targets must be obtained

directly from the data to be processed without prior knowledge. In this case, an issue is how to

discriminate one detected target from another. As for unsupervised target classification it is more

challenging because two main key issues, which are not encountered in unsupervised target detec-

tion, must be addressed. One is how to determine the number of targets of interest assumed to be in

the data for classification. The other is how to find unknown target training samples for classifica-

tion without prior knowledge. Part IV is included to address these issues. Three chapters are

included in this part.

Chapter 16 is devoted to hyperspectral measures that can be used to perform target discrimina-

tion. Two types of measures are considered: signature-based and correlation-weighted measures.

While signature-based measures, such as spectral angle mapper (SAM), Euclidean distance (ED),

spectral information divergence (SID), and orthogonal projection divergence (OPD), only deal

with spectral information provided by all spectral bands, correlation-weighted measures, such as

Mahalanobis distance and matched filter-based distance, take into account additional spectral cor-

relation among signatures. In doing so the first task is to develop criteria that can be used to mea-

sure spectral similarity between two data sample vectors to discriminate one from another or
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identify a specific target of interest from a set of known signatures such as data-bases or spectral

libraries. Several commonly used signature-based spectral similarity measures are revisited and

further extended to correlation-weighted hyperspectral measures when sample correlation among

data samples is available for data processing in which case a weighting correlation matrix can be

introduced into a signature-based spectral measure. Next, a follow-up task is to design and develop

unsupervised target generation algorithms that allow us to extract potential targets in an

unsupervised fashion with no prior knowledge required. These found targets can be used as so-

called unsupervised target knowledge for target detection as well as a base to produce an appropri-

ate set of training samples for target classification. Since unsupervised target analysis completely

relies on the knowledge obtained directly from the data, it is important to analyze the information

provided by data sample vectors. The issue of pixel information extracted from hyperspectral

imagery is further explored for data analysis where four types of pixels are categorized, endmem-

bers, mixed pixels, anomalies, and homogeneous pixels, in accordance with their spectral/spatial

properties.

Chapter 17 takes up issues of determining the number of target signatures in the data and, in the

mean time, finds these unknown target signatures. In order to address the first issue, a new concept

of spectral targets is introduced to differentiate “spatial” targets that are generally identified by

their spatial properties such as size, shape, and texture. More specifically, a target analyzed based

on its spectral properties within a single signature vector is called spectral target. With such a

defined spectral target what we are particularly interested in data analysis from an aspect of statis-

tical signal processing is the concept of sample spectral statistics generated by interband spectral

information (IBSI) among a set of data sample vectors, S, denoted by IBSI(S). There are two types

of spectral targets based on sample spectral statistics, one characterized by the second-order IBSI

and the other by sample intra-pixel IBSI of order higher than 2, referred to as high-order IBSI. It

should be noted that the term of IBSI is defined as sample spectral correlation resulting from a set

of data sample vectors specified by S. It is actually the size of S closely related to how to define

second-order IBSI and high-order IBSI. In the context of IBSI we assume that background (BKG)

pixels are those spectral targets characterized by second-order IBSI, while the target pixels of inter-

est are those characterized by high-order IBSI. In hyperspectral image analysis this seems a rea-

sonable assumption since the spectral targets of interest in hyperspectral data exploitation are those

that either (1) occur with low probability or (2) have small populations when they are present. Such

spectral targets generally appear in small population and also occur with low probabilities, for

example, special spices in agriculture and ecology, toxic wastes in environmental monitoring, rare

minerals in geology, drug/smuggler trafficking in law enforcement, combat vehicles in the battle-

field, landmines in war zones, chemical/biological agents in bioterrorism, weapon concealment,

and mass graves. As a result, the sample size of data sample vectors specified by such a spectral

target, S, is relatively small and can be generally considered as insignificant objects because of

their very limited spatial information, but they are actually critical and crucial for defense and

intelligence analysis due to the fact that they are generally hard to be identified by visual inspec-

tion. From a statistical point of view since they are insignificant compared to targets with large

sample pools, the spectral information statistics of such special targets cannot be captured by sec-

ond-order IBSI but rather by high-order IBSI.

Once image pixel vectors are categorized into BKG and target classes according to IBSI, a

follow-up task is how to find them, in which case two issues need to be addressed. One is how

many of them. The other is how to extract them. The first issue can be resolved by the virtual

dimensionality (VD) discussed in Chapter 5. The beauty of VD lies in the fact that its value is

completely determined by the false alarm probability, PF. By varying the value of PF, the number

of spectrally distinct signatures estimated by the VD varies. For example, if PF is set too low, fewer
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tests will fail and thus too fewer targets are assumed to be in the data and vice versa. To address the

second issue two approaches are developed to design an unsupervised target sample finding algo-

rithm (UTSFA) to extract a set of target samples of interest directly from the data. One is based on

three least squares (LS)-based algorithms, automatic target generation process (ATGP),

unsupervised non-negativity constrained least squares (UNCLS) method, and unsupervised fully

constrained least squares method (UFCLS). In order for these unsupervised methods to extract and

distinguish spectral targets of second-order IBSI from high-order IBSI, two data sets, original data

and its sphered data, are used. It assumes that the BKG in a hyperspectral image is most likely

characterized by second-order IBSI while hyperspectral targets will be more likely to be captured

by high-order IBSI as outliners due to their small spatial presence. In this case, high-order spectral

targets are referred to as desired targets to be used for image analysis, while second-order spectral

targets are considered as undesired targets for which we would like them to be annihilated or sup-

pressed prior to data processing so as to improve image analysis. The other is component analysis-

based algorithms where the principal components analysis (PCA) and independent component

analysis (ICA) are used to accomplish what the LS-based algorithms described above do to extract

second-order spectral targets and high-order spectral targets, respectively.

One of great challenges in hyperspectral data exploitation is analysis of pixel information

extracted from various unsupervised algorithms. In remote sensing image processing, many algo-

rithms have been developed for various applications in data exploitation. An important issue is

whether these algorithms really do what they claim to do. For example, endmember extraction

algorithms are designed to find endmembers that are assumed to be pure signatures. Is it really the

case that their extracted endmembers are true pure signatures? Chapter 18 investigates the issue of

pixel information extracted by three classes of exploitation-based algorithms: endmember extrac-

tion, unsupervised target detection, and anomaly detection. In order to facilitate pixel information

analysis, four types of pixels are considered: pure pixel, mixed pixel, anomalous pixel, and homo-

geneous pixel. A pure pixel is a pixel whose spectral signature is completely specified by a single

material substance as opposed to a mixed pixel whose spectral signature is made up of more than

one material substance. According to classical image processing, a homogeneous region is defined

by an area in which the pixels have very close gray scale values. Using the same idea we can also

define a homogenous neighborhood as a set of neighboring pixels whose spectral signatures are

very close and similar. A pixel falling in a homogeneous neighborhood is called a homogeneous

pixel. The concept of a homogenous pixel is completely opposite to an anomalous pixel, whose

signature is considered to be spectrally distinct from those of its surrounding pixels. While pure

pixels and mixed pixels can be analyzed by their spectral properties on a single pixel basis, homo-

geneous pixels and anomalous pixels must take into account the surrounding pixels within their

neighborhoods, that is, both spatial and spectral properties. It is interesting to note that a pure or

mixed pixel can be homogenous or anomalous. Similarly, a homogeneous or an anomalous pixel

can also be pure or mixed. These four types of pixels can help to shed light on the pixel informa-

tion that a particular algorithm is designed to extract. Of particular interest is that if the extracted

endmembers happen to be pixels, are they really endmember pixels? If not, what type of pixels

are they?
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16

Hyperspectral Measures

One simplest and easiest means to conduct unsupervised target analysis is to use hyperspectral

measures for target discrimination detection, classification, recognition, and identification. Many

hyperspectral measures have been studied in the literature, particularly in Chang (2003a, Chap-

ter 2). They are primarily designed to measure spectral similarity among signatures for the purpose

of detection, discrimination, classification, and identification. This chapter revisits several com-

monly used signature vector-based spectral similarity measures and further generalizes signature

vector-based hyperspectral measures to sample correlation-weighted hyperspectral measures by

including a weighting correlation matrix into a signature vector-based spectral measure so as to

improve its performance. The idea of such generalization is similar to that using a weighting

matrix to extend linear spectral mixture analysis (LSMA) to weighted abundance-constrained

LSMA (WAC-LSMA) developed in Chapter 14.

16.1 Introduction

A traditional approach to designing hyperspectral measures assumes that data samples are not neces-

sarily collected from imaging sensors as image pixels and could be also from other types of non-

imaging optical sensors. In this case, the data samples should be analyzed as one-dimensional

signals on the basis of their spectral characteristics (see Chapter 2, Chang 2003a; Category 2: Hyper-

spectral Signal Processing, Chapters 24–29). Since there is no prior knowledge available regarding

the data sample vectors to be analyzed, the target analysis must be performed by some sort of an

unsupervised fashion. In certain applications such as chemical/biological (CB) warfare defense there

is a spectral library or database that can be used to identify unknown CB agents for target discrimi-

nation and target identification where in the former case, unknown data samples can be only

discriminated one from another, while in the latter case an unknown data sample can be identified

by comparing its spectral profile against the spectral signatures in a database or spectral library.

However, technically speaking, such a target identification is actually target verification because it

does not perform identification but rather verifies data sample vectors of interest via an existing data

base or spectral library. To do so, signature vector-based spectral measures such as spectral angle

mapper (SAM) and spectral information divergence (SID) developed in Chapter 2 of Chang (2003a)

are generally used for this purpose. On many occasions a set of collected unknown data samples

may be correlated their spectral profiles with reference data in a database or spectral library that are

used to compare against data samples. Under this circumstance, the data sample correlation should

help to increase spectral discriminability. Since signature vector-based spectral measures do not take
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advantage of sample correlation, a weighting matrix that accounts for correlation resulting from

sample pools is included in signature vector-based spectral measures whenever sample correlation is

available to derive weighted spectral measures. This chapter investigates these two types of hyper-

spectral measures, signature vector-based and correlation-based spectral measures in various

applications.

16.2 Signature Vector-Based Hyperspectral Measures for Target
Discrimanition and Identification

Spectral characteristics provide important and crucial features in material identification, discrimi-

nation, detection, and classification. Many spectral similarity measures have been developed and

can be used for this purpose such as SAM (Schwengerdt, 1997), SID (Chang, 2000, 2003a, Chap-

ter 2), Euclidean distance (ED), and many others (Chang, 2003a). When there is no prior target

class information available, these measures are performed on a single signature vector basis to

measure spectral variability between two signature vectors, in which case they are generally used

for signature discrimination and identification, but not used for classification. Furthermore, they

are effective only if the spectral signature vectors to be compared are true signatures of the materi-

als that they really represent the signature vectors. However, this idealistic case is generally not

true in many real applications where many factors may contaminate and corrupt spectral signature

vectors to be identified. One scenario is mixed signature discrimination and identification where a

spectral signature vector is mixed with a number of signature vectors resident in the signature vec-

tor. Another is subsample target discrimination and identification where the target to be identified

is embedded in a single signature vector and its spectral signature vector is clearly mixed with

other signature vectors that are also present in the signature vector. In either case, single signature

vector-based spectral measures such as SAM may not work effectively and sometimes may even

identify wrong targets. This section investigates the issue of discrimination and identification for

mixed signature vectors and subsample targets and provides evidence that such examples indeed

occur in real hyperspectral imagery where some commonly used spectral measures fail in discrimi-

nation and identification of mixed signature vectors and subsample targets. To remedy this problem

it further develops new spectral measures for mixed signature vectors and subsample targets in

identification and discrimination. Unlike single signature vector-based spectral measures described

above, these measures take advantage of the sample spectral correlation to account for spectral

variability of mixed signature vectors and subsample targets within the signature vectors. In partic-

ular, when a signature vector is an image pixel vector in an image data where mixed pixel vectors

or subpixel targets may spatially and spectrally correlated with their neighboring pixel vectors, the

inclusion of such sample spectral correlation in a spectral measure offers additional spectral infor-

mation that any single signature vector-based spectral measure cannot provide. Two types of sam-

ple spectral correlation-based spectral measures are of interest. They are previously developed as

target discrimination measures for anomaly classification in hyperspectral imagery and can be

considered as candidates to be studied. One is Mahalanobis distance (MD)-based and the other

is matched filter-based hyperspectral measures, both of which include the sample spectral

covariance/correlation matrix to capture spectral mixed signature vectors and subsample target

signature vectors more effectively. Due to the use of the sample spectral covariance/correlation

matrix, these measures can be considered as second-order spectral measures as opposed to single

signature vector-based spectral measures that can be thought of as first-order spectral measures

which do not include the sample covariance/correlation matrix to account for sample correlation.

In what follows, we describe four signature vector-based spectral measures, ED SAM, OPD,

and SID, all of which are discussed in Chang (2003a) and closely related to each other in one way
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or another. For example, when the angle between two signatures is small, ED and SAM are essen-

tially the same measures as shown in Chang (2003a). On the other hand, the pair of SAM and OPD

can be related by orthogonal projection. Additionally, while the OPD measures the divergence of

one signature vector projection onto the other, SID can be considered as a stochastic version of

OPD with orthogonal projection replaced with information divergence (Cover and Thomas, 1991).

The definitions of these four measures are summarized as follows (Chang, 2003a).

Assume that si ¼ si1; si2; . . . ; siLð ÞT and sj ¼ sj1; sj2; . . . ; sjL
� �T

are two spectral signature

vectors where L is the total number of spectral bands.

16.2.1 Euclidean Distance

The ED is one of most widely used metrics in mathematics to measure the distance between two

spectral signatures, si and sj, given by

EDðsi; sjÞ ¼ jjsi � sjjj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XL

l¼1
sil � sjl
� �2

r

ð16:1Þ

16.2.2 Spectral Angle Mapper

The SAM measures spectral similarity by finding the angle between the spectral signatures si and sj

SAMðsi; sjÞ ¼ cos�1 hsi; sji
jjsijjjjsjjj

� �
ð16:2Þ

where hsi; sji ¼
PL

l¼1 silsjljl, jjsijj ¼
PL

l¼1 silð Þ2
� �1=2

and jjsj jj ¼
PL

l¼1 sjl
� �2� �1=2

:

16.2.3 Orthogonal Projection Divergence

The concept of the OPD is first defined in Chang (2003a) which is originated from the orthogonal

subspace projection (OSP) developed in Harsanyi and Chang (1994). It finds the residuals of

orthogonal projections resulting from two pixel vectors, si and sj given by

OPDðsi; sjÞ ¼ sTi P
?
sj
si þ sTj P

?
si
sj

� �1=2

ð16:3Þ

where P?
sk
¼ I� sk sTk sk

� ��1
sTk for k ¼ i; j and I is the L� L identity matrix.

16.2.4 Spectral Information Divergence

Let p ¼ p1; p2; . . . ; pLð ÞT and q ¼ q1; q2; . . . ; qLð ÞT be the two probability mass functions gener-

ated by si and sj, respectively, with pl ¼ sil=
PL

l¼1 sil and ql ¼ sjl=
PL

l¼1 sjl . So, the self-informa-

tion provided by si and sj for band l is defined by

IlðsiÞ ¼ �logpl ð16:4Þ

IlðsjÞ ¼ �logql ð16:5Þ

respectively. By virtue of (16.4) and (16.5) we can define the discrepancy of the self-information of

band image Bl provided by sj relative to the self-information of band image Bl provided by si,
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denoted by Dl sijjsj
� �

as

Dl sijjsj
� � ¼ IlðsiÞ � IlðsjÞ ¼ log pl=qlð Þ ð16:6Þ

Averaging D sijjsj
� �

in (16.6) over all the band images Blf gLl¼1 results in

D sijjsj
� � ¼

XL

l¼1
Dl sijjsj
� �

pl ¼
XL

l¼1
pllog pl=qlð Þ ð16:7Þ

where D sijjsj
� �

is the average discrepancy in the self-information of sj relative to the self-

information of si. In context of information theory, D sijjsj
� �

in (16.7) is called the relative

entropy of sj with respect to si, which is also known as Kullback–Leibler information

measure, directed divergence or cross entropy (Cover and Thomas, 1991). Similarly, we

can also define the average discrepancy in the self-information of si relative to the self-

information of sj by

D sjjjsi
� � ¼

XL

l¼1
Dl sjjjsi
� �

ql ¼
XL

l¼1
qllog ql=plð Þ ð16:8Þ

Summing (16.7) and (16.8) yields spectral information divergence (SID) defined by

SID si; sj
� � ¼ D sijjsj

� �þ D sjjjsi
� � ð16:9Þ

which can be used to measure the discrepancy between two pixel vectors si and sj in terms

of their corresponding probability mass functions, p and q. It should be noted that while

SID si; sj
� �

is symmetric, D sijjsj
� �

is not. This is because SID si; sj
� � ¼ SID sj; si

� �
and

D sijjsj
� � 6¼ D sjjjsi

� �
. As a final remark on SID, it is worth noting that a recent work (Du et al.,

2004) suggested a means of mixing SID and SAM as SID-SAM mixed measures specified by

SID si; sj
� �

xtan ðSAMðsi; sjÞÞ and SID si; sj
� �

xsinðSAMðsi; sjÞÞ: Their results have shown better

discriminability in spectral similarity. Those who are interested in these measures can find more

details in Du et al. (2004).

16.3 Correlation-Weighted Hyperspectral Measures for Target
Discrimanition and Identification

The signature vector-based spectral measures described in Section 16.2 calculate the spectral simi-

larity value between a pair of two signature vectors using only the spectral information provided by

L bands within these two signature vectors. So, if a material signature vector is mixed by other

substances, the spectral characteristics of the signature vector to be processed do not necessarily

characterize the spectral properties of the material signature vector it represents. This often occurs

in real applications when a material signature vector is either mixed with other signature vectors

such as background signatures or embedded in a single signature vector as a subsample target. In

both cases, using a signature vector-based spectral measure to measure material similarity is gener-

ally not effective. In order to resolve this dilemma, signature vector-based hyeprspectral measures

are extended to correlation-weighted hyperspectral measures that can be categorized into two clas-

ses. One comprises of hyperspectral measures that introduce a priori sample spectral correlation

into signature vector-based spectral measure so as to improve discrimination performance in spec-

tral similarity. The other is made up of hyperspectral measures weighted by a posteriori sample

spectral correlation to do what a priori sample spectral correlation does.
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16.3.1 Hyperspectral Measures Weighted by A Priori Correlation

A hyperspectral measure weighted by a priori correlation assumes that there is known correlation

available prior to material discrimination and identification. A good example of best utilization of

such prior correlation is the OSP approach recently developed by Harsanyi and Chang (1994) that

separates desired target signature vectors from undesired target signature vectors to achieve better

hyperspectral image classification. This OSP concept can be used to design new hyperspectral

measures as follows.

Assume that there are p target signature vectors which are known a priori and si is a signature

vector of interest. We can define a matrix, U to be a matrix formed by all a priori known target

signature vectors except si. By taking advantage of the following orthogonal projector defined by

Harsanyi and Chang (1994) or (2.86) in Chapter 2:

P?
U ¼ I� U UTU

� ��1
UT ð2:86Þ

we can de-correlate the signature vector si via orthogonal projection from all other known target

signatures in U by projecting si to the space hUi? orthogonal to the space linearly spanned by

undesired target signature vectors in U, and derive a family of several OSP-based hyperspectral

measures. Depending on how to use P?
U , these OSP-based hyperspectral measures can be either

used for discrimination or identification.

16.3.1.1 OSP-Based Hyperspectral Measures for Discrimination

Two separate problems, discrimination, and identification are considered. When discrimination is

performed, it only needs to discriminate one signature vector from another. When identification is

performed, we generally assume that there is a database, D ¼ dkf gKk¼1 available for signature

identification.

Two OSP-based hyperspectral measures can be designed for discrimination between two signature

vectors si and sj. One includes P
?
U as a weighting matrix into ED in (16.2), called EDOSP, defined by

EDOSPðsi; sjÞ ¼ si � sj
� �T

P?
U si � sj
� � ð16:10Þ

where U is an undesired signature matrix formed by all known signatures excluding si and sj.

The other is derived from the concept of OPD in (16.3), called OSP-based divergence, DOSP,

defined by

DOSPðsi; sjÞ ¼ jsTi P?
Usj j ð16:11Þ

with the same U defined in (16.10).

If P?
U in (16.10) is assumed to be the identity matrix, then (16.10) is reduced to ED in (16.1). On

the other hand, (16.11) is an extension of the OPD by including P?
U to eliminate the interference

caused by undesired target signature vectors. However, it should be noted that unlike the EDOSP,

which is a nonnegative measure, the sTi P
?
Usj in (16.11) can take positive or negative values depend-

ing upon whether or not si and sj point to the same direction. To avoid this problem, the absolute

value is used in (16.11).

16.3.1.2 OSP-Based Hyperspectral Measures for Identification

In the previous subsection, the signature vectors si and sj are assumed to be signature vectors in real

data and (16.10) and (16.11) are used for signature discrimination. In this subsection, we assume

that there is a database or spectral library D ¼ dkf gKk¼1 available to be used to identify a signature

vector in real data si. In this case, DOSP can be modified to perform signature identification in two
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different ways depending on how to use the matched signature either from the database D, denoted
by IDOSP,D or itself, denoted by IDOSP as follows:

IDOSP;DðsiÞ ¼ maxdk2DjdTkP?
Uk
sij ð16:12Þ

IDOSPðsiÞ ¼ maxUk
sTi P

?
Uk
si ð16:13Þ

where Uk is a matrix formed by all signature vectors in D excluding signature vector dk.

Using (16.12) and (16.13) a signature vector si can be identified via a database D by the one in D
that yields the IDOSP,D or IDOSP.

16.3.2 Hyperspectral Measures Weighted by A Posteriori Correlation

In many applications, obtaining a priori correlation information is very difficult, if not impossible.

Therefore, it is highly desirable if we can generate necessary information directly from the image

data without relying on prior knowledge. It has been demonstrated in Chapter 12 that the a priori

correlation provided by P?
U can be approximated by the inverse of the sample spectral correlation

matrix, R�1, which can be used to account for a posteriori correlation. In light of this interpreta-

tion, the sample spectral correlation/covariance is used to derive new a posteriori correlation-

weighted hyperspectral measures.

16.3.2.1 Covariance Matrix-Weighted Hyperspectral Measures

As noted in Section 12.5, the RX detector (RXD) defined by (12.76) was developed by Reed and

Yu (1990) for anomaly detection. If the r and m in (12.76) are replaced with si and sj, respectively,

then the RX anomaly detector becomes

si � sj
� �T

K�1 si � sj
� � ð16:14Þ

Since (16.14) is a Mahalanobis distance (MD)-like measure, we can define a new hyperspectral

MD-like measure via (16.14), called MDRX as follows:

MDRX si; sj
� � ¼ si � sj

� �T
K�1 si � sj

� � ð16:15Þ

Two comments on (16.15) are noteworthy.

1. The covariance matrix-weighted hyperspectral measure, MDRX defined by (16.15) is essentially

derived from the widely used maximum likelihood classifier (MLC) by replacing si and sj in

(16.15) with a data sample vector r to be classifier and the mean of the jth class, mj, (16.15),

respectively, as follows:

MLC rð Þ ¼ arg min1�j�p r� mj

� �T

K�1 r� mj

� �	 

ð16:16Þ

where MLC assigns to the data sample vector a class that yields the minimum of
�
r� mj

�T
K�1

�
r� mj

�
over all the p classes, C1; C2; . . . ; Cp.

2. Since the MLC described in (16.16) is supervised in the sense that the knowledge of�
mj

�p

j¼1
, means of p classes, Cj

� �p

j¼1
must be available a priori, the MLC in (16.16) can
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be further improved by including an undesired signature annihilator defined by (2.86)

operating on the data sample vector in (16.16) in a similar manner that the OSP is defined

by (2.85) as follows:

MLCOSP rð Þ ¼ arg min1�j�p P?
Uj
r� mj

� �T

K�1 P?
Uj
r� mj

� �	 

ð16:17Þ

where Uj is a matrix made up of all signatures excluding sj, that is, Uj ¼ s1 . . . sj�1sjþ1 . . . sp
 �

.

3. In (16.16) and (16.17) the knowledge of the number of classes, p and
�
mj

�p

j¼1
is assumed

to be known a priori. If such knowledge is not available, there is impossible to perform

classification. The class means mj in (16.16) must be replaced by the global mean m. As a

result, the MLC specified by (16.16) becomes the well-known anomaly detector, RXD

defined by (12.76):

r� mð ÞTK�1 r� mð Þ ð12:76Þ

16.3.2.2 Correlation Matrix-Weighted Hyperspectral Measures

As also noted in Section 12.4.1.2, replacing the P?
U used in the OSP in (12.22) with the inverse of

spectral correlation matrix, R�1 yields the constrained energy minimization (CEM) in (12.52).

Using the same token we can also define a new hyperspectral measure weighted by a posteriori

correlation from the EDOSP, called MDCEM defined by

MDCEM si; sj
� � ¼ si � sj

� �T
R�1 si � sj

� � ð16:18Þ

Interestingly, comparing (16.18) to (16.15) MDRX and MDCEM have the same identical structure

except the a posteriori correlation in (16.15) provided by K�1 as opposed to R�1 used to account

for a posteriori correlation in (16.18).

As special cases where the sample spectral covariance matrix K and the sample spectral

correlation matrix R are whitened, that is, K ¼ I and R ¼ I, both (16.15) and (16.18) are

reduced to ED

MDRX;K¼Iðsi; sjÞ ¼ MDCEM;R¼Iðsi; sjÞ ¼ si � sj
� �T

si � sj
� �

¼ jjsi � sjjj2 ¼ EDðsi; sjÞ
ð16:19Þ

16.3.2.3 Covariance Matrix-Weighted Matched Filter Distance

According to RXD specified by (12.76), we can also derive a new hyperspectral measure, denoted

by MFDRX by replacing the both r’s in (12.76) with sj and si, respectively, as follows:

MFDRX si; sj
� � ¼ j si � mð ÞTK�1 sj � m

� �j ð16:20Þ

where m is the sample mean of the data to be processed. Since sj and si are not the same signature

vectors, the values produced by si � mð ÞTK�1 sj � m
� �

in (16.20) are not necessarily non-negative.

In this case, the absolute value is used in (16.20).
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16.3.2.4 Correlation Matrix-Weighted Matched Filter Distance

As an alternative, we can also take advantage of CEM in another way to account for a

posteriori correlation by designing a new hyperspectral measure, called CEM-matched filter

distance, MFDCEM defined by

MFDCEM si; sj
� � ¼ jsTi R�1sjj ð16:21Þ

Comparing (16.21) with (16.20), (16.20) can be also obtained by replacing si, R
�1 and sj with

si�m, K�1 and sj�m, respectively.
In analogy with (16.17), if K and R are whitened, that is, K ¼ I and R ¼ I, and m¼ 0, (16.20)

and (16.21) are reduced to SAM

MFDCEM;R¼Iðsi; sjÞ ¼MFDRX;R¼Iðsi; sjÞ ¼ jsTi sjj ¼ j si; sj
� �j

¼ jjsijjjjsjjj
� � jcos SAMðsi; sjÞ

� �j� � ð16:22Þ

where SAM(si,sj) is defined by (16.2). Interestingly, the four proposed a posteriori correlation-

based hyperspectral measures, MDRX, MDCEM, MFDRX, and MFDCEM turn out to be the same

four target discrimination measures developed in Chang and Chiang (2002).

Recently, an adaptive coherence estimator (ACE) developed by Kraut et al. (1999) and

dACE d; rð Þ ¼ dTK�1r
� �2

dTK�1d
� �

rTK�1r
� � ð16:23Þ

where d is the target signal to be detected and r is a data sample vector to be processed. By virtue

of (16.23) we can further define a new discrimination measure, denoted by MFDACE by replacing d

with si and r with sj as

MFDACEðsi; sjÞ ¼
sTi K

�1sj
�� ��

sTi K
�1si

� �1=2
sTj K

�1sj

� �1=2
: ð16:24Þ

If we further use K�1/2 as a whitening matrix as discussed in Section 6.3.1 of Chapter 6 (i.e., mak-

ing K an identity matrix I by K¼I) and define ~d ¼ K�1=2d, ~r ¼ K�1=2r, ~si ¼ K�1=2si and
~sj ¼ K�1=2sj , then (16.23) and (16.24) can be re-expressed respectively as follows

dACEðd; rÞ ¼
~d
T
~r

� �2

~d
T~d

� �
~rT~r
� � ¼ uTdur

� �2 ð16:25Þ

which is a square of an inner product of two unit vectors, u~d ¼ ~d
jj~djj and u~r ¼ ~r

jj~rjj, and

MFDACEð~si;~sjÞ ¼
~sTi ~sj
�� ��

~sTi ~si
� �1=2

~sTj ~sj

� �1=2
¼ ~sTi ~sj

�� ��

jj~sijj jj~sjjj ¼ cos SAMðu~si ; u~sj Þ
� ��� �� ð16:26Þ

which also becomes the SAM measure of two unit signature vectors u~si ¼ ~si
jj~si jj and u~sj ¼

~sj
jj~sj jj similar

to (16.22) with signature vector lengths being unit length.
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In addition to discrimination specified by (16.15) and (16.18) and (16.21), (16.22), (16.24) and

(16.26) these equations can be also used to perform identification in the same way that (16.12) and

(16.13) do by comparing a real signature vector against a database D. However, such identification

is rather straightforward because the used a posteriori correlation is provided by either sample

covariance matrix K or sample correlation matrix R compared to the a priori correlation which

must be determined by the undesired signature matrix U used for annihilation.

Since all the spectral measures defined by (16.10) and (16.11), (16.15) and (16.18), and

(16.20), (16.21), (16.24) involve the calculation of correlation either provided by P?
U or the

inverse of the sample spectral correlation matrix, R�1 or the inverse of the sample covariance

matrix K�1, they can be referred to as second-order hyperspectral measures. On the other

hand, the sample spectral correlation is not included in any pure signature vector-based spec-

tral similarity measure. So, SAM and SID can be considered as the first-order spectral mea-

sures. Figure 16.1 summarizes relationships among various first-order and second-order

hyperspectral measures.

16.4 Experiments

Two data sets are used for experiments, the HYDICE image data in Figure 1.15 and Purdue’s

Indian Pine test site AVIRIS data in Figure 1.13.

16.4.1 HYDICE Image Experiments

Since the precise knowledge of the 19 R panel pixels is known according to the ground truth pro-

vided in Figure 1.15(b), the mean of each of five panel signatures is calculated by averaging the R

pixels for each of five rows and shown in Figure 1.16. These five panel signatures were used for

discrimination and also as a database for identification. Table 16.1 tabulates identification errors of

19 R panel pixels resulting from pixel-based hyperspectral measures, ED, SAM, OPD, SID, and

correlation-weighted hyperspectral measures, MDRX, MDCEM, MFDRX, and MFDCEM where all

the four correlation-weighted hyperspectral measures made no errors compared to pixel-based

hyperspectral measures that made errors ranging from 4 to 6 with the SID and ED being the best

and worst measures.

Hyperspectral measures for signature discrimination/identification 

First- order hyperspectral measures 

signature vector-based hyperspectral 

measures

Second- order hyperspectral measures 

correlation-weighted hyperspectral measures 

A priori correlation A posteriori correlation 

OSP Covariance matrix 

MD MFD 

SAM ED OPD SID 

MD MFD 

Correlation matrix 

Figure 16.1 Block diagram of various hyperpsectral measures.
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Since the performance of a posteriori correlation-weighted hyperspectral measures varies with

the knowledge of the U used in their measures, their results are not included in Table 16.1. Instead,

this issue is investigated separately. To see the impact of various knowledge of U on P?
U-weighted

hyperspectral measures, the particular sampling areas specified by the marked areas in Figure 16.2

(a)–(d) were used to obtain undesired signatures for U.

Let u5, u6, u7, and u8 denote grass, road, tree, and interference signatures averaged over these

four sample areas, respectively. Table 16.2 tabulates identification errors resulting from the two

P?
U-weighted hyperspectral measures for identification, IDOSP,D and IDOSP where U4 consists of

four undesired panel signatures and U5¼ [U4u5], U6¼ [U4u5u6], U7¼ [U4u5u6u7],

U8¼ [U4u5u6u7u8].
As shown in Table 16.2, IDOSP,D performed better than IDOSP and both improved their perform-

ance if more undesired signatures were eliminated. In particular, IDOSP,D made no errors once a

background signature was eliminated, while IDOSP must wait until all four background signatures

were eliminated. Nevertheless, both IDOSP,D and IDOSP generally performed better than signature

vector-based hyperspectral measures.

16.4.2 AVIRIS Image Experiments

Another image data set to be used in this section is Purdue’s Indian Pine test site shown in Figure

1.13 that is an AVIRIS image collected from an area of mixed agriculture and forestry in

Table 16.1 Identification errors of 19 R pixels resulting from signature vector-based hyperspectral measures

and second-order statistics weighted hyperspectral measures

ED SAM OPD SID

6 5 5 4

MDRX MDCEM MFDRX MFDCEM

0 0 0 0

Figure 16.2 (a) Sample grass area; (b) sample road area; (c) sample tree area; (d) sample interference area.

Table 16.2 Identification errors resulting from the a posteriori-weighted hyperspectral measures, IDOSP-D,D

and IDOSP-D with various knowledge provided by U

U4 U5 U6 U7 U8

IDOSP,D 5 0 0 0 0

IDOSP 6 2 2 1 0
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Northwestern Indiana, USA. This image scene has been studied extensively in the literature. It is

very interesting in the sense that most pixels in the image scene are heavily mixed and and pro-

vides another excellent example for experiments. A detailed study on this scene was recently

reported in Liu et al. (2006). Unfortunately, to the author’s best knowledge, a comprehensive study

on subpixels and mixed pixels in this scene is yet to be done.

Since the number of samples in each of 16 pattern classes varies in a wide range, the perform-

ance of correlation-weighted hyperspectral measures also varies. Tables 16.3 and 16.4 tabulate

classification rates in percentage (%) of signature vector-based hyperspectral measures and

correlation-weighted hyperspectral measures for 16 classes, respectively, where the classes are

sorted in an increasing order of the number of samples and the last row calculated the averaged

classification rates produced by various measures for each of 16 classes. Comparing Table 16.3

with Table 16.4, it is surprising to discover that the two MD-based hyperspectral measures, two

MFD-based hyperspectral measures performed best among all the measures and the signature vec-

tor-based hyperspectral measured performed better than OSP-based hyperspectral measures.

Several observations can be made by Tables 16.3 and 16.4 and are worthwhile. The MFD-based

hyperspectral measures, MDRX and MDCEM performed well when the number of samples is small

in classes 9, 7, 1, 16, 13, 4, 16. Their performance was deteriorated with increasing samples as

opposed to signature vector-based hyperspectral measures which performed increasingly better

than did MFDRX and MFDCEM in classes 10, 14, 2, 11. This was due to the fact that the matching

signatures to be used were increasingly affected by contaminated spectral correlation caused by

more heavily mixed pixels, in which case, signature vector-based hyperspectral measures were not

affected by sample spectral correlation. This was also witnessed by the performance of OSP-based

hyperspectyral measures where the signature vectors used for the U were heavily mixed. Such

mixed pixel information resulted in erroneous elimination of desired pixel information used by

IDOSP,D and IDOSP. However, it seemed that the performance of OSP-based hyperspectral mea-

sures, MD-based and MFD-based hyperspectral measures was little affected by number of sam-

ples. They yielded the best performance in general.

Table 16.3 Classification resulting from various signature vector-based hyperspectral measures

Class Sample number ED (%) SAM (%) SID (%) OPD (%)

9 20 75 95 100 90

7 26 92.308 92.308 92.308 92.308

1 54 87.037 87.037 87.037 87.037

16 95 94.737 92.632 93.684 92.632

13 212 95.283 93.868 95.283 94.811

4 234 21.795 58.974 61.111 59.402

15 380 27.895 20.789 22.105 22.105

8 489 56.033 77.096 76.892 76.892

5 497 2.6157 3.2193 3.0181 3.2193

12 614 12.378 27.85 24.593 27.85

6 747 28.38 30.79 31.325 30.522

3 834 16.187 27.698 23.022 28.417

10 968 47.004 66.942 59.194 70.351

14 1294 82.071 81.453 85.317 81.607

2 1434 53.208 43.724 48.187 42.19

11 2468 16.207 21.84 22.447 21.677

Average 10366 37.8642 43.2859 43.4015 43.4689
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In the past, many research efforts published in the literature have studied this image scene with

background removed from the image scene for analysis. In the following experiments, we investi-

gate such a scenario to see if the knowledge of background affects the performance of the correla-

tion-weighted hyperspectral measures. Table 16.5 tabulates their classification rates in percentage

(%) for 16 classes.

Comparing Table 16.5 with Table 16.4, their performances did not change drastically where

both OSP-based hyperspectral measures and MD-based hyperspectral measures improved classifi-

cation slightly in contrast to the MFD-based hyperspectral measures whose performance was

slightly degraded. This was because the former had less interference caused by the mixed pixels in

the background, while the latter required background pixels included in the sample correla-

tion/covariance matrix to eliminate the effect incurred by the background.

Finally, Figure 16.3 plots the averaged performance of the four types of measures, sample-

based, OSP-based, MD-based, and MFD-based hyperspectral measures in classification by averag-

ing the results in Tables 16.3 and 16.4 with MDRXþMDCEM!MD-based hyperspectral mea-

sures, MFDRXþMFDCEM!MFD-based hyperspectral measures, IDOSP,D, IDOSP!OSP-based

hyperspectral measures, EDþ SAMþ SIDþOPD! signature vector-based hyperspectral

measures.

It is interesting to find that MD-based hyperspectral measures yielded the best performance. The

ability of the MFD-based hyperspectral measures in classification was also reasonably good with

performance deteriorated as the number of samples was increased. The OSP-based hyperspectral

measures performed better when the sample size was small. On average the performance of signa-

ture vector-based hyperspectral measures was the worst.

A concluding comment is noteworthy. On many occasions the correlation-weighted hyperspec-

tral measures are easy to be confused with classifiers when they are applied to real images to per-

form spectral similarity such as experiments performed above for the HYDICE and Purdue’s

Indian Pine scene images. First, the correlation-weighted hyperspectral measures are not designed

Table 16.4 Classification rates resulting from various correlation weighted-based hyperspectral measures

Class Sample

#

IDOSP,D

(%)

IDOSP

(%)

MFDCEM

(%)

MFDRX

(%)

MDRX

(%)

MDCEM

(%)

9 20 95 75 100 100 100 100

7 26 69.231 73.077 100 100 100 100

1 54 22.222 37.037 98.1 98.148 85.185 85.185

16 95 100 92.632 100 100 89.474 90.526

13 212 97.642 95.755 100 100 99.528 99.528

4 234 0 1.2821 67.9 69.231 91.453 89.316

15 380 20.263 24.474 67.4 68.421 90 90.526

8 489 17.382 29.243 33.9 34.56 98.569 98.773

5 497 64.588 64.185 66.8 66.6 66.6 66.398

12 614 22.15 48.86 64 64.169 79.479 78.827

6 747 62.651 62.651 76.7 76.573 96.118 96.118

3 834 0.47962 5.7554 27.9 28.417 61.151 62.95

10 968 3.8223 21.591 50.7 50.413 79.959 79.649

14 1294 42.89 45.595 49.5 49.614 84.776 84.312

2 1434 2.4407 8.0893 22.6 22.106 76.081 76.011

11 2468 0.040519 12.358 13.4 13.574 57.091 57.131

Average 10366 19.9691 28.3523 41.515 41.607 75.6706 75.6705
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for classifiers. Instead, they are designed to discriminate and identify signature vectors. Second, a

classifier is a discrete p-value function which maps a data sample to a specific value that indicates

the class to which it belongs. So, it is a class membership-labeling process and needs to know the

number of classes, p a priori. Such prior knowledge is not required by the correlation-weighted

hyperspectral measures. Third, a classifier generally requires training samples to provide its needed

class information, while the correlation-weighted hyperspectral measures do not. Finally and most

importantly, when a classifier operates on data sample vectors in the original data space, it usually

implements a distance metric to measure similarity between two data sample vectors. So, when

signature vector-based hyperspectral measures can be used for this distance metric, in which case

they become classifiers. Classifiers of this type include ISODATA, nearest neighbor rule-based

Table 16.5 Classification rates resulting from various correlation-weighted hyperspectral measures with

background removed

Class Sample

number

IDOSP,D

(%)

IDOSP

(%)

MFDCEM

(%)

MFDRX

(%)

MDRX

(%)

MDCEM

(%)

9 20 80 75 100 100 100 100

7 26 65.385 73.077 100 100 100 100

1 54 25.926 33.333 96.296 96.296 87.037 88.889

16 95 100 96.842 100 100 89.474 89.474

13 212 97.17 96.226 100 100 100 100

4 234 0 1.2821 66.239 67.094 91.026 89.316

15 380 21.842 31.316 73.421 73.158 87.632 86.579

8 489 12.27 29.448 56.442 55.828 98.773 98.773

5 497 63.38 64.789 70.423 70.423 75.453 74.447

12 614 22.964 45.44 52.769 53.094 82.248 81.922

6 747 66.667 74.565 72.557 72.825 96.118 95.85

3 834 0 6.1151 22.542 22.662 64.149 64.988

10 968 1.5496 18.905 35.021 35.021 80.992 80.785

14 1294 54.096 59.119 49.536 49.227 85.626 85.626

2 1434 0.06974 5.3696 18.55 17.643 77.964 77.964

11 2468 0 11.426 9.1977 9.2382 62.156 61.75

Average 10366 20.847 30.1949 38.5105 38.3851 78.1015 77.8989

Figure 16.3 Averaged performance of four types of measures, signature vector-based, OSP-based,

MD-based, and MFD-based hyperspectral measures.
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classifiers. However, a good classifier generally extracts class feature information or takes advan-

tage of training sample vectors to transform the original data space into a feature space in which it

can perform classification more effectively on the extracted class features rather than data sample

vectors. This is the main reason that classifiers of this type such as FLDA and SVM always per-

form better than the correlation-weighted hyperspectral measures used as classifiers.

16.5 Conclusions

A simplest unsupervised hyperspectral target analysis is to use a hyperspectral measure to perform

target signature discrimination. When there is prior knowledge available, a hyperspectral measure

can take advantage of it to be further used to accomplish tasks other than discrimination. For exam-

ple, if there is a training data set for class membership available, a hyperspectral measure can work

as a classifier either as a hard decision-made classifier or a soft decision-made quantifier. More-

over, if there is a database or spectral library available, a hyperspectral measure can be performed

to be used for signature verification or identification. This chapter derives two categories of hyper-

spectral measures, signature vector-based hyperspectral measures and correlation matrix-weighted

hyperspectral measures. While the former is generally considered as spectral similarity measures

commonly used in remote sensing community, the latter has been used as various forms as detec-

tors, classifiers, or identifiers due to the fact that they can take into account the correlation among

data sample vectors to be used for various tasks. Such sample correlation information can be char-

acterized by two types of information, a priori information and a posteriori information which can

be used to design correlation matrix-weighted hyperspectral measures. As examples, if a priori

information is provided by a set of training data for class membership, correlation matrix-weighted

hyperspectral measures work as Mahalanobis classifier/maximum likelihood classifier. On the

other hand, if a posteriori information is specified by the sample covariance matrix, correlation

matrix-weighted hyperspectral measures can be considered as RX detector or matched filter. Inter-

estingly, when the sample covariance/correlation matrix is assumed to be the identity matrix, the

sample covariance matrix-weighted hyperspectral measures are reduced to Euclidean distance

(ED) and the sample correlation matrix-derived matched filter hyperspectral measures become

spectral angle mappers (SAM). However, there are limitations on an extent to which a hyperspec-

tral measure can be stretched out, specifically, when no prior knowledge is available. Chapter 17 is

developed to particularly address this issue.
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17

Unsupervised Linear Hyperspectral
Mixture Analysis

Chapter 16 provides the simplest unsupervised means of using hyperspectral measures to analyze

data sample vectors for signature discrimination, classification, and identification without appeal-

ing for any algorithm. Consequently, its applications are rather limited. Specifically, when it comes

to unsupervised linear spectral mixture analysis (LSMA), hyperspectral measures alone cannot do

the same tricks as done in Chapter 16. Unsupervised linear spectral mixture analysis (ULSMA) is

highly desirable in real-world applications due to the fact that prior knowledge is generally not

available. Two of most challenging issues in ULSMA are (1) determining the number of signatures

present in the data and (2) finding the signatures needed to perform spectral unmixing, both of

which do not occur in supervised LSMA (SLSMA) since the latter generally assumes the target

signatures to be known a priori or provided by prior knowledge. With recent advances in hyper-

spectral sensor technology many unknown and subtle signal sources that cannot be identified by

prior knowledge or visual inspection can now be uncovered and revealed. In this case, using pre-

assumed knowledge may not be reliable, accurate, or complete and, thus, the resulting unmixed

results may be misleading. This chapter addresses these issues by introducing a new concept of

sample spectral statistics generated by interband spectral information (IBSI) among a set of data

sample vectors, S, denoted by IBSI(S), which can be used to categorize signatures into background

(BKG) and target classes in terms of their sample spectral statistics. In order to extract these two

types of signatures, two approaches, referred to as least squares (LS)-based ULSMA and compo-

nent analysis-based (CA)-ULSMA, are developed to perform LSMA. It turns out that such

unsupervised versions of LSMA can perform better than SLSMA in real-image experiments when

obtaining true knowledge becomes difficult and incomplete.

17.1 Introduction

With high spectral/spatial resolution many unknown material substances can be revealed by hyper-

spectral imaging sensors for data exploitation, specifically LSMAwhere a set of signatures used to

form a linear mixing model may not be known by prior knowledge or be identified visually. Under

such circumstances performing SLSMA with assumed target knowledge assumed a priori or

obtained by visual inspection may not be realistic or applicable to real-world problems. Therefore,

it is highly desirable to obtain the desired signature knowledge directly from the data without

appealing for prior knowledge. In doing so, two major issues need to be addressed: (1) the number

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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of signatures, denoted by p, used to form a linear mixing model and (2) a set of appropriate p

signatures, s1; s2; . . . ; sp, used to unmix data. Both issues are very challenging because determining

the value of p and finding a desired set of p signatures s1; s2; . . . ; sp must be conducted by an

unsupervised means.

Since a hyperspectral signature is obtained by hundreds of contiguous spectral channels, the

spectral correlation across all the spectral bands is very crucial and useful for material identifi-

cation. In this chapter, we introduce a new concept of so-called spectral targets to differentiate

spatial targets commonly addressed in traditional image processing. In the traditional image

processing there are no spectral bands involved. The targets of interest are generally defined

and identified by their spatial properties such as size, shape, and texture. Accordingly, the tar-

gets of this type are considered as “spatial” targets. The techniques developed to recognize

such spatial targets are referred to as spatial domain-based image processing techniques. On

the other hand, due to use of spectral bands specified by a range of wavelengths a multispectral

or hyperspectral data sample is actually a vector expressed as a column vector, of which a

sample in a spectral band is produced by a particular wavelength. As a consequence, a single

hyperspectral sample vector already contains abundant spectral information provided by hun-

dreds of contiguous spectral bands that can be used for data exploitation. Such spectral infor-

mation within a single data sample vector is referred to as interband spectral information

(IBSI) in this chapter. By virtue of such IBSI two single data sample vectors can be discrimi-

nated, classified, and identified via a spectral similarity measure such as spectral measures pre-

sented in Chapter 16. In light of this interpretation a target is called “spectral target” if it is

analyzed based on its spectral properties characterized by IBSI as opposed to “spatial target”

analyzed by interpixel spatial information provided by spatial correlation among sample pixels.

More specifically, let S ¼ rif gNi¼1 be a set of N data sample vectors where ri ¼ ri1; ri2; . . . ; riLð ÞT
is the ith data sample vector in S and L is the total number of spectral bands. The spectral correla-

tion across all the spectral bands within ri is defined and referred to as interband spectral informa-

tion of signature ri, denoted by IBSI(ri). That is, the IBSI(ri) is provided by spectral correlation

among the L spectral values, rij
� �L

j¼1
across spectral bands within the single data sample vector ri.

For example, second-order statistics provided by IBSI(ri) can be auto-correlation of ri,
PL

j¼1 r
2
ij , or

cross correlation of ri,
PL

j¼1;k¼1;j 6¼k rijrik. However, what we are really interested in is the sample

statistics provided by a set of data sample vectors, S ¼ rif gNi¼1, denoted by IBSI(S), specifically,

second-order statistics of IBSI(S) such as sample auto-correlation matrix of S,
PN

i¼1 rir
T
i and sam-

ple cross-correlation matrix of S,
PN

i¼1;j¼1;i 6¼j rir
T
i . It should be noted that the IBSI(S) is indepen-

dent of intersample spatial correlation because IBSI(S) remains the same even the samples in S are

reshuffled. This type of spectral information is opposite to sample spatial statistics commonly used

in traditional image processing that takes into account spatial locations of a set of data sample

vectors where reshuffling data sample vectors in a sample spatial correlation matrix can result in

another different sample spatial correlation matrix because it alters spatial correlation when data

sample vectors are re-arranged in different spatial coordinates.

One of major strengths resulting from a hyperspectral imaging sensor is its ability in uncovering

and revealing subtle material substances that cannot be resolved by multispectral imager. Such tar-

get signal sources are very critical and vital to hyperspectral image analysts. Unfortunately, their

presence is also limited to their sample size and spatial extent. One effective means is to take

advantage of IBSI to calculate the sample statistics provided by these samples, denoted by a set

Starget, in terms of IBSI(Starget). In other words, the sample size of Starget is generally very small

compared to a large sample pool of background (BKG) signatures, denoted by SBKG. As a conse-

quence, the IBSI(Starget), can be better characterized by high order of statistics (HOS), while the

IBSI(SBKG) constitutes most of second-order statistics. In this case, we can define a background
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signature as a signature that is of no interest in applications and is usually characterized by second-

order sample statistics provided by IBSI(SBKG), and a target signature as a desired signature that is

of major interest and can be mainly specified by high-order sample statistics provided by IBSI(Star-

get). Of course, when a signature exhibits both characteristics of second-order statistics and high-

order statistics in terms of IBSI, it will be considered as a target signature. In hyperspectral image

analysis this assertion seems reasonable because the spectral targets of interest in hyperspectral data

exploitation are generally those that either occur with low probability or have small populations

when they are present. In particular, these types of spectral targets are usually relatively small,

appear in small population, and also occur with low probabilities, for example, special spices in

agriculture and ecology, toxic wastes in environmental monitoring, rare minerals in geology,

drug/smuggler trafficking in law enforcement, combat vehicles in the battlefield, man-made objects

and anomalies in intelligence gathering, landmines in war zones, chemical/biological agents in bio-

terrorism, weapon concealment, and mass graves. These spectral targets are generally considered as

insignificant objects in terms of IBSI(S) because of their very limited spatial information provided

by a small sample pool S, but they are actually critical and crucial for defense applications and are

insignificant compared to targets with large sample pools and generally hard to be identified by

visual inspection. From a statistical point of view, the spectral information statistics of such special

targets cannot be captured by second-order statistics of IBSI(S) but rather by HOS of IBSI(S).

Once hyperspectral signatures are categorized into background signatures and target signatures

according to their sample spectral statistics characterized by IBSI, the next follow-up task is to

design and develop algorithms to extract signatures from both categories that can be used to form a

linear mixture model for the SLSMA to unmix target signatures in Starget, whereas the background

signatures in SBKG will be used for BKG suppression so as to enhance target detectability and

discriminability. Two remaining issues needed to be resolved are (1) how to determine the numbers

of signatures in the BKG as well as target classes and (2) how to find these two categories of signa-

tures, BKG as well as target signatures. While the first issue can be addressed by the concept of

virtual dimensionality (VD) recently developed in Chapter 5, the second issue is the major focus to

be addressed in this chapter where two approaches, least squares-based ULMSA (LS-ULSMA) and

component analysis-based ULSMA (CA-ULSMA), are developed to find a set of so-called virtual

signatures (VSs) according to IBSI(S)-defined BKG and target signatures. The term of VS intro-

duced here intends to distinguish it from the commonly used term of “endmember” that is assumed

to be a pure signature that may not be a real data sample vector and also from the term of virtual

endmembers used in Tompkins et al. (1997) and Bowles and Gilles (2007) in endmember extraction.

From the above IBSI(S)-defined BKG class the signatures in the BKG class are most likely

characterized by second-order statistics of IBSI(S) compared to signatures of interest in the target

class which will be more likely to be captured by HOS of IBSI(S) as outliners due to their small

spatial presence. In this case, high-order spectral targets are assumed to be desired targets for

image analysis, while second-order spectral targets are considered as undesired targets for which

we would like to annihilate or suppress prior to data processing so as to improve image analysis.

So, an unsupervised LS-based algorithm designed on second-order spectral statistics can only be

used to extract spectral targets of second-order statistics of IBSI(SBKG). In order for an LS-based

algorithm to be able to extract HOS of IBSI(Starget), we sphere the data by removing the first- and

second-order spectral statistics information from the original data so that the sphered data consist

of only those data sample vectors characterized by high-order statistics, which contain desired

targets. So, if an unsupervised LS-based algorithm operates on two data sets, original data and its

sphered data, it can extract both second-order and high-order spectral targets. As a result, an LS-

based algorithm can accomplish two goals, finding BKG VSs from the original data space and in

the mean time it can also extract target VSs from the sphered data space. The LSMA makes use of
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these two sets of VSs, BKG and target VSs, to form a linear mixing model to perform spectral

unmixing is referred to as LS-ULSMA.

In a parallel development to LS-ULSMA, an alternative approach is to develop component anal-

ysis (CA)-based techniques that statistically de-correlate the data into a set of spectral components

so that various levels of target information can be captured and characterized in individual and

separate spectral components. Unlike LS-ULSMA that operates the same LS-based algorithm on

two data cubes, that is, the original data and sphered data, the CA-based approach operates differ-

ent component analysis transforms on the same data cube to capture targets characterized by any

order of statistics specified by IBSI(S). It is known that principal components analysis (PCA) is a

second-order statistics-based transform, which uses an eigenmatrix made up of all eigenvectors to

produce a set of ranked principal components (PCs) in accordance with the magnitude of data

variances represented by eigenvalues. Since BKG signatures usually have a large population,

which generally contributes data variances in spectral statistics in terms of IBSI(SBKG), it is

expected that the first few PCs should retain most BKG signatures of the data. Target signatures, in

contrast, usually have a small sample pool size, which contributes very little to second order of

spectral statistics. Consequently, these target signatures can be rather characterized by high orders

of spectral statistics, IBSI(Starget). In order to capture these types of target signatures, a preprocess-

ing is required to remove background signatures prior to extraction of target signatures. The inde-

pendent component analysis (ICA) seems to be a perfect candidate for this task because ICA has

been widely studied in hyperspectral imaging community. It performs data sphering to remove the

first two orders of spectral statistics in terms of IBSI(SBKG) and then produces a set of statistically

independent components (ICs) for signal source separation. By means of ICA target signatures

characterized by IBSI(Starget) can be extracted in separate and individual ICs. The only two issues

that remain to be resolved are (1) how to determine the numbers of PCs and ICs and (2) how to

extract BKG signatures from PCs and target signatures from ICs. The concept of VD once again

provides a feasible solution to the first issue. As for the second issue it can be solved by finding

background signal sources corresponding to the maximal projections of each of PCs and target

signal sources corresponding to maximal and minimal projections of each of ICs. To meet this

need a CA-based unsupervised virtual signature finding algorithm (CA-UVSFA) is particularly

developed to allow users to find both BKG VSs and target VSs that can be used to form a linear

mixing model for SLSMA to unmix data. Such an SLSMA that makes use of the signatures found

by the UVSFA as signature knowledge to perform linear spectral unmixing is referred to as CA-

based ULSMA.

In order to substantiate the two developed techniques to perform ULSMA, LS-ULSMA, and

CA-ULSMA, synthetic image experiments are first used to conduct a quantitative study between

SLSMA and LS-ULSMA/CA-ULSMA. It is then followed by real data experiments to evaluate

performance analysis in comparison with SLSMA for which the signature knowledge is provided

a priori either by ground truth or visual inspection. As demonstrated by experimental results, when

SLSMA uses accurate signature knowledge SLSMA would perform better than LS-ULSMA/CA-

ULSMA. Otherwise, LS-ULSMA/CA-ULSMA is a better option than SLSMA.

17.2 Least Squares-Based ULSMA

An LS-based approach designs an LS-based algorithm that can be first applied to the original data

to extract data sample vectors characterized by second-order statistics of IBSI(S) as BKG signa-

tures and then is applied again to the sphered data to capture data sample vectors characterized by

HOS of IBSI(S) as target signatures. The task of data sphering is designed to remove the data

sample mean and co-variances while making data variances unity so that data sample vectors com-

pletely characterized by second-order statistics of IBSI(S) will be forced on the sphere and all
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other data sample vectors that are characterized by HOS of IBSI(S) are either inside (sub-Gaussian

samples) or outside the sphere (super-Gaussian samples). As a consequence, data sample vectors

characterized by IBSI(S) of orders higher than 2 can be extracted from inside or outside the sphere.

Interestingly, the idea of using the same algorithm applied to different data sets resulting from the

same data set to be processed has never been explored until Chang et al. (2010, 2011).

In what follows, three least squares (LS)-based algorithms developed for SQ-EEAs in Chapter 8

can be used for the purpose of finding VSs directly from the data. The first algorithm is ATGP that

is an orthogonal subspace projection (OSP)-based algorithm. Since the OSP is a least squares-

based criterion, the ATGP can be also viewed as an unsupervised version of an unconstrained LS-

based LSMA method. A second LS-based algorithm is an unsupervised version of a partially abun-

dance-constrained least squares NCLS, unsupervised NCLS (UNCLS) as opposed to a third LS-

based algorithm that is an unsupervised version of fully abundance least squares-based FCLS,

unsupervised FCLS (UFCLS). When these three unsupervised LS-based algorithms are imple-

mented, a prescribed error e determined by various applications is required to terminate the algo-

rithms. In general, it is done by visual inspection on a trial-and-error basis which is not practical

for our purpose. Therefore, instead of using e as a stopping rule, we use VD as an alternative stop-

ping rule to determine how many targets are needed to be generated. This is because VD is gener-

ally found by methods regardless of applications, which do not appeal for any algorithm, such as

the Harsanyi–Farrand–Chang (HFC) method, SSE/HySime in Chapter 5.

In order for the proposed LS-based algorithms to be successful, we also assume that the most

BKG data sample vectors are characterized by a large number of uninteresting data sample vectors

in the sample pool S that can be characterized by second-order statistics of IBSI(S) as opposed to

target sample vectors that can be captured by higher order statistics of IBSI(S) due to a small num-

ber of sample vectors in S. As a result of this assumption two sets of data sample vectors can be

derived from the original data. One set is the original data and the other set is the sphered data that

has the mean and covariance removed from the original data for data processing. We then apply the

three unsupervised LS-based algorithms to these two data sets to extract second-order BKG data

sample vectors as well as high-order target data sample vectors. However, if a data sample vector

shows strong signal statistics in both original and sphered data sets, it will be considered as a target

sample vector and can be removed from the BKG class.

A detailed implementation of LS-based unsupervised VS finding algorithm (LS-UVSFA) can be

briefly described below where the LS-based unsupervised algorithm used in LS-UVSFA can be

one of the three LS unsupervised algorithms, ATGP, UNCLS, and UFCLS described above.

LS-based Unsupervised VS Finding Algorithm (LS-UVSFA)

1. Apply VD on the image data to determine the number of spectrally distinct signatures, nVD
required for an LS-based algorithm to generate.

2. Apply an LS-based algorithm to the original image data and find nVD data sample vectors in the

BKG class, SBKG ¼ bLSj

n onVD

j¼1
.

3. Apply the same LS-based algorithm to the sphered data and find nVD target sample vectors in

the target class, Starget ¼ tLSj

n onVD

j¼1
.

4. Since there may be some sample vectors in SBKG whose spectra are very close to those that also

appear in Starget, a spectral measure such as SAM is applied to extract these sample vectors that

will be removed from SBKG. Let the resulting BKG class be denoted by ~S
BKG ¼ ~b

LS

i

n onBKG

i¼1

where nBKG is the total number of remaining BKG sample vectors in ~S
BKG

after the common

sample vectors in Starget \ SBKG are removed.
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5. Form a set of VSs, SVS by merging ~S
BKG

and Starget, that is, grouping all the sample vectors

in ~b
LS

i

n onBKG

i¼1
[ tLSj

n onVD

j¼1
. It should be noted that the number of pixels in SVS is between nVD

and 2nVD, that is, nVD � nVD þ nBKG � 2nVD.

6. Apply an SLSMA method such as abundance-unconstrained classifier LSOSP, abundance non-

negativity constrained classifier NCLS and abundance fully constrained classifier FCLS to per-

form spectral unmixing where only the target sample vectors in Starget will be unmixed by their

corresponding abundance fractions while the sample vectors in ~S
BKG ¼ ~b

LS

i

n onBKG

i¼1
will be used

for BKG suppression.

It should be noted that when a specific LS-based algorithm is used, the superscript “LS” in the

above algorithm will be replaced with this particular algorithm. For example, if ATGP is used for

LS-UVSFA, it is then called ATGP-UVSFA.

17.3 Component Analysis-Based ULSMA

As noted in the introduction, hyperspectral signatures can be categorized into background signatures

characterized by second-order statistics of IBSI(S) and target signatures characterized by HOS of

IBSI(S). Recall that the commonly used PCA is a second-order statistics-based transform that uses a

set of PCs to represent the data where eigenvectors are projection vectors to specify PCs with eigen-

values being data variances. In this case, PCA can be then used to extract background signatures

characterized by second-order statistics of IBSI(S) in PCs. On the other hand, ICA is an HOS-based

transform that uses mutual information to generate a set of ICs to represent data. Therefore, ICA can

be used to find desired target signatures characterized by HOS of IBSI(S) in ICs. In both cases, VD is

again used to determine how many PCs and ICs are required to extract signatures. Since PCs and ICs

are obtained by mapping all data samples onto the projection vectors, the projection values of data

samples are real values. So, an issue arises: how many data sample vectors should be selected from

each PC and each IC? Two sample values in each IC are of major interest: one with maximal projec-

tion value and the other with minimal projection value. These two samples represent maximal projec-

tions in two opposite directions of a projection vector that specifies an IC. They both indicate their

importance in data analysis. This idea was previously explored in pixel purity index (PPI) in Chapter 7

where the most likely endmembers are those samples with either maximal or minimal projections

on each randomly generated vectors referred to as skewers. However, it is worth noting that there is

no similar selection of sample vectors with minimal projections in PCs due to the fact that PCA is a

transformation of second-order statistics with variance representing signal energy. Those samples with

minimal projections, that is, variances are supposed to correspond to noisy samples. In this case, there

is no reason to select data sample vectors with minimal projections in PCs as desired samples similar

to the case described above for ICAwhere noisy samples with small variances have been removed by

sphering. All such data sample vectors extracted from PCs and ICs are considered as VSs.

Using VD again to determine the numbers of PCs and ICs along with data samples selected

from the first nVD PCs and data sample vectors with maximal and minimal projections in the first

nVD ICs a CA-based unsupervised VS finding algorithm (CA-UVSFA) can be described as follows.

CA-UVSFA

1. Use VD to determine the number of components required to generate, denoted by nVD ¼ p.

2. Apply PCA to the original image data and find p PCs and extract the brightest pixels (i.e., data

sample vectors with maximal values in PCs) as a VS from each of p PCs to form

SBKG ¼ bPCAj

n op

j¼1
.
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3. Apply ICA to the sphered data and find p ICs and extract points with the maximal and minimal

projections from each of p ICs as VSs to form Starget ¼ tICAj

n o2p

j¼1
. Since some sample vectors with

minimal projections may be close to certain sample vectors with maximal projections in other ICs,

a spectral measure such as SAM is applied to identify these sample vectors and eliminate them

from Starget to form ~S
target ¼ ~t

ICA

j

n o
. It should be noted that the ICA used here is the one developed

in Hyvarinen and Oja (1997), called FastICA, that is actually based on a criterion derived from a

combination of third- and fourth-order statistics; see Equation (5.35), p. 115 (Hyvarinen, 2001).

4. Furthermore, there may be some target sample vectors extracted in ~S
target ¼ ~t

ICA

j

n o
that also

exhibit strong energies in the PCs where pixels corresponding to these sample vectors may be

also extracted in SBKG. In this case, SAM is also used to extract these sample vectors and

remove them from SBKG. Let the remaining background sample set be denoted by

~S
BKG ¼ ~b

PCA

j

n o
.

5. Construct a set of VSs, SVS ¼ ~b
PCA

j

n o
[ ~t

ICA

j

n o
by merging ~S

BKG
and ~S

target
for spectral

unmixing. It should be noted that the number of VSs in SVS is between p and 3p.

A comment on that each of PCA and ICA is required to generate p components is noteworthy.

It is often the case that target sample vectors may also show up in either PCs or ICs, but not both.

In order to make sure that no matter which scenario will be, using p PCs and p ICs should have

sufficient components to capture all these target sample vectors. A detailed step-by-step procedure

of CA-ULSMA can be summarized as follows.

CA-ULSMA

1. Use HFC/NWHFC method to determine VD and let nVD ¼ p
2. Implement CA-UVSFA to produce a set of VSs, SVS.

3. Apply an SLSMA technique such as unconstraint classifier LSOSP, non-negativity constrained

classifier NCLS, and fully constrained classifier FCLS to perform spectral unmixing where only

the target pixels in ~S
target

will be unmixed, while the target pixels in ~S
BKG

will be used for back-

ground suppression.

In Step 1 of CA-ULSMA, in order for the HFC/NWHFC method to work effectively, the spec-

trally distinct signatures defined by VD are those that do not have significant contribution to data

variances. Such signatures are generally characterized by three unique features. Firstly, the proba-

bilities of their occurrence are usually low. Secondly, when such signatures are present, there are

not too many samples. Thirdly, as a result, the variances of such signatures are generally very small

and can be considered to be negligible. So, when the HFC/NWHFC method is used to estimate VD

that determines the number of VSs used for LSMA, two assumptions are made on the VSs. The

first and foremost assumption is that all the VSs in SVS are assumed to have the least intersample

spectral correlation. This is a reasonable assumption since different VSs should have the least spec-

tral correlation among all the data sample vectors and should also be as distinct as possible in terms

of spectral characteristics via IBSI(S). Another is that the number of samples specified by VS

should be relatively small since they represent most spectrally distinctive signatures. With these

two assumptions in mind a VS is only contributed to the sample mean but not variance of each

spectral band. This is also the key idea used to develop the HFC/NWHFC method and explains

why the HFC/NWHFC-estimated VD works very effectively for HYDICE data in the following

experiments where the number of target panel pixels specified by each of five panel signatures is
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very small. When these two assumptions are violated, the HFC/NWHFC-estimated VD may not be

accurate. So, when the HFC/NWHFC method is used to estimate VD we should be aware of these

assumptions. Finally, we conclude a noteworthy comment on the use of twice VD value, 2nVD ¼
2p for LS-ULSMA and CA-ULSMA to extract VSs. Such selection is not arbitrary. It is actually

based on the concept, called dynamic dimensionality allocation (DDA) derived in Chapter 22. For

more details we refer readers to this chapter.

17.4 Synthetic Image Experiments

Two of six synthetic image-based scenarios in Chapter 4, TI2 in Section 4.3.2.2 and TE2 in Section

4.3.3.2, are particularly selected for experiments and re-described as follows.

Target Implantation 2
The target implantation 2 (TI2) inserts a number of panel pixels into the image by replacing their

corresponding BKG pixels. So, the resulting synthetic image has clean panel pixels with perfect

knowledge implanted in a noisy BKG corrupted an additive Gaussian noise with a certain level of

SNR. TI2 is primarily designed to simulate scenarios with pure pixels implanted as pure signatures

to represent true endmembers to evaluate the quantitative performance of SLSMA.

Target Embededness 2
As opposed to TI, the second type of target insertion is target embededness 2 (TE2) that is the same

as the TI2 described above except the way the panel pixels are inserted. The BKG pixels were not

removed to accommodate the inserted panel pixels as they are done in TI2, but were rather super-

imposed over the inserted panel pixels. So, in this case, the resulting synthetic image has clean panel

pixels embedded in a noisy BKG. The TE2 is particularly designed to simulate scenarios where

there are no pure pixels present in the data. As a result, no real true endmembers can be used for

LSMA. So, TE2 is more realistic than TI2. Instead, the VSs must be found from TE2. Nevertheless,

the complete knowledge of inserted panels and BKG signature is still available for quantitative study

and analysis. TE2 is specifically designed to demonstrate the ability of ULSMA in finding VSs.

The synthetic images to be used to simulate TI2 and TE2 for experiments has a size of 200�
200 pixel vectors with 25 panels of various sizes that are arranged in a 5� 5 matrix and located at

the center of the scene shown in Figure 17.1 where there are a total of 130 panel pixels present in

the scene, 80 pure panel pixels in the first column and 20 pure panel pixels in the second column

simulated by the five mineral signatures, A, B, C, K, and M in Figure 1.12(c), 20 mixed panel

pixels in the third column simulated by 50% of one of five mineral signatures plus 50% of the other

four signatures, five 50%-abundaunce subpanel pixels in the fourth column simulated by 50% of

one of five mineral signatures plus BKG signature, and five 25%-abundaunce subpanel pixels in

the fifth column simulated by 25% one of five mineral signatures plus 75% of the BKG signature.

Figure 17.1 A set of 25 panels simulated by A, B, C, K, and M in Figure 1.12(c).
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The image BKG in Figure 17.1 is simulated by the sample mean signature in Figure 1.12(a)

corrupted by an additive Gaussian noise to achieve a certain signal-to-noise ratio (SNR) that was

defined as 50% signature (i.e., reflectance/radiance) divided by the standard deviation of the noise

in Harsanyi and Chang (1994).

17.4.1 LS-ULSMA

First of all, assume that no prior knowledge about the scenarios of TI2 and TE2 was provided. In

both scenarios the VD-estimated value, nVD was 6 as long as the false alarm probability

PF � 10�1. Therefore, nVD¼ 6 was used for the value of p throughout the experiments. Fig-

ures 17.2(a)–(d) and 17.3(a)–(d) show the VSs found by the three LS-based methods, referred to

as ATGP-UVSFA, UNCLS-UVSFA, and UFCLS-UVSFA with nVD¼ 6 for the TI2 and TE2 sce-

narios, respectively, where (a) the second-order BKG VSs were obtained by applying an

unsupervised LS-based algorithm to the original data; (b) high-order target VSs were obtained by

applying the same algorithm to the sphered data; (c) the remaining BKG VSs in (a) were obtained

after removing those BKG VSs that were also identified as target VSs in (b); (d) total desired VSs

obtained by merging the VSs in (b) and (c).

According to the results obtained for the TI2 and TE2 scenarios in Figures 17.2 and 17.3, the

VSs found by an LS-based UVSFA can be categorized into ~b
LS

i

n onBKG

i¼1
as BKG VSs and tLSj

n onVD

j¼1

as target VSs. Then the BKG and target VSs were used to form a desired VS matrix M ¼
tLS1 tLS2 � � � tLSnVD~b

LS

1
~b
LS

2 � � � ~bLSnBKG
h i

to unmix any given image pixel vector r. Figures 17.4 and 17.5

show the unmixed results of the entire image with each of image pixel vectors unmixed by a set

of UVSFA-found nVD VSs, tLSj

n onVD

j¼1
into a set of nVD abundance fraction maps to represent nVD

Figure 17.2 Target VSs extracted by three unsupervised algorithms ATGP-UVSFA, UNCLS-UVSFA, and

UFCLS-UVSFA for scenario TI2.
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spectral classes for the TI2 and TE2 scenarios, respectively. The LS-based algorithms used by the

UVSFAwere ATGP, UNCLS and UFCLS for finding VSs. The mixed pixel classification was per-

formed by three linear spectral unmixing methods, least-squares orthogonal subspace projection

(LSOSP), non-negativity constrained least squares (NCLS), and fully constrained least squares

(FCLS). The results in (i), (ii), and (iii) of Figures 17.4 and 17.5 were obtained by using LSOSP,

NCLS, and FCLS to unmix data samples in TI2 and TE2 scenarios via the VS matrixM formed by

the target VSs found in Figures 17.2(d) and 17.3(d), respectively, where VSs were identified by the

ground truth along with their quantification results for comparison. It should be noted that each

figure is arranged in the order of VSs extracted by the UVSFA in Figures 17.2(d) and 17.3(d).

Since the whole process was unsupervised the data sample vectors were unmixed by using all VSs

including the BKG VSs. Figure 17.5 shows the unmixed results of the scenario TE2 using the

target VSs found in Figure 17.3(d). Due to the use of a subpanel pixel p35;1 in Figure 17.3(d) as one

of the target VSs to unmix the TE2 scenario the resulting abundance fractions for the two subpanel

pixels were 100% in Figure 17.5(b). These results were different from Figure 17.5(a) where the

target and BKG VSs found by ATGP and UNCLS were used for spectral unmixing and the two

subpanel pixels were unmixed into their correct abundance fractions of 50% and 25% of Calcite,

respectively. Because LSOSP is unconstrained, the 20 pure panel pixels in row 3 were overesti-

mated in Figure 17.5(b)–(i) by using the subpanel pixel p35;1 as a VS for spectral unmixing.

In order to further investigate the above finding, experiments were conducted by using the prior

knowledge of the five mineral signatures in Figure 1.12(c) plus the sample mean signature of Fig-

ure 1.12(a) to form the signature matrix M for SLSMA to perform spectral unmixing of TI2 and

TE2 scenarios using the same three LSMA methods. Figures 17.6(a)–(c) and 17.7(a)–(c) show

Figure 17.3 Target VSs extracted by three unsupervised algorithms ATGP-UVSFA, UNCLS-UVSFA, and

UFCLS-UVSFA for scenario TE2.
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Figure 17.4 Results of using LSOSP, NCLS, and FCLS to unmix TI2 via the target/VSs found in Figure 4(d).
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Figure 17.4 (Continued)
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Figure 17.5 Results of using LSOSP, NCLS, and FCLS to unmix TE2 via the target/VSs found in Figure 17.1(d).
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Figure 17.5 (Continued)
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Figure 17.6 Results using LSOSP, NCLS, and FCLS to unmix TI2 with assuming prior signature

knowledge.
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Figure 17.7 Results using LSOSP, NCLS, and FCLS to unmix TE2 with assuming prior signature

knowledge.
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their unmixed results for all the 130 panel pixels along with their detected abundance fractions for

the TI2 and TE2 scenarios, respectively.

Comparing the results in Figures 17.6 and 17.7 obtained by SLSMAwith Figures 17.4 and 17.5

obtained byUSLMA, both SLSMA and ULSMA produced comparable results in terms of quantifying

130 panel pixels for both TI2 and TE2 scenarios except one case of using FCLS to perform SLSMA to

unmix TE2 scenario where the resulting abundance fractions for every single panel pixel in row 5

were estimated to be 100% as opposed to zero for every pixel in rows 1–4 as shown in Figure 17.7(c).

The reasons for this can be explained as follows. First of all, the target panel pixels in TE2 scenario

were superimposed over the BKG pixels so that the abundance fractions of panel pixels and BKG

pixels were not summed up to one. However, even though the sum-to-one constraint assumption was

violated in TE scenario, FCLS still tried to impose the constraint by giving all abundance fractions to

the most distinct spectral signature, Muscovite, that was used to simulate panel pixels in row 5. For

this particular case, the ULSMAwas superior to the SLSMA because USLMA obtains target knowl-

edge directly from the data where the target panel pixels were not pure anymore and they were actu-

ally mixed with the BKG signatures. This knowledgemay bemore realistic and accurate than the prior

knowledge used by the SLSMAwhere the target panel pixels were assumed to be pure but certainly

not true in TE scenario. However, for TI2 scenario the target panel pixels were implanted into the

BKGwith the corresponding BKG pixels removed to accommodate the inserted target panel pixels in

which case the abundance sum-to-one constraint was still valid. As a result, FCLS performed well

regardless of whether LSMAwas performed in a supervised or an unsupervisedmanner. Since LSOSP

and NCLS did not impose the sum-to-one constraint they also performed well for both TI2 and TE2

scenarios. These experiments also provided strong evidence of importance of using synthetic images

to substantiate certain scenarios that were nearly impossible to use real image data to conduct experi-

ments. In addition, with no complete ground truth available real images cannot be used for quantita-

tive data analyses.

17.4.2 CA-ULSMA

As an interesting alternative, this section conducted the same experiments performed by LS-based

approaches for comparison. Figure 17.8(a) and (b) shows the six target VSs extracted by maximal

IC projections and minimal IC projections respectively for TI scenario. Figure 17.8(c) shows the

six BKG VSs extracted by maximum PC projections, while Figure 17.8(d) shows a total of 11 VSs

obtained by merging the VSs generated in Figure 17.8(a)–(c).

The 11 VSs generated in Figure 17.8(d) were then used to form a VS matrix to perform linear

spectral unmixing. Figure 17.9(a)–(c) is results of three LSMA methods, LSOSP, NCLS, and

FCLS where only five target VSs in ~S
target ¼ ~t

ICA

j

n o
corresponding to the five mineral signatures

Figure 17.8 Targets found for scenario TI2: (a) six IC Max VSs; (b) six IC Min VSs; (c) six PC Max VSs;

(d) 11 VSs to be used for unmixing.
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Figure 17.9 Results of using LSOSP, NCLS, and FCLS to unmix scenario TI2 via the target pixels found in

Figure 17.8(d).
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were unmixed. Since the 10 subpanel pixels in fourth and fifth columns are not visible by inspec-

tion due to their size smaller than the spatial resolution, the quantification results of the 130 panel

pixels are plotted for quantitative analysis where numerals 1–5 represent the number of rows and

numerals 1–26 represent panel pixels in a particular row. For example, numbers 1–16, 17–20, 21–

24, 25, and 26 represent 16 pixels in the first column, four pixels in the second column, four in the

third column, one pixel in the fourth column, and one pixel in the fifth column, respectively. As

shown in Figure 17.9 all the three methods performed very well including quantifying the abun-

dances of 130 panel pixels.

Similar experiments conducted for scenario TI2 were also performed for scenarios TE.

Figure 17.10(a)–(c) shows VSs extracted by maximum IC projections, 6 minimal IC projections

and 6 maximal PC projections, respectively. Figure 17.10(d) shows 10 VSs obtained by merging

the VSs in Figure 17.10(a)–(c).

The 10 VSs generated in Figure 17.10(d) were then used to form a VS matrix to perform spec-

tral unmixing. Figure 17.11(a)–(c) shows results of LSOSP, NCLS, and FCLS along with plotted

quantification results of the 130 panel pixels where only 5 target VSs in ~S
target ¼ ~t

ICA

j

n o
corre-

sponding to the five mineral signatures were unmixed.

Comparing Figure 17.11 with 17.9 the unmixed results obtained for both scenarios TI2 and TE2

were very close except the two subpanel pixels in row 3 whose FCLS-estimated abundance frac-

tions were 75% way beyond their true abundances. This may due to the fact that TE2 has panel

pixels superimposed over the BKG pixels that violated the abundance sum-to-one constraint. This

phenomenon will be more evidential in the following SLSMA experiments conducted for the sce-

nario TE2 (Figure 17.13). Other than that the proposed CA-ULSMA performed really well for both

scenarios.

In order to conduct a comparative analysis between CA-ULSMA and the SLSMA, we compare

the CA-ULSMA results in Figures 17.9 and 17.11 to the results obtained by SLSMA in

Figures 17.6 and 17.7. Like LS-ULSMA CA-LSMA also performed as well as LS-LSMA did and

also comparably to SLSMA in terms of quantification for both scenarios TI2 and TE2 except the

case of TE2 scenario that has been explained in the TI2 experiments where the FCLS-unmixed

abundance fractions were unmixed to be 100% for every single panel pixel in row 5 while zero for

every pixel in rows of 1–4 as shown in Figure 17.7(c).

As a concluding remark, it is important to realize the importance of the synthetic image-

based experiments. With provided complete knowledge of abundance fractions simulated for

each of 130 panel pixels we were able to conduct study and analysis on the quantitative per-

formance of LSMA in spectral unmixing which real image experiments generally cannot pro-

vide. As shown in experiments, ULSMA using the VSs found by LS-based and CA-based

Figure 17.10 Targets found for scenario TE2: (a) six IC Max VSs; (b) six IC Min VSs; (c) six PC Max VSs;

(d) 10 VSs to be used for unmixing.
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Figure 17.11 Results of using LSOSP, NCLS, and FCLS to unmix scenario TE2 via the target VSs found in

Figure 17.10(d).
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unsupervised VS finding algorithms to perform spectral unmixing could be as at least effec-

tively as SLSMA using real true endmembers. On some occasions such as the case where no

real true endmembers are present ULSMA actually outperformed SLSMA due to the fact that

the VSs used for ULSMA were real data sample vectors that were more realistic and reliable

than the endmembers assumed by prior knowledge or visual inspection. Two additional com-

ments are also worthwhile.

1. Although the two synthetic image scenarios seem simple, the value of the experiments should

be appreciated. These two scenarios provide an objective validation of any designed algorithm

under a fully controllable environment with complete ground truth. A good example is illus-

trated by Figure 17.7(c) where FCLS completely failed in TE2 because the sum-to-one abun-

dance constraint was violated. If it had been applied to real data, we would not have known that

a fully abundance constrained LSMA could not be used as a signal detection technique when the

linear mixing model was used as a signal/noise detection model in which case a signal is

embedded in a pixel corrupted by an additive noise like TE2 so that the abundance fractions of

the signal and noise were not summed up to one. If an algorithm does not pass the synthetic

image experiments, it will be very likely that it may not work in real data.

2. Due to significantly improved spectral resolution provided by hyperspectral imaging sensors

hyperspectral imaging generally performs “target”-based spectral analysis rather than “class-

map/pattern”-based spatial analysis as conduced in traditional image processing. Therefore,

BKG VSs are usually not of major interest and no BKG analysis is necessary for hyperspectral

imaging. Instead, they are only used for BKG suppression to improve target detection and clas-

sification. Because of that TI2 and TE2 scenarios suffice to serve this purpose where only com-

plete knowledge of target panel pixels is required for target analysis and BKG can be made as

simple as possible by adding Gaussian noise for suppression.

17.5 Real-Image Experiments

The HYDICE image scene in Figure 1.15 was chosen for real-image experiments because the

ground truth of 15 panels specified by 19 R pixels is completely available for LSMA performance

evaluation. Nevertheless, this ground truth should be only used to serve a reference since the scene

is real data where uncharacterized spectral variations may affect the performance. Specifically,

those pixels that are identified by a ground crew as panel center pixels may not actually pure pixels

as demonstrated by Chang et al. (2004) and will be also shown in the following experiments. These

experiments indicate that the prior knowledge may not be as reliable as it is supposed to be.

17.5.1 LS-ULSMA

First of all, the VD estimated for this scene, nVD, is 9 with the false alarm probability PF � 10�3.

Figure 17.12(a) shows the 9 target VSs that were extracted directly from the original data by the

ATGP and were considered as a set of BKG VSs SBKG ¼ bATGPj

n o9

j¼1
that included three panel

pixels from rows 1, 3, and 5. Figure 17.12(b) shows the 9 target VSs extracted from the sphered

data by ATGP that included five panel panels extracted from each of five rows and were considered

as a set of target VSs, Starget ¼ tATGPj

n o9

j¼1
. Figure 17.12(c) singles out the five VSs that were

identified as BKG VSs, ~S
BKG ¼ ~b

ATGP

i

n o
by removing the four target VSs using a similarity mea-

sure such as SAM, and Figure 17.12(d) shows a total number of 14 VSs obtained by combining the
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BKG VS set ~S
BKG

in Figure 17.12(c) with the target VS set Starget in Figure 17.12(b) into a BKG-

target VS merged set ~S
BKG [ Starget to be used for spectral unmixing where the numbers in the

figures indicated the orders of VSs extracted by the ATGP.

Similarly, Figures 17.13(d)–17.14(d) also show 14 VSs produced by the UNCLS including nine

target VSs and five BKG VSs and 15 VSs extracted by the UFCLS including nine target VSs and

six BKG VSs. Since the target VSs of interest were those extracted by the three LS-based algo-

rithms in Figures 17.12(b), 17.13(b), and 17.14(b) from the sphered data they should have included

five pure targets VSs that corresponded to all the five pure panel signatures. This was exactly the

case where these five pure panel pixels, p11, p221, p312, p411, and p521 were found and identical in

Figure 17.13 UNCLS-generated BKG and target VSs: (a) nine BKG VSs in original data; (b) nine target

VSs in sphered data; (c) five BKG VSs not identified as target VSs; (d) 14 VSs obtained by combining

the VSs in (b–c).

Figure 17.14 UFCLS-generated BKG and target VSs: (a) nine BKG VSs in original data; (b) nine target

VSs in sphered data; (c) six BKG VSs not identified as target VSs; (d) 15 VSs obtained by merging the

VSs in (b–c).

Figure 17.12 ATGP-generated BKG and target VSs: (a) nine BKG VSs in original data; (b) nine target

VSs in sphered data; (c) five BKG VSs not identified as target VSs; (d) 14 VSs obtained by merging the

VSs in (b–c).
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Figures 17.12(b), 17.13(b), and 17.14(b). Additionally, among these five pure panel pixels, p11,

p312, and p521 were the only three target VSs extracted as BKG VSs in the original data in

Figures 17.12(a), 17.13(a), and only two panel pixels p312 and p521 extracted in 17.14(a). This is

due to the fact that the panel pixels in rows 2 and 4 have very similar signatures to those in rows

3 and 5, respectively, according to the ground truth in which case they were not extracted as end-

members. Interestingly, these three pure target VSs were the only endmembers extracted by any

endmember extraction algorithm except the case when dimensionality reduction is performed by the

independent component analysis (ICA) as shown in the following section.

In order for LSMA to perform effectively, the targets signatures used to form the signature

matrix M must include all the targets VSs tLSj

n onVD

j¼1
and BKG VSs ~b

LS

i

n onBKG

i¼1
to represent the

entire data where the target VSs tLSj

n onVD

j¼1
are the target signatures we would like to unmix and the

BKG VSs ~b
LS

i

n onBKG

i¼1
are considered as undesired signatures that can be suppressed to enhance

target classification performance. The three LSMA methods, LSOSP, NCLS, and FCLS, were used

to unmix high-order target VSs tLSj

n onVD

j¼1
extracted from the sphered data, each of which was con-

sidered to represent one specific target class. Figures 17.15(a)–(c) to 17.17(a)–(c) show their corre-

sponding results where figures labeled by (a), (b), and (c) are unmixed results by LSOSP, NCLS,

and FCLS, respectively.

Obviously, the results obtained by NCLS and FCLS performed better than that produced

by LSOSP in Figures 17.15–17.17 due to the imposed constraints on abundance fractions. Interest-

ingly, while the results in Figure 17.15(b) and (c) were similar to the results obtained in

Figures 17.16(b) and (c) and 17.17(b) and (c), the umixed results obtained by LSOSP in

Figure 17.15(a) were slightly better than those in Figures 17.15(a) and 17.16(a) in terms of detec-

tion of 15 panels in five rows. This improvement was mainly due to the fact that UFCLS produced

six BKG VSs to perform better BKG suppression rather than five BKG VSs produced ATGP and

UNCLS. Also, it should be noted that there were of course more BKG pixels that could be used for

this purpose. As a matter of fact, in Heinz and Chang (2001) and Chang (2003a, Chapter 5) there

were 34 pixels found by the unsupervised FCLS for spectral unmixing. The results were similar to

those presented in our experiments using only 9 image endmembers. In this case, “9” is probably

sufficiently enough for LSMA to perform spectral unmixing well.

17.5.2 CA-ULSMA

Once again the value of VD was set to p¼ nVD¼ 9 for CA-UVSFA to find nine signatures from

nine PCs and signatures with maximal and minimal projections in nine ICs. Figure 17.18(a) shows

the nine target VSs extracted by maximal IC projection. Figure 17.18(b) shows the nine target VSs

extracted by minimal IC projection. Figure 17.18(c) shows the nine BKG VSs extracted by maxi-

mal PC projections, and Figure 17.18(d) shows the total 19 VSs obtained by merging signatures in

Figure 17.18(a)–(c). The 19 VSs obtained in Figure 17.18(d) are the used as VSs for the signature

matrix M to form a linear mixture model and LSOSP, NCLS, and FCLS were implemented to

perform unmixing. Figure 17.19(a)–(c) shows their abundance maps of unmixed results,

respectively.

Obviously, the unmixed results obtained by NCLS in Figure 17.19(b) and FCLS in Fig-

ure 17.19(c) were much better than those obtained by LSOSP in Figure 17.19(a) due to the

imposed abundance constraints. Interestingly, the pixels in Figures 17.12(b), 17.3(b), and
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Figure 17.15 Nine target classes obtained by LSOSP, NCLS, and FCLS using the target pixels generated by

ATGP-UVSFA.

506 Hyperspectral Data Processing: Algorithm Design and Analysis



Figure 17.16 Nine target classes obtained by LSOSP, NCLS, and FCLS using the target pixels generated by

UNCLS-UVSFA.
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17.4(b) found by LS-UVSFA via the sphered data and pixels in Figure 18(a) found by CA-

UVSFA via ICA included five identical panel pixels, p11, p221, p312, p411, and p521 that specify

five distinct panel signatures. If we assume that these five pixels were the main target signa-

tures of interest and pixels other than target signatures were considered as BKG signatures,

then the only differences between these two algorithms was the BKG signature extraction

Figure 17.17 Nine target classes obtained by LSOSP, NCLS, and FCLS using the target pixels generated by

UFCLS-UVSFA.
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where more BKG signatures were produced by CA-UVSFA than LS-UVSFA for LSMA to

perform BKG suppression. The fact that more BKG signatures were used by CA-LSMA for

BKG suppression than that by LS-LSMA our visual inspection showed that the unmixed

results of panel pixels in five rows in Figure 17.19 by CA-LSMA were more cleaner and

clearer than those in Figures 17.15–17.17 unmixed by LS-LSMA. However, did this also imply

that CA-LSMA produced more accurate quantification results of 19 R pixels than LS-LSMA?

Interestingly, the answer is “not necessarily true.” The following section is included to address

this issue.

Figure 17.18 CA-UTFA results for HYDICE scene: (a) nine IC Max VSs; (b) nine IC Min VSs; (c) nine PC

Max VSs; (d) 19 VSs found by merging results in (a)–(c).

Figure 17.19 Nineteen classes obtained by LSOSP, NCLS, and FCLS.
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Figure 17.19 (Continued)
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17.5.3 Qualitative and Quantitative Analyses between ULSMA and SLSMA

Two important factors affect the performance of LSMA: capability in unmixng and ability in BKG

suppression. An early development of orthogonal subspace projection (OSP) (Harsanyi and Chang,

1994) was designed for this purpose to make LSMA work more effectively by separating signa-

tures into desired signatures to be considered as target signatures and undesired signatures to be

considered as BKG signatures. This concept is further confirmed by ULSMA presented in Sections

17.2 and 17.3. This section further demonstrates that the performance of ULSMA using the

designed UVSFA is superior to that of SLSMA using assumed prior signature knowledge in sense

of target signature unmixing and BKG suppression.

In order to make SLSMA work more effectively, we must include other BKG signatures in a

linear mixing model so that a better BKG suppression can result in a better spectral unmixing.

Using full knowledge of the scene by visual inspection and prior knowledge provided by

ground truth there were at least three identified BKG signatures, grass, tree, and road shown in

Figure 17.20 in addition to 19 center panel pixels marked by red shown in Figure 1.16(b).

There is an interesting observation in the scene worth noting. It has been shown in many experi-

ments that there was an interferer marked in Figure 17.20 that generally could not be identified by

visual inspection or prior knowledge but has very strong energy that can be always extracted by

any unsupervised target detection algorithm such as algorithms developed in Chang (2003a). If

this interferer signature is included with the five panel signatures in Figure 1.16 and the other three

BKG signatures to make up five target classes representing five panel signatures and four BKG

classes to form a signature matrix M for spectral unmixing, there are exactly nine signatures esti-

mated by VD. This fact provides further evidence that VD is an effective estimation method to

estimate the number of image endmembers for spectral unmixing. However, in order to see if

including the interferer in the signature matrix M makes a difference, Figures 17.21(a)–(c) and

17.22(a)–(c) show respective unmixed results of 19 panel pixels via abundance fractional

maps produced by three SLSMA methods, LSOSP, NCLS, and FCLS using an 8-signature matrix

M¼ [p1,p2,p3,p4,p5, grass,tree,road] without the interferer and a 9-signature matrixM¼ [p1,p2,p3,

p4,p5, grass,tree,road,interferer], both of which use the five panel signatures in Figure 1.16 to

represent p1,p2,p3,p4,p5. Since the BKG classes are not of major interest, the unmixed results for

the four BKG classes are not included in the figures.

Comparing the results in Figure 17.22 to that in Figure 17.21, it was apparent that the effect of

the interferer was very significant, specifically for LSOSP. If we further compare the results in

Figures 17.21–17.22 to Figures 17.15–17.17 and Figure 17.19 it was also clear that ULSMA per-

formed significantly better than its supervised counterpart, SLSMA, in terms of unmixing the 19 R

Figure 17.20 Areas identified by ground truth and marked by three BKG signatures, grass, tree, and road

plus an interferer.
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panel pixels, specifically panel pixels in rows 3 and 5. These experiments further demonstrated that

SLSMA was not as effective as ULSMA when it came to real data mainly due to the unknown

knowledge about the BKG that played a key role in BKG suppression for LSMA.

The above unmixed results are evaluated qualitatively by visual assessment. The conclusions

may not be objective. So, Table 17.1 further provides quantification results in Figures 17.15–17.17

and tabulates the unmixed abundance fractions of 19 R panel pixels in Figures 17.15–17.17

produced by LSOSP, NCLS, and FCLS using VSs found by the three LS-based UVSFAs, ATGP,

UNCLS, and UFCLS. The bottom row in the table calculated the total error for each of methods

based on the sum of squared errors between the estimated abundance fractions of 19 R panel pixels

and their ground truth provided in the second column. Since the 5 R panel pixels in the third

column are subpanel pixels, their ground truth panel abundance fractions were calculated based on

the ratio of their size to the pixel size, which is ð1 m� 1 mÞ=ð1:56 m� 1:56 mÞ � 10=25 ¼ 0:4.
According to Table 17.1 the abundance fractions of the 19 R panel pixels estimated by NCLS and

FCLS were very close. Surprisingly, the total error resulting from LSOSP was smallest, while

FCLS resulted in the largest total errors. This conclusion was completely reversed by visual assess-

ment based on Figures 17.15–17.17. However, if we compare the unixed abundance fractions of

the individual 19 R panel pixels against their respective ground truth FCLS was indeed the best

compared to LSOSP that was still the worst. This simple example indicated that simple total quan-

tification errors did not provide a complete picture of how effective LSMA may perform. In

Figure 17.21 Unmixed results of 15 panels with 19 panel pixels by LSOSP, NCLS, and FCLS using five

panel signatures in Figure 1.16 and 3 BKG signatures, grass, tree, and road obtained by marked areas inn

Figure 17.20.
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particular, the quantification errors were only calculated only based on 19 R panel pixels by com-

pletly discarding the effect resulting from BKG suppression which can be clearly seen in Fig-

ures 17.15–17.17.

Further, Table 17.2 also tabulates the unmixed abundance fractions of 19 R panel pixels in Fig-

ure 17.19(a)–(c) produced by LSOSP, NCLS, and FCLS using VSs found by CA-based UVSFA

where the total error for each of methods was calculated based on the sum of squared errors

between the unmixed abundance fractions of 19 R panel pixels and their ground truth provided in

the second column. The conclusions drawn from this table were the same as what we concluded for

Table 17.2 where the total error resulting from LSOSP was smallest compared to the largest total

error produced by FCLS. Similarly, FCLS performed generally better than LSOSP if each of the

individual 19 R panel pixels is taken into consideration for comparison.

Comparing the results in Table 17.2 to the results in Table 17.1 the experiments suggested that

LS-LSMA generally performed a little bit better than CA-LSMA in terms of total error. Specifi-

cally, the unmixed abundance fraction of p13 produced by NCLS and FCLS was zero in Table 17.2

as opposed to nonzero unmixed abundance fractions of p13 in Table 17.1.

To compare the quantification results produced in Table 17.1 by LS-ULSMA and Table 17.2 by

CA-ULSMA, Table 17.3 also tabulates unmixed abundance fractions of 19 panel pixels in

Figures 17.23 and 17.24 produced by SLSMA using prior knowledge provided by Figures 1.16

Figure 17.22 Unmixed results of 15 panels with 19 panel pixels by LSOSP, NCLS, and FCLS using five

panel signatures in Figure 1.16 and 4 BKG signatures, grass, tree, road, and interferer obtained by marked

areas in Figure 17.20.
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Table 17.1 Estimated abundance fractions of 19 panel pixels produced by LSOSP, NCLS, and FCLS using

BKG and target VSs found in Figures 17.15–17.17 by ATGP-UVSFA, UNCLS-UVSFA, and UFCLS-UVSFA

Panel

pixel

Ground

truth

~b
ATGP

i

n o
[ tATGPj

n o9

j¼1

~b
UNCLS

i

n o
[ tUNCLSj

n o9

j¼1

~b
UFCLS

i

n o
[ tUFCLSj

n o9

j¼1

LSOSP NCLS FCLS LSOSP NCLS FCLS LSOSP NCLS FCLS

p11 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p12 1 0.4096 0.4332 0.4120 0.3562 0.4165 0.4001 0.4085 0.4148 0.3850

p13 0.4 0.0002 0.0887 0.0841 �0.1073 0.0308 0.0465 0.0142 0.0307 0.0250

p211 1 0.8421 0.8403 0.8404 0.9180 0.8413 0.8209 0.8648 0.8384 0.8453

p221 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p22 1 0.6164 0.6257 0.7308 0.6351 0.6607 0.7127 0.6990 0.6126 0.7405

p23 0.4 0.5525 0.4774 0.4724 0.3478 0.4168 0.4153 0.3798 0.4471 0.4498

p311 1 0.8741 0.8674 0.8627 0.9094 0.8674 0.8628 0.8969 0.8671 0.8634

p321 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p32 1 0.5027 0.4249 0.4192 0.5906 0.4713 0.4727 0.5925 0.5149 0.4922

p33 0.4 0.2516 0.2614 0.2655 0.3541 0.2959 0.2929 0.3388 0.2880 0.2886

p411 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p412 1 0.7685 0.3137 0.3876 0.5827 0.3222 0.3605 0.7976 0.3407 0.3923

p42 1 0.8085 0.6761 0.6657 0.7965 0.7495 0.7485 0.8414 0.7480 0.7477

p43 0.4 0.2363 0.1789 0.1473 0.5047 0.2851 0.2633 0.2790 0.1227 0.1542

p511 1 0.7204 0.7224 0.7215 0.6954 0.7245 0.7198 0.6973 0.7213 0.7235

p521 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p52 1 0.7645 0.7770 0.7689 0.7027 0.7460 0.7244 0.7228 0.7753 0.7740

p53 0.4 0.1452 0.1545 0.1537 �0.0144 0.0000 0.0017 0.1215 0.1471 0.1554

Total errors 1.305 1.769 1.665 1.572 1.761 1.712 1.115 1.690 1.582

Table 17.2 Quantification results of abundance fractions of 19 panels estimated by CA-ULSMA

Panel pixels Ground truth LSOSP NCLS FCLS

p11 1 1.000 1.000 1.000

p12 1 0.323 0.357 0.313

p13 0.4 �0.190 0.000 0.000

p211 1 0.810 0.800 0.800

p221 1 1.000 1.000 1.000

p22 1 0.623 0.657 0.777

p23 0.4 0.376 0.456 0.454

p311 1 0.864 0.869 0.864

p321 1 1.000 1.000 1.000

p32 1 0.587 0.511 0.513

p33 0.4 0.430 0.374 0.374

p411 1 1.000 1.000 1.000

p412 1 0.756 0.308 0.372

p42 1 0.781 0.734 0.740

p43 0.4 0.281 0.126 0.213

p511 1 0.682 0.716 0.721

p521 1 1.000 1.000 1.000

p52 1 0.747 0.783 0.777

p53 0.4 0.096 0.132 0.144

Total errors 1.556 1.816 1.672
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and 17.20 where each entry in Table 17.3 has two values with the one before and the one after “/”

indicating the results produced by using three BKG signatures (grass, tree, and road) and four BKG

signatures (grass, tree, road, and interferer), respectively.

An interesting finding from Table 17.3 was that the abundance fractions of panel pixels p412
unmixed by NCLS and p411, p412 unmixed by FCLS were 0. This was caused by the fact that the

five panel signatures p1, p2, p3, p4, and p5 in Figure 1.16 used for spectral unmixing were not really

pure signatures because the panel pixels in the third column that were included for averaging were

actually subpixels and not pure signatures. If we repeat the same experiments by using the panel

signatures p1, p2, p3, p4, and p5 that were obtained by averaging only R panel center pixels in the

first and second columns for spectral unmixing, Figures 17.23 and 17.24 show the unmixed results

of the 19 R panel pixels via abundance fractional maps produced by three SLSMA methods,

LSOSP, NCLS, and FCLS where the results using four BKG signatures (grass, tree, road, and

interferer) obtained by Figure 17.20 were significantly improved compared to that by using three

BKG signatures (grass, tree, and road), specifically, LSOSP, and NCLS.

If we compare the results in Figures 17.23 and 17.24 to their counterparts, Figures 17.21 and

17.22, it showed that the best SLSMA result was the one produced by NCLS using R panel pixels

in the two first columns and four BKG signatures in Figure 17.24(b). Other than that all the results

were comparable. For further quantification comparison, Table 17.4 tabulates unmixed abundance

fractions of 19 panel pixels in Figures 17.23 and 17.24 produced by LSOSP, NCLS, and FCLS

using five panel signatures obtained by averaging all R pixels in the first two columns in

Figure 1.15(b) and three BKG signatures and four BKG signatures, respectively, where each entry

in Table 17.4 has two values with the one before and the one after “/” indicating the results pro-

duced by using three BKG signatures (grass, tree, and road) and four BKG signatures (grass, tree,

road, and interferer), respectively.

Table 17.3 Estimated abundance fractions of 19 panel pixels in Figures 17.21–17.22 produced by LSOSP,

NCLS, and FCLS using five panel signatures obtained by averaging all R pixels in the first three columns

using (three BKG signatures/four BKG signatures)

LSOSP NCLS FCLS

p11 1.3876/1.4475 0.8420/0.8309 0.0177/0.0177

p12 0.9377/0.9155 0.8821/0.8510 0.8813/0.8199

p13 0.6747/0.6370 0.2735/0.2735 0.3349/0.1940

p211 1.1520/1.2384 0.8115/0.8115 0.5474/0.5474

p221 1.1516/1.3146 0.7945/0.7945 0.3455/0.3455

p22 0.9771/0.8558 0.8558/0.8558 0.8522/0.8522

p23 0.7193/0.5912 0.4843/0.4843 0.4992/0.4992

p311 1.2467/1.2482 0.8770/0.8809 0.8552/0.8299

p321 1.5336/1.4713 0.9149/0.8953 0.7960/0.7913

p32 0.7966/0.8240 0.5935/0.5935 0.7388/0.7388

p33 0.4231/0.4565 0.2761/0.2761 0.2710/0.2710

p411 1.1220/1.2356 0.1075/0.1617 0.0000/0.0000

p412 1.1411/1.1672 �0.0000/�0.0000 0.0000/0.0000

p42 1.2811/1.2331 0.9555/0.9555 0.4782/0.4782

p43 0.4557/0.3641 0.2393/0.2393 0.2004/0.2004

p511 1.1670/0.1770 0.9892/0.9599 1.0000/0.9759

p521 1.5316/1.4698 1.1210/0.9551 1.0000/1.0000

p52 1.0845/1.0760 1.0467/0.9925 1.0000/1.0000

p53 0.2169/0.2772 0.2029/0.2029 0.1765/0.1765

Unsupervised Linear Hyperspectral Mixture Analysis 515



In comparison with Table 17.3 where the FCLS-unmixed abundance fractions of panel pixels

p411 and p412 were zeros they were now corrected and no longer 0. Despite that the provided

ground truth p411 and p412 were the panel center pixels, from our extensive experience with the

HYDICE scene, they were in fact not as pure pixels of 100% abundance purity as we expected. As

a result, even though NCLS is partially abundance-constrained, it was very comparable to the fully

abundance-constrained FCLS in terms of abundance unmixing. Nevertheless, both performed sig-

nificantly better than the abundance-unconstrained LSOSP.

Now if we further compare the results in Table 17.4 against that in Table 17.3, it apparently

shows that using contaminated or inaccurate prior knowledge may result in significant distortion in

quantification of abundance fractions. Furthermore, comparing the results in Tables 17.1 and 17.2

against those in Tables 17.3 and 17.4, USLMA outperformed SLSMA significantly. These experi-

ments further demonstrated two facts. One is that SLSMA was effective only if the prior knowl-

edge was accurate such as the synthetic image experiments conducted for TI2 and TE2 scenarios

in Section 17.4. Unfortunately, this may not be true when it comes to real world applications where

true target knowledge is generally difficult to obtain, if not impossible. Even in the case that prior

target knowledge is available, it may not be reliable due to many unknown signal sources that may

contaminate the knowledge. This leads to the second fact that to avoid using unreliable prior

knowledge ULSMA certainly provides a better alternative to SLSMA.

Figure 17.23 Abundance fractional maps of 15 panels with 19 panel pixels produced by LSOSP, NCLS, and

FCLS using five panel signatures obtained by averaging R panel pixels in the first two columns in Figure 1.15

(b) and 3 BKG signatures, grass, tree, and road obtained by marked areas inn Figure 17.20.
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17.6 ULSMA Versus Endmember Extraction

Early attempts of performing ULSMA have been focused on simultaneous implementation of end-

member selection and LSMA such as combining PCA to determine their purity of selected endmem-

bers, using convex geometry of a simplex to fit data to select endmembers (Boardman, 1993, 1994;

Boardman et al. 1995). In addition, some efforts such as multiple endmember spectral mixture anal-

ysis in (Roberts et al., 1998; Dennison and Roberts, 2003) and endmember bundles in (Bates et al.,

2000) were also proposed to deal with spectral variations of endmembers to be selected. Most

recently, the concept of virtual endmembers (VEs) was also introduced in a modified spectral mix-

ture analysis (Tompkins et al., 1997) for endmember selection in such a way that the VEs are those

minimizing root-mean-square-error subject to user-specified constraints. The VEs were further

explored for endmember selection in an optical real-time adaptive spectral identification system

(ORASIS) developed in Bowles and Gilles (2007). One major issue arising in these approaches is

unavailability of prior knowledge about how many endmember needed to be selected in the first

place. Consequently, they did not perform endmember extraction but rather endmember selection.

Specifically, in their approaches endmember selection and linear spectral unmixing must be imple-

mented simultaneously where a prescribed threshold or physical constraints should be imposed to

determine when the entire process must be terminated. The LS-based LSMA/CA-based ULSMA

Figure 17.24 Abundance fractional maps of 15 panels with 19 panel pixels produced by LSOSP, NCLS, and

FCLS using five panel signatures obtained by averaging R panel pixels in the first two columns in Figure 1.15

(b) and 4 BKG signatures, grass, tree, road, and interferer obtained by marked areas inn Figure 17.20.
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presented in this chapter provide rather different approaches by breaking up these two simultaneous

processes into two separate processes in sequence. This is because LS-based LSMA/CA-based

ULSMA can use VD to first determine how many signatures must be generated to form a linear

mixing model for LSMA and then implement LS-UVSFA/CA-UVSFA to extract a desired set of

signatures that are further used to unmix data to perform spectral unmixing. This may be the main

reason that the term of endmember selection instead of endmember extraction was used in the refer-

ences (Boardman et al., 1995; Boardman, 1993, 1994; Roberts et al., 1998; Bates et al., 2000; Den-

nison and Roberts, 2003; Tompkins et al., 1997; Bowles and Gilles, 2007). Furthermore, in order to

make a distinction between the signature finding used in our proposed LS-UVSFA/CA-UVSFA and

the VEs selected in Tompkins et al. (1997) and Bowles and Gilles (2007), the term of virtual signa-

tures (VSs) is introduced in this chapter for clarity. The VSs found by LS-UVSFA and CA-UVSFA

are quite different from (virtual) endmembers produced by endmember selection. Firstly, the VSs are

not necessarily pure as opposed to endmembers that are assumed to be pure signatures. Secondly,

comparing to criteria used to find endmember such as minimal simplex volume (Craig, 1994) and

maximal simplex volume (Winter, 1999) used to find a simplex with minimal/maximal volume,

orthogonal projection to compute pixel purity index (PPI) (Boardman, 1995), the criterion used by

LS-UVSFA/CA-UVSFA to find VSs is based on IBSI(S) where only the data sample vectors in the

sample pool S are used to calculate IBSI(S). One good representative example is the RX detector

developed by Reed and Yu (1990) where the sample size S is the entire image data where it uses

IBSI(S) to find a whitening matrix that is the inverse of the sample auto-covariance matrix formed

by all data sample vectors. As a consequence, the VSs found by the RX detector are actually anoma-

lies that are not necessarily endmembers. So, it is important to realize the difference between LS-

UVSFA/CA-UVSFA and endmember selection. Although LS-UVSFA and CA-UVSFA do not nec-

essarily perform endmember selection, they can be considered as endmember extraction algorithms

Table 17.4 Estimated abundance fractions of 19 panel pixels in Figures 17.23 and 17.24 produced by

LSOSP, NCLS, and FCLS using five panel signatures obtained by averaging all R pixels in the first two

columns using (three BKG signatures/four BKG signatures)

LSOSP NCLS FCLS

p11 1.2251/1.2635 0.9554/0.9550 0.7617/0.7617

p12 0.7749/0.7365 0.6508/0.6226 0.6051/0.5369

p13 0.4793/0.4053 0.1536/0.1302 0.1609/0.0075

p211 1.0661/1.0853 0.9929/0.9929 0.9091/0.9091

p221 1.0992/1.1652 0.9530/0.9530 0.7883/0.7883

p22 0.8346/0.7495 0.8130/0.8130 0.8245/0.8245

p23 0.5329/0.4578 0.4018/0.4018 0.4239/0.4239

p311 1.0495/1.0584 0.9204/0.9139 0.9228/0.9136

p321 1.2749/1.2404 0.9560/0.9292 0.9058/0.9025

p32 0.6757/0.7014 0.4699/0.4699 0.4478/0.4478

p33 0.3489/0.3756 0.2072/0.2072 0.2105/0.2105

p411 1.0113/1.0532 0.9198/0.9104 0.5094/0.5094

p412 0.9555/0.9507 0.3053/0.4329 0.3540/0.4378

p42 1.0332/0.9962 0.7862/0.7862 0.7574/0.7574

p43 0.3181/0.2684 0.1896/0.1896 0.1572/0.1572

p511 0.9419/0.9531/ 0.8304/0.8304 0.8304/0.8304

p521 1.1901/1.1738 1.0628/1.0295 1.0000/1.0000

p52 0.8680/0.8731 0.9354/0.9354 0.9353/0.9353

p53 0.2022/0.2303 0.1596/0.1596 0.1374/0.1374
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(EEAs) because LS-UVSFA/CA-UVSFA indeed can also find endmembers in most cases. Thirdly,

the VSs found by LS-UVSFA/CA-UVSFA are categorized by two distinct classes of virtual signa-

tures, BKG class and target class, where the VSs in the BKG class are generally mixed as opposed to

the VSs in the target class that are usually pure. With this interpretation the VSs found by LS-UVS-

FA/CA-UVSFA in the target class are essentially those found by EEAs. It should be noted that such

a BKG/target class-dichotomy is not new. A similar approach, called hierarchical foreground and

background analysis, was also proposed (Pinzon et al. 1998), where a series of weighting vectors

can be derived sequentially to simultaneously extract important discriminant features to detect leaf

anatomy and chemical concentration at different levels from the spectral information.

It is a common sense that endmember extraction is closely tied with linear spectral unmixing.

Nevertheless, they are completely different techniques. Endmember extraction finds all signatures

assumed to be present in the data ej
� �~p

j¼1
. It is generally carried out in an unsupervised manner.

Therefore, two issues significantly affect its performance: (1) the number of endmembers and (2)

finding these true endmembers. On the other hand, the linear spectral unmixing assumes that data

can be best represented by a set of p signatures, mj

� �p

j¼1
in a linear form from which a data sample

vector can be unmixed via these signatures. Unlike SLSMA that requires prior knowledge of these

signatures mj

� �p

j¼1
ULSMA must rely on an unsupervised means to find these signatures mj

� �p

j¼1
.

So, the value of p and the set of signatures, mj

� �p

j¼1
have significant impact on unmixing perform-

ance. On many occasions in the past, research efforts have made an assumption that ~p ¼ p and

ej
� �~p

j¼1
¼ mj

� �p

j¼1
. As a result, a general practice is to use an endmember extraction algorithm to

extract a set of potential endmember candidates that can be further verified by linear spectral

unmixing and these two processes must be implemented simultaneously or iteratively. The

approach of this type is referred to as EEAþLSMA that implements an EEA and LSMA simulta-

neously to perform ULSMA. One good representative falling in this category is works by Winter

(1999a, 1999b, 2004) who developed an algorithm, called N-finder algorithm (N-FINDR), to

extract potential endmembers and then used spectral unmixing to determine endmembers.

Unfortunately, being able to do so, N-FINDR must assume that the number of endmembers is

known a priori. But this issue was never addressed in Winter (1999a, 1999b, 2004) and was carried

on a trial-and-error basis by simultaneously performing endmember selection and linear spectral

unmixing as was done by those proposed in (Boardman et al., 1995; Boardman, 1993, 1994;

Roberts et al., 1998; Bates et al., 2000; Dennison and Roberts, 2003; Tompkins et al., 1997;

Bowles and Gilles, 2007). This explains that different terms of endmember selection and endmem-

ber determination were used (Tompkins et al., 1997; Bowles and Gilles, 2007) and Winter (1999a,

1999b, 2004), respectively, because spectral unmixing was involved to select or determine the end-

members. As a matter of fact, this is generally not true in real-world problems where the true

endmembers may not be present in the data in which case EEAs may not be effective in these

applications due to the fact that the signatures used by LSMA to unmix data are not necessarily

endmembers. This will be demonstrated in the following experiments. LS-ULSMA and CA-

ULSMA presented in this chapter are developed exactly for this cause where EEA is replaced with

LS-UVSFA and CA-UVSFA.

Finally, in order to further substantiate the utility of LS-ULSMA and CA-ULSMA the HYDICE

experiments were also conducted by N-FINDRþLSMA that implemented N-FINDR to extract

nine endmembers to form a linear mixing model, which was further used by the LSMA to unmix

the data. Since N-FINDR requires dimensionality reduction, three techniques, PCA, maximum

noise fraction (MNF), and ICA, were used for this purpose. Figure 17.25 shows nine endmembers

extracted by N-FINDR with data dimensionality reduced by PCA, MNF, and ICA where only
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N-FINDR with ICA could successfully extract all the five panel signatures p11, p211, p311, p411,

p511, while PCA and MNF could only extract the same two-panel signatures, p311, p511.

Figure 17.26 shows the unmixed results of LSOSP, NCLS, and FCLS using the nine endmem-

bers obtained in Figure 17.25 to form a linear mixing model for spectral unmixing where the orders

of nine abundance fractional maps are arranged according to the nine extracted endmembers in a

top-to-down and left-to-right manner.

Based on visual assessment of Figure 17.26, PCA and ICAwere the worst and best dimensional-

ity reduction techniques, respectively. In addition, the worst and the best unmixed results seemed

to be those produced by LSOSP and FCLS, respectively, while NCLS also performed comparably

to FCLS. Comparing the results in Figure 17.26 to CA-based ULSMA-unmixed results in Fig-

ure 17.19, it was apparent that CA-LSMA performed significantly better than N-FINDRþLSMA.

The results in Figure 17.26 only provided qualitative analysis. In order to further quantify the 19 R

panel pixels in Figure 17.26, Table 17.5 further tabulates their unmixed abundance fractions where

the second column provides the assumed ground truth and the least squares error was calculated

based on the sum of squared errors of the19 R panel pixels.

Interestingly, if we compare the results in Table 17.5 to the visual inspection of the results in

Figure 17.26, the quantifications of 19 R panel pixels by LSOSP in comparison with NCLS and

FCLS were not as bad as they are visualized in Figure 17.26. This is because the results in

Table 17.5 did not show background suppression resulting from other signatures. This evidence

indicated that both qualitative and quantitative analyses were necessary to provide full assessment

of performance.

A final concluding remark is noteworthy. According to extensive experiments the best perform-

ance produced by various versions of N-FINDR except the one using ICA to perform dimensional-

ity reduction could only extract three endmembers rather than five endmembers provided by the

ground truth in Figure 1.15(b). The reason for this is because the materials made for the panels in

second and third rows are the same fabric and the two panel signatures, p2 and p3 used to specify

panel pixels in these two rows are therefore very similar. In this case, when p3 was extracted as an

endmember and the p2 would be considered as a signature variation from p3 in which case p3 was

not a pure signature. As a result, only one endmember in the third row was extracted to represent

these two panel signatures. Similarly, an endmember in the fifth row was extracted to represent the

two panel signatures, p4 and p5 that were used to specify panel pixels in the fourth and fifth rows.

As a result, the panel pixels in row 4 in Figure 17.26 were extracted when p521 was extracted as an

Figure 17.25 Nine endmembers extracted by N-FINDR using PCA, MNF, and ICA to perform data

dimensionality.
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Figure 17.26 Unmixed results of 15 panels with 19 panel pixels by LSOSP, NCLS, and FCLS using nine N-

FINDR found endmembers for unmixing.
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Figure 17.26 (Continued)
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endmember to be used to unmix panel pixels in row 5, while the panel pixels in row 2 were also

extracted when p312 was extracted as an endmember to be used to unmix panel pixels in row 3.

Interestingly, in order for N-FINDR along with its variants to be able to five endmembers ICA

must be used to perform dimensionality reduction due to the fact that the main strength of ICA is

Figure 17.26 (Continued)
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blind source separation. As a consequence, N-FINDR was capable of finding five endmembers as

shown in Figure 17.25(c) to specify all the five panel signatures, p1, p2, p3, p4, and p5.

17.7 Conclusions

The performance of LSMA is completely determined by the number of signatures, p and signatures

mj

� �p

j¼1
used to form a linear mixing model to unmix data sample vectors. Unfortunately, in real

applications none of these two pieces of information is known accurately in advance. So, a key to

success in LSMA is to find an appropriate signature matrix M to form a linear mixing model r ¼
Maþ n in (2.75) where r is an image pixel vector and n is a model correction term. In supervised

LSMA (SLSMA), this matrix M is assumed to be known a priori. However, when it comes to

ULSMA the knowledge of the signature matrix M is not available and must be obtained directly

from the data. The two unsupervised approaches, LS-UVSFA in Section 17.2 and CA-UVSFA in

Section 17.3, provide a means of finding such an unsupervised signature matrix M for ULSMA.

Since the signatures found in the unsupervised signature matrix, M, are real data sample vectors

and may not be pure as true endmembers assumed in SLSMA, they are called virtual signatures

(VSs) for their distinction from true endmembers. So, the signature matrix M formed by VSs is

also referred to as VS matrix. The performance of ULSMA is completely determined by two fac-

tors, the number of VSs, p, and the VSs used to form a linear mixing model, both of which are

assumed to be known in SLSMA. Secondly, ULSMA generally outperforms SLSMA in cases that

many unknown material signatures that cannot be identified by visual inspection or prior

Table 17.5 Quantification results of abundance fractions of 19 panels estimated by LSMA using nine

endmembers generated by N-FINDR with three different dimensionality reduction techniques, PCA, MNF,

and ICA

Panel

pixels

Ground

truth

LSOSP NCLS FCLS

PCA MNF ICA PCA MNF ICA PCA MNF ICA

p11 1 0.5246 0.8123 1.0000 0.3129 0.3526 1.0000 0.3118 0.3329 1.0000

p12 1 0.3088 0.3838 0.4529 0.2793 0.3001 0.5285 0.2293 0.3142 0.5273

p13 0.4 0.5217 0.4108 0.7122 0.3386 0.3598 0.7238 0.3679 0.3467 0.7053

p211 1 0.3974 0.4557 0.8465 0.4283 0.4274 0.9472 0.4247 0.4233 0.9384

p221 1 0.4041 0.5010 1.0000 0.4386 0.4376 1.0000 0.4348 0.4285 1.0000

p22 1 0.3308 0.3329 0.6330 0.3604 0.3409 0.7995 0.3519 0.3430 0.7991

p23 0.4 0.3513 0.3316 0.7450 0.2953 0.3762 0.8182 0.2650 0.4231 0.7455

p311 1 0.9727 0.9638 0.8538 0.9180 0.9254 0.8613 0.8991 0.9271 0.8373

p321 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p32 1 0.5596 0.5569 0.7250 0.5197 0.5164 0.9622 0.4929 0.5127 0.9308

p33 0.4 0.3691 0.3474 0.7612 0.3837 0.3681 0.8808 0.4037 0.3673 0.7572

p411 1 0.6730 0.6864 0.9610 0.7028 0.7123 0.5755 0.7404 0.7379 0.5690

p412 1 0.7486 0.7669 0.5532 0.7745 0.7819 0.7592 0.7907 0.8065 0.7535

p42 1 0.5723 0.5982 0.8705 0.6043 0.6158 0.6804 0.6396 0.6408 0.6925

p43 0.4 0.2543 0.3715 1.2117 0.2281 0.3792 0.6064 0.2774 0.3285 0.6025

p511 1 0.7303 0.7265 0.6291 0.7108 0.7213 0.5093 0.7141 0.7248 0.5021

p521 1 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000

p52 1 0.7897 0.7884 0.6416 0.7765 0.7756 0.6649 0.7707 0.7740 0.6204

p53 0.4 0.2723 0.2872 0.9795 0.2373 0.3181 0.6634 0.2832 0.2698 0.6595

Sum of squared

errors

2.5900 2.0577 2.3801 2.7806 2.6434 1.6023 2.8286 2.6374 1.4806
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knowledge can now be found by LS-UVSFA/CA-UVSFA. Thirdly, the signatures used to form a

linear mixing model for ULSMA are real data sample vectors. Accordingly, they are generally not

real endmembers and can be in any form such as subsample vectors and mixed sample vectors.

This is the reason that such data sample vectors are referred to as VSs for ULSMA to distinguish

from true endmembers used for SLSMA. Last but not least, the performance of LSMA is generally

evaluated by unmixed results of signatures that are used to form a linear mixing model either qual-

itatively or quantitatively. To this end, over the past years the signatures used for LSMA to perform

unmixing as SLSMA are usually those in which users are interested. When it is extended to

ULSMA the same logic is also applied where endmembers are assumed to be the signatures of

interest. However, as demonstrated in the experiments conducted in Section 17.6 this may not be

realistic or applicable for real-world applications where mixed BKG signatures that are generally

not signatures of interest are also crucial for LSMA to perform background suppression. The abil-

ity of LSMA in background suppression has been often overlooked and it can be as important as

signatures of interest such as endmembers. Unfortunately, finding appropriate BKG signatures is

not a trivial matter. The LS-UVSFA and CA-UVSFA presented in this chapter are primarily

designed for this purpose, both of which find a desired set of VSs that includes target and BKG

signatures. Whether these VSs are pure or mixed is not of major concern for ULSMA.

As a final note, despite the fact that many efforts have been made to determine the number of

endmembers (Kosaka et al., 2005; Nascimento and Dias, 2005; Eches et al., 2010; Cawse et al.,

2010; Zare and Gader, 2007, Broadwater and Banerjee, 2009), there is no specific technique devel-

oped for determining and finding the number of true endmembers, both of which are actually two

separate issues. The VD developed in Chapter 5 is particularly developed for the purpose of deter-

mining the number of spectrally distinct signatures not endmembers. Although, VD generally

overestimates the number of endmembers as demonstrated in Chang et al. (2010) VD was shown

indeed a good estimate for the number of signatures used to form a linear mixing model used by

LSMA. For this reason VD has been used across the board to determine the number of signatures

required by ULSMA.
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18

Pixel Extraction and Information

Because of very high spectral resolution provided by a hyperspectral imager, a single hyperspectral

image pixel vector can now unveil subtle and crucial information for data analysis that a traditional

image pure-based pixel cannot. Unfortunately, much of such rich information is presumably

unknown and cannot be identified a priori. This chapter investigates the issue of how to extract

pixel information from an exploitation viewpoint. In order to facilitate pixel information analysis,

four types of pixels of interest, pure pixel, mixed pixel, anomalous pixel, and homogeneous pixel,

are defined. A pure pixel is a pixel whose spectral signature is completely represented by a single-

material substance as opposed to a mixed pixel whose spectral signature is composed of more than

one material substance. A homogeneous pixel can be defined as a pixel whose spectral signature

remains nearly constant subject to small variations within its surroundings in contrast to an anoma-

lous pixel whose signature is spectrally distinct from the signatures of its neighboring pixels.

Therefore, a homogeneous pixel can be considered opposite to an anomalous pixel, while a pure

pixel is an opposite of a mixed pixel. On one end, pure and mixed pixels can be dealt with from a

single-pixel point of view. On the other end, analysis of homogeneous and anomalous pixels must

take into account the surrounding pixels within their neighborhoods, that is, their neighboring pix-

els. Thus, a homogeneous pixel or an anomalous pixel can be either a pure or a mixed pixel. This

chapter investigates and designs various scenarios to explore differences among these four types of

pixels for comparative analysis.

18.1 Introduction

In traditional two-dimensional (2D) image processing, an image pixel is specified by its intensity

and represented by a single value of the gray scale. In hyperspectral image processing, a hyper-

spectral image is an image cube formed by stacking 2D spectral images acquired by a range of

hundreds of spectral channels where a hyperspectral image pixel is actually a column vector, of

which each vector component is an image pixel acquired by a specific wavelength. To simplify our

discussion, the term “pixel” will be used instead of “pixel vector.” Therefore, one great challenge

in hyperspectral data exploitation is analysis of information extracted from a hyperspectral image

pixel specified by hundreds of spectral channels. However, how much pixel information can be

extracted is also determined by what algorithm to be used for information extraction, such as algo-

rithms in PART II (Chapters 7–11) developed for endmember extraction and algorithms in PART

III (Chapters 12–17) developed for target detection and classification. In other words, what we are

interested in is, “Does an algorithm really do what it is designed for?” For example, in endmember

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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extraction, do pixel purity index (PPI) in Section 7.2.1 and N-finder algorithm (N-FINDR) in Sec-

tion 7.2.4 really extract pure signatures as they are designed for? In unsupervised target detection,

do algorithms, such as automatic target generation process (ATGP) developed by Ren and Chang

(2003) in Section 8.5.1 and unsupervised fully constrained least-squares (UFCLS) algorithm devel-

oped by Heinz and Chang (2001) in Section 8.5.3, really perform what they are asked for? In anom-

aly detection, does the RX algorithm developed by Reed and Yu (1990) really find anomalies or

something else? Specifically, “what pixel information does an exploitation algorithm really extract?”

and “does it really do what it claims to do?” It turns out that answers to these questions are more

complicated than what we had thought, as will be demonstrated by experiments in this chapter. In

order to facilitate our discussions, four different types of pixels in accordance with their spatial or

spectral properties, pure pixel, mixed pixel, homogenous pixel, and anomalous pixel, are introduced

for pixel information analysis.

18.2 Four Types of Pixels

According to the definition given by Schowengerdt (1997), an endmember is an idealized pure

signature for a spectral class. Therefore, an endmember is, in general, not a pixel. It is a spectral

signature that is completely specified by the spectrum of a single-material substance. Accordingly,

a pixel is pure if its spectral signature is an endmember. In other words, a pixel whose spectral

signature has 100% of purity formed of a single-material substance is a pure pixel, which can also

be referred to as an endmember pixel. In this chapter, the endmember pixel and pure pixel will be

used interchangeably, whichever is more appropriate for explanation. To the contrary, a mixed

pixel is a pixel whose spectral signature is not an endmember. Instead, it is composed of more than

one material substance. With this interpretation, when an endmember extraction algorithm (EEA)

is implemented, it is expected that signatures or pixels extracted are supposed to be pure signatures

or pure pixels, that is, endmember pixels. But, is this really the case in practical applications? In

addition to the pure pixel and mixed pixel described above, a concept of homogenous pixel is

further introduced for pixel information analysis. A pixel is called a homogeneous pixel if its spec-

tral signature is similar to the spectral signatures of the pixels in its surroundings subject to small

deviations. In other words, all the pixels within a neighborhood of a homogenous pixel should have

very close and similar spectral signatures to that of the homogenous pixel. This definition is

derived from the concept of homogeneous regions used in image segmentation where a homoge-

nous region is a data set consisting of pixels with very close gray-scale values in a tolerable range.

An anomalous pixel is completely opposite to a homogeneous pixel and is defined as a pixel whose

signature is spectrally distinct from the spectral signatures of its neighboring pixels. While pure

pixels and mixed pixels can be analyzed solely by their spectral properties on a single-pixel basis,

homogeneous pixels and anomalous pixels must take into account the neighboring pixels within

their surroundings in addition to their spectral properties. It is interesting to note that a pure pixel

can be a homogenous pixel or an anomalous pixel, so is a mixed pixel. Conversely, a homogeneous

pixel and anomalous pixel can also be a pure pixel or a mixed pixel and vice versa. With these four

types of pixels defined above, we can further evaluate various algorithms based on what type of

pixel information they extract.

In order to demonstrate the utility of these four types of pixels, seven algorithms will be eval-

uated and compared, which can be categorized into three categories: EEAs, unsupervised target

detection algorithms (UTDAs), and anomaly detection algorithms. As for EEAs, two commonly

used algorithms, PPI and N-FINDR, and the automated morphological endmember extraction

(AMEE) algorithm are considered. In the category of UTDAs, three algorithms, ATGP, UFCLS

algorithm, and IEA algorithm, are included for comparison. The third category contains only one
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widely used anomaly detection algorithm, the RX algorithm, which is also referred to as RX detec-

tor (RXD) or RX filter (RXF) in other chapters. These three terminologies have been used inter-

changeably in this book. The analysis of these seven algorithms will be conducted via extensive

computer simulations, synthetic image and real image experiments. As will be demonstrated, vari-

ous algorithms perform in very different ways in terms of pixel information extracted from the data.

18.3 Algorithms Selected to Extract Pixel Information

While our selection of algorithms for performance evaluation may be subjective, it is our desire to

make this selection as representative as possible. Nevertheless, such a selection by no means

claims to be complete.

In the first category of algorithms, we evaluate three EEAs developed in Chapter 7 for endmem-

ber extraction: PPI available in the Research Systems ENVI software, N-FINDR that has widely

been used for endmember extraction, and AMEE which is the only algorithm in this category that

makes use of spatial information for endmember extraction. As noted earlier, the N-FINDR imple-

mented here is actually IN-FINDR for its iterative advantages. The second category of algorithms

consists of algorithms developed for unsupervised target detection, which have been used to gen-

erate a posteriori knowledge for applications in supervised target detection and classification.

Interestingly, they can also be used for endmember extraction, as demonstrated in Chapter 8. Three

algorithms, such as ATGP in Section 8.5.1, UFCLS in Section 8.5.3, and IEA in Section 8.5.4, are

of interest. In the third category of algorithms, we look into algorithms developed for anomaly

detection. This is due to the fact that occurrence of pure pixels is considered rare. In this case,

endmembers behave like anomalies; thus, they can be extracted by anomaly detection algorithms.

Since the RX algorithm has widely been used for this purpose and many anomaly detection algo-

rithms that are currently being used can be considered as its variants, it is selected to represent the

class of anomaly detection algorithms.

18.4 Pixel Information Analysis via Synthetic Images

As mentioned above, the three categories of seven algorithms described in Section 18.3 represent

different ways of generating target pixels, which can be characterized by the proposed four types of

pixels. In this section, a comprehensive synthetic image-based study on pixel information analysis

will be conducted to evaluate these seven algorithms on the basis of what types of pixels these algo-

rithms really extract in terms of pure (or purest) pixels, mixed pixels, homogenous pixels, and anom-

alous pixels. The importance and significance of this study is to allow us to simulate various

scenarios to evaluate subtle differences among the four different types of pixels, and to further

explore the pixel information extracted by these three categories of algorithms for performance anal-

ysis. The reflectance spectra of five mineral spectra, alunite, buddingtonite, calcite, kaolinite, and

muscovite, obtained from the USGS and shown in Figure 1.7 are first used for computer simulations.

A uniform background image with size of 20� 20 pixels was simulated by 100% of the

same mixed signature (50% alunite and 50% kaolinite). Next, three sets of 2� 2 panels shown in

Figure 18.1(a), that is, pkij

n o2;2

i¼1; j¼1
, ~pkij

n o2;2

i¼1; j¼1
, and �pkij

n o2;2

i¼1; j¼1
for k ¼ 1; 2; 3, were simulated

by each of three signatures, buddingtonite, calcite, and muscovite, according to Table 18.1. The

pixels were then implanted in the uniform background, as shown in Figure 18.1(b).

Table 18.2 lists what types of panel pixels can be found in the nine 2� 2 panels in Figure 18.1

(a) based on our definitions of four types of pixels, where both “endmember” and “pure” signatures

are used to emphasize the nature of pure signature simulated by the experiments, and P, M, H, and

A indicate pure, mixed, homogeneous, and anomalous pixels, respectively.
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There are seven endmember pixels in each of three rows which are made by 100% pure bud-

dingtonite, calcite, and muscovite signatures, p1ij

n o2;2

i¼1; j¼1
, p211; p

2
12, p

3
11; ~p1ij

n o2;2

i¼1; j¼1
, ~p211; ~p

2
12, ~p

3
11

and �p1ij

n o2;2

i¼1; j¼1
, �p211; �p

2
12, �p

3
11. All the background pixels are considered to be homogenous pixels

as well as mixed pixels. The endmember pixels at the top left of the 2 � 2 panels in the third

Figure 18.1 (a) Nine 2� 2 panels simulated by buddingtonite, calcite, and muscovite; (b) synthetic image.

Table 18.1 Abundance fractions simulated for the panel pixels

Panel pixel Buddingtonite (%) Calcite (%) Muscovite (%)

p1ij

n o2;2

i¼1; j¼1
, p211; p

2
12, p

3
11 100 0 0

p221 0 75 25

p222 0 25 75

p312 0 50 50

p321 50 50 0

p322 50 0 50

~p1ij

n o2;2

i¼1; j¼1
, ~p211; ~p

2
12, ~p

3
11 0 100 0

~p221 75 0 25

~p222 25 0 75

~p312 50 0 50

~p321 50 50 0

~p322 0 50 50

�p1ij

n o2;2

i¼1; j¼1
, �p211; �p

2
12, �p

3
11 0 0 100

�p221 75 25 0

�p222 25 75 0

�p312 50 50 0

�p321 50 0 50

�p322 0 50 50
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column in Figure 18.2(b), p311, ~p
3
11, �p

3
11, are also anomalous pixels because their signatures are

spectrally distinct from the spectral signatures of their neighboring pixels. All other panel pixels

are mixed pixels with various mixtures of different spectral signatures. According to the simulated

synthetic image, there are 19 distinct signatures, of which there are only three 100% pure signa-

tures and 16 mixed signatures.

Table 18.2 Types of panel pixels based on our definitions of four types of pixels

Panel pixel Signature Pixel

Pure/endmember Mixed P M H A

p1ij

n o2;2

i¼1; j¼1
, p211, p

2
12 @ @ @

p221; p
2
22; p

3
12; p

3
21; p

3
22 @ @ @

p311 @ @ @

~p1ij

n o2;2

i¼1; j¼1
, ~p211, ~p

2
12 @ @ @

~p221; ~p
2
22; ~p

3
12; ~p

3
21; ~p

3
22 @ @ @

~p311 @ @ @

�p1ij

n o2;2

i¼1; j¼1
, �p211, �p

2
12 @ @ @

�p221; �p
2
22; �p

3
12; �p

3
21; �p

3
22 @ @ @

p311 @ @ @

Background pixels @ @ @

Figure 18.2 Results produced by the seven algorithms.
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EXAMPLE 18.1

(Analysis of Four Types of Pixels)

Figure 18.2 shows the results produced by the seven algorithms that also revealed many intriguing findings.

The numbers in all the figures are labeled according to the order in which the pixels were generated. First, the

two popular EEAs, PPI, and IN-FINDR extracted three endmember pixels that represented three distinct pure

signatures, buddingtonite (B), calcite (C), muscovite (M), and one background pixel (BKG) that represented

the uniform background specified by a signature mixed by 50% of alunite and 50% of kaolinite that can be

considered a homogeneous pixel. Both algorithms were terminated after these four pixels were generated. The

third EEA, AMEE, extracted 10 pixels before it was terminated.

It is interesting to note that the 10 AMEE-generated pixels represented nine different panels and one

background pixel, all of which are considered homogeneous pixels due to the spatial morphological pro-

cess included in AMEE where homogeneous pixels of the same type were not extracted once the first

pixel of its type was extracted. Also, it is interesting to note that the nine AMEE-extracted panel pixels

were also endmember pixels. For instance, as shown in Figure 18.2(c), as long as the �p111 at the upper

left corner of the first panel in the third row was extracted, the three pixels �p112; �p
1
21, �p

1
22 that are in the

same panel as is �p111 were not extracted since they are adjacent together and simulated by the same pure

signature, muscovite that was used to simulate �p111. The same phenomenon was repeated until nine end-

member pixels in nine different panels were extracted. Finally, AMEE was terminated after it extracted a

background pixel that represented another distinct type of signature mixed by two material substances,

alunite and kaolinite. This is also because all the background pixels were homogeneous pixels that were

simulated by the same signature. Therefore, as soon as a background pixel was extracted, there were no

more pixels that represented distinct signatures.

Despite the fact that the background pixel was not a pure pixel, it extracted as an endmember pixel. This is

because the background signature simulated by mixing 50% of alunite and 50% of kaolinite and was consid-

ered the pure signature of a mixture of 50% of alunite and 50% of kaolinite. This observation provided a very

interesting insight into the definitions of pure pixel and endmember pixel. Since the background signature is a

50–50 even split mixture of two distinct signatures, it cannot be determined by either signature. In this case,

the background signature was considered a new signature, which is actually a hybrid signature. If we interpret

this hybrid background signature as a new type of pure signature, the background signature then became an

endmember. This explains why all EEAs extract a background pixel as an endmember pixel (see Figure 18.2

(a)–(c)).

In contrast to AMEE, the performance of the RX algorithm is completely opposite. As shown in

Figure 18.2(g), the RX algorithm extracted all 16 mixed pixels plus three pure pixels, p311, ~p
3
11, �p

3
11,

located at the upper-left corner of the third panel in each of the three rows since all the 19 extracted

pixels represented spectrally distinct signatures in their surroundings and were considered anomalous

pixels. The RX algorithm did not extract the other 18 endmember pixels or any background pixel because

they were considered homogenous pixels.

On one hand, UFCLS and IEA, as shown in Figure 18.2(e) and (f), behaved like the RX algorithm, which

also extracted all 16 mixed pixels. On the other hand, UFCLS and IEA performed differently from the RX

algorithm in terms of extraction of different types of endmember pixels. The endmember pixels generated by

the RX algorithm were located at the upper-left corner of the third panel in each of three rows that were

considered anomalous pixels. To the contrary, the endmember pixels generated by UFCLS and IEA were

located at the upper-left corner of the first panel in each of three rows that were considered homogeneous

pixels. More interestingly, UFCLS and IEA generated one more pixel than the RX algorithm did. It was a

background pixel that was also considered a homogeneous pixel.

Compared to the six other algorithms, ATGP in Figure 18.3(d) performed a little bit differently. It behaved

like PPI and IN-FINDR in the sense that it extracted the three endmember pixels that represented three pure

signatures and one mixed background signature. In addition, it also extracted one mixed pixel that both PPI

and IN-FINDR did not extract. It was terminated at the fifth pixel due to warning of matrix singularity where

the fifth pixel turned out to be a mixed pixel.
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It should be noted that the EEAs generated all the desired endmember pixels simultaneously compared to

other algorithms that generated pixels sequentially one at a time with the numbers indicating the order in

which pixels were generated.

EXAMPLE 18.2

(Noise Effect)

The same simulated image used in Example 1 was also used for experiments except that the background

image in Figure 18.1(b) was corrupted by Gaussian noise with SNR 30:1, as defined by Harsanyi and Chang

(1994). Figure 18.3(a) shows a Gaussian noise corrupted background image, and Figure 18.3(b) shows a

synthetic image resulting from implanting the nine panels in Figure 18.1(a) in the noisy background image

in Figure 18.3(a).

This example was particularly designed to test how the seven considered algorithms performed in terms of

extracting pixel information. Unlike Example 1, the synthetic image in this example was a noise-corrupted

image. In this case, we did not have prior knowledge about how many endmembers, p, were present in the

image. In order to determine this number p, we use virtual dimensionality (VD) developed in Chapter 5, where

the Harsanyi–Farrand–Chang (HFC) and noise-whitened HFC (NWHFC) methods are used to determine VD.

Table 18.3 tabulates the estimated VD based on various false-alarm probabilities.

In Table 18.3, the experiments with SNR¼ 20:1 and 10:1 are also included for comparison to select an

appropriate value for VD. According to the table, it seems that 3 is an appropriate estimate of VD. In this case,

only three endmembers or pixels were generated by the seven algorithms, as shown in Figure 18.4(a)–(g). From

these figures, PPI and IN-FINDR extracted three endmember pixels that were specified by all the three distinct

pure signatures compared to ATGP, UFCLS, and IEA, which extracted only two endmembers plus a back-

ground pixel. More interestingly, the three UTDAs performed quite differently in terms of endmember

Table 18.3 VD estimated by the HFC and NWHFC methods for the synthetic image in Figure 1.3(c)

PF 10�1 10�2 10�3 10�4 10�5

HFC (SNR¼ 30:1) 4 3 2 2 2

NWHFC (SNR¼ 30:1) 4 4 3 3 2

HFC (SNR¼ 20:1;10:1) 4 3 2 2 2

NWHFC (SNR¼ 20:1;10:1) 4 3 2 2 2

Figure 18.3 (a) Background image corrupted by Gaussian noise with SNR of 30:1; (b) synthetic image.
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extraction and the orders of pixels extracted. While ATGP extracted two endmember pixels in the first panels

of the second and third rows, UFCLS and IEA extracted the two endmember pixels in the first panels of the

first and second rows instead. Even in the latter case, the order of two endmember pixels extracted by UFCLS

and IEA was completely opposite. These experiments demonstrated one of most important and significant

differences between an EEA and a UTDA. An EEA did exactly what it was asked to do to extract all the three

endmember pixels that represented three distinct pure signatures. In contrast, a UTDA extracted most signifi-

cant pixels in terms of spectrally distinct signatures, but not necessarily pure signatures. As a result, the three

UTDAs extracted a background pixel that was considered a crucial and critical signature since it was used to

simulate the entire background. Although the background was not a pure signature, it was indeed the most

important signature in the image.

Compared to these five algorithms, AMEE and the RX algorithm also performed very differently. As in

Example 1, AMEE extracted three endmember pixels in the three different panels in the same row (i.e., row

3). However, it missed all other two pure signatures. It is also interesting to note that in this example, the RX

algorithm performed like an EEA by extracting the three endmember pixels located at the upper-left corner of

the third panel in each of the three different rows that represented the three distinct pure signatures. This is

because the three extracted endmember pixels were considered anomalous pixels. The same experiments

were also conducted for different SNRs, such as 20:1 and 10:1, where the VD was also estimated to be 3, as

shown in Table 18.3. The results were very similar and so they are not included here to save space.

To summarize the results demonstrated by the above three examples, it was obvious that PPI and IN-

FINDR performed exactly how they were designed for, which was endmember extraction as shown in Figures

18.2(a)–(b) and 18.4(a)–(b). AMEE was also able to extract endmember pixels that were also homogeneous,

but not necessarily distinct endmembers as PPI and IN-FINDR did. As shown in Figures 18.2(c) and 18.4(c),

AMEE continuously extracted endmember pixels with the same spectral signature until all such endmember

pixels were exhausted, and then began to extract endmember pixels with another different type of spectral

signature. However, this dilemma can be resolved by including a remove-before-extract strategy in AMEE, in

which all endmember pixels with different spectral signatures were eventually able to be extracted. So, with

the remove-before-extract strategy implemented, the performance of the three considered EEAs was nearly

the same. Unlike EEAs, UTDAs did not necessarily extract endmember pixels. Instead, they extracted pixels

with most spectrally distinct and significant signatures which may be mixed pixels such as the 19 pixels in

Figure 18.2(d)–(f), and represented all the 19 distinct spectral signatures. Another interesting observation

demonstrated by Figure 18.4(d)–(f) is that only three pixels were extracted by the three UTDAs because of

the fact that VD¼ 3. These three pixels represented three distinct spectral signatures, two of which were pure

signatures and the third was the background signature. If we let UTDAs continue to extract the fourth pixel, this

extracted fourth pixel turned out to be another endmember pixel that represented the third pure signature that was

extracted in Figure 18.2(d)–(f) but was missed in Figure 18.4(d)–(f). Finally, according to Figures 18.2(g) and

18.4(g), it was evident that the RX algorithm could only extract anomalous pixels. Comparing the results of

the RX algorithm with those produced by AMEE, both algorithms performed completely opposite in the

sense that the pixels that were most likely to be extracted by AMEE were homogeneous pixels as opposed to

pixels that were most likely anomalous pixels by the RX algorithm. However, if we define a target formed of

homogenous pixels and a target formed of anomalous pixels as a homogeneous target and an anomalous

target (anomaly), respectively, in which case a target can comprises more than one pixel, then a homogeneous

target can become an anomalous target when its size is decreased. For example, the three 2� 2 panels in the

first column in Figure 18.1(b) could be considered homogenous targets. When the size of four pixels was

reduced to a 1� 1 single pixel such as p311, ~p
3
11, �p

3
11, these pixels became single-pixel anomalous targets.

Conversely, an anomalous target could be expanded to a homogeneous target by filling more pixels with the

same spectral signature such as the case that p311, ~p
3
11, �p

3
11 could be expanded to the three 2� 2 panels in the first

column in Figure 18.1(b). At the end, an interesting problem arise: “How large is the size of a target to be

considered as a homogenous or anomalous target?”. Obviously, the size of an anomalous target cannot be too

large. Otherwise, it will not be called an anomaly. In this case, how large can an anomaly be? This issue has

recently been investigated by Chang and Hsieh (2007). According to our experiments, AMEE and the RX algo-

rithm seemed to extract pixels on both ends from opposite directions, i.e., endmemner pixels and anomalous

pixel, with EEAs and UTDAs right in between.
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18.5 Real Image Experiments

Two sets of real image data were considered for experiments in this section. The first one is a well-

known scene shown in Figures 1.9 and 1.10 collected by the airborne visible infrared imaging

spectrometer (AVIRIS) over the Cuprite mining site, Nevada, in 1997. It has 224 spectral bands

and image size of 350� 350 pixels. The second image data were collected by the Digital Airborne

Imaging Spectrometer (DAIS 7915) over the city of Pavia, Italy, in 2001, and has size of 400� 400

pixels. Both image data sets have available ground truth to substantiate our pixel information

analysis.

18.5.1 AVIRIS Image Data

The AVIRIS Cuprit e s cene is avail able onl ine a t h t tp://av iris.j pl .nasa.gov in both r adiance and

reflectance units. Here, atmospherically corrected data will be used in order to relate to available

ground spectra, and also to discuss the impact of atmospheric corrections. Prior to analysis, bands

105–115 and 150–170 were removed due to water absorption and low SNR in those bands. Figure

1.9(b) shows a single band of the AVIRIS data, where the ground truth provides the precise spatial

locations of pure pixels that correspond to the five minerals, alunite, buddingtonite, calcite, kaolin-

ite, and muscovite, labeled by “A”, “B”, “C”, “K,” and “M.” These pixels are carefully verified by

using laboratory spectra and a Tetracorder map of ground minerals produced by USGS (available

at htt p://s pecl ab.cr.u sgs.gov) (see Figu re 1.1 2). Acco rdi ng to thi s map , the “B ” pixel can also be

considered an anomaly due to very rare presence of the buddingtonite mineral in the area. In addi-

tion to the pure pixels above, the USGS map also revealed the presence of three additional pixels: a

mixed pixel composed of alunite and kaolinite, labeled as “X”, a homogeneous pixel labeled as

“H” and located in an area known as the “montmorillonite playa” in the lowest-rightmost corner of

the scene, and, finally, an anomalous pixel labeled as “R” (stands for “rare” pixel), caused by an

alteration of the muscovite mineral.

Table 18.4 tabulates the various values of the VD produced by the HFC method using different

false-alarm probabilities PF ¼ a ¼ 10�i with i ¼ 1; 2; 3; 4; 5.

Figure 18.4 Results produced by the seven algorithms.
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Extensive experiments were conducted for each of these values and various image scenes. The

results obtained for different values of p are listed in Table 18.4 and were shown to be very similar

in the sense that the pure pixels representing the five pure mineral signatures were extracted and

most of the extracted pixels were overlapped. According to the table, p¼ 22 seemed a reasonable

estimate for the AVIRIS Cuprite image scene. Therefore, only experiments based on p¼ 22 are

presented here for illustration and demonstration. Nevertheless, all the arguments made for the

case of p¼ 22 can also be applied to other values of p. As shown in Figure 18.5(a) and (b), PPI

and N-FINDR produced very close results in this experiment.

It should be noted that PPI was run by using the ENVI software using 104 skewers and parame-

ter t is set to the mean of the values of the NPPI(r) throughout the data set. (Algorithm parameters

are selected in accordance with those used by Plaza et al. (2002)). These two EEAs extracted all

the five pure pixels in Figure 18.5, including the anomalies labeled as “B” and “R.” The above

results indicated that the two EEAs also extracted anomalous pixels provided that they were pure.

This observation was confirmed by comparing the detection results of the RX algorithm in Figure

18.5(g) with the output produced by both PPI in Figure 18.5(a) and IN-FINDR in Figure 18.5(b),

where the latter extracted pixels in the areas where the RX filter produced a high output. Interest-

ingly, AMEE behaved in a completely opposite way. It extracted neither the pixel labeled as “R”

nor the pixel labeled as “B,” which is an endmember pixel that could also be considered an anom-

aly. Instead, AMEE extracted pixels in homogeneous areas, such as the pixel labeled as “H” that

was also extracted by PPI and IN-FINDR as an endmember pixel. This indicated that although

AMEE is originally designed to extract endmembers, it only performed properly as an EEA pro-

vided that the endmember pixels were also homogeneous. Both PPI and IN-FINDR provided better

results in extracting endmember pixels that were also anomalous pixels.

Furthermore, results in Figure 18.5(d)–(f) revealed that UTDAs produced results that were simi-

lar to those found by EEAs in Figure 18.5(a) and (b). Specifically, all UTDAs detected five pure

pixels:

r
ðATGPÞ
10 ¼ r

ðUFCLSÞ
19 ¼ r

ðIEAÞ
11 ¼ A; r

ðATGPÞ
8 ¼ r

ðUFCLSÞ
12 ¼ r

ðIEAÞ
14 ¼ B; r

ðATGPÞ
14 ¼ r

ðUFCLSÞ
15 ¼ r

ðIEAÞ
15

¼ C; r
ðATGPÞ
4 ¼ r

ðUFCLSÞ
6 ¼ r

ðIEAÞ
5 ¼ K; r

ðATGPÞ
7 ¼ r

ðUFCLSÞ
20 ¼ r

ðIEAÞ
18 ¼ M;

where the superscript is included in notations to emphasize which algorithm was used to find

the pixels. The most remarkable difference among EEAs in Figure 18.5(a)–(c) and UTDAs in Fig-

ure 18.5(d)–(f) was the fact that contrary to all EEAs, the three UTDAs extracted the mixed pixel

labeled as “X,” where r
ðATGPÞ
2 ¼ r

ðUFCLSÞ
4 ¼ r

ðIEAÞ
3 ¼ X. The three UTDAs also extracted the

anomaly labeled as “R,” that is, r
ðATGPÞ
11 ¼ r

ðUFCLSÞ
21 ¼ r

ðIEAÞ
16 ¼ R, as well as the homogeneous

pixel, that is, r
ðATGPÞ
5 ¼ r

ðUFCLSÞ
8 ¼ r

ðIEAÞ
8 ¼ H.

The real image experiments presented above provided results that complemented synthetic

image experiments in previous sections. First, two of the considered EEAs, namely, PPI and IN-

FINDR, produced very similar results. In particular, both algorithms extracted endmember pixels

that were also anomalous pixels. Since those pixels are located in areas where the RX algorithm

produced a high output, this suggested that anomaly detection could be an alternative to

Table 18.4 VD estimates with various false-alarm probabilities

PF 10�1 10�2 10�3 10�4 10�5

p 37 27 23 22 21
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endmember extraction if the occurrence of pure pixels was low. On the contrary, AMEE could only

behave like an EEA provided that the endmember pixels were also homogeneous pixels. Since

AMEE uses spatial correlation that plays a more significant role in multispectral images than

hyperspectral images, it is our belief that AMEE may perform more effectively for multispectral

images in endmember extraction. On the other hand, the three considered UTDAs consistently

found all the available pure pixels in the AVIRIS image experiments. However, these algorithms

also extracted other types of pixels, including mixed, homogeneous, and anomalous pixels. There-

fore, UTDAs could not be used to fully replace EEAs in real data experiments. However, we have

experimentally proved in Chang and Plaza (2006) that UTDAs can be used to produce a good

initial set of endmembers to significantly speed up performance of an EEA, where many of the

initial UTDA-generated pixels eventually turn out to be desired endmembers.

Although experiments with the Cuprite data provided several interesting findings, most of the

targets in the scene were given by mineral signatures, and available ground truth is limited to a few

Figure 18.5 Pixel information extracted by seven algorithms for the cuprite image.
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pixels only. In order to test the performance of the considered algorithms in a more complex data

analysis scenario including different types of targets, a further experiment with additional data sets

was conducted in the following section.

18.5.2 DAIS 7915 Image Data

The scene in Figure 18.6 contains different types of targets and several ground-truth regions in a

complex urban landscape.

Figure 18.6 shows available ground truth for the scene superimposed on the spectral band at

639 nm collected by the DAIS 7915 imaging spectrometer. This information will be useful to ana-

lyze the pixel information extracted from a complex analysis scenario dominated by complex

urban features. The scene reveals a dense residential area on one side of the river, as well as open

areas and meadows on the other side. Ground-truth information is also available for several areas,

with the following land-cover classes: water (blue), trees (dark green), asphalt (orange), parking

(cyan), bitumen (red), roofs (magenta), meadows (light green), soil (maroon), and shadows (yel-

low). By following previous studies on this scene, we take into account only 40 spectral bands of

reflective energy and skip thermal infrared bands and middle infrared bands above 1958 nm

because of low SNR in those bands. The 40 considered bands are collected by two different spec-

trometers mounted on DAIS 7915. The first spectrometer uses 32 bands in the range 496–1035 nm

(spectral resolution of 17 nm) and the second one uses eight bands in the range 1539–1756 nm

(spectral resolution of 27 nm). The scene is atmospherically corrected, and has spatial resolution

of 5m. Table 18.5 tabulates the various values of VD produced by the HFC method with different

false-alarm probabilities. According to the table, p¼ 14 seems a reasonable estimate.

Figure 18.7 shows the pixels extracted by different algorithms from the Pavia urban scene. As

shown in Figure 18.7(c), AMEE extracted several pixels belonging to classes formed of homoge-

neous areas, such as river and meadows. On the contrary, the RX algorithm detected an anomaly in

Figure 18.7(g), located between the two roads that cross the downtown area from the lower left-

most corner of the scene to the river. Interestingly, this anomaly was not extracted by AMEE but

was found by the other two EEAs: PPI and IN-FINDR. In addition, this anomaly was extracted first

Figure 18.6 Pavia image scene.
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by the three UTDAs in Figure 18.7(d)–(f), which indicated that the anomaly also corresponded to

the pixel vector with maximum length in the scene. It is also important to emphasize that both PPI

and N-FINDR produced very similar results, with most of the pixels overlapped in Figure 18.7(a)

and (b). In particular, the pixels extracted from the upper-left corner area of the scene were identi-

cal. This area is dominated by the roofs class (in magenta in Figure 18.6) that was of great impor-

tance for urban planning studies (Benediktsson et al., 2005). It is also interesting to note that the

Table 18.5 VD estimates with various false-alarm probabilities

PF 10�1 10�2 10�3 10�4 10�5

p 18 17 16 14 14

Figure 18.7 Pixel information extracted by seven algorithms for the DAIS 7915 Pavia image.

538 Hyperspectral Data Processing: Algorithm Design and Analysis



three EEAs, PPI, IN-FINDR, and AMEE, extracted a pixel in Figure 18.7(a)–(c) that belonged to

the shadow class (in yellow in Figure 18.6) that was not detected by any of the three UTDAs. For

illustration purposes, Table 18.6 tabulates the spectral similarity values measured by SAM between

the mean spectral signature for each ground-truth class in Figure 18.6 and the most similar pixel

extracted by the considered EEAs and UTDAs. In some cases, none of the pixels produced by the

considered algorithms could be associated with a certain class.

Interestingly, Table 18.6 confirmed our findings that UTDAs could not detect pixels belonging

to the shadow class (such a problem was not observed in EEAs). This might be due to the influence

of the pixel vector used as the initial one in the sequential process implemented by UTDAs, that is,

the brightest pixel in the scene. In addition, AMEE was the only algorithm able to extract pixels in

the meadows class. This was because this class was clearly dominated by homogeneous pixels.

Also, the fact that none of the tested EEAs extracted pixels in the bitumen class seemed to indicate

that this class was dominated by mixed pixels. Finally, both PPI and IN-FINDR could not extract

pixels in the asphalt class, which was subject to spectral variability due to illumination interferers.

Interestingly, the spatial information that AMEE took into account helped to characterize this class

(it should also be noted that AMEE is based on SAM, which is insensitive to illumination effects).

It is our belief that AMEE could perform better in this experiment due to the moderate spectral

dimensionality of the urban scene and the importance of spatial information in such an

environment.

In summary, the experimental results presented in this section clearly demonstrated a need of

combining different types of algorithms for pixel information analysis when the study site involves

a complicated scene such as the Pavia urban scene in Figure 18.6.

18.6 Conclusions

Many algorithms have been developed for various applications in hyperspectral data exploitation.

Of particular interest is, “What pixel information do these algorithms really extract to achieve the

goal that they are designed for?” This chapter investigates this issue via three categories of algo-

rithms, EEAs, UTDAs, and an RX-anomaly detection algorithm, which have received considerable

interest in the past. Since these algorithms are unsupervised and performed without prior knowl-

edge, it is important to examine the utility of these algorithms. This chapter explores the insights

into these algorithms. In particular, we address an important issue of whether these algorithms

Table 18.6 SAM-based spectral similarity values produced by the pixels extracted by different algorithms

and mean spectra obtained from ground-truth classes

EEAs: UTDAs:

PPI IN-FINDR AMEE ATGP UFCLS IEA

Bitumen — — — 0.057 0.057 0.057

Meadows — — 0.028 — — —

Water 0.083 0.091 0.073 0.073 0.073 0.083

Shadows 0.082 0.082 0.082 — — —

Parking 0.077 0.077 0.068 0.077 0.077 0.077

Roofs 0.053 0.053 0.048 0.048 0.048 0.048

Soil 0.063 0.063 0.022 0.063 0.063 0.063

Trees 0.047 0.052 0.058 0.058 0.058 0.058

Asphalt — — 0.067 0.051 0.051 0.051
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really do what they are designed to do. While doing so, four types of pixels, pure pixel, mixed

pixel, homogeneous pixel, and anomalous pixel, are introduced for pixel information analysis. In

addition, a set of custom-designed experiments are conducted, where the four types of pixels

described above are used to evaluate the performance of these algorithms in terms of pixel infor-

mation extraction. Interestingly, experimental results provide many intriguing findings in these

algorithms that may help image analysts in selection of algorithms for specific applications.
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V

Hyperspectral
Information
Compression

Due to enormous data volumes provided by hyperspectral imaging sensors via hundreds of contig-

uous spectral channels with high spectral interband correlation, it becomes increasingly evident

that high compression ratios can be achieved for hyperspectral data without loss of significant

information. By realizing tremendous benefits that can be gained by data compression, many

efforts have been devoted to hyperspectral data compression. Since a hyperspectral image can be

considered as an image cube, many hyperspectral data compression algorithms have been devel-

oped by taking advantage of existing two-dimensional (2D) image compression algorithms and

extending these 2D techniques to their three-dimensional (3D) counterparts that are generally

applied to video images. Most notable are JPEG2000 multicomponent and 3D SPHIT (Set

Partition in Hierarchical Tree) that are extended from their counterparts, JPEG2000 and 2D SPHIT.

However, there is a danger in taking such an approach without extra caution due to two unique

issues encountered in hyperspectral images that never occur in pure pixel-based 3D images. One is

the issue of subpixel targets whose size is smaller than pixel size/resolution. Such a target is gener-

ally embedded in a single pixel vector and their presence cannot be visualized by its spatial extent.

In this case, pure pixel-based 3D image compression techniques may fail to capture their existence.

The other is the issue of mixed pixel vectors that may contain two or more substances mixed

together within a single pixel vector. Once again, pure pixel-based 3D image compression tech-

niques may not be effective to extract these substances from a mixed pixel vector. In order to

address these two issues, spectral compression and spatial compression must be decoupled in such

a way that the spectral properties of subpixel targets and mixed pixel vectors can be first preserved

and retained by spectral compression so that such spectral characteristics cannot be further sup-

pressed, compromised, or sacrificed by spatial compression or direct 3D compression.

When data compression is performed, two different types of criteria must be specified. One is a

design criterion used to develop a compression technique. The other is a performance criterion
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used to evaluate the effectiveness of a specified compression technique in performance. While

these two types of criteria can be considered as separate criteria, they are generally correlated to

each other. Specifically, a performance criterion is always a major driving force to determine what

design criterion should be selected to design a desired compression technique. So, how effective a

data compression technique is in fact determined by a specific application that in turn determines

what a best performance criterion is. In other words, when lossy compression is performed, a

selected performance criterion must be adapted to retaining fidelity of desired information required

for different applications. For example, the Karhunen–Loeve transform (KLT) is the optimal linear

transform when both design and performance criteria are the mean squared error (MSE), but it may

not be optimal when compression ratio (CR) is used as a performance criterion. This is particularly

true for hyperspectral data exploitation where compression performance varies with applications.

As another example, in linear spectral mixture analysis (LSMA) for hyperspectral imagery the

compression performance should be measured by spectral unmixing error instead of CR or MSE.

Similarly, for anomaly detection or endmember extraction the compression performance must be

measured by how effectively anomalies or endmembers are extracted rather than CR or MSE. It is

a common practice in data compression community that CR, MSE, signal-to-noise ratio (SNR),

and peak SNR (PSNR) are most widely used criteria in performance analysis. Unfortunately,

these criteria may not be effective performance measures in the above-mentioned applications

since the targets of interest such as anomalies and endmembers usually do not have many samples

in the data set and, thus, their contribution to MSE, SNR, or PSNR is generally too little to sub-

stantiate their existence. Instead, their presence can be only characterized by their spectral pro-

perties. On the other hand, MSE or SNR may be appropriate criteria to measure spatial correlation

in spatial domain-based applications, but they are certainly not effective in measuring spectral

correlation.

Spatial image compression has been studied extensively and well documented in the literature.

However, the criteria such as MSE, SNR, or PSNR used for designing and developing compression

algorithms are generally not appropriate or ineffective for hyperspectral image data exploitation.

Besides, most techniques developed for data compression intend to increase CR, which is calcu-

lated by the ratio of the original data size to the compressed data size by maintaining a certain level

of image quality measured by a criterion, for example, MSE or SNR. Unfortunately, such data size

reduction-based CR approach is generally not practical for hyperspectral image analysis, specifi-

cally to address issues of subpixel targets and mixed pixel vectors as mentioned above. More spe-

cifically, what really matters for hyperspectral data compression is information not the data size.

Therefore, the effectiveness of a hyperspectral data compression technique should not be measured

by reduction of data size, but rather by information retained for image analysis after data compres-

sion. To clarify this point, the terminology of hyperspectral information compression is introduced

here to specifically emphasize that the compression is performed on the basis of data information

not data itself. Furthermore, since the information to be preserved by compression is completely

determined by a specific application, such hyperspectral information compression can also be

referred to as exploitation-based hyperspectral data compression (EHDC) that is performed

according to criteria determined by various applications. For example, if an application is LSMA,

it is then called LSMA-based hyperspectral data compression. Similarly, if endmember extraction

is used for an application, it is called endmember extraction-based hyperspectral data compression.

So, an EHDC is generally carried out by a two-stage process with the first stage process performed

by a specific exploitation technique, then followed by a 3D compression in the second stage

process.

So, in Part V what we are particularly interested is spectral compression specifically designed to

perform lossy compression for hyperspectral data at low or very low bit rates where spectral
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statistics are considered as main performance criteria to develop compression techniques. Accord-

ingly, the commonly used spectral compression technique, principal components analysis (PCA),

can be viewed as a second-order spectral statistics-based transform that uses data sample variance

as a design criterion to measure the significance of principal components (PCs). Similarly, KLT is

also a transformation using a second order of spectral statistics of covariance function as a per-

formance criterion but uses MSE used as a design criterion for distortion measure. In contrast,

independent component analysis (ICA) is a transform using an infinite order of spectral statistics

as a performance criterion, while the mutual information is used as a design criterion to measure

statistical spectral independence among independent components it generates. Such spectral com-

pression has shown great potential in hyperspectral imaging applications. It can be implemented in

two perspectives, dimensionality reduction (DR) and band selection (BS), where the former

reduces dimensionality via a transform such as PCA or feature extraction-based discriminant

analysis, while the latter selects an appropriate set of spectral bands from the set of original data to

represent the data. Technically speaking, it is more accurate to consider BS as a data reduction

technique rather than data compression technique because it does not really perform compression

other than discarding those spectral bands that are not selected. Nevertheless, it does compress data

in the sense of data reduction. Accordingly, from a CR point of view BS is indeed a data compres-

sion technique.

One serious drawback encountered in hyperspectral compression is the requirement of the prior

knowledge about how many dimensions needed to be retained, q, after DR and how many bands

needed to be selected, ~q, after BS. Since finding an accurate value of q or ~q is very challenging,

many techniques developed for DR and BS have either assumed this value a priori or performed

on a trial and error basis. Unfortunately, if this value is not correct, this whole process of DR and

BS must be repeated again for a different value of q or ~q. This is a significant setback. Although a

recently developed concept, virtual dimensionality (VD) presented in Chapter 5, can be used for

this purpose, it only provides a reasonable estimate, but not necessarily an accurate estimate. To

alleviate this dilemma two progressive processes to perform spectral compression are developed,

progressive spectral dimensionality process (PSDP) in Chapter 20 and progressive band dimen-

sionality process (PBDP) in Chapter 21, where two new concepts, dimensionality prioritization

(DP), and band prioritization (BP) are introduced in Chapters 20 and 21, respectively, to allow

users to perform spectral compression in a forward and backward manner in the sense of dimen-

sionality expansion and dimensionality reduction. In this case, VD can be used to determine the

lower and upper bounds to q or ~q by a range of [nVD, 2nVD], with nVD being the VD-estimated

value. Interestingly, similar to design and performance criteria used by data compression both DP

and BP also require two types of criteria. One is design criteria that are the same design criteria

used to develop DR and BS techniques. The other is prioritization criteria used to rank DR-com-

pressed spectral dimensions compressed by DR as well as to rank spectral bands selected by BS.

Although PSDP via DP and PBDP via BP can process DR and BS in a progressive manner

between two bounds nVD and 2nVD without actually knowing the number of spectral dimensions

needed to be retained, q, by DR and the number of spectral bands needed to be selected, ~q, by BS,

there are still two major issues needed to be resolved in DR and BS. One is fixed-size dimensional-

ity used by traditional DR and BS where the value of q or ~qmust be fixed during the entire process.

Unfortunately, this may not be applicable to various applications when the value of q or ~q cannot

be fixed at a constant. For example, the value of q or ~q cannot be the same when it comes to

applications such as endmember extraction, anomaly detection, and spectral unmixing. In other

words, q or ~qmust be adaptive. To alleviate this dilemma a new concept of dynamic dimensionality

allocation (DDA) derived from variable-length coding in information theory is further developed

in Chapter 22 where a hyperspectral data set and its hyperspectral signatures of interest are
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interpreted as an information source and source alphabets, respectively. With this interpretation the

relative spectral discriminatory probabilities (RSDPB) earlier defined in (Chang 2000, 2003a) can

be considered as source probabilities to define variable coding lengths for each of hyperspectral

signatures to find its own spectral/band dimensionality via, DDA. Finally, a remaining issue is that

when DP and BP are used to prioritize spectral dimensions and bands, we may expect that if a

spectral dimension/band is highly prioritized dimension/band, so are its neighboring spectral

dimensions/bands. While this may be true for BP that prioritizes spectral bands based on informa-

tion contained in separate and individual spectral bands and does not take into account interband

correlation, it may not be necessarily true for DP where the spectral dimensions produced by DR

have been taken care of by a DR transform such as PCA, projection pursuit. As a consequence,

PBDP cannot be directly used for BS unless a preprocessing called band de-correlation (BD) is

included prior to BS. So, such resulting process of implementing PBDP coupled with BD as a

preprocessing is called progressive band selection (PBS) that is the main theme in Chapter 23. On

the other hand, PSDP can be directly applied to progressive dimensionality reduction and expan-

sion as shown in Safavi (2010) and Chang and Safavi (2011). Therefore, there is no counterpart of

Chapter 23 needed for PSDP.

Finally, it should be noted that the progressive process proposed in Part V is very different from

a sequential process and an iterative process in that how the process takes place. A sequential pro-

cess is carried out sequentially where the data sample vectors are fully processed one at a time and

the process is completed after it processes the last data sample vector. In this case, a sequential

process is a one-shot process. An iterative process generally requires an iterative equation or itera-

tive equations to update and improve results produced by a previous iteration so that better results

can be produced for next iteration. It not only fully processes data sample vectors, but also requires

repeating the same process over and over again. The proposed progressive process can be consid-

ered as embedded process where the previous results are always embedded in the results produced

by the subsequent process. So, unlike a sequential or an iterative process a progressive process

requires a finite number of passes to complete its process where data sample vectors are only par-

tially processed in each pass and the results obtained in a previous pass will be part of results

obtained by a subsequent process. This is a key difference to distinguish a progressive process

from an iterative process where the latter process does not need to include previous results as part

of results generated at the next iteration, improves its results obtained at previous iterations. More

details can be found in Chang (2013).
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19

Exploitation-Based Hyperspectral
Data Compression

A key to success in data compression is determined by how much information needed to be

stored that will be later retrieved for future data processing. Whether or not a compression

technique is effective is measured by the degree of loss in future information retrieval rather

than information recovery. Accordingly, data loss does not necessarily mean information loss,

which implies that data compression does not necessarily perform information compression.

This is particularly evidential in hyperspectral data compression in which many research

efforts have been directed to data compression rather than information compression. This

chapter introduces a new concept of hyperspectral information compression and explores its

utility in hyperspectral data exploitation. In particular, a three-stage process is developed to

address issues arising in hyperspectral information compression where the first stage is spec-

tral compression performed by spectral dimensionality reduction via interband de-correlation

followed by two stages that implement either exploitation-based information compression in

second stage and 3D data compression in the third stage or in a reverse order. Such three-

stage hyperspectral information compression is measured by two key factors: information

loss and exploitation-based compression criteria. In order to demonstrate the difference

between data compression and information compression in hyperspectral image processing,

various scenarios are conducted for experiments.

19.1 Introduction

Because of significantly improved spectral and spatial resolution resulting from recent advanced

remote sensing instruments many subtle substances such as rare minerals, special species, small

objects etc. can now be uncovered and diagnosed by custom-designed data processing techniques

such as feature extraction for exploitation. However, this benefit also comes at a price, that is, how

to process enormous data volumes without compromising desired information for data processing,

specifically, how to compress data while preserving vital information for future information

retrieval and data processing. Apparently, this heavily depends on the data to be processed. Differ-

ent data are acquired for various applications; thus, they require specific processing techniques.

This chapter investigates hyperspectral data compression from an information point of view,

referred to as hyperspectral information compression.
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Before proceeding we need to make a distinction between information compression and data

compression. Let us consider the following example. Assume that a document such as a newspaper

is represented by a binary image with 0 corresponding to letters and 1 being assigned to background

so that the document can be read by black letters in white background as shown in Figure 19.1(a).

Now, if we perform a lossless data compression on the image in Figure 19.1(a) by converting all

1s to 0s and 0s to 1s, the resulting document shown in Figure 19.1(b) is also a binary image with 1

and 0 assigned to letters and background, respectively, in which case the original black letter-white

background document is converted to a binary image with white letters in black background. In

light of data compression, there is no data loss in these two images, but the form of the information

presented by these two images is quite different in terms of contrast. Similarly, this is also true for

photo development from negative films. These two simple examples demonstrate that lossless data

compression can actually enhance or degrade information and does not necessarily imply informa-

tion compression. In other words, lossless data compression may result in changes of different

forms to represent information such as image enhancement or degradation, contrast improvement

or reduction for visual assessment as demonstrated in Figure 19.1. For instance, an image after

JPEG-2000 lossless compression may appear more visually pleasant than its original image in

terms of information representation. Bearing this in mind a key to success in data compression is

not determined by how much data volumes have been compressed, but rather determined by how

much information is retained to be used for image interpretation. Therefore, whether or not a com-

pression technique is effective should be measured by the degree of loss in information “retrieval”

for data processing rather than information “recovery” in a data form. Accordingly, data loss does

not necessarily mean information loss. This further implies that data compression does not neces-

sarily perform information compression. It is particularly evident in hyperspectral data compres-

sion in which many research efforts have been focused on data compression in the past rather than

information compression that should be the case in hyperspectral compression.

On the other hand, the criterion used to measure compression performance is also crucial in

hyperspectral data compression. The following simple example should suffice to justify this salient

difference. Consider a combat vehicle such as a tank running around in a very large battle field, for

Figure 19.1 An example of a print from a newspaper.
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example a desert field. Due to the size of a tank, usually 8m� 4m, its spatial presence in the entire

image scene may only occupy a few pixels. Consequently, the energy of a tank contributed to the

second-order statistics such as mean squared error (MSE) or signal-to-noise ratio (SNR) is very little

and limited. So, when compression techniques based on criteria of second-order statistics are per-

formed, the tank considered as the only main target in the field will be very much likely sacrificed

if the criterion to used is data compression ratio, which is high. This is because MSE caused by the

tank is almost zero compared to the entire image and SNR nearly remains unchanged even if the

tank is removed from the field. However, from a viewpoint of intelligent gathering, the tank is the

only vital information that needs to be preserved. The loss of the tank information is devastating.

Under this circumstance, an effective criterion must be one that can capture the tank information

during compression. Since the tank can be considered as an anomaly in the image scene, it generally

cannot be characterized by second-order statistics, but rather by high-order statistics such as skew-

ness, kurtosis, etc. In this case, data compression must be performed by information compression via

a high-order statistics-based criterion that can retain the tank information to accomplish its goal in

which case anomaly detection should be used as an exploitation criterion for compression.

The reason why the hyperspectral imagery is called “hyperspectral” arises in its wealthy spec-

tral information provided by hundreds of contiguous spectral channels. It is the spectral informa-

tion that matters and is more crucial and critical than spatial information such as the above tank

example. Therefore, an effective and efficient hyperspectral information compression technique

should compress data in a hierarchical fashion rather than one-shot compression such as 3D com-

pression. Since different data sets provide a different levels of information, a compression tech-

nique that works for one case does not necessarily work for another. So, a desired hyperspectral

information compression technique should be able to adapt to the data to be processed where the

compression must be performed based on information extraction and retrieval for subsequent data

processing. This type of information compression is determined by applications, not classical data

compression that mainly deals with “data” loss and reconstruction. Unfortunately, most data com-

pression techniques available in the literature are developed to achieve “data” compression, but

not “information” compression.

19.2 Hyperspectral Information Compression Systems

In this section, we investigate hyperspectral information compression systems, which implement

exploitation-based criteria to compress hyperspectral imagery while preserving information for

data processing. In particular, we develop two types of hyperspectral exploitation-based compres-

sion systems depicted in Figure 19.2(a) and (b) and Figure 19.3 where the compression takes place

in different stages sequentially.

While both systems perform dimensionality reduction by transforms (DRT) and dimensionality

reduction by band selection (DRBS) in their first stage to reduce spectral dimensionality,

exploitation-based application compression and 3D compression implemented in the second and sub-

sequent stages of both systems are actually reversed. In the systems in Figure 19.2(a) and (b) a 3D

compression is carried out in middle stage (second stage in Figure 19.2(a) and second and third stages

in Figure 19.2(b)) prior to an exploitation-based application in the last stage (third stage in Figure

19.2(a) and fourth stage in Figure 19.2(b)) compared to the system in Figure 19.3 that performs

exploitation-based applications in the second stage prior to 3D compression in the third stage.

According to Figure 19.2(a) and (b) and Figure 19.3, three key components are involved in the

designed information compression systems, each of which has tremendous impact on the compres-

sion performance. The first component must be performed and executed by either DRT or DRBS

developed in Chapter 6. This step performs spectral dimensionality reduction that is a crucial step
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to preserve spectral information that provides all the necessary and desired information for its

follow-up exploitation-based application. The second component is an exploitation-based applica-

tion that measures effectiveness of an information compression system. Such an exploitation-based

application includes linear spectral mixture analysis, anomaly detection, mixed pixel classification,

and quantification in Chang (2003b) and endmember extraction in Chapters 7–11 and so on. Since

DRT/DRBS is implemented in the first component prior to the second component, it has tremen-

dous impact on its follow-up exploitation-based application implemented in the second compo-

nent. Consequently, these two components are actually coherent and should be considered jointly

together when they are implemented. On some occasions, they can be combined and implemented

as a single process for spectral compression. Nevertheless, depending on different applications a

certain stage of compression may be skipped when it is not necessary. The third component is 3D

compression that performs spectral/spatial compression on the entire image as a cube. Many spec-

tral/spatial compression techniques developed in the past for hyperspectral imagery take two

approaches. One is to perform 3D compression directly on hyperspectral data as depicted

in Figure 19.4.

 (a) Block diagram of a two-stage spectral/spatial hyperspectral compression 

 (b) Block diagram of a three-stage spectral/spatial hyperspectral compression 
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Figure 19.2 Spectral/spatial hyperspectral compression systems with 3D compression followed by exploitation-

based application.
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Figure 19.3 Spectral/spatial hyperspectral compression systems with exploitation-based application

followed by 3D compression.
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Or alternatively, a second approach is to perform spectral compression to remove interband

spectral redundancy followed by 2D spatial compression on spectrally de-correlated images. The

assumption made here is that there is little spectral information remaining after spectral compres-

sion is performed. This is generally not true. For example, a components analysis transform such as

PCA can only spectrally de-correlate second-order statistics, while the correlation characterized by

high-order statistics stilled remains in the image data. In this case, compressing 2D spectral images

alone essentially discards high-order statistics of correlation among spectral images. Interestingly,

this observation has been overlooked as witnessed in many publications in the literature. On the

other hand, if the BS is used to perform DR, 3D compression techniques should be used to achieve

both spectral and spatial compression since there is still spectral correlation among selected bands

and 2D compression techniques can only compress spatial correlation not spectral correlation.

19.3 Spectral/Spatial Compression

Since band-to-band correlation is usually very high in hyperspectral imagery, removing such

redundant information can achieve a significant compression ratio. Two major approaches are gen-

erally used for hyperspectral compression, which are dimensionality reduction by transforms

(DRT) and DRBS in Chapter 6. The DR is often accomplished by DRT that compacts information

into a small number of components, while the DRBS selects a small number of bands in some

sense of optimality to represent data. However, a key issue is how to find an optimal component

transform to perform DR for best possible hyperspectral compression or how to effectively select

significant bands that can preserve desired information for hyperspectral compression to optimize

performance of a designated exploitation application. In other words, the success of DRT and

DRBS in hyperspectral compression is determined by how much information is extracted and pre-

served for the follow-up exploitation data processing after DRT and DRBS. Therefore, DRT and

DRBS must be performed by custom-designed criteria for information extraction. This issue can

be addressed by hyperspectral compression via dimensionality prioritization in Chapter 20, and by

hyperspectral compression via band prioritization in Chapter 21. While the techniques developed

in Chapters 20 and 21 can be directly applied to hyperspectral information compression, various

versions of DRT and DRBS developed in Chapter 6 are not immediately ready for compres-

sion since they are generally developed for DR and not particularly designed for information com-

pression. Therefore, in what follows, we reinvent the wheel by redeveloping the techniques in

Chapter 6 for the purpose of hyperspectral information compression.

There are key differences between the spectral/spatial compression presented in this section and

3D-cube compression. One is that our proposed spectral/spatial compression de-couples spectral

compression from spatial compression to perform spectral dimensionality reduction prior to

3D-cube compression. Another is that after spectral dimensionality reduction our spectral/spatial

compression still performs 3D-cube compression on the spectral dimensionality reduced 3D-cube

data compared to only 2D spatial compression being performed on those spectral compressed data
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3D-SPIHT/3D-multicomponent 
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Figure 19.4 Three-dimensional compression system.

Exploitation-Based Hyperspectral Data Compression 549



by 1D spectral compression. A third difference is that there are indeed two types of spectral com-

pression carried out in our proposed spectral/spatial compression: one is spectral dimensionality

reduction and the other is spectral redundancy in 3D-cube compression. As a result, two compres-

sion criteria, spectral compression criterion and exploitation-based compression criterion, are

needed and must be designed from an exploitation point of view to best fit applications. Finally, a

fourth difference is that that according to our experience spectral information is better preserved

using dimensionality reduction than using 1D wavelet compression since it offers better de-corre-

lation. Accordingly, on many occasions even spectral dimensionality reduction implemented in

conjunction with only 2D spatial compression may outperform 3D-cube compression techniques.

One such example is the linear spectral mixture analysis (LSMA)-based hyperspectral image com-

pression (Du and Chang, 2004a) where LSMA is first used to perform spectral compression by

transforming an original hyperspectral image cube to a small number of abundance fractional

images that are further processed by a follow-up spatial compression. It is interesting to note that

many transform coding methods developed in the literature for hyperpspectral image compression

generally perform 1D-spectral/2D-spatial compression where a 2D spatial compression technique

is applied to individual spectral decorrelated components. However, it has been shown in Ramak-

rishna (2004), Ramakrishna et al. (2005a, 2005b) that 1D-spectral/3D-cube compression per-

formed slightly better than 1D-spectral/2D-spatial compression. This is because the former

performs two types of spectral compression, spectral dimensionality reduction by 1D spectral com-

pression followed by removing spectral redundancy via 1D discrete wavelet in 3D-cube compres-

sion as opposed to the latter that is only benefited from 1D spectral dimensionality reduction. As a

result, 2D spatial compression is generally not as effective as 3D-cube compression.

19.3.1 Dimensionality Reduction by Transform-Based Spectral Compression

Despite the fact that a hyperspectral image can be viewed as a 3D image cube, there are several

major unique features that a hyperspectral image distinguishes itself from being viewed as a 3D

image cube. The first and foremost is spectral features provided by hundreds of contiguous spectral

channels. Unlike pure voxels in a 3D image, a hyperspectral image pixel vector is specified by a

wide range of wavelengths in a third dimension that characterizes the spectral properties of a single

pixel vector. Using the spectral profile captured in the spectral domain a single pixel vector in a 3D

hyperspectral image cube can be solely analyzed by its spectral characterization. Another impor-

tant unique feature provided by hyperspectral imagery is that many material substances of interest

can be only explored by their spectral properties, not spatial properties such as small wastes in

environmental pollution, chemical/biological agent detection in bioterrorism, camouflaged combat

vehicles, and decoys in surveillance applications. In addition, certain targets such as chemical

plumes, biological agents, which are considered to be relatively small with no rigid shapes but yet

provide significant information, generally cannot be processed by rigid object-based image proc-

essing or identified by prior knowledge. Instead, these targets can be only captured and character-

ized by their spectral properties. Therefore, when a compression ratio is high, whether or not a

hyperspectral image compression technique is effective may not be necessarily determined by its

spatial compression as do most compression techniques in image processing. This is because small

and subtle targets such as subpixel and mixed pixel targets may be very likely sacrificed by low-bit

rate compression due to their limited spatial presence. Under such a circumstance, we need rely on

spectral compression to retain these targets. Accordingly, separating spectral compression from 3D

compression may be more desirable and effective than 3D-cube compression performing spectral

and spatial information all together simultaneously in the sense that both JPEG2000 Part II

and 3D-SPIHT codec perform spectral and spatial compression using separable transformations
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(i.e., 1D linear transform or 1D wavelet packet transform in the spectral dimension and 2D discrete

wavelet transform (DWT) in the spatial dimensions) as a one-shot operation. In what follows, sev-

eral transform-based spectral compression-based approaches to dimensionality reduction are devel-

oped for this purpose.

19.3.1.1 Determination of Number of PCs/ICs to be Retained

One of primary obstacles to implement PCA/ICA is to determine how many principal components

(PCs) or independent components (ICs) are significant for information preservation. In the past, the

number of PCs/ICs is determined by the amount of signal energy calculated from data variances

that correspond to eigenvalues. Unfortunately, it was shown (Chang, 2003a; Chang and Du, 2004)

that using accumulated sums of eigenvalues as a criterion to determine the number of PCs/ICs was

not reliable and also not accurate in most cases in hyperspectral imagery. This is because subtle

objects such as small targets, anomalies generally contribute little energies to eigenvalues that may

not be retained in the first few PCs/ICs. In order to mitigate this dilemma, the concept of virtual

dimensionality (VD) developed by Chang (2003b) and Chang and Du (2004) and also detailed in

Chapter 5 can serve as a purpose to meet this need. If we assume that each spectrally distinct

signature is accommodated by a single PC/IC, then the total number of PCs/ICs required to accom-

modate all the spectrally distinct signatures will be VD.

19.3.1.2 PCA (ICA)/2D Compression

PCA/2D compression is probably the most popular and commonly used in hyperspectral compres-

sion. It first uses PCA to spectrally de-correlate information of second-order statistics among all

spectral bands and then followed up by a 2D compression technique to perform spatial compres-

sion on each of spectrally de-correlated bands so as to achieve hyperspectral data compression.

The number of PCs, denoted by q to be retained can be determined by VD. These q PCs are then

compressed by a 2D compression technique as code streams for data transmission. Then the corre-

sponding 2D decompression technique is further applied to de-compress the received transmitted

code streams for final exploitation applications. A similar approach using ICA/2D compression

can be also implemented in exactly the same fashion that PCA/2D compression does. Figure 19.5

shows a block diagram that describes a process including a new component introduced by VD as a

preprocessing prior to PCA/ICA for the purpose of estimating the number of PCs/ICs, q to be

retained after spectral dimensionality reduction. The system in Figure 19.5 is referred to as PCA

(ICA)/2D-SPHIT and PCA(ICA)/2D-JPEG2000, respectively.

An algorithm to implement the system in Figure 19.5 is described a follows:

PCA(ICA)/2D compression algorithm

1. Determine nVD of an L-band hyperspectral image, q.

2. Apply PCA/ICA to reduce the original data dimensionality to q PCs (ICs).

Code streams 
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Figure 19.5 PCA(ICA)/2D compression system.
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3. Use a 2D compression technique such as JPEG2000 or 2D SPIHT to each of q PCs (ICs)

and encode them into a set of code streams for data transmission.

4. Implement 2D de-compression corresponding to the one used in step 3 to de-compress the

received transmitted code streams to reconstruct the original q-PC (IC) image cube as a q

PCA(ICA)-decompressed image cube.

5. Exploit the resulting compressed 3D image cube obtained in step 4 for various applications.

It should be noted that if there is no signal source transmission required, steps 2 and 3 can be

skipped and step 4 described in step 5 should be replaced by step 2. Since JPEG2000 and

SPHIT have been shown to be most promising and effective compression techniques in the liter-

ature and produce nearly the same results, either of these two compression techniques specified

in Figure 19.5 can be used for compression.

19.3.1.3 PCA (ICA)/3D Compression

When 2D compression is implemented in conjunction with PCA/ICA in Figure 19.5, a naive

assumption is made on the fact that all spectral information can be nearly de-correlated by PCA/-

ICA so that the loss of spectral information caused by such a transform can be ignored without

significant impact on compression performance. Unfortunately, this is generally not true. First of

all, PCA/ICA is usually used to perform spectral dimensionality reduction for de-correlation not

necessarily for spectral redundancy removal. As a consequence, using 2D compression techniques

can only compress 2D spatial information not spectral information. To address this issue, a 3D

compression is needed. Figure 19.6 modifies the block diagram in Figure 19.5 by replacing 2D

JPEG and 2D-SPHIT with 3D-Multicomponent JPEG 2000 and 3D-SPHIT, which are referred to

as PCA(ICA)/3D-SPIHT, PCA(ICA)/3D-multicomponent JPEG 2000, respectively.

PCA(ICA)/3D compression algorithm

1. Determine nVD of an L-band hyperspectral image, q.

2. Apply PCA/ICA to reduce the original data dimensionality to q PCs (ICs).

3. Use a 3D compression technique such as 3D-multicomponent JPEG2000 or 3D SPIHT to

q-PCs (ICs) formed image cube and encode them into a set of code streams for data

transmission.

4. Implement 3D de-compression corresponding to the one used in step 3 to de-compress

the received transmitted code streams to reconstruct the original q-PC (IC) image cube as a

q PCA(ICA)-decompressed image cube.

5. Exploit the resulting compressed 3D image cube obtained in step 4 for various applications.

It should be noted that if there is no signal source transmission required, steps 2 and 3 can be

skipped and step 4 described in step 5 should be replaced by step 2.
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Figure 19.6 PCA(ICA)/3D compression system.
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19.3.1.4 Inverse PCA (Inverse ICA)/2D Compression

In Figures 19.5 and 19.6, an exploitation application is directly applied to compressed hyper-

spectral image data, which is a reduced dimensional image cube formed by q PCs/ICs. As an

alternative, an exploitation application can be also applied to a reconstructed image data of the

original L-dimensional data space by q PCs/ICs via an inverse transformation. In this case, an

inverse transform of PCA (IPCA) or an inverse transform of ICA (IICA) is further applied to a

q-PCs/ICs image cube to reconstruct a 3D image that has the same number of spectral bands as

the original image has, L. Such an approach is referred to as IPCA (IICA)/2D compression

depicted in Figure 19.7 where JPEG 2000 and 2D-SPIHT can be used as 2D compression

techniques.

A detailed implementation of IPCA(IICA)/2D compression is summarized as follows.

IPCA(IICA)/2D compression algorithm

1. Determine nVD of an L-band hyperspectral image, q.

2. Apply PCA/ICA to reduce the original data dimensionality to q PCs (ICs).

3. Use a 2D compression technique such as JPEG2000 or 2D SPIHT to each of q PCs (ICs)

and encode them into a set of code streams for data transmission.

4. Implement 2D de-compression corresponding to the one used in step 3 to de-compress

the received transmitted code streams to reconstruct the original q-PC (IC) image cube as a

q PCA(ICA)-decompressed image cube.

5. Apply IPCA(IICA) to the 3D reconstructed image cube obtained in step 4 to reconstruct a

3D L-band image cube.

6. Exploit the resulting compressed 3D image cube obtained in step 5 for various applications.

It should be noted that if there is no signal source transmission required, steps 4 and 5 can be

skipped and step 5 described in step 6 should be replaced by step 2 without encoding.

19.3.1.5 Inverse PCA (Inverse PCA)/3D Compression

In analogy with IPCA (IICA)/2D compression, two IPCA (IICA)/3D compression systems can be

also implemented, referred to as IPCA (IICA)/3D-SPIHT and IPCA (IICA)/3D-Multicomponent

JPEG2000. In other words, PCA/ICA is first used to de-correlate a hyperspectral image for spectral

compression. Then VD determines the number of PCs/ICs, denoted by q, which must be retained

for compression. Then a 3D compression technique is applied to an image cube formed by q

PCs/ICs for further compression. Finally, an inverse transform of PCA/ICA is applied to de-com-

pressed q PCs/ICs-formed image cube to reconstruct a 3D image with the same number of spectral

bands as the original image has, L, for exploitation applications. A block diagram of IPCA (IICA)/

3D compression is depicted in Figure 19.8.
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Figure 19.7 IPCA/2D compression system.
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The details of implementing IPCA (IICA)/3D compression are briefly described as follows.

IPCA (IICA)/3D compression algorithm

1. Determine nVD of an L-band hyperspectral image, q.

2. Apply PCA/ICA to reduce the original data dimensionality to q PCs (ICs).

3. Use a 3D compression technique such as 3D-multicomponent JPEG2000 or 3D SPIHT to

q-PCs (ICs) formed image cube and encode them into a set of code streams for data

transmission.

4. Implement 2D de-compression corresponding to the one used in step 3 to de-compress the

received transmitted code streams to reconstruct the original q-PC (IC) image cube as a q

PCA(ICA)-decompressed image cube.

5. Apply IPCA(IICA) to the 3D reconstructed image cube obtained in step 4 to reconstruct a

3D L-band image cube.

6. Exploit the resulting compressed 3D image cube obtained in step 5 for various applications.

Furthermore, if there is no signal source transmission required, steps 4 and 5 can be skipped and

step 5 described in step 6 should be replaced by step 2 without encoding. In addition, two 3D

compression techniques, 3D-SPIHT and 3D-multicomponent JPEG2000, can be used in the above

algorithm. However, since 3D SPIHT requires dimensions to be multiples of 2nþ1 with n being the

number of levels in wavelet decomposition, IPCA/3D-SPIHT may not be applicable when the

number of spectral bands does not meet this constraint.

19.3.1.6 Mixed Component Transforms for Hyperspectral Compression

As noted, the sample covariance matrix used by PCA is of second-order statistics. PCA is consid-

ered as a second-order statistics transform that can only preserve information characterized by

second-order statistics through transformation. In many applications preserving information of

second-order statistics is generally not sufficient in substance characterization such as small

objects, rare targets, etc, which cannot be generally captured by second-order statistics, but rather

by statistics of order higher than 2. Under such a circumstance, PCA may not be effective. By

contrast, ICA is developed to capture information characterized by statistical independence that

may help to resolve this dilemma. For ICA to be effective two assumptions must be satisfied. One

crucial assumption is that all the signal sources must be random sources. Since a linear sum of a

finite number of Gaussian signal sources is still Gaussian, a second critical assumption is that at

most one signal source can be Gaussian. However, due to this particular assumption, ICA is able to

capture information that is characterized by non-Gaussianity whose statistics goes beyond second-

order statistics. Because of that, PCA and ICA actually perform mutual disjoint transformations

and complement each other. This leads to a brief that combining and mixing both PCA and ICA to

form a single transform may yield better compression and desired performance.
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applications 

codestream 

3D-SPIHT/3D-multicomponent 

JPEG 2000 encoder 

IPCA(IICA)  3D-SPIHT/3D-multicomponent 

JPEG 2000 decoder 

Figure 19.8 IPCA/3D compression system.
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In order to investigate such a mixed (m,n)-PCA/ICA transform that combines the first m

PCs with n ICs, three issues need to be addressed (Chai et al. 2007). One is how many compo-

nents are required for such a mixed (m,n)-PCA/ICA transform. The second issue is what n ICs

should be selected for the (m,n)-PCA/ICA transform. Unlike PCA, which ranks PCs according

to eigenvalues with decreasing order, ICA does not prioritize the ICs it generates. Selecting

appropriate n ICs is crucial for the (m,n)-PCA/ICA transform. The third issue is how to com-

bine two different sets of projection vectors, PCA-generated eigenvectors and ICA-generated

projection vectors, that are not necessarily same vectors. Each of these three issues will be

resolved as follows.

The first issue can be addressed by VD that has been used in PCA and ICA discussed in previ-

ous sections. With the help of VD, we can assume that VD-estimated nVD¼ q is the total number

of components needed in the (m,n)-PCA/ICA transform with q¼mþ n.

The second issue is to rank ICs by different criteria in a similar manner that PCA does for its

PCs using variance as a criterion. This issue is addressed in Chapter 6. Of particular interest is the

automatic target generation process (ATGP) that will be used in the proposed (m,n)-PCA/ICA

transform.

To address the third issue, it first determines how many PCs resulting from PCA will be

selected, denoted by m, and let vif gmi¼1 be the eigenvectors that generate the first m PCs. Then all

data samples are then projected to a space orthogonal to the space spanned by the m eigenvectors

vif gmi¼1. Assume that this resulting orthogonal subspace is denoted by vif gmi¼1

� �?
. Then the ATGP-

based ICA is applied to the space vif gmi¼1

� �?
to find the first n ICs with their corresponding projec-

tion vectors, denoted by zif gni¼1. Combining the m eigenvectors vif gmi¼1 with the n projection vec-

tors zif gni¼1 yields a new set of basis vectors wif gpi¼1 for our desired (m,n)-PCA/ICA transform

where wi ¼ vi for 1 � i � m, wiþm ¼ zi for 1 � i � n and q¼mþ n.

Once all the three issues are resolved, a mixed (m,n)-PCA/ICA transform can be developed for

spectral/spatial compression as follows.

Mixed (m,n)-PCA/ ICA compression algorithm

1. Use nVD to estimate the number of components needed to be retained for spectral compres-

sion, denoted by q.

2. Perform PCA to find eigenvalues llf gLl¼1 and their corresponding eigenvectors vlf gLl¼1 and

retain m PCs with the m largest eigenvalues.

3. Define an ðL�mÞ � ðL�mÞ eigenvalue diagonal matrix by D ¼
lmþ1 0 0

0 } 0

0 0 lL

2

4

3

5 and

an L� ðL�mÞ eigenvector matrix by E ¼ vmþ1vmþ2 � � � vL½ �. A whitening matrix D�1=2ET

is then used to sphere the mean-removed data matrix X. Let the resulting matrix X̂ ¼
D�1=2ETX be denoted by X̂.

4. Apply FastICA using the n¼ p�m ATGP-generated pixel vectors as initial projection vec-

tors to the sphered data X̂ to generate n projection vectors denoted by zj
� �n

j¼1
as well as

p� 1 ICs. Let Z denote the projection matrix formed by Z ¼ z1z2 � � � zn½ � with dimensional-

ity of ðL�mÞ � n and define Ẑ ¼ ZTD�1=2ET .

5. Form a new image cube Y by the m PCs and the n ICs and letW ¼ v1Ẑ
� �

.

6. Apply IPCA, X ¼ W�1Yand add the mean back to reconstruct X. Since q is generally

much smaller than L, n < L, in which case the inverse of W is always taken as its pseudo

inverse.
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Figure 19.9(a) depicts a block diagram of mixed (m,n)-PCA/ICA transform for data compression

where the I(PCA/ICA) in Figure 19.9(b) denotes the inverse of mixed (m,n)-PCA/ICA transform

via the projection vector wif gpi¼1. It should be noted that if there is no signal source transmission

required, the process of encoding-decoding and reconstruction image described in the lower part of

the diagram can be skipped.

19.3.2 Dimensionality Reduction by Band Selection-Based Spectral Compression

Another approach to spectral dimensionality reduction is band selection, called DRBS. Since

the same treatment carried out for DRT can be applied to DRBS, only the implementations of

algorithms are described as follows. However, it should be noted that since there are no images

that can be reconstructed in the original data space from BS-compressed q-band images, no

similar algorithms corresponding to Figures 19.7, 19.8 and 19.9(b) can be derived for BS/2D

or 3D compression.

BS/2D compression algorithm

1. Determine nVD of an L-band hyperspectral image, p.

2. Apply a BS technique to select p bands.

3. Use a 2D compression technique such as JPEG2000 or 2D SPIHT to each of p band images

and encode them into a set of code streams for data transmission.

4. Implement 2D de-compression corresponding to the one used in step 3 to de-compress the

received transmitted code streams to decompress the original p-band image cube as a new

reconstructed p-band image cube.

5. Exploit the resulting compressed 3D image cube obtained in step 4 for various applications.

(a) mixed (m,n)-PCA/ICA transform-compression 

(b) mixed (m,n)-PCA/ICA transform-decompression 

3D-SPIHT/3D-multicomponent 

JPEG 2000 encoder 
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3D-SPIHT/3D-multicomponent 
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 (mPCs, nICs)-mixed  
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Figure 19.9 Structure of mixed (m,n)-PCA/ICA transform.
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BS/3D-cube compression algorithm

1. Determine nVD of an L-band hyperspectral image, p.

2. Apply a BS technique to select p bands.

3. Form the p band images obtained in step 2 as a 3D image cube, referred to as 3D p-band

image cube.

4. Use a 3D compression technique such as 3D-multicomponent JPEG2000 or 3D SPIHT to

the 3D p-band image cube and encode them into a set of code streams for data transmission.

5. Implement 3D de-compression corresponding to the one used in step 4 is de-compress the

received transmitted code streams to reconstruct the original p-band image cube as a new

reconstructed p-band image cube.

6. Exploit the resulting compressed 3D image cube obtained in step 5 for various applications.

Figure 19.10 depicts a block diagram of the BS/2D or 3D spectral/spatial compression. It should be

noted that if there is no signal source transmission required, the process of encoding-decoding

described in the diagram can be skipped.

19.4 Progressive Spectral/Spatial Compression

The spectral/spatial compression presented in Section 19.3 requires the knowledge of q that is the

number of dimensions needed to be retained for DR and p that is the number of bands needed to be

selected for BS to achieve spectral compression. Despite that VD can be used to estimate the val-

ues of the q and p, both the q and p in fact vary with applications as discussed in Chapter 5. In order

to avoid dealing with the issue of determining the q and p, an alternative approach called progres-

sive spectral compression for DRT and DRBS will be developed in Chapters 20–21 to perform

DRT and BS progressively via dimensionality prioritization and band prioritization, respectively.

Its idea can be depicted in Figure 19.10(a) and (b), which is very similar to Figures 19.5–19.9

except DRT/DRBS replaced by progressive DRT/progressive DRBS (Figure 19.11).

19.5 3D Compression

Many 3D-cube image compression techniques are generally extended directly from their 2-D

counterparts. Two 3D-cube compression techniques of particular interest that will be used in this

chapter are JPEG2000 Multicomponent (ISO, 2000b) that is an extension of wavelet-based 2D-

JPEG2000 (Taubman and Marcellin, 2000) and 3D-SPIHT, which is extended by 2D-SPIHT devel-

oped by Said and Pearlman (1996).

19.5.1 3D-Multicomponent JPEG

JPEG2000 (Taubman and Marcellin, 2000; Rucker et al., 2005) is a new still image compression

standard that has replaced the commonly used DCT-based JPEG. It is a wavelet-based compression

codestream 
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Exploitation applications 

2D/3D-SPIHT or 2D/3D-

multicomponent JPEG 2000 

DRBS 

2D/3D-SPIHT or 2D/3D-

multicomponent JPEG 2000 

Figure 19.10 DRBS/3D compression process.
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technique that adds/improves features such as coding of regions of interest, progressive coding,

scalability, etc. The entire coding can be divided into four stages: tiling, discrete wavelets trans-

form (DWT), scalar quantization, and block coding. The image is divided into rectangular regions

called tiles; each tile gets encoded separately. The purpose of dividing images into tiles is that the

decoder needs to decode only certain parts of the image on demand, instead of decoding the entire

image and also less memory will be needed by the decoder to decode the image. After dividing the

image into tiles, a wavelet transform is applied to each tile. The wavelet transform is followed by

scalar quantization to quantize the sub-bands. The scalar quantized sub-bands representing differ-

ent scales are coded using embedded block coding with block truncation (EBCOT) (Taubman and

Marcellin, 2000; Rucker et al., 2005; ISO, 2000a; ISO, 2000b; Taubman, 2000). For the case of

hyperspectral imagery the Part II of JPEG2000 (ISO, 2000b) is implemented to allow multi-

component image compression that involves grouping of arbitrary subsets of components into

component collections and applying point transforms along the spectral direction like wavelet

transform. The postcompression rate-distortion optimizer of EBCOT is simultaneously applied to

all code blocks across all the components.

19.5.2 3D-SPIHT Compression

Recently, an approach developed by Said and Pearlman (1996), called set partitioning in hierarchi-

cal trees (SPIHT) has become popular. Two main features introduced by Shapiro (1993) are used in

the SPIHT algorithm. First, it utilizes a partial ordering of coefficients by magnitude and transmits

the most significant bits first. Second, the ordering data are not explicitly transmitted. The decoder

running the same algorithm can trace the ordering information from the transmitted information.

Kim et al. (2000) later extended 2D-SPIHT to 3D-SPIHT for video compression in a relatively

straightforward manner. There is no constraint imposed on the SPIHT algorithm regarding the

 (a) Block diagram of a two-stage progressive spectral/spatial compression 

(b) Block diagram of a three-stage progressive spectral/spatial compression 
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Figure 19.11 Progressive spectral/spatial compression.
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dimensionality of the data. If all pixels are lined up in decreasing order of magnitude, 3D-SPIHT

performs exactly the same as 2D-SPIHT. In the case of 3D sub-band structure, one can use a wave-

let packet transform to allow a different number of decompositions between the spatial and spectral

dimensions.

19.6 Exploration-Based Applications

The exploitation-based applications are a key component in hyperspectral information compres-

sion proposed in Figures 19.2(a), (b), and 19.3 because the other two components, DR/BS and 3D

compression, are developed to support and enhance its functionalities. It is this component to make

a hyperpscetral information system versatile and adaptive. Its success is determined by the exploi-

tation criterion used for hyperspectral information compression that represents the information

extracted from data for future information retrieval and data processing. While considering all pos-

sible exploitation applications is impossible, in this section we describe only four exploitation

applications of particular interest in hyperspectral image analysis, anomaly detection, subpixel tar-

get detection, spectral unmixing, and endmember extraction, each of which requires a different

level of target information to be compressed. For example, anomaly detection and endmember

extraction requires no target information at all compared to the spectral unmixing that needs

complete target knowledge of image endmembers in the data. The subpixel target detection is

somewhere in between and needs only the target information of interest while discarding all other

target knowledge.

19.6.1 Linear Spectral Mixture Analysis

Linear spectral mixture analysis (LSMA) has been widely used to perform spectral unmixing. For

LSMA to work well, we need to find an appropriate set of image endmembers present in the data

that form a base of linear mixture model for spectral unmixing. There are two ways to acquire

information of these image endmembers. One is provided by a priori knowledge and another is

obtained directly from the data in an unsupervised manner (see Chapter 17). Using LSMA to com-

press hyperspectral imagery can achieve significant compression ratios because the crucial infor-

mation has been preserved in the unmixed images, referred to as fractional abundance images that

represent abundance fractions of these image endmembers for future fast information processing.

In this case, directly dealing with these abundance fractions may be more effective than working

on the entire data. Two of major advantages resulting from such an LSMA-compression are that

(1) the image background, which is generally of no interest, has been significantly suppressed and

(2) the interpixel spatial correlation in these abundance fractional images has been substantially

reduced, which makes the follow-up 3D compression work more effectively to compress only the

abundance fractional images (Figure 19.12).

19.6.2 Subpixel Target Detection

Subpixel target detection plays a crucial role in applications of reconnaissance, search and rescue,

and identification of targets of interest. Unlike LSMA, subpixel target detection does not require

complete signature knowledge to be used to form a linear mixing model. It has specific targets to

be detected, which must be provided a priori. It searches targets of interest in an unknown environ-

ment that generally has very complicated background which may hinder the searching process. So,

when compression is performed, such unwanted background is certainly not desired. Instead, the

information of targets must be preserved by full knowledge. Obviously, conventional measures
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used for data compression such as mean squared error (MSE) and signal-to-noise ratio (SNR) are

not appropriate for subpxiel detection since the targets of interest in subpxiel detection generally

contribute very little to MSE and SNR. When it comes to compression, extra care and caution must

be taken to ensure that the target information should not be sacrificed by any spatial compression

technique.

19.6.3 Anomaly Detection

Anomaly detection detects unknown targets without prior knowledge. It has been discussed in

Chang (2003b). It neither performs mixture analysis as does LSMA in spectral unmixing nor per-

forms detection of specific targets as does the subpxiel detection in reconnaissance applications.

Instead, it searches for unknown targets of interest that cannot be identified by prior knowledge or

visual assessment a priori. Its major functionality is in surveillance applications where the targets

of interest are generally unknown and insignificant in terms of its spatial extent in presence that

cannot be visually inspected. Examples include special spices in agriculture and ecology, rare min-

erals in geology, toxic waste in environmental monitoring, combat vehicles in battlefield, landmine

detection in combat zone, drugging trafficking in law enforcement, chemical/biological agent

detection in bioterrorism, terrorist activities in intelligent gathering, tumor/cancer detection in

medical diagnosis, and so on. These targets usually appear unknowingly with very low probabilit-

ies. When they do occur, their size is relatively small and their sample pool is also very limited.
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Figure 19.12 Block diagrams for hyperspectral information compression systems for LSMA.
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However, these are the targets of major interest to hyperspectral image analysts and cannot be

compromised by any compression means. On the other hand, when compression is performed,

only the information of these targets needs to be preserved while other information can be sup-

pressed. Analogous to subpixel detection, such targets of interest generally do not contribute much

to MSE and SNR. As a consequence, a direct compression without accounting for anomaly detec-

tion may result in significant loss of the desired target information. This justifies the need of

exploitation-based compression.

19.6.4 Endmember Extraction

Endmember extraction is one of fundamental preprocesses in hyperspectral data exploitation and

provides basic understanding of hyperspectral imagery directly from the data itself without

assumed prior knowledge (Figure 19.13). A great deal of discussions on endmember extraction is

already presented in Part II, Chapters 7–11 and will not be discussion here to avoid replication.

19.7 Experiments

All the exploitation-based spectral/spatial compression techniques presented in previous sec-

tions are carried out in two stages, that is, VD-determined spectral compression in the first

stage followed by either JPEG2000 Multicomponent or 3D-SPIHT spatial compression in the

second stage. For the spatial compression, a variable bit-rate lossy compression technique is

 (a) Block diagram of a two-stage spectral/spatial hyperspectral compression 

(b) Block diagram of a three-stage spectral/spatial hyperspectral compression for endmember extraction 
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Figure 19.13 Block diagrams for hyperspectral image compression for endmember extraction.
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used in both JPEG2000 Multicomponent and 3D-SPIHT. Since PCA and ICA transforms

generate real numbers, we have rounded these numbers to 16 bits in the implementation of

spectral/spatial compression techniques. Also, PCA and ICA are data dependent transforms;

thus, their component projection vectors need to be stored and/or transmitted in order to per-

form reconstruction of the data. This factor is considered as an overhead and further included

in calculation of compression ratio.

The compression ratios are chosen to be 20, 40, 60, and 100 because little difference is noted in

the detection/quantification performance for compression ratios lower than 20. This implies that

for very low compression ratios (<10) 3D-cube compression alone and spectral/spatial based com-

pression can successfully preserve the subpixel and mixed pixel information. Such subtle differ-

ence can be only observed when the data are compressed with high compression ratios (>40). In

order to address the issues of subpixels and mixed pixels, two examples are custom-designed to

illustrate and demonstrate the superiority of spectral/spatial compression over 3D-cube compres-

sion in terms of preserving subpixel and mixed pixel spectral information.

19.7.1 Synthetic Image Experiments

The first example was designed to investigate the issue of subpixel quantification of subtle targets

(weak signals) embedded in a single background, in which case both PCA- and ICA-based com-

pression techniques worked well compared to 3D-cube compression alone. As a matter of fact, it

was demonstrated in Ramakrishna et al. (2006) that for subpixel detection of subtle targets (weak

signals) over a single background ICA-based compression techniques worked the best. The second

example was designed to investigate the issue of subpixel and mixed pixel quantification of strong

targets (strong signals) embedded in multiple backgrounds, in which case ICA did not work as

expected and the best results were obtained by using PCA-based compression.

EXAMPLE 19.1

(Single Background)

The synthetic image to be used for our experiments in this example is shown in Figure 19.14 that is similar to

the real HYDICE scene in Figure 1.15(a) and has the same size of 64� 64 pixel vectors.

The background in the synthetic image is simulated by p1 panel signature from the image scene in

Figure 1.17 with an added Gaussian noise to achieve signal-to-noise ratio (SNR) 30:1. There are 16 panels

located at the center and arranged in four rows with four panels in each row. The four panels in the ith row

and the first column composed of single pure pixels, denoted by pi,11pi,12, pi,21, and pi,22 pixel vectors

Figure 19.14 Sixteen panels implanted in a single background.
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simulated by pi from Figure 1.16 for i ¼ 1; 2; 3; 4, respectively. The single panel in the ith row and the second

column is a single-pixel panel, denoted by pi2 simulated by pi with abundance 75%. The single panel in the ith

row and the third column are single-pixel panel, denoted by pi3 simulated by pi with abundance 50%. The

single panel in the ith row and the fourth column is a single-pixel panel, denoted by pi4 simulated by pi with

abundance 25%. Figure 19.14 shows a synthetic image obtained by implanting the 16 simulated panels in the

background image where their corresponding background pixels are removed to accommodate the panel pix-

els. It should be noted that the noise background in Figure 19.14 has been visually suppressed because of high-

intensity gray level values of panel pixels. Table 19.1 shows the subpixel abundance fractions of the panels in

five rows for the different compression techniques over different compression ratios.

Clearly, the synthetic image in Figure 19.14 is composed of five different classes including four panel

signatures p2, p3, p4, p5 and one background class p1. To verify this number, the virtual dimensionality (VD)

in Chapter 5 was used to determine the number of spectrally distinct signatures present in this synthetic image

by the Harsanyi–Farrand–Chang (HFC) method developed in Harsanyi et al. (1994). It was 5 across all false

alarm probabilities, which was exactly the same number of spectrally distinct signatures according to the

ground truth. The VD-estimated value, nVD¼ 5 provided the necessary knowledge about how many compo-

nents needed to be retained when dimensionality reduction was performed, provided that each component can

be used to accommodate one distinct signature. In the case of Figure 19.14, the number of components

required after dimensionality reduction was 5.

In order to demonstrate the issues of subpixels and mixed pixels caused by lossy data compression,

the unsupervised fully constrained least squares (UFCLS) developed by Heinz and Chang (2001) in

Chapter 8 was used to unmix the abundance fractions of all subpixels and mixed pixels in Figure 19.14.

Since the results obtained for panels in each of five rows were very similar, Table 19.2 only tabulates

the abundance fractions of the second, third, and the fourth single pixel panels in the first row of

the synthetic image obtained by 3D-cube compression and spectral/3D compression techniques. From

Table 19.2 the performance of 3D SPIHT seemed acceptable for CR¼ 20, 40, but its performance for

CR¼ 60 and 100 was poor. The performance of JPEG 2000 Multicomponent was very poor in all the

cases. On the other hand, the spectral/3D compression techniques except ICA/JPEG2000 Multicomponent

performed well under all compression ratios where the crucial subpixel and mixed pixel information was

well preserved through spectral compression with the spatial compression only causing very little or no

deterioration of subpixel and mixed pixel information. In fact, the compression ratios did not seem to

have impact on their compression performance. However, despite the fact that ICA/JPEG2000 Multi-

component did not perform as well as the other three spectral/3D compression techniques did, it is inter-

esting to note that its inverse counterpart, IICA/JPEG2000 Multicomponent, did perform very well. This

implies that ICA/JPEG2000 Multicomponent tended to over-unmix the abundance fractions by over-

suppressing the background. In addition, the use of inverse ICA-reconstructed images seemed to be able

to correct the issue of over-unmixed abundance fractions resulting from compression.

Table 19.3 also calculates SNR and MSE for the two spectral/3D compression techniques, IPCA/J-

PEG2000 Multicomponent and IICA spectral/ JPEG2000 Multicomponent along with 3D-SPIHT, JPEG2000

Multicomponent for CR¼ 100, 60, 40, and 20.

Table 19.1 Abundance fractions (%) of the panels in five rows

(pi,11, pi,12, pi,21, pi,22) (pi2) (pi3) (pi4)

Panel pixels p1,11 p1,21 p1,21 p1,22 p12 p13 p14
p2 100 100 100 100 75 50 25

Panel pixels p2,11 p2,21 p2,21 p2,22 p22 p32 p24
p3 100 100 100 100 75 50 25

Panel pixels p3,11 p3,21 p3,21 p3,22 p32 p33 p34
p3 100 100 100 100 75 50 25

Panel pixels p4,11 p4,21 p4,21 p4,22 p42 p43 p44
p4 100 100 100 100 75 50 25
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It should be noted that in order to make fair compression, no MSE and SNR were calculated for

PCA/JPEG2000 Multicomponent and ICA/JPEG2000 Multicomponent because they were performed in

reduced dimensions. As shown in Table 19.3, IICA yielded the worst MSE and SNR, but its perform-

ance was among the best in terms of subpixel quantification according to Table 19.2. The reason for

this was because the image background was largely suppressed by ICA and much of background infor-

mation was lost in the image reconstruction by IICA.

EXAMPLE 19.2

(Multiple Backgrounds)

Example 19.1 demonstrated that JPEG2000 Multicomponent did not perform well for all compression ratios,

but 3D-SPIHT did reasonably well in some cases such as CR¼ 20, 40. In the following example, we will

further show that both 3D-SPIHT and JPEG2000 Multicomponent fail to address the issues of subpixels and

mixed pixels. In doing so, the synthetic image shown in Figure 19.15 was custom designed to address the

inability of 3D compression such as 3D-SPIHT and JPEG2000 Multicomponent in preserving quantitative

information provided by subpixels and mixed pixels.

Table 19.2 Abundance fractions (%) for the second, third, and the fourth single pixel panels in the first row

for different compression ratios

Compression ratio (CR) 100 60 40 20

Panels p12 p13 p14 p12 p13 p14 p12 p13 p14 p12 p13 p14
original image 75 50 25 75 50 25 75 50 25 75 50 25

3D-SPIHT 66 39 13 67 47 20 70 50 24 73 50 24

JPEG2000

Multicomponent

61 25 9 67 36 17 70 42 20 71 45 21

PCA/JPEG2000

Multicomponent

75 49 24 75 49 24 75 49 24 75 49 24

ICA/JPEG2000

Multicomponent

75 59 35 75 58 34 75 58 34 75 58 34

IPCA/JPEG2000

Multicomponent

75 49 24 75 49 24 75 49 24 75 49 24

IICA/JPEG2000

Multicomponent

75 49 24 75 49 24 75 49 24 75 49 24

Table 19.3 SNR and MSE values for different compression techniques

Compression ratio

(CR)

100 60 40 20

SNR MSE SNR MSE SNR MSE SNR MSE

3D - SPIHT 37.65 1.44Eþ 05 37.94 1.35Eþ 05 38.35 1.23Eþ 05 39.53 9.32Eþ 04

JPEG2000

Multicomponent

37.54 1.48Eþ 05 37.80 1.40Eþ 05 38.13 1.29Eþ 05 39.28 9.86Eþ 04

IPCA/JPEG2000

Multicomponent

37.74 1.42Eþ 05 37.74 1.42Eþ 05 37.74 1.42Eþ 05 37.74 1.42Eþ 05

IICA/JPEG2000

Multicomponent

22.41 4.98Eþ 06 22.41 4.98Eþ 06 22.41 4.98Eþ 06 22.41 4.98Eþ 06
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The image in Figure 19.15 was similar to the one used in Figure 19.14 in Example 19.1 with the same

image background the same size of 64� 64 pixel vectors, but had different inserted panel pixels indi-

cated in Figure 19.15. Specifically, the image is divided into four quarters, each of which had its own

background composed of a different panel signature where the background in each of the four quarters

was simulated by one of p1, p2, p3, p4, respectively, with an added Gaussian noise to achieve signal-to-

noise ratio (SNR) 30:1. The background pixels in a 2� 2 square panel marked by a circle at the upper

left corner had no noise added. In each of these quarters a subpixel and a mixed pixel with specific

abundance fractions were implanted by replacing the original pixels. There were two single one-pixel

panels implanted in each background marked by circles in Figure 19.15. The difference between images

in Figures 19.14 and 19.15 is that the image background in Figure 19.15 was made up of four different

signatures instead of a single image background signature in Figure 19.14. Table 19.4 tabulates the abun-

dance fractions of subpixels and mixed pixels in the four quadrant simulated by four panel spectral sig-

natures p1, p2, p3, p4 from Figure 1.16.

It should be noted that a subpixel target simulated was defined as a target with fractional abundance

embedded in a background (B). For example, in the first quadrant the first panel contained a subpixel

with target signature p2 of fractional abundance 50% with the background signature p1 of 50% and the

second panel is a mixed pixel with the three signatures p2, p3, and p4 sharing the same fractional

abundance 1/3.

Figure 19.15 Synthetic imagery for Example 2 showing the four quadrants and the subpixel and mixed pixel

implanted in each.

Table 19.4 Abundance fractions (%) of the implanted panels in each of the four quadrants

Quadrant Pixels p1 p2 p3 p4

1 Panel 1–subpixel 50 (B) 50 (target) 0 0

Panel 2–mixed pixel 0 1/3 1/3 1/3

2 Panel 1–subpixel 0 50 (B) 50 (target) 0

Panel 2– mixed pixel 1/3 0 1/3 1/3

3 Panel 1– subpixel 0 0 50 (B) 50 (target)

Panel 2– ixed pixel 1/3 1/3 0 1/3

4 Panel 1– subpixel 50 (target) 0 0 50 (B)

Panel 2– mixed pixel 1/3 1/3 1/3 0
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Table 19.5 Abundances fractions (%) for the subpixel and the mixed pixel panels in the first quadrant using

UFCLS unmixing for different compression ratios

Panels Subpixel Mixed

CR 100 60 40 20 100 60 40 20

Original p1 50 50 50 50 0 0 0 0

p2 50 50 50 50 33 33 33 33

p3 0 0 0 0 33 33 33 33

p4 0 0 0 0 33 33 33 33

3D-SPIHT p1 70 61 61 55 35 25 25 11

p2 25 36 36 43 11 17 17 24

p3 5 3 3 2 29 31 31 33

p4 0 0 0 0 25 27 27 31

JPEG2000

Multicomponent

p1 78 68 68 61 46 20 17 10

p2 8 23 23 33 13 30 31 35

p3 12 7 8 6 23 24 25 26

p4 2 2 1 0 18 26 28 29

PCA/JPEG2000

Multicomponent

p1 49 48 48 48 1 1 1 1

p2 45 47 47 47 32 32 32 32

p3 4 4 4 4 34 34 34 34

p4 1 1 1 1 33 33 33 33

IPCA/JPEG2000

Multicomponent

p1 49 50 50 50 0 0 0 0

p2 51 50 50 50 33 33 33 33

p3 0 0 0 0 33 33 33 33

p4 0 0 0 0 33 33 33 33

It is worth noting that this example was particularly designed so that ICAwould not be applicable because

the image backgrounds in the four quadrants were simulated by different Gaussian noises, in which case ICA

could not unmix the simulated four Gaussian noises.

Once again, VD was used to estimate the number of spectrally distinct signatures for this scene, which was

4 across all false alarm probabilities PF¼ 10�1, 10�2, 10�3, and 10�4. This was different from the value of 5

estimated by VD for the scene in Figure 19.14. The value of 4 estimated by VD was exactly the same number

of panel signatures. p1, p2, p3, p4 used to simulate the image in Figure 19.15 and the original dimensionality

was reduced to 4, i.e., q¼ 4.

Now, UFCLS was used to unmix the abundance fractions of all subpixels and mixed pixels. Table 19.5

tabulates UFCLS-unmixed abundance fractions for the subpixel and mixed pixel panels.

Apparently, the compression performance of 3D SPIHT and JPEG2000 Multicomponent was very poor for

CR¼ 100 and 60 and was only improved slightly even for CR¼ 40 and 20 in quantification of subpixels and

mixed pixels, particularly, their performance in mixed pixel quantification with all compression ratios. By

contrast, IPCA-JPEG2000 Multicomponent and PCA-JPEG2000 with all compression ratios performed con-

sistently better for both subpixel and mixed pixel quantification. The experimental results in this example

were also very similar to those in Example 19.1.

Table 19.6 also calculates SNR and MSE for the three compression techniques, 3D-SPIHT, JPEG2000

Multicomponent and IPCA/JPEG2000 Multicomponent with CR¼ 100, 60, 40, and 20 where all the three

produced similar SNRs and MSEs.

According to Tables 19.5 and 19.6 IPCA/JPEG2000 Multicomponent performed very well in both quantifi-

cation of subpixels and mixed pixels with very close SNR/MSE. Similar conclusions drawn from Examples

19.1 and 19.2 were also observed in Ramakishna (2004), Ramakishna et al. (2005), and Ramakishna et al.

(2006). All these experiments conducted above as well as those in in Ramakishna (2004), Ramakishna et al.

(2005), and Ramakishna et al. (2006) demonstrated an important fact that using SNR and MSE as compres-

sion measures was inappropriate to address the issues of subpixels and mixed pixels when compression ratio

was high, that is, greater than 20. This implies that SNR and MSE could not be blindly applied to hyperspec-

tral data compression without precaution.
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19.7.2 Real Image Experiments

In this section, similar experiments conducted for the synthetic images in Section 19.6.1 were

also performed for the real image scene in Figure 1.16. The CEM discussed in Chapter 2 and

UFCLS in Chapter 8 were also used to investigate the issues of subpixel detection and mixed

pixel classification/quantification respectively for the same six compression techniques used in

Section IV, 3D-SPIHT, JPEG2000Multicomponent, PCA/JPEG2000 Multicomponent, ICA/J-

PEG2000 Multicomponent, IPCA/JPEG2000 Multicomponent, and IICA/JPEG2000 Multi-

component for performance evaluation. The VD estimated for this scene was 9 according to

experiments conducted in Chapter 5.

EXAMPLE 19.3

(Subpixel Panel Detection)

The CEM was implemented on the 15 panels in Figure 1.15(b), particularly the five subpixel panels, p13, p23,

p33, p43, p53 in the third column to show the effect of lossy compression on target detection where the p1, p2,

p3, p4, p5 in Figure 1.16 were used as desired target signatures. The results of the CEM implemented on the

original uncompressed image are shown in Figure 19.16.

Since similar results were obtained for panels in all the five rows, Figures 19.17–19.22 only show

results obtained for detection of panels for the fifth row by applying CEM to six compressed images

resulting from 3D-SPIHT, JPEG2000 Multicomponent, PCA/JPEG2000 Multicomponent, ICA/JPEG2000

Multicomponent, IPCA/JPEG2000 Multicomponent, IICA/JPEG2000 Multicomponent. This is because

the detection of the panels in the fifth row is challenging due to the panels in rows 4 and 5 made by the

same panel materials with two different paints. As a result, CEM detected panels in both rows 4 and 5 if

either p4 or p5 was used as a desired signature. This was also true for CEM in detection of panels in the

second and third rows.

Comparing all the detection results in Figures 19.17–19.22 against that in Figure 19.16, the best results

were those produced by ICA/JPEG2000 Multicomponent and IICA/JPEG2000 Multicomponent where

PCA-based/3D compression was among the worst and 3D compression came in between but did not perform

well either.

Table 19.6 SNR and MSE values for different compression techniques

CR 100 60 40 20

SNR MSE SNR MSE SNR MSE SNR MSE

3D-SPIHT 48.68 1.22Eþ 04 48.98 1.14Eþ 04 49.35 1.05Eþ 04 50.56 7.90Eþ 03

JPEG2000

Multicomponent

48.45 1.28Eþ 04 48.81 1.18Eþ 04 49.13 1.10Eþ 04 50.17 8.64Eþ 03

IPCA/JPEG2000

Multicomponent

48.94 1.15Eþ 04 48.94 1.15Eþ 04 48.94 1.15Eþ 04 48.94 1.15Eþ 04

Figure 19.16 15-panel detection results by applying CEM on the original image scene in Figure 1.16(a).
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Figure 19.17 Detection of panels in the fifth row by produced by applying CEM to 3D-SPIHT compressed

images.

Figure 19.18 Detection of panels in the fifth row by produced by applying CEM to JPEG2000 Multi-

component-compressed images.

Figure 19.19 Detection of panels in the fifth row by produced by applying CEM to PCA/JPEG2000 Multi-

component compressed images.

Figure 19.20 Detection of panels in fifth row by produced by applying CEM to ICA/JPEG2000 Multi-

component compressed images.
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EXAMPLE 19.4

(Mixed Pixel Panel Quantification)

The experiments conducted in Example 19.3 were designed to investigate the issue of subpixel target

detection where only desired target knowledge was required. The following example was conducted to

demonstrate the ineffectiveness of 3D lossy compression on mixed pixel panel classification and quantifi-

cation with UFCLS used to perform unmixing for quantification of the 15 panels. In this case, the target

knowledge must be known prior to UFCLS. It was demonstrated in Heinz and Chang (2001) and Chang

(2003a) that 34 target pixels could be generated in an unsupervised manner and provided sufficient target

information for UFCLS to perform well. Once again, due to similar results that could be obtained for all

the 15 panel pixels as Example 19.3 did, Table 19.7 only tabulates UFCLS-unmixed abundance fractions

(%) of three panels in the fifth row where the panel in the first column is a two-pixel panel, denoted by

p511 and p512, the panel pixel p52 in the second column and the subpanel pixel by p53 in the third column.

The six lossy compression techniques 3D-SPIHT, JPEG2000 Multicomponent, PCA/JPEG2000 Multi-

component and ICA /JPEG2000 Multicomponent, IPCA/JPEG2000 Multicomponent, IICA-JPEG2000

Multicomponent were evaluated for CR¼ 100, 60, 40, and 20.

From this table we can see that ICA-based spectral/spatial compression techniques clearly outperformed

the other compression techniques. More interestingly, the compression ratios had little effect on the unmixed

abundance fractions of PCA/spatial and ICA/spatial compression techniques, while the accuracy of the

unmixed abundance fractions of 3D-SPIHT and 3D-multicomponent JPEG2000 was gradually increased with

compression ratios. Finally, Table 19.8 also tabulates SNR and MSE for the four compression techniques, 3D-

SPIHT, JPEG2000 Multicomponent, IPCA/JPEG2000 Multicomponent, and IICA/JPEG2000 Multi-

component with CR¼ 100, 60, 40, and 20 where IICA yielded the worst MSE and SNR, but produced the

best detection performance in Figure 19.22 among the four techniques.

Figure 19.21 Detection of panels in the fifth row by produced by applying CEM to IPCA/JPEG2000 Multi-

component compressed images.

Figure 19.22 Detection of panels in the fifth row by produced by applying CEM to IICA/JPEG2000 Multi-

component compressed images.
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The above experiments provided further evidence that MSE and SNR were indeed not appropriate criteria to

be used for compression to address issues of subpixels and mixed pixels for hyperspectral image compression.

One particular comment is noteworthy. According to all the conducted experiments, the improvement on

compression performance of 3D compression techniques was closely related and proportional to an increase

in SNR, decrease of MSE as well as decrease of compression ratio. That is, the better performance the 3D

compression; the higher the SNR, the smaller the MSE and the lower the compression ratio. This observation

explains the reason why researchers in data compression community have focused their attention on criteria of

SNR and MSE. Unfortunately, this common sense is no longer true for hyperspectral data compression when

compression ratio is high as just demonstrated in the above four examples. This is because SNR and MSE

have very little impact on subpixel and mixed pixel analyses such as subpixel detection and mixed pixel

quantification in these cases. In other words, in order for a hyperspectral data compression to be effective,

exploitation applications are the key to its success. Blinding using SNR and MSE as compression criteria may

mislead results in hyperspectral data interpretation and analysis.

EXAMPLE 19.5

(Mixed Component Analysis for Spectral/Spatial Compression)

The HYDICE 15-panel scene was once again used for experiments to demonstrate the utility of mixed-

component analysis for spectral/spatial compression systems in Figure 19.9. Five scenarios of mixed

Table 19.7 Abundance fractions (%) of the mixed pixel panels of the fifth row

CR 100 60 40 20

p511 p512 p52 p53 p511 p512 p52 p53 p511 p512 p52 p53 p511 p512 p52 p53

Original image 72 100 78 15 72 100 78 15 72 100 78 15 72 100 78 15

3D-SPIHT 58 100 35 1 55 100 56 8 60 100 62 13 69 100 74 13

JPEG 2000

Multicomponent
57 100 18 0 67 100 48 9 66 100 61 6 62 100 57 11

PCA/JPEG2000

Multicomponent

n n n n n n n n n n n n n n n n

ICA/JPEG2000

Multicomponent
71 100 70 0 69 100 72 7 69 100 72 12 69 100 72 12

IPCA/JPEG2000

Multicomponent
71 100 77 10 73 100 78 15 72 100 78 18 73 100 78 16

IICA/JPEG2000

Multicomponent
77 100 74 6 67 100 74 8 68 100 75 11 68 100 75 11

Table 19.8 SNR and MSE for different compression techniques

CR 100 60 40 20

SNR MSE SNR MSE SNR MSE SNR MSE

3D-SPIHT 28.38 9.01Eþ 05 31.76 4.13Eþ 05 34.93 1.99Eþ 05 41.10 4.80Eþ 04

JPEG2000

Multicomponent

26.93 1.25Eþ 06 30.02 6.16Eþ 05 32.79 3.26Eþ 05 38.03 9.74Eþ 04

IPCA/JPEG2000

Multicomponent

40.34 5.73Eþ 04 42.52 3.46Eþ 04 42.79 3.26Eþ 04 42.79 3.26Eþ 04

IICA/JPEG2000

Multicomponent

11.66 4.22Eþ 07 11.66 4.23Eþ 07 11.66 4.23Eþ 07 11.66 4.23Eþ 07
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PCA/ICA transform with (m¼ 9, n¼ 0) (i.e., PCA), (m¼ 0, n¼ 9) (i.e., ICA), (m¼ 1, n¼ 8), and (m¼ 2,

n¼ 7) were investigated for applications in mixed pixel classification/quantification with UFCLS used to

evaluate their performance on compressed and decompressed domains. These experiments were considered in

Chai et al. (2007) to investigate mixed PCA/ICA component analysis for hyperspectral imagery. In this

case, the estimated value of VD was q¼ 9 and the number of classes to be classified was also set to p¼ q¼ 9.

Like Experiment 19.6.4, 34 target pixels were used to provide prior knowledge for mixed pixel

classification/quantification. Therefore, UFCLS was applied to the original HYDICE image with p set to 34

to perform unmixing. Figure 19.23 shows only five images that are used to unmix the 15 panels. These mixed

pixel classification results were used as a benchmark for studying the following spectral/spatial compression

experiments conducted by mixed component analysis.

It should be noted that since the panels in rows 2 and 3 are made the same material with different paints,

the detection of panels in row 2 might also detect panels in row 3 and vice versa. Similarly, it is also true for

detection for the panels in rows 4 and 5.

EXPERIMENT 19.1

(Scenario 1: PCA, (m¼ 9, n¼ 0))

In this experiment, mixed PCA/ICA transform was reduced to the standard PCA transform. Figure 19.24

shows the nine PCA-generated PCs. Figures 19.25 and 19.26 show the results unmixed by UFCLS for the 15

panels using nine PCs compressed and decompressed image cubes, respectively.

As demonstrated in Figures 19.25 and 19.26, UFCLS performed very poorly in unmixing the 15 panels in

the scene. Comparing the results in Figures 19.25 and 19.26 against that in Figure 19.23 PCA-based spectral/-

spatial compression failed to capture subtle details of the 15 panels. This was primarily due to the fact that

PCA-based spectral compression was a second-order statistics-based transform that largely characterizes

background information in Figures 19.25 and 19.26, but not panel information that is generally preserved by

Figure 19.23 15-panel classification by UFCLS on the original image cube.

Figure 19.24 Nine principal components.
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high-order statistics as demonstrated in the following example. As also demonstrated in Figures 19.25 and

19.26, the results produced by using the nine PC-decompressed image cubes only show little improvement on

panel detection and classification. This implied that the decompressed image cube reconstructed from the nine

PCs seemed provided no significant advantage in target detection and mixed pixel classification.

EXPERIMENT 19.2

(Scenario 2: ICA, (m¼ 0, n¼ 9))

As a complete opposite of Scenario 1 in Experiment 19.1 of Example 19.5, this experiment considered

another scenario, called Scenario 2 where all nine components used for mixed pixel classification were nine

ICs shown in Figure 19.27 obtained from the FastICA using the ATGP-generated initial projection vector.

Evidently, the nine ICs in Figure 19.27 already extracted all the 15 panels, while the background informa-

tion preserved in Figure 19.24 seemed not shown in these nine ICs. Figures 19.28 and 19.29 show the results

produced by UFCLS in unmixing of the 15 panels using nine ICs compressed and decompressed image cubes

respectively where UFCLS performed using ICA better than using PCA in Figures 19.25 and 19.26 in terms of

panel target detection.

Figure 19.25 Classification by UFCLS using nine PCs in Figure 19.24.

Figure 19.26 15-panel classification by UFCLS on PCA-decompressed image cube obtained by using nine

PCs in Figure 19.24.
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Figure 19.27 Nine independent components.

Figure 19.28 Classification by UFCLS using nine ICs in Figure 19.27.

Figure 19.29 Classification by UFCLS using ICA-decompressed image cube obtained by using nine ICs in

Figure 19.27.
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EXPERIMENT 19.3

(Scenario 3: (m¼ 1, n¼ 8)-PCA/ICA transform)

Experiments 19.1 and 19.2 of Example 19.5 demonstrated advantages and disadvantages of PCA or ICA

transform used for compression. This experiment investigated a scenario called Scenario 3 to see how much

gain can be obtained by the proposed mixed (m,n) PCA/ICA transform.

In order to see the performance of mixed (1,8)-PCA/ICA transform in mixed pixel classification, Figures

19.30 and 19.31 show the 15-panel unmixed results by UFCLS using the (1,8) mixed component-compressed

and decompressed image cubes, respectively.

The results obtained in Figure 19.30 by using the (1,8) mixed component-compressed image cube seemed

slightly better than those obtained in Figure 19.31 by using the (1,8) mixed component-decompressed image

cube in terms of classification of 15 panels, particularly, panels in rows 2 and 3. But results shown in Figure

19.31 were closer to UFCLS results obtained based on the original image cube shown in Figure 19.23. In

addition, they also extracted more background classes than that in Figure 19.30.

Figure 19.30 Classification by UFCLS using nine mixed components.

Figure 19.31 Classification by UFCLS on the (1,8)-PCA/ICA-decompressed image cube obtained by using

nine mixed components.
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EXPERIMENT 19.4

(Scenario 4: (m¼ 2, n¼ 7)-PCA/ICA transform)

This experiment further investigated another scenario, called Scenario 4 to see if a further improvement can

be gained by increasing one PC to 2 PCs while reducing eight ICs to seven ICs operated by a mixed (2,7)

PCA/ICA transform. Figures 19.32 and 19.33 show the 15-panel unmixed results by UFCLS using the (2,7)

mixed component-compressed and (2,7) mixed component-decompressed image cubes, respectively, where

UFCLS performed poorly in unmixing the 15 panels in both cases.

This experiment further demonstrated that adding one more PC could only do more harm than good for

UFCLS-mixed pixel classification. This is because the first PC was sufficiently enough to capture second-

order statistics and adding a second PC did not provide useful information in terms of panel detection and

classification, but rather obscured the panel information.

Finally, the LSEs were calculated for four scenarios conducted in the above four experiments using mixed (m,n)

PCA/ICA transforms with (m,n)¼ (9,0), (0,9), (1,8), and (2,7). Their LSE results are tabulated in Table 19.9.

As clearly shown in Table 19.8, LSE was increased as more PCs were replaced by ICs where the smallest

and largest LSEs were produced by (9,0)-PCA and (0.9)-ICA, respectively. However, the worst performance

in mixed pixel classification came from the (9,0)-PCA and (2,7)-PCA/ICA, which yielded the smaller LSEs

compared to (0,9)-ICA and (1,8)-PCA/ICA that performed significantly better in the 15-panel classification

but produced larger LSEs. This evidence demonstrated that a smaller LSE did not necessarily produce better

Figure 19.32 Classification by UFCLS using nine mixed components.

Figure 19.33 Classification by UFCLS on PCA/ICA-decompressed image cube obtained by using nine

mixed components.
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performance in mixed pixel classification. This further suggested that the LSE might not be an appropriate

measure for hyperspectral data compression.

EXPERIMENT 19.5

(Mixed Pixel Quantification)

The above four experiments were evaluated by visual assessment qualitatively. It is very difficult to see how a

mixed (m,n)-PCA/ICA transform performed quantitatively. In doing so, we conducted this experiment to eval-

uate the performance of a mixed (m,n)-PCA/ICA transform in mixed pixel quantification for the 15 panels in

Figure 2. According to the results obtained by the four scenarios only Scenarios 2 and 3 successfully unmixed

15 panels in terms of classification, so only the results produced by (0,9)-PCA/ICA transform and (1,8)-

PCA/ICA transform were used for mixed pixel quantification analysis. Table 19.10 tabulates their abundance

quantification of the 15 panels obtained in Figures 19.28 and 19.29 and Figures 19.30 and 19.31, respectively,

where the results for abundance quantification of the 15 panels obtained by applying UFCLS to the original

image cube in Figure 19.23 are also included for benchmark comparison.

As noted in Table 19.10, the subpixel panels, p13, p23, p33, p43, and p53 in Figure 1.16(b) have the size of

1m� 1m smaller than the 1.56m� 1.56m-spatial resolution. It indicates that the size of these five subpixel

panels is approximately 1= 1:56 mð Þ2 ¼ 0:41; 091 m2 that is equivalent to saying that the abundance fractions

Table 19.9 LSEs calculated for Experiments 19.1–19.4

(9,0) (0,9) (1,8) (2,7)

LSE 3.25� 104 4.24� 107 8.07� 106 3.83� 105

Table 19.10 Abundance quantification by UFCLS using mixed (m, n)-PCA/ICA spectral/spatial

compression

(m¼ 1, n¼ 8)-PCA/ICA (m¼ 0, n¼ 9)-PCA/ICA UFCLS (p¼ 34)

Compressed Decompressed Compressed Decompressed

p11 1 1 1 1 1

p12 0.4748 0.4419 0.4708 0.4283 0.4098

p13 0.2175 0.1542 0.2166 0.1721 0.0499

p211 0.9748 0.3438 1 1 0.5255

p221 1 0.3424 0.9853 0.9191 0.3141

p22 0.9031 0.2890 0.9181 0.9051 0.6917

p23 0.3652 0.1112 0.3751 0.248 0.4221

p311 0.8372 0.9326 0.844 0.7569 0.8647

p312 1 1 1 1 1

p32 0.5615 0.5439 0.5647 0.4946 0.5343

p33 0.3859 0.3406 0.3929 0.3122 0.3285

p41 1 1 1 0.466 1

p412 0.8928 0.9019 0.8991 0.5501 0.3821

p42 0.8052 0.7936 0.7974 0.8361 0.7034

p43 0.2622 0.1986 0.2489 0.2596 0.2242

p511 0.7265 0.6956 0.7252 0.5846 0.7203

p521 1 1 1 1 1

p52 0.7386 0.7294 0.7349 0.724 0.7789

p53 0.1982 0.1368 0.1812 0.1213 0.1466
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of these three subpixels present in a single pixel are close to 0.41,091. With this interpretation, Table 19.10

shows that both mixed (1,8)-PCA/ICA transform performed slightly better than mixed (0,9)-PCA/ICA trans-

form in the 15-panel abundance quantification with UFCLS results obtained on the reconstruction image

based on (1,8)-PCA/ICA to have the closest results to UFCLS results produced using the original image cube.

One remark is noteworthy. VD¼ 9 used in the above experiments was only an estimate and not necessarily

to be exact. According to our extensive experiments on the HYDICE 15-panel scene in Figure 1.16 for dimen-

sionality reduction, VD¼ 9 was appropriate. However, since the value estimated by VD was fixed, VD¼ 9

used for dimensionality reduction may not be appropriate for other applications such as band selection (Chang

and Wang, 2006). This is because different applications require different false alarm probabilities. So, we can

always make the estimate of VD variable by varying false alarm probability at different thresholding levels. In

order to make VD versatile, varying the false alarm probability can adapt various applications. Keeping this in

mind, VD¼ 9 may be effective for dimensionality reduction, but it may not imply that it is appropriate for

data compression because using ICA alone may not preserve background information and using PCA alone

may miss information of small objects. Of course, if the value of p is sufficiently large, PCA and ICA can

perform well. However, for a smaller value of p, neither could work well as demonstrated by our experiments.

In this case, our proposed mixed PCA/ICA transform could still work well for the same value of p. This

provides the evidence that mixed PCA/ICA transform has advantages over PCA and ICA by retaining

strengths of PCA and ICA.

EXAMPLE 19.6

(Mixed Pixel Panel Quantification)

Since all similar experiments conducted for HYDICE data can be also applied to this AVIRIS Cuprite data in

Figure 1.12, only mixed pixel quantification was studied for quantitative analysis for illustration to demon-

strate that the proposed mixed PCA/ICAwas a general approach that also worked for any hyperspectral data.

In order to simplify our experiment, only a quarter size of the image at right bottom corner in Figure 19.34(a)

was selected for study and is shown in Figure 19.34(a) and (b) with four 3� 3 simulated panels implanted at

the left bottom corner in Figure 19.34(b) in such a way that the implanted panel pixels replaced their corre-

sponding real image pixels. In other words, the image scenes in Figures 1.12(b) and 19.34(b) are identical

except that there are 36 simulated (nine pixels for each panel) pixels implanted in Figure 19.34(b) to replace

the original 36 real image pixels in Figure 1.12(b). These four panels, denoted by pij for i¼ 1,2 and j¼ 1,2,

were simulated in accordance with composition of signatures specified in Table 19.11 where row and column

indices are indicated by i and j, and the BKG was specified by the signatures of the real image pixels in the

Figure 19.34 Spatial locations of four implanted panels.
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scene that were replaced by their corresponding implanted pixels. For example, all nine pixels in panel p12
were simulated by 50% Calcite and 50% background (BKG) signature specified by their replaced real image

pixels. So, all of these nine simulated panel pixels contained 50% Calcite, but 50% different BKG signatures.

Two benefits can be gained from our designed experiments. One is that the data are available on

website so that whoever is interested in our proposed method can repeat what we did in the experiments

to compare their new algorithms. The other benefit is that all parameters used to simulate the panels were

fully controlled so that performance analysis was conducted impartially and objectively. VD estimated for

the image scene in Figure 15(b) was 10 with the false alarm probability set by PF¼ 10�3. By virtue of

VD¼ 10 and the 36 panel pixels simulated in Table 19.11 a detailed analysis for their quantifications can

be conducted by UFCLS using PCA only, ICA only, and Mixed PCA/ICA transforms. Interestingly, the

quantitative unmixed results obtained by UFCLS for panels in row 1 and row 2 were quite different and

were analyzed as follows.

1. For panel pixels in the first panel p11 in row 1 simulated by the 100% mineral signature Calcite,

UFCLS only using PCA (i.e., (10,0)-PCA/ICA.) could not detect any of nine pure panel pixels

in the panel p11, while UFCLS was able to detect and quantify all the nine panels pixels with

correct 100% abundance of Calcite if the only ICA (i.e., (0,10)-PCA/ICA.) and Mixed PCA/-

ICA (1,9) transform were used.

2. For panel pixels in the first panel p21 in row 2 simulated by the 100% mineral signature kaolin-

ite, UFCLS using all the three different transforms successfully detected and quantified all the

nine panel pixels with correct 100% abundance of kaolinite. According to the ground truth pro-

vided by the USGS, the major background for this scene is made up by the mixture of alunite

and kaolinite. As a result, PCA was able to pull out some information of kaolinite from

the panel p21. This is different from the results obtained above from the panel p11 where all the

nine pixels are made up by 100% calcite that is not part of the image background. In this case,

the calcite could not be extracted by the second-order statistics transforms; instead it could be

only extracted by the high-order statistics-based transforms.

3. For the panel pixels in the second panel p12 in row 1, Table 19.12 tabulates UFCLS-unmixed

abundance fractions of the Calcite contained in the nine panel pixels in the second panel p12 in

row 1 where there were no results for PCA since it missed all the nine panel pixels. Figure 19.35

shows the graphical representations plotted by abundances in Table 19.12 for visual assessment

where it clearly shows that the (1,9)-PCA/ICA performed significantly better than the (0,10)-

PCA/ICA transform.

4. For the panel pixels in the second panel p22 in row 2, Table 19.13 tabulates UFCLS-unmixed

abundance fractions of the kaolinite contained in the nine panel pixels in the second panel p22.

Figure 19.36 shows the graphical representations plotted by abundances in Table 19.5 for visual

assessment.

5. According to Figure 19.36, Mixed PCA/ICA(1,9) transform was best among all the three trans-

forms and the (0,10)-PCA/ICA transform came to the next with the (10,0)-PCA/ICA transform

was the worst.

Table 19.11 Compositions of four simulated panels

Pixel Signatures Composition

Nine pixels in p11 Calcite 100% Calciteþ 0% BKG

Nine pixels in p12 Calcite, BKG 50% Calciteþ 50% BKG

Nine pixels in p21 Kaolinite 100% Kaoliniteþ 0% BKG

Nine pixels in p22 Kaolinite, BKG 50% Kaoliniteþ 50% BKG
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Table 19.12 UFCLS estimated abundance fractions of calcite contained in nine panel pixels in p12 in row 1

50%

Calcite

PCA only (m¼ 10,

n¼ 0)

ICA only (m¼ 0, n¼ 10)

(%)

Mixed PCA/ICA (m¼ 1, n¼ 9)

(%)

Pixel 1 N/A 58.87 51.29

Pixel 2 57.48 49.92

Pixel 3 58.70 50.94

Pixel 4 55.65 47.52

Pixel 5 59.30 51.26

Pixel 6 58.65 50.81

Pixel 7 56.87 48.93

Pixel 8 61.08 53.34

Pixel 9 54.93 46.85
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0.46
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0.52
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Ground truth
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ICA only

Figure 19.35 Graphical representation of Table 19.12 for visual assessment.

Table 19.13 UFCLS-estimated abundance fractions of kaolinite contained in the nine panel pixels in p22 in

row 2

50%

Kaolinite

PCA only (m¼ 10, n¼ 0)

(%)

ICA only (m¼ 0, n¼ 10)

(%)

Mixed PCA/ICA (m¼ 1, n¼ 9)

(%)

Pixel 1 53.94 52.54 50.29

Pixel 2 50.79 53.57 51.11

Pixel 3 55.75 50.89 48.61

Pixel 4 51.80 51.50 49.00

Pixel 5 54.00 52.81 50.55

Pixel 6 52.06 51.18 48.98

Pixel 7 52.04 52.02 49.92

Pixel 8 52.86 53.53 50.96

Pixel 9 51.56 51.55 49.38
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19.8 Conclusions

Hyperspectral data compression has been considered as a crucial step in preprocessing of hyperspec-

tral data. Instead of focusing on design and development of 3D compression algorithms as most of

current efforts are devoted to hyperspectral data compression, this chapter takes a rather different

approach by addressing and investigating two important and crucial issues arising in hyperspectral

data compression, subpixels and mixed pixels analysis. In particular, it shows and demonstrates via

experiments several important overlooked issues that have been proven crucial in hyperspectral data

compression and need to be addressed. For a hyperspectral data compression to be effective, hyper-

spectral data compression must be conducted on an exploitation basis and a blind use of data com-

pression technique generally results in inappropriate interpretation. A direct application of 3D lossy

compression techniques to hyperspectral imagery may cause significant loss of crucial information

provided by subpixels and/or mixed pixels. Secondly, SNR and MSE have been shown inappropriate

to be used as compression criteria for subpixel and mixed pixel analysis when the compression ratio

is high. In other words, higher SNR or lower MSE does not guarantee better compression perform-

ance in terms of information extraction and vice versa when compression rate at low bits. Thirdly, to

address the issues of subpixels and mixed pixels, spectral/spatial compression techniques are shown

to be always better and more effective than 3D compression techniques. Fourthly, in order to spec-

tral/spatial compression techniques, a newly developed concept of VD is proposed for hyperspectral

image compression to estimate number of principal components needed to be retained for dimen-

sionality reduction. Over the past years, this number has been assumed a priori on a trial and error

basis. Using spectral/spatial compression in conjunction with VD for hyperspectral data compression

is a new approach. Lastly, despite that we did not include spectral/2D compression techniques in this

chapter, the results in Ramakishna (2004), Ramakishna et al. (2005), and Ramakishna et al. (2006)

have shown that the spectral/3D compression always performed better than the spectral/2D spatial

compression techniques where the latter have been extensively used in spectral/spatial compression

in the literature, while the former has not received attention in the past. The reason that we believe is

that many researchers may have thought that since spectral compression has done its task to de-

correlate spectral information among spectral bands, there is no need of using 3D compression and

instead, 2D spatial compression may be sufficient. Unfortunately, this generally is not true as demon-

strated by experiments in this chapter. As noted, since the goal of this chapter is not to develop new

compression algorithms, two well-known 3D compression techniques, 3D SPIHT and JPEG2000

Multicomponent, are used for benchmark compression.

1 2 3 4 5 6 7 8 9
0.48

0.49

0.5

0.51

0.52

0.53

0.54

0.55
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Ground truth
Mixed PCA/ICA
ICA only
PCA only

Figure 19.36 Graphical representation of Table 19.13 for visual assessment.
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20

Progressive Spectral Dimensionality
Process

Hyperspectral compression is considered the first step to preserve crucial and vital spectral

information in the two-stage spectral/spatial compression proposed in Chapter 19, where

dimensionality reduction by transform (DRT) and dimensionality reduction by band selection

(DRBS) discussed in Chapter 6 play a vital role in dealing with the so-called curse of dimen-

sionality in spectral compression. One key issue in implementing dimensionality reduction

(DR) and DRBS for spectral compression is that the number of dimensions q to be retained

after DRT and the number of bands ~q to be retained after DRBS must be known a priori.

Despite the fact that these two values, q and ~q, can be estimated by virtual dimensionality

(VD) developed in Chapter 5, VD is not a one-size-fit-all universal criterion for various appli-

cations. In order to mitigate the dependence on VD, this chapter develops a new DRT, to be

called progressive spectral dimensionality process (PSDP), which introduces a new concept of

dimensionality prioritization (DP) that revolutionizes how the commonly used DR is imple-

mented. The transform used to perform DR (i.e., DRT) is a linear transformation that converts

the original data dimensions into spectral transformed components, each of which represents a

new dimension, referred to as spectral dimension. The idea of PSDP is to first specify a partic-

ular DRT to transform the original data into a new spectral data space, where the original data

dimensions are represented by spectral dimensions. It is then to select a DP criterion to calcu-

late the information contained in each spectral dimension as a priority score to rank the signifi-

cance of this particular spectral dimension. By means of these DP-ranked priority scores, two

dual processes can be derived to perform PSDP. One is referred to as progressive spectral

dimensionality reduction (PSDR) via DP, which removes spectral dimensions progressively

according to their corresponding priority scores in ascending order. In contrast, a complete

reverse process, referred to as progressive spectral dimensionality expansion (PSDE) via DP,

adds new spectral dimensions progressively according to their corresponding priority scores in

descending order to expand spectral dimensions. These two dual processes, PSDR and PSDE,

carry out PSDP in a complete reverse manner in terms of decreasing and increasing data infor-

mation, respectively. By taking advantage of PSDE and PSDR, hyperspectral data can be proc-

essed progressively in data communication, transmission, and compression.

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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20.1 Introduction

Dimensionality reduction (DR) is probably the most common and popular technique that

has widely been used in multivariate data analysis to resolve so-called curse of dimensionality

(Fukunaga, 1990; Bischop, 1995). Chapter 6 provides a comprehensive description of DRT tech-

niques. Since hyperspectral imaging sensors utilize hundreds of contiguous spectral bands for data

acquisition, processing such enormous data volumes becomes a formidable and challenging task

for image analysts. To mitigate this dilemma, DR is a feasible solution to reduce the original data

space to a relatively low data space to meet practical needs, such as removal of data redundancy,

reduction of the expensive computational cost. However, a major issue in DR is determination of

the number of dimensions, q, to be retained by DR, where the value of q can be estimated by VD,

as shown in various applications by Chang (2006a, 2006b). Nevertheless, it has also been shown in

Chapter 5 that VD can adapt and vary with different applications.

Due to the fact that hundreds of spectral dimensions are needed to be dealt with, selecting an

appropriate q from such a wide range of values, that is, 1 � q � L, where L is the total number of

spectral bands, can be very tricky. This chapter develops and coins a new concept, to be called

dimensionality prioritization (DP), to resolve this issue. The motivation of DP arises from a need to

process vast amount of hyperspectral data in a more effective manner in many applications, for exam-

ple, satellite data processing, communication, where computational complexity, data archiving, stor-

age, and transmission are of major concern. However, this is easier said than done because there are

several issues that need to be addressed prior to DR. The first and foremost is to develop a credible

DR transform that can compress the original data into a spectral-transformed data space in some

sense of optimality. A second issue is to represent the original data in a spectral dimensionality-

reduced lower data space via a DRT. Finally, a third issue is to prioritize each spectral dimension in

the new reduced spectral data space, so that all spectral dimensions can be ranked in accordance with

their contained information. The DP developed in this chapter attempts to resolve these issues.

In order to materialize the utility of DP in DRT, the first task is to assign priority scores to

spectral dimensions after DRT according to the information contained in each spectral dimension.

In other words, each spectral dimension is represented by a particular transformed component

via DRT and its information is provided by projections of the entire data sample vectors onto

this specific transformed component. DP first specifies a criterion to measure the content of the

information provided by each of transformed components and further calculates this piece of infor-

mation as a priority score to be used to rank its corresponding spectral dimension. Finally, DP

prioritizes spectral dimensions in accordance with their assigned priority scores for the purpose of

progressive process. As an example, the information contained in a principal component (PC)

after the principal components analysis (PCA) transform is ranked by a particular eigenvalue

obtained from the data sample covariance matrix. In this case, the transformed component is speci-

fied by an eigenvector associated with its corresponding eigenvalue that indicates the significance

of information contained in this particular transformed component. Accordingly, PCA-transformed

components are specified by eigenvectors along with priority scores ranked by their associated

eigenvalues, where each eigenvector represents a spectral dimension. However, such nice propert-

ies are not necessarily applicable to any DR-transformed component. A good example is indepen-

dent component analysis (ICA), which does not have a similar counterpart to pairs of eigenvectors

and eigenvalues used by PCA to specify PCs in terms of ranking its generated independent

components (ICs) and retaining the information of ICs by priority scores. This is mainly due to

the fact that ICA does not have an analytic equation similar to the characteristic polynomial

equation used by PCA that can produce eigenvalues, which can be further used to generate

eigenvectors and prioritize PCs by their eigenvalues. This implies that taking advantage of the
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eigenvalue/eigenvector approach used by PCA does not work for ICA. Consequently, we need to

find another way for ICA to be able to rank its generated ICs.

This chapter develops an approach that completely reverses the process of what has been done

by PCA, namely finding eigenvalues first by solving the characteristic polynomial equation and

then their corresponding eigenvectors via eigenvalues. More specifically, our proposed approach is

to first find ICs and then rank the information contained in each IC. To materialize such an

approach, two issues must be addressed: how to generate ICs and how to rank the information

provided by each IC. Fortunately, a recent work by Wang and Chang (2006a) offered a solution

that suggested three different ways to rank ICs generated by FastICA developed by Hyvarinen and

Oja (1997) for IC prioritization. Such IC prioritization was further extended by Ren et al. (2006) to

prioritize components generated by any arbitrary high-order statistics (HOS) component analysis.

The approach presented in this chapter integrates both works in a general setting so that PCA, ICA,

and HOS component analysis can be considered as special cases under a more general umbrella.

The idea is to develop a projection pursuit (PP)-based DRT in which the PI-transformed compo-

nents are further specified by projection index components (PICs). The resulting PI-based PP is

referred to as PIPP. By means of PIPP, a transformed component can be specified by a PIC along

with its priority score that can be calculated by another PI used for DP to prioritize PICs in accord-

ance with their assigned priority scores. As noted above, the PI used to generate PICs and the PI

used by DP are generally different but can be the same in many application as well.

In order to carry out DP in a progressive manner, each PIC is specified and represented by a

projection vector pointing to a particular interesting direction and also prioritized according to its

corresponding priority score calculated by a custom-designed PI based on the significance of the

information contained in the PIC. Finally, DP is performed progressively in either a dimensionality

expansion manner by adding more PICs to increase data information or a dimensionality reduction

manner by removing existing PICs to decrease data information. In other words, DP allows users to

perform not only dimensionality reduction but also dimensionality expansion progressively by

PIPP, referred to as progressive spectral dimensionality process by PIPP (PSDP-PIPP) via DP,

where two dual processes can be derived, progressive spectral dimensionality reduction by PIPP

(PSDR-PIPP) via DP, and progressive spectral dimensionality expansion by PIPP (PSDE-PIPP)

via DP, respectively. More specifically, PSDR-PIPP begins with a maximal number of PICs,

denoted by maxPIC, and a step size, denoted by nD, for example, maxPIC¼ L, which is the total

number of spectral bands, nD¼ 1, and then gradually removes nD, PICs progressively until it

reaches a stopping rule that is also determined by a particular application. To the contrary, PSDE-

PIPP starts with a minimal number of PICs, minPIC and a step size, nD, for example, minPIC¼ 1,

nD¼ 1 and then adds nD PICs progressively until it reaches a stopping rule that is also determined

by a particular application. So, basically, PSDR-PIPP starts with a higher dimensional data space

and gradually reduces data dimensionality to a low-dimensional space in a progressive manner,

while PSDE-PIPP begins with a very low-dimensional data space and then gradually expands

dimensionality to a higher dimensional data space in a progressive manner.

By virtue of PSDP-PIPP, the issue of determining the number of PICs can be resolved in the

sense that there is no need to know exactly how many PICs needed to be retained but rather deter-

mined by various applications. This is what PSDP-PIPP can offer, but cannot be accomplished by

the traditional DR. Interestingly, the pair of PSDR-PIPP and PSDE-PIPP implemented by PSDP is

very similar to the pair of “expand” and “reduce” operations developed by Burt and Adelson

(1983) that are used to construct Laplacian and Gaussian pyramids for progressive image coding.

In essence, what the pair of PSDR-PIPP and PSDE-PIPP can achieve in dimensionality expansion

and reduction progressively is exactly what the pair of “expand” and “reduce” operations can

accomplish in image coding via a progressive construction of pyramids.
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20.2 Dimensionality Prioritization

DRT takes advantage of transformed components produced by a custom-designed transformation

to represent the original data in a new transformed data space with a different data representation in

which each data dimension is specified by a particular transformed component. The DR is then

performed by retaining a prescribed number of transformed components, q. Accordingly, the effec-

tiveness of DRT is determined by three key factors: the DR transformation being used to produce

transformed components, significance of transformed components measured by a selected infor-

mation criterion, and the value of q.

Using the commonly used PCA as an example, we can illustrate these three issues as follows.

First of all, PCA transforms the original 2D spatial/1D spectral data coordinate system into a new

data representation system formed by a set of PCs, each of which is characterized by a specific

eigenvector that corresponds to a particular eigenvalue, that is, a sample data variance. Then, the

significance of each PC is further measured by the magnitude of the eigenvalue corresponding

to the eigenvector that specifies this particular PC. In other words, each dimension in a PCA-

transformed data space is no longer a wavelength-specified spectral dimension in the original data

space. That is, the original data represented by the wavelength-based spectral dimensionality can

be reduced via PCA to a small number of PCs specified by eigenvectors corresponding to large

eigenvalues in a PCA-transformed data space. Finally, the third issue of “how many PCs are

required for such a PC-based data representation, that is, what is the value of q?” can be deter-

mined by the virtual dimensionality (VD) developed in Chapter 5.

While PCA enjoys all the nice and desired properties such as eigenvalues and eigenvectors

described above, unfortunately other DR transformations do not have such luxury. For exam-

ple, the independent component analysis (ICA) (Hyvarinen et al., 2001) does not have all the

properties of PCA described above. Most importantly, ICA does not have an analytic equation

similar to the characteristic polynomial equation obtained for PCA from the sample covariance

matrix, which that can be used to find eigenvalues. To resolve this issue, it must find projection

vectors directly from the data that serve as the same purpose of eigenvectors for PCA to pro-

duce PCs to produce ICs. In doing so, a general approach is to design an algorithm to generate

the desired projection vectors. To initialize such an algorithm, a common practice to randomly

generate a vector as an initial projection vector that will eventually lead to desired projection

vectors. However, as a consequence of using a random vector as an initial projection vector, its

final converged projection vector may not be repeatable. In other words, a final converged pro-

jection vector produced by one random initial vector may be different from that produced by

another random initial vector. Such randomness issue has been addressed in endmember

extraction (see Chapters 9 and 10) and is also encountered in the ISODATA (C-means) cluster-

ing method in Duda and Hart (1973). Secondly, once ICs are generated, the issue of how to

measure the significance of information contained in each of ICs must be addressed, since

there is no counterpart of eigenvalues used by PCA in ICA that can be used to rank the gener-

ated ICs in terms of information significance. So, it leads to two challenging problems for ICA

to resolve. One is to find an appropriate approach that can produce desired projection vectors.

The other is to rank the orders of ICs in accordance with significance of their provided infor-

mation. The PIPP and DP are developed in this chapter exactly for this purpose where PIPP

generalizes the concepts of PCA and ICA by introducing PI as a criterion to identify a direc-

tion of interestingness in which case PIPP is reduced to PCA and ICA when PI is specified by

data variance and mutual information, respectively, and DP then uses an information criterion

that can be the same PI or another PI to measure the significance of the PI-generated compo-

nents for their priority ranking. By combining PIPP with DP, we can further derive a
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progressive spectral dimensionality process (PSDP) that implements two dual processes,

PSDR-PIPP and PSDE-PIPP, to perform dimensionality reduction and dimensionality expan-

sion, respectively.

20.3 Representation of Transformed Components for DP

When the data are linearly transformed from the original data space to a new data space, each

transformed data sample vector is essentially a linear combination or mixture of data sample vec-

tors in the original space. In order to effectively represent the data in this new linearly transformed

data space, it is desirable to find a set of basic constituent elements that can serve as a base for all

the transformed data sample vectors. In this case, each basic constituent element represents a one-

dimensional transformed component whose information significance can be measured by an infor-

mation criterion. This section presents one such approach that can be considered as a generaliza-

tion of PCA and ICA.

20.3.1 Projection Index-Based PP

In Section 6.5, an approach called projection pursuit (PP) is developed to generalize PCA and ICA

to a PP-based component analysis transform in which the PP-transformed components are speci-

fied by projection vectors derived from a more general concept called projection index (PI). Such a

PI-based PP is referred to as PIPP and its generated transformed components can be ranked by an

information measure for DP. Although PIPP is already given in Section 6.5.1 of Chapter 6, we

recap its details here for reference.

The term “PP”, as first coined by Friedman and Tukey (1974), was used to represent a technique

for exploratory analysis of multivariate data. The idea is to project a high-dimensional data set into

a low-dimensional data space while retaining the information of interest. It designs a PI to explore

projections of interestingness. We assume that there are N data points fxngNn¼1, each with dimen-

sionality K, and X ¼ x1x2 � � � xN½ � is a K�N data matrix and w is a K-dimensional column vector

that serves as a desired projection. Then wTX represents an N-dimensional row vector that is the

orthogonal projections of all sample data points mapped onto the direction w. Now if Hð�Þ is a
function measuring the degree of the interestingness of the projection wTX for a fixed data matrix

X, a PI is a real-valued function of w, IðwÞ : RK ! R defined by

IðwÞ ¼ HðwTXÞ ð20:1Þ

The PI can be easily extended to multiple directions, wj

� �J

j¼1. In this case, W ¼ w1w2 � � �wJ½ � is a
K� J projection direction matrix and the corresponding projection index is also a real-valued func-

tion, IðWÞ : RK�J ! R is given by

IðWÞ ¼ HðWTXÞ ð20:2Þ

The choice of the Hð�Þ in (20.1) and (20.2) is application dependent. Its purpose is to reveal inter-

esting structures within data sets such as clustering. The PP using PI specified by (20.2) is called

PI-based project pursuit (PIPP). Within the context of PIPP, PCA and ICA can be considered as

special cases of PIPP in which PCA uses data variance as a PI to produce eigenvectors, while ICA

uses mutual information as a PI to produce statistically independent projection vectors. However,

finding an optimal projection matrix W in (20.2) is not a simple matter, since there is no equation

similar to the characteristic polynomial equation that can be used to find eigenvalues and
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eigenvectors analytically. In this case, the PI is confined to statistics of high orders, such as skew-

ness, kurtosis, entropy, mutual information, information divergence (ID), etc., so that an equation

can be used to solve a projection matrix W in (20.2) derived as follows.

We assume that the ith PI-projected transformed component is described by a random variable

zi, with values specified by the gray-level value of the nth pixel denoted by zinðz ¼ wTXÞ. The
original data set is first sphered to remove the mean and to make the covariance matrix an identity

matrix. Let rif gNi¼1 denote the set of the sphered data sample vectors. A general form to be used to

solve a projection matrix W ¼ w1w2 � � �wJ½ � with PI specified by the kth-order orders of statistics:

kth moment is recently derived by Wang and Chang (2006a) and Ren et al. (2006) by solving the

following eigen problem for w:

E ri r
T
i w

� �k�2
rTi

j k
� l0I

� �
w ¼ 0 with k > 2 ð20:3Þ

Specifically, for k ¼ 3; 4, the form in (20.3) is called equations of skewness and kurtosis, respec-

tively. Unlike the case of PCA, which solves eigenvalues of a data sample covariance matrix via the

characteristic polynomial equation and then uses the obtained eigenvalues to obtain eigenvectors that

specify its principal components (PCs), PIPP needs to solve (20.3) directly for the projection matrix

W ¼ w1w2 � � �wJ½ � because there is no counterpart of a characteristic polynomial equation in PIPP

that can be used to derive the W. To do so, a general approach developed by Ren et al. (2006) and

Wang and Chang (2006a) is to implement PIPP to produce components, referred to as projection

index components (PICs) in which a PI is used as a criterion to find directions of interestingness of

data to be processed and then represents the data in the data space specified by these new interesting

directions.

Instead of finding the projection matrix W ¼ w�1w
�
2 � � �w�k

� 	
, an algorithm developed by Ren

et al. (2006) for finding a sequence of projection vectors, w�1;w
�
2; . . . ;w

�
k, to solve (20.3) can be

described as follows.

Projection-index projection pursuit (PIPP) algorithm

1. Initial condition: X ¼ r1r2 � � � rN½ � is a data matrix and a PI is specified.

2. The first projection vector w�1 is found by maximizing the PI.

3. The obtained w�1 is used to generate the first projection image Z1 ¼ w�1
� �T

X ¼
z1i jz1i ¼ w�1

� �T
ri

n o
that can be used to detect the first projection vector.

4. The orthogonal subspace projector (OSP) specified by P?w1
¼ I� w1ðwT

1w1Þ�1wT
1 is

applied the data set X to produce the first OSP-projected data set denoted by X1,

X1 ¼ P?w1
X.

5. The data set X1 is used to find the second projection vector w�2 by maximizing the

same PI again.

6. Let P?w2
¼ I� w2 wT

2w2

� ��1
wT

2 be applied to the data set X1 to produce the second OSP-

projected data set denoted by X2, X2 ¼ P?w2
X1, which can be used to produce the third pro-

jection vector w�3 by maximizing the same PI again. Or, equivalently, we define a matrix

projection matrix W2 ¼ w1w2½ � and apply P?
W2 ¼ I�W2 W2

� �T
W2

� ��1
ðW2ÞT to the data

set X to obtain X2 ¼ P?
W2X.

7. The procedure of steps 5 and 6 is repeated many times to produce w�3; . . . ;w
�
k until a stop-

ping criterion is met. It should be noted that a stopping criterion can be either a predeter-

mined number of projection vectors required to be generated or a predetermined threshold

for the difference between two consecutive projection vectors.
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20.3.2 Mixed Projection Index-Based Prioritized PP (M-PIPP)

PIPP, as described in Section 20.3.1, uses the same PI to generate all the PICs. In general, it does

not have to be this case. Since different PIs are designed to capture different details of information,

it may be more effective in that PIPP can adapt its PI while it generates PICs. A similar idea pro-

posed by Chai et al. (2007) who developed mixed PCA/ICA component analysis can also be

applied to PIPP, referred to as mixed PIPP (M-PIPP) where the same PI used in step 5 in the above

PIPP algorithm can be replaced and specified by different PIs. For example, the first, second, and

third PICs can be produced by different PIs specified by variance, skewness, and kurtosis in order

to represent the first data variance-specified principal component, the second skewness-specified

component, and the kurtosis-specified component, respectively. The M-PIPP algorithm is exactly

the same PIPP algorithm with the exception that the same PI implemented for all the components

in step 5 can be replaced by various PIs, as specified by users. More details can be found in Safavi

and Chang (2008) and Safavi (2010).

20.3.3 Projection Index-Based Prioritized PP (PI-PRPP)

According to PIPP described in Section 20.3.1, a vector is randomly generated as an initial condition

used by PIPP to converge to a desired projection vector that is used to generate a PIC. As a conse-

quence, a different randomly generated initial condition may converge to a different projection vec-

tor that also results in a different PIC. In other words, if PIPP is performed at different times or by

different users, the resulting final PICs will also be different due to the use of different sets of ran-

dom vectors. In order to correct this problem, this section presents a PI-based prioritized PP (PI-

PRPP) that also uses a PI as a prioritization criterion to rank PIPP-generated PICs so that all PICs

will be prioritized in accordance with the priorities measured by the given PI. Such a PI is called the

PIC prioritization index. In this case, the PICs will always be ranked and prioritized by the PIC

prioritization index in the same order regardless of what initial vectors are used to produce projec-

tion vectors. It must be noted that there is a major distinction between PIPP and PI-PRPP. While

PIPP uses a PI as a criterion to produce a desired projection vector for each of PICs, the PI-PRPP

uses a PIC prioritization index to prioritize PIPP-generated PICs. Therefore, the PIs used in both PP

and PI-PRPP are not necessarily the same PI. In other words, the PI used to prioritize PICs as a PIC

prioritization index can be different from the PI used to generate the PICs. As a matter of fact, on

many occasions, different PIs can be used in applications. In what follows, we describe various crite-

ria that use statistics beyond the second order and can be used to define a PIC prioritization index.

Projection index (PI)-based criteria

1. Sample mean of third-order statistics: skewness for zj:

PIskewnessðPICjÞ ¼ k3j

h i2
ð20:4Þ

where k3j ¼ E z3j

h i
¼ 1=KNð ÞPKN

n¼1 zjn
� �3

is the sample mean of the third order of statistics in

the PICj.

2. Sample mean of fourth-order statistics: kurtosis for zi:

PIkurtosisðPICjÞ ¼ k4j

h i2
ð20:5Þ

where k4j ¼ E z4j

h i
¼ 1=KNð ÞPKN

n¼1 zjn
� �4

is the sample mean of the fourth order of statistics in

the PICj.
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3. Sample mean of kth-order statistics: kth central moments for zj:

PIk-momentðPICjÞ ¼ kkj

h i2
ð20:6Þ

where kkj ¼ E zkj

h i
¼ 1=KNð ÞPKN

n¼1 zjn
� �k

is the sample mean of the kth moment of statistics

in the PICj.

4. Neg-entropy: combination of third and fourth orders of statistics for zj:

PInegentropyðPICjÞ ¼ 1=12ð Þ k3j
h i2

þ 1=48ð Þ k4j � 3
h i2

ð20:7Þ

It should be noted that (20.7) is taken from (5.35) in Hyvarinen et al. (2001, p. 115), which is

used to measure the neg-entropy by high-order statistics.

5. Entropy

PIentropyðPICjÞ ¼ �
XKN

j¼1 pji log pj ð20:8Þ

where pj ¼ pj1; pj2; . . . ; pjKN

� �T

is the probability distribution derived from the image histo-

gram of PICi.

6. Information divergence (ID)

PIIDðPICjÞ ¼
XKN

j¼1 pjilog pji=qi

� �
ð20:9Þ

where pj ¼ pj1; pj2; . . . ; pjKN

� �T

is the probability distribution derived from the image histo-

gram of PICi and qj ¼ qj1; qj2; . . . ; qjKN

� �T

is the Gaussian probability distribution with the

mean and variance calculated from PICi..

20.3.4 Initialization-Driven PIPP (ID-PIPP)

The PI-PRPP presented in Section 20.3.3 intended to remedy the issue that PICs could appear in a

random order due to the use of randomly generated initial vectors. PI-PRPP allows users to priori-

tize PICs according to the information significance measured by a specific PIC prioritization index.

Despite the fact that the PICs ranked by PI-PRPP may appear in the same order independent of

different sets of random initial conditions, they are not necessarily identical because the slight

discrepancy in two corresponding PICs at the same appearing order may be caused by randomness

introduced by their used initial conditions. Although such a variation may be minor compared to

different appearing orders of PICs without prioritization, the inconsistency may still cause diffi-

culty in data analysis. Therefore, this section further develops a new approach, called initializa-

tion-driven PP (ID-PIPP), that custom-designs an initialization algorithm to produce a specific set

of initial conditions for PIPP so that the same initial condition is always used whenever PIPP is

implemented. Therefore, ID-PIPP-generated PICs are always identical. When a particular initial

algorithm, say A, is used to produce a specific initial set of vectors for ID-PIPP to generate PICs,

the resulting ID-PIPP is referred to as A-ID-PIPP.
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One good candidate algorithm that can be used for this purpose is the automatic target genera-

tion process (ATGP) developed previously by Ren and Chang (2003). It makes use of an orthogo-

nal subspace projector defined by (2.78)

P?U ¼ I� UU# ð20:10Þ

where U# ¼ UTU
� ��1

UT is the pseudoinverse of the U, in a repetitive manner to find target pixel

vectors of interest from the data without prior knowledge regardless of what types of pixels these

targets are. Details of implementing ATGP can be found in Section 8.5.1 and redescribed in the

following steps.

Automatic target generation process

1. Initial condition:

Let L be the total number of spectral bands.

An initial target pixel vector of interest denoted by t0 is selected. In order to initialize

ATGP without knowing t0, we select a target pixel vector with the maximum length as the

initial target t0, namely, t0 ¼ arg maxr r
Trf g, which has the highest response, that is, the

brightest pixel vector in the image scene. Set n ¼ 1 and U0 ¼ t0½ �.
(It is worth noting that this selection may not be necessarily the best selection. However,

according to our experiments it was found that the brightest pixel vector was always

extracted later on, provided that it was not selected as an initial target pixel vector in the

initialization.)

2. At the nth iteration, P?t0 is applied via (20.10) to all image pixels r in the image and the nth

target tn generated at the nth stage is found, which has the maximum orthogonal projection

as follows:

tn ¼ arg maxr P?½Un�1tn�r
� �T

P?½Un�1tn�r
� �
 �� 

ð20:11Þ

where Un�1 ¼ t1t2 � � � tn�1½ � is the target matrix generated at the (n� 1)st stage.

3. Stopping rule:

If n < L� 1, let Un ¼ Un�1tn½ � ¼ t1t2 � � � tn½ � be the nth target matrix, go to step 2. Other-

wise, continue.

4. At this stage, ATGP is terminated. At this point, the target matrix is UL�1, which contains

L� 1 target pixel vectors as its column vectors, which do not include the initial target pixel

vector t0.

As a result of ATGP, the final set of L target pixel vectors produced by ATGP at step 4,

SATGP ¼ t0; t1; t2; . . . ; tL�1f g ¼ t0f g [ t1; t2; . . . ; tL�1f g, will be used as an initial set of vectors to

produce L PICs, where each of the L target pixels in SATGP is used to generate a particular PIC. An

ID-PIPP using ATGP as its initialization algorithm is called ATGP-ID-PIPP.

20.4 Progressive Spectral Dimensionality Process

The main goal of introducing DP is to represent the original data in another data space via a linear

transformation so that the transformed dimensions can be prioritized according to the significance

of their contained information. Then, the data dimensionality in the new transformed data space

can be increased or decreased by adding or removing transformed dimensions component-by-
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component progressively. The PI-PRPP and ID-PIPP introduced in Sections 20.3.3 and 20.3.4 are

such linear transformations to satisfy the needed properties and can be used to realize DP. To be

more specific, DP via PIPP is carried out by a set of pair parameters w�j ; rj
� �n oL

j¼1
, where w�j is a

projection vector produced by a PI that is used to generate the jth PIC and rj is the priority score

calculated for the jth PICj, that is, rj ¼ PIðPICjÞ such that

rj > rk , priorityPIðrjÞ > priorityPIðrkÞ for j; k 2 f1; 2; . . . ; Lg: ð20:12Þ

Using (20.12), all the L PIPP-generated PICs can be ranked from 1 to L according to their priorities

in descending order as follows.

Let the priorities of all the PICs be arranged in descending order according to their priorities,

priorityPIðrj1Þ � priorityPIðrj2Þ � � � � � prioirtyPIðrjLÞ, where

j1 ¼ arg maxj rj

n o
j2 ¼ arg maxj 6¼j1 rj

n o
; . . . ; and jL ¼ arg minj rj

n o
ð20:13Þ

and j1; j2; . . . ; jLf g is a simply permutation of 1; 2; . . . ; Lf g. Then, the rank of all the L PICs is

arranged by rankðPICj1Þ ¼ 1; rankðPICj2Þ ¼ 2; . . . ; rankðPICjLÞ ¼ L. That is, rankPIðrjÞ 2
1; 2; . . . ; Lf g and

priorityPIðrjÞ > priorityPIðrkÞ , rankPIðPICjÞ < rankPIðPICkÞ ð20:14Þ

where the smaller number the rank (PICj), the higher priority the PICj. It is worth noting that for a

generic representation there is no particular PI specified in rj ¼ PIðPICjÞ in (20.12). However, for

example, if PI is specified by skewness, then rj ¼ PIðPICjÞ and priorityPIðrjÞ are indicated as rj ¼
PIskewnessðPICjÞ and priorityskewnessðrjÞ, respectively. It should be also noted that the PIs used to

generate w�j and the priority score of PICj are not necessarily the same. This is because the projec-

tion vectors w�j
n oL

j¼1
are randomly generated by PIPP due to the use of random initial conditions.

As a result, w�j
n oL

j¼1
appear in a random order where the PICs generated earlier do not imply that

it is more significant than subsequently generated PICs. Even though the same PI is used for

both w�j and rj, the PICs may not appear in the same order. That is the reason why the

PI-PRPP and ID-PIPP are introduced to fix this problem. When PI-PRPP is used, rj is defined by

PI such as (20.4)–(20.9), for example, rj¼ PIskewness(PICj), PIkurtosis(PICj), PIk-moment(PICj), PIneg-

entropy(PICj), PIentropy(PICj), PIID(PICj), etc. One the other hand, if ID-PIPP is used, the rj is defined
by the order that the jth target is generated by the used initialization algorithm, that is,

priorityPIðrjÞ ¼ j. For example, when ATGP is used as an initialization algorithm, rj¼ j, when the

jth target tj is generated by ATGP to specify the jth PIC, PICj.

By virtue of w�j ; rj
� �n oL

j¼1
spectral dimensionality processing can be performed by starting

from any number and then progressively adding or removing data dimensions specified by their

corresponding projection vectors w�j
n oL

j¼1
in accordance with their assigned ranks or priority
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scores by rankPIðPICjÞ
� �L

j¼1 or priorityPIðrjÞ
n oL

j¼1
specified by (20.14). In what follows, various

progressive versions of commonly used component analyses specified by PIPP are developed for

the progressive spectral dimensionality process (PSDP).

20.4.1 Progressive Principal Components Analysis

The simplest PIPP is PCA where PI is specified by data variance. Using the same notations and

equations in Chapter 6, assume that rif gNi¼1 is a set of L-dimensional data sample vectors and K is

the data sample covariance matrix with eigenvlaues given by llf gLl¼1 that are arranged in the

decreasing order of their magnitudes and associated eigenvectors denoted by vlf gLl¼1. We can

define an eigenvector matrix L specified by vlf gLl¼1 as

L ¼ v1v2 . . . vL½ � ð6:11Þ

With the eigenvector matrix L, a linear transform jL defined by

jLðrÞ ¼ LTr ð6:13Þ

transforms every data sample ri into a new data sample in such a manner that all the jL-transferred
data samples are uncorrelated. The transform jL defined by (6.13) is, in general, called eigen-trans-

formation. Let X and ~X be the original data matrix and the jL-transformed matrix, respectively.

The lth component of ~X is formed by

jvl ðXÞ ¼ vTl X ð6:16Þ

and is called the lth PC that consists of ~rif gNi¼1 with ~ri ¼ vTl ri that are jvl -transformed data samples

corresponding to the lth eigenvalue ll.
Depending on how to generate projection vectors as eigenvectors, four different versions of

implementing PCA are derived to generate PCs, each of which has its own right. The first

version is the commonly used PCA, referred to as simultaneous PCA (SM-PCA) that finds all

eigenvectors to produce all PCs simultaneously by solving the characteristic polynomial equa-

tion. The second one is referred to as progressive PCA (PG-PCA) that finds the projection

vectors that correspond to the maximal eigenvalues in a nested sequence of orthogonal subspa-

ces to produce all the PCs one at a time progressively. The third one is referred to as sequential

PCA (SQ-PCA) that produces a projection vector to generate a PC at a time sequentially. The

fourth one is referred to as initialization-driven PCA (ID-PCA) that appeals for a custom-

designed initialization algorithm to prioritize projection vectors so that the PCs can be ranked

and generated sequentially and progressively. It should be noted that the ideas of developing

the SM-PCA, SQ-PCA, and ID-PCA are similar to those used to develop SM-EEAs in

Chapter 7, SQ-EEAs in Chapter 8, and ID-EEAs in Chapter 9.

20.4.1.1 Simultaneous PCA

The simultaneously PCA (SM-PCA) has been the common approach used in signal processing. It

solves the so-called characteristic polynomial equation obtained by the data sample covariance

matrix K to find all the eigenvalues llf gLl¼1 and their corresponding eigenvectors vlf gLl¼1. Then,
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each eigenvector found is used to specify one PC via (6.16). Theoretically, the SMPCA can gener-

ate all the PCs simultaneously.

20.4.1.2 Progressive PCA

In many applications, there is no need to generate all PCs for data analysis since those PCs that

correspond to smallest eigenvalues may correspond to noise components and contain no useful

information. In this case, it may be more realistic to develop a progressive version of PCA, referred

to as progressive PCA (PG-PCA) that can generate PCs in a progressive manner so that the infor-

mation contained in PCs is gradually decreased in terms of a certain criterion. Of course, the SM-

PCA can also be implemented as PG-PCA by generating PCs that are specified by eigenvectors in

accordance with the magnitude of their corresponding eigenvalues progressively one at a time.

However, in this section, we describe another progressive version of PCA that provides an alterna-

tive approach to PG-PCA.

First, we find the largest eigenvalue of the data sample covariance matrix KL�L denoted by

lmax, where the subscript “L� L” is included to indicate the dimensionality of the matrix. Let

v1 be an eigenvector associated with lmax that represents the first PC. Then, we apply an

orthogonal subspace projection (OSP) operator defined in (6.76) by P?U ¼ I� U UTU
� ��1

UT

with U¼ [vmax] to obtain a subspace ~X
1
that is orthogonal to the space linearly spanned by

hvmaxi with the covariance matrix denoted by K1
L�L. Next, we find the largest eigenvalue of the

data sample covariance matrix, K1
L�L, denoted by l2, and let v2 be an eigenvector associated

with l1 that represents the second PC. Once again, we apply P?U ¼ I� U UTU
� ��1

UT with U ¼
vmaxv

1
max

� 	
to obtain a subspace ~X

2
that is orthogonal to the space spanned linearly by

hvmax; v
1
maxi with the covariance matrix denoted by K2

L�L. The same process is then repeated

until the last PC is generated and described as follows.

PG-PCA algorithm

1. Initialization: form the original data sample covariance matrix, K
ð0Þ
L�L, and find the largest

eigenvalue l
ð0Þ
max along with its corresponding eigenvector v

ð0Þ
max. Let n¼ 0.

2. Apply an OSP operator P?U ¼ I� U UTU
� ��1

UT with Uð0Þ ¼ v
ð0Þ
max

h i
to obtain a subspace

~X
1
that is orthogonal to the space spanned linearly by hvð0Þmaxi.

3. Let n nþ 1. Form the data covariance matrix K
ðnÞ
L�L from the space ~X

ðnÞ
and find the

largest eigenvalue l
ðnÞ
max along with its corresponding eigenvector v

ðnÞ
max.

4. Apply P?
UðnÞ
¼ I� UðnÞ UðnÞ

� �T
UðnÞ

h i�1
UðnÞ
� �T

with UðnÞ ¼ vmaxv
ð1Þ
max . . . v

ðnÞ
max

h i
to obtain a

subspace ~X
ðnþ1Þ

that is orthogonal to the space spanned linearly by hvmax; v
ð1Þ
max; . . . ; v

ðnÞ
maxi.

5. If n¼ L, the algorithm is terminated. Otherwise, go to step 3.

Using the above PG-PCA algorithm, a sequence of desired PCs can be generated progressively

with the information contained in PCs being gradually reduced in accordance with decreasing

data variances. The key difference between the SM-PCA and PG-PCA is that the former requires

finding all eigenvalues of the sample covariance matrix formed by the original data space X, while

the latter only needs to find the maximal variance of each of the sample covariance matrices

K
ðnÞ
L�L

n oL�1

n¼0
formed by a nest sequence of orthogonal subspaces, X 	 ~X

1 	 ~X
2 	 � � � 	 ~X

L�1
.
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20.4.1.3 Sequential PCA

In this section, we describe another version of PCA, referred to as sequential PCA (SC-PCA), that

can generate PCs without solving eigenvalues in the same way as SM-PCA and PG-PCA generate

their PCs in Sections 20.4.1.1 and 20.4.1.2.

It begins with an initial projection vector v
ð0Þ
1 generated in a random manner. Then, we find the

maximum of ~r
ð0Þ
j

� �T

~r
ð0Þ
j over ~r

ð0Þ
j ¼ v

ð0Þ
1 v

ð0Þ
1

� �T

rj, denoted by v
ð1Þ
1 ¼ arg max

~r
ð0Þ
j

r
ð0Þ
j

� �T

~r
ð0Þ
j

� �� �

that will be used in the next iteration. This process is repeated until the two vectors, v
ðnÞ
1 and v

ðnþ1Þ
1 ,

generated in two consecutive iterations are sufficiently close within a threshold e and the iterative

procedure is terminated. In this case, vn1 ! v1 converges to the vector v1 that is the desired eigen-

vector. Then, we apply P?U ¼ I� U UTU
� ��1

UT with U¼ [v1] to X in order to obtain a subspace

~X
1
that is orthogonal to the space spanned linearly by hv1i. The same procedure described above is

repeated for finding a second eigenvector v2 by randomly generating an initial vector v
ð0Þ
2 . It should

be noted that there are two processes that are involved to find random PCs. The first process is to

use a random initial vector to generate an eigenvector and is then followed by a second process that

is the same one carried out by PG-PCA in Section 20.4.1.2. However, due to its use of random

initial vectors, these PCs are generated sequentially but not progressively. This is because the pro-

jection vectors vj
� �

produced for PCs are not necessarily exactly the same eigenvectors generated

by the SM-PCA and PG-PCA despite that they may be very close. Even in the case in which the

projection vectors vj
� �

are eigenvectors, their generated PCs are not necessarily in descending

order of their corresponding eigenvalues as the order that PCs are generated and ranked by SM-

PCA and PG-PCA. Nevertheless, a major advantage of SQ-PCA is that it does not require calcula-

tion of eigenvalues as SM-PCA and PG-PCA do. Because of that, for each 1 � j � L, a learning

algorithm is needed to find the desired projection vector from ~X
j
without finding eigenvalues

which can be obtained by solving the characteristic polynomial equation. Two learning algorithms

are designed for this purpose and allow a randomly generated projection vector to automatically

converge to a desired projection vector which will be used to produce a desired PC. One is referred

to as a maximal projection learning algorithm and is described as follows.

Maximal projection learning algorithm for ~X
j

1. Initialization: generate randomly a projection vector v
ð0Þ
j . Set a threshold e.

2. Find the maximum of ~r
ð0Þ
k

� �T

~r
ð0Þ
k over ~r

ð0Þ
k ¼ v

ð0Þ
1 v

ð0Þ
1

� �T

rk with rk 2 ~X
j
, denoted by

v
ð1Þ
1 ¼ arg max

~r
ð0Þ
k

r
ð0Þ
k

� �T

~r
ð0Þ
k

� �� 
ð20:15Þ

If the distance between v
ð0Þ
j and v

ð1Þ
j is less than e, the algorithm is terminated. Otherwise,

continue. The distance can be any measure, such as Euclidean distance or spectral angle map-

per (SAM).

3. Let n nþ 1.

4. Find the maximum of ~r
ðnÞ
k

� �T

~r
ðnÞ
k over ~r

ðnÞ
k ¼ v

ðnÞ
j v

ðnÞ
j

� �T

rk, denoted by

v
ðnþ1Þ
1 ¼ arg max

~r
ðnÞ
k

r
ðnÞ
k

� �T

~r
ðnÞ
k

� �� 
. If the distance between v

ðnÞ
j and v

ðnþ1Þ
j is less than e,

the algorithm is terminated and let vnj ¼ v
ðnþ1Þ
j . Otherwise, go back to step 3.
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A second learning algorithm is based on the concept of gradient descent (Bischop, 1995, pp. 95–96)

that can also be considered as modified from a fixed-point algorithm developed by Hyvarinen and

Oja (1997).

Assume that the mean squared error is given by

JðwÞ ¼ E wTx� E wTx
� 	� �2h i

ð20:16Þ

Also, the weighting vector w(n) at the nth iteration can be updated by

wðnþ1Þ ¼ wðnÞ � h
@JðwðnÞÞ
@wðnÞ

����
wðnÞ

ð20:17Þ

where h is the learning parameter to be determined by applications and the gradient of the J(w) in

(20.16) can be calculated as follows:

@JðwðnÞÞ
@wðnÞ

¼ E
@

@w
wðnÞ

� �T

x� E wðnÞ
� �T

x

� �� �2
" #

¼ E 2 wðnÞ
� �T

x� E wðnÞ
� �T

x
h i� �

x�
@E wðnÞ

� �T
x

h i

@wðnÞ

0

@

1

A

2

4

3

5

¼ E 2 wðnÞ
� �T

x
� �

x� 2 wðnÞ
� �T

x
� �

E½x� � 2E wðnÞ
� �T

x
h i

xþ 2E wðnÞ
� �T

x
h i

E½x�
h i

¼ E 2x xT wðnÞ
� �� �� 2E½x� xT wðnÞ

� �� �� 	

¼ 2E½xxT �wðnÞ � 2E½x�E½xT �wðnÞ ¼ 2KwðnÞ

ð20:18Þ

Substituting (20.18) for
@JðwðnÞÞ
@wðnÞ

����
wðnÞ

into (20.17) yields the following learning rule for iterations:

wðnþ1Þ ¼ wðnÞ � 2hKwðnÞ ð20:19Þ

Gradient descent learning algorithm for ~X
j

1. Initialization: generate randomly a normalized projection vector v
ð0Þ
j to unit vector. Set a

threshold e. Set n¼ 0.

2. At the nth iteration, use (20.19) as a learning rule with the weight vector w(n) in (20.19)

being replaced by v
ðnÞ
j to produce a normalized projection vector v

ðnþ1Þ
j to a unit vector to

be used in the next iteration.

3. If the distance between v
ð0Þ
j and v

ð1Þ
j is less than e, the algorithm is terminated. Otherwise,

let n nþ 1 and go to step 2. It should be noted that the distance can be any measure,

such as Euclidean distance or SAM.

With the help of the two learning algorithms developed above, we are ready to describe an algo-

rithm that implements SQ-PCA to generate PCs successively in sequence.
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SQ-PCA algorithm

1. Initialization: for the first PC, let j¼ 1.

2. Apply either “maximal projection learning algorithm” or “gradient descent learning algo-

rithm” to find the jth projection vector vj that produces the jth random PC.

3. Apply P?Uj
¼ I� Uj Uj

� �T
Uj

h i�1
Uj

� �T
with Uj ¼ v1v2 . . . vj

� 	
to obtain a subspace ~X

ðjþ1Þ

that is orthogonal to the space spanned linearly by hv1; v2; . . . ; vji. Let j  j þ 1

4. If j¼ L, the algorithm is terminated, in which case all L PCs have been generated. Other-

wise, go to step 2.

20.4.1.4 Initialization-Driven PCA

A fourth version of PCA, referred to as initialization-driven PCA (ID-PCA), is derived from an

idea similar to that used to develop initialization-driven EEAs (ID-EEAs) in Chapter 9. Unlike

SQ-PCA that uses random initial projection vectors, it makes use of a custom-designed initializa-

tion algorithm to produce an appropriate set of initial projection vectors for SQ-PCA. As a conse-

quence, the PCs generated by SQ-PCA in conjunction with an initialization algorithm can be

prioritized by the projection vectors generated by the initialization algorithm. Such prioritized PCs

make ID-PCA not only sequential but also progressive, because these PCs can be ranked by their

associated priority scores that represent significance of information contained in PCs.

One algorithm that can be used for ID-PCA is once again ATGP, as described in Section 8.5.1

Using ATGP as an initialization algorithm, ID-PCA can be derived as follows.

ID-PCA algorithm

1. Use ATGP to produce a set of projection vectors tj
� �L

j¼1 arranged in their appearing orders.
2. Using each of tj

� �L

j¼1 generated in step 1 as an initial projection vector, implement SC-PCA

to produce PCif gLi¼1 that maximize E ~ri~r
T
i

� 	
in accordance with priorities determined by the

order that tj
� �L

j¼1 are generated by ATGP.

Several remarks are noteworthy and summarized as follows:

1. Despite the fact that PG-PCA only finds the maximal variance in each of nested orthogonal

subspaces sequentially, it actually finds all the eigenvalues as SM-PCA in decreasing order

does.

2. Theoretically, SM-PCA and PG-PCA can analytically solve the characteristics polynomial

equation for all the eigenvalues that are distinct. For each distinct eigenvalue, an eigenvector

can be generated to produce a PC. Therefore, a total of L PCs can be produced with L being the

total number of bands where some PCs generated by eigenvectors corresponding to smaller

eigenvalues may turn out to be noise components. By contrast, SQ-PCA and ID-PCA do not

solve the characteristics polynomial equation for all the eigenvalues. Instead, they use either

random initial projection vectors or initialization-driven projection vectors to generate desired

PCs. In this case, those PCs that are specified by projection vectors as eigenvectors with very

close data variances as eigenvalues will be considered the same PCs. As a result, only one PC

may be generated to represent these PCs. Such circumstances often happen to noise components

whose corresponding eigenvalues are usually relatively small and nearly the same. Conse-

quently, the number of all possible PCs that SQ-PCA and ID-PCA can generate is, in general,

much smaller than the total number of bands, L.
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3. One of the advantages that SQ-PCA and ID-PCA have over SM-PCA and PG-PCA is no need

of determination of how many components are needed to be preserved. Since SM-PCA and

PG-PCA produce all the L PCs that may include noise components, they must rely on a crite-

rion to determine the number of components, q, needed to be retained after PG-CA. The VD

concept introduced in Chapter 5 can be used to estimate the value of q for this purpose. Con-

versely, SQ-PCA and ID-PCA only produce PCs with their data variances as eigenvalues dis-

tinct from each other without accounting for noise components; the number of their generated

PCs should reflect and indicate the number of spectral distinct spectral signatures present in

the data, in which case they automatically determine the value of p. Since VD was originally

developed to estimate the number of spectrally distinct signatures, the value of q determined

by SQ-PCA and ID-PCA is expected to be greater than that estimated by VD due to the fact

that VD is determined by the false-alarm probability and the number of PCs generated by SQ-

PCA and ID-PCA is determined by how close the projection vectors are that produce the PCs.

With this interpretation, we can always use the value of q estimated by VD and the value of q

determined by SQ-PCA and ID-PCA as lower and upper bounds to determine how many PCs

are needed to be retained after PG-PCA.

20.4.2 Progressive High-Order Statistics Component Analysis

When PCA and ICA are presented in Chapter 6, they are considered two different approaches. It

was shown by Wang and Chang (2006a) that PCA can only capture information characterized by

second-order statistics and small targets could not be preserved in PCs but rather in independent

components (ICs). This evidence was further confirmed by Ren et al. (2006), where high-order

statistics (HOS) are also able to detect subtle targets, such as anomalies and small targets. How-

ever, there is a significant difference between PCA and ICA.

20.4.3 Progressive Independent Component Analysis

When PCA and ICA were presented in Chapter 6, they are considered two different

approaches. This is because PCA-generated PCs are specified by eigenvectors whose corre-

sponding eigenvalues can be found by solving the characteristic polynomial equation and

ICA-generated ICs are produced by FastICA that uses a learning algorithm, called fixed-point

algorithm to generate each of ICs by a convergent process beginning with a random initial

projection vector. In order to explore the connection between PCA and ICA in the sense of

how their components are generated, PCA was investigated and rederived in Sections 20.4.1.3

and 20.4.1.4 by using learning algorithms to directly find projection vectors that produce PCs

instead of finding eigenvalues and their corresponding eigenvectors to specify PCs. As a

result, two new learning algorithm-based PCA, SQ-PCA, and ID-PCA were developed in Sec-

tions 20.4.1.3 and 20.4.1.4. As recalled in Section 6.4, there were three versions of ICA, SP-

ICA-DR, R-ICA-DR, and ID-ICA-DR derived for DR. Interestingly, if we conduct a one-to-

one correspondence comparison between PCA derived in Section 20.4.1 and ICA derived in

Section 6.4, PG-PCA/SQ-PCA and ID-PCA turn out to be the counterparts of the SP-ICA-DR

and ID-ICA-DR, respectively, where a learning algorithm used in FastICA to produce ICs is

analogous to the “gradient descent learning algorithm” used in SQ-PCA and ATGP was used

in both ID-PCA and ID-ICA-DR for initialization. Such a close relationship allows us: (1) to

develop high-order statistics-based component analysis that bridges the gap between the sec-

ond-order statistics-based PCA and statistical independence-based ICA, and (2) also to design

criteria for DP in the following section.
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20.5 Hyperspectral Compression by PSDP

PSDP provides a backbone for two major dual processes, progressive spectral dimensionality

reduction (PSDR) and progressive spectral dimensionality expansion (PSDE), that can be used as

a data dimensionality process for hyperspectral information compression.

20.5.1 Progressive Spectral Dimensionality Reduction

PSDR is a process that allows users to reduce a number of spectral components gradually by

removing one spectral component at a time with decreased spectral component dimensional-

ity priorities. It starts with a maximal number of spectral components and begins to reduce a

small number of spectral components at a time by eliminating spectral components with

lowest priorities until performance of data processing is not satisfied or it reaches the mini-

mal number of spectral components that can be determined by VD. By implementing PSDR

more and more hyperspectral information compression can be achieved by gradually reducing

spectral information with removal of additional spectral components from the set of spectral

components currently being considered. In what follows, we describe its implementation in

detail.

PSDR

1. Prioritize all the transformed components via a DP criterion.

2. Initialization: Use VD to determine the minimal number of transformed components

required to be retained, denoted by nVD. Let ninitial be the number of spectral components

for the process to begin with and nD be the step size of dimensions to reduce. Set k¼ 0.

3. Evaluate the performance of data processing to see if it is satisfied. If it is not, the process is

terminated. Otherwise, let k k þ 1 and continue.

4. At the kth reduction, eliminate the next set of nD least prioritized spectral components from

the set of spectral components currently being processed. In this case, the total number of

spectral components to be processed is reduced from ninitial � ðk � 1Þ � nD to ninitial � k � nD.
5. If ninitial � k � nDð Þ > nVD, go to step 6. Otherwise, the process is terminated.

20.5.2 Progressive Spectral Dimensionality Expansion

As a completely opposite process of PSDR, PSDE performs reversely in the way that PSDR does.

The process is terminated only if the performance of data processing is satisfied or it reaches the

maximal number of spectral components preset a priori. By means of PSDE the information avail-

able to data processing is gradually increased by adding more spectral components according to

their priority scores in descending order, in which case less and less hyperspectral information

compression can be achieved. A detailed implementation of PSDE is summarized as follows.

PSDE

1. Prioritize all the transformed components via a DP criterion.

2. Initialization: use VD to determine an initial number of transformed components needed to

be started with, denoted by nVD. Let nT be the total number of spectral components that are

pre determined to terminate the process and nD be the step size of dimensions to expand. Set

k¼ 0.

3. Start with the first nVD highest prioritized transformed components.

4. Evaluate the performance of data processing to see if it is satisfied. If it is, the process is

terminated. Otherwise, let k k þ 1 and continue.
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5. At the kth expansion, add the next nD highest prioritized spectral components. In this case,

the total number of resultant spectral components is increased from nVD þ ðk � 1Þ � nD to

nVD þ k � nD.
6. If nVD þ k � nDð Þ < nT, go to step 6. Otherwise, the algorithm is terminated.

Two notes are worth mentioning.

a. One is the nT used to terminate to PSDE. In many applications, it is usually sufficient by setting

nT¼ 2nVD.

b. In step 5 of PSDE, the number of spectral components added at each iteration, nD, is assumed to

be arbitrary. In general, this number can be set by one, that is, nD¼ 1 in which case at each

iteration in step 5, the number of added components will be increased from nVD þ ðk � 1Þ to
nVD þ k.

The above two notes made for PSDE are also applied to PSDR summarized as follows.

a. In many applications, the nT used to start PSDR is usually sufficient by setting nT¼ 2nVD.

b. Like PSDE, the step size nD can also be set to 1 so that the number of spectral components is

decreased by one at a time during each iteration of PSDR.

Finally, it is worth noting that according to the manner in which PSDR and PSDE operate on spec-

tral components, PSDE can be considered a sequential forward process that increases spectral

information by adding more spectral components, while PSDR can be viewed as a sequential back-

ward process, which is a reverse process of PSDE and reduces spectral information by eliminating

more spectral components from the set of spectral components currently being considered. Inter-

estingly, if we consider the projection vectors w�j
n oL

j¼1
as feature vectors, the pair of PSDR and

PSDE is similar to the pair of sequential forward selection (SFS) and sequential backward selec-

tion (SBS) that were developed for feature selection by Serpico and Bruzzone (2001). But, there is

a key difference between them that is the latter pair does not prioritize features for feature selec-

tion. So, if the concept of prioritizing projection vectors is introduced into SFS and SBF, the result-

ing pair will become progressive SFS and progressive SBF, in which case the features can be

selected based on their priority scores progressively without repeatedly resolving feature optimiza-

tion problems.

20.6 Experiments for PSDP

This section conducts real image experiments to substantiate the utility of PSDP in a wide range of

data exploitation. Since PSDP is preprocessing and very crucial to subsequent data analysis, its

effectiveness can only be demonstrated through applications.

20.6.1 Endmember Extraction

A first immediate application of PSDP is endmember extraction that generally requires data

dimensionality reduction. The data used for experiments for endmember extraction was the

Cuprite data in Figure 1.12(a), where IN-FINDR was used as an endmember extraction algorithm

to extract the five mineral signatures, A, B, C, K, and M, of major interest in the scene. Because of

too many combinations of PI/PI that can be used for PSDP for an illustrative purpose, Figure 20.1

(a) and (b) only plots results of extracting the mineral signatures by N-FINDR using PSDP with
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PI/PI¼ skewness/skewness and variance/kurtosis, respectively, where the x-axis is the number of

prioritized dimensions and the y-axis is the endmembers extracted by N-FINDR. When the number

of extracted endmembers was less than five, we need to know which endmembers were extracted

in which case the extracted endmembers were also specified for reference. For example, in Figure

20.1(a) when PSDP was implemented by a pair of PIs, PI¼ skewness/PI¼ skewness for q¼ 4, 5,

the number of extracted endmembers was 3 with extracted endmembers being identified as A, B,

M. However, as q was increased to 6, the number of extracted endmembers was still 3. But this

time, three extracted signatures B, C, K had only one signature B in common. This implies that if

q was too small, the results were not stable even though the same number of endmembers was

extracted by different values of q. Interestingly, when q¼ 10 all the five mineral signatures were

successfully extracted by IN-FINDR which failed again at q¼ 16 in which case it missed the sig-

nature A until it reached q¼ 18 where the stability was also reached. In other words, after q went

beyond 18 all the five endmembers were extracted. This shows that nVD¼ 22 provided a good

estimate for q.

However, if the commonly used PCAwas used to perform DR in which case PI¼ variance and

the PICs (in this case, PICs are reduced to PCs) were ranked by another PI¼ kurtosis, Figure 20.1

(b) shows the results of endmember extraction versus the number of prioritized dimensions where

the stability reached after q¼ 28. A surprising coincidence was observed by comparing Figure

20.1(a) and (b), where IN-FINDR could extract all five mineral signatures for both cases when

q¼ 10–12 and 18. This simple example demonstrated that an appropriate value of q must be deter-

mined by the PI used to generate PICs and another PI used to rank the order of PICs. None of DR

techniques can claim to perform better than another unless criteria for DP are specified.

20.6.2 Land Cover/Use Classification

As another example, the Purdue Indiana Indian Pine Test Site in Figure 1.13 was also used for

experiments. This particular scene is probably one of most studied test sites in hyperspectral data

exploitation for land cover/use classification. Because of its low 20m spatial resolution, most data

sample vectors in this scene are heavily mixed because of large spectral variations of class signa-

tures. As a consequence, spectral unmixing did not work effectively for this scene because finding

an appropriate set of creditable signatures to unmix data sample vectors was very challenging, if

not impossible. Instead, the maximum likelihood classifier (MLC) has widely been used for this

Figure 20.1 Endmembers extracted by IN-FINDR as PSDP implemented.
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particular scene in the literature. Here, MLC was also used for this purpose. Assume that Sj repre-

sents a training sample set selected for the jth class and [jSj is the entire training set. The mean and

sample covariance matrix of [jSj are calculated by m ¼ 1

j[jSjj
X

r2[jSjr and

K ¼ 1

j[jSjj
X

r2[jSj r� mð Þ r� mð ÞT ð20:20Þ

where jAj is defined as the number of elements in the set A. Furthermore, let the mean of the jth

class calculated from Sj be given by mj ¼
1

jSjj
X

r2Sjr. Then, for each data sample vector r, the

MLC denoted by dMLC(r) used for the following experiments is defined by

dMLCðrÞ ¼ j� ð20:21Þ

that assigns the data sample vector r to the class j� with the j� found by

j� ¼ arg minj r� mj

� �T

K�1 r� mj

� �� 
ð20:22Þ

It should be noted that when MLC is implemented, there are three different ways of calculating the

sample covariance matrix K in (20.22). The simplest one is the global sample covariance matrix

that is calculated based on the entire data sample vectors. A second one is to calculate class sample

covariance matrices for each of classes by

Kj ¼ 1

jSjj
X

r2Sj r� mj

� �
r� mj

� �T

ð20:23Þ

A third one is the one defined in (20.20) that uses the entire training sample covariance matrix.

The reason for using (20.20) instead of (20.23) is based on the fact that in some cases Kj in

(20.23) will be ill-ranked when the training set Sj is too small compared to the total number of

spectral bands. In general, such a case seldom occurs in multispectral imagery, but it does

happen very often when it comes to hyperspectral imagery such as class 1, class 7, class 9,

and class 16 in Figure 1.13(d). On the other hand, if the training sample pool, [jSj , is well

selected to represent the entire data set, the sample covariance matrix calculated from (20.20)

should be very close to the global sample covariance matrix in which case (20.20) can be used

for this purpose. So, (20.20) is the best compromise between the global sample covariance

matrix and the class sample covariance matrices (20.23).

PSDR-PIPP was implemented to produce PICs. MLC defined by (20.21) and (20.22) was used

to classify each class where a 50–50% cross validation was used for performance analysis in which

case 50% of data sample vectors in each class was randomly selected to be used for training and

the other half was used for testing. Only 16 classes were used for classification since there is no

ground truth provided about the background, class 17. The classification rate of each class by

MLC was calculated by the number of correct classified data sample vectors in each class divided

by the total number of that class according to the ground truth. Figure 20.2 plots the classification

rates of 16 classes produced by PSDR-PIPP, where PI/PI in the legends are referred to as the pro-

jection index used to produce the PICs/projection index used to prioritize PICs.
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Figure 20.2 16-class classification rates versus the number of PSDE/PSDR-PIPP-prioritized dimensions

used by MLC.
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Figure 20.2 (Continued)
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As shown in Figure 20.2, it is very clear that different classes required different numbers of

spectral dimensions to achieve their best performance in classification. For example, the easiest

cases are class 5 and class 13, where a relatively small number of prioritized dimensions (less than

10) could achieve very high classification rates. To the contrary, the most difficult cases are class 7

and class 9 because both classes only have very few data sample vectors, 26 sample vectors in class

7 and 20 sample vectors in class 9. As a result, the sample size of these two classes is too small to

constitute reliable statistics to be used by MLC. This is, in particular, evident when the number of

used prioritized dimensions was increased and the performance was actually degraded. Other than

these extreme cases, two types of performance are of interest. One is that the classification rates

never improved and saturated after a certain number of prioritized dimensions were used, such as

classes 2, 5, 6, 8, 13, 14, and 16. Another is that the classification kept improving as the number of

used prioritized dimensions was increased, such as classes 3, 11, and 12. There are also many other

observations worth discussing based on the results in Figure 20.2 that also allows users to see how

PSDE or PSDR performs if prioritized dimensions are progressively added in a forward manner or

removed in a backward manner, respectively. These advantages cannot be offered by the traditional

DR.

20.6.3 Linear Spectral Mixture Analysis

The land cover/use classification considered in Section 20.6.2 was performed by MLC, which is a

hard decision-made classifier, and the Purdue data are, in particular, suitable for its application.

However, due to the fact that data sample vectors are heavily mixed, this scene is not applicable

to linear spectral unmixing that requires soft decisions in the sense that data sample vectors must

be unmixed into a set of abundance fraction maps instead of classification maps produced by

MLC. In this case, the 15-panel HYDICE image scene in Figure 1.15(a) was used for experiments

where the five panel spectral signatures pi for i ¼ 1; 2; . . . ; 5 plotted in Figure 1.16 were used for

spectral unmixing. In order to perform PSDE/PSDR on this image scene, we first estimated the

range of feasible values of dimensionality needed to be retained after DR, q. In doing so, VD was

used to estimate the number of spectrally distinct signatures that was nVD¼ 9 with false-alarm

probability PF greater than or equal to 10�4. So, if we interpret that a spectrally distinct signature

can only be specified by one spectral dimension, this implies that it requires at least nine dimen-

sions to accommodate nine spectrally distinct signatures. In other words, the lower bound to the

value of q must be 9. According to the ground truth and visual inspection, there are at least nine

signatures present in the scene, as shown in Figure 20.3(a). The fully constrained least-squares

Figure 20.3 (a) A HYDICE panel scene with nine signatures identified by prior knowledge via the ground

truth given in (b) which contains 15 panels with ground-truth map of spatial locations of the 15 panels.
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(FCLS) method was used to perform spectral unmixing where the signature matrix comprising of

the five panel signatures in Figure 1.16 we were obtained from 19 R panel pixels in Figure 20.3(b)

and the other four background signatures were obtained by prior knowledge from the areas

marked in Figure 20.3(a) as interferer, tree, grass, road. These signatures represented exactly nine

signatures estimated by VD. An upper bound to the value of q is then further set by a value twice

of VD, that is, 2nVD¼ 18. Therefore, in the following experiments for PSDE/PSDR, we use q¼ 9

as a base to back track to q¼ 5 that represents five panel signatures and to expand forward by

extending q to the upper bound, 18.

To simplify our experiments, only one DR technique was used for experiments that were ATGP-

FastICA implemented as ID-ICA-DR, where ATGP and FastICA were used as the initialization

driven algorithm and DRT, respectively. ATGP-FastICA was then performed by PSDE with q¼ 5

growing to q¼ 18 and by PSDR with q¼ 18 reduced to q¼ 5. Figure 20.4 shows the first 18

independent components (ICs) produced by ATGP-FastICA. As we can see from Figure 20.4,

the interferers and the panels in the five rows were already separated by FastICA in its first

few prioritized ICs.

Figure 20.4 First 18 ICs produced by ATGP-FastICA algorithm.
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Now, using the prioritized 18 ICs in Figure 20.4, we further used PSDE to expand image cubes

with dimensionality from 5 to 18 to be used as data cubes for FCLS to perform spectral unmixing.

Figure 20.5(a)–(n) shows the unmixed results produced by the FCLS operating on the image cubes

formed by ICs from 5 to 18.

Figure 20.5 FCLS-classification results using image cubes obtained by PSDR from q¼ 5.
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Figure 20.5 (Continued)
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For example, Figure 20.5(a) and (n) was the FCLS-unmixed results of the 15 panels in five rows

using the image cube formed by the first five ICs and the entire 18 ICs in Figure 20.4, respectively.

The results in Figure 20.5(a)–(n) also revealed that q¼ 8 was the least number of spectral dimen-

sions to make FCLS work effectively. When q was less than 8, the FCLS-unmixed results were not

good. To the contrary, as q was increased from 8 to 18 FCLS consistently performed well in terms

of unmixing the 19 panel pixels and there was no visible difference among all the unmixed results.

This suggested that q¼ 8 was the minimal number of spectral dimensions that must be retained

after DR and it was very close to the value estimated by VD, nVD¼ 9. To further confirm this

finding, Table 20.1 tabulates the FCLS-unmixed results for q¼ 8 and 9, where the results obtained

for q¼ 9 are included in parentheses. As shown in Table 20.1, the unmixed results obtained for

q¼ 8 and 9 by FCLS were very close and nearly identical. This implies that there was no additional

gain by including more spectral dimensions.

Figure 20.5 (Continued)
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Figure 20.6 illustrates the abundance fractions of 19 R pixels unmixed by FCLS via

PSDE/PSDR using a pair of PIs, indicated by PI/PI where the first PI was used to generate projec-

tion vectors using ATGP as an ID-PIPP and the second PI was used for PIC prioritization.

In order to conduct a quantitative study for unmixed results in Figure 20.6, the 3D-ROC analysis

developed in Chapter 3 was used for the study. Figure 20.7 only plots the area, Az, calculated under

2D-ROC curves of PD versus PF produced by 3D ROC curves. This results confirmed that the cut-

off value for the minimal number of prioritized spectral dimensions, q, to be used for spectral

unmixing predicted by nVD¼ 9 was very accurate if not exact.

20.7 Conclusions

This chapter introduces a new concept of DP that has never been explored in the literature in the

past. Its idea arises from recognition of several issues in implementing DR. One is that the number

of data dimensions required to be retained, q, after DR must be known in advance. In a case that

the value of q is inaccurate, the entire process of DR must be reimplemented again for a new value

of q. This leads to an issue, “Can the data dimensions previously obtained by a smaller value of q

be used without re-running DR for a new larger value of q?” In addition, once DR is performed,

how can these DR-transformed dimensions be represented in terms of information contained in

these new spectral dimensions? Despite that PCA resolves the above issues by solving eigenvalues

from the characteristic polynomial equation, it is unfortunate that the same approach cannot be

extended or generalized to any linear transformation. For example, ICA does not have such nice

properties. The PIPP and DP presented in this chapter provide a feasible solution to resolving this

dilemma where PI plays a twofold role in producing projection vectors and prioritizing projection

vector-generated PICs. However, it should be noted that the used PIs for both cases are not neces-

sarily the same and can be different. In other words, when PIPP is implemented in conjunction

with DP, a pair of two different PIs must be used, one for projection vector generation and the other

Table 20.1 FCLS quantification for ATGP-FastICA cube with q¼ 8 (q¼ 9)

Panels in row 1 Panels in row 2 Panels in row 3 Panels in row 4 Panels in row 5

p11 1 0 0 0 0

p12 0.6172 (0.6174) 0 0.0382 (0.038) 0 0

p13 0.2413 (2413) 0.0606 (0.0606) 0 0.0432 (0.0432) 0

p211 0 1 0 0 0

p212 0 1 0 0 0

p22 0.0067 (0.071) 0.9432 (0.944) 0 0 0.0058 (0.0068)

p23 0 0.2862 (0.286) 0.0229 (0.0232) 0.0072 (0.0072) 0

p311 0 0.0024 (0.0026) 0.9976 (0.9974) 0 0

p312 0 0 1 0 0

p32 0.0126 (0..013) 0 0.663 (0.6627) 0.0259 (0.0257) 0

p33 0.0045 (0.0047) 0 0.414 (0.4139) 0.0121 (0.0118) 0

p411 0 0 0 1 0

p412 0 0 0 0.9873 (0.987) 0.0127 (0.013)

p42 0.0258 (0.258) 0 0.0149 (0.149) 0.8792 (0.8791) 0

p43 0 0 0.0036 (0.0037) 0.2131 (0.2131) 0

p511 0 0.005 (0.0054) 0 0 0.8617 (0.8621)

p512 0 0 0 0 1

p52 0.0375 (0.0377) 0 0.0388 (0.387) 0.022 (0.0219) 0.9008 (0.9012)

p53 0 0.0256 (0.0255) 0 0 0.1605 (0.1603)
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for PIC prioritization. This is quite different from PCA that uses data variance as the same PI for

both finding eigenvectors as projection vectors and using eigenvalues for PC prioritization. One of

major advantages and benefits provided by PIPP via DP is no requirement of prior knowledge

about the value of q, which is the number of spectral dimensions needed to be retained for DR. It

allows users to perform PSDP with two dual processes, PSDE via DP and PSDR via DP which can

expand and reduce spectral dimensions in a forward and a backward manner progressively, and one

is a reverse process of another. By means of these two processes the hyperspectral information

Figure 20.6 FCLS-unmixed abundance fractions of 19 R panel pixels using ATGP-PIPP.
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compression can be best utilized in many applications, such as data compression, communication,

and transmission. Technically, speaking, PSDP can start off any value of q, for example, q¼ 1 for

PSDE and q¼ L for PSDR. However, this may not be practical in applications. Therefore, as

shown in Wang and Chang (2006a), VD may not be exactly accurate but is a good estimate for q.

By taking advantage of VD a feasible range of [nVD, 2nVD] can be derived for PSDP to implement

PSDE and PSDR as demonstrated in our experiments as well as in some recent works, Safavi

(2010), Fisher and Chang (2011), Chang and Safavi (2011), and Chang et al. (2011). Nevertheless,

if nVD is too large the range of [nVD, 2nVD] may be too broad. To further address this issue, another

Figure 20.6 (Continued)
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Figure 20.6 (Continued)
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new concept of DDA introduced in Chapter 22 can also be applied to narrow down the range by

replacing 2nVD with DDA. This approach was studied by Safavi (2010), where experiments have

shown that since nVD already provides a good estimate for q, the reduction of the upper bound from

2nVD to DDA does not have many advantages. But, this is not the case for BS, as will be demon-

strated in Chapter 23 as well as Liu (2011).

Figure 20.7 Plots of areas under 2D ROC curves for averaged classification rate of 19 R panel pixels in

Figure 20.6 versus number of prioritized dimensions.

612 Hyperspectral Data Processing: Algorithm Design and Analysis



21

Progressive Band Dimensionality
Process

Using DR as a means to perform progressive spectral dimensionality process (PSDP) by dimen-

sionality prioritization (DP) has been studied in great detail in Chapter 20. It is natural to include

Chapter 21 as a companion chapter of Chapter 20 with its main theme focused on band dimension-

ality for progressive process. In other words, what has been done for PSDP via DP can also be

applied to progressive band dimensionality process (PBDP) via band prioritization (BP). However,

there are a few significant differences between PSDP and PBDP that make the techniques devel-

oped for PSDP in Chapter 20 not necessarily applicable to PBDP. One is how data information is

represented by DP and BP. In PSDP the data information is compacted via a transformation from

the original data space to a new transformed data space compared to PBDP that only retains the

information of selected bands but completely discards the information of unselected bands. So,

PSDP requires the complete hyperspectral image cubes to perform transformation as opposed to

PBDP that only processes the hyperspectral image cubes formed by selected bands. Another major

difference is that PSDP requires a pair of parameters, projection vectors to specify transformed

components in the transformed data space and priority scores to prioritize the information con-

tained in the transformed components, whereas PBDP does not require projection vectors but only

needs priority scores to prioritize all the spectral bands for BS since each spectral band can be

considered as a projection vector. A third key difference is design rationales for PSDP and PBDP.

While the projection index-based projection pursuit (PIPP) is a key to make PSDP work, the

pigeon-hole principle described in Section 1.3.2 of Chapter 1 is the main idea behind PBDP. In

spite of these differences both PSDP and PBDP share the same design philosophy in common that

intends to resolve the same issue of how data information is represented and prioritized in a lower

data representation space so that the data information can be utilized more effectively and effi-

ciently in various tasks for data analysis. A general issue arising in both DR and BS is determining

the number of data dimensions required to be retained by data dimensionality reduction, q, and the

number of bands to be selected by band selection, ~q. It has been shown that the virtual dimension-

ality (VD) in Chapter 5 can be used to estimate these two numbers, q and ~q. Nevertheless, it is
worth noting that VD can only serve as an estimate and may not be necessarily accurate. For this

reason PSDP and PBDP offer an exit strategy by processing data in progression without actually

knowing the values of q and ~q.

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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21.1 Introduction

Hyperspectral images are collected in hundreds of contiguous spectral channels. Therefore, not

only the data volume to be processed is considered to be huge, but also the spectral correlation

among bands is expected to be very high due to high spectral resolution. Band selection (BS) is

one of commonly used approaches that take advantage of such high interband correlation to

remove band redundancy. Over the past years, many research efforts have been directed to BS

(Mausel et al., 1990; Conese and Maselli, 1993; Stearns et al., 1993; Chang et al., 1999; Huang

and He, 2005; Chang and Wang, 2006; Du et al., 2007) in order to achieve a wide range of applica-

tions such as data compression, data storage, data transmission, and communication. Generally,

two crucial issues arising in BS need to be resolved, which are (1) number of bands required for

BS and (2) what criterion to be used to select bands. Instead of dealing with BS directly this chap-

ter introduces a new concept of band prioritization (BP) that is similar to the DP developed in

Chapter 20 to simultaneously address these two issues by prioritizing all spectral bands in some

optimal sense. It ranks all the spectral bands in accordance with their corresponding priority scores

that can be calculated by a custom-designed BP criterion in a similar way that spectral dimensions

are prioritized by DP in Chapter 20. Then PBDP can be performed by BP in such a manner that

two dual processes, progressive band dimensionality reduction (PBDR) via BP and progressive

band dimensionality expansion (PBDE) via BP, similar to progressive spectral dimensionality

reduction (PSDR) via DP and progressive spectral dimensionality expansion (PSDE) via DP can

also be derived. In other words, rather than determining the number of bands needed to be selected

~q as required by BS, PBDP allows users to terminate its process either in band reduction or in band

expansion by applications. Although the value of ~q can be estimated by VD, a true value of ~q is

never known in real-world problems. In this case, a better way to circumvent this problem is to let

applications determine when the process should be terminated. Nevertheless, VD has been shown

to provide a reasonable estimate of a lower bound on ~q in Chang and Wang (2006). This value can

be used to suggest an initial guess for ~q to initialize PBDP. So, a next key issue in PBDP is to

design an effective criterion to meet a specific application. In Chang et al. (1999) BS was per-

formed by prioritizing bands according to a specific criterion and followed by band de-correlation

(BD) to remove bands that are highly correlated with those bands already selected until a specific

number of bands ~q is achieved. Recently, Du et al. (2007) made use of a similar idea to perform BS

by repeatedly calculating the information divergence among all the unselected bands and selecting

and removing the one with the maximal divergence from the set of unselected bands to form a new

set of unselected bands for the next round BS. The process is continued until it reaches a specific

number of bands, ~q. The proposed PBDP is fundamentally different from this type of the conven-

tional BS and revolutionizes the concept of BS in several aspects. The first and foremost is that

PBDP does not need to find and fix the value of ~q. Instead, the ~q can be tuned by a specific applica-
tion or image analysts. Secondly, it prioritizes the entire set of L spectral bands according to their

contained information measured by a custom-designed information criterion and then selects

bands progressively in a forward or backward manner depending on how to retain band informa-

tion in increasing or decreasing order. To realize this concept two dual processes derived from

PBDP are further developed. One is referred to as PBDR via BP that performs PBDP in a backward

manner by beginning with a higher number of highest-prioritized bands and gradually removes

bands according to their increasing priority order from the selected prioritized bands. As a com-

plete opposite to PBDR, the second process is referred to as PBDE via BP that performs PBDP in

a forward manner by starting with a lower number of highest-prioritized bands and gradually add-

ing new unselected bands according to their priorities in descending order. Thirdly, both processes
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can be terminated when a stopping rule is satisfied and is determined by various applications. In

this case, VD can be used to provide a reasonable lower bound on ~q for PBDR and an upper bound

on ~q for PBDE. This was not done in Chang et al. (1999) and nor was in Du et al. (2007). Such a

progressive nature significantly reduces computational complexity because the previously selected

bands are always a part of future augmented band subsets without repeatedly solving new combi-

natorial problems.

Unlike PSDP that takes advantage of the projection index-based projection pursuit (PIPP)

to preserve information provided by projection index components, PBDP must retain infor-

mation provided by selected bands in a more effective fashion. Since each spectral band is

acquired by a specific wavelength designed to extract certain material substances present in

the range, the selection of bands must be determined by substances of interest in applications.

As noted in Section 1.3.2, the pigeon-hole principle offers a means of interpreting each of

spectral bands as a pigeon hole and substance of interest needed to be analyzed as pigeons.

By virtue of this pigeon-hole principle a spectral band can be used to specify one particular

material substance that indeed determines which band should be used for its accommodation.

Accordingly, the effectiveness of PBDP should be therefore determined by material sub-

stances of interest in applications. Due to this fact VD which is also derived from the

pigeon-hole principle can be used to estimate the value of ~q selected for PBDP which should

be very closely related to the value estimated by VD that is indeed the case shown in Chang

and Wang (2006).

21.2 Band Prioritization

The concept of BP was implicitly used by Chang et al. (1999) in conjunction with information

divergence-based BD to perform BS. Its potential in various applications has not been realized

since then. This section revisits BP and extends it to PBDP while postponing progressive BS

(PBS) to Chapter 23, which can be considered as an application of PSDP to BS.

For each spectral band Bl BP prioritizes Bl according to its contained information measured by a

custom-designed information criterion. PBDP selects bands progressively by expanding or reduc-

ing band dimensionality. Such a progressive band dimensionality process can be terminated by a

stopping rule that is determined by various applications instead of a specific value of p that must be

selected by BS in advance. Nevertheless, in this case, VD can be used to provide a reasonable

lower bound and a reliable upper bound on the value of the ~q. In addition to the second-order

statistics proposed in Chang et al. (1999) this chapter extends criteria to high-order statistics. Spe-

cifically, four categories of criteria are considered in this chapter for BP. The first category is made

up of second-order statistics-based criteria, which include second-order statistics-based variance

and signal-to-noise ratio (SNR). The second category contains higher-order statistics-based criteria

including skewness, kurtosis, entropy, and information divergence (ID). The third category consists

of classification-based criteria, which characterize data features by Fisher’s linear discriminant

analysis (FLDA) and orthogonal subspace projection (OSP). The fourth category comprises detec-

tion-based criteria, band correlation/dependence minimization, and band correlation/dependence

constraint recently developed in Chang and Wang (2006) that characterize target signatures derived

from the concepts of linearly constrained minimum variance (LCMV) (Frost, 1972) and con-

strained energy minimization (CEM) (Harsanyi, 1993) in Chapter 2. These BP criteria can be used

to measure and calculate the priority scores to rank all spectral bands. PBDP is finally performed

by adding or removing bands progressively according to their associated priority scores in

descending order until a desired performance is achieved. In other words, BP allows PBDP to add
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or remove bands in a progressive manner via their descending priority scores. But, it should be

pointed out that PBDP is different from the joint BP/BD-based BS proposed by Chang et al.

(1999) because the former does not use any technique to remove interband redundancy as the latter

did via an ID criterion. Since the BD is an independent process of PBDP, it can be always incorpo-

rated in PBDP to derive PBDP/BD that implements PBDP in conjunction with BD to remove

highly spectral correlated bands. The resulting process is called progressive band selection (PBS)

that will be further discussed in Chapter 23.

There are several significant differences between BS and PBDP. One major advantage of PBDP

over BS is that the former allows users to select bands in accordance with their associated priorit-

ies, while the latter requires users to first determine how many bands needed to be selected and

then to find an optimal band set among all possible combinations from the original band set. As a

result, if the total number of bands and the number of bands to be selected are assumed to be L and

~q, respectively, an exhaustive search for finding an optimal band subset conducted by BS requires

solving
L

~q

� �
¼ L!

L� ~qð Þ!~q! optimization problems. This becomes a formidable task for hyperspec-

tral image data. In order to mitigate this dilemma Chang et al. (1999) developed a joint band priori-

tization and band de-correlation (BP/BD) approach by designing an appropriate criterion to

measure band information coupled with an ID-based BD to remove interband redundancy. The

information measured by BP within a single band is considered as intraband information that is

quite different from interband information measured by BD that can be used to remove the inter-

band redundancy. Both BP and BD are generally considered as disjoint and different techniques for

information processing. That is why both BP and BD are proposed to address this issue in Chang

et al. (1999) where BP was used to avoid an exhaustive search for finding an optimal band subset

while BD was used to remove bands which are highly correlated with those bands being selected.

The benefit of incorporating BD in PBDP can be only gained, provided that the criterion used for

BD is effective. On many cases, the unknown subtle targets may appear in one particular band that

is highly correlated with other bands in terms of one BD criterion such as second order of statistics,

but may not have much correlation with the same bands using another BD criterion such as high-

order statistics. Under this circumstance, a better approach is to leave BD an option if no particular

application is specified. Such a BD issue will be investigated in Chapter 23 when we come to

discuss PBS.

Another major advantage of using PBDP over the conventional BS is that no optimization

problem needs to be solved and bands can be selected up to any number at users’ discretion. A

third major advantage is the order of bands to be selected. When BS is performed in a conven-

tional manner, bands are selected by solving an objective function in some sense of an optimal

criterion where there is no concept of BP involved. However, when PBDP is used, bands can be

selected either by their highest-priority scores or by their least-priority scores depending upon

applications, a task that cannot be accomplished by the conventional BS. It has been a common

sense that high interband correlation makes people believe that many highly correlated bands

may provide overlapped information and can be removed. However, if the targets of interest are

rare and relatively small such as anomalies, these targets are very likely captured by nonover-

lapping information among highly correlated bands. Moreover, the limited presence of these

targets can be characterized more effectively by bands with lowest-priority scores rather than

higher-priority scores due to their small spatial extent. A good example is PCA where all the

components are ranked by data variances with principal components (PCs) and minor compo-

nents (MCs) corresponding to two respective sets of eigenvalues, a set of larger eigenvalues and

a set of smaller eigenvalues. It has been shown in Oja (1992) that MCs can also be as important
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as PCs. In hyperspectral image analysis, targets with weak spectral sample correlation in terms

of eigenvalues such as anomalies or endmembers generally do not contribute to large spectral

data variances. As a consequence, such targets generally cannot be captured by PCs, but rather

by MCs. This indicates that for BS to be effective including bands with lower-priority scores is

crucial to capture such weak targets. As demonstrated in experiments in this chapter, a compar-

ative study and analysis between using bands with both highest- and least-priority scores shows

that using bands selected by lower-priority scores could sometimes perform even better than

using bands with higher-priority scores in finding these targets. Additionally, the experiments

also provide evidence that the results using the higher- and lower-prioritized bands are quite

different in most cases. On some cases, combining both bands selected by highest and lowest

priorities may provide better results.

Finally, despite that two dual processes analogous to the two dual processes, PSDR and PSDE

developed for PSDP, referred to as PBDR via BP and PBDE via BP, can also be derived for PBDP,

it should be noted that unlike DP, which is mainly developed for preprocessing, the effectiveness of

BP must be justified by its utility in hyperspectral data exploitation. So, applications of PBDP play

a major part in evaluating performance of PBDP.

21.3 Criteria for Band Prioritization

In order to implement BP, a criterion is needed to measure the significance of a spectral band in

terms of its priority score. In what follows, four classes of criteria are considered.

21.3.1 Second-Order Statistics-Based BPC

The first category of BP criterion (BPC) is derived from second-order statistics that are based on

variance and signal-to-noise ratio (SNR).

21.3.1.1 Variance-Based BPC

A natural and logical approach to band prioritization is to compute variances for all spectral band

images fBlgLl¼1 in a hyperspectral image cube, denoted by fs2
l gLl¼1 and further use band variances

to define a priority score for each of band images as follows:

VARpriorityðBlÞ ¼ s2
l for all l ¼ 1; 2; . . . ; L ð21:1Þ

Another alternative interpretation is to use a set of loading factors fjklgL;Lk¼1;l¼1 proposed in Tu et al.
(1998) and Chang et al. (1999) that can be defined by

jkl ¼
ffiffiffiffiffi
lk
p

vkl for k; l ¼ 1; 2; . . . ; L ð21:2Þ

It is easy to show that for each l ¼ 1; 2; . . . ; L, rl defined by

rPCAl ¼
XL

k¼1 j
2
kl ð21:3Þ

turns out to be the variance s2
l of the lth spectral band image. As a result of (21.3), the priority

score calculated by (21.1) for the lth spectral band image Bl is also equivalent to the PCA-based
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priority score defined by

PCApriorityðBlÞ ¼ rPCAl ð21:4Þ

21.3.1.2 Signal-to-Noise-Ratio-Based BPC

It was noted in Green et al. (1988) that variance was not an appropriate criterion to measure image

quality. In order to alleviate this dilemma, an SNR-based criterion was first developed by Green

et al. (1988) to improve the PCA. The resulting transform was called maximum noise fraction

transform and later reinterpreted by Lee et al. (1990) as noise-adjusted principal component

(NAPC) transform. In analogy with the criterion specified by (21.4) for the variance-based PCA, a

similar criterion to (21.4) can also be derived from the SNR-based NAPC as follows.

Assume that fladj;lgLl¼1 is the set of eigenvalues of noise-adjusted sample covariance matrix and

fvadj;lgLl¼1 are their associated orthonormal eigenvectors. We can define the loading factors in a

similar manner to (21.2) for an NAPC by

jadj;kl ¼
ffiffiffiffiffiffiffiffiffiffiffi
ladj;k

p
vkl for k; l ¼ 1; 2; . . . ; L ð21:5Þ

Using (21.5), a noise-adjusted variance-based priority score can be calculated for the lth spectral

band image Bl via (21.5) defined by the NAPC-based priority score:

NAPCpriorityðBlÞ ¼
XL

k¼1 j
2
adj;kl ¼ rNAPCl ð21:6Þ

21.3.2 High-Order Statistics-Based BPC

In many applications, the information of interest may not be captured by second-order statistics,

but rather be characterized by higher-order statistics. In order to take this into account, three

higher-order statistics-based criteria are derived in this section for BPC.

21.3.2.1 Skewness

The simplest high-order statistics is the third central moment, referred to as skewness and

defined by

k3ðBlÞ ¼ 1=Nð Þ
XN

i¼1 ril � mlð Þ=sl½ �3 ¼ rskewnessl ð21:7Þ

21.3.2.2 Kurtosis

A fourth central moment, referred to as kurtosis, is defined by

k4ðBlÞ ¼ 1=Nð Þ
XN

k¼1 rlk � mlð Þ=sl½ �4 ¼ rkurtosisl ð21:8Þ

21.3.3 Infinite-Order Statistics-Based BPC

It should be noted that according to our experience, criteria for BP based on statistics higher than 4

do not have much significant advantage compared to skewness and kurtosis (Ren et al., 2006).

Therefore, only1-order statistics-based BP criteria, entropy and information divergence, are dis-

cussed in this section.
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21.3.3.1 Entropy

One of the simplest and most widely used1-order statistic-based BPC is entropy that requires an

infinite number of moments. Let H(Bl) be the entropy calculated for the lth band image Bl. The

entropy-based priority score for Bl is defined by

EntropypriorityðBlÞ ¼ HðBlÞ ¼ r
entropy
l ð21:9Þ

It should be noted that the entropy H(Bl.) in (21.9) is calculated based on the gray-level histogram

produced by the lth spectral band image Bl where the number of bins is totally determined by the

difference between the maximal and minimal gray levels present in the spectral band image Bl. For

example, if the maximal and minimal gray levels are 255 and 0, respectively, then there are

together 256 bins needed to estimate the entropy.

21.3.3.2 Information Divergence

As an alternative to entropy defined by (21.9), an information theoretic measure, called informa-

tion divergence (ID), can also be used as a BPC. Assume that the pl is the image histogram of the

lth spectral band image, Bl normalized as a probability distribution and gl is its associated Gaussian

distribution with mean and variance determined by sample mean and sample variance of the Bl. BP

criterion of interest is to measure the deviation far away from a Gaussian distribution for a given

spectral band image, that is, the discrepancy between pl and gl defined by

IDpriorityðBlÞ ¼ Dðpl ; glÞ ¼ rIDl ð21:10Þ

where D(pl;gl) is called information divergence (Kullback, 1968)

Dðpl ; glÞ ¼
X

i
plilogðpli=gliÞ þ

X
i
glilogðgli=pliÞ ð21:11Þ

The higher the value of D(21.pl;gl) in (21.11), the greater deviation of pl from the Gaussian distri-

bution, gl is. This implies that ID is used to measure the degree of non-Gaussianity of a band. It

should be noted that if both pl and gl are replaced with two spectral signatures, the D(pl;gl) defined

by (21.11) becomes spectral information divergence (SID) in Chang (2000) and Chang (2003a).

21.3.4 Classification-Based BPC

In the previous two subsections, BPC are designed based on statistics. Additionally, they are also

unsupervised in the sense that no prior knowledge is involved in these criteria. However, in some

applications, prior knowledge may be available and can be taken advantage of to design BPC. In

this subsection, two supervised classification-based criteria are developed for BP. Such classifica-

tion-based BP criteria are different from statistics-based BP criteria such as variance-, SNR- or

high-order statistics-based BP criteria in the sense that the former is developed for target detection

and classification applications while the latter is completely determined by statistics that has little

to do applications.

21.3.4.1 Fisher’s Linear Discriminant Analysis (FLDA)-Based BPC

Minimum misclassification canonical analysis (MMCA) derived from Fisher’s linear discriminant

analysis (FLDA) was used in Tu et al. (1998) to minimize the misclassification error. For any given
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band number ~q, we can use (21.2)–(21.3) with eigenvalues and unit eigenvectors replaced by the

eigenvalues fljg~q�1j¼1 and normalized unit feature vectors

fwFLDA
j g~q�1

j¼1w
FLDA
j ¼ �

wFLDA
j1 ;wFLDA

j2 ; . . . ;wFLDA
jL

�T
as used in Tu et al. (1998) to define the loading

factors as follows:

jFLDAjl ¼ ffiffiffiffi
lj

p
wFLDA
jl ð21:12Þ

for j ¼ 1; 2; . . . ; ~q� 1 and l ¼ 1; 2; . . . ; L In light of (21.12), the priority score can be calculated

for the lth spectral band image Bl by

rFLDAl ¼
X~q�1

j¼1 jFLDAjl

� �2

ð21:13Þ

21.3.4.2 OSP-Based BPC

Another classification-based criterion is derived from the orthogonal subspace projection (OSP)

(Harsanyi and Chang, 1994) that is based on the linear mixture model as follows:

r ¼Maþ n ð21:14Þ

where M ¼ m1m2 . . .mp

	 

, a ¼ a1;a2; . . . ;ap

� �T
and n is noise or model error. If we further

assume that the p image endmembers m1;m2; . . . ;mp can be divided into two classes of endmem-

bers, one class of nD desired image endmembers denoted bym1;m2; . . . ;mnD and the other class of

undesired endmembers denoted by u1; u2; . . . ; unU with p ¼ nD þ nU. Then the OSP classifier for a

particular desired endmember mj, w
OSP
j can be actually obtained by wOSP

j ¼ mT
j P
?
Uj

with wOSP
j ¼

�
wOSP
j1 ;wOSP

j2 ; . . . ;wOSP
jL

�T
where Uj ¼ m1 � � �mj�1mjþ1 � � �mnDu1u2 � � � unU

	 

and P?Uj

¼ I� UjU
#
j ,

U#
j is the pseudo-inverse of Uj . Now following the same argument outlined by (21.12) and (21.13)

we can define loading factors for the OSP classifiers fwOSP
j gpj¼1 as

jOSPjl ¼
ffiffiffiffi
�lj

q
wOSP
jl for j ¼ 1; 2; . . . ; nD and l ¼ 1; 2; . . . ; L ð21:15Þ

and

rOSPl ¼
XnD

j¼1 jOSPjl

� �2

ð21:16Þ

where �lj ¼ 1=Nð ÞPN
i¼1 ljðriÞ and ljðriÞ ¼ ajðriÞ=s

� �2�
mT

j P
?
Uj
mj

��1
obtained in Chang et al.

(1999). By means of (21.16), the priority score assigned to the lth spectral band image Bl can be

calculated by

OSPpriorityðBlÞ ¼ rOSPl ð21:17Þ

21.3.5 Constrained Band Correlation/Dependence Minimization

Taking a rather different approach from the ideas used to design previous BP criteria, a recent new

approach, called constrained band selection (CBS) developed in Chang and Wang (2006),
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suggested a new criterion for BP, which linearly constrained a particular band image while mini-

mizing band correlation/dependence resulting from other band images. In other words, the priority

score of a spectral band can be calculated according to the degree of correlation or dependence

between this particular band image and other band images measured by least squares errors. Its

idea can be briefly described as follows.

Assume that the size of all the spectral band images Bl is nr � nc. Since each spectral band

image Bl can be represented by a column vector of dimensions nrnc, denoted by bl, we have a total

number of L spectral band image vectors fblgLl¼1. For any given spectral band image vector bl we

can design a finite impulse response (FIR) specified by a set of L weighting vectors, fwlgLl¼1 that
constrains bl while minimizing least squares error caused by other band image vectors fbkgLk¼1;k 6¼l .
More specifically, let yl be the filter output obtained by

yl ¼ wT
l bl ð21:18Þ

The averaged least squares filter output is given by

1=Lð Þ
XL

l¼1 y
2
l ¼ 1=Lð Þ

XL

l¼1 wT
l bl

� �
wT

l bl
� �T ¼ wT

l 1=Lð Þ
XL

l¼1 blb
T
l

� �
wl ð21:19Þ

Let Q ¼ 1=Lð ÞPL
l¼1 blb

T
l denote the band image correlation matrix. A similar optimization prob-

lem to the constrained energy minimization (CEM) in Chapter 2 can be obtained as follows:

minwl
wT

l Qwl

� �
subject to bTl wl ¼ 1 ð21:20Þ

The solution to (21.20), denoted by wCEM
l is given by

wCEM
l ¼ bTl Q

�1bl
� ��1

Q�1bl ð21:21Þ

Alternatively, we can exclude the spectral band image bl from the band correlation matrix Q and

further define ~Q ¼ 1=ðL� 1Þð ÞPL
j¼1;j 6¼l bjb

T
j as the band dependence matrix. Replacing Q in

(21.20) with ~Q results in a similar constrained band selection problem

minwl
wT

l
~Qwl

� �
subject to bTl wl ¼ 1 ð21:22Þ

The solution to (21.22), ~wCEM
l is the same as the one in (21.21) with the Q replaced by ~Q that is

given by

~wCEM
l ¼ bTl

~Q
�1
bl

� ��1
~Q
�1
bl ð21:23Þ

21.3.5.1 Band Correlation/Dependence Minimization

By means of (21.21) and (21.23) we can calculate the following least squares errors (LSEs):

rCEMl ¼ wCEM
l

� �T
QwCEM

l ð21:24Þ

~rCEMl ¼ ~wCEM
l

� �T ~Q~wCEM
l ð21:25Þ
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that can be used to measure degree of the spectral band image vector bl correlated with and depen-

dent on other spectral band image vectors fbkgLk¼1;k 6¼l , respectively. That is, the greater the LSE in

(21.24) or (21.25), the higher the correlation of bl with other band image vectors. So, we can use

(21.24) and (21.25) to derive two criteria for BP, called band correlation minimization (BCM)

defined by

BCMpriorityðBlÞ ¼ rCEMl ð21:26Þ

and band dependence minimization (BDM) defined by

BDMpriorityðBlÞ ¼ ~rCEMl ð21:27Þ

21.3.5.2 Band Correlation Constraint

Comparing to (21.24) and (21.25), an alternative approach is to calculate band correlation con-

straint (BCC)

hCEMl ¼
XL

k¼1;k 6¼l wCEM
l

� �T
bk ð21:28Þ

and band dependence constraint (BDC)

~hCEMl ¼
XL

k¼1;k 6¼l ~wCEM
l

� �T
bk ð21:29Þ

which can also be used to measure the correlation between the spectral band image vector bl and

any other spectral band image vector bk (21.k 6¼ l; k ¼ 1; . . . ; L). By comparing the value of

wCEM
l bk with the filter constraint specified by wT

l bl ¼ 1 in (21.20) or (21.22), a spectral band

image Bk has less correlation with the spectral band image Bl if its band constraint wT
l bk is far

away from 1. In other words, the closer the wT
l bk to 1, the higher the correlation of Bk to Bl. With

this interpretation, two criteria similar to (21.26) and (21.27) can also be derived for BP, called

BCC given by

BCCpriorityðBlÞ ¼ hCEMl ð21:30Þ

band dependence constraint (BDC)

BDCpriorityðBlÞ ¼ ~hCEMl ð21:31Þ

One disadvantage of these CEM-based criteria is the enormous size of vectors converted from

band images that causes tremendous computing time. For example, it requires a vector with

4� 104 dimensions to represent a band image with size 200� 200. In order to mitigate this

dilemma, a linearly constrained minimum variance (LCMV) in (Frost, 1972; Van Veen and

Buckley, 1988) is developed to derive four criteria similar to four CEM-based criteria specified by

(21.24) and (21.25) and (21.28) and (21.29). Instead of constraining a band image as a vector, the

LCMV-CBS constrains a band image as an image matrix without vector conversion. Its idea is

derived from the LCMV approach, which can be traced back to Frost’s work in adaptive
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beamforming (Frost, 1972). More specifically, assume that rl;1; rl;2; . . . ; rl;nc are nc columns of the

lth spectral band image Bl, which has nr rows and nc columns. So, the jth column vector of Bl

denoted by rl;j is represented by an nr-dimensional column vector, rl;j ¼ rl;1j ; rl;2j; . . . ; rl;nrj
� �T

. In

this case, the lth spectral band image Bl can be further expressed by a matrix given by

Bl ¼

rl;11 rl;12 . . . rl;1ðnc�1Þ rl;1nc
rl;21 rl;22 } rl;2ðnc�1Þ rl;2nc

..

.
} } ..

. ..
.

rl;ðnr�1Þ1 } } rl;ðnr�1Þðnc�1Þ rl;ðnr�1Þnc
rl;nr1 rl;nr2 . . . rl;nrðnc�1Þ rl;nrnc

2

666664

3

777775
¼ rl;1rl;2 � � � rl;nc

	 
 ð21:32Þ

Like the CEM, the goal is to design a constrained FIR linear filter with an nr-dimensional weight

column vector vl ¼ vl;1; vl;2; . . . ; vl;nr
� �T

specified by a set of nr filter coefficients

fvl;1; vl;2; . . . ; vl;nrg that minimizes (21.19) subject to the following simultaneous nc multiple con-

straints, rTl;jvl ¼
Pnr

m¼1 rl;mjvl;m ¼ 1, 1 � j � nc that is equivalent to

BT
l vl ¼ 1nc ð21:33Þ

where 1nc is an nc-dimensional column vector with all 1s in its nc components. It should be noted

that since the weight vector vl is used to constrain column vector of a band image, its dimensional-

ity is nr compared to the nrnc-dimensional weight vector wl used in (21.20) that constrains a band

image as a vector with dimensionality nrnc. By virtue of the nc multiple constraints in (21.33), the

CEM problem described by (21.20) can be rederived as the following LCMV-based optimization

problem:

minvl vTl Svl
� �

subject to BT
l vl ¼ 1nc ð21:34Þ

where S ¼ ð1=LÞPL
l¼1 BlB

T
l is the sample band correlation matrix. The solution to (21.34) can be

solved as

vLCMV
l ¼ S�1Bl BT

l S
�1
Bl

� ��1
1nc ð21:35Þ

and

rLCMV
l ¼ vLCMV

l

� �T
SvLCMV

l for LCMV-BCM ð21:36Þ

plays the same role that rl does for the CEM-BCM. Similar derivations to CEM-BDM can also be

obtained for ~vLCMV
l ¼ ~S

�1
Bl BT

l
~S
�1
Bl

� ��1
1nc and

~rLCMV
l ¼ ~vLCMV

l

� �T ~S
�1
~vLCMV
l for LCMV-BDM ð21:37Þ
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In analogy with the CEM-based band correlation/dependence constraint criteria (BCC/BDC)

zl ¼
XL

k¼1;k 6¼l 1
T
nc

BT
k vLCMV

l

� �� �
for LCMV-BCC ð21:38Þ

and

~zl ¼
XL

k¼1;k 6¼l 1
T
nc

BT
k ~vLCMV

l

� �� �
for LCMV-BDC ð21:39Þ

can also be derived for an LCMV-based band correlation/dependence constraint criteria by replac-

ing band image vector bl and CEM-based weight vectors with band image Bl and LCMV-based

weight vectors, respectively.

Despite the fact that the CBS described was developed in Chang and Wang (2006), the idea

of BP was not introduced in their paper and nor were the priority scores specified by (21.26)

and (21.27), (21.30)–(21.31). Table 21.1 summarizes all the proposed BPC in terms of their

characteristics where “supervised” indicates that training samples are required for the particu-

lar criterion.

As a concluding remark, one comment is noteworthy. The effectiveness of BP is determined by

its applications not criteria alone. As will be demonstrated by following experiments, a different

application yields a totally different selected set of bands. With proper bands selected by BP the

number of bands can be significantly reduced, while still achieving performance comparable to

that accomplished by using full bands.

21.4 Experiments for BP

As noted in the introduction, there are some important differences between BP and DP. One is that

BP prioritizes individual spectral bands based on their contained information, whereas DP prioritizes

spectral dimensions according to the information contained in their transformed components from the

entire image data. Therefore, spectral bands only share information provided by interband correlation

compared to spectral components that only retain information of residuals resulting from all their

previous spectral components. Accordingly, BP and DP have different utilities in applications. This

section presents applications of BP using different sets of prioritized spectral bands in unsupervised

spectral unmixing and endmember extraction, which are not applicable to DP. The HYDICE image

scene in Figure 1.15(a) and (b) was selected for experiments to allow us to perform a quantitative

analysis in performance of unmixing panel pixels and extracting panel pixels as endmembers.

Table 21.1 Comparison among various BP criteria

Statistics Supervised Complexity Constrained

Variance Second No Low No

SNR Second No Low No

Skewness Third No Low No

Kurtosis Fourth No Low No

Entropy 1 No Low No

ID 1 No Low No

FLDA Second Yes Low No

OSP Second Yes High No

BCM/BDM Second No Low Yes

BCC/BDC Second No Low Yes

624 Hyperspectral Data Processing: Algorithm Design and Analysis



21.4.1 Applications Using Highest-Prioritized Bands

When it comes to BP, a natural and intuitive approach is to select bands that have the highest-

priority scores. Table 21.2 tabulates the first 30 bands with highest-priority scores selected

progressively by various BP criteria developed in Section 21.3 with a backslash “/” used to

separate two selected bands. It is very clear to see from the table that if one spectral band is

selected with a high-priority score, so are its neighboring spectral bands due to their strong

interband correlation.

With each BPC, the 30 bands in Table 21.2 are separated by three categories, first highest-

prioritized 10 bands, second highest-prioritized 10 bands, and third highest-prioritized 10

bands to evaluate the effectiveness of each BP criterion in performance analysis by adding the

next 10 highest-prioritized bands at a time progressively until reaching a total number of 30

bands. It is also noted that the uniform band selection is not included in Table 21.2 since it

does not prioritize bands and will not be evaluated along with BPC in the following applica-

tions for fair comparison.

Table 21.2 30 highest-prioritized spectral bands selected progressively by various 10 BP criteria

30 highest-priority scores

Variance (First 10 bands) 60/61/67/66/65/59/57/68/62/64

(Second 10 bands) 56/78/77/76/79/63/53/80/58/75

(Third 10 bands) 52/81/55/69/54/49/50/82/48/51

SNR (First 10 bands) 78/80/93/91/92/95/89/94/90/88

(Second 10 bands) 102/96/79/82/105/62/107/108/104/109

(Third 10 bands) 101/110/103/63/106/77/61/111/70/112

Skewness (First 10 bands) 1/122/123/124/125/126/50/49/127/2

(Second 10 bands) 48/169/168/47/51/128/46/129/45/167

(Third 10 bands) 130/22/23/166/21/44/18/20/131/24

Kurtosis (First 10 bands) 1/59/60/61/62/64/63/65/66/58

(Second 10 bands) 67/68/69/57/70/80/82/81/72/79

(Third 10 bands) 78/77/76/75/71/74/83/56/84/85

Entropy (First 10 bands) 65/60/67/53/66/61/52/68/59/64

(Second 10 bands) 62/78/77/57/79/49/76/56/50/80/

(Third 10 bands) 48/63/51/47/75/45/58/81/46/54

ID (First 10 bands) 154/157/156/153/150/158/145/164/163/160

(Second 10 bands) 142/144/148/143/141/152/155/135/146/159

(Third 10 bands) 166/149/138/139/167/161/165/147/151/137

FLDA (First 10 bands) 56/81/55/21/35/42/4/52/53/12

(Second 10 bands) 2/74/8/57/11/5/1/16/19/54

(Third 10 bands) 26/24/51/27/10/20/3/49/34/13

OSP (First 10 bands) 60/57/59/61/56/66/65/67/62/64

(Second 10 bands) 68/58/63/77/78/76/79/80/69/55

(Third 10 bands) 81/75/82/70/74/54/83/71/92/93

BCM/BDM (First 10 bands) 125/169/168/164/146/124/165/128/167/135

(Second 10 bands) 122/160/159/161/162/163/126/166/129/151

(Third 10 bands) 123/155/156/49/130/158/157/154/50/127

BCC/BDC (First 10 bands) 125/169/124/164/167/161/163/168/146/129

(Second 10 bands) 123/155/151/166/158/130/156/135/152/153

(Third 10 bands) 133/139/150/134/141/144/147/50/148/127
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21.4.1.1 Unsupervised Linear Spectral Mixture Analysis

The spectral unmixing technique used in this section was the unsupervised fully constrained least

squares (UFCLS) in Chapter 8 to unmix data sample vectors into a set of abundance fractions spec-

ified by signatures that were used to form a linear mixing model. Table 21.2 tabulates those bands

selected by 10 BP criteria with ~q indicating the number of bands to be selected by a BPC. There

were three cases considered, that is, ~q¼ 10, 20, and 30. We assume that no prior knowledge was

provided about the image scene. Therefore, the unmixing was performed in an unsupervised fash-

ion. In this case, an unsupervised algorithm, automatic target generation process (ATGP) in Chapter

8, was implemented to generate the desired signatures directly from the image scene to be used to

form the signature matrix for supervised spectral unmixing. It should be noted that since a ~q bands-

formed image cube has only ~q dimensions that could be used for orthogonality projection, only ~q
target pixels could be generated by ATGP. Using these ~q ATGP-generated target pixels to form a

desired signature matrix M, a fully constrained least squares (FCLS) classification method (Heinz

and Chang, 2001; Chang, 2003a) was then used to perform spectral unmixing. The selection of

FCLS over other abundance-unconstrained or partially constrained unmixing methods such as OSP

was due to the fact that the knowledge provided by the ~q generated target pixels was pixel informa-

tion and usually sensitive to spectral unmixing. In this case, fully constrained methods were more

appropriate to reduce sensitivity. Figure 21.1(a)–(j) shows the UFCLS-mixed pixel abundance frac-

tional maps of the 19 panel pixels resulting from ~q¼ 10, 20, and 30 bands in Table 21.2 prioritized

by the 10 BP criteria where ATGP was used to generate target information being unsupervised.

As shown in Figure 21.1, when ~q¼ 10, the best UFCLS-mixed results were those produced

by the ID, BCM/BDM and BCC/BDC where 19 panel pixels were classified into four separate

abundance fractional maps with panel pixels in rows 2 and 3 unmixed into one single abun-

dance fractional map. As ~q was increased to 20, only the unmixed results produced by

BCM/BDM and skewness were able to correctly unmix all the 19 panel pixels into five sepa-

rate abundance fractional maps. When ~q was progressively reached 30, UFCLS using all the

10 BP criteria could successfully unmix all the 19 panel pixels into the abundance fractional

maps to which they belonged. These experiments demonstrate that ~q¼ 10 may not be suffi-

ciently enough to preserve necessary panel pixel information for UFCLS, while ~q¼ 30 may

provide information more than what we needed. Therefore, it seemed that ~q¼ 20 was an

appropriate number for UFCLS to perform spectral unmixing effectively. According to the

recent work in Chang and Wang (2006), VD was shown to provide a good estimate on the

number of dimensions required to be preserved for DR as well as the number of endmembers

for the same HYDICE image scene in Figure 1.15(a). Based on the experiments in Chapter 5,

the value estimated by VD is nVD¼ 9 with PF¼ 10�3 or 10�4 in Chang (2003a). Using nVD¼ 9

as a guideline, it seemed that for UFCLS the twice nVD, that is, 2nVD could be an appropriate

value for ~q to be used for a BP criterion. In this HYDICE scene, it was 18 that was close to

~q¼ 20. As a matter of fact, it was indeed the case where the unmixed results for ~q¼ 18 were

very close to those with ~q¼ 20 in Figure 21.1(a)–(j) and their results are not included in here.

This fact was further confirmed and justified by unsupervised LSMA in Chapter 17.

It is worth noting that ~q¼ 9 was shown to be sufficient for DR in Wang and Chang (2006), but it

may not be enough for a BPC for band selection as demonstrated above. This is because DR is

performed in the sense of data compaction via a transform compared to BS that only selects sepa-

rate and individual bands without accounting for interband information. As expected, it will

require more bands for BS than dimensions required for DR to have both to perform comparably.

Although the selection of 2nVD was empirical, our experiments show that it was a reliable estimate

for the ~q as long as a good BP criterion such as BCM/BDM was used.
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Figure 21.1 UFCLS-mixed pixel results produced by 10 various BP criteria with ~q¼ 10, 20, and 30.
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Figure 21.1 (Continued )
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Figure 21.1 (Continued )
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Figure 21.1 (Continued )
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Figure 21.1 (Continued )

Progressive Band Dimensionality Process 631



21.4.1.2 Endmember Extraction

This section presents another application, endmember extraction, which has recently received con-

siderable interest in hyperspectral image analysis. The endmember extraction algorithm to be used

in our experiments was the iterative N-finder algorithm (IN-FINDR) developed in Section 7.2.3.2.

However, it should be pointed out that there was no particular reason to select IN-FINDR to per-

form endmember extraction. Any endmember extraction algorithm can also be used for the same

purpose such as pixel purity index (PPI).

Following the same experiments conducted in Section 21.4.1.1, Figure 21.2(a)–(j) shows the

endmembers extracted by IN-FINDR using highest-prioritized bands with ~q¼ 10, 20, and 30

according to the 10 various BP criteria in Table 21.2, where the extracted endmembers correspond-

ing to panel signatures are marked by green triangles and the remaining extracted endmembers are

marked by red circles.

Table 21.3 also lists the endmembers extracted in Figure 21.2 that correspond to 19 R panel

pixels in Figure 1.15(b).

From Table 21.3, none of 10 BP criteria could extract five panel signatures when ~q¼ 10. The

best results were those produced by SNR, skewness, ID, and BCM/BDM, which extracted three

panel pixels. However, if ~q was increased to 20, the skewness was able to extract five endmembers

corresponding to R panel pixels that represent five pure panel signatures. If the ~q was further

increased to 30, SNR, skewness, kurtosis, entropy, and BCM/BDM can all extracted five endmem-

bers corresponding to R panel pixels that represent five pure panel signatures. Like unsupervised

spectral unmixing, ~q¼ 20 was shown once again to be a good estimate for ~q in endmember extrac-

tion, provided that a BP criterion was appropriately selected. These two applications demonstrated

two important observations. One is that as noted at the end of Section 21.4.1.1, DR required fewer

dimensions than the number of bands required by BS because DR performed data compaction

compared to BS that only selects a subset of bands while discarding all the information provided

by un-selected bands. As a result, VD provided a very good estimate for DR (Wang and Chang,

2006b). Nevertheless, VD can be actually used to estimate the value of ~q for BP criteria, which is

twice VD-estimated value, 2nVD. The second observation shows a significance difference between

DR and BS in the sense of information preservation. Since DR performs data compaction via a

transform, it is expected that most significant information has been transformed and preserved in

the first few principal dimensions. By contrast, BS does not compact information as DR does.

Table 21.3 Endmembers corresponding to R panel pixels extracted in Figure 21.2

BP criteria Endmembers corresponding to panel pixels

~q¼ 10 ~q¼ 20 ~q¼ 30

Variance p11, p521 p521 p11, p311, p312, p412, p521
SNR p11, p211, p411 p11, p221, p412, p521, p52 p11, p22, p311, p412, p521, p52
Skewness p11, p312, p521 p11, p221, p312, p411, p521 p11, p221, p312, p411, p412, p521
Kurtosis p521 p11, p412, p52 p11, p22, p312, p412, p521
Entropy p311, p521 p311, p521 p11, p22, p312, p412, p52
ID p11, p221, p411 p11, p211, p412, p521 p11, p221, p412, p521
FLDA p312, p521 p211,p312, p521 p11, p211, p312, p521
OSP p311, p521 p211, p312, p521 p11, p211, p312, p521
BCM/BDM p11, p22, p411 p11, p22, p411, p52 p11, p22, p311, p411, p412, p52
BCC/BDC p22, p411 p11, p221, p411, p412, p521 p11, p221, p411, p521
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Figure 21.2 Endmembers extracted by IN-FINDR with ~q¼ 10, 20, and 30.
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Figure 21.2 (Continued )
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Instead, it selects the most significant bands to preserve desired information without taking advan-

tage of transformed information. Consequently, it is anticipated that given the same number of

bands and dimensions/components, the information preserved by DR is generally greater than that

by BS. Consequently, BS requires more bands than DR in order for BS to preserve the same level

of information by DR.

21.4.2 Applications Using Least-Prioritized Bands

It is a common practice that BS must select bands with highest-priority scores. However, it turns out

that such an approach does not necessarily yield the best performance in some applications. More

specifically, on some occasions selecting bands with the least-priority scores may produce better

results. The significance of selecting least-priority bands may be due to the fact that subtle information

such as small targets or anomalies can be only preserved and captured by bands with least-priority

scores rather than those with highest-priority scores if a selected BP criterion is second-order statistics.

In the following, we investigated this interesting issue, which has not been explored in the past.

To shed light on this issue, a simple experiment using principal components analysis (PCA) was

performed to provide insight into the use of bands with least-priority scores. Since the 19 panel

pixels in the HYDICE scene in Figure 1.15(a) can be considered as small and rare targets

with respect to the entire image scene, the PCA-based principal components and second-order

statistics-based BP criteria may not be effective to capture the characteristics of these 19 panel

pixels, which instead may be hidden in minor components. In order to validate our assumption,

once again IN-FINDR using nine PCA-generated principal components (PCs) and nine minor

Figure 21.2 (Continued )
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components (MCs) were implemented where Figure 21.3(a) and (b) shows their respective results.

As we can see from the figure, three panel pixels p11, p312, p521 were extracted by using nine MCs

in Figure 21.3(b) compared to the only two panel pixels p312, p521 extracted by using nine PCs in

Figure 21.3(a).

Inspired by the results in Figure 21.3, we repeated the same experiments conducted in previous

sections and compared the results against those results obtained by highest-prioritized bands.

Table 21.4 lists the first 30 bands with least-priority scores selected by 10 various BP criteria with

a backslash “/” used to separate two selected bands. As also noted, if one band had lower-priority

scores, its neighboring bands also had similar lower-priority scores. Due to the fact that the uni-

form band selection does not involve BP, its experiments are not included.

With each BPC the 30 bands in Table 21.4 are separated by three categories, first set of least-

prioritized 10 bands, second set of follow-up least-prioritized 10 bands, and third set of the next

follow-up least-prioritized 10 bands to evaluate the effectiveness of each BPC in performance anal-

ysis by adding the next 10 least-prioritized bands at a time until reaching a total number of 30

least-prioritized bands.

21.4.2.1 Unsupervised Linear Spectral Mixture Analysis

Like the experiments in Section 21.4.1.1 the unsupervised spectral unmixing was performed in

exactly the same manner for ~q¼ 10, 20, and 30 except that the least-prioritized bands in Table 21.4

were selected to form new data sets to replace the original 169-band HYDICE image scene. ATGP

was also used to generate ~q target pixels to form the desired signature matrix for FCLS. Figure 21.4

(a)–(j) shows the UFCLS-mixed pixel abundance fractional maps of the 19 panel pixels resulting

from using ~q¼ 10, 20, and 30 least-prioritized bands selected by the 10 BP criteria in Table 21.4.

Comparing the results in Figure 21.4 to those in Figure 21.1, the unmixing performances using

highest-prioritized and least-prioritized bands were quite different. For example, the best perform-

ance using the first 20 least-prioritized bands was produced by the BCC/BDC in Figure 21.4(j)

compared to the results produced by both the skewness in Figure 21.1(c) and BCM/BDM in Fig-

ure 21.1(i) using the first 20 highest-prioritized bands.

It should be noted that the panels in HYDICE data are relatively small and they are only of the

one-pixel or two-pixel size. As a result, their spectral characteristics may not be captured by some

BP criteria such as variance using highest-prioritized band, but rather by least-prioritized bands

since these panels do not generally contribute much to data variance and thus do not appear in

highest-prioritized bands, a fact also justified by minor components when PCA is used. Therefore,

Figure 21.3 Nine endmembers extracted by IN-FINDR using nine PCs and nine MCs.
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the above experiments demonstrated that selecting bands with least-priority scores could be an

alternative BS to improve performance.

21.4.2.2 Endmember Extraction

Once again, the same experiments conducted in Section 21.4.1.2 were also performed for endmem-

ber extraction except that the first 30 least-prioritized bands were used. Figure 21.5(a)–(j) shows

the endmembers extracted by IN-FINDR using ~q least-prioritized bands with ~q¼ 10, 20, and 30

according to the 10 various BP criteria in Table 21.4, where the extracted endmembers correspond-

ing to panel signatures are marked by green triangles and the remaining extracted endmembers are

marked by red circles.

Table 21.5 summarizes the IN-FINDR-extracted endmembers in Figure 21.5 that corresponded

to panel pixels representing the five distinct panel signatures.

From the results in Figure 21.5 and Table 21.5, the only one to extract the five distinct panel

signatures with ~q¼ 20 bands with least-priority scores is the BCC/BDC. This was different from

Table 21.4 30 least-prioritized bands selected progressively by various 10 BP criteria

30 least-priority scores

Variance (First 10 bands) 168/169/167/164/125/124/165/166/163/162

(Second 10 bands) 160/161/159/157/158/156/154/155/123/153

(Third 10 bands) 126/130/152/129/122/151/150/131/149/148

SNR (First 10 bands) 1/2/3/4/5/6/7/8/168/9

(Second 10 bands) 10/169/167/11/12/164/165/13/166/163

(Third 10 bands) 14/15/68/16/124/125/162/160/161/18

Skewness (First 10 bands) 95/93/94/92/96/91/90/89/88/87

(Second 10 bands) 97/55/85/86/81/82/79/83/80/77

(Third 10 bands) 76/78/75/74/84/111/112/110/113/54

Kurtosis (First 10 bands) 50/49/48/47/51/46/45/44/43/42

(Second 10 bands) 41/22/23/24/40/21/25/20/39/19

(Third 10 bands) 18/26/52/17/38/16/27/15/14/37

Entropy (First 10 bands) 168/169/167/164/165/124/125/166/163/162

(Second 10 bands) 160/161/159/157/158/156/154/155/153/123

(Third 10 bands) 152/130/126/151/129/122/150/149/131/148

ID (First 10 bands) 43/9/23/42/52/45/37/71/49/47

(Second 10 bands) 39/48/50/26/38/40/44/51/20/6

(Third 10 bands) 41/73/29/36/46/17/27/25/12/21

FLDA (First 10 bands) 166/163/161/76/164/169/157/120/167/75

(Second 10 bands) 153/165/159/155/156/162/160/168/154/148

(Third 10 bands) 125/32/70/113/152/88/150/143/73/146

OSP (First 10 bands) 168/169/167/124/125/164/165/166/163/162

(Second 10 bands) 160/161/159/158/157/156/123/130/126/155

(Third 10 bands) 151/129/150/154/152/122/149/153/131/148

BCM/BDM (First 10 bands) 59/60/66/67/65/57/61/64/56/68

(Second 10 bands) 62/78/77/76/58/80/55/81/69/63

(Third 10 bands) 70/79/75/82/74/92/54/93/91/95

BCC/BDC (First 10 bands) 165/128/162/49/126/159/160/17/45/43

(Second 10 bands) 25/8/38/16/19/14/59/65/61/60

(Third 10 bands) 66/67/57/62/64/56/68/63/78/79
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Figure 21.4 UFCLS-mixed pixel results produced by 10 various BP criteria with ~q¼ 10, 20, and 30.
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Figure 21.4 (Continued )
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Figure 21.4 (Continued )

640 Hyperspectral Data Processing: Algorithm Design and Analysis



Figure 21.4 (Continued )
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Figure 21.4 (Continued )
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Figure 21.5 Endmembers extracted by IN-FINDR with ~q¼ 10, 20, and 30.
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Figure 21.5 (Continued )
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Figure 21.5 (Continued )

Table 21.5 Endmembers extracted in Figure 21.5 that correspond to panel pixels

BP criteria Endmembers corresponding to panel pixels

~q¼ 10 ~q¼ 20 ~q¼ 30

Variance p211, p411 p11, p411, p412, p521 p11, p221, p411, p43, p521

SNR p221 p221, p521 p211, p411, p521

Skewness p11, p312 p11, p311, p411 p11, p221, p312, p411, p412, p521

Kurtosis p211, p312 p211, p312, p521 p11, p211, p311, p521

Entropy p11, p411, p52 p11, p411, p521 p11, p211, p411, p511, p521

ID p211, p311, p312, p521 p11, p221, p311, p312, p521 p11, p221, p311, p312, p521

FLDA p211, p412 p11, p211, p412, p521 p11, p221, p311, p411, p521

OSP p11, p211, p411, p521 p11, p22, p411, p412, p521 p11, p221, p312, p411, p42, p521

BCM/BDM p11, p521 p11, p412, p521 p11, p311, p412, p521

BCC/BDC p11, p312, p411 p11, p211, p312, p411, p521 p11, p211, p312, p411, p521
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the results in Figure 21.2 and Table 21.3 where the skewness using ~q¼ 20 bands with highest-

priority scores was the only one to extract the five distinct panel signatures.

21.4.3 Applications Using Mixing Highest-Prioritized and
Least-Prioritized Bands

As shown in Sections 21.4.1 and 21.4.2 using highest-prioritized and least-prioritized spectral

bands had different advantages. In this section it will be interesting to see if using a combined set

of highest- and least-prioritized spectral bands can take both advantages as demonstrated by using

mixed component analysis for spectral/spatial compression in Example 19.5 in Chapter 19.

21.4.3.1 Unsupervised Linear Spectral Mixture Analysis

According to experiments in Figures 21.1 and 21.4, 20 bands seemed to be an appropriate estimate

for the value of ~q used by BS. So, in this section, only the experiments using 20 bands were con-

ducted for a comparative analysis. In this case, we mixed the 10 highest-prioritized and the 10

least-prioritized bands to make ~q¼ 20 spectral bands to implement UFCLS for spectral unmixing.

Figure 21.6(a)–(j) shows the unmixed results produced by using the 10 BP criteria listed in

Tables 21.1.

As noted in Sections 21.4.1 and 21.4.2, if only 20 bands were allowed to implement UFCLS,

only the skewness and BCM/BDM in Figure 21.1 and the BCC/BDC in Figure 21.4 could unmix

panel pixels in their corresponding five rows. However, if these 20 bands were selected by mixing

10 highest-prioritized and 10 least-prioritized bands, Figure 21.6 shows that there were four BP

criteria, entropy, ID, FLDA, and BCC/BDC that could indeed achieve better unmixed results for

the 19 panel pixels. These experiment demonstrated that using 20 highest-prioritized bands or 20

least-prioritized bands alone may not be as effective as mixing 10 highest-prioritized bands and

10 least-prioritized bands. However, this conclusion was not true in endmember extraction as will

be demonstrated in the following section.

21.4.3.2 Endmember Extraction

Interestingly, if we implemented the same 10 BP criteria by selecting their first 10 bands with high-

est-priority scores in Table 21.2 and 10 bands with least-priority scores in Table 21.4 to make up

~q¼ 20 bands, the 20 endmembers extracted by IN-FINDR are shown in Figure 21.7 where the

endmembers marked by triangles and open circles represent panel and non-panel pixels,

respectively.

Table 21.6 also tabulates the panel pixels extracted in Figure 21.7 along with the results from

Table 21.3 and Table 21.5 for ~q¼ 20 for comparison.

Unlike the results produced by unsupervised spectral unmixing in Figure 21.6, Table 21.6 dem-

onstrated that endmember extraction using a combination of the first 10 highest-prioritized and the

first 10 least-prioritized bands did not necessarily perform better than that using only the first 20

highest-prioritized bands or the first 20 least-prioritized bands alone. As a matter of fact, none of

the 10 BP criteria could extract the five distinct panel signatures compared to the skewness using

the first 20 highest-prioritized bands and the BCC/BDC using the first 20 least-prioritized bands

that could pull out all the five panel signatures. Nevertheless, endmember extraction was more

effective if the first 20 least-prioritized bands were used for most of the 10 BP criteria. This is

mainly due to the fact that endmembers are usually considered as rare signatures and insignificant

targets in which case only least-prioritized bands can effectively preserve their information.
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As a final remark, all the results in Sections 21.4.6, 21.4.7 and 21.4.3 provided solid evidence

that ~q¼ 20 was in fact a very good estimate for the number of spectral bands to be selected for

spectral unmixing and endmember extraction. The number of 20 was very close to 18, which is

twice VD-estimated value, nVD¼ 9 with PF¼ 10�4 which was further confirmed by the experi-

ments conducted in Chapter 17.

As another example for endmember extraction, the real Cuprite data in Figure 1.12(a) is also

used to conduct similar experiments for comparison. It should be noted that unlike the HYDICE,

which provides complete knowledge of all 19 R panel pixels, the ground truth provided by the

Cuprite image scene does not include complete knowledge of all mineral signatures. In this case,

the two supervised BP criteria, OSP and FLDA, were not used for a comparative study.

Figure 21.6 UFCLS-mixed pixel results produced by 10 BP criteria with ~q¼ 20 using the 10 highest-

prioritized and the 10 least-prioritized bands.
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VD for this image scene was estimated with various false alarm probabilities in Table 5.6. For our

experiments, nVD¼ 22 is chosen with PF¼ 10�4 with HFC method used for VD estimation. This

number was also used for the same image scene for endmember extraction in Chang et al. (2006).

Following the same experiments conducted for endmember extraction in Sections 21.4.1.2 and

21.4.2.2, Tables 21.7 and 21.8 list the first 40 highest-prioritized bands and first 40 least-prioritized

bands, respectively, where 40 was approximately twice the value estimated by VD that is 44¼ 2nVD.

Tables 21.9 and 21.10 tabulate the IN-FINDR extracted endmembers that correspond to the five

mineral signatures using ~q highest-prioritized bands and ~q least-prioritized bands for ~q¼ 20, 30

and 40, respectively, where extracted endmembers, denoted by lowercase letters, “a, b, c, k, m,”

Figure 21.6 (Continued )
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Figure 21.7 Endmembers extracted by IN-FINDR using the first 10 highest-prioritized and 10 least-

prioritized bands.
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are identified by comparing their signatures against the signatures of the ground truth endmember

pixels, upper case letters, “A, B, C, K, M” in Figure 1.12(b) by spectral similarity distance, SAM.

It should be noted that the IN-FINDR-found pixels were generally not the same ground truth

pixels in Figure 1.12(b). Instead, they were located in different areas, but have very close signa-

tures in the sense of SAM to those of the five mineral pixels identified in Figure 1.12(b)

As shown in Tables 21.9 and 21.10, the greater the value of ~q was, the better the endmember

extraction for BP criteria were. Nevertheless, ~q¼ 20 provided a very good estimate for the value of

~q for IN-FINDR to extract all the five mineral signatures where the three BP criteria, variance, and

BCM/BDM, and BCC/BDC in Table 21.9 and the four BP criteria, kurtosis, ID, BCM/BDM, and

BCC/BDC in Table 21.10 were able to pull out pixels that corresponded to all the five distinct

mineral signatures. In this case, it seemed that the nVD¼ 22 was a good estimate for value of ~q
instead of twice VD-estimated value, 2nVD¼ 18 used in previous HYDICE experiments. If we

further compare Table 21.10 to Table 21.9, it is found that for this particular cuprite image scene

using the bands with the first 20 least priority scores to perform endmember extraction was more

effective than using the bands with the first 20 highest priority scores.

Finally, we implemented a mixture of the first 10 highest-prioritized bands and first 10 least-

prioritized bands for endmember extraction in the same fashion as that conducted in Section

21.4.3.2. Table 21.11 tabulates the IN-FINDR extracted endmembers that correspond to the five

mineral signatures.

Comparing Table 21.11 to Tables 21.9 and 21.10, it was obvious that mixing the first 10 highest-

prioritized bands and first 10 least-prioritized bands did not perform as well as the first 20 highest-

prioritized bands or the first 20 least-prioritized bands alone did, a similar conclusion that was also

observed for HYDICE experiments in Section 21.4.3.2.

Several new findings from the above experimental results are particularly interesting. One is that

according to our extensive experience, BCM/BDM and BCC/BDC were generally better criteria than

any other BP criteria in most applications. Another is that bands with the lower-priority scores had

been shown to be more important than bands with the higher-priority scores in some applications

such as endmember extraction, detection, and classification of small targets or anomalies. A third one

is that as demonstrated in Chang (2006) and Chang and Wang (2006), no matter what BP criterion

Table 21.6 Comparison between 10 BP criteria by using three different band selection methods, which are

20 highest- 20 least-, and 10 highestþ 10 least prioritized bands

20 highest-prioritized

bands

20 least-prioritized

bands

10 highestþ 10 least prioritized

bands

Variance p521 p11, p411, p412, p521, p11, p311, p412, p521,

SNR p11, p221, p412, p521, p52, p221, p521 p11, p411,

Skewness p11, p221, p312, p411, p521, p11, p311, p411 p211, p312, p412, p521,

Kurtosis p11, p412, p52, p211, p312, p521, p211, p312, p412, p521,

Entropy p312, p521, p11, p411, p521, p411, p521,

ID p11, p211, p412, p521 p11, p221, p311, p312,

p521,

p11, p312, p521,

FLDA p211, p312, p521, p11, p211, p412, p521, p11, p211, p312, p521,

OSP p211, p312, p521, p11, p22, p411, p412, p521 p311, p412, p511

BCM/BDM p11, p22, p411, p52 p11, p412, p521, p11, p411, p521

BCC/BDC p11, p221, p411, p412, p521 p11, p211, p312, p411, p521 p11, p312, p411, p521,
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was used the number of spectral bands, ~q, required for BS was generally higher than the number of

spectral dimensions required to be retained after DR in order for BS to accomplish the same task as

DR did. In this case, VD produces a reliable estimate for DR as shown in Wang and Chang (2006b)

and Chang et al. (2006), while providing a lower bound on BS as witnessed in our experiments.

21.5 Progressive Band Dimensionality Process

The introduction of BP is to set a stage for progressive band dimensionality process (PBDP) to

perform PBDE and PBDR. Following the treatment given Section 20.4 similar definitions to

(20.12)–(20.14) can be also derived as follows.

Assume that frBPCl gL
l¼1 is a set of priority scores calculated by a BPC where rBPCj is a priority

score assigned to the jth band, Bj. Then for j; k 2 f1; 2; . . . ; Lg
rBPCj > rBPCk , priorityBPCðBjÞ > priorityBPCðBkÞ ð21:40Þ

Table 21.7 40 Highest-prioritized bands progressively selected by various 10 BP criteria

40 highest priority scores

Variance (First 10 bands) 87/85/88/86/89/84/91/80/78/90

(Second 10 bands) 92/83/82/79/93/81/98/99/97/189

(Third 10 bands) 77/76/75/94/100/74/96/95/73/72

(Fourth 10 bands) 101/71/70/69/68/67/123/124/122/121

SNR (First 10 bands) 68/71/67/69/70/72/66/73/65/26

(Second 10 bands) 74/25/27/23/24/28/22/64/89/21

(Third 10 bands) 75/63/87/88/85/86/20/91/19/18

(Fourth 10 bands) 83/84/42/29/53/90/76/52/39/17

Skewness (First 10 bands) 2/1/3/4/5/6/7/8/9/10

(Second 10 bands) 11/12/13/14/184/15/185/183/181/16

(Third 10 bands) 179/178/180/182/17/177/170/171/18/19

(Fourth 10 bands) 159/169/20/158/176/157/21/22/23/186

Kurtosis (First 10 bands) 2/3/1/4/5/6/7/8/9/185

(Second 10 bands) 181/183/184/10/179/178/180/170/182/177

(Third 10 bands) 11/169/171/12/176/13/172/14/159/158/

(Fourth 10 bands) 168/157/156/175/155/15/154/160/167/173

Entropy (First 10 bands) 87/82/88/85/76/83/89/77/80/101

(Second 10 bands) 86/100/74/98/81/99/71/84/75/91

(Third 10 bands) 78/70/79/69/73/92/72/68/90/110

(Fourth 10 bands) 62/63/64/130/111/61/129/58/109/57

ID (First 10 bands) 6/2/124/117/11/123/12/96/125/9

(Second 10 bands) 13/15/10/126/122/14/7/16/5/165

(Third 10 bands) 112/1/8/4/167/3/164/166/114/163

(Fourth 10 bands) 162/19/17/18/94/95/25/161/119/113

BCM/BDM (First 10 bands) 26/117/48/37/189/64/1/185/10/172

(Second 10 bands) 47/4/60/28/165/17/5/2/151/158

(Third 10 bands) 3/94/29/9/7/6/8/58/13/11

(Fourth 10 bands) 91/137/14/153/123/174/12/177/160/167

BCC/BDC (First 10 bands) 185/37/2/3/5/64/8/9/6/7

(Second 10 bands) 10/165/4/11/12/14/151/13/28/15

(Third 10 bands) 16/153/17/19/18/29/184/20/177/47

(Fourth 10 bands) 21/22/188/25/24/23/167/186/30/31
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where fpriorityBPCðBlÞgLl¼1 determines how the L spectral bands, fBlgLl¼1 are selected by PBDP

progressively. If fpriorityBPCðBlÞgLl¼1 is arranged in descending order according to their priorities,

priorityBPCðBl1Þ � priorityBPCðBl2Þ � � � � � prioirtyBPCðBlLÞ where

l1 ¼ arg maxlr
BPC
l

� �
l2 ¼ arg maxl 6¼l1r

BPC
l

� �
; . . . ; and lL ¼ arg minlr

BPC
l

� � ð21:41Þ
and fl1; l2; . . . ; lLg is a simply permutation of f1; 2; . . . ; Lg. Then the rank of all the L spectral

bands, fBlgLl¼1 is arranged by rankðBl1Þ ¼ 1; rankðBl2Þ ¼ 2; . . . ; rankðBlLÞ ¼ L. That is,

rankBPCðBlÞ 2 f1; 2; . . . ; Lg and
priorityBPCðBjÞ > priorityBPCðBkÞ , rankBPCðBjÞ < rankBPCðBkÞ ð21:42Þ

where the smaller number the rank(Bl), the higher priority the Bl. It is worth noting that for a

generic representation there is no particular BPC specified in rBPCl in (21.40). However, for exam-

ple, if BPC is specified by skewness, then rBPCl ¼ rskewnessl .

Table 21.8 40 Least-prioritized bands progressively selected by various 10 BP criteria

40 Least priority scores

Variance (First 10 bands) 2/1/3/4/5/6/185/184/7/183

(Second 10 bands) 8/181/182/180/186/179/9/178/10/177

(Third 10 bands) 176/169/11/160/170/171/175/159/168/167

(Fourth 10 bands) 161/158/172/12/174/173/166/165/162/164

SNR (First 10 bands) 187/189/188/186/185/183/182/184/180/170

(Second 10 bands) 1/181/139/177/179/176/175/178/102/173

(Third 10 bands) 138/174/140/172/171/159/169/168/2/158/

(Fourth 10 bands) 167/164/165/136/161/160/166/156/162/157

Skewness (First 10 bands) 135/129/128/130/127/131/132/126/125/124

(Second 10 bands) 133/134/123/122/121/120/119/118/117/116

(Third 10 bands) 115/114/113/139/112/111/110/109/138/108

(Fourth 10 bands) 140/107/136/137/141/102/103/189/106/104

Kurtosis (First 10 bands) 189/123/122/121/124/120/119/125/118/101

(Second 10 bands) 126/117/116/127/115/100/99/114/98/128/

(Third 10 bands) 113/97/112/96/95/129/187/92/94/91/

(Fourth 10 bands) 111/93/90/89/110/88/130/87/86/85

Entropy (First 10 bands) 2/1/4/3/164/165/5/163/6/166

(Second 10 bands) 7/8/9/167/10/123/112/11/12/162

(Third 10 bands) 13/14/16/96/15/161/19/168/185/18

(Fourth 10 bands) 124/17/95/183/184/125/117/126/177/180

ID (First 10 bands) 100/99/87/109/88/108/110/86/85/98

(Second 10 bands) 84/83/92/130/89/131/132/133/134/107

(Third 10 bands) 135/76/82/75/74/129/101/77/91/174

(Fourth 10 bands) 111/138/175/141/80/136/140/176/173/71

BCM/BDM (First 10 bands) 122/125/121/127/129/118/120/134/132/128

(Second 10 bands) 131/130/101/115/110/92/126/99/93/100

(Third 10 bands) 98/109/82/88/108/97/116/144/86/84

(Fourth 10 bands) 96/90/83/106/102/89/103/107/105/80

BCC/BDC (First 10 bands) 26/189/48/117/158/80/124/1/122/125

(Second 10 bands) 127/183/121/128/129/120/98/70/134/119

(Third 10 bands) 131/126/118/140/130/132/115/111/79/135

(Fourth 10 bands) 116/141/113/100/123/101/96/110/95/99
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By means of frBPCl gL
l¼1 or fpriorityBPCðBlÞgLl¼1 PBDP can be performed by starting any band

number and then progressively adding or removing spectral bands specified by their corresponding

priority scores fpriorityBPCðBlÞgLl¼1 in accordance with their assigned ranks by frankBPCðBlÞgLl¼1
specified by (21.42).

21.6 Hyperspectral Compresssion by PBDP

In analogy with PSDP used to design progressive spectral dimensionality reduction (PSDR) via DP

and progressive spectral dimensionality expansion (PSDE) via DP in Chapter 20 PBDP is also a

backbone of two major dual processes, progressive band dimensionality reduction (PBDR) via BP,

and progressive band dimensionality expansion (PBDE) via BP. It has been shown in Chang et al.

(2010) that the number of target signature substances of interest in hyperspectral imagery was

generally estimated between nVD and 2nVD. So, if we use one spectral band to accommodate a

specific material substance, then the number of bands required to be selected must be equal to or

greater than the number of signature substances, which is determined by VD. So, these two num-

bers, nVD and 2nVD can be used to provide a reasonable lower bound and an upper bound on the

value of ~q for PBDE and PBDR, respectively.

Table 21.9 Endmembers extracted by IN-FINDR that corresponded to one of the five ground truth minerals

using the first 20, 30, and 40 highest-prioritized bands

BP criteria Endmembers corresponding to five minerals

~q¼ 20 ~q¼ 30 ~q¼ 40

Variance a, b, c, k, m b, c, k, m a, b, c, k

SNR a, b, c a, c, m, k a, b, c, k, m

Skewness a, b, c, m a, c, m a, c, m

Kurtosis a, b, c, k b, c, k, m a, b, c, k, m

Entropy a, b, c, k b, c, k, m a, b, c, k, m

ID a, c a, b, c, k, m a, b, c, k, m

BCM/BDM a, b, c, k, m a, b, c, k, m a, b, c, k, m

BCC/BDC a, b, c, k, m a, b, c, k, m a, b, c, k, m

Table 21.10 Endmembers extracted by IN-FINDR that corresponded to one of the five ground truth minerals

using the first 20, 30, and 40 least-prioritized bands

BP criteria Endmembers corresponding to five minerals

~q¼ 20 ~q¼ 30 ~q¼ 40

Variance a, c, k, m a, b, c, k, m a, c, m, k

SNR a, b, c, k a, c, m, k a, b, c, m

Skewness a, b, c a, b, k, m a, b, c, k, m

Kurtosis a, b, c, k, m a, c, k, m a, b, c, k, m

Entropy a, b, c, m a, b, c, k, m a, b, c, k, m

ID a, b, c, k, m a, b, c, k, m a, b, c, k, m

BCM/BDM a, b, c, k, m a, b, c, k, m a, b, c, k, m

BCC/BDC a, b, c, k, m a, b, c, k, m a, b, c, k, m
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21.6.1 Progressive Band Dimensionality Reduction Via BP

PBDR is a process that allows users to reduce a large number of spectral bands by removing cer-

tain spectral bands with low priorities. It starts with a maximal number of spectral bands and

begins to eliminate a number of spectral bands with lowest priorities from the currently processed

band set until the performance of data processing is not satisfied or it reaches the minimal number

of spectral bands, which can be determined by VD. By implementing PBDR hyperspectral infor-

mation compression can be achieved by gradually losing information of those spectral bands being

removed from consideration. In what follows, we describe its implementation in detail.

PBDR:

1. Prioritize all spectral bands via a BP criterion.

2. Initialization: Use VD to determine the minimal number of spectral bands required to be

retained, denoted by nVD. Let ninitial be the number of spectral bands to begin with for the

process and nD be the step size of bands to reduce. Set k¼ 0.

3. Start off spectral bands with fpriorityBPCðBlÞgninitiall¼1 where BPC is a generic notation for a

BP criterion to be specified.

4. Evaluate the performance of data processing to see if it is satisfied. If it is not, the algorithm

is terminated. Otherwise, let k k þ 1 and continue.

5. At the kth reduction, eliminate the next least-prioritized spectral bands from currently being

processed spectral bands so that the resultant number of spectral bands to be processed is

reduced to ninitial � k � nD. In this case, the total number of spectral components to be proc-

essed is reduced from ninitial � ðk � 1ÞnD to ninitial � k � nD.
6. If ninitial � k � nDð Þ > nVD, go to step 5. Otherwise, the algorithm is terminated.

Three notes on PBDR can be summarized below.

a. One is the ninital used to start PBDR. The upper bound on ninitial is the total number of spectral

bands. However, in many applications, it is usually sufficient by setting ninitial¼ 2nVD.

b. In step 5 of PBDR, the number of spectral bands eliminated at each iteration is nD, which can be

arbitrary. For a simple case, we can set nD¼ 1. So, the number of added spectral bands will be

increased from ninitial � k to ninitial � ðk þ 1Þ.
c. The stopping rule provided in step 6 is only for a general guideline and is not necessarily opti-

mal. It can be replaced with other rules when there is a better one.

Table 21.11 Endmember extracted by the mixture of the first 10 highest-prioritized and 10 least-prioritized

bands

BP criteria Endmembers corresponding to five minerals

Variance a, c, m

SNR a, b, c

Skewness a, b, c, m

Kurtosis a, c, k, m

Entropy c, k, m

ID a, b, c, k

BCM/BDM a, b, c, k, m

BCC/BDC a, b, c, k, m
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21.6.2 Progressive Band Dimensionality Expansion Via BP

As a complete opposite to PBDR, PBDE performs reversely in the way that PBDR does. The pro-

cess is terminated only if the performance of data processing is satisfied or it reaches the maximal

number of spectral components. With PBDE the information available to data processing is gradu-

ally increased band-by-band by including new information provided by added spectral bands in

descending priorities, in which case less hyperspectral information compression is achieved. A

detailed implementation of PBDE is summarized as follows.

PBDE:

1. Prioritize all the spectral bands via a BP criterion.

2. Initialization: Use VD to determine an initial number of spectral bands needed to be started

with, denoted by nVD. Let nfinal be the final number of spectral bands to terminate the pro-

cess and nD be the step size of bands to expand. Set k¼ 0.

3. Start off the first nVD prioritized spectral bands with fpriorityBPCðBlÞgnVDl¼1 where BPC is a

generic notation for a BP criterion to be specified.

4. Evaluate the performance of data processing to see if it is satisfied. If it is, the algorithm is

terminated. Otherwise, let k k þ 1 and continue.

5. At the kth expansion, add the next highest-prioritized spectral bands. In this case, the total

number of spectral bands to be processed is increased from nVD þ ðk � 1Þ � nD to

nVD þ k � nD.
6. If nVD þ k � nDð Þ < nfinal, go to step 5. Otherwise, the algorithm is terminated.

Three notes on PBDE similar to those of PBDR described at the end of Section 21.4.1 are also

worth mentioning.

a. One is the nfinal used to terminate to PBDE. The upper bound on nfinal is the total number of

spectral bands. However, in many applications, it is usually sufficient by setting nT¼ 2nVD.

b. In step 2 of PBDE, nD is the step size of bands, which denotes the number of spectral bands to

be added at a time in each iteration in step 5. Generally, nD can be set 1 or 2.

c. The stopping rule provided in step 6 is only for a general guideline and is not necessarily opti-

mal. It can be replaced with other rules when there is a better one.

It should be pointed out that the range estimated by VD, [nVD,2nVD] only provides a feasible

stopping rule for both PBDR and PBDE. In order to obtain the optimal solution, the stopping rule

must be determined by separate and more specific applications. For instance, experiments con-

ducted in Section 21.4.3.1 provided good examples where the stopping rule can be determined by

a specific application performance, LSMA.

A similar comment made at the end of Section 20.5 in Chapter 20 on the pair of (PSDR, PSDE)

in comparison with the pair of the sequential forward selection (SFS) and sequential backward

selection (SBS) developed for feature selection in (Serpico and Bruzzone, 2001) is also applied to

the pair (PBDR, PBDE) where the information contained in a spectral band can be considered as a

feature vector. So, PBDE can be carried out as a sequential forward process that increases spectral

information by adding more spectral bands, while PBDR can be implemented as a sequential back-

ward process, which is a reverse process of PBDE and reduces spectral information by eliminating

more spectral bands. The only difference between the pair of (PBDR, PBDE) and the pair of (SBS,

SFS) is that the latter pair does not prioritize features for selection.

Finally, in order to make a further distinction between the pair of (PBDR, PBDE) and the pair of

(SBS, SFS), one remark on the difference between “progressive” process and “sequential” process
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is noteworthy. A progressive process is a process that uses previous results to gradually improve or

reduce performance. A sequential process is a process that carries out data sample vectors one after

another in sequence where each data sample vector is fully processed. A simple example should

serve the purpose of illustration. Assume that there is an 8-bit image. This image can be repre-

sented by using progressive image processing via the bit-plane coding. It is first encoded by the

most significant bit and then more bits are added to improve image quality progressively until the

least bit is added to completely represent the image. So, in this case, there are eight stages (one

stage represented by one bit) to represent images progressively with previous images included as

part of images generated in subsequent stages. This progressive process is terminated when it com-

pletes eight progressive stages. On the other hand, the image can be represented by using sequen-

tial image processing where each image pixel is encoded by using the full bit rate, 8 bits. This

sequential process begins with the first pixel, then second pixel, etc. until it reaches the last

pixel. So, this process is carried out pixel by pixel and line by line with 8-bit coding. This

sequential image process is completed until it reaches the last image pixel. So, in progressive

image processing the progressive nature is determined by eight stages where the entire image

is improved from low to high resolution. How many stages required to be completed is deter-

mined by how fine resolution is needed. In sequential image processing the sequential nature

is determined by the number of pixels to be processed. The entire image cannot be completed

until all the image pixels are processed. The web image is represented by such a sequential

image representation. Using a similar interpretation, PBDP belongs to progressive image

processing, which performs band dimensionality expansion and reduction, while SFS and

SBS are actually sequential image processing, which finds features sequentially. So, one fun-

damental difference between PBDE and sequential band dimensionality expansion (SBDE) is

that the bands selected by PBDE using a smaller number of bands are always part of the

bands selected by PBDE using a larger number of bands, while the bands selected by the

SBDE using a smaller number of bands are not necessarily part of bands selected by SBDE

using a larger number of bands. This is because SBDE must re-select new bands again once

the number of bands is increased. Another fundamental difference is that PBDE adds bands

according to priority scores calculated by a band prioritization criterion, while the SBDE

must solve a new optimization problem as the number of bands changes and no band prioriti-

zation is involved. Similar arguments are also applied to PBDR and sequential band dimen-

sionality reduction (SBDR). The SFS and SBS are considered as such sequential image

processes that must re-solve optimization problems every time a feature is removed or added.

These selection processes can be made in a progressive manner once these features are found

and prioritized as the way it is done by a band prioritization criterion.

21.7 Experiments for PBDP

As a parallel section to Section 20.6 the same experiments conducted for PSDP were also per-

formed for PBDP in this section for comparison where three applications, endmember extraction,

land cover/use classification, and spectral unmixing using three different types of hyperspectral

image data sets are considered.

21.7.1 Endmember Extraction

The Cuprite data in Figure 1.12(a) were used for endmember extraction where IN-FINDR was

selected to extract the five mineral signatures, A, B, C, K, and M of major interest in the scene.

Figure 21.8(a)–(g) plots extracted endmembers by IN-FINDR where seven BP criteria, variance,
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Figure 21.8 Endmember extraction results of PBDP prioritized cuprite scene using different BP criteria.
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SNR, skewness, kurtosis, entropy, ID, and neg-entropy were used to prioritize bands to be used by

PBDP. VD-estimated value for this scene was nVD¼ 22 that was the same used for experiments in

Chapter 20. Its twice value 2nVD¼ 44 provided an upper bound used by PBDP. Therefore, the x-

axis represents the number of prioritized bands used by PBDP starting from 0 to 50, and the y-axis

is the number of extracted endmembers. When the number of extracted endmembers is less than 5,

the extracted endmembers are specified by particular mineral signatures. As shown in Figure 21.8

the high-order statistics-based BP criteria generally performed better than second-order statistics-

based BP criteria such as variance and SNR in the sense that fewer band numbers were required to

extract five endmembers. The smallest and largest numbers of bands required to extract all the five

mineral signatures were between 25 and 31. Compared to the results produced by PSDP in Fig-

ure 20.8, it is obvious that the number of spectral bands required by PBDP was greater than that by

PSDP, which was between 18 and 28. This made sense because PSDP performed data compaction

as opposed to PBDP, which essentially performed data reduction.

21.7.2 Land Cover/Use Classification

The Purdue Indiana Indian Pine Test Site in Figure 1.13 was also used for land cover/use clas-

sification. Figure 21.9 shows classification rates of MLC using PSDP based on seven BP crite-

ria: variance colored by dark blue, SNR by light brown, skewness by purple, kurtosis by red,

entropy by deep yellow, ID by black, and negentropy by green where the x-axis denotes the

number of prioritized bands to be used to form image cubes for MLC classification, while

the y-axis indicates MLC classification rates. In order to see how the number of bands affects

the classification performance, the number of prioritized dimensions is run from 1 to the entire

number of bands, 202.

As shown in Figure 21.9, it is very clear that different classes required different number of spec-

tral bands to achieve their best performance in classification. For instance, class 16 only required a
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Figure 21.9 MLC-classification rate of 16 classes versus the number of prioritized bands.
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few bands to achieve very high classification rate. Classes 1, 8, and 13 could also reach very

high classification performance as long as ~q went beyond 50. On the contrary, some of classes

were very difficult to achieve such as high classification performance even if the entire 202 spectral

bands were fully used. For example, classes 3 and 11 are considered as most difficult cases. This is

probably due to the fact that the size of these two classes is too small or the ground truth informa-

tion is not very accurate for these classes. As a consequence, the sample vectors in these two clas-

ses cannot provide reliable statistics to be used by MLC. From Figure 21.9 another interesting

observation is worth noting where the classification of classes 7 and 9 started to slightly deteriorate

when ~q was greater than a certain number for some BP criteria. In particular, as the number of
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prioritized bands was increased the classification performance of these two classes was actually

degraded. Other than these extreme cases we categorize classification performance into two

groups. One is the cases that the classification rates never improved and saturated after a certain

number of used prioritized bands, for example, classes 5, 13, and 16. Another is that the classifica-

tion kept improving as the number of used prioritized bands was increased. It is particularly true

for most of remaining classes, such as classes 1, 2, 3, 6, 8, 11, 12, and 15.

21.7.3 Linear Spectral Mixture Analysis

The 15-panel HYDICE images scene in Figure 1.15(a) and (b) was used to demonstrate the utility of

PBDP in spectral unmxing. According to the ground truth in Figure 1.15(b) and (c) and four identi-

fied background signatures in Figure 1.17 there are at least nine signatures present in the scene that

can be used to form a nine-signature matrix for a linear mixing model to perform spectral unmixing

where FCLS was used to unmix all data sample vectors into their corresponding abundance frac-

tions. Six BP criteria: variance, skewness, kurtosis, entropy, ID, and neg-entropy were used to eval-

uate the unmixing performance of PBDR and PBDE with the step size of band numbers set to one,

that is, step size nD¼ 1. Since VD provides a good estimate for a lower bound to ninitial for PBDE

and an upper bound to nfinal for PBDR, ninitial is set to nVD¼ 9 for PBDE and 2nVD¼ 18 for PBDR,

respectively. From the scene there are five distinct panel signatures present in the field. If one band is

required to accommodate one signature, it needs at least five bands to perform spectral unmixing in

which case 5 provides a lower bound for ninitial¼ 9 used by PBDE. On the other hand, it has been

shown in Chang (2003a, Chapter 5) and Heinz and Chang (2001) that 34 target signatures were

sufficient for FCLS to work well in spectral unmxing. In this case, a sufficient number of bands to

accommodate 34 target signatures was 34 that was used as an upper bound on nfinal¼ 18 used by

PBDR. Figure 21.10 plots six curves to represent the FCLS-unmixed abundance fractions of the 19

R pixels in the five rows in the range of [0,1] using the number of prioritized bands, ~q ranging from 8

to 35, respectively, with the x-axis representing the number of prioritized bands to be used to form

image cubes for FCLS versus y-axis indicating the FCLS-unmixed abundance fractions of 19 R

panel pixels where six BP criteria: variance colored by dark blue-square, skewness by green-dia-

mond, kurtosis by red-upside down triangle, entropy by cyan-open circle, ID by black-asterisk, and

neg-entropy by purple-star were implemented. It is worth noting that when the number of bands, ~q
was smaller than 8, the results were fluctuated and not reliable as shown in the plots.

As shown in Figure 21.10, each panel pixel required a different value of ~q to achieve its optimal

performance in terms of its FCLS-unmixed abundance fraction compared to its true abundance in

Figure 1.15(b). Since in the plot of the panel pixel p521 the five curves by generated by variance

(blue), skewness (green), kurtosis (red), ID (black), and negentropy (magenta) were identical, only

two curves are shown in the plot, one for the five identical curves and the other for entropy (cyan).

The quantification results in Figure 21.10 provided evidence that an optimal set of selected priori-

tized bands for one panel pixel was not necessarily also optimal for another panel pixel. For exam-

ple, from visual inspection of the plots in Figure 21.10 the 19 panel pixels can be divided into three

groups according to unmixing performance using various values of ~q to select bands. The first

group including panel pixels, p12 (except entropy), p211, p22, p311, p43, p511, p521, p52, p53 required

fairly stable values of ~q to produce good FCLS-unmixed abundance fractions. The second group

including panel pixels, p13, p32, p33, p411, p42 needed moderately stable values of ~q to produce

good FCLS-unmixed abundance fractions. The third group including panel pixels, p11, p221, p23,

p312, p412 used fluctuated values of ~q to produce good FCLS-unmixed abundance fractions. Inter-

estingly, the three panel pixels p11, p12, and p13 in row 1 happened to the case that covers all the

three groups while all the four panel pixels, p511, p521, p52, p53 in row 5 falling in the same first
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group. Accordingly, using a fixed number of spectral bands to perform the conventional BS could

not accomplish what PBDP could as demonstrated in Figure 21.10. However, a stopping rule for

PBDP could be further determined by FCLS performance by comparing FCLS-unmixed results

from using two consecutive band sets. Using the panel pixel p511 as an example, PBDE would be

terminated at ~q¼ 8 if ninital¼ 5 or 9 if ninital¼ 9 when both results were very close. By contrast,

PBDR would be terminated at ~q¼ 18 if nfinal¼ 18 or 35 if nfinal¼ 35. So, choosing the values of

ninital and nfinal was important. Nevertheless, the conducted experiments seemed to demonstrate

that the range provided by VD, [nVD,2nVD] may not be optimal but indeed offered a feasible region

for users by setting [ninitial,nfinal] to [nVD,2nVD]. This issue will be further discussed in Chapter 22

by introducing a new concept of DDA.
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Figure 21.10 Plots of FCLS-unmixed abundance fractions versus number of prioritized bands for 19 red

pixels in five row panels in HYDICE image by variance, skewness, kurtosis, entropy, ID, and negentropy.
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21.8 Conclusions

The concept of BP was previously investigated by Chang et al. (1999) to be part of band selection

that prioritizes spectral bands in accordance with their priority scores calculated by a specific crite-

rion designed for a particular application. The term of BP was coined and further explored for

PBDP in Chang et al. (2010) where the two dual processes, forward PBDP and backward PBDP,

were re-named as PBDE and PBDR, respectively, both of which can perform band selection

without actually solving an optimization problem required by the conventional BS. Several poten-

tials of PBDP in various applications have been explored in this chapter. (1) It extends second-

order statistics band prioritization criteria to including high-order statistics band prioritization

criteria where four categories of criteria are derived for BP based on second-order statistics, high-

order statistics, classification, and band correlation/dependence minimization, respectively. Inter-

estingly, such categorization has not been studied in the literature. (2) By virtue of PBDP two dual

processes can be developed, namely, PBDR via BP and PBDE via BP that can be used for applica-

tions in data compression, storage, transmission, and communication. (3) PBDP takes advantage of

a recently developed VD to provide lower or upper bounds on the number of bands to be selected.

(4) In some applications where the small targets can only show up in bands with least priorities. In

this case, PBDP enables users to perform band selection from bands with least priorities instead of

highest priorities where this concept was never investigated in the past. (5) PBDP can be further
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extended to progressive band selection by including a process , called band de-correlation (BD),

which can remove interband correlation among prioritized bands. (6) Finally, PBDP does not

require knowing the number of bands needed to be selected as required by the conventional BS.

The bands can be selected according to their calculated priority scores progressively to improve

performance where VD can be used as an initial guess. This cannot be done by the conventional

BS if the number of bands is changed in which case BS needs to be re-processed again. This advan-

tage is particularly useful for high computing performance in hyperspectral data compression and

communication in space-borne platform where reduction of computational complexity becomes

imperative. (7) The progressive nature provided by PBDP does not exist in the conventional BS. It

allows users to perform progressive band dimensionality reduction, expansion, selection, transmis-

sion in data communication, etc. for further image analysis. Obviously, this task cannot be accom-

plished by the conventional BS since it does not rank all the spectral bands. (8) PBDP allows

progressive band selection (PBS) to perform band selection in either way in terms of higher priorit-

ies and lower priorities depending on applications as illustrated in our experiments. Despite the

fact that only two applications, that is, endmember extraction and linear spectral unmixing are

investigated in this chapter for utility of PBDP, other applications such as target detection, anomaly

detection, and data compression can also be conducted. It is our belief that PBDP developed in this

chapter will find its way in many more applications yet to be explored (Chang, 2013). Since PBDP

does not perform inter-band redundancy compression, BD is usually included in PBDP to expand

its capability in band selection. So, when PBDP is implemented in conjunction with BD, it is called

PBS that will be discussed in Chapter 23.
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22

Dynamic Dimensionality Allocation

The progressive spectral dimensionality process (PSDP) in Chapter 20 and progressive band dimen-

sionality process (PBDP) in Chapter 21 are developed to mitigate three major issues arising in both

dimensionality reduction (DR) and band selection (BS). One is that the number of dimensions to be

retained after DR, q, and the number of bands for BS to select, ~q; must be known a priori. Another

is that the values of q and ~q must be fixed once they are determined and cannot be changed during

the process. The third one is that when the values of q and ~q are changed, the entire process of

DR or BS must be reimplemented over again and cannot take advantage of results obtained with

previous smaller values of q and ~q. Both PSDP and PBDP address the second and third issues by

introducing dimensionality prioritization (DP) and band prioritization (BP) and the second issue by

bounding q and ~q from below by nVD and above by 2nVD with nVD being the value determined

by virtual dimensionality (VD) defined in Chapter 5, that is, nVD � q; ~q � 2nVD. However, in real

world problems the values of q and ~q generally vary with different applications even when the

same data set is used. As a consequence, fixing q and ~q at constant values may not be practical or

realistic. This chapter introduces a new concept, to be called dynamic dimensionality allocation

(DDA), that allows users to dynamically adjust the values of q and ~q to meet various applications.

22.1 Introduction

When DR and BS are performed, it assumes that for a given data set the values of q and ~q
are known and fixed during the process regardless of applications. However, in many practi-

cal applications this may not be true. Using linear spectral mixture analysis (LSMA) as an

example, let mj

� �p

j¼1
be a set of p signatures used by LSMA to perform spectral unmixing.

Due to their own spectral characteristics the spectral discriminatory powers of these p signa-

tures should be determined by their spectral distinctions (see Chapter 2 in Chang (2003a)).

Accordingly, each individual signature should also require different values of q and ~q for its

unmixing. This evidence has been witnessed in Figures 20.1, 20.2, 20.6, and 21.8–21.10. To

address and resolve this issue, the parameters q and ~q must be made variables to adapt

dynamically instead of being fixed at constants. While such a thought is very desirable, how

can it be really done? It is shown in source coding that to achieve optimal coding perform-

ance, variable-length coding instead of fixed-length coding must be used due to variable

probabilities of source alphabets used for information transmission (Cover and Thomas,

1991). The rationale of designing variable-length optimal codes seems to provide a clue to

solving the issue of variable dimensionality encountered in DR and BS. However, two issues
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must be addressed first, “how do we define source alphabets in hyperspectral data?” and

“how do we define their associated probabilities?”

Interestingly, the above two issues can be restated in the context of hyperspectral imaging

using the following example. First, we can interpret a hyperspectral data as an information

source. Then the endmembers discussed in PART II (Chapters 7–11) can be considered as

hyperspectral signatures that correspond to source alphabets. The next task is how to define

the probabilities of these endmembers that are similar to source alphabet probabilities.

In source coding, the source alphabet probabilities are described by relative frequencies of

occurrence among source alphabets. Such source probabilities can be interpreted by the concept

of relative spectral discriminatory probabilities recently introduced by Chang (2000) and Chang

(2003a, Chapter 2). In other words, the probability of each endmember can be characterized by

the power of its signature discriminability. In light of this interpretation the well-established

coding theory is readily applied to hyperspectral imaging where finding bit allocations for

source alphabets is equivalent to finding dimensionality allocation which specifies optimal

values of q and ~q required for each endmember to perform DR and BS, respectively. This

simple exemplary example offers the basic idea of a new concept dynamic dimensionality

allocation (DDA) introduced in the following section.

22.2 Dynamic Dimensionality Allocaction

The DDA presented in this section is designed to dynamically determine the values of q and ~q.
It originates from the pigeon-hole principle described in Section 1.3.2 as well as variable-length

coding from the information theory. According to the pigeon-hole principle each signature is

assumed as a pigeon to be accommodated by a particular spectral dimension/band which can be

considered as a pigeon-hole. Therefore, the number of pigeons should determine at least how

many pigeon-holes required for accommodation. This is equivalent to saying that the number of

spectrally distinct signatures determines the minimal number of spectral dimensions/bands

required for signature discrimination, which is exactly the original idea of VD. To materialize

DDA, we first interpret the use of a pigeon-hole to accommodate a pigeon by a binary bit “1”

and “0” otherwise. This implies that a spectral dimension/band being used to specify a parti-

cular signature will be encoded by “1.” Otherwise, “0” will be assigned to an unused spectral

dimension/band. To fit the profile of source coding, the first task is to determine what type of

signatures that can be considered as source alphabets. If the signature knowledge is provided a

priori, this known signatures can be used as desired source alphabets. If there is no prior know-

ledge available about the data, the signatures should be found in an unsupervised means. In this

case, the VD developed in Chapter 5 can be used to estimate the number of spectrally distinct

signatures, denoted by nVD. To find nVD unknown signatures, the automatic target generation

process (ATGP) developed by Ren and Chang (2003) and discussed in Section 8.5.1 can be

used to produce a set of signatures, sj
� �nVD

j¼1
, that correspond to desired source alphabets. Or

alternatively, the virtual signatures found in the supervised LSMA in Chapter 17 can also serve

as the same purpose. Once these signatures of interest are found, the next task is to calculate

their discriminatory probabilities according to the relative spectral discriminatory probability

(RSDPB) in Chang (2000) and Chapter 2 in Chang (2003a) that will determine DDA. In doing

so, we briefly review the basic concept of source coding that will be used to define DDA.

Assume that an information source S is emitted by a set of source alphabets aj
� �J

j¼1
with a

given probability distribution pj

n oJ

j¼1
where pj is the probability of the occurrence of the
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source alphabet aj. To encode the source S these source alphabets must be represented by a set

of code words, called code book. Two coding schemes are generally used for finding a code

book for source encoding. One is called fixed-length coding which assigns code words with

equal length to all the source alphabets aj
� �J

j¼1
. The other is variable-length coding that

assigns code words with variable coding lengths to individual source alphabets according to

their occurrence probabilities. Let the coding length used to encode aj be denoted by lj. Shan-

non showed that the optimal coding scheme must be variable-length coding with the mean

coding length �l ¼ PJ
j¼1 pjlj determined and approximated by the source entropy,

�PJ
j¼1 pj log pj . The Huffman coding is proved to be the one that achieves the optimal coding

performance in terms of Shannon entropy (see details in Section 31.2.1). The only case that a

fixed-length coding also achieves the same performance as the Huffman coding does is when

the occurrence probabilities of all the source alphabets are equally likely.

Now how can we borrow the idea of the variable-length coding described above to apply to

hyperspectral imaging? First, let sj
� �nS

j¼1
denote the signatures of interest where nS can be

either the number of known signatures or nVD if no prior knowledge is given. Furthermore, let

nj denote the number of spectral dimensions/bands required to represent the jth signature, sj.

Then sj, nS, and nj shall play the same role as aj, J, and lj do in source coding to represent the

jth source alphabet, the number of source alphabets and number of bits required for a code

book to encode the set of source alphabets aj
� �J

j¼1
along with their corresponding probabilities

pj

n oJ

j¼1
. In other words, the source occurrence probability pj is now interpreted by nj that

reflects how difficult the sj is discriminated from other signatures in terms of spectral similarity

in the same way that how frequently the aj occurs in terms of probabilities relative to other

source alphabets used in source coding. As a result, the higher the probability pj is, the shorter

coding length, lj is. This implies that the easier to be discriminated the signature sj is, the

smaller number the nj is. In particular, to best represent the sj in terms of spectral dimensions/

bands the nj must vary with discriminatory power possessed by the signature sj. The traditional

DR/BS makes a simple and natural assumption that all the signatures are equally discriminable

by setting nj¼ nS for all sj
� �nS

j¼1
in which case it performs so-called static dimensionality allo-

cation (SDA), that is, fixed-size band dimensionality. Apparently, it is generally not true in

hyperspectral data where each material substance signature has its own spectral characteristics

and has a different level of signature discriminability. So, what DDA is to the SDA in DR/BS

is the same as what is the variable-length coding to fixed-length coding in source coding.

Recently, Wang and Chang (2007) have introduced a new concept of variable number variable

band selection (VNVBS) to be discussed in Chapter 27 and showed that using variable num-

bers of spectral bands was more effective than using fixed number of spectral bands. It

provided evidence in advantages of using DDA over SDA.

The next remaining issue is how to come up a technique to determine DDA similar to

variable-length coding used in source coding where the bit allocation is determined by the

coding lengths lj
� �J

j¼1
which can be calculated by their associated probabilities. By inter-

preting signature discriminatory probabilities as source alphabet probabilities we are able to

do the same for DDA in such a way that variable numbers of spectral dimensions/bands are

assigned to represent various discriminatory powers of signatures. Three commonly used

coding schemes, Shannon coding, Huffman coding, and Hamming coding can be developed

to find DDA.
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22.3 Signature Discriminatory Probabilties

As noted above, the key to materialize the concept of DDA is to find a means of interpreting source

alphabet probabilities used in source coding in terms of hyperspectral signatures. Let the entire

hyperspectral data be considered as an information source with a set of hyperspectral signatures

sj
� �nS

j¼1
that correspond to source alphabets aj

� �J

j¼1
. We now interpret relative occurrence frequen-

cies among J source alphabets, aj
� �J

j¼1;
as relative spectral discriminatory powers among the nS

signatures, sj
� �nS

j¼1
, then the source alphabet probabilities pj

n oJ

j¼1
can be interpreted as signature

discriminatory probabilities among sj
� �nS

j¼1
, denoted by pj

� �nS

j¼1
which can be obtained as follows.

To begin with, we select a spectral similarity measure, denoted by m �;�ð Þ such as spectral angle

mapper (SAM), and spectral information divergence (SID) (Chang, 2003a). Technically, SID may

be a better candidate than SAM since it is a criterion designed to measure discrepancy between two

probability distributions. However, if SAM is used, the cosine value, cos u, will be used instead of

the values of angle, u. Next, we choose a reference signature s as a benchmark against which each

signature of sj
� �nS

j¼1
will be compared and computed for finding their relative spectral discrimina-

tory probabilities, mðsj; sÞ for all 1 � j � nS. Normalizing by the constant of
PnS

j¼1 mðsj ; sÞ a prob-
ability vector p ¼ p1;p2; . . . ;pnSð Þ can be obtained by

pj ¼ mðsj; sÞPnS
j¼1 mðsj; sÞ ð22:1Þ

that is a probability of difficulty level of discriminating the jth signature sj with respect to the

reference signature s.

There are three candidates can be used for selection of the reference signature s, data sample

mean m, signature mean �m ¼ 1=nSð ÞPnS
j¼1 sj and any signature from sj

� �nS

j¼1
. Which one is a better

choice depends upon applications (Chang et al., 2010; Wang et al., 2010; Wang and Chang, 2007).

22.4 Coding Techniques for Determining DDA

Finding signature discriminatory probabilities only accomplishes half the task. The other half task is to

design a technique to allocate DDA required for each of signatures, sj
� �nS

j¼1;
based on their signature

discriminatory probabilities. Suppose that each spectral dimension (i.e., spectral component) or

spectral band can be only used to accommodate one and only one signature, then a binary value “1”

can be used to indicate whether a spectral dimension or spectral band is being used for signature

accommodation, “1” for being used and “0” for remaining “unused”. Consequently, DDA can be

addressed by bit allocation where the number of spectral dimensions, q and the number of spectral

bands, ~q required for each signature corresponds to the coding length used to encode a source alphabet
in source coding. This implies that finding variable-length code words using bit allocation is equi-

valent to finding variable spectral dimensions of q and variable spectral bands of ~q for sj
� �nS

j¼1
using

DDA. The following three well-established coding schemes are readily applied to determine DDA.

22.4.1 Shannon Coding-Based DDA

An earliest and well-known coding scheme was developed by Shannon who introduced self-

information to account for information provided by each source alphabet. For each source alphabet
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aj with probability pj, the self-information of aj, I(aj) is defined in Fano (1961) as

IðajÞ ¼ �log pj ð22:2Þ

Using (22.2) a Shannon coding-based scheme to determine DDA can be described as follows.

Shannon coding for dynamic dimensionality allocation

1. Find the self-information of sj, IðsjÞ ¼ �log pj for all 1 � j � nS.

2. Find qj for the signature sj by

qj ¼ �log pj

� �
; if �log pj

� � � L

L; otherwise

�
ð22:3Þ

where xd e is defined by the smallest integer � x.

3. Define the jth dimensionality allocation bj ¼ nS þ qj assigned to the signature sj where

nS � bj � nS þ L.

It should be noted that in step 3 the dimensionality allocation bsj is broken down into two val-

ues. The first value nS is the number of spectral dimensions/bands required to specify the nS signa-

tures sj
� �nS

j¼1;
where one spectral dimension/band is required to accommodate each signature.

When one spectral dimension/band is being used for signature accommodation, it is encoded by

“1” and “0” otherwise. According to the definition of VD in Chapter 5, nS is the number of spec-

trally distinct signatures if there is no prior signature knowledge available. So, there are at least

nVD bits required to accommodate all the nS¼ nVD signatures, one bit for an individual signature.

Such bits can be considered as information bits. The second value qj is the number of spectral

dimensions/bands required for sj to distinguish itself from other signatures, sif gnSi¼1;i 6¼j . In this case,

the self-information I(sj) defined by (22.2) is used to calculate additional qj bits that represent qj
spectral dimensions/bands required to discriminate the signature sj from other signatures,

sif gnSi¼1;i 6¼j . Since the IðsjÞ ¼ �log pj may be very large when pj is very small in which case, it is

set by the total number of spectral bands, L. To address this issue the Shannon coding is replaced

by the Huffman coding as described in the following.

22.4.2 Huffman Coding-Based DDA

From a theoretical point of view the Shannon code is an asymptotic optimal code. But practically,

it is not an optimal code. It is well-known that the only practical optimal code is the one developed

by Huffman (Cover and Thomas, 1991), referred to as Huffman coding. It is a variable-length cod-

ing technique which is based on a simple fact that the smaller probability the source alphabet is, the

longer its coding length. By replacing Shannon code with the Huffman code, the Shannon coding

for DDA becomes the following Huffman coding for DDA.

Huffman coding for dynamic dimensionality allocation

1. Find the Huffman code words for p ¼ p1;p2; . . . ;pnSð Þ and let lj be the coding length of sj using
the probability pj.

2. Define dimensionality allocation bj ¼ nS þ lj assigned to the signature sj where

nS � bj � nS þmax1�j�nS lj .
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22.4.3 Hamming Coding-Based DDA

Both the Shannon coding and Huffman coding described above are variable-length coding. This

section presents an interesting fixed-length coding for finding DDA. It is derived from the Ham-

ming code which uses 7 bits comprising of four information bits and three parity check bits to

correct a single encoding error. As before, each of the nS signatures requires one spectral dimen-

sion/band for its accommodation. In this case, the spectral dimensions/bands to specify these nS
signatures are referred to as information spectral dimensions/bands. Now the variable lengths,

lj
� �nS

j¼1
used by the Huffman coding can be replaced with a fixed length coding using nS as infor-

mation spectral dimensions/bands and �log nSd e as parity check spectral dimensions/bands for sj
for all 1 � j � nS. Then steps 1 and 2 in the above Huffman coding can be merged into one step as

follows. This resulting coding is called Hamming coding in which case DDA becomes static

dimensionality allocation (SDA).

Hamming coding for static dimensionality allocation

Define dimensionality allocation bj ¼ nS þ �lognSd e assigned to the signature sj for all

1 � j � nS.

It should be noted that the Hamming coding for SDA assigns the same dimensionality allocation

to all signatures sj
� �nS

j¼1
with bj ¼ nS þ �log nSd e which is bounded above from 2nVD. Since the

Hamming coding involves no signature discriminatory probabilities of sj
� �nS

j¼1
, it does not require

prior knowledge of signatures of interest, sj
� �nS

j¼1
as the Shannon coding and Huffman coding do.

Therefore, its determined DDA is a constant regardless of what applications are. In this case, DDA

is reduced to SDA.

22.4.4 Notes on DDA

In the above three coding schemes for finding DDA, the generic notation of nS is used to indicate

the number of signatures of interest that indeed varies with different applications. For example,

if the considered application is endmember extraction or linear spectral mixture analysis (LSMA),

the nS can be set to nVD. On the other hand, if the unsupervised target detection is considered as an

application, the desired signature of interest are those virtual signatures generated by the

unsupervised virtual signature finding algorithm (UVSFA) derived in Chapter 17. In this case, the

nS is the number of virtual signatures and is shown to be in the range of [nVD, 2nVD], that is,

nVD � nS � 2nVD. Finally, a very important note on DDA is worthwhile. The effectiveness of

DDA is more visible and evidential in applications of BS than that in DR. One is that BS is derived

from the pigeon-hole principle where one bit represents one spectral band being used for signature

accommodation. However, this may not quite fit DR because each spectral dimension produced by

DR is a transformed dimension not the original band dimension. Another is mainly due to the fact

the projection index components (PICs) produced by a DR transform are generally orthogonal.

However, this is not true for BS that uses spectral bands that are generally highly correlated and

not necessarily orthogonal. So, a spectral band is highly prioritized, so are its neighboring spectral

bands. That explains why DR can gain little benefit from DDA as shown in Safavi (2010).

22.5 Experiments for Dynamic Dimensionality Allocation

As demonstrated in PSDP and PBDP different signatures required various spectral dimensions/

bands to effectively perform linear spectral unmixing due to their different spectral characteristics.

These experiments provided evidence that a signature should have its own set of spectral dimen-

sions/bands to characterize its spectral profile. In order for PSDP and PBDP to demonstrate
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progressive performance, three applications, endmember extraction, land cover/use classification,

and spectral unmixing, were considered in Chapters 20 and 21 as the parameters, q and ~q, varied
ranging from nVD to 2nVD without knowing exactly what the values of q and ~q were. DDA pre-

sented in Section 22.2 is developed to make an attempt of narrowing down the range of [nVD,2nVD]

to best possible values that can be specified by DDA for dimensionality allocations for various

signatures. In the following sections we calculate DDA for the three different image data sets

which have been used for experiments conducted in Chapters 20 and 21 where the reference signa-

tures were chosen to be the signature means of signatures of interest. Of course selection of an

appropriate reference signature is also an interesting issue which will be discussed in Chapters 25,

27 and 28.

22.5.1 Reflectance Cuprite Data

The reflectance Cuprite data in Figure 1.12 has been used for experiments in PART II to evaluate

the effectiveness of an endmember extraction algorithm. According to the five known mineral sig-

natures, m1¼ alunite, m2¼ buddingtonite, m3¼ calcite, m4¼ kaolinite, and m5¼muscovite pro-

vided by the ground truth, DDA for these five signatures can be calculated by three coding

methods, Shannon coding, Huffman coding, and Hamming coding and their results are tabulated

in the last column of Table 22.1 where the signature discriminatory probabilities along with their

corresponding lengths are calculated by two spectral measures, SAM and SID and provided in the

Table 22.1 DDA results calculated by the three coding methods for reflectance cuprite data

Signaturemj nVD pj qj or lj bj (DDA)

Shannon coding m1 (Alunite) 22 SID 0.1727 2:5334d e ¼ 3 25

SAM 0.1790 2:4823d e ¼ 3 25

m2 (Buddingtonite) 22 SID 0.0764 3:7112d e ¼ 4 26

SAM 0.1150 3:1205d e ¼ 4 26

m3 (Calcite) 22 SID 0.1455 2:7806d e ¼ 3 25

SAM 0.1728 2:5327d e ¼ 3 25

m4 (Kaolinite) 22 SID 0.2529 1:9835d e ¼ 2 24

SAM 0.1922 2:3795d e ¼ 3 25

m5 (Muscovite) 22 SID 0.0372 4:4784d e ¼ 5 27

SAM 0.0888 3:4929d e ¼ 4 26

m6 (BKG) 22 SID 0.3153 1:6652d e ¼ 2 24

SAM 0.2522 1:9872d e ¼ 2 24

Huffman coding m1 (Alunite) 22 SID 0.1727 2 24

SAM 0.1790 3 25

m2 (Buddingtonite) 22 SID 0.0764 4 26

SAM 0.1150 3 25

m3 (Calcite) 22 SID 0.1455 3 25

SAM 0.1728 3 25

m4 (Kaolinite) 22 SID 0.2529 2 24

SAM 0.1922 2 24

m5 (Muscovite) 22 SID 0.0372 4 26

SAM 0.0888 3 25

m6 (BKG) 22 SID 0.3153 2 24

SAM 0.2522 2 24

Hamming coding m1 tom6 22 n/a n/a 3 25
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table for reference. In addition, the value of VD, nVD¼ 22 is also included in the table for compari-

son. As we can see from the table the values of DDA is in the range between 24 and 26.

To substantiate the fact that the values provided by DDA are good estimates of q and ~q
IN-FINDR was used to extract endmembers. Table 22.2 tabulates extracted endmembers where

SID was used to measure spectral similarity with a “1” indicating a success in extraction of one

mineral signature and a “0” indicating a failure in missing extraction of one mineral signature.

Table 22.2 Endmember extraction using DDA for reflectance cuprite data

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total

~q¼No. of selected bands 22 25 24 25 44 189

A Variance 1 1 1 1 1 1

Skewness 0 0 0 0 1 1

Kurtosis 0 1 1 1 1 1

Entropy 1 1 1 1 1 1

ID 1 0 0 0 1 1

Negentropy 0 1 1 1 0 1

~q¼No. of selected bands 22 26 26 25 44 189

B Variance 0 1 1 1 1 1

Skewness 1 1 1 0 0 1

Kurtosis 1 1 1 0 1 1

Entropy 1 0 0 1 1 1

ID 1 1 1 0 1 1

Negentropy 1 1 1 0 0 1

~q¼No. of selected bands 22 25 25 25 44 189

C Variance 1 0 0 0 1 1

Skewness 1 1 1 1 1 1

Kurtosis 1 1 1 1 1 1

Entropy 1 1 1 1 1 1

ID 1 1 1 1 1 1

Negentropy 1 1 1 1 1 1

~q¼No. of selected bands 22 24 24 25 44 189

K Variance 1 1 1 1 1 1

Skewness 1 1 1 0 1 1

Kurtosis 1 1 1 1 1 1

Entropy 1 1 1 1 1 1

ID 1 0 0 1 0 1

Negentropy 0 1 1 1 1 1

~q¼No. of selected bands 22 27 26 25 44 189

M Variance 1 1 0 0 0 1

Skewness 0 1 1 1 1 1

Kurtosis 0 1 0 0 1 1

Entropy 0 1 1 1 1 1

ID 1 1 1 1 0 1

Negentropy 0 1 1 0 1 1
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An interesting finding in Table 22.2 is that using more bands did not guarantee better endmember

extraction. For example, when bands were prioritized by skewness, IN-FINDR successfully extracted

the mineral signature “B” if the value of q̂ was 22, but it failed at q̂ ¼ 25. Then it succeeded again

when the value of q̂ was increased to 26. A similar phenomenon was also observed when bands

were prioritized by variance to extract the mineral signature M where IN-FINDR was able to extract

“M” when q̂ ¼ 22, but failed when q̂ ¼ 25; 26. It then succeeded again when q̂ ¼ 27, but also failed

again when q̂ ¼ 44. Also interesting is that nVD¼ 22 turned out to be a very good estimate. On

many occasions IN-FINDR successfully extracted mineral signatures at q̂ ¼ nVD ¼ 22, but failed at

q̂ > 22, such as ID at q̂ ¼ 24, 25 failing to extract mineral signature “A,” entropy at q̂ ¼ 26 failing

to extract mineral signature “B”, variance at q̂ ¼ 25 failing to extract mineral signature “C,”

skewness at q̂ ¼ 25 failing to extract mineral signature “K,” variance at q̂ ¼ 25, 26 failing to extract

mineral signature “M.” Nevertheless, according to Table 22.2 the best result was the one using

negentropy as a BP criterion to prioritize bands and DDA determined by Shannon coding or Huffman

coding in which case all the five mineral signatures could be successfully extracted by IN-FINDR.

22.5.2 Purdue’s Data

The Purdue Indiana Indian Pine test site in Figure 1.13 has been studied extensively in the litera-

ture for land cover/use classification. There are 16 classes of interest plus a background class. So, a

total of 17 classes are present in the data. Each of 17 class signatures was found by the sample

mean of 50% sample vectors randomly selected from its class and the other 50% will be used as

test sample vectors for maximum likelihood classification (MLC). Table 22.3 tabulates DDA

results using Shannon coding, Huffman coding, and Hamming coding where the signature discrim-

inatory probabilities along with their corresponding lengths were calculated by two spectral

Table 22.3 DDA results calculated by the three coding methods for the Purdue data

Signaturemj nVD pj qj or lj bj (DDA)

Shannon coding m1 (class 1) 29 SID 0.0128 6:2933d e ¼ 7 36

SAM 0.0304 5:0394d e ¼ 6 35

m2 (class 2) 29 SID 0.0437 4:5159d e ¼ 5 34

SAM 0.0587 4:0908d e ¼ 5 34

m3 (class 3) 29 SID 0.0392 4:6748d e ¼ 5 34

SAM 0.0551 4:1824d e ¼ 5 34

m4 (class 4) 29 SID 0.0140 6:1622d e ¼ 7 36

SAM 0.0322 4:9577d e ¼ 5 34

m5 (class 5) 29 SID 0.1341 2:8986d e ¼ 3 32

SAM 0.1002 3:3194d e ¼ 4 33

m6 (class 6) 29 SID 0.0316 4:9826d e ¼ 5 34

SAM 0.0487 4:3591d e ¼ 5 34

m7 (class 7) 29 SID 0.0042 7:9007d e ¼ 8 37

SAM 0.0174 5:8465d e ¼ 6 35

m8 (class 8) 29 SID 0.0104 6:5866d e ¼ 7 36

SAM 0.0273 5:1946d e ¼ 6 35

m9 (class 9) 29 SID 0.0154 6:0226d e ¼ 7 36

SAM 0.0344 4:8631d e ¼ 5 34

m10 (class 10) 29 SID 0.0543 4:2035d e ¼ 5 34

SAM 0.0653 3:9372d e ¼ 4 33
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Signaturemj nVD pj qj or lj bj (DDA)

m11 (class 11) 29 SID 0.0480 4:3798d e ¼ 5 34

SAM 0.0609 4:0380d e ¼ 5 34

m12 (class 12) 29 SID 0.0430 4:5388d e ¼ 5 34

SAM 0.0584 4:0984d e ¼ 5 34

m13 (class 13) 29 SID 0.0277 5:1716d e ¼ 6 35

SAM 0.0428 4:5446d e ¼ 5 34

m14 (class 14) 29 SID 0.2293 2:1248d e ¼ 3 32

SAM 0.1281 2:9650d e ¼ 3 32

m15 (class 15) 29 SID 0.0580 4:1082d e ¼ 5 34

SAM 0.0650 3:9429d e ¼ 4 33

m16 (class 16) 29 SID 0.2105 2:2483d e ¼ 3 32

SAM 0.1326 2:9149d e ¼ 3 32

m17 (BKG) 29 SID 0.0239 5:3868d e ¼ 6 35

SAM 0.0426 4:5521d e ¼ 5 34

Huffman coding m1 (class 1) 29 SID 0.0128 7 36

SAM 0.0304 5 34

m2 (class 2) 29 SID 0.0437 5 34

SAM 0.0587 4 33

m3 (class 3) 29 SID 0.0392 5 34

SAM 0.0551 4 33

m4 (class 4) 29 SID 0.0140 7 36

SAM 0.0322 5 34

m5 (class 5) 29 SID 0.1341 3 32

SAM 0.1002 3 32

m6 (class 6) 29 SID 0.0316 5 34

SAM 0.0487 4 33

m7 (class 7) 29 SID 0.0042 7 36

SAM 0.0174 6 35

m8 (class 8) 29 SID 0.0104 7 36

SAM 0.0273 6 35

m9 (class 9) 29 SID 0.0154 6 35

SAM 0.0344 5 34

m10 (class 10) 29 SID 0.0543 4 33

SAM 0.0653 4 33

m11 (class 11) 29 SID 0.0480 5 34

SAM 0.0609 4 33

m12 (class 12) 29 SID 0.0430 5 34

SAM 0.0584 4 33

m13 (class 13) 29 SID 0.0277 5 34

SAM 0.0428 5 34

m14 (class 14) 29 SID 0.2293 2 31

SAM 0.1281 3 32

m15 (class 15) 29 SID 0.0580 4 33

SAM 0.0650 4 33

m16 (class 16) 29 SID 0.2105 2 31

SAM 0.1326 3 32

m17 (BKG) 29 SID 0.0239 6 35

SAM 0.0426 5 34

Hamming coding m1 tom17 29 n/a n/a 5 34
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measures, SAM and SID, and provided in the table for reference. In addition, the value of

VD, nVD¼ 29, was also included in the table for comparison.

Table 22.4 tabulates the classification rates by MLC for 16 classes using DDA calculated in

Table 22.3 where SID was used to measure spectral similarity. Also included in the table is the last

column which gave the best classification rates with the optimal number of bands provided in

parentheses.

It is noted that in most cases MLC only needed a fewer prioritized bands to perform well with-

out using all spectral bands, such as classes 7, 9, and 16 that did not require many spectral bands to

produce the best results. There are some observations noteworthy. One is that second order statistic

BPC generally performed better than high order and infinite order BPC due to the fact that the land

covers of this particular scene are large, and the data samples are heavily mixed because of low

spatial resolution and their contributions to statistics are mainly second-order statistics. This is not

true for high-resolution hyperspectral data, such as HYDICE as will be demonstrated in the

following section, which searches for rare data samples with pure signatures. On the other hand, it

can be noted that in most cases using fewer band dimensions MLC could perform as well its using

all dimensions. For instance, classes 7, 9, and 16 did not require more bands to produce the best

results. There are only classes, 2, 3, 4, 6, 10, and 11 that required almost full dimensions to produce

the best MLC results. Nevertheless, in general, DDA did provide some guidelines in selecting an

appropriate value of ~q for MLC to perform reasonably well. Finally, similar to endmember

extraction Table 22.4 also demonstrates that using more bands did not necessarily produce better

classification for each of seven used BP criteria (i.e., variance, SNR, skewness, kurtosis,

entropy, ID, and negentropy), for example, classification of class 1 with SNR used as a BP criterion

at q̂ ¼ 29 versus 34 and 36 as well as with kurtosis used as a BP criterion at q̂ ¼ 36 versus 58;

classification of class 6 with skewness used as BP criterion at q̂ ¼ 29 versus 34; classification of

class 7 with variance used as BP criterion at q̂ ¼ 36 and 37 versus 58 as well as with negentropy

used as a BP criterion at q̂ ¼ 36 versus 58; classification of class 16 with ID used as BP criterion at

q̂ ¼ 31 versus 58 as well as with entropy used as a BP criterion at q̂ ¼ 29 versus 31. Nevertheless,

according to Table 22.4, if DDAwas used to determined q̂ the overall performance on MLC rates

of 16 classes was generally improved over that produced by letting q̂ ¼ nVD regardless of which

BP criterion was used.

22.5.3 HYDICE Data

The five panel signatures in Figure 1.16 was used to unmix the 19 R panel pixels, p11, p12, p13, p211,

p221, p22, p23, p311, p312, p32, p33, p411, p412, p42, p43, p511, p521, p52, p53 in the HYDICE 15-panel

scene in Figure 1.15 for abundance fraction quantification. According to the ground truth in

Figures 1.15–1.17, nine signatures, m1¼ p1, m2¼ p2, m3¼p3, m4¼ p4, and m5¼ p5 in Figure

1.16 and figure background signatures, m6¼ grass m7¼ road m8¼ tree and m9¼ interferer in

Figure 1.17 were used as a desired set of signatures of interest. Table 22.5 tabulates DDA

calculated by Shannon coding, Huffman coding, and Hamming coding using these nine signatures

where SAM and SID were used to measure spectral similarity.

Table 22.6 tabulates FCLS-unmixed abundance fractions of the 19 R panel pixels with the num-

ber of selected prioritized spectral bands determined by nVD and DDA using the three coding meth-

ods, and optimal number of bands to produce the best results in the last column.

Several BP criteria were chosen to investigate DA. The results demonstrated that the skewness

produced the best performance of FCLS abundance results because in most cases skewness

criterion required less bands to achieve the optimal performance. On the other hand, for few panel

pixels the best estimated p was around 9 that was the same as nVD. For most of panel pixels p¼ 9
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Table 22.4 Classification rates of 16 classes in the Purdue data by MLC

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total Optimal

Class 1 ~q 29 36 36 34 58 202

Variance 62.96 70.37 70.37 70.37 70.37 85.19 85.19 (129)

SNR 75.93 70.37 70.37 70.37 75.93 85.19 (179)

Skewness 53.7 61.11 61.11 61.11 68.52 87.04 (200)

Kurtosis 72.22 83.33 83.33 77.78 77.78 88.89 (169)

Entropy 79.63 83.33 83.33 85.19 87.04 87.04 (50)

ID 55.56 68.52 68.52 62.96 66.67 88.89 (163)

Negentropy 68.52 70.37 70.37 77.78 62.96 88.89 (193)

Class 2 ~q 29 34 34 34 58 202

Variance 30.26 35.91 35.91 35.91 44.77 67.5 68.48 (187)

SNR 42.68 46.93 46.93 46.93 55.93 68.48 (174)

Skewness 33.4 33.61 33.61 33.61 45.96 67.71 (177)

Kurtosis 41.14 43.38 43.38 43.38 44.49 67.5 (202)

Entropy 54.95 57.46 57.46 57.46 60.04 69.94 (190)

ID 39.75 45.75 45.75 45.75 48.19 67.64 (189)

Negentropy 30.47 31.66 31.66 31.66 43.58 68.62 (194)

Class 3 ~q 29 34 34 34 58 202

Variance 24.46 26.86 26.86 26.86 33.93 54.8 54.92 (189)

SNR 42.68 46.93 46.93 46.93 55.93 68.48 (174)

Skewness 23.62 23.62 23.62 23.62 35.85 54.8 (202)

Kurtosis 27.22 30.1 30.1 30.1 34.65 54.8 (202)

Entropy 30.58 32.85 32.85 32.85 39.69 55.04 (195)

ID 33.09 34.17 34.17 34.17 41.73 54.8 (198)

Negentropy 32.13 33.69 33.69 33.69 39.09 54.8 (201)

Class 4 ~q 29 36 36 34 58 202

Variance 42.74 49.57 49.57 46.58 64.96 78.63 82.05 (159)

SNR 64.53 69.66 69.66 67.95 71.37 82.05 (63)

Skewness 46.15 50.43 50.43 49.57 61.54 82.91 (146)

Kurtosis 52.56 53.42 53.42 55.13 59.83 79.91 (201)

Entropy 73.08 73.93 73.93 75.21 74.79 82.91 (101)

ID 45.3 67.95 67.95 58.55 70.51 81.62 (185)

Negentropy 61.11 60.26 60.26 62.39 64.1 81.62 (167)

Class 5 ~q 29 32 32 34 58 202

Variance 60.56 62.17 62.17 61.17 65.39 65.79 66 (70)

SNR 57.34 61.77 61.77 59.96 65.39 66 (70)

Skewness 57.95 59.56 59.56 58.55 62.37 65.79 (121)

Kurtosis 54.53 64.19 64.19 63.98 65.39 66 (180)

Entropy 59.56 61.97 61.97 58.95 64.19 65.79 (89)

ID 35.81 54.53 54.53 43.86 64.99 65.79 (77)

Negentropy 45.27 48.49 48.49 45.67 54.12 65.79 (183)

Class 6 ~q 29 34 34 34 58 202

Variance 86.21 85.81 85.81 85.81 86.35 91.97 92.24 (199)

SNR 64.26 71.49 71.49 71.49 85.68 92.37 (197)

Skewness 79.12 78.05 78.05 78.05 85.14 92.24 (193)

Kurtosis 78.45 79.65 79.65 79.65 85.68 92.5 (179)

Entropy 79.79 80.05 80.05 80.05 84.74 92.9 (188)

(continued)
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Table 22.4 (Continued)

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total Optimal

ID 50.07 64.26 64.26 64.26 88.22 91.97 (196)

Negentropy 50.2 51.54 51.54 51.54 65.19 92.1 (200)

Class 7 ~q 29 37 36 34 58 202

Variance 73.08 80.77 80.77 73.08 76.92 73.08 84.62 (38)

SNR 61.54 69.23 69.23 57.69 73.08 88.46 (101)

Skewness 73.08 76.92 76.92 73.08 76.92 80.77 (54)

Kurtosis 65.38 69.23 69.23 76.92 69.23 80.77 (143)

Entropy 69.23 76.92 73.08 73.08 80.77 88.46 (94)

ID 65.38 65.38 65.38 65.38 69.23 84.62 (69)

Negentropy 69.23 84.62 84.62 73.08 61.54 84.62 (36)

Class 8 ~q 29 36 36 34 58 202

Variance 67.69 76.89 76.89 75.87 88.14 97.96 98.36 (186)

SNR 67.08 75.87 75.87 71.17 82.41 98.36 (180)

Skewness 72.19 74.64 74.64 73.42 87.73 98.57 (190)

Kurtosis 81.39 87.12 87.12 86.09 88.96 98.16 (162)

Entropy 76.89 86.3 86.3 85.89 90.8 98.16 (190)

ID 66.05 82.62 82.62 71.37 85.28 97.96 (177)

Negentropy 74.23 77.51 77.51 76.07 81.8 98.57 (188)

Class 9 ~q 29 36 35 34 58 202

Variance 65 70 65 65 80 65 90 (84)

SNR 65 75 75 70 60 75 (35)

Skewness 75 80 75 75 85 90 (57)

Kurtosis 60 60 60 60 55 75 (137)

Entropy 65 65 65 65 65 75 (55)

ID 50 50 50 50 55 70 (195)

Negentropy 55 50 50 55 55 70 (191)

Class 10 ~q 29 34 33 34 58 202

Variance 42.46 41.63 41.63 41.63 52.58 86.16 87.71 (181)

SNR 54.55 56.92 56.61 56.92 67.25 87.09 (176)

Skewness 39.46 39.26 39.36 39.26 58.68 86.78 (180)

Kurtosis 55.37 59.61 59.09 59.61 64.98 86.16 (202)

Entropy 56.82 59.81 59.4 59.81 69.11 87.09 (196)

ID 69.52 71.28 70.04 71.28 73.86 86.98 (195)

Negentropy 67.56 67.25 66.84 67.25 75.62 87.09 (172)

Class 11 ~q 29 34 34 34 58 202

Variance 42.34 40.84 40.84 40.84 41.29 51.09 51.58 (199)

SNR 35.86 39.22 39.22 39.22 40.52 51.58 (199)

Skewness 39.71 40.15 40.15 40.15 40.88 51.5 (185)

Kurtosis 36.87 38.7 38.7 38.7 42.67 52.23 (163)

Entropy 40.32 42.3 42.3 42.3 45.87 52.8 (178)

ID 32.9 35.53 35.53 35.53 41.57 51.09 (202)

Negentropy 33.31 32.25 32.25 32.25 38.41 51.26 (197)

Class 12 ~q 29 34 34 34 58 202

Variance 35.18 39.41 39.41 39.41 44.63 77.85 79.64 (151)

SNR 55.21 58.47 58.47 58.47 65.64 78.83 (166)

Skewness 30.13 29.8 29.8 29.8 51.79 78.83 (165)

Kurtosis 40.72 48.05 48.05 48.05 55.37 79.15 (181)
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seemed to be insufficient but they still achieved good performance within p¼ 18¼ 2 nVD. Similar

to AVIRIS data experiments conducted for endmember extraction in Section 22.5.1 and land cover/

use classification in Section 22.5.2 the same conclusion that using more bands did not necessarily

improve performance was also applied to HYDICE data. For example, when the three BP criteria,

SNR, skewness and entropy were used to prioritize bands, the FCLS-unmixed abundance fraction

of p511 at q̂ ¼ 9 was more accurate than that obtained at q̂ ¼ 12. Similarly, the same conclusions

were also applied to the unmixed abundance fraction of the panel pixel p211 with variance used as a

BP criterion at q̂ ¼ 9 against 13–15, 18; unmixed abundance fraction of the panel pixel p221 with

kurtosis used as a BP criterion at q̂ ¼ 9 against 14–15, 18, FCLS-unmixed abundance fraction of

the panel pixel p412 with negentropy used as a BP criterion at q̂ ¼ 9 versus 13–15,18; unmixed

abundance fraction of the panel pixel p12 with ID used as a BP criterion at q̂ ¼ 9 against 13–15,

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total Optimal

Entropy 60.26 62.38 62.38 62.38 63.84 79.15 (191)

ID 43.49 47.72 47.72 47.72 58.31 78.5 (199)

Negentropy 42.67 46.25 46.25 46.25 60.59 80.29 (170)

Class 13 ~q 29 35 34 34 58 202

Variance 97.64 98.58 99.53 99.53 99.53 99.53 99.53 (34)

SNR 96.7 98.58 96.7 96.7 99.53 99.53 (48)

Skewness 91.04 91.51 91.51 91.51 97.64 99.53 (100)

Kurtosis 95.28 96.7 97.17 97.17 98.58 99.53 (61)

Entropy 100 99.06 99.06 99.06 98.58 100 (29)

ID 65.57 95.75 95.75 95.75 99.53 100 (44)

Negentropy 87.74 92.45 91.98 91.98 92.45 100 (131)

Class 14 ~q 29 32 31 34 58 202

Variance 75.66 76.82 75.73 75.73 79.83 86.71 87.4 (168)

SNR 71.02 74.73 74.65 74.65 90.49 90.8 (49)

Skewness 76.97 75.81 75.58 75.58 78.21 87.71 (167)

Kurtosis 68.01 75.04 75.19 75.19 73.88 86.71 (201)

Entropy 79.06 79.52 79.68 79.68 82.46 87.02 (175)

ID 58.73 60.43 60.97 60.97 80.6 86.79 (201)

Negentropy 50.7 58.5 55.33 55.33 72.1 91.65 (156)

Class 15 ~q 29 34 33 34 58 202

Variance 47.63 53.16 52.11 53.16 69.21 88.95 90.79 (124)

SNR 31.58 40 35 40 63.42 89.47 (178)

Skewness 44.74 48.68 48.42 48.68 77.89 89.47 (194)

Kurtosis 39.74 49.74 49.47 49.74 73.68 92.63 (140)

Entropy 40.26 48.95 48.68 48.95 65.53 90.26 (125)

ID 29.74 51.32 32.89 51.32 62.63 91.84 (173)

Negentropy 36.84 37.63 39.21 37.63 46.84 89.74 (194)

Class 16 ~q 29 32 31 34 58 202

Variance 92.63 92.63 92.63 92.63 87.37 89.47 93.68 (31)

SNR 93.68 93.68 93.68 93.68 88.42 93.68 (20)

Skewness 86.32 86.32 86.32 86.32 88.42 90.53 (91)

Kurtosis 86.32 86.32 86.32 86.32 86.32 90.53 (186)

Entropy 88.42 87.37 87.37 87.37 88.42 91.58 (17)

ID 89.47 89.47 90.53 89.47 87.37 90.53 (33)

Negentropy 88.42 88.42 88.42 88.42 89.47 90.53 (192)
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18. However, according to Table 22.6, if DDAwas used to determine q̂; the overall performance on

FCLS-unmixing 19 R panel pixels was generally better than that produced by letting q̂ ¼ nVD
regardless of which BP criterion was used.

Finally, several conclusions can be drawn from Tables 22.2, 22.4 and 22.6. First, a BP

criterion has a significant impact on performance. Its selection must be determined by a

specific application. Second, it is generally not true that using more BP-ranked bands will yield

better performance. This may be due to the fact that high prioritized bands will also be highly

Table 22.5 DDA results calculated by the three coding methods for HYDICE data

Signaturemj nVD pj qj or lj bj (DDA)

Shannon coding m1¼ p1 9 SID 0.0172 5:8591d e ¼ 6 15

SAM 0.0462 4:4350d e ¼ 5 14

m2¼ p2 9 SID 0.0295 5:0832d e ¼ 6 15

SAM 0.0779 3:6822d e ¼ 4 13

m3¼ p3 9 SID 0.0358 4:8055d e ¼ 5 14

SAM 0.0897 3:4794d e ¼ 4 13

m4¼ p4 9 SID 0.0695 3:8466d e ¼ 4 13

SAM 0.1004 3:3163d e ¼ 4 13

m5¼ p5 9 SID 0.1070 3:2246d e ¼ 4 13

SAM 0.1140 3:1331d e ¼ 4 13

m6 (grass) 9 SID 0.1007 3:3114d e ¼ 4 13

SAM 0.1396 2:8403d e ¼ 3 12

m7 (road) 9 SID 0.0565 4:1463d e ¼ 5 14

SAM 0.1035 3:2727d e ¼ 4 13

m8 (tree) 9 SID 0.2869 1:8014d e ¼ 2 12

SAM 0.1479 2:7571d e ¼ 3 12

m9 (interferer) 9 SID 0.2969 1:7518d e ¼ 2 11

SAM 0.1808 2:4674d e ¼ 3 12

Huffman coding m1¼ p1 9 SID 0.0172 5 14

SAM 0.0462 4 13

m2¼ p2 9 SID 0.0295 5 14

SAM 0.0779 4 13

m3¼ p3 9 SID 0.0358 4 13

SAM 0.0897 3 12

m4¼ p4 9 SID 0.0695 4 13

SAM 0.1004 3 12

m5¼ p5 9 SID 0.1070 3 12

SAM 0.1140 3 12

m6 (grass) 9 SID 0.1007 3 12

SAM 0.1396 3 12

m7 (road) 9 SID 0.0565 4 13

SAM 0.1035 3 12

m8 (tree) 9 SID 0.2869 2 11

SAM 0.1479 3 12

m9 (interferer) 9 SID 0.2969 2 11

SAM 0.1808 3 12

Hamming coding m1 tom9 9 n/a 4 13
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Table 22.6 Unmixed abundance fractions of 19 panel pixels in the HYDICE data by FCLS

nVD

Shannon

coding

Huffman

coding

Hamming

coding 2nVD total Optimal

~q¼Number of

selected bands

9 15 14 13 18 169

p11 Variance 0 0.16 0.02 0 0.07 0.76 0.76 (169)

SNR 0.65 0.64 0.64 0.65 0.63 0.77 (146)

Skewness 0.28 0.72 0.75 0.65 0.75 0.90 (59)

Kurtosis 0 0 0 0 0.16 0.8 (167)

Entropy 0.92 0.81 0.81 0.81 0.79 1.16 (11)

ID 0 0 0 0 0 0.8 (167)

Negentropy 0.65 0.65 0.66 0.66 0.63 0.8 (146)

p12 Variance 0.44 0.63 0.63 0.62 0.62 0.54 0.69 (27)

SNR 0.63 0.64 0.65 0.65 0.64 0.74 (10)

Skewness 0.51 0.57 0.57 0.54 0.58 0.66 (69)

Kurtosis 0.44 0.63 0.63 0.62 0.62 0.67 (42)

Entropy 0.51 0.57 0.57 0.54 0.58 1.04 (15)

ID 0.61 0.53 0.44 0.41 0.58 0.67 (33)

Negentropy 0.68 1.04 0.99 0.62 0.96 0.72 (9)

p13 Variance 0.72 0.72 0.72 0.72 0.72 0.01 0.24 (21)

SNR 0 0.04 0.04 0.02 0.04 0.17 (9)

Skewness 0.72 0.64 0.64 0.7 0.64 0.1 (15)

Kurtosis 0 0.04 0.04 0.04 0.21 0.2 (108)

Entropy 0 0.1 0.05 0 0.08 0.1 (58)

ID 0 0 0 0.03 0 0.18 (81)

Negentropy 0.02 0 0 0 0.04 0.35 (10)

~q¼Number of

selected bands

9 15 14 13 18 169

p211 Variance 0.17 0.11 0.1 0.11 0.09 0.91 0.91 (68)

SNR 0.89 0.94 0.93 0.93 0.86 0.95 (37)

Skewness 0.79 0.79 0.79 0.81 0.79 1 (59)

Kurtosis 0.96 0.9 0.9 0.94 0.92 0.96 (9)

Entropy 0.19 0.3 0.3 0.3 0.68 0.97 (137)

ID 0.84 0.82 0.82 0.83 0.82 0.91 (167)

Negentropy 0.95 0.95 0.95 0.95 0.95 0.96 (30)

p221 Variance 0.38 0.24 0.24 0.25 0.24 0.79 0.79 (169)

SNR 0.81 0.82 0.8 0.81 0.68 0.82 (15)

Skewness 0.58 0.65 0.65 0.66 0.66 1 (68)

Kurtosis 0.49 0.38 0.38 0.53 0.41 0.8 (168)

Entropy 0 0 0 0 0.45 1 (60)

ID 0.24 0.22 0.21 0.24 0.22 0.8 (167)

Negentropy 0.89 0.89 0.89 0.89 0.89 0.89 (19)

p22 Variance 0.84 0.8 0.8 0.8 0.81 0.82 0.84 (67)

SNR 0.72 0.72 0.72 0.71 0.7 0.83 (120)

Skewness -0.23 0.87 0.88 0.87 0.86 0.88 (14)

Kurtosis 0.76 0.81 0.81 0.81 0.8 0.83 (134)

Entropy 0.7 0.6 0.59 0.62 0.6 0.87 (139)

ID 0.79 0.79 0.75 0.78 0.79 0.83 (131)

Negentropy 0.58 0.63 0.63 0.63 0.69 0.83 (112)

(continued)
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Table 22.6 (Continued)

nVD

Shannon

coding

Huffman

coding

Hamming

coding 2nVD total Optimal

p23 Variance 0.45 0.21 0.22 0.21 0.16 0.42 0.45 (9)

SNR 0.23 0 0.05 0.11 0 0.46 (59)

Skewness 0.07 0.36 0.34 0.33 0.34 0.44 (146)

Kurtosis 0.57 0.47 0.46 0.58 0.51 0.6 (10)

Entropy 0.08 0 0 0 0 0.43 (140)

ID 0.14 0.08 0.06 0.07 0.1 0.48 (38)

Negentropy 0.24 0.27 0.27 0.27 0.29 0.46 (36)

~q¼Number of

selected bands

9 14 13 13 18 169

p311 Variance 0.82 0.93 0.94 0.94 0.98 0.91 0.99 (25)

SNR 1.04 0.98 0.97 0.97 1 1.13 (10)

Skewness 0.87 0.83 0.83 0.83 0.88 0.91 (164)

Kurtosis 0.79 0.81 0.79 0.79 0.82 0.99 (45)

Entropy 0.88 0.88 0.87 0.87 0.89 0.92 (161)

ID 0.93 0.9 0.91 0.91 0.9 0.99 (77)

Negentropy 0.62 0.7 0.7 0.7 0.84 0.99 (66)

p312 Variance 0.02 0.8 0.8 0.8 0.84 0.90 0.90 (94)

SNR 0.6 0.64 0.64 0.64 0.64 0.92 (62)

Skewness 0.99 0.96 0.97 0.97 0.97 0.99 (9)

Kurtosis 0.17 0.1 0.06 0.06 0.1 0.9 (154)

Entropy 0.96 0.95 0.95 0.95 0.97 0.98 (140)

ID 0.75 0.73 0.74 0.74 0.74 0.91 (154)

Negentropy 0 0.39 0.36 0.36 0.62 0.9 (151)

p32 Variance 0.67 0.67 0.67 0.67 0.66 0.45 0.69 (30)

SNR 0.28 0.02 0.01 0.01 0.24 0.69 (61)

Skewness 1 0.79 1 1 0.78 1 (9)

Kurtosis 0.53 0.66 0.56 0.56 0.67 0.67 (18)

Entropy 0.56 0.49 0.49 0.49 0.59 0.59 (17)

ID 0.64 0.66 0.65 0.65 0.66 0.67 (27)

Negentropy 0 0 0 0 0.02 0.61 (47)

p33 Variance 0.46 0.34 0.34 0.34 0.2 0.21 0.46 (9)

SNR 0.01 0 0 0 0.08 0.3 (39)

Skewness 0.59 0.43 0.51 0.51 0.44 0.59 (9)

Kurtosis 0.15 0.39 0.16 0.16 0.28 0.39 (14)

Entropy 0.27 0.35 0.35 0.35 0.39 0.39 (17)

ID 0.32 0.36 0.36 0.36 0.37 0.38 (19)

Negentropy 0 0 0 0 0 0.32 (42)

~q¼Number of

selected bands

9 13 13 13 18 169

p411 Variance 0.3 0.28 0.28 0.28 0.26 0.51 0.51 (169)

SNR 0.05 0.06 0.06 0.06 0.09 0.51 (146)

Skewness 0.54 0.79 0.79 0.79 0.92 0.96 (22)

Kurtosis 0.35 0.29 0.29 0.29 0.23 0.51 (168)

Entropy 0.79 0.97 0.97 0.97 0.9 1.02 (14)

ID 0.34 0.3 0.3 0.3 0.25 0.51 (169)

Negentropy 0 0 0 0 0.02 0.51 (169)

p412 Variance 0.61 0.66 0.66 0.66 0.78 0.44 0.89 (25)

SNR 0.49 0.74 0.74 0.74 0.57 0.81 (11)

680 Hyperspectral Data Processing: Algorithm Design and Analysis



nVD

Shannon

coding

Huffman

coding

Hamming

coding 2nVD total Optimal

Skewness 0.69 0.55 0.55 0.55 0.45 0.78 (10)

Kurtosis 0.6 0.59 0.59 0.59 0.62 0.87 (123)

Entropy 0.49 0.11 0.11 0.11 0.18 0.49 (9)

ID 0.67 0.66 0.66 0.66 0.67 0.81 (110)

Negentropy 0.81 0.66 0.66 0.66 0.63 0.85 (66)

p42 Variance 0.87 0.87 0.87 0.87 0.62 0.76 0.87 (9)

SNR 0.4 0.6 0.6 0.6 0.52 0.86 (51)

Skewness 0.48 0.66 0.66 0.66 0.7 0.79 (128)

Kurtosis 0.87 0.88 0.88 0.88 0.88 0.89 (11)

Entropy 0.71 0 0 0 0.48 0.81 (140)

ID 0.87 0.85 0.85 0.85 0.87 0.87 (22)

Negentropy 0.56 0.47 0.47 0.47 0.5 0.8 (40)

p43 Variance 0.26 0.2 0.2 0.2 0.07 0.16 0.26 (9)

SNR 0 0 0 0 0 0.16 (169)

Skewness 0.21 0.19 0.19 0.19 0.2 0.21 (22)

Kurtosis 0.21 0.21 0.21 0.21 0.21 0.24 (14)

Entropy 0.03 0.14 0.14 0.14 0.21 0.24 (93)

ID 0.19 0.2 0.2 0.2 0.2 0.28 (10)

Negentropy 0.1 0.1 0.1 0.1 0 0.18 (40)

~q¼Number of

selected bands

9 13 12 13 18 169

p511 Variance 0.86 0.84 0.84 0.84 0.84 0.83 0.86 (10)

SNR 0.82 0.68 0.69 0.68 0.69 0.83 (50)

Skewness 0.85 0.75 0.75 0.75 0.78 0.86 (10)

Kurtosis 0.86 0.85 0.85 0.85 0.86 0.86 (9)

Entropy 0.79 0.65 0.65 0.65 0.8 0.85 (131)

ID 0.84 0.84 0.84 0.84 0.84 0.84 (14)

Negentropy 0.83 0.83 0.83 0.83 0.83 0.84 (40)

p521 Variance 1 1 1 1 1 1 1 (13)

SNR 1 1 1 1 1 1 (10)

Skewness 0.91 0.9 0.9 0.9 0.89 1 (44)

Kurtosis 1 1 1 1 1 1 (10)

Entropy 0 0.9 0.9 0.9 0.94 1 (168)

ID 1 1 1 1 1 1 (10)

Negentropy 1 1 1 1 1 1 (21)

p52 Variance 0.72 0.81 0.82 0.81 0.95 0.94 0.96 (21)

SNR 0.97 0.97 0.97 0.97 0.97 0.97 (12)

Skewness 0.89 0.88 0.88 0.88 0.88 0.93 (169)

Kurtosis 0.82 0.74 0.74 0.74 0.72 0.96 (54)

Entropy 0.43 0.9 0.9 0.9 0.87 0.94 (169)

ID 0.89 0.87 0.88 0.87 0.82 0.96 (56)

Negentropy 0.96 0.97 0.97 0.97 0.97 0.97 (19)

p53 Variance 0 0.15 0.15 0.15 0.13 0.14 0.15 (13)

SNR 0.13 0.04 0.02 0.04 0 0.14 (168)

Skewness 0 0 0 0 0 0.16 (68)

Kurtosis 0 0 0 0 0 0.19 (27)

Entropy 0.02 0.27 0.21 0.27 0.18 0.27 (13)

ID 0 0.07 0.08 0.07 0.15 0.17 (19)

Negentropy 0 0.08 0.05 0.08 0.09 0.17 (36)
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correlated. As a result, redundant bands are also very likely selected and may not provide any

benefit but rather conflicting information. This issue can be resolved by band de-correlation

(BD) to be discussed in Chapter 23. Last but not least, as shown in Chapter 20, VD can appro-

priately estimate the number of dimensions to be retained after dimensionality reduction, q.

But when it comes to band selection, VD seems to under-estimate the value of ~q. In this case,

DDA provides a better estimate of ~q.

22.6 Conclusions

The concept of DDA revolutionizes the traditional fixed-size band allocation in the sense that the

former can vary band numbers according to various applications as opposed to the latter which

uses a fixed number of bands for BS. A similar idea was also previously explored for a single

hyperspectral signature in hyperspectral data Wang and Chang (2007). Its idea is derived from

variable-length coding widely used in source coding where different source alphabets require

different coding lengths for their own code words in accordance with their occurrence frequencies.

This same idea can be applied to hyperspectral band selection provided that each source alphabet

and its coding length are interpreted as a hyperspectral signature such as an endmember and the

number of bands used to characterize the signature. Within this context various hyperspectral

signatures will require their own variable numbers of bands as well as different bands to better

describe their spectral characteristics (see Chapter 27). This is particularly true for LSMA where

the signatures used to form a signature matrix to perform spectral unmixing certainly exhibit

different spectral profiles for their own characterization. As a result, each signature used by LSMA

has a different degree of difficulty with discrimination for its own identity and thus, requires a

different set of bands to characterize its own spectral profile. The development of DDA arises from

this need and allows users to allocate band dimensionality for individual hyperspectral signatures

as demonstrated in the experiments conducted in this chapter.
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23

Progressive Band Selection

Both progressive spectral dimensionality process (PSDP) in Chapter 20 and progressive band

dimensionality process (PBDP) in Chapter 21 are developed to prioritize spectral dimensions/

bands and process spectral dimensions/bands in the context of progressive spectral dimension/

band dimensionality expansion and reduction via dimensionality prioritization (DP)/band prioriti-

zation (BP). However, there is a key difference between PSDP and PBDP. In PSDP, “data

compaction” is performed via a transformation of the original data space into a spectral-trans-

formed component space where spectral components are of major interest and each spectral com-

ponent is specified by a projection vector as a spectral component dimension. Such projection

vectors are obtained by linearly combining all spectral band dimensions across the entire range of

wavelengths. In contrast to PSDP, PBDP performs “data reduction” by retaining only those bands

that are of interest and discarding the rest. As a result, there is no data processing involved in PBDP

as it is in PSDP that processes the entire data cube by a transformation. This is why PSDP requires

projection vectors to specify spectral components while PBDP does not, since the bands in PBDP

can be considered a counterpart of projection vectors in PSDP. However, it is worth noting that

projection vectors are completely different from spectral bands because the bands are acquired

with individual and separate wavelengths with interband correlation yet to be explored, whereas

projection vectors are obtained by a transformation using interband correlation. This crucial dis-

tinction leads to a new concept of progressive band selection (PBS), which implements PBDP in

conjunction with band de-correlation (BD) whose counterpart is not found in PSDP (refer to

Chapter 20). The need of BD arises from the fact that some highly prioritized bands may also share

much information in common if their acquired wavelengths are very close in range. Such interband

correlation among bands needs to be addressed by BD in PBDP, but this is not an issue for DR used

in PSDP. So, despite that a concept similar to PBS can also be derived for progressive dimensional-

ity reduction (PDR), Safavi (2010) has shown that not much gain could be benefited from PDR

since much spectral dimensionality correlation has already been removed by mutual original pro-

jection vectors implemented by PSDP. Accordingly, this chapter focuses only on PBS; readers may

refer to Safavi (2010) for the treatment of PDR.

23.1 Introduction

The PBDP (Chapter 21) coupled with the dynamic dimensionality allocation (DDA) (Chapter 22)

paves the way for a new approach to band selection (BS), referred to as progressive band selection

(PBS) to be studied in this chapter. The idea of PBS emerged from the issue of implementing

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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PBDP for BS where high prioritized bands may also have high correlation. If PBDP is directly

used for BS, it is very much likely that if a band is selected for its high priority, other bands highly

correlated with this particular band such as its adjacent bands may also have high priorities. As a

result, they will also be selected according to their high priority scores. In order to avoid such a

situation, these bands must be removed prior to BS. In other words, once a band is selected, all

other bands having high correlation with this particular band should not be selected. Using BD to

resolve this issue for BS was investigated in Chang et al. (1999), where an information divergence-

based band de-correlation approach was developed for this purpose. The PBS proposed in this

chapter basically takes advantage of this approach by including BD as a preprocessing step prior

to PBDP in which case the latter will not repeatedly select bands that have high interband correla-

tion with bands already selected. Two approaches to BD are developed to effectively remove the

interband correlation, spectral measure-based band de-correlation and orthogonalization-based

band de-correlation. Since BP prioritizes each of the bands without taking into account interband

correlation, it can be considered as an intraband criterion. On the other hand, BD is used to mea-

sure only the correlation between two bands and, thus, it can be viewed as an interband criterion.

Accordingly, when PBDP that uses BP as an intraband criterion is implemented in conjunction

with BD that is an interband criterion to perform BS, the resulting BS is called PBS. The only

remaining issue is how many bands are required to be selected for PBS. The DDA developed in

Chapter 22 provides a solution to this issue.

23.2 Band De-Corrleation

The PBDP in Chapter 21 is designed to prioritize all bands in accordance with their contained infor-

mation measured by a custom-designed band prioritization criterion. It does not consider the case

that bands with high priority scores may also be highly correlated. As a consequence, when PBDP

is directly applied to BS, some of highly correlated bands may be also selected simply based on their

priority scores. Such a dilemma can be avoided by BD that allows PBS to select bands not only with

high priorities but also with interband correlation as least as possible. The idea of BD is to consider a

band image with a size of M � N pixels as anMN-dimensional band vector by concatenating pixels

line by line from top to bottom. With this interpretation, two band images can be represented by two

vectors with same dimensionality. The correlation between two band images can now be measured

by discrepancy between their corresponding vectors. Two BD criteria, spectral measure-based BD

and orthogonalization-based BD, are developed and described in the following sections.

23.2.1 Spectral Measure-Based BD

Since a band image can be represented as a band vector, the correlation of two band images can be

interpreted as mutual discriminability of their representing band vectors. Accordingly, all the sig-

nature-based hyperspectral measures developed in Section 16.2 can be used for this purpose. Two

measures are of particular interest: spectral angle mapper (SAM) (Section 16.2.2) and spectral

information divergence (SID) (Section 16.2.4). It is worth noting that the information divergence

(ID) for BD introduced by Chang et al. (1999) is actually SID. A general approach to spectral

measure-based BD is described in the following sections.

Algorithm for Spectral Measure-Based BD

1. Let Blf gLl¼1 be a total set of bands to be de-correlated. Let bl be the corresponding band vector

representing the lth band image, and Bl and the resulting set of band images be denoted by

VL ¼ blf gLl¼1.
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2. Set k¼ 1 and Vk ¼ blf gn1l¼1 with n1¼ 1.

3. At the kth iteration, select a band bl in VL �Vk and measure the band correlation

maxbk2Vk
BDðbl ;bkÞ ð23:1Þ

where BDðbl ; bkÞ is a criterion used to measure the band correlation between their representing

band images Bj and Bk. The BD measure between bl and all bk in VBD defined in (23.1) can be

any hyperspectral measure. For example, if a particular measure is used for BD such as SID,

then BD(Bl, Bk) in (23.1) is defined as BDðbl ; bkÞ ¼ SIDðbl ; bkÞ and BD using ID as a measure

is referred to as ID-BD.

4. If BDðbl ; bkÞ > e, then Vkþ1 ¼ Vk [ blf g; check if k ¼ L. If it is, go to step 6. Otherwise, let

Vkþ1 ¼ Vk and k k þ 1. Go to step 3.

5. If BDðbl ; bkÞ < e, then Vkþ1 ¼ Vk; check if k ¼ L. If it is, go to step 6. Otherwise, let

k  k þ 1. Go to step 3.

6. The resulting Vk, denoted by VBD, is the final set of selected bands where the interband correla-

tion among all bands in VBD must be greater than e.

23.2.2 Orthogonalization-Based BD

As an alternative to the spectral measure-based BD described above, the principle of orthogonality can

be used as a measure of BD. In other words, two bands have the best possible de-correlation when they

are mutually orthogonal. So, if we follow the same treatment in Section 23.2.1 by considering a band

image as a band vector, orthogonalizing of two band images can be carried out by orthogonalizing

their corresponding band vectors. In light of this interpretation, the well-known Gram-Schmidt orthog-

onalization procedure can be used for the purpose of orthogonalization, referred to as Gram-Schmidt

orthogonalization-based BD (GSO-BD), which is described in the following section.

Algorithm for Gram-Schmidt Orthogonalization-Based BD

1. Let VL ¼ Blf gLl¼1 be a total set of bands to be de-correlated. Convert band images Blf gLl¼1 to

band vectors blf gLl¼1. Let e be a prescribed threshold.
2. Apply the following Gram-Schmidt orthogonalization procedure to bj

� �L

l¼1 by

b1 ¼ b1
b2 ¼ b2 � projb1

ðb2Þ
b3 ¼ b3 � projb1

ðb3Þ � projb2
ðb3Þ

..

.

bk ¼ bk �
Pk�1

j¼1 projbj
ðbjÞ for k ¼ 1; 2; . . . ; L

ð23:2Þ

where the projection operator is defined by

projukðbkÞ ¼
hbk;bki
hbk;bki

bk ð23:3Þ

and hx; yi ¼ x � y ¼ xTy is an inner product of x and y.

3. Normalize the orthogonal vectors blf gLl¼1 to uk ¼ 1.

4. Convert all orthogonal band vectors ulf gLl¼1 to band images B̂1; B̂2; . . . ; B̂L, denoted by

V̂L ¼ B̂l

� �L

l¼1. The V̂L is the final band-decorrelated set produced by the Gram-Schmidt

orthogonalization procedure.
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The following are the three noteworthy comments on GSO-BD:

1. Technically speaking, in order to properly orthogonalize two band images, we need to find the

normal vectors that are perpendicular to their respective band images via solving a set of so-

called normal equations. Using the band vectors for orthogonalization may not be optimal since

the band vectors may miss spatial correlation when consecutive lines of pixels are concatenated.

Nonetheless, it is a simplest way to accomplish the goal.

2. The principle of orthogonality is an optimal de-correlation criterion in the context of second-

order statistics. It does not necessarily de-correlate high-order statistics as the spectral measure-

based BD does. Consequently, the spectral measure-based BD generally performs better than

the orthogonalization-based BD.

3. Unlike the spectral measure-based BD that removes redundant bands from the original band set

to obtain a smaller band set VBD, the GSO-BD does not remove bands but only orthogonalizes

all the original bands to obtain a new orthogonal band set V̂L with the same total number of

bands L.

23.3 Progressive Band Selection

The PBDP (Chapter 21) allows users to select bands progressively back and forth for band dimen-

sionality reduction and expansion at discretion without actually determining the number of bands

~q needed to be selected. In the traditional BS, the value of this p must be first determined and then

fixed at a constant value during the whole data processing. When the value of ~q is not desired and a
new value is needed, the entire BS process must be reimplemented where the previous results

obtained for old values of ~q cannot be reused for the new value of ~q because new bands will be

selected by solving a new set of BS optimization problem. This type of BS is referred to as fixed-

dimensionality BS (FDBS) to emphasize the role of p to be fixed at a constant value instead of

using static band selection (SBS), discussed in Chapter 22. Most importantly, such FDBS may not

be applicable or effective in hyperspectral data exploitation. For example, as discussed in Chapter

22, various material substances have their own spectral characteristics in signature profiles that

may present different levels of difficulty for data analysis. In this case, these material substances

may require different values of ~q to respond to various applications so as to achieve better results.

To resolve this issue, the number of bands to be selected, ~q, must be considered as a variable

instead of a fixed value assumed by standard FDBS so that the parameter ~q can adapt to different

applications. However, to avoid formidable computational complexity resulting from repeated

implementation of FDBS using various values of ~q, progressive band selection (PBS) offers a fea-

sible strategy that enables users to perform BS progressively as they desire without reselecting

bands every time the value of p is changed.

It should be noted that PBS differs from FDBS in many aspects. First and foremost, it is the way

of selecting bands. FDBS is performed by fixing the number of bands to be selected, ~q and then

selecting a ~q-band subset from the entire set of bands by solving an optimization problem. In con-

trast, PBS does not solve a BS optimization problem. Instead, it makes use of PBDP to perform BS

in a forward manner (i.e., band expansion) or in a backward manner (i.e., band reduction) via band

prioritization (BP) measured by a specific criterion. As a result, its performance is determined by

the nature in progression and not the value of ~q that determines FDBS performance. Second, when

the value of ~q is changed, FDBS must be reimplemented because the bands to be selected are

generally different. This drawback is remedied by PBS where the previously selected bands are

always included as a part of band sets produced by subsequent band selections in a progressive

process so as to perform band expansion or reduction according to the calculated band priorities.

Last but not least, in order for PBS to work effectively, it requires band de-correlation (BD) to
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remove highly correlated bands prior to BS since highly prioritized adjacent bands may also share

much information in common. If one band is highly prioritized, so are its adjacent bands. In this

case, if one of them is selected, other bands may be considered as redundant due to significant

overlapped interband information about them. However, BD is never an issue in FDBS due to the

fact that it solves an optimization problem for a given value of ~q.
The PBS presented in this section can be implemented in conjunction with the dynamic dimen-

sionality allocation (DDA) developed in Chapter 22 as a two-stage process in two different fash-

ions. One is to implement BP in the first stage followed by BD in the second stage. In other words,

PBS first implements BP to prioritize and rank all bands and then uses BD to remove bands with

highly interband correlation with previously selected bands to perform BS. Another way is to

reverse the two processes of BP and BD by first implementing BD and then BP. However, a major

disadvantage resulting from this approach is that an initial band to be selected as the first band for

BD is crucial since the original bands are not prioritized or ranked.

23.3.1 PBS: BP Followed by BD

The PBS approach presented in this section, referred to as BP/BD-PBS, is actually PBDP imple-

mented in conjunction with BD and DDAwhere the DDA is used to determine the number of bands

needed to be selected instead of using the range of [nVD, 2nVD] by PBDP. The details of imple-

menting BP/BD-PBS are summarized in the following.

Algorithm for BP/BD-PBS

1. Use BP to prioritize and rank all bands, VL.

2. Implement BD to remove bands fromVL to obtain a new set of prioritized bands, VBD, in such a

manner that all bands in VBD have interband correlation greater than a prescribed threshold e.
3. Apply either PBDE or PBDR to select a final desired set of bands from VBD.

4. Use DDA to determine how many bands should be processed to terminate the PBS.

23.3.2 PBS: BD Followed by BP

A second approach to PBS in conjunction with DDA is to implement BD followed by BP, referred

to as BD/BP-PBS, that reverses the two processes of BP and BD as carried out by the BP/BD-PBS

described above. It first de-correlates all bands and then prioritizes the resulting de-correlated

bands to be used for PBS.

Algorithm for BD/BP-PBS

1. Select a criterion such as entropy to find a band, denoted by Bl�, as the first band for BD and an

error threshold e.
2. Form a new band setV�L whose bands are ordered beginning with the l

�th band and increasing as
well as decreasing one band at a time in both directions until reaching both ends. It should be

noted that if one end is reached first, then the ordering process will still continue until another

end is reached. For example, if the end of l¼ 1 is reached first, the bands in V�L will be ordered
by l�; l� � 1; l� þ 1; l� � 2; l� þ 2; . . . ; 1; 2l�; 2l� þ 1; 2l� þ 2; . . . ; L.

3. Implement BD to remove bands from V�L to obtain a new set of prioritized bands, denoted by

VBD, in such a manner that all the bands in VBD have interband correlation greater than a pre-

scribed threshold e.
4. Use BP to prioritize and rank all bands in VBD.

5. Apply either PBDE or PBDR to select a final desired set of bands from VBD.

6. Use DDA to determine how many bands should be processed to terminate the PBS.
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A main difference between BD/BP-PBS and BP/BD-PBS is that the former requires selecting an

appropriate band as an initial band for BD, whereas the latter does not because all the bands have

already been prioritized prior to BD in BP/BD-PBS. So, the disadvantage of using BD/BP-PBS is

that it needs to find a good criterion to select an initial band that has a significant impact on the

subsequent BS. However, one way to alleviate this dilemma is to use GSO-BD to orthogonalize

and normalize all band images to unit vectors and then select one with maximal entropy as an

initial band. In this case, BD and selection of an initial band can be done in one-shot operation.

Finally, it should be noted that the effectiveness of PBS in conjunction with BD is determined

by three parameters: the prescribed threshold e that is used to determine how close interband corre-

lation would be, the criterion used for BP, and the criterion used by BD. Specifically, e is an empiri-

cal choice that generally varies with a chosen criterion from case to case and application to

application. In addition, BD is not generally required for progressive dimensionality reduction

since the data information compacted in a low dimensional reduced data space is always contained

or embedded in a higher dimensional reduced data space.

23.4 Experiments for Progressive Band Selection

When BS is implemented with no prior knowledge, the uniform BS is generally preferred because it

attempts to select bands with interband correlation as least as possible by spreading bands as widest as

possible in terms of wavelengths. The same reason also applies to PBDP, which prevents it from being

used for BS due to the fact that bands highly prioritized by PBDPmay also be highly correlated. Conse-

quently, if a spectral band with a high priority score is selected, its neighboring bands may also have

similar high priority scores and, thus, the chance for these bands to be selected is also very high. So, in

order for PBDP to be implemented as PBS, we need to take care of this issue by including a preprocess-

ing of BD removing highly correlated bands in conjunction with DDA determining the number of

bands to adapt to different applications. In this section, the same three applications conducted for

experiments in Chapters 20–22 are also performed for PBS for a comparative study and analysis. Since

Gram-Schmidt orthogonalzation is a second-order statistics-based criterion that is not as effective as a

high-order statistics-based ID as shown in Liu (2011), only ID is used for BD, referred to as ID-BD, for

PBS. Furthermore, according to our extensive experiments, PBS with BD/BP generally does not per-

form as effectively as PBSwith BP/BD. So, experiments were performed only for PBS with BP/ID-BD.

23.5 Endmember Extraction

The reflectance Cuprite data scene in Figure 1.12 was used for experiments by PBS with BP/ID-BD to

investigate an application in endmember extraction where a threshold value e for ID-BD was empiri-

cally set to 0.01 to remove correlated bands. After BP/ID-BD, only 95 spectral bands were retained.

Table 23.1 tabulates the first 50 spectral bands after BP/ID-BD using 7 BP criteria: variance, SNR,

skewness, kurtosis, entropy, ID, and negentropy. Interestingly, the interband correlation for this scene

is clearly characterized by second-order statistics rather than by high-order statistics (HOS), where only

a few bands are removed by ID-BD using three specific HOS criteria: kurtosis, ID, and negentropy.

Figure 23.1(a)–(g) shows the results of IN-FINDR-extracted mineral signatures among A, B, C,

K, and M using BP/ID-BD-generated spectral bands given in Table 23.1, where the figures on

the right and the left were obtained by PBS with/without using ID-BD, respectively. Also in

Figure 23.1, a vertical line in each figure shows a cutoff threshold for ~q determined and set by

DDA¼ 26 that was the largest value obtained by Huffman coding among five mineral signatures.

Comparing Figure 23.1 with Figure 21.8, the results produced by BP/ID-BD-generated bands

are different from the results the generated by using BP without BD. However, the improvement of

endmember extraction was not really significant.
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Table 23.1 Seven BP criteria to produce the first 50 bands after BP/ID-BD with bands removed by ID-BD

for Cuprite data by setting e¼ 0.01

50 BP/BD bands Bands removed by ID-BD

Variance 87/78/98/189/75/94/96/95/67/123/124/122/

120/125/117/114/129/112/54/131/46/40/

187/108/133/102/106/25/20/188/18/141/

143/142/145/140/146/144/139/147/16/

138/149/137/150/151/152/15/153/154

85/88/86/89/84/91/80/90/92/83/82/79/93/81/

99/97/77/76/100/74/73/72/101/71/70/69/

68/121/66/65/119/64/118/63/127/126/128/

62/116/115/61/113/59/60/58/57/55/56/

130/111/53/52/51/50/110/49/48/47/41/44/

43/45/42/39/38/109/37/36/132/35/34/33/

135/32/134/107/31/29/30/28/27/26/103/

104/24/23/105/22/21/19/17

SNR 68/26/89/20/18/53/76/39/16/15/14/114/120/

112/117/124/122/12/123/125/11/129/9/97/

131/108/96/8/94/95/7/133/6/5/106/149/

142/150/146/147/151/4/152/153/143/141/

145/3/144/155

71/67/69/70/72/66/73/65/74/25/27/23/24/28/

22/64/21/75/63/87/88/85/86/91/19/83/84/

42/29/90/52/17/49/43/54/51/38/50/62/45/

35/57/32/55/41/31/37/47/33/48/34/44/

113/36/56/82/118/13/93/119/46/30/115/

126/121/92/111/127/110/128/116/40/109/

61/10/130/98/77/99/100/81/132/60/58/59/

101/80/134/107/135/79/78/104/148/103

Skewness 2/1/3/4/5/6/7/8/9/11/12/14/184/15/185/183/

181/16/179/178/180/182/177/170/171/18/

159/169/20/158/176/157/186/172/156/25/

155/175/173/49/174/160/154/168/43/153/

167/166/152/64

10/13/17/19/21/22/23/24/26/30/27/31/28/32/

29/33/50/51/48/52/47/34/53/46/54/45/35/

44/55/56/42/36/57/37/41/38/39/40/58/59/

60/61/62/63

Kurtosis 2/3/1/4/5/6/7/8/9/185/181/183/184/179/178/

180/170/182/177/11/169/171/12/176/172/

14/159/158/168/157/156/175/155/15/154/

160/167/173/153/174/166/16/152/186/

151/165/150/164/18/161

10/13/17

Entropy 90/101/189/82/96/37/95/111/75/112/124/

187/117/126/123/122/46/107/188/174/25/

175/173/67/103/102/131/172/176/20/52/

177/105/171/18/168/134/169/178/179/

137/170/162/159/167/161/163/160/158/

136

92/88/99/89/91/93/86/87/100/85/84/98/83/

97/81/94/80/79/78/77/38/76/40/39/36/41/

35/113/110/109/42/34/114/120/115/121/

116/118/74/33/119/43/73/32/44/29/108/

72/45/31/28/125/128/127/30/71/27/129/

70/26/47/69/130/68/24/23/48/66/22/104/

65/49/60/63/21/64/61/59/62/50/106/58/

51/54/53/56/55/132/57/19/133/135/17

ID 1/2/3/5/153/154/152/4/151/150/9/6/8/185/

144/146/7/11/139/140/155/145/149/184/

156/12/182/183/147/142/180/143/165/

138/181/164/186/141/160/157/167/14/

170/166/163/158/169/179/15/161

10/148/13

Negentropy 2/3/1/4/5/6/7/8/9/185/181/184/183/179/178/

180/11/170/182/177/171/169/12/176/14/

159/172/158/157/15/168/156/175/155/

154/16/160/173/167/153/174/186/166/

152/151/165/18/150/164/161

10/13/17/19
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23.6 Land Cover/Use Classification

The Purdue Indiana Indian Pine test site in Figure 1.13 was used in experiments to demonstrate the

maximum likelihood classification (MLC) performance resulting from PBS where once again

seven BP criteria: variance, SNR, skewness, kurtosis, entropy, ID, and negentropy, were used for
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Figure 23.1 IN-FIND-extracted endmembers from Cuprire scene using PBS with different seven BP criteria

with DDA¼ 26 (Huffman coding) and figures on the right and the left are obtained by PBS with/without using

ID-BD, respectively.
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BP and SID was used as a BD criterion with e set to 0.1. Table 23.2 tabulates the first 60 highest

prioritized BD de-correlated bands and corresponding removed bands after applying ID-based BD.

Figure 23.2 shows MLC rates of 16 classes produced by operating PBS on seven different BP/

BD prioritized bands where MLC is calculated based on (20.17) and the figures on the right and the

left were obtained by PBS with/without using ID-BD, respectively. Also included in the last figure

in Figure 23.2 is the overall averaged MLC rate among 16 classes. In order to find DDA, the means
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Figure 23.1 (Continued )
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Figure 23.1 (Continued )

Table 23.2 First 60 highest prioritized BP/BD bands and corresponding removed bands after applying

ID-based BD on seven BP results of Purdue data with e¼ 0.1

Decorrelated bands Corresponding removed bands

Variance 29/42/32/33/34/12/10/9/37/69/8/7/6/36/117/5/

4/3/89/2/1/100/162/155/156/150/111/169/

109/170/159/174/173/171/175/172/176/

151/177/79/178/179/180/149/154/110/181/

182/183/102/108/142/184/185/186/188/

187/189/191/192

28/27/26/25/30/41/24/23/31/43/22/44/39/21/

48/49/50/20/45/51/52/19/53/38/47/18/46/

17/16/15/14/13/11/54/40/35/55/56/70/68/

67/66/64/71/65/72/73/63/57/74/62/116/118/

115/75/119/114/122/120/61/121/125/123/

126/124/113/127/128/129/130/131/76/132/

90/133/88/134/91/87/135/94/85/86/60/97/

96/84/136/83/112/93/137/98/82/59/95/138/

92/139/58/99/140/161/163/164/165/160/

166/81/167/168/101/141/157/158/77/80/78

SNR 28/118/22/68/165/155/159/175/171/170/174/

173/156/176/172/177/41/32/178/179/150/

34/111/180/12/151/181/109/183/182/185/

154/184/149/10/186/97/142/187/9/110/188/

37/108/8/189/101/191/7/190/192/36/6/195/

193/153/194/148/152/196

27/26/29/30/116/117/25/115/119/114/24/124/

126/122/125/120/123/23/121/127/128/130/

129/132/131/21/133/113/134/20/135/31/

136/19/137/138/18/66/112/67/163/164/70/

69/65/166/161/64/162/139/72/167/71/53/

160/73/52/17/74/63/168/16/51/169/50/56/

140/55/54/49/62/15/48/75/57/33/14/43/44/

42/157/47/158/13/45/61/141/38/46/39/11/

76/40/98/35/99/100/96/88/60/89/90/87/85/

84/83/95/59/91/82/94/58/92/93/86/102/81

Skewness 4/6/5/3/7/8/15/9/10/2/12/42/35/23/29/32/199/

198/197/185/200/186/183/193/195/196/

194/182/184/181/179/188/180/189/190/

191/187/178/192/177/161/159/176/175/

148/156/149/169/170/174/150/171/152/

202/155/151/144/172/173/153

16/17/14/11/13/18/19/44/40/43/41/20/45/46/

21/48/22/49/47/50/39/51/24/52/26/25/28/

27/53/34/30/54/55/33/31/56/57/38/58/160/

162/163/164/165/158/166/167/168/157

Kurtosis 95/80/3/2/79/37/4/36/99/5/6/77/1/7/39/202/8/

9/35/201/145/10/104/14/103/144/102/200/

146/23/32/29/105/199/147/198/197/196/

194/143/106/131/193/195/107/190/188/

96/90/91/92/89/93/97/87/88/81/94/82/83/85/

86/98/84/78/63/76/62/61/64/65/75/60/38/

66/67/74/68/73/100/69/59/72/70/71/58/57/

55/56/54/53/52/49/48/50/51/40/46/47/45/
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of 16 classes are calculated to serve as 16 signatures required by DDA. A vertical line in each

figure in Figure 23.2 shows a cutoff threshold for ~q determined and set by DDA¼ 36 that was

obtained from the Huffman coding using 16 class signatures.

Comparing Figure 23.2 with Figure 23.1, MLC rates of PBS using two second-order BP crite-

ria, variance and SNR, benefited significantly from BD as the rates were increased in most of

classes. It implies that second-order BP criteria were more appropriate than HOS BP criteria

except the entropy criterion. Since MLC classification performance analysis is similar to that in

Section 21.7.2, its detailed discussions will not be provided here.

The values of DDA given in Table 22.3 were further used in conjunction with PBS that used

prioritized bands with/without ID-BD to perform MLC. Table 23.3 tabulates MLC rates of 16 clas-

ses resulting from PBS using various values of ~q determined by VD, DDA, and optimal MLC

performance where SID was used to measure spectral similarity and the numbers in parentheses in

the last two columns are the true total numbers used for MLC. It should be noted that the column

“total” in Table 23.3 is not 202 because some bands are already removed by BD. In this case, the

numbers in parentheses were actual total numbers after BD. For example, for variance, skewness,

and entropy, these numbers are 84, 86, and 85, respectively.

Comparing Table 23.1 with Table 23.2, it is seen that BP/BD improved MLC rates. Another

observation is that variance and entropy criteria provided lower optimal band numbers, while

skewness still required more bands in most classes.

185/191/192/142/187/183/186/189/184/

182/181/179/180

43/42/44/41/15/101/16/11/13/12/17/18/19/

34/20/21/22/24/25/33/26/31/27/28/30/130/

132/133/129/128/134/127/135/136/126/

125/124/123/137/140/122/138/121/141/

139/120

Entropy 130/34/101/19/152/107/142/143/153/114/94/

144/147/62/80/79/36/146/176/169/172/178/

173/175/105/104/111/170/46/177/37/10/

181/157/180/185/148/184/171/110/179/

154/188/103/145/108/182/158/1/9/109/200/

187/2/195/193/196/183/160/26

128/134/129/127/131/133/126/132/135/125/

136/140/137/124/123/138/122/121/139/

120/119/118/17/16/15/18/14/141/117/35/

102/116/31/20/100/115/21/99/98/13/33/84/

86/97/89/88/93/85/92/113/91/22/87/83/90/

82/81/96/112/78/61/59/64/60/65/63/58/23/

66/11/24/67/174/69/68/56/57/70/71/54/55/

168/72/74/73/52/53/76/12/47/75/51/77/50/

49/38/95/48/167/166/45/25/165/164/39/44/

43/40/162/42/41/161/163

ID 202/4/6/5/199/201/29/194/7/3/2/155/8/32/1/

156/198/189/149/192/145/150/200/159/

151/106/197/190/191/186/37/196/95/193/

103/160/41/195/9/183/187/77/105/104/158/

110/182/109/108/10/36/184/146/188/80/

179/79/185/181/154

28/30/27/42/26/43/39/40/45/49/38/44/75/48/

46/163/73/74/76/50/161/51/53/63/71/72/47/

55/67/52/70/68/162/54/60/56/66/57/59/65/

69/64/78/81

Negentropy 95/3/149/150/151/155/156/186/154/4/158/

160/183/159/182/157/181/184/180/179/

185/167/109/178/108/169/189/177/148/

176/174/175/171/170/173/187/153/172/

112/111/191/188/192/152/190/195/110/

193/194/6/139/196/5/197/198/107/106/143/

2/29

96/90/91/92/89/93/97/163/162/164/161/165/

166/168/113/114/115/88/87/116/117/118/

119/81/120/141/142/94/121/140/138/122/

137/123/124/136/125/135/126/134/127/

133/128/132/82/129/131/130/83/85
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23.7 Linear Spectral Mixture Analysis

The HYDICE 15-panel scene in Figure 1.15 was used for experiments where the 19 R panel pixels,

p11, p12, p13, p211, p221, p22, p23, p311, p312, p32, p33, p411, p412, p42, p43, p511, p521, p52, and p53,

provided by the ground truth in Figure 1.15(b) were used for quantitative analysis. According to

the ground truth in Figures 1.15–1.17, nine signatures, m1¼ p1, m2¼ p2, m3¼ p3, m4¼ p4,

and m5¼ p5 in Figure 1.16 and background signatures, m6¼ grass, m7¼ road, m8¼ tree, and
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Figure 23.2 MLC rate of 16 classes using PBS prioritized bands for Purdue scene with DDA¼ 36 (Huffman

coding) and figures on the right and on the left are obtained by PBS with/without ID-BD.
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m9¼ interferer in Figure 1.17, were used to unmix these 19 R panel pixels for panel detection and

quantification.

Table 23.4 gives the first 35 highest prioritized “de-correlated bands” by ID-BD with the thresh-

old value e set to 0.1 and the corresponding “BD-removed bands” where seven BP criteria, vari-

ance, SNR, skewness, kurtosis, entropy, ID, and negentropy, are used to prioritize bands.

Using the nine signatures, m1¼ p1, m2¼ p2, m3¼ p3, m4¼ p4, and m5¼ p5, m6¼ grass

m7¼ road m8¼ tree, and m9¼ interferer, with the signature mean chosen to be the reference
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Figure 23.2 (Continued )
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signature, DDA was calculated by Shannon coding, Huffman coding, and Hamming coding

with SAM and SID used to measure spectral similarity and their results are given in

Table 22.5. Table 23.5 gives FCLS-unmixed abundance fractions of 19 R panel pixels using

prioritized bands with/without ID-BD via PBS with various values of ~q determined by VD,

DDA, and optimal FCLS performance. Also, note that the column “total” in Table 23.5 was

class 7 
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Figure 23.2 (Continued )
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not 169 because some bands are already removed by BD. In this case, the numbers in

parentheses were actual total numbers after BD.

From Table 23.5, the best estimate for q̂ seems to be 9, 10, and 11.

Figure 23.3 shows FCLS-unmixed abundance fractions of the 19 R panel pixels using PBS with

prioritized bands in Table 23.4 where the figures on the right and the left were obtained by PBS

with/without using ID-BD, respectively.
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Figure 23.2 (Continued )
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As shown in Figure 23.3, the performance of unmixing the 19 R pixels was significantly

improved when ID-BD was implemented prior to FCLS. This implies that the ID-based BD effec-

tively removed redundancy bands so as to increase FCLS performance. An interesting observation

is worthwhile where some panel pixels using only a few bands performed better than those using

more bands.

Finally, the ground truth of the 19 R panel pixels provided in Figure 1.15(b) was further used to

calculate averaged detection rates of the panel pixels in each row according to ROC analysis in
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Figure 23.2 (Continued )

Table 23.3 MLC rates of 16 classes in the Purdue data using various values of ~q determined by VD, DDA,

and optimal FCLS performance

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total Optimal

Class 1 ~q 29 36 36 34 58 202

Variance 74.07 74.07 74.07 74.07 79.63 79.63 (84) 79.63 (52)

SNR 75.93 68.52 68.52 68.52 81.48 85.19 (83) 87.04 (48)

Skewness 62.96 70.37 70.37 70.37 75.93 79.63 (86) 83.33 (46)

Kurtosis 64.81 64.81 64.81 66.67 68.52 79.63 (86) 79.63 (83)

Entropy 77.78 74.07 74.07 77.78 72.22 75.93 (85) 83.33 (17)

ID 64.81 61.11 61.11 66.67 75.93 75.93 (90) 81.48 (66)

Negentropy 59.26 57.41 57.41 64.81 62.96 79.63 (87) 79.63 (74)

Class 2 ~q 29 34 34 34 58 202

Variance 56.62 57.32 57.32 57.32 58.58 61.16 (84) 61.85 (78)

SNR 53.35 53.97 53.97 53.97 60.95 60.32 (83) 61.37 (64)

Skewness 38.15 36.68 36.68 36.68 59 64.85 (86) 65.34 (85)

Kurtosis 40.79 47.56 47.56 47.56 57.53 60.46 (86) 60.88 (82)

Entropy 55.58 57.88 57.88 57.88 56.69 63.6 (85) 63.6 (85)
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Table 23.3 (Continued )

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total Optimal

ID 39.61 46.93 46.93 46.93 50.49 64.3 (90) 64.3 (90)

Negentropy 33.68 36.19 36.19 36.19 46.65 62.55 (87) 63.39 (74)

Class 3 ~q 29 34 34 34 58 202

Variance 40.05 43.41 43.41 43.41 47.6 48.44 (84) 49.04 (70)

SNR 40.53 41.85 41.85 41.85 46.04 47 (83) 47.36 (80)

Skewness 26.62 29.02 29.02 29.02 41.13 48.2 (86) 48.2 (86)

Kurtosis 23.62 27.22 27.22 27.22 36.57 45.8 (86) 45.8 (83)

Entropy 37.05 38.73 38.73 38.73 42.45 46.04 (85) 46.76 (75)

ID 33.09 36.69 36.69 36.69 37.89 47.12 (90) 47.12 (90)

Negentropy 33.45 35.49 35.49 35.49 42.33 46.64 (87) 46.64 (87)

Class 4 ~q 29 36 36 34 58 202

Variance 69.66 73.08 73.08 73.08 78.21 74.36 (84) 80.34 (45)

SNR 73.08 73.5 73.5 72.22 76.92 76.5 (83) 77.78 (62)

Skewness 61.97 58.12 58.12 58.55 66.67 76.92 (86) 77.78 (76)

Kurtosis 54.27 64.96 64.96 64.53 70.51 81.2 (86) 82.05 (81)

Entropy 68.38 70.94 70.94 72.22 76.5 82.48 (85) 82.91 (78)

ID 45.73 67.52 67.52 67.52 68.8 75.64 (90) 75.64 (90)

Negentropy 61.54 62.39 62.39 64.53 67.09 76.92 (87) 76.92 (87)

Class 5 ~q 29 32 32 34 58 202

Variance 65.19 65.39 65.39 65.39 65.59 65.59 (84) 65.59 (55)

SNR 58.95 61.77 61.77 60.56 65.59 65.59(83) 65.59 (47)

Skewness 50.5 50.7 50.7 49.5 53.52 65.79 (86) 65.79 (85)

Kurtosis 59.76 61.77 61.77 62.37 62.58 63.58 (86) 63.78 (79)

Entropy 61.77 62.37 62.37 62.17 61.97 62.17 (85) 62.78 (38)

ID 34.81 53.52 53.52 54.33 62.37 63.78 (90) 63.78 (85)

Negentropy 49.09 50.91 50.91 49.7 55.33 63.78 (87) 63.78 (83)

Class 6 ~q 29 34 34 34 58 202

Variance 85.68 85.81 85.81 85.81 86.08 85.81 (84) 86.75 (40)

SNR 84.34 84.07 84.07 84.07 85.81 86.48 (83) 87.15 (66)

Skewness 73.63 74.03 74.03 74.03 76.31 86.08 (86) 86.08 (86)

Kurtosis 85.54 85.01 85.01 85.01 86.48 86.61 (86) 87.55 (79)

Entropy 87.55 87.01 87.01 87.01 87.01 86.61 (85) 89.29 (19)

ID 47.79 63.45 63.45 63.45 86.88 85.54 (90) 88.09 (67)

Negentropy 58.37 61.45 61.45 61.45 72.29 86.61 (87) 88.09 (72)

Class 7 ~q 29 37 36 34 58 202

Variance 80.77 76.92 76.92 80.77 80.77 73.08 (84) 84.62 (53)

SNR 88.46 84.62 88.46 88.46 88.46 80.77 (83) 92.31 (26)

Skewness 65.38 69.23 73.08 65.38 65.38 73.08 (86) 76.92 (81)

Kurtosis 69.23 88.46 88.46 84.62 88.46 84.62 (86) 96.15 (69)

Entropy 96.15 100 100 96.15 96.15 88.46 (85) 100 (17)

ID 61.54 73.08 73.08 65.38 84.62 80.77 (90) 88.46 (48)

Negentropy 80.77 69.23 69.23 65.38 65.38 76.92 (87) 84.62 (24)

Class 8 ~q 29 36 36 34 58 202

Variance 86.71 86.3 86.3 87.12 92.64 93.05 (84) 94.27 (76)

SNR 86.09 85.89 85.89 85.89 91.82 93.66 (83) 93.66 (82)
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Skewness 70.35 73.82 73.82 72.39 82.62 92.23 (86) 92.43 (85)

Kurtosis 80.98 81.6 81.6 80.16 87.53 93.46 (86) 93.46 (86)

Entropy 86.5 86.71 86.71 86.71 90.8 94.68 (85) 94.68 (85)

ID 68.3 79.75 79.75 79.75 87.12 93.05 (90) 93.46 (88)

Negentropy 74.85 75.46 75.46 74.44 82 92.23 (87) 92.43 (80)

Class 9 ~q 29 36 35 34 58 202

Variance 55 60 60 55 55 55 (84) 65 (17)

SNR 50 50 50 50 55 55 (83) 75 (17)

Skewness 85 80 80 80 55 55 (86) 85 (29)

Kurtosis 70 60 60 60 70 60 (86) 75 (24)

Entropy 75 70 75 75 60 50 (85) 75 (26)

ID 50 50 50 50 70 55 (90) 70 (57)

Negentropy 50 50 50 50 50 55 (87) 60 (32)

Class 10 ~q 29 34 33 34 58 202

Variance 77.48 77.58 78.2 77.58 79.44 80.89 (84) 81.61 (79)

SNR 76.96 77.38 77.48 77.38 80.06 81.3 (83) 81.92 (79)

Skewness 48.66 49.59 48.66 49.59 72.83 81.61 (86) 81.92 (84)

Kurtosis 56.51 58.26 54.65 58.26 63.84 83.26 (86) 83.26 (86)

Entropy 67.77 68.7 69.21 68.7 75.1 81.92 (85) 81.92 (85)

ID 65.08 72.42 73.04 72.42 79.86 83.57 (90) 83.57 (90)

Negentropy 75.52 74.17 74.38 74.17 76.34 83.57 (87) 83.57 (87)

Class 11 ~q 29 34 34 34 58 202

Variance 35.49 36.18 36.18 36.18 43.56 46.39 (84) 46.52 (82)

SNR 37.16 39.47 39.47 39.47 44.69 46.88 (83) 47.04 (80)

Skewness 42.1 42.06 42.06 42.06 41.25 45.87 (86) 45.87 (86)

Kurtosis 40.15 39.55 39.55 39.55 46.23 45.1 (86) 47.2 (67)

Entropy 43.52 44.57 44.57 44.57 46.64 46.84 (85) 48.3 (66)

ID 32.17 36.18 36.18 36.18 43.88 46.27 (90) 46.43 (89)

Negentropy 37.8 37.16 37.16 37.16 42.22 47.16 (87) 47.33 (78)

Class 12 ~q 29 34 34 34 58 202

Variance 62.21 64.82 64.82 64.82 68.89 68.57 (84) 69.71 (78)

SNR 60.1 60.59 60.59 60.59 66.78 68.73 (83) 68.89 (77)

Skewness 43.81 42.67 42.67 42.67 63.03 67.26 (86) 67.43 (82)

Kurtosis 41.53 47.39 47.39 47.39 60.26 61.56 (86) 63.84 (74)

Entropy 58.79 61.73 61.73 61.73 63.84 65.15 (85) 65.64 (76)

ID 44.3 48.37 48.37 48.37 50.49 61.4 (90) 61.4 (90)

Negentropy 45.6 50 50 50 54.72 62.21 (87) 63.03 (82)

Class 13 ~q 29 35 34 34 58 202

Variance 99.06 99.53 99.06 99.06 99.53 98.58 (84) 99.53 (19)

SNR 99.06 99.06 99.53 99.53 99.53 99.06 (83) 100 (47)

Skewness 98.11 99.06 98.58 98.58 98.11 99.53 (86) 100 (73)

Kurtosis 94.81 98.58 98.58 98.58 99.06 99.53 (86) 99.53 (76)

Entropy 97.64 99.53 99.53 99.53 99.53 99.06 (85) 99.53 (33)

ID 62.26 95.75 96.7 96.7 96.7 99.53 (90) 100 (75)

Negentropy 92.92 91.98 92.45 92.45 94.34 100 (87) 100 (76)

Class 14 ~q 29 32 31 34 58 202

Variance 82.84 83.54 82.69 82.69 85.86 86.63(84) 86.63 (83)

SNR 80.76 81.68 81.07 81.07 85.01 84.7 (83) 86.01 (61)

Skewness 66.92 69.63 69.24 69.24 73.88 83.54 (86) 84.54 (75)
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Table 23.3 (Continued )

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total Optimal

Kurtosis 75.35 79.06 79.13 79.13 81.3 87.17 (86) 87.17 (86)

Entropy 80.06 82.23 82.3 82.3 84.39 87.4 (85) 87.4 (84)

ID 59.12 56.11 56.72 56.72 79.98 85.24 (90) 85.24 (89)

Negentropy 59.51 63.29 62.13 62.13 68.24 84.78 (87) 84.78 (87)

Class 15 ~q 29 34 33 34 58 202

Variance 62.11 61.58 61.84 61.58 65.26 69.47 (84) 70.53 (80)

SNR 52.89 53.42 53.95 53.42 62.37 72.11 (83) 73.42 (80)

Skewness 58.42 58.95 57.37 58.95 60.26 73.16 (86) 73.16 (86)

Kurtosis 45.26 52.37 52.11 52.37 64.74 66.05 (86) 67.89 (67)

Entropy 58.16 60 60 60 64.74 73.16 (85) 73.16 (79)

ID 31.84 47.89 47.89 47.89 55 67.11 (90) 68.42 (87)

Negentropy 38.68 40 39.47 40 45.53 66.84 (87) 66.84 (84)

Class 16 ~q 29 32 31 34 58 202

Variance 86.32 87.37 87.37 87.37 88.42 88.42 (84) 88.42 (35)

SNR 88.42 88.42 88.42 88.42 88.42 88.42 (83) 91.58 (19)

Skewness 86.32 87.37 87.37 87.37 88.42 88.42 (86) 89.47 (19)

Kurtosis 87.37 87.37 87.37 87.37 87.37 88.42 (86) 88.42 (28)

Entropy 92.63 88.42 88.42 88.42 88.42 88.42 (85) 92.63 (17)

ID 89.47 88.42 88.42 88.42 88.42 89.47 (90) 89.47 (19)

Negentropy 88.42 89.47 88.42 89.47 88.42 88.42 (87) 89.47 (34)

Table 23.4 First 35 highest prioritized BP/BD bands and corresponding removed bands after ID-BD with

e¼ 0.1 using 7 BP criteria for BP of HYDICE data

BR/BD bands Corresponding removed bands

Variance 60/56/78/53/52/55/54/49/45/92/38/34/28/26/

27/25/24/23/22/20/21/102/19/18/17/16/15/

14/13/12/11/10/84/9/8

61/67/66/65/59/57/68/62/64/77/76/79/63/80/

58/75/81/69/50/82/48/51/46/70/47/44/43/

42/41/74/93/91/40/95/39/90/94/37/96/89/

83/36/35/33/88/32/71/31/30/97/29/87/73/

103/108/105/104/109/101/106/107/111/

110/112/113/100/114/72/115/99/86/116

Skewness 1/122/50/127/2/169/168/128/129/45/167/22/

23/21/18/20/24/19/17/16/15/10/3/8/25/14/

13/5/11/12/132/9/7/4/133

123/124/125/126/49/48/47/51/46/130/166/44/

131/43/165/42/164/41

Kurtosis 1/59/69/74/83/56/85/86/93/55/54/122/109/2/

120/3/127/130/128/132/4/133/134/144/145/

143/135/141/140/146/138/139/136/53/137

60/61/62/64/63/65/66/58/67/68/57/70/80/82/

81/72/79/78/77/76/75/71/84/73/92/95/91/

94/90/88/89/87/96/97/108/113/112/110/

111/123/114/107/106/115/105/116/104/

117/103/118/121/119/124/102/101/126/

131/100/129/125/99/98/142/152/153/154/

147/151

Entropy 46/24/124/21/40/18/26/23/22/25/16/17/27/20/

19/165/15/167/9/168/12/36/169/98/35/14/

29/28/53/6/10/13/156/7/2

47/49/48/51/45/44/43/50/41/42/52/125/39/38/

123/126/122/37/129/166/164/163/162/130/

160/161/159/131/32/99/33/30/31/158/34/

157/100/142/154/155
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ID 59/81/56/85/94/86/71/84/55/4/145/120/109/

135/146/139/138/133/141/136/143/132/

137/134/140/54/150/128/8/1/127/11/3/2/13

60/63/62/61/65/58/57/64/66/80/79/67/82/70/

83/74/68/72/77/76/69/78/91/92/93/75/88/

95/90/89/96/87/73/97/113/115/112/114/

111/116/110/118/108/106/117/107/105/

104/119/121/103/144/151/148/102/149/

152/147/155/142/101/154/153/100/157

ICA 1/81/93/85/68/84/86/56/55/111/54/120/53/33/

149/146/145/28/143/37/141/139/140/137/

138/27/52/136/26/135/25/44/24/19/14

82/80/79/78/92/95/77/94/91/76/96/90/75/89/

88/83/74/67/70/66/87/69/65/64/61/60/59/

62/63/72/57/97/58/73/71/112/110/113/114/

109/115/108/116/107/106/117/105/118/

104/119/121/103/102/34/32/101/31/150/

148/30/36/147/151/29/35/152/100/153/142/

144/154/155/38/39/156/99/40/157/158/159/

41/42/160/43/161/162/45

SNR 78/93/102/62/56/49/44/53/55/52/54/38/120/

137/138/136/139/134/140/133/141/85/135/

132/86/143/131/128/145/32/84/144/146/

122/28

80/91/92/95/89/94/90/88/96/79/82/105/107/

108/104/109/101/110/103/63/106/77/61/

111/70/112/100/114/113/75/99/59/116/57/

83/60/117/118/46/47/66/69/64/45/115/50/

119/97/51/67/87/43/42/58/71/41/72/98/39/

37/65/73/142/31/33/147/130/129/30/29

Table 23.5 FCLS-unmixed abundance fractions of the 19 panel pixels in the HYDICE data using various

values of ~q determined by VD, DDA, and optimal FCLS performanc

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total Optimal

~q¼Number of

selected bands

9 15 14 13 18

p11 Variance 0.44 0.63 0.6 0.54 0.73 0.78 (65) 0.78 (32)

SNR 0.41 0.52 0.52 0.52 0.52 0.77 (66) 0.77 (58)

Skewness 0.27 0.84 0.84 0.82 0.85 0.81 (70) 0.92 (36)

Kurtosis 0 0 0 0 0 0.7 (67) 0.7 (67)

Entropy 0.83 0.87 0.85 0.84 0.88 0.77 (68) 1 (24)

ID 0 0 0 0 0 0.76 (68) 0.76 (68)

Negentropy 0 0 0 0 0.07 0.71 (67) 0.71 (63)

p12 Variance 0.66 0.46 0.48 0.51 0.43 0.56 (65) 0.68 (11)

SNR 0.57 0.59 0.59 0.59 0.59 0.56 (66) 0.59 (12)

Skewness 0.54 0.53 0.36 0.3 0.52 0.56 (70) 0.68 (38)

Kurtosis 0.38 0.47 0.46 0.39 0.49 0.54 (67) 0.6 (60)

Entropy 0.93 0.9 0.86 0.86 0.72 0.53 (68) 0.93 (10)

ID 0.47 0.34 0.33 0.33 0.36 0.55 (68) 0.61 (62)

Negentropy 0.39 0.49 0.49 0.62 0.48 0.63 (67) 0.65 (11)

p13 Variance 0 0 0 0 0 0 (65) 0 (10)

SNR 0 0.05 0.05 0.05 0.05 0.01 (66) 0.07 (29)

Skewness 0 0 0 0 0 0.05 (70) 0.23 (34)

Kurtosis 0 0 0 0 0.01 0.02 (67) 0.18 (34)

Entropy 0.68 0.69 0.67 0.69 0.67 0.01 (68) 0.83 (12)

ID 0 0 0 0 0 0.02 (68) 0.2 (34)

Negentropy 0.17 0 0 0.25 0 0.07 (67) 0.25 (13)
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Table 23.5 (Continued )

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total Optimal

~q¼Number of

selected bands

9 15 14 13 18

p211 Variance 0.85 0.87 0.87 0.87 0.87 0.89 (65) 0.89 (65)

SNR 0.86 0.86 0.86 0.86 0.86 0.88 (66) 0.88 (66)

Skewness 0.84 0.95 0.96 0.95 0.95 0.89 (70) 0.99 (36)

Kurtosis 0.87 0.82 0.82 0.82 0.82 0.89 (67) 0.89 (67)

Entropy 1.2 0.88 0.87 0.87 0.88 0.92 (68) 1.2 (9)

ID 0.83 0.85 0.85 0.85 0.85 0.88 (68) 0.88 (68)

Negentropy 0.86 0.84 0.84 0.83 0.84 0.89 (67) 0.89 (65)

p221 Variance 0.53 0.71 0.7 0.7 0.72 0.75 (65) 0.75 (65)

SNR 0.47 0.54 0.54 0.54 0.55 0.74 (66) 0.74 (66)

Skewness 0.72 0.95 0.96 0.96 0.96 0.77 (70) 1 (37)

Kurtosis 0.33 0.41 0.41 0.34 0.42 0.75 (67) 0.75 (67)

Entropy 0 0.21 0.19 0.25 0.22 0.81 (68) 1 (38)

ID 0.26 0.3 0.3 0.3 0.3 0.75 (68) 0.75 (68)

Negentropy 0.33 0.51 0.51 0.39 0.54 0.76 (67) 0.76 (67)

p22 Variance 0.75 0.86 0.86 0.85 0.81 0.78 (65) 0.86 (14)

SNR 0.88 0.87 0.87 0.87 0.88 0.83 (66) 0.88 (29)

Skewness 0.87 0.74 0.75 0.8 0.7 0.79 (70) 0.87 (9)

Kurtosis 0.81 0.81 0.81 0.81 0.82 0.78 (67) 0.85 (42)

Entropy 0.64 0.6 0.62 0.61 0.6 0.77 (68) 0.78 (67)

ID 0.77 0.73 0.73 0.73 0.74 0.8 (68) 0.81 (37)

Negentropy 0.73 0.78 0.78 0.78 0.82 0.82 (67) 0.86 (32)

p23 Variance 0.46 0.49 0.49 0.49 0.48 0.46 (65) 0.49 (14)

SNR 0.42 0.49 0.49 0.49 0.49 0.45 (66) 0.49 (12)

Skewness 0.38 0.24 0.24 0.24 0.22 0.45 (70) 0.45 (70)

Kurtosis 0.47 0.38 0.38 0.4 0.4 0.46 (67) 0.47 (38)

Entropy 0 0.23 0.19 0.18 0.19 0.44 (68) 0.44 (68)

ID 0.25 0.37 0.37 0.37 0.37 0.47 (68) 0.47 (39)

Negentropy 0.18 0.43 0.43 0.4 0.44 0.45 (67) 0.46 (32)

~q¼Number of

selected bands

9 14 13 13 18

p311 Variance 0.98 0.97 0.97 0.97 0.96 0.95 (65) 0.98 (9)

SNR 0.97 0.98 0.98 0.98 0.98 0.95 (66) 0.99 (11)

Skewness 0.56 0.89 0.89 0.89 0.89 0.95 (70) 0.95 (69)

Kurtosis 1 1 1 1 1 0.95 (67) 1 (13)

Entropy 0.72 0.74 0.74 0.74 0.75 0.94 (68) 0.94 (68)

ID 1 1 1 1 1 0.95 (68) 1 (11)

Negentropy 1 1 1 1 1 0.95 (67) 1 (12)

p312 Variance 1 1 1 1 1 1 (65) 1 (9)

SNR 1 1 1 1 1 1 1 (9)

Skewness 1 0.96 0.97 0.97 0.96 1 (70) 1 (65)

Kurtosis 0.92 1 1 1 1 1 (67) 1 (13)
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Entropy 0.78 0.82 0.83 0.83 0.81 1 (68) 1 (68)

ID 1 1 1 1 1 1 (68) 1 (11)

Negentropy 0.99 1 1 1 1 1 (67) 1 (12)

p32 Variance 0.71 0.7 0.7 0.7 0.68 0.63 (65) 0.71 (10)

SNR 0.7 0.72 0.72 0.72 0.72 0.61 (66) 0.73 (11)

Skewness 1 0.77 0.77 0.77 0.8 0.67 (70) 1 (9)

Kurtosis 0.62 0.69 0.69 0.69 0.64 0.58 (67) 0.71 (40)

Entropy 0 0 0 0 0 0.33 (68) 0.33 (68)

ID 0.67 0.6 0.6 0.6 0.58 0.71 (68) 0.74 (67)

Negentropy 0.47 0.71 0.72 0.72 0.7 0.53 (67) 0.72 (27)

p33 Variance 0.33 0.32 0.32 0.32 0.32 0.32 (65) 0.33 (9)

SNR 0.28 0.32 0.32 0.32 0.32 0.32 (66) 0.32 (11)

Skewness 0.56 0.43 0.43 0.43 0.43 0.34 (70) 0.56 (9)

Kurtosis 0.34 0.32 0.32 0.32 0.32 0.31 (67) 0.36 (10)

Entropy 0 0 0 0 0 0.3 (68) 0.35 (61)

ID 0.37 0.36 0.36 0.36 0.35 0.33 (68) 0.37 (9)

Negentropy 0.42 0.29 0.29 0.29 0.29 0.31 (67) 0.42 (9)

~q¼Number of

selected bands

9 13 13 13 18

p411 Variance 0.52 0.55 0.55 0.55 0.67 0.71 (65) 0.72 (35)

Skewness 0.61 0.85 0.85 0.85 0.86 0.8 (70) 0.88 (16)

Kurtosis 0.4 0.44 0.44 0.44 0.45 0.75 (67) 0.75 (67)

Entropy 0.74 0.74 0.74 0.74 0.77 0.77 (68) 0.87 (63)

ID 0.43 0.43 0.43 0.43 0.44 0.75 (68) 0.75 (68)

Negentropy 0.22 0.39 0.39 0.39 0.45 0.75 (67) 0.75 (56)

SNR 0.45 0.53 0.53 0.53 0.53 0.72 (66) 0.72 (65)

p412 Variance 0.79 0.83 0.83 0.83 0.66 0.79 (65) 0.83 (14)

SNR 0.91 0.86 0.86 0.86 0.87 0.81 (66) 0.91 (9)

Skewness 0.81 0 0 0 0.11 0.76 (70) 0.81 (9)

Kurtosis 0.82 1 1 1 1 0.81 (67) 1 (11)

Entropy 0.01 0.16 0.16 0.16 0.23 0.72 (68) 0.72 (68)

ID 1 1 1 1 1 0.9 (68) 1 (10)

Negentropy 1 0.98 0.98 0.98 0.96 0.86 (67) 1 (10)

p42 Variance 0.81 0.69 0.69 0.69 0.56 0.75 (65) 0.81 (9)

SNR 0.83 0.82 0.82 0.82 0.82 0.76 (66) 0.83 (9)

Skewness 0.42 0.24 0.24 0.24 0.25 0.75 (70) 0.75 (70)

Kurtosis 0.86 0.8 0.8 0.8 0.85 0.76 (67) 0.86 (9)

Entropy 0.07 0.23 0.23 0.23 0.33 0.81 (68) 0.83 (65)

ID 0.85 0.86 0.86 0.86 0.84 0.73 (68) 0.86 (16)

Negentropy 0.86 0.65 0.65 0.65 0.63 0.76 (67) 0.86 (9)

p43 Variance 0.11 0.12 0.12 0.12 0.16 0.17 (65) 0.17 (65)

SNR 0.14 0.13 0.13 0.13 0.14 0.18 (66) 0.18 (66)

Skewness 0.17 0.21 0.21 0.21 0.21 0.18 (70) 0.22 (24)

Kurtosis 0.17 0.15 0.15 0.15 0.16 0.17 (67) 0.18 (65)

Entropy 0.22 0.21 0.21 0.21 0.21 0.19 (68) 0.26 (54)

ID 0.15 0.15 0.15 0.15 0.15 0.18 (68) 0.18 (60)

Negentropy 0.17 0.06 0.06 0.06 0.17 0.19 (67) 0.19 (54)

(Continued )
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Chapter 3. Figure 23.4(a)–(e) hows the areas under their 2D ROC curves of (PD,PF) resulting from

using PBS with prioritized bands with/without ID-BD where figures on the right and on the left are

obtained by PBS with/without ID-BD and DDA¼ 14 (Huffman coding) and vertical lines were

also used to show the cutoff threshold determined by DDA¼ 14 calculated by the Huffman coding.

Figure 23.4(f) shows the overall averaged panel pixel detection rates specified by the areas under

2D ROC curves of (PD,PF) obtained by averaging the areas under 2D ROC curves of (PD,PF) in

Figure 23.4(a)–(e).

As we can see from Figure 23.4(f), the value 14 of DDA determined by the Huffman coding

indeed provided a very good estimate for the value of ~q.

Table 23.5 (Continued )

nVD Shannon

coding

Huffman

coding

Hamming

coding

2nVD Total Optimal

~q¼Number of

selected bands

9 13 12 13 18

p511 Variance 0.82 0.83 0.8 0.83 0.84 0.83 (65) 0.84 (24)

SNR 0.72 0.81 0.81 0.81 0.83 0.84 (66) 0.84 (47)

Skewness 0.86 0.81 0.81 0.81 0.84 0.84 (70) 0.87 (17)

Kurtosis 0.82 0.83 0.82 0.83 0.83 0.84 (67) 0.84 (67)

Entropy 0.87 0.87 0.87 0.87 0.87 0.84 (68) 0.88 (25)

ID 0.82 0.82 0.82 0.82 0.82 0.83 (68) 0.84 (31)

Negentropy 0.82 0.82 0.81 0.82 0.83 0.84 (67) 0.84 (67)

p521 Variance 1 1 1 1 1 1 (65) 1 (9)

SNR 1 1 1 1 1 1 (66) 1 (9)

Skewness 0.83 1 0.99 1 1 1 (70) 1 (13)

Kurtosis 1 1 1 1 1 1 (67) 1 (13)

Entropy 1 1 1 1 1 1 (68) 1 (17)

ID 1 1 1 1 1 1 (68) 1 (10)

Negentropy 1 1 1 1 1 1 (67) 1 (15)

p52 Variance 0.92 0.92 0.93 0.92 0.92 0.93 (65) 0.93 (12)

SNR 0.94 0.93 0.93 0.93 0.93 0.91 (66) 0.94 (9)

Skewness 0.81 0.9 0.89 0.9 0.9 0.91 (70) 0.91 (64)

Kurtosis 0.85 0.91 0.9 0.91 0.95 0.91 (67) 0.95 (16)

Entropy 0.84 0.82 0.84 0.82 0.82 0.9 (68) 0.92 (67)

ID 0.88 0.89 0.87 0.89 0.89 0.91 (68) 0.93 (35)

Negentropy 0.92 0.94 0.93 0.94 0.93 0.91 (67) 0.94 (10)

p53 Variance 0.11 0.11 0.11 0.11 0.14 0.1 (65) 0.14 (23)

SNR 0.11 0.12 0.12 0.12 0.12 0.1 (66) 0.14 (45)

Skewness 0.05 0 0 0 0 0.14 (70) 0.16 (63)

Kurtosis 0.12 0.09 0.09 0.09 0.08 0.11 (67) 0.12 (35)

Entropy 0.02 0.14 0.15 0.14 0.13 0.15 (68) 0.18 (63)

ID 0.08 0.12 0.12 0.12 0.12 0.1 (68) 0.12 (31)

Negentropy 0.1 0.12 0.09 0.12 0.11 0.11 (67) 0.15 (46)
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Figure 23.3 FCLS-unmixed results of the 19 R pixels using PBS prioritized bands with figures on the right

and on the left obtained by PBS with/without ID-BD and DDA¼ 14 (Huffman coding).
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Figure 23.3 (Continued )

708 Hyperspectral Data Processing: Algorithm Design and Analysis



0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of selected bands

A
bu

nd
an

ce

 

Variance
Skewness

Kurtosis

Entropy

ID

Negentropy
SNR

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of selected bands

A
bu

nd
an

ce

 

 

Variance
Skewness

Kurtosis

Entropy

ID

Negentropy
SNR

panel pixel p23 

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of selected bands

A
bu

nd
an

ce

 

Variance
Skewness

Kurtosis

Entropy

ID

Negentropy
SNR

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of selected bands

A
bu

nd
an

ce

 

 

Variance
Skewness

Kurtosis

Entropy

ID

Negentropy
SNR

panel pixel p311 

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of selected bands

A
bu

nd
an

ce

 

Variance

Skewness

Kurtosis

Entropy

ID

Negentropy

SNR

0 5 10 15 20 25 30 35
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Number of selected bands

A
bu

nd
an

ce

 

 

Variance
Skewness

Kurtosis

Entropy

ID

Negentropy
SNR

panel pixel p312 

Figure 23.3 (Continued )
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Figure 23.3 (Continued )
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Figure 23.3 (Continued )
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Figure 23.3 (Continued )
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(a) panels in row 1 
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Figure 23.4 Areas under 2D ROC curves of (PD,PF) with figures on the right and on the left obtained by

PBS with/without ID-BD and DDA¼ 14 (Huffman coding).
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Figure 23.4 (Continued )
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23.8 Conclusions

Progressive band selection (PBS) is a new theory developed for band selection (BS), which is

particularly useful in data communication and transmission. It can be considered as variable

dimensionality BS (VDBS) as opposed to FDBS that implements BS dynamically by making band

dimensionality adapt to various applications. It takes advantage of progressive band dimensionality

process (PBDP), developed in Chapter 21, via band prioritization (BP) and band de-correlation

(BD) to fine-tune BS in a progressive manner so that the band previously selected can be either

expanded or removed to accommodate practical constraints. It offers several benefits over the tra-

ditional fixed band dimensionality BS. First, PBS does not need to have the precise knowledge of

the number of bands needed to be selected because it makes the number of selected bands, p, vary

and selects bands progressively in a forward and backward manner without repeatedly implement-

ing BS. Second, PBS can be implemented by tuning variable bands according to its applications,

such as selecting different ranges of wavelengths with different bands. Third, PBS keeps track of

previously selected bands to update results in band expansion and reduction to accomplish various

tasks, such as data compression, communication, storage, archiving and transmission, and so on.

Finally, PBS can be implemented in causality and real time, a new emerging area, called progres-

sive band processing in hyperspectral imaging, which will be one of the main themes in Chang

(2013).
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VI

Hyperspectral
Signal Coding

The second category of this book, Category B, is devoted to hyperspectral signal processing. The

question is for a given data sample vector treated as a signature vector without reference to others,

what is the best possible we can do to explore as much spectral information across the entire wave-

length range to specify the data sample vector for spectral characterization. There are two ways to

process hyperspectral signals either in a discrete manner as discrete signal processing referred to as

signal coding in Part VI or in a continuous manner as continuous signal processing referred to as

signal characterization in Part VII.

In Part VI, the focus is placed on hyperspectral signal coding that represents a signature vector

by a discrete vector as a code word that can be considered as its fingerprint. A simplest way to

accomplish this task is binary coding that binarizes each component of a signature vector for its

identification. An earliest attempt was made by Mazer et al. (1988) to develop a so-called spectral

analysis manager (SPAM) that encoded a remote sensing image data sample vector into a binary

code vector for signature discrimination, classification, and identification. It calculates spectral

mean and interband spectral difference and uses them as thresholds to generate a binary code word

for a given hyperspectral signature vector. The SPAM binary coding was then extended to a spec-

tral feature-based binary coding (SFBC) developed by Qian et al. (1996) who incorporated an addi-

tional binary code word produced by thresholding the spectral mean deviation to improve SPAM.

Chapter 24 studies these two coding schemes and follows similar ideas to further design several

new binary signature coding schemes, median partition (MP), halfway partition (HP), and equal

probability partition (EPP). Since the coding schemes in Chapter 24 perform component-wise

encoding in the sense that the spectral value at each wavelength is encoded separately and indepen-

dently without taking advantage of spectral correlation among adjacent bands, they are memory-

less coding and can be viewed as scalar coding in context of the source coding. Therefore, an

obvious extension to scalar coding is vector coding. Chapter 25 investigates such an extension

where two vector coding approaches to encoding hyperspectral signals are developed, called spec-

tral derivative feature coding (SDFC), and spectral feature probabilistic coding (SFPC) where

SDFC is derived by including spectral textures as features to account for spectral correlation

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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among two successive adjacent bands and SFPC has its origin derived from arithmetic coding,

which is a well-established coding method developed by Rissanen (1976) and Langdon and

Rissanen (1981) and has been widely used in image coding.

One of major applications in hyperspectral signal coding is satellite data communication where

data compression and transmission are critical and crucial. So, a progressive signature coding

(PSC) Chapter 26 develops that allows signal coding to be progressive. In this case, hyperspectral

signals can be encoded in a coarse-to-fine resolution manner. As a result, data transmission can

take place more rapidly through each pass where each pass increases signal resolution for better

data processing. The idea of PSC is similar to that used by progressive band selection (PBS) dis-

cussed in Chapter 23 where the coding process is carried out progressively in the exactly same way

as band selection performed by PBS in the sense that the results produced by a previous process are

always part of the following subsequent process to improve results. In PBS band prioritization

(BP) is used to prioritize spectral bands so that progressive band dimensionality process (PBDP) is

performed in band reduction or expansion. Unfortunately, such BP is developed for band images

and is not applicable to signature coding. Therefore, a new coding scheme called multistage pulse

code modulation (MPCM) is designed in Chapter 26 to encode a hyperspectral signal wavelength

by wavelength progressively.

Finally, Figure VI.1 shows the topics covered in three chapters in Part VI.

Binary Coding, Chapter 24 Vector Coding, Chapter 25 

SFPC

Hyperspectral Signal Coding 

SDFC 
SPAM 

SFBC

MP 

HP

EPP S-SFPCC-SFPC

Progressive Coding
Chapter 26

SCFC AVD-SDFCHD-SDFC

Figure VI.1 Topics of three chapters in Part VI.
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24

Binary Coding For Spectral
Signatures

Binary coding is the simplest way to characterize spectral features. One commonly used method is

a binary coding-based image software system, called spectral analysis manager (SPAM) for

remotely sensed imagery developed by Mazer et al. (1988). It makes use of spectral mean and

interband spectral difference as thresholds to generate a binary code word for a spectral signature

vector. It is generally effective and also very simple to implement. The SPAM binary coding was

further extended to a spectral feature binary coding (SFBC) developed by Qian et al. (1996) by

incorporating an additional binary code word produced by thresholding the spectral mean devia-

tion to further improve the SPAM performance. This chapter revisits these two approaches and

further develops three new binary coding methods, median partition (MP), halfway partition (HP),

and equal probability partition (EPP), all of which can be implemented in conjunction with the

ideas of SPAM and SFBC to create new sets of binary code words for spectral signature coding.

As a result, different combinations of various binary coding methods can be used for spectral sig-

nature coding and applications in spectral discrimination and identification. Finally, a new criterion

called a posteriori discrimination probability (APDP) is also introduced as a performance measure

to coompare two different binray coding methods for performance analysis.

24.1 Introduction

Binary coding is one of simplest coding methods to represent data with binary values, {0,1}. One

such method is the bit plane coding commonly used in image compression where an image is repre-

sented in accordance with its bit significance in terms of gray-scale values (Gonzalez and Woods,

2002). The idea of applying binary coding to spectral data was first proposed by Mazer et al. (1988)

who developed a binary coding-based image software system called SPAM for remotely sensed

imagery. Since remotely sensed data samples are collected by a number of spectral channels simul-

taneously, a data sample is actually a column vector with its components made up of data samples

acquired by separate spectral channels. More specifically, assume that L is the number of spectral

channels used for data acquisition. Each data sample vector, referred to as signature vector, is repre-

sented by an L-dimensional vector with the lth signature component specified by the data sample

in the lth spectral band. SPAM binary coding encodes an L-dimensional signature vector as a

(2L-2)-dimensional binary code word composed of the first L binary values encoding the sign of the

difference between a signature component sample and its spectral signature mean, and a new set of

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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additional L-2 binary values encoding the sign of the difference between a component pixel in a

signature vector and its adjacent signature components within the signature vector to be encoded.

SPAM binary coding was further extended to so-called spectral feature binary coding (SFBC) by

Qian et al. (1996) who included another set of additional L binary values to encode a signature

vector as a (3L-2)-dimensional binary code word. The newly included L binary values were used to

indicate whether the deviation of a signature component from the spectral signature mean was

greater than a threshold that was obtained by averaging the absolute differences between each signa-

ture component and the spectral signature mean. Both binary coding methods have demonstrated

some success in spectral signature coding.

This chapter investigates these two coding methods and further develops three new methods for

binary coding, referred to as median partition (MP) binary coding, halfway partition (HP) binary

coding, and equal probability partition (EPP) binary coding. MP binary coding is modified from

the SPAM binary coding by replacing the spectral signature mean with the spectral signature

median. HP binary coding is derived from the bit plane coding where the spectral signature mean

is replaced with the halfway distance between the maximal and minimal spectral values of the

spectrum of a signature vector. EPP binary coding is originated from the Shannon–Fano coding

(Lynch, 1985). It normalizes a signature vector as a probability vector in the same fashion that the

spectral information divergence (SID) was derived (Chang, 2000; Chapter 2, Chang, 2003a). Then

the spectral signature mean used by SPAM is replaced with the threshold that divides the probabili-

ties of the spectral values of the signature vector into two partitions with best possible equal proba-

bilities. These three new binary coding methods can be also implemented in conjunction with the

ideas proposed by Mazer et al. and Qian et al. to create new sets of binary code words. As a result,

various binary coding methods can be derived to yield new binary coding schemes. In this chapter,

eight different binary coding methods resulting from different combinations will be investigated

and studied for analysis, which include SPAM binary coding, Qian et al.’s SFBC. In order to mea-

sure the distance between two binary code words, Hamming spectral distance (HSD) introduced in

SPAM and average Hamming spectral distance (AHSD) are used for performance evaulation. On

the other hand, in order to compare two different binary coding methods in spectral discrimination

and identification, a new criterion called a posteriori discrimination probability (APDP) is also

introduced for performance comparison. Interestingly, as demonstrated in our experimental results,

each of the eight studied binary coding methods has its own merit in different applications and

none of them can claim to be the best. This is because each signature vector has its own spectral

characteristics and every coding method has its own ability in capturing different spectral behav-

iors. It is natural that one coding method that may perform well on one signature vector may per-

form poorly on other signature vectors. Therefore, it is expected that each one of all the eight

coding methods has its own strengths and weaknesses. As a consequence, no one coding method is

uniformly superior to another.

24.2 Binary Coding

Assume that a spectral signature vector s specified by a column vectior s ¼ s1; s2; . . . ; sLð ÞT where

L is the total number of spectral bands. Each signature component sl in s represents a spectral value

at the lth spectral band that is acquired by a particular wavelength vl in a specific spectral range.

24.2.1 SPAM Binary Coding

Let m be the mean of a spectral signature s and given by

m ¼ 1=Lð Þ
XL

l¼1
sl ð24:1Þ
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Using (24.1) we can encode the signature vector s as a ð2L-2Þ-dimensional binary code word,

denoted by sa sb
� �

where sa ¼ sa1s
a
2 � � � saL

� �
is an L-dimensional binary code word and sb ¼

sb2 � � � sbL�1

� �
is an ðL� 2Þ-dimensional binary code word, both of which are defined by

sal ¼
1; if sl � m

0; otherwise

�
for l ¼ 1; 2; . . . ; L ð24:2Þ

and

sbl ¼
1; if slþ1 � sl�1

0; otherwise

�
for l ¼ 2; . . . ; L� 1 ð24:3Þ

Now, for given two spectral signatures vectors si ¼ si1; si2; . . . ; siLð ÞT and sj ¼ sj1; sj2; . . . ; sjL
� �T

we can measure their similarity based on the spectral distance between these two signature

vectors via their encoded binary code words by an appropriate distance metric. More precisely,

let sai s
b
i

� �
and saj s

b
j

� �
be the code words of the signature vectors si and sj, respectively, with sai ,

saj defined by (24.2) and sbi , s
b
j defined by (24.3). The spectral distance between si and sj is then

defined in SPAM by the Hamming spectral distance (HSD) between their respective binary

code words, HSD(si,sj) as follows:

HSDðsi; sjÞ ¼
XL

l¼1
sail � sajl

� �
þ
XL�1

l¼2
sbil � sbjl

� �
ð24:4Þ

where � is the exclusive OR operation. Using (24.4) the two signature vectors si and sj are identi-
cal if their Hamming spectral distance HSD(si,sj)¼ 0.

As an alternative to HSD, we can also define another distance measure between their respective

binary cord words, called average Hamming spectral distance (AHSD)/per band, denoted by

AHSD(si,sj) as follows:

AHSDðs1; s2Þ ¼ 1=Lð Þ
XL

l¼1
sa1l � sa2l
� �þ 1=ðL� 2Þð Þ

XL�1

l¼2
sb1l � sb2l
� � ð24:5Þ

where � is the exclusive OR operation.

Due to natural variability a real perfect match seldom occurs. In this case, we can allow a toler-

ance to have some flexibility. For a prescribed tolerance e, we define

si ¼ sj if and only if HSD ðsi; sjÞ or AHSD ðsj ; sjÞ � e ð24:6Þ

One way to determine the distance tolerance e was suggested in Chang et al. (2006a).

24.2.2 Median Partition Binary Coding

As an alternative to the spectral signature mean, m used in (24.2), we can replace the spectral

signature mean with the spectral signature median, m, to derive a new L-dimensional binary code

word sMP
l defined by

sMP
l ¼ 1; if sl � m

0; otherwise

�
for l ¼ 1; 2; . . . ; L ð24:7Þ
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Coupling with sbl defined in (24.3), a new ð2 L� 2Þ -dimensional binary coding, called median

partition (MP) binary coding, can be further derived from the SPAM binary coding and is repre-

sented by sMP sb
� �

.

24.2.3 Halfway Partition Binary Coding

In this subsection, we propose a very simple binary coding, referred to as halfway partition

(HP) binary coding that is borrowed from the idea of bit plane coding. It calculates the half

distance between the maximal value and the minimal value of the spectrum of s and uses it

as the threshold value to partition the spectral values of s into two disjoint sets as the way

that is done by SPAM’s binary coding with the spectral mean. More precisely, let l be the

halfway partition threshold given by

l ¼ 1=2ð Þ maxt stf g �mint stf g½ � ð24:8Þ

Replacing m in (24.2) with l by (24.8) we can encode a pixel vector s as a ð2 L� 2Þ -dimen-

sional binary code word denoted by sHP sb
� �

where sHP is an L-dimensional binary code word

defined by

sHPl ¼ 1; if sl �mint stf g � l

0; otherwise

�
for l ¼ 1; 2; . . . ; L ð24:9Þ

and sb ¼ sb2 � � � sbL�1

� �
is also given by (24.3). The coding scheme using (24.8)–(24.9) and (24.3)

is called halfway partition (HP) binary coding.

24.2.4 Equal Probability Partition Binary Coding

In this section, we present a rather different spectral binary coding method called equal

probability partition (EPP) spectral coding. It is derived from the Shannon-Fano coding used for

noiseless source coding (Lynch, 1985) and can be briefly described as follows.

Suppose that we are given by one bit to discriminate among a set of source alphabets that are

governed by a probability distribution, how can we best use this bit? The idea is to partition the

source alphabet set into two disjoint subsets so that their respective probabilities are as close as

possible in terms of equal probability so as to achieve the maximum entropy. As an example for

illustration, we assume that S is a source alphabet set consisting of four letters, fa; b; c; dg with

probabilities pðaÞ ¼ 1=2, pðbÞ ¼ 1=4, pðcÞ ¼ 1=8, and pðdÞ ¼ 1=8. In order to best utilize the

given one bit, we need partition S into two subsets S1 ¼ fag and S2 ¼ fb; c; dg so that both have

probability 1/2, that is, pðS1Þ ¼ pðaÞ ¼ 1=2 and PðS2Þ ¼ pðbÞ þ pðcÞ þ pðdÞ ¼ 1=2, in which

case the set partition into two subsets {S1, S2} achieves the maximum entropy, which is exactly

one bit. Any other set partition will not produce the 1-bit maximum entropy. For instance,

if we group S1 ¼ fa; bg and S2 ¼ fc; dg, the probabilities of S1 and S2 will be pðS1Þ ¼ pðaÞ þ
pðbÞ ¼ 3=4 and PðS2Þ ¼ pðcÞ þ pðdÞ ¼ 1=4. As a result, the entropy associated with this set

partition {S1, S2} is given by � 1=4 log 1=4ð Þ þ 3=4 log 3=4ð Þð Þ ¼ 0:811278 bits that are less

than 1 bit. This implies that the set partition of S1 ¼ fa; bg and S2 ¼ fc; dg is not optimal

because 0:188722 ¼ 1� 0:811278 bits are not used and have been wasted. As a result,

the partition of S into S1 ¼ fa; bg and S2 ¼ fc; dg is not optimal because the given one bit is

not fully utilized.
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To be more specific, let p ¼ p1; p2; . . . ; pLð ÞT be the probability vector associated with the s

vector s that can be generated in the same way that was done for SID by

pl ¼ sl=
XL

l¼1
sl for all 1 � l � L ð24:10Þ

Now we can rearrange all the probabilities plf gLl¼1 according to their decreasing orders in magni-

tude as pl1 ; pl2 ; . . . ; plm ; plmþ1
; . . . ; plL and define an index k� such that it satisfies the following

equation:

lk� ¼ min1�k�L

Xk

m¼1
plm �

XL

m¼kþ1
plm

���
���

n o
ð24:11Þ

If let h denote the spectral value of the particular band lk� found by (24.11), that is, h ¼ slk� , then

replacing m in (24.2) with h produces a new (2L-2)-dimensional binary code word, denoted by

sEPP sb
� �

where sEPP ¼ sEPP1 sEPP2 . . . sEPPL

� �
is an L-dimensional binary code word given by

sEPPl ¼ 1; if sl � h

0; otherwise

�
for l ¼ 1; 2; . . . ; L ð24:12Þ

and sb ¼ sb2 . . . s
b
L�1

� �
is still given by (24.3). The coding method of using (24.10), (24.11), and

(24.3) is called EPP binary coding.

With different combinations of sa in (24.2), sMP in (24.7), sHP in (24.9) and rEPP(i,j) in (24.12) in

conjunction with sb in (24.3) we can obtain various binary coding methods such as sa sMP sHPð Þ,
sa sHP sEPPð Þ, sa sMP sEPPð Þ, sMP sHP sEPPð Þ, sa sMP sHP sb

� �
, sa sMP sHPð sEPPÞ, sa sMP sEPP sb

� �
,

sa sHP sEPP; sb
� �

, sa sMP sHP sb
� �

, sMP sHP sEPP sb
� �

, sa sMP sHP sEPP sb
� �

, etc., that can be also used

for spectral signature coding.

24.3 Spectral Feature-Based Coding

Recently, Qian et al. (1996) proposed a spectral feature binary coding (SFBC) that extended the

SPAM binary coding as follows.

Let

sMD
l ¼ 1; if jsl � mj � MD

0; otherwise

�
for l ¼ 1; 2; . . . ; L ð24:13Þ

where MD is the spectral signature mean deviation given by MD ¼ 1=Lð ÞPL
l¼1 jsl � mj.

Concatenating sa, sb and sMD ¼ sMD
1 sMD

2 � � � sMD
L

� �
defined in (24.2), (24.3), and (24.13), respec-

tively, creates a new ð3 L� 2Þ -dimensional binary code word, referred to as SFBC defined by

sSFBC ¼ sa sb sMD
� � ð24:14Þ

Similarly, we can define the spectrals median partition deviation (MPD) by

MPD ¼ 1=Lð Þ
XL

l¼1
jsl �mj ð24:15Þ
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and

sMPD
l ¼ 1; if jsl �mj � MPD

0; otherwise

�
for l ¼ 1; 2; . . . ; L ð24:16Þ

In analogy with the Qian et al.’s SFBC we can concatenate the L-dimensional binary code

word sMPD ¼ sMPD
1 sMPD

2 � � � sMPD
L

� �
defined by (24.16) to the MP binary code word to create

a new MP spectral feature-based ð3 L� 2Þ -dimensional binary code word (sMP,sb,sMPD)T for a

signature vector s where sMP, sb, and sMPD are given by (24.7), (24.3), and (24.16), respectively.

For the halfway partition (HP) binary coding, its spectral deviation can be also defined by

sHPDl ¼ 1; if jsl � l� mintstf gj � HPD

0; otherwise

�
for l ¼ 1; 2; . . . ; L ð24:17Þ

where HPD is the spectral halfway partition deviation given by

HPD ¼ 1=Lð Þ
XL

l¼1
jsl � l� mintstf gj ð24:18Þ

Like sMP sb sMPD
� �

, including an L-dimensional binary code word sHPD ¼ sHPD1 sHPD2 � � � sHPDL

� �
in

the HP binary coding also creates a new ð3 L� 2Þ -dimensional HP spectral feature-based binary

codeword sHP sb sHPD
� �

for a signature s where sHP, sb, and sHPD are given by (24.9), (24.3), and

(24.17), respectively.

For the equal probability partition (EPP) binary coding, its deviation is defined by

sEPPl ¼ 1; if sl � h

0; otherwise

�
for l ¼ 1; 2; . . . ;L ð24:19Þ

where EPPD is the spectral deviation from EPP given by

EPPD ¼ 1=Lð Þ
XL

l¼1
jsl � hj ð24:20Þ

Similarly, we can also include the L-dimensional binary code word sEPPD ¼
sEPPD1 sEPPD2 � � � sEPPDL

� �
given by (24.19) to produce a new EPP spectral feature-based ð3 L� 2Þ

-dimensional binary codeword sEPP sb sEPPD
� �

for a signature s where sEPP, sb, and sEPPD are given

by (24.12), (24.3), and (24.19), respectively.

As demonstrated above, numerous variants can be derived from different combinations of sa in

(24.2), sMP in (24.7), sHP in (24.9), sEPP in (24.12), sb in (24.3) in conjunction with sMD in (24.13),

sMPD in (24.16), sHPD in (24.17), and sEPPD in (24.19), for example, we just name a few as follows.

1. 4 L-dimensional binary code words such as

sa sMD sMPD sHPDð Þ, sa sMD sMPD sEPPDð Þ, sa sMPD sHPD sEPPDð Þ,
sMD sMPD sHPD sEPPDð Þ, sMP sMD sMPD sHPDð Þ, sMP sMD sMPD sEPPDð Þ,
sMP sMPD sHPD sEPPDð Þ, sHP sMD sMPD sHPDð Þ, sHP sMD sMPD sEPPDð Þ,
sHP sMPD sHPD sEPPDð Þ, sEPP sMD sMPD sHPDð Þ, sEPP sMD sMPD sEPPDð Þ,
sEPP sMPD sHPD sEPPDð Þ,
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2. ð4 L� 2Þ-dimensional binary code words such as

sa sEPP sb sEPPD
� �

, sa sEPP sb sMD
� �

, raði; jÞ; rHPði; jÞ; rbði; jÞ; rMDði; jÞ� �T
,

sa sHP sb sHPD
� �

, sa sMP sb sMD
� �

, sa sMP sb sMPD
� �

,

3. ð5 L� 2Þ-dimensional binary code words such as

sa sMP sb sMD sMPD
� �

, sa sMP sb sMD sHPD
� �

sa sMP sb sMD sEPPD
� �

,

sa sHP sb sMD sMPD
� �

, sa sHP sb sMD sHPD
� �

, sa sHP sb sMD sEPPD
� �

,

sa sEPP sb sMD sMPD
� �

, sa sEPP sb sMD sHPD
� �

, sa sEPP sb sMD sEPPD
� �

,

sMP sHP sb sMD sHPD
� �

.

24.4 Experiments

Two data sets were used for computer simulations and real hyperspectral image experiments. As

noted, many binary coding methods can be derived by various combinations of sa, sb, sMP, sHP, sEPP,

sMD, sMPD, sHPD, and sEPPD. So, the experiments presented in this section did not intend to repre-

sent a comprehensive study on all possible combinations. Instead, they intended to provide a

glimpse of performance analysis on a selective set of eight binary coding methods that we believed

to be representative. These include four SPAM-based binary coding methods: sa sb
� �

(SPAM),

sMP sb
� �

(MP), sHP sb
� �

(HP) and sEPP sb
� �

(EPP), and four Qian et al.’s SFBC methods:

sa sb sMD
� �

(Qian et al.’s SFBC¼ SPAMþMD), sMP sb sMPD
� �

(MPþMPD),

sHP sb sHPD
� �

(HPþHPD), sEPP sb sEPPD
� �

(EPPþEPPD).

24.4.1 Computer Simulations

The first data set to be used for experiments was the AVIRIS (airborne visible/infrared imaging

spectrometer) laboratory reflectance data shown in Figure 1.8 where five-field reflectance spectra,

blackbrush, creosote leaves, dry grass, red soil, and sagebrush with spectral coverage from 0.4 to

2.5mm and 158 bands after the water bands are removed. With these five signatures a performance

analysis was conducted for comparison. Table 24.1(a) and (b) tabulates the results produced by

SPAM, MP, HP, EPP, Qian et al.’s method SFBC (SPAMþMD), MPþMPD, HPþHPD, and EPP

þEPPD using HSD and AHSD, respectively, to distinguish the signature of blackbrush from the

other four signatures where all the eight binary coding methods showed that the blackbrush

was most close to the sagebrush. Also included in Table 24.1(a) for comparison is a commonly

used spectral measures, Euclidean distance (ED) that simply measured the distance between two

Table 24.1(a) HSD and normalized HSD values between blackbrush (B) and creosote leaves (C), dry grass

(D), red soil (R), and sagebrush (S)

Blackbrush (B) C D R S

SPAM 35(0.1301) 73(0.2714) 132(0.4907) 29(0.1078)

MP 29(0.1094) 82(0.3094) 135(0.594) 19(0.0717)

HP 38(0.1532) 86(0.3468) 92(0.371) 32(0.129)

EPP 38(0.1267) 97(0.3233) 142(0.4733) 23(0.0767)

SFBC¼ SPAMþMD 66(0.1312) 147(0.2922) 245(0.4871) 45(0.0895)

MPþMPD 70(0.1452) 146(0.3029) 218(0.4523) 48(0.0996)

HPþHPD 91(0.1743) 167(0.3199) 199(0.3812) 65(0.1245)

EPPþEPPD 59(0.1388) 117(0.2753) 214(0.5035) 35(0.0824)

ED 1.4873(0.1622) 3.6261(0.3955) 2.5471(0.2778) 1.5087(0.1645)
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signature vectors without encoding. As shown in these two tables, HSD and AHSD produced the

same results with MP being the best method. It should be noted that in all the following tables,

the highlighted values yielded the smallest values for each method and identified that signatures

were most close to the signatures to be compared and the highlighted method was the best in the

sense that its value was the smallest among the highlighted values.

Interestingly, if we would like to know if one method is more effective than another, using the

Hamming spectral distance values to compare relative performance among these eight binary cod-

ing methods may be difficult. To cope with this problem, we normalized the Hamming spectral

distance values and used their relative probabilities to evaluate the discriminability for each

binary coding method. The numbers in parentheses in Tables 24.1(a) and (b) were normalized

HSD, normalized AHSD, and normalized ED values. For example, the numbers, 35, 73, 132, and

29 in the first row of Table 24.1(a) were the HSD values produced by the SPAM between black-

brush and the other four signatures, creosote leaves, dry grass, red soil, and sagebrush, respectively.

The values in parentheses were their corresponding normalized Hamming spectral distance

values obtained by 0:1301 ¼ 35=ð35þ 73þ 132þ 29Þ, 0:2714 ¼ 73=ð35þ 73þ 132þ 29Þ,
0:4907 ¼ 132=ð35þ 73þ 132þ 29Þ, and 0:1078 ¼ 29=ð35þ 73þ 132þ 29Þ, respectively.

Using these normalized values, the highlighted MP yielded the smallest values in Table 24.1(a)

that implies that the MP was the most effective among the eight methods.

Similarly, Tables 24.2(a) and (b)–24.5(a) and (b) tabulate the results produced by SPAM, MP,

HP, EPP, Qian et al.’s method SFBC (SPAMþMD), MPþMPD, HPþHPD, and EPPþEPPD

using HSD and AHSD, respectively, along with ED to distinguish the signature of creosote leaves

Table 24.1(b) AHSD and normalized AHSD values between blackbrush (B) and creosote leaves (C),

dry grass (D), red soil (R), and sagebrush (S)

Blackbrush (B) C D R S

SPAM 0.1115 0.2325 0.4204 0.0924

MP 0.0924 0.2611 0.4299 0.0605

HP 0.121 0.2739 0.293 0.1019

EPP 0.121 0.3089 0.4522 0.0732

SFBC¼ SPAMþMD 0.1398 0.3114 0.5191 0.0953

MPþMPD 0.1483 0.3093 0.4619 0.1017

HPþHPD 0.1928 0.3538 0.4216 0.1377

EPPþEPPD 0.125 0.2479 0.4534 0.0742

Table 24.2(a) HSD and normalized HSD values between creosote leaves (C) and blackbrush (B),

dry grass (D), red soil (R), and sagebrush (S)

Creosote leaves (C) B D R S

SPAM 35(0.1199) 90(0.3082) 153(0.524) 14(0.0479)

MP 29(0.1028) 89(0.3156) 146(0.5177) 18(0.0638)

HP 38(0.1348) 110(0.3901) 120(0.4255) 14(0.0496)

EPP 38(0.1131) 121(0.3601) 154(0.4583) 23(0.0685)

SFBC¼ SPAMþMD 66(0.1164) 187(0.3298) 281(0.4956) 33(0.0582)

MPþMPD 70(0.1346) 188(0.3615) 230(0.4423) 32(0.0615)

HPþHPD 91(0.1588) 230(0.4014) 218(0.3805) 34(0.0593)

EPPþEPPD 59(0.1185) 162(0.3253) 245(0.492) 32(0.0643)

ED 1.4873(0.1875) 3.0833(0.3888) 2.7578(0.3477) 0.6021(0.0759)
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from the other four signatures, the signature of dry grass from the other four signatures, the signa-

ture of red soil from the other four signatures and the signature of sagebrush from the other four

signatures, respectively. Once again the highlighted values yielded the smallest values for each

method and identified that signatures were most close to the signatures to be compared and the

highlighted method was the best in the sense that its value was the smallest among the highlighted

values. According to these tables, all the eight binary coding methods produced nearly the same

Table 24.2(b) AHSD and normalized AHSD values between creosote leaves (C) and blackbrush (B),

dry grass (D), red soil (R), and sagebrush (S)

Creosote leaves (C) B D R S

SPAM 0.1115 0.2866 0.4873 0.0446

MP 0.0924 0.2834 0.465 0.0573

HP 0.121 0.3503 0.3822 0.0446

EPP 0.121 0.3854 0.4904 0.0732

SFBC¼ SPAMþMD 0.1398 0.3962 0.5953 0.0699

MPþMPD 0.1483 0.3983 0.4873 0.0678

HPþHPD 0.1928 0.4873 0.4619 0.072

EPPþEPPD 0.125 0.3432 0.5191 0.0678

Table 24.3(a) HSD and normalized HSD values between dry grass (D) and blackbrush (B), creosote leaves

(C), red soil (R), and sagebrush (S)

Dry grass (D) B C R S

SPAM 73(0.2039) 90(0.2514) 111(0.3101) 84(0.2346)

MP 82(0.2284) 89(0.2479) 105(0.2925) 83(0.2312)

HP 86(0.2337) 110(0.2989) 68(0.1848) 104(0.2826)

EPP 97(0.2304) 121(0.2874) 97(0.2304) 106(0.2518)

SFBC¼ SPAMþMD 147(0.2194) 187(0.2791) 170(0.2537) 166(0.2478)

MPþMPD 146(0.2141) 188(0.2757) 178(0.261) 170(0.2493)

HPþHPD 167(0.226) 230(0.3112) 128(0.1732) 214(0.2896)

EPPþEPPD 117(0.199) 162(0.2755) 171(0.2908) 138(0.2347)

ED 3.6261(0.3247) 3.0833(0.2761) 1.9236(0.1722) 2.5361(0.2271)

Table 24.3(b) AHSD and normalized AHSD values between dry grass (D) and blackbrush (B), creosote

leaves (C), red soil (R), and sagebrush (S)

Dry grass (D) B C R S

SPAM 0.2325 0.2866 0.3535 0.2675

MP 0.2611 0.2834 0.3344 0.2643

HP 0.2739 0.3503 0.2166 0.3312

EPP 0.3089 0.3854 0.3089 0.3376

SFBC¼ SPAMþMD 0.3114 0.3962 0.3602 0.3517

MPþMPD 0.3093 0.3983 0.3771 0.3602

HPþHPD 0.3538 0.4873 0.2712 0.4534

EPPþEPPD 0.2479 0.3432 0.3623 0.2924
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results using the HSD and AHSD except one case in Tables 24.3(a) and (b) where EPPþEPPD

was the best using HSD in Table 24.3(a) compared to HP using AHSD, which was the best in Table

24.3(b). Once again, ED never became a contender as the best method in all cases.

Obviously, according to Tables 24.1(a) and (b)–Tables 24.5(a) and (b), there was no single

method that could be considered to be the best. This is a natural conclusion because every signa-

ture vector behaves very differently in terms of spectral characteristics and each of the eight con-

sidered binary coding methods has its own strengths and weaknesses in capturing spectral

variability. Consequently, it can be expected that none of them may perform uniformly superior to

another over all signature vectors. Additionally, the two distance measures, HSD and AHSD, also

yielded nearly the same discrimination results but selected different best coding methods such as

Tables 24.3(a) and (b) and Tables 24.4(a) and (b). More interestingly, ED never occurred as a best

distance measure. This implies that a best binary coding method always performed better than a

spectral measure such as ED. Furthermore, the results in these tables also suggested that using

additional L-dimensional binary code words to account for interband spectral deviation as pro-

posed by Qian et al. (1996) did not offer much advantage in spectral discrimination. As a matter of

fact, only two out of five cases using HSD (i.e., Tables 24.3(a), 24.4(a)) and none of five cases

using AHSD took advantage of the spectral deviation. The signature vectors, blackbrush, creosote

leaves, and sagebrush in these three cases happened to be very similar compared to the other two

cases of the dry grass and red soil, which are rather distinct. The results in Tables 24.3(a) and (b)

and Tables 24.4(a) and (b) were also interesting. For example, from Tables 24.3(a) and (b) the

spectral signature of dry grass was shown to be most close to either the blackbrush (such as

Table 24.4(a) HSD and normalized HSD values between red soil (R) and blackbrush (B), creosote leaves

(C), dry grass (D), and sagebrush (S)

Red soil (R) B C D S

SPAM 132(0.2413) 153(0.2797) 111(0.2029) 151(0.2761)

MP 135(0.2547) 146(0.2755) 105(0.1981) 144(0.2717)

HP 92(0.2312) 120(0.3015) 68(0.1709) 118(0.2965)

EPP 142(0.2582) 154(0.28) 97(0.1764) 157(0.2855)

SFBC¼ SPAMþMD 245(0.2536) 281(0.2909) 170(0.176) 270(0.2795)

MPþMPD 218(0.2547) 230(0.2687) 178(0.2079) 230(0.2687)

HPþHPD 199(0.2636) 218(0.2887) 128(0.1695) 210(0.2781)

EPPþEPPD 214(0.2463) 245(0.219) 171(0.1968) 239(0.275)

ED 2.5471(0.2696) 2.7578(0.2918) 1.9236(0.2036) 2.2209(0.2350)

Table 24.4(b) AHSD and normalized AHSD values between red soil (R) and blackbrush (B), creosote

leaves (C), dry grass (D), and sagebrush (S)

Red soil (R) B C D S

SPAM 0.4204 0.4873 0.3535 0.4809

MP 0.4299 0.465 0.3344 0.4586

HP 0.293 0.3822 0.2166 0.3758

EPP 0.4522 0.4904 0.3089 0.5

SFBC¼ SPAMþMD 0.5191 0.5953 0.3602 0.572

MPþMPD 0.4619 0.4873 0.3771 0.4873

HPþHPD 0.4216 0.4619 0.2712 0.4449

EPPþEPPD 0.4534 0.5191 0.3623 0.5064
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SPAM, MP, SPAMþMD, MPþMPD, EPPþEPPD in Table 24.3(a)) or red soil (such as HP, HP

þHPD in Table 24.3(a)) or both (such as EPP in Table 24.3(a)). However, on the other hand,

Tables 24.4(a) and (b) showed that all the eight methods indicated that the spectral signature of red

soil was most close to that of dry grass. When EPP produced the same Hamming spectral distance

for blackbrush and red soil in Tables 24.3(a) and (b), its counterpart with inclusion of interband

spectral deviation, EPPþEPPD broke the tie. A similar phenomenon was also observed in Tables

24.5(a) and (b).

In order for binary coding to further perform spectral identification, we assumed that a spectral

signature data base, D ¼ sj
� 	K

j¼1
was provided for this purpose. Then for any given signature vec-

tor r we define APDP for each of spectral signature vectors si in D with respect to r,

pAPDP=HSDðsijr;DÞ using HSD as

pAPDP=HSDðsijr;DÞ ¼
HSDðr; siÞ

PK
j¼1 HSDðr; sjÞ

ð24:21Þ

where HSD(r,si) and HSD(r,sj) are spectral distance measures defined by HSD in (24.4) and

AHSD(r,si) and AHSD(r,sj) are spectral distance measures defined by AHSD in (24.5). In this

case, the signature vector r will be identified by the one that yields the smallest APDP according

to (24.21) or (24.22). In other words, the signature vector r identified by a spectral signature vector

in D with the smallest APDP was the one that had the least probability of discrimination from r.

To illustrate the utility of APDP, let D¼ {blackbrush, creosote leaves, dry grass, red soil,

Table 24.5(a) HSD and normalized HSD values between sagebrush (S) and blackbrush (B),

creosote leaves (C), dry grass (D), and red soil (R)

Sagebrush (S) B C D R

SPAM 29(0.1043) 14(0.0504) 84(0.3022) 151(0.5432)

MP 19(0.72) 18(0.0682) 83(0.3144) 144(0.5455)

HP 32(0.1194) 14(0.0522) 104(0.3881) 118(0.4403)

EPP 23(0.0744) 23(0.0744) 106(0.343) 157(0.5081)

SFBC¼ SPAMþMD 45(0.875) 33(0.0642) 166(0.323) 270(0.5253)

MPþMPD 48(0.10) 32(0.0667) 170(0.3542) 230(0.4792)

HPþHPD 65(0.1243) 34(0.065) 214(0.4092) 210(0.4015)

EPPþEPPD 35(0.788) 32(0.0721) 138(0.3108) 239(0.5383)

ED 1.5087(0.2197) 0.6021(0.0877) 2.5361(0.3693) 2.2209(0.3234)

Table 24.5(b) AHSD and normalized AHSD values between sagebrush (S) and blackbrush (B),

creosote leaves (C), dry grass (D), and red soil (R)

Sagebrush (S) B C D R

SPAM 0.4809 0.0446 0.2675 0.4809

MP 0.4586 0.0573 0.2643 0.4586

HP 0.3758 0.0446 0.3312 0.3758

EPP 0.5 0.0732 0.3376 0.5

SFBC¼ SPAMþMD 0.572 0.0699 0.3517 0.572

MPþMPD 0.4873 0.0678 0.3602 0.4873

HPþHPD 0.4449 0.072 0.4534 0.4449

EPPþEPPD 0.5064 0.0678 0.2924 0.5064
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sagebrush}. Tables 24.6(a) and (b) to Tables 24.10(a) and (b) tabulate the results produced by the

eight binary coding methods, SPAM, MP, HP, EPP, Qian et al.’s method SFBC (SPAMþMD),

MPþMPD, HPþHPD, and EPPþEPPD using HSD and AHSD, respectively, to identify a signa-

ture vector r where the signature vector r in each table was randomly generated and mixed by the

five signature vectors in the D as indicated in the tables. The highlighted values are the smallest

APDP values that identified the mixed signure vector r for each method, and the highlighted

method, was the one that yielded the best result among the eight methods.

Once again both distance measures, HSD and AHSD, produced nearly identical results except

in the case of Table 24.7(b) where AHSD had a tie between SPAM and HP as opposed to the SPAM

selected by HSD. Furthermore, a simialr conclusion resulting from the discrimination results in

Tables 24.1(a) and (b) to Tables 24.5(a) and (b) can be also made. The results in

Tables 24.6(a) and (b)–Tables 24.10(a) and (b) did not provide any evidence that including addi-

tional L-dimensional binary code words to account for interband spectral deviation would improve

better spectral identification.

24.4.2 Real Hyperspectral Image Data

The second data set used for experiments was a real HYDICE (hyperspectral digital imagery col-

lection experiment) image shown in Figure 1.15(a) and five panel signatures in Figure 1.16 were

used for experiments. Following a similar treatment conducted for computer simulations in

Section 24.4.1 two experiments are considered, one for spectral discrimination and the other for

spectral identification. Tables 24.11(a) and (b)–Tables 23.15(a) and (b) tabulate results produced

Table 24.6(a) APDP/HSD identification of a mixed

signature¼ 0.8055*Bþ 0.0292*Cþ 0.0272*Dþ 0.0588*Rþ 0.0944*S

r B C D R S

SPAM 0.0297 0.1375 0.2491 0.4684 0.1152

MP 0.0232 0.1042 0.3012 0.5058 0.0656

HP 0.0543 0.186 0.2868 0.3101 0.1628

EPP 0.0166 0.1229 0.3189 0.4684 0.0731

SFBC¼ SPAMþMD 0.0276 0.142 0.2742 0.4596 0.0966

MPþMPD 0.0222 0.1475 0.2889 0.4384 0.103

HPþHPD 0.0414 0.1982 0.2631 0.3459 0.1514

EPPþEPPD 0.0164 0.1402 0.2664 0.493 0.0841

ED 0.0533 0.15 0.3915 0.2695 0.1366

Table 24.6(b) APDP/AHSD identification of a mixed

signature¼ 0.8055*Bþ 0.0292*Cþ 0.0272*Dþ 0.0588*Rþ 0.0944*S

r B C D R S

SPAM 0.0255 0.1178 0.2134 0.4013 0.0987

MP 0.0191 0.086 0.2484 0.4172 0.0541

HP 0.0446 0.1529 0.2357 0.2548 0.1338

EPP 0.0159 0.1178 0.3057 0.449 0.0701

SFBC¼SPAMþMD 0.0297 0.1525 0.2945 0.4936 0.1038

MPþMPD 0.0233 0.1547 0.303 0.4597 0.1081

HPþHPD 0.0487 0.2331 0.3093 0.4068 0.178

EPPþEPPD 0.0148 0.1271 0.2415 0.447 0.0763
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by SPAM, MP, HP, EPP, Qian et al.’s method SFBC (SPAMþMD), MPþMPD, HPþHPD, and

EPPþEPPD using the HSD and AHSD, respectively, to discriminate one panel signature from the

other four panel signatures. According to the ground truth, the panels in rows 2 and 3 are made by

the same material with different paints. As expected, panel signatures p2 and p3 should be very

similar. So are panels in rows 4 and 5. From the results in Tables 24.11(a) and (b)–Tables 24.15(a)

and (b) the eight binary coding methods using HSD and AHSD produced the same identifica-

tion results and the Qian et al.’s method SFBC (SPAMþMD) produced the lowest either

Table 24.7(a) APDP/HSD identification of a mixed

signature¼ 0.1055*Bþ 0.7292*Cþ 0.0272*Dþ 0.0588*Rþ 0.0944*S

r B C D R S

SPAM 0.1139 0.0178 0.3025 0.5267 0.0391

MP 0.892 0.026 0.3123 0.5242 0.0483

HP 0.1292 0.0185 0.3875 0.4244 0.0406

EPP 0.972 0.0282 0.3511 0.4734 0.0502

SFBC¼ SPAMþMD 0.859 0.0439 0.3244 0.5076 0.0382

MPþMPD 0.1066 0.041 0.3484 0.4631 0.041

HPþHPD 0.1375 0.0353 0.4071 0.3885 0.0316

EPPþEPPD 0.0939 0.0393 0.3144 0.5087 0.0437

ED 0.1909 0.047 0.3887 0.3333 0.04

Table 24.7(b) APDP/AHSD identification of a mixed

signature¼ 0.1055*Bþ 0.7292*Cþ 0.0272*Dþ 0.0588*Rþ 0.0944*S

r B C D R S

SPAM 0.1019 0.0159 0.2707 0.4713 0.035

MP 0.0764 0.0223 0.2675 0.449 0.0414

HP 0.1115 0.0159 0.3344 0.3662 0.035

EPP 0.0987 0.0287 0.3567 0.4809 0.051

SFBC¼ SPAMþMD 0.0953 0.0487 0.3602 0.5636 0.0424

MPþMPD 0.1102 0.0424 0.3602 0.4788 0.0424

HPþHPD 0.1568 0.0403 0.464 0.4428 0.036

EPPþEPPD 0.0911 0.0381 0.3051 0.4936 0.0424

Table 24.8(a) APDP/HSD identification of a mixed

signature¼ 0.1055*Bþ 0.0292*Cþ 0.7272*Dþ 0.0588*Rþ 0.0944*S

r B C D R S

SPAM 0.1745 0.2336 0.053 0.3302 0.2087

MP 0.1767 0.205 0.0946 0.3438 0.1798

HP 01753 0.2597 0.1039 0.2273 0.2338

EPP 0.1872 0.2567 0.0722 0.2727 0.2112

SFBC¼ SPAMþMD 0.1754 0.2508 0.0656 0.3016 0.2066

MPþMPD 0.1863 0.2546 0.1038 0.2319 0.2233

HPþHPD 0.1758 0.2773 0.0773 0.2227 0.247

EPPþEPPD 0.1555 0.248 0.0748 0.3248 0.1969

ED 0.3119 0.2582 0.07 0.1612 0.1981
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normalized HSD values or AHSD values in discrimination of all the five panel signature vec-

tors p1, p2, p3, p4, p5. Once again, in all the following tables, the highlighted values yielded

the smallest values for each method and identified that signatures were most close to the

signatures to be compared and the highlighted method was the best in the sense that its value

was the smallest among the highlighted values.

The above real image experiment demonstrated an advantage of using extra L-binary code

words implemented in SFBC that could account for spectral variability caused by atmospheric or

interfering effects present in real data. A similar conclusion can be also drawn for real subpixel

panel identification conducted in the following experiments.

Table 24.8(b) APDP/AHSD identification of a mixed

signature¼ 0.1055*Bþ 0.0292*Cþ 0.7272*Dþ 0.0588*Rþ 0.0944*S

r B C D R S

SPAM 0.1783 0.2389 0.0541 0.3376 0.2134

MP 0.1783 0.207 0.0955 0.3471 0.1815

HP 0.172 0.2548 0.1019 0.2229 0.2293

EPP 0.2229 0.3057 0.086 0.3248 0.2516

SFBC¼ SPAMþMD 0.2267 0.3242 0.0847 0.3898 0.2669

MPþMPD 0.2775 0.3792 0.1547 0.3453 0.3326

HPþHPD 0.2458 0.3877 0.1081 0.3114 0.3453

EPPþEPPD 0.1674 0.2669 0.0805 0.3496 0.2119

Table 24.9(a) APDP/HSD identification of a mixed

signature¼ 0.1055*Bþ 0.0292*Cþ 0.0272*Dþ 0.7588*Rþ 0.0944*S

r B C D R S

SPAM 0.2025 0.2543 0.1704 0.1235 0.2494

MP 0.2182 0.2468 0.161 0.1325 0.2416

HP 0.2133 0.2909 0.169 0.0416 0.2853

EPP 0.2071 0.2778 0.1136 0.1515 0.25

SFBC¼ SPAMþMD 0.2241 0.2797 0.1443 0.0861 0.2658

MPþMPD 0.2322 0.2568 0.1667 0.0874 0.2568

HPþHPD 0.2355 0.2961 0.105 0.0781 0.2853

EPPþEPPD 0.2034 0.2758 0.1495 0.1263 0.245

ED 0.2526 0.2667 0.2209 0.0564 0.2033

Table 24.9(b) APDP/AHSD identification of a mixed

signature¼ 0.1055*Bþ 0.0292*Cþ 0.0272*Dþ 0.7588*Rþ 0.0944*S

r B C D R S

SPAM 0.2611 0.328 0.2197 0.1592 0.3217

MP 0.2675 0.3025 0.1975 0.1624 0.2962

HP 0.2452 0.3344 0.1943 0.0478 0.328

EPP 0.2611 0.3503 0.1433 0.1911 0.3153

SFBC¼ SPAMþMD 0.375 0.4682 0.2415 0.1441 0.4449

MPþMPD 0.3602 0.3983 0.2585 0.1356 0.3983

HPþHPD 0.3708 0.4661 0.1653 0.1229 0.4492

EPPþEPPD 0.2797 0.3792 0.2055 0.1737 0.3369

732 Hyperspectral Data Processing: Algorithm Design and Analysis



Since the five panels p13, p23, p33, p43, p53 in the third column of Figure 1.15(b) have only size of

1 m	 1 m, which is smaller than the pixel resolution 1:56 m	 1:56 m, they cannot be seen visu-

ally and can only be identified at the subpixel level. In this case, the eight binary coding methods

are used in conjunction with the minimum APDP criterion defined in (24.21) and (24.22) for

Table 24.10(a) APDP/HSD identification of a mixed

signature¼ 0.1055*Bþ 0.0292*Cþ 0.0272*Dþ 0.0588*Rþ 0.7944*S

r B C D R S

SPAM 0.0852 0.0667 0.2889 0.5296 0.0296

MP 0.0654 0.0692 0.3115 0.5385 0.0154

HP 0.093 0.0775 0.3721 0.4186 0.0388

EPP 0.0623 0.082 0.3344 0.5016 0.0197

SFBC¼ SPAMþMD 0.0639 0.0878 0.3054 0.509 0.0339

MPþMPD 0.0672 0.0966 0.3361 0.4622 0.0378

HPþHPD 0.0602 0.1222 0.3477 0.4041 0.0658

EPPþEPPD 0.0554 0.0947 0.2933 0.5266 0.03

ED 0.2128 0.1093 0.3542 0.2974 0.0262

Table 24.10(b) APDP/AHSD identification of a mixed

signature¼ 0.1055*Bþ 0.0292*Cþ 0.0272*Dþ 0.0588*Rþ 0.7944*S

r B C D R S

SPAM 0.0732 0.0573 0.2484 0.4554 0.0255

MP 0.0541 0.0573 0.258 0.4459 0.0127

HP 0.0764 0.0637 0.3057 0.3439 0.0318

EPP 0.0605 0.0796 0.3248 0.4873 0.0191

SFBC¼ SPAMþMD 0.0678 0.0932 0.3242 0.5403 0.036

MPþMPD 0.0678 0.0975 0.339 0.4661 0.0381

HPþHPD 0.0678 0.1377 0.3919 0.4555 0.0742

EPPþEPPD 0.0508 0.0869 0.2691 0.4831 0.0275

Table 24.11(a) HSD and normalized HSD values between p1 and p2, p3, p4, p5

p1 p2 p3 p4 p5

SPAM 16(0.1441) 16(0.1441) 36(0.3243) 43(0.3874)

MP 17(0.1977) 15(0.1744) 22(0.2558) 32(0.3721)

HP 16(0.1975) 17(0.2099) 22(0.2716) 26(0.321)

EPP 17(0.1977) 19(0.2209) 23(0.2674) 27(0.314)

SFBC¼ SPAMþMD 19(0.145) 20(0.1527) 42(0.3206) 50(0.3817)

MPþMPD 21(0.1875) 18(0.1607) 30(0.2679) 43(0.3839)

HPþHPD 23(0.1983) 26(0.2241) 30(0.2586) 37(0.319)

EPPþEPPD 20(0.1961) 23(0.2255) 28(0.2745) 31(0.3039)

ED 1301.6(0.106) 2033.3(0.1657) 4107.3(0.3346) 4831.6(0.3937)
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Table 24.11(b) AHSD and normalized AHSD values between p1 and p2, p3, p4, p5

p1 p2 p3 p4 p5

SPAM 0.051 0.051 0.1146 0.1369

MP 0.0541 0.0478 0.0701 0.1019

HP 0.051 0.0541 0.0701 0.0828

EPP 0.0541 0.0605 0.0732 0.086

SFBC¼ SPAMþMD 0.0403 0.0424 0.089 0.1059

MPþMPD 0.0445 0.0381 0.0636 0.0911

HPþHPD 0.0487 0.0551 0.0636 0.0784

EPPþEPPD 0.0424 0.0487 0.0593 0.0657

Table 24.12(a) HSD and normalized HSD values between p2 and p1, p3, p4, p5

p2 P1 p3 p4 p5

SPAM 16(0.1416) 16(0.1416) 36(0.3186) 45(0.3982)

MP 17(0.1954) 16(0.1839) 21(0.2414) 33(0.3793)

HP 16(0.1975) 15(0.1852) 22(0.2716) 28(0.3457)

EPP 17(0.20) 18(0.2118) 22(0.2588) 28(0.3294)

SFBC¼ SPAMþMD 19(0.1439) 17(0.1288) 43(0.3258) 53(0.4015)

MPþMPD 21(0.1736) 19(0.157) 33(0.2727) 48(0.3967)

HPþHPD 23(0.187) 17(0.1382) 37(0.3008) 46(0.374)

EPPþEPPD 20(0.1961) 23(0.2255) 26(0.2549) 33(0.3235)

ED 1301.6(0.0969) 1340.4(0.0997) 5064.1(0.3768) 5733(0.4266)

Table 24.12(b) AHSD and normalized AHSD values between p2 and p1, p3, p4, p5

p2 P1 p3 p4 p5

SPAM 0.051 0.051 0.1146 0.1433

MP 0.0541 0.051 0.0669 0.1051

HP 0.051 0.0478 0.0701 0.0892

EPP 0.0541 0.0573 0.0701 0.0892

SFBC¼ SPAMþMD 0.0403 0.036 0.0911 0.1123

MPþMPD 0.0445 0.0403 0.0699 0.1017

HPþHPD 0.0487 0.036 0.0784 0.0975

EPPþEPPD 0.0424 0.0487 0.0551 0.0699

Table 24.13(a) HSD and normalized HSD values between p3 and p1, p2, p4, p5

p3 p1 p2 P4 P5

SPAM 16(0.1345) 16(0.1345) 40(0.3361) 47(0.395)

MP 15(0.1648) 16(0.1758) 25(0.2747) 35(0.3846)

HP 17(0.1889) 15(0.1667) 27(0.30) 31(0.3444)

EPP 19(0.1881) 18(0.1782) 30(0.297) 34(0.3366)

SFBC¼ SPAMþMD 20(0.1418) 17(0.1206) 48(0.3404) 56(0.3972)

MPþMPD 18(0.1475) 19(0.1557) 36(0.2951) 49(0.4016)

HPþHPD 26(0.1884) 17(0.1232) 44(0.3188) 51(0.3696)

EPPþEPPD 23(0.1811) 23(0.1811) 39(0.3071) 42(0.3307)

ED 2033.3(0.1376) 1340.4(0.0907) 5434.1(0.3678) 5968.7(0.4039)
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Table 24.13(b) HSD and normalized HSD values between p3 and p1, p2, p4, p5

p3 p1 p2 P4 P5

SPAM 0.051 0.051 0.1274 0.1497

MP 0.0478 0.051 0.0796 0.1115

HP 0.0541 0.0478 0.086 0.0987

EPP 0.0605 0.0573 0.0955 0.1083

SFBC¼ SPAMþMD 0.0424 0.036 0.1017 0.1186

MPþMPD 0.0381 0.0403 0.0763 0.1038

HPþHPD 0.0551 0.036 0.0932 0.1081

EPPþEPPD 0.0487 0.0487 0.0826 0.089

Table 24.14(a) HSD and normalized HSD values between p4 and p1, p2, p3, p5

p4 p1 p2 p3 P5

SPAM 36(0.288) 36(0.288) 40(0.32) 13(0.104)

MP 22(0.2683) 21(0.2561) 25(0.3049) 14(0.1707)

HP 22(0.2716) 22(0.2716) 27(0.3333) 10(0.1235)

EPP 23(0.2706) 22(0.2588) 30(0.3529) 10(0.1176)

SFBC¼ SPAMþMD 42(0.2857) 43(0.2925) 48(0.3265) 14(0.0952)

MPþMPD 30(0.2586) 33(0.2845) 36(0.3103) 17(0.1466)

HPþHPD 30(0.2419) 37(0.2984) 44(0.3548) 13(0.1048)

EPPþEPPD 28(0.2642) 26(0.2453) 39(0.3679) 13(0.1226)

ED 4107.3(0.2611) 5064.1(0.3219) 5434.1(0.3454) 1125.4(0.0715)

Table 24.14(b) AHSD and normalized AHSD values between p4 and p1, p2, p3, p5

p4 p1 p2 p3 P5

SPAM 0.1146 0.1146 0.1274 0.0414

MP 0.0701 0.0669 0.0796 0.0446

HP 0.0701 0.0701 0.086 0.0318

EPP 0.0732 0.0701 0.0955 0.0318

SFBC¼ SPAMþMD 0.089 0.0911 0.1017 0.0297

MPþMPD 0.0636 0.0699 0.0763 0.036

HPþHPD 0.0636 0.0784 0.0932 0.0275

EPPþEPPD 0.0593 0.0551 0.0826 0.0275

Table 24.15(a) HSD and normalized HSD values between p5 and p1, p2, p3, p4

p5 p1 p2 p3 p4

SPAM 43(0.2905) 45(0.3041) 47(0.3176) 13(0.0878)

MP 32(0.2807) 33(0.2895) 35(0.307) 14(0.1228)

HP 26(0.2737) 28(0.2947) 31(0.3263) 10(0.1053)

EPP 27(0.2727) 28(0.2828) 34(0.3434) 10(0.101)

SFBC¼ SPAMþMD 50(0.289) 53(0.3064) 56(0.3237) 14(0.0809)

MPþMPD 43(0.2739) 48(0.3057) 49(0.3121) 17(0.1083)

HPþHPD 37(0.2517) 46(0.3129) 51(0.3469) 13(0.0884)

EPPþEPPD 31(0.2605) 33(0.2773) 42(0.3529) 13(0.1092)

ED 4831.6(0.2736) 5733(0.3247) 5968.7(0.3380) 1125.4(0.0637)
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spectral identification. Tables 24.16(a) and (b) – Tables 24.20(a) and (b) tabulate their APDP val-

ues with r¼ p13, p23, p33, p43, p53, and D ¼ pif g5i¼1.

As shown in these tables, binary coding methods using additional L-dimensional binary

code words to account for interband spectral deviation would improve better spectral identifi-

cation such as HPþHPD and the Qian et al.’s method SFBC (SPAMþMD) that produced the

lowest APDP values for subpixel identification. In particular, SFBC performed the best for the

panels p33, p43, p53 that are identified as p3, p2, and p2, respectively. Interestingly, SFBC

(SPAMþMD) wrongly identified p43, p53 as p2 that are supposed to be p4 and p5. However, if

we further applied two spectral measures, spectral angle mapper (SAM), spectral information

divergence (SID) to measure the similarity values of p13, p23, p33, p43, p53 against D ¼ pif g5i¼1,

the results tabulated in Table 24.21 that revealed a surprising fact that all the five panels p13,

p23, p33, p43, p53 were shown to be most close to the panel signature p2. Therefore, by virtue of

SAM and SID these five panels would be all identified as p2, which obviously contradicts the

ground truth map in Figure 1.15(b).

The above experiments demonstrated a fact that spectral measures or coding methods carried

out on a single pixel basis may not be effective for subpixel discrimination and identification. This

made sense because a spectral signature embedded in a single pixel may be mixed by its back-

ground signatures and using such a contaminated signature for discrimination and identification

may not perform as effectively as laboratory data in computer simulations where the eight

binary coding methods performed similarly in most cases. This also explained why SFBC using

(3L-2)-length binary code words performed better in real data than other binary coding methods

using only (2L-2)-length binary code words because the additional L-length binary code words

Table 24.15(b) AHSD and normalized AHSD values between p5 and p1, p2, p3, p4

p5 p1 p2 p3 p4

SPAM 0.1369 0.1433 0.1497 0.0414

MP 0.1019 0.1051 0.1115 0.0446

HP 0.0828 0.0892 0.0987 0.0318

EPP 0.086 0.0892 0.1083 0.0318

SFBC¼ SPAMþMD 0.1059 0.1123 0.1186 0.0297

MPþMPD 0.0911 0.1017 0.1038 0.036

HPþHPD 0.0784 0.0975 0.1081 0.0275

EPPþEPPD 0.0657 0.0699 0.089 0.0275

Table 24.16(a) APDP/HSD identification of p13

r¼ p13 p1 p2 p3 p4 p5

SPAM 0.0889 0.1481 0.1185 0.2963 0.3481

MP 0.1089 0.198 0.1584 0.2277 0.3069

HP 0.0941 0.1882 0.1529 0.2588 0.3059

EPP 0.115 0.1947 0.1593 0.2478 0.2832

SFBC¼ SPAMþMD 0.0962 0.141 0.109 0.3013 0.3526

MPþMPD 0.1079 0.1583 0.1511 0.2518 0.3309

HPþHPD 0.1278 0.1353 0.0977 0.2932 0.3459

EPPþEPPD 0.1377 0.1856 0.1677 0.2455 0.2635

ED 0.1329 0.1209 0.1534 0.2778 0.3149
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Table 24.16(b) APDP/AHSD identification of p13

r¼ p13 p1 p2 p3 p4 p5

SPAM 0.0382 0.0637 0.051 0.1274 0.1497

MP 0.035 0.0637 0.051 0.0732 0.0987

HP 0.0255 0.051 0.0414 0.0701 0.0828

EPP 0.0414 0.0701 0.0573 0.0892 0.1019

SFBC¼ SPAMþMD 0.0318 0.0466 0.036 0.0996 0.1165

MPþMPD 0.0318 0.0466 0.0445 0.0742 0.0975

HPþHPD 0.036 0.0381 0.0275 0.0826 0.0975

EPPþEPPD 0.0487 0.0657 0.0593 0.0869 0.0932

Table 24.17(a) APDP/HSD identification of p23

r¼ p23 p1 p2 p3 p4 p5

SPAM 0.1533 0.0867 0.1267 0.30) 0.3333

MP 0.1852 0.1204 0.1574 0.2407 0.2963

HP 0.1889 0.0778 0.1556 0.2778 0.30

EPP 0.1743 0.1101 0.1835 0.2569 0.2752

SFBC¼ SPAMþMD 0.152 0.0877 0.117 0.3041 0.3392

MPþMPD 0.1656 0.106 0.1523 0.2583 0.3179

HPþHPD 0.1884 0.0652 0.1014 0.3043 0.3406

EPPþEPPD 0.1692 0.1077 0.1769 0.2615 0.2846

ED 0.1312 0.1037 0.1397 0.2941 0.3313

Table 24.17(b) APDP/AHSD identification of p23

r¼ p23 p1 p2 p3 p4 p5

SPAM 0.0732 0.0414 0.0605 0.1433 0.1592

MP 0.0637 0.0414 0.0541 0.0828 0.1019

HP 0.0541 0.0223 0.0446 0.0796 0.086

EPP 0.0605 0.0382 0.0637 0.0892 0.0955

SFBC¼ SPAMþMD 0.0551 0.0318 0.0424 0.1102 0.1229

MPþMPD 0.053 0.0339 0.0487 0.0826 0.1017

HPþHPD 0.0551 0.0191 0.0297 0.089 0.0996

EPPþEPPD 0.0466 0.0297 0.0487 0.072 0.0784

Table 24.18(a) APDP/HSD identification of p33

r¼ p33 p1 p2 p3 p4 p5

SPAM 0.1481 0.1333 0.0889 0.2963 0.3333

MP 0.1961 0.1667 0.1275 0.2157 0.2941

HP 0.1939 0.1531 0.1224 0.2551 0.2755

EPP 0.1969 0.1732 0.1102 0.252 0.2677

SFBC¼ SPAMþMD 0.1529 0.121 0.0764 0.3057 0.3439

MPþMPD 0.1773 0.1277 0.1206 0.2482 0.3262

HPþHPD 0.1918 0.1164 0.0822 0.2877 0.3219

EPPþEPPD 0.1927 0.1835 0.1239 0.2477 0.2523

ED 0.1475 0.1112 0.1291 0.2907 0.3214
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Table 24.18(b) APDP/AHSD identification of p33

r¼ p33 p1 p2 p3 p4 p5

SPAM 0.0637 0.0573 0.0382 0.1274 0.1433

MP 0.0637 0.0541 0.0414 0.0701 0.0955

HP 0.0605 0.0478 0.0382 0.0796 0.086

EPP 0.0796 0.0701 0.0446 0.1019 0.1083

SFBC¼ SPAMþMD 0.0508 0.0403 0.0254 0.1017 0.1144

MPþMPD 0.053 0.0381 0.036 0.0742 0.0975

HPþHPD 0.0593 0.036 0.0254 0.089 0.0996

EPPþEPPD 0.089 0.0847 0.0572 0.1144 0.1165

Table 24.19(a) APDP/HSD identification of p43

r¼ p43 p1 p2 p3 p4 p5

SPAM 0.1418 0.097 0.1418 0.2761 0.3433

MP 0.18 0.13 0.17 0.20 0.32

HP 0.202 0.1414 0.1919 0.202 0.2626

EPP 0.1852 0.1389 0.213 0.213 0.25

SFBC¼ SPAMþMD 0.1382 0.0921 0.1382 0.2829 0.3487

MPþMPD 0.1594 0.1087 0.1594 0.2319 0.3406

HPþHPD 0.1974 0.125 0.1711 0.2237 0.2829

EPPþEPPD 0.1938 0.1318 0.2171 0.2093 0.2481

ED 0.1394 0.1243 0.1645 0.2663 0.3055

Table 24.19(b) APDP/AHSD identification of p43

r¼ p43 p1 p2 p3 p4 p5

SPAM 0.1418 0.097 0.1418 0.2761 0.3433

MP 0.18 0.13 0.17 0.20 0.32

HP 0.202 0.1414 0.1919 0.202 0.2626

EPP 0.1852 0.1389 0.213 0.213 0.25

SFBC¼ SPAMþMD 0.1382 0.0921 0.1382 0.2829 0.3487

MPþMPD 0.1594 0.1087 0.1594 0.2319 0.3406

HPþHPD 0.1974 0.125 0.1711 0.2237 0.2829

EPPþEPPD 0.1938 0.1318 0.2171 0.2093 0.2481

Table 24.20(a) APDP/HSD identification of p53

r¼ p53 p1 p2 p3 p4 p5

SPAM 0.1575 0.1164 0.1575 0.2671 0.3014

MP 0.1964 0.1518 0.1875 0.1964 0.2679

HP 0.2162 0.1622 0.2072 0.1982 0.2162

EPP 0.1967 0.1557 0.2213 0.2049 0.2213

SFBC¼ SPAMþMD 0.1524 0.1098 0.1524 0.2744 0.311

MPþMPD 0.1733 0.1267 0.1733 0.2267 0.30

HPþHPD 0.2118 0.1471 0.1647 0.2235 0.2529

EPPþEPPD 0.2028 0.1469 0.2238 0.2028 0.2238

ED 0.1381 0.1193 0.1591 0.2725 0.3109
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used by SFBC actually show its advantage in capturing spectral variation resulting from real data,

but very little from laboratory data.

As a concluding remark, two comments are noteworthy. Despite that two distance mea-

sures, HSD and AHSD, were introduced by (24.4) and (24.5), respectively, for the eight

binary coding methods, their discrimination and identification results were shown to be the

same with only a few cases that different coding methods were selected as the best ones.

Another comment is that binary coding methods using Euclidean distance (ED) as distance

measure were proved to be less effective in spectral discrimination and identification. None

of binary coding methods using ED was shown to be the best method in all the experiments

conducted in this chapter.

Table 24.20(b) APDP/AHSD identification of p53

r¼ p43 p1 p2 p3 p4 p5

SPAM 0.0605 0.0414 0.0605 0.1178 0.1465

MP 0.0573 0.0414 0.0541 0.0637 0.1019

HP 0.0637 0.0446 0.0605 0.0637 0.0828

EPP 0.0637 0.0478 0.0732 0.0732 0.086

SFBC¼ SPAMþMD 0.0445 0.0297 0.0445 0.0911 0.1123

MPþMPD 0.0466 0.0318 0.0466 0.0678 0.0996

HPþHPD 0.0636 0.0403 0.0551 0.072 0.0911

EPPþEPPD 0.053 0.036 0.0593 0.0572 0.0678

Table 24.21 Similarity values of p13, p23, p33, p43, p53 against D ¼ pif g5i¼1 measured by SAM and SID

r¼ p13 p1 p2 p3 p4 p5

SAM 0.0579 0.0435 0.0740 0.1516 0.1640

SID 0.0068 0.0039 0.0069 0.0338 0.0437

r¼ p23 p1 p2 p3 p4 p5

SAM 0.0660 0.0338 0.0647 0.1643 0.1752

SID 0.0066 0.0019 0.0050 0.0353 0.0445

r¼ p33 p1 p2 p3 p4 p5

SAM 0.1066 0.0684 0.0768 0.2028 0.2131

SID 0.0152 0.0064 0.0072 0.0530 0.0635

r¼ p43 p1 p2 p3 p4 p5

SAM 0.0777 0.0646 0.0963 0.1429 0.1568

SID 0.0069 0.0039 0.0092 0.0275 0.0366

r¼ p53 p1 p2 p3 p4 p5

SAM 0.0748 0.0568 0.0889 0.1470 0.1597

SID 0.0067 0.0031 0.0080 0.0289 0.0375
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24.5 Conclusions

Binary coding is a simple and effective technique to be used for spectral characterization. This

chapter explores various ways to extend one of most widely used binary coding technique, SPAM,

developed by Mazer et al. (1988) as well as a spectral feature-based coding method developed by

Qian et al. (1996). Three new binary coding techniques, median partition, halfway partition, and

equal probability partition are developed and can be further implemented in conjunction with

SPAM and Qian et al.’s method to derive new binary coding methods. In order to effectively con-

duct performance analysis and evaluation between two coding methods, a new criterion, APDP, is

also introduced for performance measure. With the help of the proposed APDP, a set of selected

eight binary coding methods is evaluated for comparative study via computer simulations and real

hyperspectral image experiments in spectral discrimination and identification. Experimental results

demonstrate that each method has its own merit and can be used in different applications.

740 Hyperspectral Data Processing: Algorithm Design and Analysis



25

Vector Coding for Hyperspectral
Signatures

Spectral signature coding is generally performed by encoding a spectral signature vector across its

spectral coverage and using the Hamming distance to measure signature similarity as discussed in

Chapter 24. The effectiveness of such a spectral signature coding largely relies on how well the

Hamming distance can capture spectral variations that characterize a signature vector. Unfortunately,

in most cases, such binary coding does not provide sufficient information for signature analysis due

to inability of the Hamming distance in capturing the band-to-band variation, in which case the

Hamming distance can be considered a memoryless distance. Therefore, one approach is to extend

the Hamming distance to a distance with memory. This chapter introduces two new concepts,

referred to as spectral derivative feature coding (SDFC) and spectral feature probabilistic coding

(SFPC), for signature coding. SDFC is derived from texture features used in texture classification to

dictate gradient changes among adjacent bands in characterizing spectral variations so as to improve

spectral discrimination and classification. SFPC implements the well-known arithmetic coding (AC)

in two different ways to encode a signature vector in a probabilistic manner, called circular-SFPC

(C-SFPC) and split-SFPC (S-SFPC). The values resulting from AC are then used to measure the

distance between two signature vectors. The experimental results show that these two signature

vector coding methods indeed perform better than binary coding methods discussed in Chapter 24

due to their use of memory in coding at the expense of coding complexity.

25.1 Introduction

Spectral binary coding methods such as SPAM binary coding (1988) and spectral feature binary

coding (SFBC) (Qian et al., 1996) presented in Chapter 24 are the simplest ways to characterize a

spectral signature vector via a custom-designed binary code book to capture spectral variation

across its spectral wavelength coverage. For example, SPAM encodes an L-dimensional signature

vector as a (2L� 2)-dimensional binary code word that is composed of the first L binary values

encoded as the sign of the difference between a signature component and its spectral signature

mean, and additional L� 2 binary values encoded as the sign of the difference between a signature

component and its corresponding signature components in its adjacent spectral bands within a

signature vector. SFBC extends SPAM by including another set of additional L binary values to

encode a signature vector as a (3L� 2)-dimensional binary code word where the new added set of

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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L binary values is used to indicate whether the deviation of a spectral value in a band from the

spectral signature mean of a signature vector to be encoded is greater than a threshold that is an

average of the absolute differences between the value in each signature components and the spec-

tral signature mean.

As an alternative, SPAM and SFBC can also be considered as encoders that use 1 bit to encode

the current change in spectral variation and 1 bit (SPAM) or 2 bits (SFBC) to memorize the spectral

changes among adjacent bands. Accordingly, SPAM and SFBC can also be interpreted as 2-bit

encoder using 1-bit process unit with 1-bit memory and 3-bit encoder using 1-bit process unit with

2-bit memory, respectively. So, both SPAM and SFBC can be viewed as memory coding methods.

By virtue of this interpretation, one way to improve the performance of SPAM and SFBC is to

increase the number of bits used for memory. In doing so, it requires a more sophisticated coding

structure than binary coding structure used in SPAM and SFBC. This chapter re-invents the wheel

by introducing vector coding into the design structure so that drastic changes in spectral variations

across the wavelength range can be captured more effectively via a vector of bits instead of binary

bits. Here, the vector used in the vector coding indicates that the coding is performed on a block of

adjacent bands instead of the scalar coding performed by SPAM and SFBC band-by-band.

The first vector coding method of interest, referred to as spectral derivative feature coding (Chang

et al., 2009), was developed to improve both SPAM and SFBC in the sense of signature characteriza-

tion. It is a spectral texture feature-based coding method and can be considered as a generalization of

both SPAM and SFBC by encoding gradient changes in adjacent bands in a signature vector as spec-

tral texture features. The idea is derived from the texture analysis based on a recently developed

texture feature coding method (TFCM) (Hong et al., 2002; Hong, 2003) that has shown a promise in

medical imaging applications such as liver disease classification in sonograms and mass detection

in mammograms. The proposed SDFC converts image-based texture features to spectral derivative

features in terms of spectral variations across three adjacent bands. It encodes a signature vector as a

two-dimensional vector of bits while keeping track of gradient changes in spectral variation as

spectral derivatives in three adjacent bands. In light of this interpretation, both SPAM and SFBC

actually perform as 1-bit binary encoders using 1-bit memory and 2-bit memory, respectively.

The second vector coding method is quite different from commonly used techniques designed

for spectral signature coding. It is based on the arithmetic coding developed by Rissanen (1976,

1978). Three features arising from AC but not found in binary coding methods are used to design

an AC-based coding technique, called spectral feature probabilistic coding, for vector coding

(Chang et al., 2010). First, instead of using a bit stream by SPAM and SFBC to encode spectral

values of each band, a set of quantized values is used for encoding via a vector of bits. Second, it

calculates probabilities of spectral-quantized values to perform variable length coding as opposed

to 1-bit coding performed by binary coding with binary values being considered to be equally

likely. Finally, it uses the entire range of wavelengths as a block to perform coding compared to

1-bit band-by-band coding such as SPAM and SFBC or a 2-bit 3-band block coding such as SDFC.

SFPC encodes a spectral signature vector across the entire range of wavelengths into a real value.

Its decoder then decodes the encoded real value precisely to recover the original spectral signature

vector. So, unlike SPAM and SFBC that encode a spectral signature vector into a binary code word,

the proposed SFPC encodes a spectral signature vector as a real value in (0,1). As a result, the

similarity between two spectral signature vectors is measured by the absolute value between their

respective AC-encoded real values rather than the Hamming distance commonly used in spectral

signature coding. The introduction of AC in spectral signature coding by SFPC has several advan-

tages. First, it can dictate and capture between-band spectral variations in a probabilistic manner

where the spectral variations are modeled by a range of probabilities that are determined by the

number of bits used in AC. This cannot be accomplished by SPAM and SFBC. Second, SFPC can
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be developed as an n-bit encoder with n being the number of bits allowed to describe variations in

spectral characterization compared to SPAM and SFBC that can only be implemented as 2-bit or 3-

bit encoders. This is a significant advantage when subtle spectral variations are required for signa-

ture coding. Third, it remedies the drawback of using Hamming distance suffered by SPAM and

SFBC, which can only measure the difference between two encoded code words bit-by-bit. How-

ever, all these advantages are traded for one disadvantage, that is, its complexity is higher that that

of SPAM and SFBC in the sense of algorithmic implementation.

25.2 Spectral Derivative Feature Coding

This section presents a new coding method, referred to as spectral derivative feature coding

(SDFC), that extends and improves both SPAM and SFBC in the sense of signature characteri-

zation. The idea is derived from texture analysis based on a feature coding method developed by

Hong et al. (2002). Instead of characterizing texture features according to spatial correlation

among nine pixels in a 3� 3 window, SDFC converts image-based texture features to spectral

derivative features by looking into spectral variations among three adjacent bands within a

signature vector. In doing so, it reinterprets SPAM and SFBC as 1-bit binary encoders using

various numbers of bits to store memory as follows.

25.2.1 Re-interpretation of SPAM and SFBC

Using the sample mean of spectral value of all bands in a spectral signature vector s ¼
s1; s2; . . . ; sLð ÞT specified by (23.1), with L being the total number of spectral bands, we can imple-

ment SPAM as a 1-bit binary encoder with 1-bit memory to encode s as follows.

For each lth band, we encode the sl by the following code word, denoted by sSPAMl :

sbl ¼
1; if rl � m

0; otherwise

�
for 1 � l � L ð25:1Þ

and

sSPAM_m
l ¼ 1; if slþ1 � sl�1

0; otherwise

�
for 2 � l � L� 1 ð25:2Þ

Concatenating sbl in (25.1) with s
SPAM_m
l in (25.2) results in a code word for sl, denoted by s

SPAM
l :

sSPAMl ¼ sbl s
SPAM_m
l

� � ð25:3Þ

Since (25.2) is not defined for the first and last bands, sSPAM1 ¼ sb1 and sSPAML ¼ sbL. Therefore, the

code word for the signature s is a ð2L� 2Þ-dimensional binary code word, given by

sSPAM ¼ sb1 s
b
2 s

SPAM_m
2 . . . sbL�1 s

SPAM_m
L�1 sbL

� � ð25:4Þ

If the order of sb1 s
b
2 s

SPAM_m
2 . . . sbL�1 s

SPAM_m
L�1 sbL in s

SPAM in (25.4) is re-arranged as

sb1 s
b
2 � � � sbL�1 s

b
L s

SPAM_m
2 � � � sSPAM_m

L�1

� � ð25:5Þ

that turns out to be the same as the original SPAM binary code word with the first L binary bits

obtained for each band by (24.2) and the follow-up (L� 2) bits representing 1-bit memory for each

band obtained by (24.3).
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Similarly, Qian et al.’s spectral feature-based binary coding that extended SPAM binary coding

is as follows. Let MD be the spectral mean deviation defined by

MD ¼ 1=Lð Þ
XL

l¼1
jrl � mj ð25:6Þ

sSFBC_ml ¼
0; if slþ1 < sl�1 and jsl � mj < MD

1; if slþ1 < sl�1 and jsl � mj � MD

2; if slþ1 � sl�1 and jsl � mj < MD

3; if slþ1 � sl�1 and jsl � mj � MD

8
>><

>>:
ð25:7Þ

that represents 2-bit memory:

sSFBCl ¼ sbl s
SFBC_m
l

� � ð25:8Þ

Following the same treatment given for SPAM, we can obtain a similar binary code word for SFBC

as follows:

sSFBC ¼ sb1 s
b
2 s

SFBC_m
2 . . . sbL�1 s

SFBS_m
L�1 sbL

� � ð25:9Þ

If the order of sb1 s
b
2 s

SFBC_m
2 . . . sbL�1 s

SFBC_m
L�1 sbL in s

SFBC in (25.9) is rearranged as

sb1 s
b
2 . . . s

b
L�1 s

b
L s

SFBC_m
2 . . . sSFBC_mL�1

� � ð25:10Þ

that turns out to be the original SFBC binary code word defined by (24.14) with the first L binary

bits obtained for each band by (25.2) and the follow-up (2L� 2) bits representing 2-bit memory for

each band obtained by (24.3) and (24.13).

25.2.2 Spectral Derivative Feature Coding

The idea of the spectral derivative feature coding can be traced back to the texture feature coding

method (Hong et al., 2002) that was developed to capture texture features based on gradient

changes in spectral variation of two successive adjacent pixels among these three pixels. More

specifically, assume that s ¼ s1; s2; . . . sLð ÞT is a hyperspectral signature vector, where L is the total

number of spectral bands and rl is the lth spectral band. Also, let D be a desired spectral variation

tolerance. Four types of successive gradient changes in spectral value can be described as follows:

Type 1 : if jsl � sl�1j � D and jslþ1 � sl j � D
Type 2 : if either jsl � sl�1j � D and jslþ1 � sl j > D

or jsl � sl�1j > D and jslþ1 � sl j � D
Type 3 : if either sl � sl�1 < D and slþ1 � sl < D

or sl � sl�1 > D and slþ1 � sl > D
Type 4 : if either sl � sl�1 < D and slþ1 � sl > D

or sl � sl�1 > D and slþ1 � sl < D

ð25:11Þ

According to degrees of successive gradient changes in spectral values among three consecutive

bands, Type 1 corresponds to zero-order spectral variation since there is no gradient change in
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spectral value of two successive adjacent bands. Type 2 represents first-order spectral variation

since there is one gradient change in spectral value that occurs in only one pair of two adjacent

bands. Type 3 and Type 4 describe second-order spectral variation since there are drastic gradient

changes in spectral value among three bands. The graphic representations of these four types of

spectral value changes are illustrated in Figure 25.1.

For 2 � l � L� 1

sSDFC_ml ¼
0 if sl is Type 1

1 if sl is Type 2

2 if sl is Type 3

3 if sl is Type 4

8
>><

>>:
ð25:12Þ

that represents 2-bit memory to keep track of changes in spectral derivatives among the three adja-

cent bands l� 1, l, and lþ1, and the D used in (25.11) is set to

D ¼ 1=ðL� 1Þð Þ
XL

l¼2
jrl � rl�1j ð25:13Þ

By virtue of (25.1) and (25.13), we can encode the sl as

sSDFCl ¼ sbl s
SDFC_m
l

� � ð25:14Þ

with the signature vector s encoded as sSDFC by

sSDFC ¼ sb1 s
b
2 s

SDFC_m
2 . . . sbL�1 s

SDFC_m
L�1 sbL

� � ð25:15Þ

Like (25.5) and (25.10), we can also rearrange the order of sb1 s
b
2 s

SDFC_m
2 . . . sbL�1 s

SDFC_m
L�1 sbL in s

SDFC

in (25.15) to produce a new binary code word

sb1 s
b
2 . . . s

b
L�1 s

b
L s

SDFC_m
2 . . . sSDFC_mL�1

� � ð25:16Þ

that is similar to the original SPAM and SFBC binary code words with the first L binary bits

obtained for each band by (25.1) and the follow-up (2L� 2) bits representing 2-bit memory for

each band obtained by (25.12). It should be noted that SDFC as detailed above can be implemented

by two different performance measures. We can either designate the four spectral texture feature

types as a numeric set of {0,1,2,3} or express them as 2-bit binary values {00,01,10,11}. For the

former case least squares error (LSE) can be used as a distance measure between different types,

while a modified Hamming distance measure is used for the latter case. These two implementa-

tions are referred to as ED-SDFC and Hamming-SDFC, respectively.

Type 1           

Type 2         

Type 3          
 

Type 4          
 

Figure 25.1 Graphic representation of Types 1–4.
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Assume that s ¼ s1; s2; . . . ; sLð ÞT and t ¼ t1; t2; . . . ; tLð ÞT are two signature vectors with sSDFC

and tSDFC being their respective code words encoded by SDFC.

1. Hamming distance (HD)

HDðs; tÞ ¼ 1=Lð Þ
XL

l¼1
jsal � tal j þ 1=ðL� 2Þð Þ

XL�1

l¼2

����s
SDFC_b
l � tSDFC_bl

���� ð25:17Þ

where sSDFC_bl 2 f00; 01; 10; 11g, tSDFC_bl 2 f00; 01; 10; 11g; and jsSDFC_bl � tSDFC_bl j is the

Hamming distance. For example, if sSDFC_bl ¼ 00 and tSDFC_bl ¼ 11, jsSDFC_bl � tSDFC_bl j ¼ 2.

2. Absolute value distance (AVD)

AVDðs; tÞ ¼ 1=Lð Þ
XL

l¼1
jsal � tal j þ 1=ðL� 2Þð Þ

XL�1

l¼2

����s
SDFC_b
l � tSDFC_bl

���� ð25:18Þ

where sSDFC_bl 2 f0; 1; 2; 3g, tSDFC_bl 2 f0; 1; 2; 3g; and jsSDFC_bl � tSDFC_bl j is the absolute value.
For example, if sSDFC_bl ¼ 0 and tSDFC_bl ¼ 3, jsSDFC_bl � tSDFC_bl j ¼ 3.

25.2.3 AVIRIS Data Experiments

An AVIRIS (Airborne Visible Infrared Imaging Spectrometer) laboratory data set that consists of

five reflectance spectra, alunite (A), buddingtonite (B), calcite (C), kaolinite (K), and muscovite

(M) shown in Figure 25.2, was used for experiments and reproduced from Figure 1.9. It is provided

by the USGS and available online at website. It allows us to simulate various scenarios to explore

many interesting insights into SDFC.

Three sets of experiments were performed to illustrate applications of signature discrimination

and classification. It should be noted that there is a significant difference between these two where

Figure 25.2 Five USGS ground-truth mineral spectra.
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discrimination intends to discern one signature from another, but classification attempts to assign a

label to a signature.

25.2.3.1 Signature Discrimination

In this section, a comparative study and analysis was conducted for discrimination among the five

mineral signature vectors in Figure 25.2, alunite (A), buddingtonite (B), calcite (C), kaolinite (K),

and muscovite (M), using four coding schemes, SPAM, SFBC, HD-SDFC, and AVD-SDFC.

Figure 25.3 plots the spectral similarity values among the five signature vectors produced by

SPAM, SFBC, HD-SDFC, and AVD-SDFC.

In order to better resolve the discrimination power of different algorithms, relative spectral dis-

criminatory power (RSDPW) developed by Chang (2000, 2003a) was used, where RSDPW pro-

vided a quantitative measure of spectral discrimination capability of a hyperspectral measure

between a pair of spectral signatures relative to a reference signature. It is defined as

RSDPWmðs1; s2; rÞ ¼ max mðs1; rÞ=mðs2; rÞ;mðs2; rÞ=mðs1; rÞf g ð25:19Þ

where r is the spectral signature of a reference signature, s1 and s2 are the pair of spectral signatures

to be measured, and m is the measure applied. As seen from (25.19), RSDPWmðs1; s2; rÞ selects as
the discriminatory power of the measure m, the maximum of the two ratios, ratio of mðs1; rÞ to

mðs2; rÞ and ratio of mðs2; rÞ to mðs1; rÞ. RSDPW is a symmetric measure and the higher the

RSDPWmðs1; s2; rÞ the better the discriminatory power of measure m. The lower bound of

the measure is one that occurs in the case s1 ¼ s2. The signature s1 in (25.19) can be at designated

as the signature of interest while the s2 is used to compare against the s1 with respect to the refer-

ence signature r. Each of the five signature vectors in Figure 25.2 was selected as a reference signa-

ture vector r that was also set to the signature vector of interest s1¼ r. Figure 25.4(a)–(e) shows

comparative graphic plots of spectral similarity values for reference signature vector r¼A, B, C, K,

and M produced by SPAM, SFBC, HD-SDFC, and AVD-SDFC along with plots of their corre-

sponding RSDPW values.

The above results show better discrimination performance of SDFC measures than the two

existing coding methods, SPAM and SFBC.
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Figure 25.3 Spectral similarity values among A, B, C, K, and M produced by SPAM, SFBC, HD-SDFC, and

AVD-SDFC.
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25.2.3.2 Mixed Signature Classification

In this section, a mixed signature vector was generated by mixing equal proportions of the five

signature vectors in Figure 25.2 given by

tmix ¼ 1=4ðsA þ sB þ sC þ sK þ sMÞ ð25:20Þ
and shown in Figure 25.5 for comparison.
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Figure 25.4 Comparative plots of RSDPW values produced by SPAM, SFBC, HD-SDFC, and AVD-SDFC.
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From the spectral plot of the mixed signature vector shown in Figure 25.5 we notice that spec-

tral signature of kaolinite lied in between the spectral signatures of the other four signature vectors

in the set and thus should be closest to the mixed signature vector tmix. Thus, it can be expected that

the mixed signature vector would be classified as kaolinite. The results of Table 25.1 verified this

assessment and further showed that SDFC-based spectral measures were able to perform this

classification correctly.

Figure 25.6 shows comparative graphic plots of their spectral similarity values of A, B, C, K,

and M between tmix produced by different measures in Table 25.1.

For the purpose of studying discrimination among different measures, RSDPW is calculated

with the selection of reference as the average of the five signature vectors, tmix. K was assumed to

be the signature vector of interest s1 and other signature vectors are chosen to be s2 to be compared

against s1. The plots of their RSDPW values are presented in Figure 25.7.

25.2.4 NIST Gas Data Experiments

A second data set used for experiments was spectral signatures of gas agent data shown in Fig-

ure 1.10 and discussed in Section 1.6.3. It is provided by the National Institute of Standards and

Technology (NIST) and is ava il able on websi te ( webbook.nist.gov/chemi str y ). T he fr eq u e ncy

range of s1 is 550–3846 cm�1 acquired by 825 bands, while that of sif g9i¼2 is 450–3966 cm�1

acquired by 825 bands, giving each signature a spectral resolution of about 4 cm�1 per band. Since

Figure 25.5. Five USGS ground-truth mineral spectra together with the mixed signature.

Table 25.1 Classification results of simulation AVIRIS data

Distance measure w.r.t. tmix A B C K M

Hamming

(SPAM/SFBC)

0.16239 0.19658 0.25356 0.1567 0.2307

0.17492 0.28218 0.19142 0.12376 0.2277

HD-SDFC 0.20332 0.29054 0.23205 0.11954 0.2445

AVD-SDFC 0.19245 0.30144 0.22361 0.11158 0.2409
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the s1 is acquired by 825 bands compared to the other eight signature vectors sif g9i¼2 that are col-

lected by 880 bands, only the eight signature vectors sif g9i¼2 are used for our experiments.

25.2.4.1 Signature Discrimination

Once again, we first evaluated effectiveness of SPAM, SFBC, HD-SDFC, and AVD-SDFC in

spectral similarity. Figure 25.8 plots histograms of the spectral similarity values among the

eight signatures sif g9i¼2 produced by SPAM, SFBC, HD-SDFC, and AVD-SDFC, where there

were 28

2

� �
¼ 8�7

2
¼ 28 pairs of gas agents to be measured for spectral similarity by the four

methods, SPAM, SFBC, HD-SDFC, and AVD-SDFC.

Obviously, from Figure 25.8 it difficult to see how a coding method performs in signature dis-

crimination. So, in order to compare the discriminatory powers of these four different coding meth-

ods, SPAM, SFBC, HD-SDFC, and AVD-SDFC, RSDPW in (25.19) is also used as a measure of

discriminatory power produced by a coding method. The spectral signature s9 was chosen as the

signature vector of interest s1 in (25.19) and other signature vectors sif g8i¼2 were used as s2 in

(25.19) to be compared against s9. The selection of s9 was arbitrary and any other signature vector

could also be used for the same purpose. Table 25.4 tabulates the RSDPW values among sif g8i¼2

using r¼ s9 as the reference signature vector produced by SPAM, SFBC, HD-SDFC, and AVD-

SDFC and Figure 25.9 plots their corresponding RSDPW values for visual assessment.
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Figure 25.7 Comparative plots of RSDPW values of Figure 25.6 produced by SPAM, SFBC, HD-SDFC, and

AVD-SDFC with K designated as the desired signature.
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Figure 25.6 Comparative plot of spectral similarity values of the simulation data produced by SPAM, SFBC,

HD-SDFC, and AVD-SDFC.
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According to the definition of (25.19), a measure is effective if the more spectrally distinct the

two signatures, the greater their RSDPW values, and conversely, the more similar the two signa-

tures, the smaller their RSDPW values. With this interpretation, both versions of the SFDC appar-

ently performed better than SPAM and SFBC.

25.2.4.2 Mixed Signature Classification

This section performed classification of mixed signature vectors with Gmix chosen to be the average

of the eight gas signatures, sif g9i¼2. Due to nearly a thousand of spectral bands used to acquire the

gas data, there is a wide range of spectral variations of the gas data as shown in Figure 1.10. To

address this issue, the value of the D in (25.13) used for signature analysis must be adapted to

sensitivity of gradient changes in spectral variation. While SDFC worked by capturing adjacent

band gradient variation, a large amount of local variation may acted like noise, and further reduce

its key features of a spectral signature. One way to address this issue was to use multiples of D in

(25.13) as thresholds. This is similar to low-pass filtering of the data. The value of a new threshold
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Figure 25.9 Comparative plots of RSDPW values produced by SPAM, SFBC, HD-SDFC, and AVD-SDFC

using r¼ s9.
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Figure 25.8 Spectral similarity values among sif g9i¼2 produced by SPAM, SFBC, HD-SDFC, and AVD-

SDFC.
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should be chosen such that much of the noise was eliminated without sacrificing the key features of

the signature vector. Table 25.2 shows the different values of thresholds for the signature vectors

sif g9i¼2 obtained for D, 5D, 10D, and 20D.
Figure 25.10 shows the RSDPW values for the two SDFC-based measures (HD and AVD),

obtained by D, 5D, 10D, and 20D.
As seen from Figure 25.10, 10D seemed to provide the best discrimination results while at

higher values of D (20D or more) the distinction among signatures is not preserved. The classifica-

tion results for the gas data are presented in Table 25.3 for two values D and 10D for the two SDFC

measures together with SAM and SID as reference.

From Table 25.3 we saw that for 10D, we seemed to get a better discrimination among the

spectral signatures. Also we noticed that signature vectors s6, s7, and s8 gave similar results when

compared to mix signature vector (Gmix). Figure 25.11 plots RSDPW values of Table 25.3, where

reference signature vector is chosen as the average of the eight signature vectors sif g9i¼2 and signa-

ture vector s9 is chosen as the signature vector of interest s1, as mentioned in (25.19).

For a better visual inspection of signature vectors s6, s7, s8, and Gmix for discrimination, Figure

25.12 shows their spectral profiles for comparison.

Based on the above classification results, we see that signature vectors s6, s7, and s8 were

very similar, while signature vector s9 was most distinct. So, we formed a subset of signature

vectors s6, s7, s8, and s9 to perform discrimination among each other. Each of the above four

signature vectors was selected as a reference signature vector r that is also set to the signature

vector of interest s1¼ r. Figure 25.13(a)–(d) shows comparative graphic plots of spectral

Table 25.2 Different thresholds for the signatures sif g9i¼2 obtained for D, 5D, 10D, and 20D

Threshold¼D Threshold¼ 5D Threshold¼ 10D Threshold¼ 20D

s2 44.19 220.95 441.9 883.8

s3 12,765 63,825 127,650 255,300

s4 60.74 303.7 607.4 1214.8

s5 43.47 217.35 434.7 869.4

s6 616.86 3084.3 6168.6 12337.2

s7 70.81 354.05 708.1 1416.2

s8 48.95 244.75 489.5 979

s9 77.74 388.7 777.4 1554.8
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Figure 25.10 RSDPW values produced for D, 5D, 10D, and 20D.
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Figure 25.12 Signature vectors s6, s7, and s8 and average signature vector of the gas data set sif g9i¼2, Gmix.

Table 25.3 Classification results of gas data

Distance measure

w.r.t. Gmix

s2 s3 s4 s5 s6 s7 s8 s9

SPAM 0.12202 0.1281 0.14295 0.13305 0.10626 0.10333 0.11481 0.14948

SFBC 0.12439 0.12245 0.13718 0.13301 0.12161 0.10618 0.11341 0.14177

SAM 0.13532 0.1215 0.128 0.1338 0.12767 0.085297 0.12542 0.14299

SID 0.13023 0.10697 0.12353 0.14853 0.092757 0.065252 0.088639 0.2691

HD-SDFC (D) 0.1141 0.13771 0.13379 0.13732 0.11138 0.11456 0.10737 0.15377

AVD-SDFC (D) 0.11595 0.13599 0.13246 0.1395 0.11309 0.11128 0.10402 0.15771

HD-SDFC (10D) 0.12652 0.14537 0.12402 0.119 0.095784 0.086657 0.091677 0.21097

AVD-SDFC (10D) 0.13015 0.13527 0.12451 0.1133 0.099838 0.086563 0.091653 0.20872
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Figure 25.11 RSDPW values of the chemical/biological data classification result (where reference signature

vector was Gmix and signature vector of interest was s9) produced by SPAM, SFBC, HD-SDFC, and AVD-

SDFC (for D and 10D).
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similarity values for reference signature vector r¼ s6, s7, s8, and s9 produced by SPAM, SFBC,

HD-SDFC, and AVD-SDFC (for 10D) along with plots of their corresponding RSDPW values.

Two remarks on SDFC are worth noting:

1. SDFC-based measures generally performed better than SPAM and SFBC. Since SDFC-based

measures (HD-SDFC and AVD-SDFC) caught gradient changes in spectral variation across

bands, they worked more effectively when there was a fair amount of gradient variations in a

spectral signature.

2. Among the two SDFC-based measures detailed in this chapter, AVD-SDFC seemed to give a

better performance in general. This might be due to the fact that AVD-SDFC was able to pick

up gradient changes more accurately. Nevertheless, their performances were very similar

though, because they shared the same inherent idea.

For more complicated data sets such as the gas data used above with a high amount of local gradi-

ent variations increasing the threshold parameter, D of SDFC in (25.13) can achieve better
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Figure 25.13 Comparative plots of spectral similarity values of the panel data produced by SPAM, SFBC,

HD-SDFC, and AVD-SDFC along with the plot of RSDPW values.
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discrimination, but a care should be taken to ensure that key features of the signature vector are not

lost due to excessively high values of a threshold.

25.3 Spectral Feature Probabilistic Coding

The SDFC developed in Section 25.2 still follows a similar design philosophy used for SPAM and

SFBC developed in Chapter 24. The spectral feature probabilistic coding presented in this section

takes a completely different route to design codes for a signature vector. It replaces 1-bit threshold

used by binary coding with a set of discrete values obtained from quantizing real spectral values.

So, the number of bits to be used is determined by how fine the discrete values are desired to

be used for encoding. Furthermore, SFPC uses the entire number of spectral bands as a block of

memory to keep track of changes in the complete spectral profile of a signature vector as opposed

to binary coding that uses only two or three adjacent bands as blocks of memory to capture

changes in a very limited spectral range. As expected, SFPC can more accurately describe spectral

characteristics of a signature vector than binary coding.

25.3.1 Arithmetic Coding

Since arithmetic coding is a well-established coding method, we refer to Rissanen (1976) and

Langdon and Rissanen (1981) for details. This section briefly reviews the underlying concept of

AC. In doing so, the best way is to use a simple example to illustrate how AC works. Suppose that

X is a binary information source where {0,1} is the source alphabet space and probabilities of 0 and

1 given by 0.4 and 0.6, respectively. Assume that a source message S is a binary string specified by

S¼ 01101. The key idea of AC is to break up the unit interval [0,1) in accordance with probabilit-

ies assigned to each source alphabet. In our example, the interval of [0,1) is divided into [0,0.4)

corresponding to the probability of 0, 0.4 and [0.4,1) corresponding to the probability of 1, 0.6.

After seeing the first bit “0” of the S, we know the string S must lie in between 0 and 0.4 as

shown in Figure 25.14(a). Then the interval [0,0.4) is further divided into two subintervals,

[0,0.16) corresponding to 0 and [0.16,0.4) corresponding to 1. After seeing the second bit “1”, the

interval in which the string S lies is reduced to [0.16,0.4) with an increased decimal precision as

shown in Figure 25.14(b). In order to encode the third bit in the string, the interval [0.16,0.4) is

further divided into two subintervals [0.16,0.256) corresponding to 0 and [0.256,0.4) correspond-

ing to 1 according to the probability of 0, 0.4 and the probability of 1, 0.6. The same procedure is

continued until the end of the string S as shown in Figure 25.14(c)–(e).
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 (a )          (b)            (c)             (d)                    (e)
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Figure 25.14 Illustrative diagram of encoding a binary string 01101 using AC.

Vector Coding for Hyperspectral Signatures 755



In other words, the binary string S¼ 01101 can be encoded by a real value lying in an inter-

val continuously broken up in accordance with the probabilities assigned to 0 and 1, which are

0.4 and 0.6. The length of the interval within which the string S lies is shrunk by one decimal

precision every time a new bit is input from the string S. This can be illustrated as follows

using Figure 25.14 as an example.

1. After seeing “0”, S 2 ½0; 0:4Þ in Figure 25.2(a).
2. After seeing “01”, S 2 ½0:16; 0:4Þ in Figure 25.2(b).
3. After seeing “011”, S 2 ½0:256; 0:4Þ in Figure 25.2(c).
4. After seeing “0110”, S 2 ½0:256; 0:3136Þ in Figure 25.2(d).
5. After seeing “01101”, S 2 ½0:27904; 0:3136Þ in Figure 25.2(e).

So, from the above step-by-step illustration the accuracy of encoding the string S is improved by

one decimal precision via a shrinking process of the interval length by one-tenth. This implies that

AC remembers all its past while encoding the string S. The more the past stored in its memory, the

better the accuracy with which it encodes strings produced by the information source X. It should

be noted that the example provided in this section only serves as an illustrative purpose. More

sophisticated examples and its programming implementation can be found in Rissanen (1976),

Welch (1984), Witten et al. (1987), Bell et al. (1990), and Gersho and Gray (1992).

25.3.2 Spectral Feature Probabilistic Coding

Next we develop an AC-based spectral feature probabilistic coding that implements AC to encode

a signature vector, denoted by s ¼ s1; s2; . . . ; sLð ÞT with the total number of spectral bands speci-

fied by L. Assume that AC-encoded code word of the signature vector s is denoted by sAC, which is

actually a real value between 0 and 1. SFPC can be implemented for each signature vector si ¼
si1; si2; . . . ; siLð ÞT of sif gNi¼1 as follows.

SFPC algorithm for encoding si
1. Determine the number of quantization levels q to be used for AC. This is equivalent to

determining the number of bits b to be used for AC with q ¼ 2b.

2. Implement an optimal uniform q-level quantizer (Lloyd, 1982; Gersho and Gray, 1992) to

quantize L components si1; si2; . . . ; siLf g of the signature vector si into q levels, denoted by

asi1 ; a
si
2 ; . . . ; a

si
q that is considered as a source code word space of the signature vector si.

3. Find a histogram of the q quantization levels asi1 ; a
si
2 ; . . . ; a

si
q to produce the probabilities

of asi1 ; a
si
2 ; . . . ; a

si
q for the signature vector si denoted by psi1 ; p

si
2 ; . . . ; p

si
q that will be used

for AC.

4. Use AC described in Section 25.2.2 to encode si with source alphabet probabilities obtained

in step 3, psi1 ; p
si
2 ; . . . ; p

si
q .

5. Assume that the final interval at which AC is terminated is ½x; y�. The value at the half way
between x and y, that is, xþ yð Þ=2, is then assigned to the signature vector si as its code

word denoted by sACi that is a real value in [0,1).

In order for SFPC to perform spectral similarity, let two spectral signature vectors be given by s1 ¼
s11; s12; . . . ; s1Lð ÞT and s2 ¼ s21; s22; . . . ; s2Lð ÞT with their SFPC-encoded code words sAC1 and sAC2 .

An SFPC measure between these two signature vectors s1 and s2 can be defined by

SFPCðs1; s2Þ ¼ jsAC1 � sAC2 j ð25:21Þ
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that is the absolute difference between their two SFPC-encoded code words sAC1 and sAC2 . Since AC

is a memory coding method, its initial condition has significant impact on its performance. There-

fore, the initial band to be encoded by AC plays the key role in SFPC measure defined by (25.21).

To address this issue, the initial band is selected by the band denoted by l� that yields the maximum

spectral variation between two signature vectors s1 and s2 over all spectral bands and defined by

l� ¼ arg maxl js1l � s2l jf g ð25:22Þ
With the l�th band as the initial band, AC encodes both signature vectors s1 and s2 in two different

ways. One is called circular-SFPC that starts off the first band, the l�th band, followed by the

(l�þ 1)th band until it reaches the last band, Lth band, and then it goes back to the first band,

the second band, and stops its encoding at the (l�� 1)th band. In other words, AC imple-

mented in C-SFPC is performed in the following circular order:

l�; l� þ 1; l� þ 2; . . . ; L� 1; L; 1; 2; . . . ; l� � 2; l� � 1 ð25:23Þ
Another is called split-SFPC that uses the l�th band to break up the entire bands into two band

subsets, V1 ¼ 1; 2; . . . ; l� � 1; l�f g and V2 ¼ l�; l� þ 1; . . . ; Lf g. Then AC implemented in S-

SFPC encodes both signature vectors s1 and s2 in V1 in the decreasing order of band numbers:

l�; l� � 1; l� � 2; . . . ; 1 ð25:24Þ
with their respective AC-encoded words denoted by sAC;V1

1 and sAC;V1

2 and V2 in the increasing

order of band numbers
l�; l� þ 1; l� þ 2; . . . ; L� 1; L ð25:25Þ

with their respective AC-encoded words denoted by sAC;V2

1 and sAC;V2

1 . Then the spectral similar-

ity between s1 and s2 is measured by

SFPCðs1; s2Þ ¼ jsAC;V1

1 � sAC;V1

2 j þ jsAC;V2

1 � sAC;V2

2 j ð25:26Þ
In what follows, we summarize how to perform SFPC as a discrimination measure according to

two different ways described by (25.23) and (25.24) and (25.25).

SFPC measure for discrimination

1. Find the initial band l� determined by (25.22) for any given two signature vectors s1 and s2.

2. Implement C-SFPC using (25.23) or S-SFPC by (25.24) and (25.25) to encode both signa-

ture vectors s1 and s2.
3. Measure the spectral similarity between s1 and s2 via (25.21) or (25.26).

Three remarks are worth noting:

1. The selection of the initial band by (25.22) has two significant advantages. First, it makes the

SFPC invariant to the ordering of the spectral bands. Second, it avoids a dilemma that the per-

formance SFPC can be affected by a drastic change between two adjacent spectral bands.

2. There is an alternative to calculate probabilities of asi1 ; a
si
2 ; . . . ; a

si
q . If two signature vectors s1 ¼

s11; s12; . . . ; s1Lð ÞT and s2 ¼ s21; s22; . . . ; s2Lð ÞT are compared for discrimination, another way

to calculate the probabilities of the q optimal levels a1; a2; . . . ; aq
� 	

is to consider the 2L com-

ponents of the two signature vectors, s11; s12; . . . ; s1L; s21; s22; . . . ; s2Lf g, as the input of the

q-level uniform optimal quantizer to generate a common probability distribution

p
ðs1;s2Þ
1 ; p

ðs1;s2Þ
2 ; . . . ; p

ðs1;s2Þ
q for AC to encode both signature vectors s1 and s2 instead of two indi-

vidual probability distributions ps11 ; p
s1
2 ; . . . ; p

s1
q and ps21 ; p

s2
2 ; . . . ; p

s2
q . However, according to our
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experiments, there is no appreciable difference between these two. In this case, only the latter is

used for experiments. It is our belief that the total number of bands L for data acquisition is

sufficiently large for AC to capture spectral characterization.

3. Similarly, if a database D ¼ si ¼ si1; si2; . . . ; siLð ÞT� 	N

i¼1
, which consists of N signature vectors,

is used for signature identification, the probability distribution of the q optimal levels

a1; a2; . . . ; aq
� 	

can also be calculated based on quantization of the NL components of the N

signature vectors, s11; s12; . . . ; s1L; s21; s22; . . . ; s2L; . . . ; sN1; . . . ; sNLf g, into the q optimal levels

a1; a2; . . . ; aq
� 	

to generate a common probability distribution pD1 ; p
D
2 ; . . . ; p

D
q for the database

that can be used by AC to encode all the N signature vectors D ¼ sif gNi¼1. As noted previously,

this practice does not provide particular advantages in improving signature identification.

25.3.3 AVIRIS Data Experiments

The same AVIRIS laboratory data set that consists of five reflectance spectra, alunite (A), budding-

tonite (B), calcite (C), kaolinite (K), and muscovite (M) shown in Figure 25.2, is used for experi-

ments to explore many interesting insights into SPFC.

In order to compare 2-bit SPAM and 3-bit SFBC, SFPC algorithm was implemented with AC as

2-bit and 3-bit encoders where Max’s uniform quantization (Max, 1960), also known as Lloyd’s

algorithm I (Lloyd, 1982), was used to quantize the spectral variations of the five spectral signa-

tures. Figure 25.15 shows comparative graphical plots of spectral similarity values among A, B, C,

K, and M produced by SPAM, SFBC, 2-bit C-SFPC, 2-bit S-SFPC, 3-bit C-SFPC, and 3-bit S-

SFPC. As seen from Figure 25.15, the best discrimination result was generated by 3-bit S-SFPC

followed by 3-bit C-SFPC. The histograms are plotted such that for each measure the sums of

distance have been normalized to unity.

To quantitatively measure discrimination powers of different coding methods, once again

RSDPWm(s1,s2;r) specified by (25.19) was used for quantitative assessment where the signa-

ture vector s1 in (25.19) was designated as the signature vector of interest while s2 was used to

compare against s1 with respect to the reference signature vector r. Apparently, the higher the

RSDPWm(s1,s2;r), the better the discriminatory power of measure m. Generally, there are two

ways to select the reference signature vector r. One way is to select the average of the five

mineral signature vectors in Figure 25.2, that is, designate signature vector s1¼ r. The other

way is to select one of these five signature vectors in Figure 25.2 as a candidate for the refer-

ence signature vector. Figure 25.16(a)–(e) shows comparative graphic plots of spectral similar-

ity values for reference signature vector r¼A, B, C, K, and M produced by SPAM and SFBC.
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Figure 25.15 Spectral similarity values among A, B, C, K, and M produced by SPAM, SFBC, 2-bit C-SFPC,

2-bit S-SFPC, 3-bit C-SFPC, and 3-bit S-SFPC.
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Experiment 25.3.3.1 (r¼ average of five signatures in Figure 25.2)

In this experiment, the K was assumed to be the signature vector of interest s1 and other signature

vectors are chosen to be s2 to be compared against s1. The selection of K was arbitrary and any

other signature can also be used to serve the same purpose. With s1¼K, Figure 25.16 plots

RSDPW values calculated among the four signature vectors s2¼A, B, C, and M for 2-bit SPAM,

2-bit C-SFPC, and 2-bit S-SFPC as a 2-bit group shown in Figure 25.16(a) and for SFBC, 3-bit

C-SFPC, and 3-bit S-SFPC as another group shown in Figure 25.16(b) for comparative analysis.

According to (25.19), a measure is effective if it produces a higher value of the RSDPW if two

signature vectors s1 and s2 are more distinct and a lower value of the RSDPW if two signature

vectors s1 and s2 are more similar. On the other hand, a measure is ineffective if it produces similar

values of the RSDPW among all signatures. In light of this interpretation, the results in Fig-

ure 25.16 show that SFPC performed significantly better than SPAM and SFBC in the sense of the

same bit rate as well as the fact that the more distinct the two signature vectors, the higher their

RSDPW values and the more similar the two signature vectors, the smaller their RSDPW values.

In order to further demonstrate the generalization capability of SFPC, comparative graphical

plots of spectral similarity values of A, B, C, K, and M produced by the 4-bit C-SFPC, 4-bit

S-SFPC, 8-bit C-SFPC, and 8-bit S-SFPC are shown in Figure 25.17(a) and comparative graphical

plots of RSDPW values among the four mineral signature vectors A, B, C, and M produced by

(a) 2-bit SPAM, 2-bit C-SFPC, and 2-bit S-SFPC        (b) 3-bit SFBC, 3-bit C-SFPC, and 3-bit S-SFPC 
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Figure 25.16 Comparative graphical plots of RSDPW values among the four mineral signatures A, B, C,

and M produced by (a) 2-bit SPAM, 2-bit C-SFPC, and 2-bit S-SFPC and (b) 3-bit SFBC, 3-bit C-SFPC, and

3-bit S-SFPC using K as the signature of interest s1.
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Figure 25.17 (a) Comparative plots of spectral similarity values produced by 4-bit C-SFPC, 4-bit S-SFPC,

8-bit C-SFPC, and 8-bit S-SFPC. (b) Comparative graphical plots of RSDPW values among the four mineral

signatures A, B, C, and M produced by 4-bit C-SFPC, 4-bit S-SFPC, 8-bit C-SFPC, and 8-bit S-SFPC using

the K as the signature of interest s1.
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4-bit C-SFPC, 4-bit S-SFPC, 8-bit C-SFPC, and 8-bit S-SFPC, using the K as the signature vector

of interest s1 are shown in Figure 25.17(b).

Experiment 25.3.3.2 (r¼ individual signature)

In this experiment, each of the five signature vectors in Figure 25.2 was selected as a reference

signature vector r. The same simulations conducted in Experiment 25.3.3.1 were also per-

formed for the reference signature vector r¼A, B, C, K, and M, respectively, for calculation

of the RSDPW values via (25.19) where the signature vector of interest s1 was chosen to be

same as the reference signature vector r for each case. Figure 25.18(a)–(e) shows comparative

graphical plots of RSDPW values produced by 2-bit SPAM, 2-bit C-SFPC, 2-bit S-SFPC, 3-bit

SFBC, 3-bit C-SFPC, 3-bit S-SFPC, 4-bit C-SFPC, 4-bit S-SFPC, 8-bit C-SFPC, and 8-bit

S-SFPC, where one mineral signature vector is used as the reference signature vector r while

the other four mineral signature vectors are used to calculate the RSDPW values.

Interestingly, according to the above experiments, 2-bit SFPC was still the best even though

more bits were allowed for signature coding and the same conclusions made for Experiment

25.3.3.1 were also valid for Experiment 25.3.3.2. However, this was no longer true when the simi-

lar experiments were conducted for NIST gas data set in the following section. This is primarily

due to the used AVIRIS data set that has only five signatures and 2-bit coders are sufficient to

capture the complexity of their signature characterization.

25.3.4 NIST Gas Data Experiments

The spectral signature vector s9 is chosen as the signature vector of interest s1 in (25.19) and

other signature vectors sif g8i¼2 were used as s2 in (25.19) to be compared against s9. This selec-

tion was random and any other signature vector could also be used as a reference signature

vector. As discussed in Section 25.3.2, SFPC started coding from the band that yielded the

maximum spectral variation between two signature vectors s1 and s2 via (25.22). Since the

range of reflectance values is widely spread, the natural logarithm function is used to replace

sAC in (25.21) and (25.26) with ln sAC. It should be noted that the natural logarithm is a mono-

tonically increasing function and will not have any effect on the results. By taking natural

logarithm, equations (25.21) and (25.26) become

SFPCðs1; s2Þ ¼ jlnðsAC1 Þ � lnðsAC2 Þj ð25:27Þ

for C-SFPC and

SFPCðs1; s2Þ ¼ jlnðsAC;V1

1 Þ � lnðsAC;V1

2 Þj þ jlnðsAC;V2

1 Þ � lnðsAC;V2

2 Þj ð25:28Þ

for S-SFPC.

The above two variations of SFPC were implemented along with 2-bit SPAM and 3-bit SFBC.

Figure 25.19(a) plots the spectral similarity values among sif g9i¼2 produced by SPAM, SFBC, 2-bit

C-SFPC, 2-bit S-SFPC, 3-bit C-SFPC, and 3-bit S-SFPC, while Figure 25.19(b) is a spectral simi-

larity value plot among sif g9i¼2 produced by SPAM, SFBC, 4-bit C-SFPC, and 4-bit S-SFPC

(which gave the best discrimination performance among SFPC algorithms for this data set).
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Figure 25.18 Comparative plots of spectral similarity values produced by SPAM, SFBC, 2-bit C-SFPC, 2-

bit S-SFPC, 3-bit C-SFPC, 3-bit S-SFPC, 4-bit C-SFPC, 4-bit S-SFPC, 8-bit C-SFPC, and 8-bit S-SFPC along

with their corresponding plots of RSDPW values.
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Similar to Experiments 25.3.3.1 and 25.3.3.2, two selections of the reference signature vector r

were also conducted, that is, averaged signature vector and individual signature vectors.

Experiment 25.3.4.1 (r¼ average of sif g9i¼2)

In this experiment, the average of the eight signature vectors was used as the reference signature

vector while s9 was set as signature vector of interest. Figure 25.20 shows comparative graphical

plots of spectral similarity values of s2, s3, s4, s5, s6, s7, s8, and s9 against the reference signature

vector produced by 2-bit SPAM, 2-bit C-SFPC, and 2-bit S-SFPC and 3-bit SFBC, 3-bit C-SFPC,

and 3-bit S-SFPC with their corresponding comparative plots of RSDPW values shown in Fig-

ure 25.21(a) and (b), respectively.

Figure 25.22(a) shows the spectral similarity values of s2, s3, s4, s5, s6, s7, s8, and s9 against

the reference signature vector produced by the 4-bit C-SFPC, 4-bit S-SFPC, 8-bit C-SFPC, and

8-bit S-SFPC and Figure 24.22(b) shows their respective RSDPW values.
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Figure 25.19 (a) Spectral similarity values among sif g9i¼2 produced by SPAM, SFBC, 2-bit C-SFPC, 2-bit

S-SFPC, 3-bit C-SFPC, and 3-bit S-SFPC. (b) Spectral similarity values among sif g9i¼2 produced by SPAM,

SFBC, 4-bit C-SFPC, and 4-bit S-SFPC.
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According to interpretation of (25.19), the higher the RSDPW value, the better the discrimi-

nation. So, from Figures 25.21 and 25.22(b), it is apparent that S-SFPC was the best, while

C-SFPC was the worst and SPAM and SFBC were in between. Furthermore, unlike Experi-

ments 25.3.2.1 and 25.3.2.2 where 2-bit SFPC outperforms high bit rates of SFPC, a compari-

son between Figures 25.21 and 25.22(b) shows that SFPC with higher bit rates generally
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Figure 25.21 Comparative graphical plots of RSDPW values among the signatures sif g8i¼2 produced by

2-bit SPAM, 2-bit C-SFPC, 2-bit S-SFPC, 3-bit SFBC, 3-bit C-SFPC, and 3-bit S-SFPC using s9 as the signa-

ture of interest s1.
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performed better than SFPC with lower bit rates. This is primarily due to very high spectral

dimensionality of the gas data that was nearly four times that of the AVIRIS data considered

in Experiments 25.3.2.1 and 25.3.2.2.

Experiment 25.3.4.2 (r¼ individual signature)

Figure 25.23 shows comparative graphical plots of RSDPW values produced by 2-bit SPAM, 2-bit

C-SFPC, 2-bit S-SFPC, 3-bit SFBC, 3-bit C-SFPC, 3-bit S-SFPC, 4-bit C-SFPC, 4-bit S-SFPC, 8-

bit C-SFPC, and 8-bit S-SFPC, where signature vector s9 is used as the reference signature vector r

while the signature vectors sif g8i¼2 are used to calculate their RSDPW values.

As seen from Figure 25.23(a) and (b), 2-bit coders performed very poorly compared to 3-bit

coders in terms of spectral discrimination among all the eight signature vectors. Since this data set

was more complicated and sophisticated than the five AVIRIS reflectance data considered in Fig-

ure 25.2, a coder with a bit rate higher than 3 may be desirable to improve the spectral discrimina-

tion performance. Because SPAM and SFBC did not have generalizability, only SFPC was

implemented in Figure 25.23(c) with bit rates from 4 to 8 bits. As seen in Figure 25.23(c), at bit

rates of 4 or higher, S-SFPC performed significantly better than the other spectral measures. Com-

pared to the AVIRIS experiments conducted in Section 25.3.3, SFPC for gas data worked more

effectively when the band number was increased.

25.4 Real Image Experiments

Two real image data sets, the Cuprite data of Figure 1.12 and the 15-panel HYDICE image scene in

Figure 1.15, have been used for experiments in previous chapters. Since the experiments in Sec-

tions 25.2 and 25.3 have used the AIVRIS data of Figure 1.9 that are derived from the scene in

Figure 1.12, this section will only focus on the 15 panels in Figure 1.15(b) and use the 5 panel

signatures in Figure 1.16 for experiments. It should be noted that despite that the panel signatures

are obtained from real image pixel vectors, the following experiments are performed on the five

panel signatures as signature vectors not pixel vectors. Therefore, no sample spectral correlation

among pixels is considered in signature coding.

25.4.1 SDFC

Figure 25.24 shows the results of spectral similarity values produced by SPAM, SFBC, HD-SDFC,

and AVD-SDFC.

Figure 25.25(a) plots comparative results of spectral similarity values of p1, p2, p3, p4,

and p5 produced by the four different coding methods, SPAM, SFBC, HD-SDFC, and AVD-

SDFC. Once again, there was no clear visual assessment to determine how one coding

method performed better than another. RSDPW was calculated for this purpose to further

evaluate discriminatory power.

Experiment 25.4.1.1 (r¼ average of five signatures in Figure 1.16)

Figure 25.25(b) plots RSDPW values calculated by (25.19) using pave obtained by averaging all the
five panel signature vectors as the reference signature vector and pi designated as the signature

vector of interest s1 and other four signature vectors pj with j 6¼ i chosen to be s2 to be compared

against s1. As can be seen from the experiments, SDFC also outperformed SPAM and SBFC in

discriminatory power and AVD-SDFC seemed to perform slightly better than HD-SDFC in gen-

eral. For other cases where signature s1 was selected to be a different panel signature, the conclu-

sion was very similar. Their results are not included here.
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Figure 25.23 Comparative graphical plots of RSDPW values produced by (a) 2-bit SPAM, 3-bit SFBC, 2-bit

C-SFPC, and 2-bit S-SFPC, (b) 2-bit SPAM, 3-bit SFBC, 3-bit C-SFPC, and 3-bit S-SFPC, and (c) 4-bit C-

SFPC, 4-bit S-SFPC, 8-bit C-SFPC, and 8-bit S-SFPC, where s9 is the reference signature r.
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Experiment 25.4.1.2 (r¼ individual signature)

In this case, we choose each of the five signature vectors as a reference signature, that is, r¼ p1, p2,

p3, p4, and p5. In the mean time, these five panel signature vectors are also set to the signature

vector of interest s1¼ r for calculation of the RSDPW via (25.19). Figure 25.26(a)–(e) plots

RSDPW values and shows the results of spectral similarity values between s1¼ r and s2¼ other

four signature vectors produced by SPAM, SFBC, HD-SDFC, and AVD-SDFC along with plots of

their corresponding RSDPW values.

According to Figure 25.26, both versions of SDFC also performed better than SPAM and SFBC

in terms of RSDPW. As noted, unlike the simulation results where AVD-SDFC performed better

than the HD-SDFC, the performance of HD-SDFC was slightly better than AVD-SDFC.

25.4.2 SFPC

Similar experriments conducted in Section 25.4.1 were also performed by SFPC on the five

panel signature vectors. Figure 25.27 shows the spectral similarity values among p1, p2, p3, p4,

and p5 produced by SPAM, SFBC, 2-bit C-SFPC, 2-bit S-SFPC, 3-bit C-SFPC, 3-bit S-SFPC,
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Figure 25.25 Comparative plots of spectral similarity values of the panel data produced by SPAM, SFBC,

HD-SDFC, and AVD-SDFC along with plots of RSDPW values.
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Figure 25.24 Spectral similarity values among p1, p2, p3, p4, and p5 produced by SPAM, SFBC, HD-SDFC,
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Figure 25.26 Comparative plots of spectral similarity values produced by SPAM, SFBC, HD-SDFC, and

AVD-SDFC along with their corresponding plots of RSDPW values.
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4-bit C-SFPC, and 4-bit S-SFPC, where the best performance seemed was produced by 4 bit

S-SFPC followed by 4-bit C-SFPC.

In order to further quantitatively measure discriminatory powers of SPAM, SFBC, C-SFPC, and

S-SFPC with variable bit rates, RSDPW via (25.19) was once again used for performance evaluation.

Experiment 25.4.2.1 (r¼ average of the five panel signatures in Figure 1.16)

Using the average of five signature vectors as the reference signature vector, Figure 25.28

shows comparative graphic plots of spectral similarity values of p1, p2, p3, p4, and p5 produced

by 2-bit SPAM, 2-bit C-SFPC, and 2-bit S-SFPC and comparative plots of spectral similarity

values produced by 3-bit SFBC, 3-bit C-SFPC, and 3-bit S-SFPC. In the mean time, Figure

25.28 also plots their corresponding RSDPW values using pave obtained by averaging all the

five panel signature vectors as the reference signature vector and each panel signature vector

pi designated as the signature vector of interest s1 and other four signature vectors pj with

j 6¼ i chosen to be s2 to be compared against s1.

As shown in Figure 25.28(a), SFPC did not perform well in the 2-bit case due to the close

similarity of the panel spectral signature vectors. However, the performance of SFPC was signifi-

cantly improved when the bit rate was increased from 2 to 3 bits in Figure 25.28(b) and it per-

formed better than the 3-bit SFBC except the case between p4 and p5. As the bit rate was increased

to 4 and 8 bits, the performance of SFPC was improved as shown in Figure 25.29(a) and (b).

Experiment 25.4.2.2 (r¼ individual signature)

In this case, we chose any of five signature vectors as a reference signature vector where each of

the five panel signature vectors p1, p2, p3, p4, and p5 could be used as the signature vector of

interest s1 for the calculation of the RSDPW via (25.19) while one of the remaining four panels

signature vectors is designated as signature vector s2. Since the spectral similarity values of various

coding methods are already plotted in Figure 25.29(a), Figure 25.30(a)–(e) only shows compara-

tive graphical plots of RSDPW values produced by 2-bit SPAM, 2-bit C-SFPC, 2-bit S-SFPC, 3-bit

SFBC, 3-bit C-SFPC, 3-bit S-SFPC, 4-bit C-SFPC, 4-bit S-SFPC, 8-bit C-SFPC, and 8-bit

S-SFPC, where one panel signature vector was used as the reference signature vector r while the

other four panel signature vectors were used to calculate RSDPW values.
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Figure 25.27 Spectral similarity values among p1, p2, p3, p4, and p5 produced by SPAM, SFBC, 2-bit C-

SFPC, 2-bit S-SFPC, 3-bit C-SFPC, 3-bit S-SFPC, 4-bit C-SFPC, and 4-bit S-SFPC.
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(a) 2-bit SPAM, 2-bit C-SFPC, and 2-bit S-SFPC 

(b) 3-bit SFBC, 3-bit C-SFPC, and 3-bit S-SFPC 
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Figure 25.28 Comparative plots of spectral similarity values produced by 2-bit SPAM, 2-bit C-SFPC, 2-bit

S-SFPC, 3-bit SFBC, 3-bit C-SFPC, and 3-bit S-SFPC along with their corresponding graphical plots

of RSDPW values using pave obtained by averaging all the five panel signatures as the reference signature

and each panel signature vector pi designated as the signature vector of interest s1 and other four signature

vectors pj with j 6¼ i chosen to be s2 to be compared against s1.
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Figure 25.29 (a) Comparative plots of spectral similarity values produced by 4-bit C-SFPC, 4-bit S-SFPC,

8-bit C-SFPC, and 8-bit S-SFPC. (b) Comparative graphical plots of RSDPW values among the four panel

signature vectors p1, p3, p4, and p5 produced by 4-bit C-SFPC, 4-bit S-SFPC, 8-bit C-SFPC, and 8-bit S-

SFPC using pave obtained by averaging all the five panel signature vectors as the reference signature and each

panel signature pi designated as the signature vector of interest s1 and other four signature vectors pj with j 6¼ i

chosen to be s2 to be compared against s1.
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According to the above experiments, the best performance was produced by 4-bit S-SFPC.

Several remarks are worth noting:

1. SFPC generally performed well and better than the SPAM and SFBC when spectral character-

istics were sophisticated and required more bits for quantization such as the bit rate greater than
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Figure 25.30 Comparative plots of RSDPW values produced by SPAM, SFBC, 2-bit C-SFPC. 2-bit S-SFPC,

3-bit C-SFPC, 3-bit S-SFPC, 4-bit C-SFPC, 4-bit S-SFPC, 8-bit C-SFPC, and 8-bit S-SFPC.
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2 bits. On the other hand, it performed worse than SPAM and SFBC if the bit rate was low such

as 1-bit or 2-bit coding. Therefore, SFPC generally performed better than SPAM and SFBC for

signatures that were spectrally similar and required high bit rates for coding.

2. S-SFPC was usually better than C-SFPC because there was a lack of correlation between the

first and last bands used in C-SFPC.

3. As for the reference signature vector, the following guideline is recommended. If the signature

vectors to be encoded are relatively distinct in the sense of spectral similarity, the reference

signature vector can be selected to their average. Otherwise, the reference signature vector can

be selected as one of the signature vectors. This was demonstrated by the above experiments.

For example, as p1, p2, and p3 are spectrally similar, using the averaged signature vector as a

reference was less effective than using individual signature vectors as a reference signature

vector.

4. Compared to SPAM and SFBC, SFPC has a generalization ability that can be extended to

any arbitrary-bit coder, a major advantage that cannot be gained by the 2-bit coder, SPAM, and

the 3-bit coder, SFBC.

25.5 Conclusions

This chapter develops two new vector coding techniques, called SDFC and SFPC, for signature

coding, each of which can be considered as a binary encoder using variable-bit memory. With this

new interpretation, two notable coding methods SPAM and SFBC can be viewed as binary

encoders using 1-bit memory and 2-bit memory, respectively. A major difference between SDFC

and SPAM/SFBC is that the former dictates gradient changes in spectral variation in terms of spec-

tral textures occurred among three consecutive adjacent bands compared to the latter that only

captures changes in spectral values among two adjacent bands. As a result, SDFC can be consid-

ered as a second-order coding method because it uses gradient changes, while SPAM and SFBC

can be considered as first-order coding methods because they use changes only in spectral value

between adjacent bands. Accordingly, experimental results show that SDFC performed more effec-

tively in general than SPAM and SFBC in the characterization of spectral profiles of signatures. On

the other hand, SFPC is developed based on bit allocation that is also completely different from

SPAM and SFBC. More specifically, SFPC makes use of AC to keep track of between-band spec-

tral variations and different bit rates to encode probabilistic behaviors of spectral changes across

the entire spectral coverage. Consequently, SFPC can be implemented as an arbitrary-bit encoder,

where the number of bits to be used is designed to capture subtle probabilistic changes resulting

from spectral variations. In order to implement SFPC, two versions of SFPC are developed for

spectral signature coding, which are circular-SFPC and split-SFPC. The conducted experimental

results have demonstrated that SFPC also performed better than SPAM and SFBC.
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26

Progressive Coding for Spectral
Signatures

Spectral signature coding is an effective means of characterizing spectral features and is performed

by encoding signature vectors sequentially. This chapter develops a rather different encoding con-

cept called progressive signature coding (PSC) that encodes a signature vector in a progressive

manner. More specifically, it progressively encodes a spectral signature vector in multiple stages,

each of which captures different but disjoint spectral information contained in the spectral signa-

ture vector. As a result of such a progressive coding, a profile of progressive changes in spectral

variation for a spectral signature vector can be generated for spectral characterization. The pro-

posed idea is very simple and evolved from the pulse code modulation (PCM), which is a com-

monly used quantization technique in communications and signal processing. It expands PCM to

multiple-stage PCM (MPCM) in the sense that a signature vector can be decomposed and quan-

tized by PCM progressively in multiple stages for spectral characterization. In doing so, MPCM

generates a priority code for a spectral signature vector so that its spectral information captured in

different stages can be prioritized in accordance with significance of changes in spectral variation.

Such a coding, referred to as MPCM-based progressive spectral signature coding (MPCM-PSSC),

can be very useful in many applications in hyperspectral data exploitation.

26.1 Introduction

Spectral signature coding (SSC) is a scheme, a rule, or a mapping that transforms spectral values

into a new set of symbols in a specific manner that a signature vector can be represented by the new

symbols more effectively or efficiently. In hyperspectral data, each data sample is acquired by hun-

dreds of spectral channels to form a column vector that can be used to diagnose subtle material

substances based on their spectral characteristics. Therefore, taking advantage of such intraband

spectral information (e.g., spectral information provided by spectral channels within a hyperspec-

tral data sample vector) is one of the great benefits resulting from hyperspectral data. However, this

also is traded off for a price that many unknown spectral signature vectors may be also extracted to

further complicate spectral analysis. So, one of the major challenges in hyperspectral data exploi-

tation is how to best utilize the spectral information provided by hyperspectral data to accomplish

tasks such as detection, discrimination, classification, identification, while discarding undesired

information caused by unwanted interference such as noise.

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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This chapter investigates a new approach to SSC, called progressive spectral signature coding

(PSSC), where SSC is carried out in a progressive fashion rather than sequential coding by classi-

cal coding methods. It is a technique that can decompose a signature vector in multiple stages

where each of these stages captures spectral changes across a range of wavelengths in a progressive

manner. As a consequence, it provides a profile of progressive changes in spectral variation that

describes the spectral behavior of a data sample vector in various stages. Accordingly, we can con-

sider PSSC as “soft” coding in a progressive procedure as opposed to SSC that can be viewed as

“hard” coding performed by classical coding techniques with binary decisions. One technique,

called multistage pulse coding modulation (MPCM), is of particular interest and can be used for

PSSC. It was previously developed for progressive image compression (Cheng and Chang, 1992).

The success of progressive processing has been also demonstrated in image progressive

reconstruction (Wang and Goldberg, 1988, 1989), progressive edge detection (Cheng and Chang,

1992; Cheng, 1993; Chang et al., 1992), and progressive text detection (Du et al., 2003, 2004). It

is indeed a one-dimensional (1D) transform coding technique, which encodes a 1D signal

progressively according to a priority assigned to each signal value. The signal priorities are then

determined by changes between two successive signal values. In the above-mentioned applica-

tions, a 1D signal function to be processed for progressive coding is either a temporal function

such as a speech signal whose signal values are temporal signals at different time instants or a set

of image pixels arranged in a particular format such as raster format whose signal values are image

pixels at particular spatial coordinates. Interestingly, since a hyperspectral data sample vector

acquired by hundreds of contiguous spectral channels can be represented by a column vector, its

spectrum can be considered as a 1D signature signal with each signal corresponding to a spectral

value of a particular wavelength in spectral dimension. Using this interpretation, MPCM can be

implemented to capture progressive changes of spectral variation occurred in spectral wavelengths

that are used to acquire the spectral signature of the data sample vector, referred to as spectral

signature vector.

One of the major advantages of using PSSC is characterization of a spectral signature vector in

progressive changes across its spectral channels. This unique feature cannot be accomplished by

any “hard” coding-based SSC methods. Another advantage is a spectral profile of progressive

changes produced for a spectral signature vector that can be used for various applications such as

discrimination, classification, and identification. It is often the case that two spectral signature vec-

tors may be very similar in terms of a spectral signature vector direction measured by spectral

angle mapper (SAM) (Schowengerdt, 1997; Chang, 2000; Chang, 2003a), but in fact, they do have

very different spectral profiles of progressive changes in a range of spectral channels. PSSC pro-

vides such a progressive spectral profile for signature characterization. The third advantage is

change detection that is a major issue in land-cover remote sensing image classification and has

been generally performed by temporal processing. PSSC offers a different perspective in terms of

change detection in spectral variation. The fourth advantage of PSSC is that it can be viewed as a

progressive implementation of a sequence of binary coding where a sequence of bit plane coding

(Gonzalez and Woods, 2002) is performed progressively with decreasing thresholds.

This chapter develops an MPCM-based PSSC (MPCM-PSSC) and provides a new look at how

SSC can be accomplished progressively for signature characterization. The idea is derived from the

success of MPCM in text detection for video images (Du et al., 2003) where the edges of a text

were detected more effectively in a progressive manner. Such progressive edge detection seems to

be very useful in hyperspectral signature characterization. Additionally, MPCM-PSSC has further

advantages. It generates a priority code that keeps track of progressive changes in spectral varia-

tion. The larger the change in a spectral wavelength is, the higher the priority of this particular

wavelength. Such MPCM-PSSC-generated priority codes provide fingerprints of a spectral
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signature vector via priority code words assigned to each of spectral wavelengths. Here, the term of

“code” is referred to as a code book made up of “code words” that are used for encoding. Another

important advantage resulting from MPCM-PSSC-generated priority codes are progressive decom-

position of a spectral signature vector in accordance with the priority code words assigned to each

of spectral wavelengths. The resulting progressive decomposition delineates a profile of progres-

sive changes in spectral variation that can be used for discrimination and identification of a spectral

signature, a feature that cannot be achieved by any spectral similarity measure. Furthermore,

MPCM-PSSC-generated priority codes can progressively reconstruct a spectral signature vector

literally by the priority code words assigned to spectral wavelengths. This progressive signature

reconstruction enables users to see how spectral changes are updated in order to recover the origi-

nal signature vector encoded by MPCM-generated priority codes. Most importantly, MPCM-PSSC

priority codes can describe progressive transitions of spectral values from one spectral band to

another via a simple coding scheme with a detailed profile of a spectral signature vector across

spectral wavelengths in terms of progressive changes in spectral variation. This capability makes

MPCM-PSSC unique. It distinguishes MPCM-PSSC from a spectral similarity measure that can

only measure the closeness or similarity between two spectral signature vectors, but not progres-

sive spectral signature similarity changes from band to band.

To facilitate our analysis, a distinction between discrimination and identification suggested in

Chang (2003a) is also made in this chapter. The former is performed among a set of signatures

where one signature vector is discerned from another compared to the latter carried out by verify-

ing a signature vector via a database (spectral library). Consequently, algorithms designed for dis-

crimination and identification are slightly different. In particular, a threshold is generally required

for signature discrimination to discriminate one signature from another. On the other hand, signa-

ture identification via a database can be performed directly by finding the one in the database that

most matches the signature vector to be identified. In MPCM-PSSC, the signature discrimination

and signature matching are measured by the priority code words using the Hamming distance.

Finally, simulations and real data experiments are conducted to demonstrate the utility of MPCM-

PSSC in applications of signature discrimination and identification.

26.2 Multistage Pulse Code Modulation

In this section, we present a new concept called multistage pulse coding modulation (MPCM) that

can be used for encoding spectral signatures in a progressive manner.

MPCM was originally developed for applications in image progressive transmission and

reconstruction (Tzou, 1987; Wang and Goldberg, 1988, 1989). It can be viewed as a progressive

version of a commonly used coding scheme in communications, pulse code modulation (PCM). It

expands the hard-decision PCM-based quantizer to a soft-decision quantizer in such a fashion that

it allows PCM to have a nondecision region that passes on its decisions to next stage progressively.

As a result, a decision can be refined stage-by-stage so as to improve quantization results. The

detailed idea of MPCM can be described as follows.

PCM is a quantizer, denoted by Q(x) that requires a set of quantization levels Dkf gMk¼1 and

a corresponding set of quantization thresholds tkf gMk¼1. It quantizes a signal function x(n)

according to

QðxðnÞÞ ¼ Dk if xðnÞ 2 ½tk�1; tkÞ ð26:1Þ
where t0 and tM are initial conditions determined by the domain of the signal function x(n). It is

a hard decision-based quantizer, referred to as a hard quantization because Q(x(n)) must make a

decision on the input x(n) via (26.1) by assigning the quantization level Dk to x(n).
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MPCM expands the above PCM to multiple stages in the sense that x(n) in (26.1) is encoded by

a sequence of M soft decision-based quantizers QkðxðnÞÞf gMk¼1, referred to as soft quantizers, in a

progressive manner compared to the hard decision made by one single value Dk in (26.1). Unlike

the hard decision-based quantizer described in (26.1) that makes its binary decision on x(n) by a

single threshold interval ½tk�1; tkÞ for each quantization level Dk, Qk(x(n)) makes its decision

based on three threshold intervals, ð�1;�Dk�, ð�Dk;DkÞ and ½Dk;1Þ, and its quantization level

Dk where the interval ð�Dk;DkÞ is designated as a no-decision threshold interval. More specifi-

cally, a soft quantizer Qk(x(n)) derived from Q(x(n)) via the kth quantization level Dk is defined by

QkðxðnÞÞ ¼
�Dk; if xðnÞ 2 ð�1;�Dk�
xðnÞ; if xðnÞ 2 ð�Dk;DkÞ
Dk; if xðnÞ 2 ½Dk;1Þ

8
<

:
ð26:2Þ

where the soft quantizer Qk(x(n)) passes its input x(n) without making any decision when the

input x(n) falls in the region xðnÞ 2 ð�Dk;DkÞ as described by Figure 26.1. The decision

maker for such a soft quantizer Qk defined by (26.2) stretches a hard limiter that can be con-

sidered as a sign detector to a soft limiter shown in Figure 26.1. From Figure 26.1, the conse-

quence of soft decisions comes from the inclusion of the no-decision interval, ð�Dk;DkÞ in the

quantizer Qk(x(n)).

MPCM takes advantage of such a soft quantizer Qk(x(n)) described by (26.2) to perform quanti-

zation progressively in multiple stages specified by Dkf gMk¼1, which will be referred to as stage

levels in MPCM. Assume that Dkf gMk¼1 are strictly decreasing quantization levels, that is,

D1 > D2 > � � � > DM > 0. Therefore, the no decision-made outputs passed by the kth soft quan-

tizer by Qk(x(n)) at stage k are further processed by the follow-up (kþ 1)st soft quantizer Qkþ1(x
(n)) in the next stage that uses a smaller quantization level, Dkþ1 < Dk to refine its decision. In

other words, instead of encoding x(n) directly into Dk by (26.1), the x(n) is actually encoded by M

soft quantizers QkðxðnÞÞf gMk¼1 one at a time progressively using M-refined quantization levels. As

a result of using a sequence of progressive soft quantizers QkðxðnÞÞf gMk¼1, x(n) can be decomposed

into a set of binary-valued stage components, denoted by x̂kðnÞf gMk¼1 where x̂kðnÞ 2 f0; 1g for 1 �
k � M so that the x(n) can be approximated by the estimate of x(n), x̂ðnÞ by

x̂ðnÞ ¼ x̂1D1 þ x̂2D2 þ � � � þ x̂MDM ¼
XM

k¼1 x̂kðnÞDk ð26:3Þ

Δk

Δk

x(n)

Qk(x(n))

−Δk

−Δk

Figure 26.1 A soft quantizer Qk(x(n) described by (26.2).
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The idea described by (26.3) is similar to representation of the x(n) in terms of binary

expansion with Dk ¼ 2k�1. For a given set of stage levels Dkf gMk¼1, x̂ðnÞ can be represented by

the value produced by (26.3) using the binary code word x̂1ðnÞx̂2ðnÞ . . . x̂MðnÞð Þ where the

resulting approximation error given by eMðnÞ ¼ xðnÞ � x̂ðnÞ ¼ xðnÞ �PM
k¼1 x̂kðnÞDk. If

eMðnÞ ¼ 0, x(n) can be perfectly reconstructed by x̂ðnÞ ¼PM
k¼1 x̂kðnÞDk. If eMðnÞ 6¼ 0, it is

required to encode both eMðnÞ and x̂1ðnÞ; x̂2ðnÞ; . . . ; x̂MðnÞð Þ to achieve the perfect

reconstruction of x(n). So, the above procedure can be regarded as an implementation of a

sequence of M progressive binary encoders with a decreasing thresholds Dkf gMk¼1 to form a

M-block length binary code word x̂1ðnÞx̂2ðnÞ . . . x̂MðnÞð Þ from which we can progressively

reconstruct x(n) by x̂1ðnÞD1,x̂1ðnÞD1 þ x̂2ðnÞD2, x̂1ðnÞD1 þ x̂2ðnÞD2 þ x̂3ðnÞD3, etc., until the

last stage M is reached, in which case x(n) is approximated by (26.3). Such a progressive

approximation is carried by the priority code word specified by the M-block length binary

code word x̂1ðnÞx̂2ðnÞ . . . x̂MðnÞð Þ. As an example for illustration, a real number a 2 ð0; 1Þ can
be approximated by an M-precision binary expansion â ¼PM

k¼1 âk2
�k with the kth stage level

Dk specified by 2�k and the binary-valued coefficients of âkf gMk¼1. The M-block length binary

code word is â1â2 . . . âMð Þ is used to reconstruct and approximate the real value a progressively

by â12
�1, â12

�1 þ â22
�2, â12

�1 þ â22
�2 þ â32

�3, and so on until the last stage,

â12
�1 þ â22

�2 þ � � � þ âM2
�M. The resulting approximation error eMðnÞ is then given by eM ¼

a� â with â ¼PM
k¼1 ak2

�k. The key issue is how to find a desired set of M soft binary quan-

tizers, QkðxðnÞÞf gMk¼1 for a given set of quantization levels Dkf gMk¼1 to produce an optimal

M-block length binary code for (26.3) in approximation. In doing so, the soft quantizer using

the quantization level Dk defined by (26.2) can be used for the kth progressive soft quantizer in

MPCM defined by

Qkðek�1ðnÞÞ ¼
�Dk; if ek�1ðnÞ 2 ð�1;�Dk�
ek�1ðnÞ; if ek�1ðnÞ 2 ð�Dk;DkÞ
Dk; if ek�1ðnÞ 2 ½Dk;1Þ

8
><

>:
ð26:4Þ

that takes the approximation error ek�1ðnÞ ¼ xðnÞ �Pk�1
j¼1 x̂jðnÞDj obtained at the (k� 1)st stage

as its input. It should be noted that ek�1ðnÞ ¼ xðnÞ �Pk�1
j¼1 x̂jðnÞDj in (26.4) is the approximation

error obtained by a successive approximations using the binary code word x̂1ðnÞx̂2ðnÞ � � � x̂MðnÞð Þ
up to the (k� 1)st stage. The soft decision comes from the case that if ek�1ðnÞ 2 ð�Dk;DkÞ,
Qkðek�1ðnÞÞ ¼ ek�1ðnÞ. A detailed implementation of MPCM is described as follows. A general-

ized version of MPCM can be found in Cheng (1993).

MPCM encoding algorithm for the nth signal value, x(n)

1. Initial condition

Let Dkf gMk¼1 be a set of M-stage levels that are used for MPCM and the initial approximation

error e0ðnÞ ¼ xðnÞ � x̂ðn� 1Þ where x̂ðn� 1Þ is obtained by (26.3). Set x̂ð0Þ ¼ 0 and k ¼ 1.

2. At the kth stage, three cases are considered for the kth two-valued soft quantizer, Qk defined

by (26.4).

Case 1: If ek�1ðnÞ � Dk, then Qkðek�1ðnÞÞ ¼ Dk, x̂kðnÞ ¼ 1 and set x̂jðnÞ ¼ 0 for k < j � M.

In this case, the priority codeword c(n) assigned to x(n) is cðnÞ ¼ k. Its diagram is depicted in

Figure 26.2. Let eMðnÞ ¼ ek�1ðnÞ �
PM

j¼k x̂jðnÞDj ¼ ek�1ðnÞ � Dk. Go to step 4.
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Case 2: If ek�1ðnÞ � �Dk, then Qkðek�1ðnÞÞ ¼ �Dk, x̂kðnÞ ¼ 0 and set x̂jðnÞ ¼ 1 for k < j � M.

In this case, the priority codeword c(n) assigned to x(n) is cðnÞ ¼ k. Its diagram is depicted in

Figure 26.3. Let eMðnÞ ¼ ek�1ðnÞ �
PM

j¼k x̂jðnÞDj ¼ ek�1ðnÞ �
PM

j¼kþ1 Dk. Go to step 4.

Case 3: If �Dk < ek�1ðnÞ < Dk, then Qkðek�1ðnÞÞ ¼ ek�1ðnÞ and x̂kðnÞ ¼ x̂kðn� 1Þ. Its diagram
is depicted in Figure 26.4. Go to step 3.

3. If k < M, let k ¼ k þ 1 and go to step 2. Otherwise, continue.

4. Go to the next sample, (nþ 1)st signal point, x(nþ 1).

In the above MPCM encoding algorithm, a priority codeword is only assigned when a hard

decision is made in a certain stage. When it occurs at stage k, the encoding for x(n) is terminated

and the priority code word for x(n) is encoded as cðnÞ ¼ k. In this case, the priority assigned to

x(n) is k, which indicates that there is a significant change in x(n) at stage k. As a result, the higher

the priority is, the greater the change and the smaller the index number of the stage is. According to

MPCM, the set of quantization levels, Dkf gMk¼1 are strictly decreasing quantization levels, that is,

D1 > D2 > � � � > DM > 0. As a consequence, c(n)¼ 1 has the highest priority since there is a dras-

tic change in stage 1 specified by the largest quantization level D1. To the contrary, c(n)¼M indi-

cates that there only has a small change in stage M because the quantization level DM is the

smallest quantization level. Interestingly, an immediate advantage resulting from MPCM encoding

algorithm is that it allows one to decompose a signal sample x(n) in multiple stages, that is, M

stages and its priority code word indicates which stage the priority occurs where the signal sample

makes a significant change.

Correspondingly, we also describe an MPCM decoding algorithm as follows. It decodes the nth

signal sample x(n) based on the encoded priority code word c(n) along with the previous decoded

x̂ðn� 1Þ that is an approximation of x(n� 1) via (26.3). In contrast to the MPCM encoding

εk-1(n)
Qk 1)(ˆ =nxk

   

c(n ) = k

0)(ˆ 1 =+ nxk

0)(ˆ 2 =+ nxk

0)(ˆ M =nx

Figure 26.2 Case 1 for MPCM encoding algorithm.
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Figure 26.3 Case 2 for MPCM encoding algorithm.
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algorithm that decomposes the nth signal sample stage-by-stage in M stages, MPCM decoding

algorithm reconstructs the nth signal samples stage-by-stage based on its priority code word c(n).

MPCM decoding algorithm for x(n)

1. Initial condition:

Let Dkf gMk¼1 be a set of M-stage levels that are used for MPCM. Set the initial condition as

x̂ð0Þ ¼ 0, and x̂ðn� 1Þ is the reconstruction of xðnÞ which is unknown and can be expressed by

x̂kðn� 1Þf gMk¼1 as

x̂ðn� 1Þ ¼ x̂1ðn� 1ÞD1 þ x̂2ðn� 1ÞD2 þ � � � þ x̂Mðn� 1ÞDM ð26:5Þ

2. Input the encoded priority code word cðnÞ ¼ k for x(n), in which case the priority of x(n)

occurs in stage k. Two cases are considered.

Case 1: if x̂kðn� 1Þ ¼ 1, then x̂jðnÞ ¼ x̂jðn� 1Þ for 1 � j < k, x̂kðnÞ ¼ 0 and x̂jðnÞ ¼ 1 for

k < j < M. In this case, x̂ðnÞ ¼Pk�1
j¼1 x̂jðn� 1ÞDj þ

PM
j¼kþ1 Dj .

Case 2: if x̂kðn� 1Þ ¼ 0, then x̂jðnÞ ¼ x̂jðn� 1Þ for 1 � j < k, x̂kðnÞ ¼ 1 and x̂jðnÞ ¼ 0 for

k < j < M. In this case, x̂ðnÞ ¼Pk�1
j¼1 x̂jðn� 1ÞDj þ Dk.

To apply MPCM to SSC we consider the spectrum of a signature vector r ¼ r1; r2; . . . ; rLð ÞT as

a 1D signature vector with rl being the spectral value of the lth band. Let DðrÞ ¼
maxl rlf g �minl rlf g. The number of stages,M is then obtained by

M ¼ log2DðrÞ½ � þ 1 ð26:6Þ

with ½x� defined by the largest integer less than or equal to x. So, the stage levels Dkf gMk¼1 used in

MPCM is defined by

DkðrÞ ¼ 2�kDðrÞ for k ¼ 1; 2; . . . ; M: ð26:7Þ

To demonstrate the utility of MPCM in SSC, two examples are provided for illustration. The first

example shows a progressive MPCM-encoded signal of a one-dimensional gas spectral data, r,
methyl salicy late in Figure 1.10 obtained f rom t he website: webbook.nist.gov/chemistry a nd

shown in Figure 26.5 and has 880 bands of spectral coverage 450–3966/cm.

For MPCM to operate on this signal, the number of stages required for MPCM encoding

is calculated by (26.6) to be M¼ 13 stages. Since there are 13 stages, the stage levels

obtained by (26.7) are Dk ¼ DðrÞ=2k for k ¼ 1; 2; . . . ; 13. With the initial condition assumed

to be x(0)¼ 0 Figure 26.6 shows a graphical plot of the priority code words c(n) for each of

signal points x(n) in Figure 26.5 produced by MPCM encoding algorithm with the x-axis

and y-axis specified by signal points and their corresponding priority code words ranging

from 1 to 13.

εk -1(n)
Qk

εk(n ) = εk -1(n)

)1(ˆ)(ˆ −= nxnx kk

Figure 26.4 Case 3 for MPCM encoding algorithm.
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Using MPCM encoded priority code words provided by Figure 26.6, a 13-stage progressive

signal components of the original signal in Figure 26.5 can be decomposed stage-by-stage in

Figure 26.7.

As we can see from Figure 26.7, the MPCM encoding algorithm starts with the largest stage

level, D1 ¼ 213=2
� �

DðrÞ=213� � ¼ 4096� DðrÞ=213� �
in stage 1, then begins to reduce stage levels

by half stage-by-stage to refine signal samples until it reaches the last stage that is stage 13 speci-

fied by stage level D13 ¼ DðrÞ=213.
To decode the signal of methyl salicylate, the MPCM-encoded priority code words in Figure

26.6 is used as inputs and Figure 26.8 shows the 13 decoded signal components of methyl salicy-

late progressively stage by stage for signature reconstruction along with the approximation error

e13(n).
Since it may not be trivial to fully understand how MPCM works, the second example is pro-

vided by Table 26.1 for an illustrative purpose. It takes the first 20 signal points in Figure 26.5 to
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Figure 26.5 Spectral signature of methyl salicylate, r.
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Figure 26.6 Graphical plot of priority code words for the signal of methyl salicylate in Figure 26. 5.
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walk through detailed stage-by-stage implementations of the MPCM encoding and decoding algo-

rithms. In Table 26.1, the first column lists the inputs specified by the first 20 signal values

xðnÞf g20n¼1 with the initial condition specified by x(0)¼ 0. The second column lists the values of

predicted x̂ðnÞ and predicted error e(n). The third column lists all predicted values of signal com-

ponents in 13 stages with stage levels specified by the largest stage level, D1 ¼ 212 ¼ 4096 down to

the smallest stage level, D13 ¼ 20 ¼ 1. Finally, the last column produces the priority code words

cðnÞf g20n¼1 for the first 20 signal points, xðnÞf g20n¼1.
Table 26.2 provides a state-by-stage decoding process for signal reconstruction of the 20

MPCM signal samples encoded in Table 26.1 where the first column takes the priority code words

from the output in Table 26.1 as the input to MPCM decoder to decode the signal components in all

the 13 stages in the second column. Finally, the last column of Table 26.2 outputs the predicted

values of all the first 20 signal points of xðnÞf g20n¼1.

26.3 MPCM-Based Progressive Spectral Signature Coding

As recalled in the MPCM encoding algorithm, a signature vector r ¼ r1; r2; . . . ; rLð ÞT will be con-

sidered as a 1-D spectral signature where rl is represented by one of the priority code words

ckðrÞf gMk¼1 taking values in 1; 2; . . . ;Mf g. For example, cl (r) indicates the priority of rl in MPCM

encoding and decoding. The smaller the number cl (r) is, the higher priority the rl (r) is for spectral

encoding and decoding.

Table 26.2 The first 20 MPCM decoded signal points for signal reconstruction in Figure 26.5 with 13 stages

MPCM decoding algorithm

Input Signal components Output

n c(n) x̂1 x̂2 x̂3 x̂4 x̂5 x̂6 x̂7 x̂8 x̂9 x̂10 x̂11 x̂12 x̂13 x̂ðnÞ
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

1 5 0 0 0 0 1 0 0 0 0 0 0 0 0 256

2 5 0 0 0 0 0 1 1 1 1 1 1 1 1 255

3 6 0 0 0 0 0 0 1 1 1 1 1 1 1 127

4 9 0 0 0 0 0 0 1 1 0 1 1 1 1 111

5 8 0 0 0 0 0 0 1 0 1 1 1 1 1 95

6 8 0 0 0 0 0 0 1 1 0 0 0 0 0 96

7 7 0 0 0 0 0 0 0 1 1 1 1 1 1 63

8 7 0 0 0 0 0 0 1 0 0 0 0 0 0 64

9 6 0 0 0 0 0 1 0 0 0 0 0 0 0 128

10 8 0 0 0 0 0 1 0 1 0 0 0 0 0 160

11 7 0 0 0 0 0 1 1 0 0 0 0 0 0 192

12 8 0 0 0 0 0 1 1 1 0 0 0 0 0 224

13 9 0 0 0 0 0 1 1 1 1 0 0 0 0 240

14 8 0 0 0 0 0 1 1 0 1 1 1 1 1 223

15 8 0 0 0 0 0 1 1 1 0 0 0 0 0 224

16 5 0 0 0 0 1 0 0 0 0 0 0 0 0 256

17 6 0 0 0 0 1 1 0 0 0 0 0 0 0 384

18 4 0 0 0 1 0 0 0 0 0 0 0 0 0 512

19 7 0 0 0 1 0 0 1 0 0 0 0 0 0 576

20 6 0 0 0 1 0 1 0 0 0 0 0 0 0 640
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Next, we can further construct anM-dimensional priority unit vector associated with the priority

code word cl (r) for MPCM-PSC as follows:

clðrÞ ¼ cl1ðrÞ; cl2ðrÞ; . . . ; clMðrÞð ÞT ð26:8Þ
with clkðrÞ 2 f0; 1g and

PM
k¼1 clkðrÞ ¼ 1. The condition that

PM
k¼1 clkðrÞ ¼ 1 in (26.8) implies

that cl (r) has only one “1” in its component and all zeros in its remaining components. It should

be noted that the priority code word cl (r) takes the value in 1; 2; . . . ;Mf g. Instead of using the

priority code word cl (r) itself, we use its corresponding M-dimensional priority unit vector cl (r)

defined by (26.8) where the boldface of cl (r), cl (r) indicates that it is the priority unit vector of the

original scalar priority code word cl (r). As an example, for M¼ 8, cl (r) can take any of eight

values, 1, 2, 3, 4, 5, 6, 7, 8. In this case, the following eight-dimensional priority unit vectors

derived from (26.8) can be used for spectral signature coding:

clðrÞ ¼ 3, clðrÞ ¼ ð0; 0; 1; 0; 0; 0; 0; 0Þ; clðrÞ ¼ 4, clðrÞ ¼ ð0; 0; 0; 1; 0; 0; 0; 0Þ
clðrÞ ¼ 5, clðrÞ ¼ ð0; 0; 0; 0; 1; 0; 0; 0Þ; clðrÞ ¼ 6, clðrÞ ¼ ð0; 0; 0; 0; 0; 1; 0; 0Þ
clðrÞ ¼ 7, clðrÞ ¼ ð0; 0; 0; 0; 0; 0; 1; 0Þ; clðrÞ ¼ 8, clðrÞ ¼ ð0; 0; 0; 0; 0; 0; 0; 1Þ

ð26:9Þ

More specifically, if the priority code word cl (r) resulting from rl is the priority, k, its M-dimen-

sional priority unit vector cl (r) is then specified by

clðrÞ ¼
�

0|{z}
1

; 0|{z}
2

; . . . ; 0|{z}
k�1

; 1|{z}
k

; 0|{z}
kþ1

; . . . ; 0|{z}
M�1

; 0|{z}
M

�T

ð26:10Þ

where only one “1” occurs in the kth component and represents its priority specified by the kth

stage. The advantage of using the M-dimensional priority unit vector, the position of “one” in

(26.10) indicates the significance of its priority in the same manner that the bit position indicates

the precision of the bit in a binary representation. Most importantly, we can use (26.10) and the

Hamming distance to define a distance measure between two signature vectors r ¼
r1; r2; . . . ; rLð ÞT and s ¼ s1; s2; . . . ; sLð ÞT at the kth stage via their corresponding M-dimensional

priority unit vectors, clðrÞ and clðsÞ by

Dkðr; sÞ ¼
XL

l¼1 clkðrÞ � clkðsÞð Þ ð26:11Þ

26.3.1 Spectral Discrimination

By virtue of (26.11), the similarity between two signature vectors r and s can be measured progres-

sively. In other words, two signature vectors r and s are first measured by (26.11) in stage 1 via a

prescribed stage threshold, say t1. If the distance D1(r,s) is greater than t1, r and s will be declared
to be distinct. Otherwise, the comparison between r and s is continued to proceed at stage 2. If the

distance D2(r,s) is greater than a prescribed stage threshold t2, r and s will be considered to be

distinct signatures. Otherwise, a further comparison between r and s is continued on at stage 3,

etc. The implementation of MPCM-based progressive spectral coding for target discrimination can

be summarized as follows.

MPCM-PSSC spectral discri mination algorithm

1. Let r and s be two spectral signature vectors to be discriminated.

2. Specify the number of stages, M, needed to be processed. If two signatures produce different

stage numbersM1 andM2,M is chosen as the minimum ofM1 andM2.
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3. Determine the stage thresholds tkf gMk¼1 to be used for discrimination in each ofM stages.

4. Apply MPCM to r and s to generate their priority code words as described in (26.8) and

expressed by (26.10).

5. Use (26.11) to measure the similarity between r and s progressively. For each stage k, we calcu-

late the distance Dk(r,s) and compare it against the kth stage threshold, tk. If Dkðr; sÞ > tk, then

two pixel vectors r and s are declared to be distinct, and the process is terminated. Otherwise,

repeat the same procedure until it reaches the last stage M. In this case, we check if

DMðr; sÞ > tM .

6. If DMðr; sÞ > tM , then two pixel vectors r and s are declared to be distinct, and the process is

terminated.

7. If DMðr; sÞ � tM , then the process is also terminated and output “no discrimination,” which

declares r and s to be the same signature.

A key issue in implementing the above MPCM-PSSC discrimination algorithm is determination

of an appropriate set of M-stage thresholds for a signature vector. In doing so a simulated white

Gaussian noise is added to the signature vector to achieve a certain level of signal-to-noise ratio

(SNR). This SNR is determined by how much sensitivity we would like to have for a signature

vector responding to its spectral variations.

26.3.2 Spectral Identification

The spectral identification studied in this section is different from spectral discrimination in

Section 26.3.1. While spectral discrimination only discriminates one signature vector from another

without performing any additional task such as detection, classification and identification, spectral

identification uses a given database (spectral library) D to identify an unknown signature vector t,

referred to as target signature vector. Unlike spectral discrimination, the proposed spectral identifi-

cation does not require stage thresholds.

MPCM-PSSC spectral identification algorithm 1

1. Let D be a given database (spectral library) that is made up of p spectral signatures,

s1; s2; . . . ; sp, that is, D ¼ shf gph¼1 and t be target spectral signature vector to be identified via

the database D.
2. Specify the number of stages,M via (26.6), needed to be processed. For each signature sh, letMh

be the associated stage number.M is chosen as the minimum amongM1;M2; . . . ;Mp.

3. Determine stage thresholds for allM stages, tkf gMk¼1 for s1; s2; . . . ; sp.
4. Apply MPCM to the target signature t to generate its priority code. Set k ¼ 1.

5. At the kth stage, calculate the distance between t and sh, Dkðt; shÞ at stage k for 1 � h � p using

(26.11). The t is identified by sh	 with h	 ¼ min1�h�p Dkðt; shÞf g. If there is a tie, then the pro-

cess is continued with those signatures that yield min1�h�p Dkðt; shÞf g and continue.
6. If k < M, then let k k þ 1 and go to step 5. Otherwise, continue.

7. In this case, we reach the last stageM. The t is identified by sh	 with h
	 ¼ min1�h�p DMðt; shÞf g.

If there is a tie at this final stage, the algorithm declares either “no match” or identifies t as one

of tied signatures.

The steps 5–7 in the above algorithm calculates the distance between t and sh, Dkðt; shÞ for each
1 � h � p stage by stage and makes progressive decisions to determine if there is a match between

t and sh	 for some h	. There is no need of implementing stage thresholds as the way carried out by

spectral discrimination. As an alternative, we can also replace the steps 5–7 to derive a second

version of MPCM-PSSC spectral identification that postpones the decision until the last stage M
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by calculating the sum of stage distances between t and sh in all M stages. In this case, the identifi-

cation is to find the signature vector that yields the smallest sum.

MPCM-PSSC spectral identification algorithm 2

1–4. The same first four steps used in MPCM-PSSC target identification algorithm 1.

50. Compute SUMh ¼
PM

k¼1 Dkðt; shÞ and identify t by sh	 with h	 ¼ arg min1�h�p SUMhf g� �
, the

signature that yields the smallest SUMh. If there is a tie at this final stage, then the algorithm

declares either “no match” or identifies t as one of tied signatures.

It should be noted that step 50 does not make its decision progressively. Instead, it makes its deci-

sion at the final stage, stage M, on the sum of all stage distances. Nevertheless, it does take advan-

tage of progressive spectral signature changes occurred at each stage, each of which contributes its

change to the sum.

26.4 NIST-GAS Data Experiments

The ability of MPCM-PSSC in progressive signature decomposition and progressive signature

reconstruction are demonstrated in Figures 26.7 and 26.8 and Tables 26.1 and 26.2. This and the

following sections further demonstrate versatility of MPCM-PSSC in other applications, spectral

discrimination and identification. Two sets of data are used for experiments, laboratory data and

real hyperspectral images. The laboratory data to be used in this section are gas spectral data

shown in Figure 1.10 available online at National Institute of Standards Technology (NIST)’s

website (webbook.nist.gov/chemistry) The data set has five 880-band chemical/biological spectral

signatures shown in Figure 26.9, which are methyl salicylate, pentanedione, propanoic acid, thio-

diglycol, thriethyl phosphate, and heptanol. Since the selected data set for experiments was empir-

ical and all the experiments conducted for this data set could be also applied to other data sets.

There are two reasons to select this data set. One is to demonstrate that MPCM-PSSC has an

application in chemical/biological defense. The other is to demonstrate that MPCM-PSSC can

be also used for ultraspectral signature characterization with thousands of spectral channels. There

are also some other applications such as hyperspectral laboratory data experiments that can be

found in Chang et al. (2003).

EXAMPLE 26.1

(spectral discrimination)

To perform spectral discrimination using MPCM-PSSC, we needed to determine appropriate thresholds for

each stage that are implemented by MPCM-PSSC stage by stage. For each signature we created a noise-

corrupted signature with SNR 30:1 where the SNR is defined in Harsanyi and Chang (1994) as the ratio of

50% reflectance to noise standard deviation. Using the methyl salicylate in Figure 26.5 as an example, the

spectral signature represented by the methyl salicylate is denoted by r ¼ r1; r2; . . . ; r880ð ÞT. Then a noise cor-

rupted methyl salicylate signature denoted by ~r ¼ ~r1;~r2; . . . ;~r880ð ÞT was obtained by adding a white Gaussian

noise to each band to achieve the SNR¼ 30:1. Finally, MPCM was applied to both the pure methyl salicylate

signature with no noise and the 30:1 SNR noise corrupted methyl salicylate signature to obtain their respective

MPCM priority code word for band l, cl ¼ cl1; cl2; . . . ; clMð ÞT and ~cl ¼ ~cl1;~cl2; . . . ;~clMð ÞT with M¼ 13. Then

the kth stage threshold tk was obtained by

tk ¼
X880

l¼1 clk � ~clk ð26:12Þ
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Table 26.3 tabulates all the stage thresholds tkf gMk¼1 for each of five signature vectors, methyl salicylate,

pentanedione, propanoic acid, thiodiglycol, thriethyl phosphate, and heptanol denoted by s1, s2, s3, s4, and s5.

It should be noted that the total number of stages, M¼ 13 was determined by (26.6). As long as tkf gMk¼1
were determined, the discrimination process started with the stage threshold in stage 1. If the distance between

two signatures in stage 1 was greater than the threshold, the two signatures were declared to be distinct and

discrimination process is terminated. Otherwise, it implied that two signatures could not be discriminated in

stage 1 and the discrimination process was then passed on to stage 2 where the distance between two signa-

tures in stage 2 was calculated and compared to the threshold at stage 2. If the distance at stage 2 was greater

than the threshold, the process was terminated. Otherwise, the same procedure was repeated again until the

last stage was reached.

Since the stage thresholds produced by one signature vector generally were different from those produced

by another signature vectors, the discrimination threshold was then determined by the minimum of the two

different stage thresholds, that is, min{ti(signature 1), ti(signature 2)}. Table 26.4 shows the results where the

stage thresholds in Table 26.3 were used for discrimination and all the five signature vectors could be discrim-

inated in stage 1.

EXAMPLE 26.2

(spectral identification)

In this example, we further demonstrate the utility of MPCM-PSSC in spectral identification via a database

(spectral library) D that consisted of the five signature vectors in Figure 26.9. For each target signature vector

t, 60% abundance fraction was simulated while the other four signature vectors sharing the remaining 40%

abundance fraction with each of 10% abundance fraction. Five different admixtures were generated by a fixed

Table 26.3 13 stage thresholds for five signature vectors in Figure 26.9 with SNR 30:1

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13

s1 2 3 7 16 23 28 40 47 58 58 54 48 47

s2 1 9 6 19 29 40 61 61 83 96 94 83 81

s3 2 3 6 10 21 27 38 49 50 57 70 66 64

s4 1 2 9 26 27 52 92 110 150 150 140 80 130

s5 0 0 1 5 8 18 20 30 37 55 55 58 87

Table 26.4 Discrimination among five signature vectors in Figure 26.9 using the stage thresholds in

Table 26.3

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13

s1 � s2 10 32 49 80 94 120 170 190 190 200 160 110 120

s1 � s3 12 32 53 72 100 120 150 180 180 180 190 120 140

s1 � s4 12 30 57 98 100 150 200 160 180 170 150 87 150

s1 � s5 10 28 48 69 88 120 140 160 180 180 170 130 260

s2 � s3 6 22 36 54 88 110 140 160 180 200 180 140 170

s2 � s4 6 20 42 78 82 140 180 160 190 190 160 110 170

s2 � s5 4 18 27 45 66 100 140 130 180 210 160 130 280

s3 � s4 8 16 44 78 88 130 160 170 160 180 170 130 170

s3 � s5 6 14 35 39 80 98 96 140 160 170 180 170 270

s4 � s5 6 14 39 67 76 120 150 130 170 180 160 110 280
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mixing composition (0.6, 0.1, 0.1, 0.1, 0.1) of the five signature vectors. When one of s1, s2, s3, s4, and s5 was

designated as a target signature vector, say s1, a mixed signature vector s is then generated by mixing 0.6 of s1
with abundance fraction of 0.1 from each of the other four signature vectors s2, s3, s4, and s5. Table 26.5

tabulates a progressive spectral identification process for such a mixed signature vector s where the signature

vector s was quickly identified by the target signature vector t¼ s1 immediately by Algorithm 1 in the first

stage as well as by Algorithm 2 correctly.

Similar experiments were also performed by changing the designated target signature vector t from s1 to

s2, s3, s4, and s5 for two spectral identification algorithms. Tables 26.6–26.9 tabulate their respective spectral

progressive identification results. All the four mixed signature vectors were correctly identified by both Algo-

rithm 1 and Algorithm 2.

The above experiment indicates that s4 as s5 were very similar to each other in terms of spectral variation.

Algorithm 1 has difficulty with identification until stage 2.

As a concluding remark, the abundance fraction of the target signature vector t has impact on the perform-

ance of MPCM-PSSC in identification. If the abundance fraction was greater than 60%, MPCM-PSSC

improved significantly its performance. Otherwise, its performance deteriorated as the abundance fraction

gradually diminished. In the following real image experiments, we will further demonstrate that MPCM-

PSSC can still perform effectively when the estimated abundance fraction of a subpixel target is above 40%.

Table 26.5 Spectral identification for a mixed signature, s with t¼ s1

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

s1 6 24 46 80 110 120 140 170 140 130 130 70 68 1234

s2 12 34 47 88 100 130 170 170 190 190 150 99 120 1500

s3 14 34 55 92 110 130 150 170 170 170 180 130 150 1555

s4 14 30 61 110 110 170 200 160 170 160 140 79 160 1564

s5 12 30 46 77 95 130 140 150 180 170 160 120 270 1580

Table 26.6 Spectral identification for a mixed signature, s ¼ 0:1s1 þ 0:6tþ 0:1s3 þ 0:1s4 þ 0:1s5 with
t¼ s2

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

s1 10 32 53 87 120 150 180 190 170 170 160 96 98 1516

s2 0 16 22 59 98 130 140 160 150 190 150 110 100 1325

s3 6 20 42 65 100 130 150 190 160 180 170 130 160 1503

s4 6 18 48 83 110 160 190 180 170 160 150 95 150 1520

s5 4 16 31 54 96 120 130 150 170 180 170 120 290 1531

Table 26.7 Spectral identification for a mixed signature, s ¼ 0:1s1 þ 0:1s2 þ 0:6tþ 0:1s4 þ 0:1s5
with t¼ s3

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

s1 14 34 57 93 100 160 160 180 170 170 140 110 100 1488

s2 8 30 40 79 92 120 170 160 200 190 160 130 130 1509

s3 6 18 24 59 84 130 130 150 160 160 150 140 120 1331

s4 10 24 46 95 92 150 180 160 170 170 140 110 150 1497

s5 8 24 39 58 78 120 130 140 170 180 140 140 260 1487

Progressive Coding for Spectral Signatures 789



26.5 Real Image Hyperspectral Experiments

The second data set used for experiments was the 15-panel HYDICE image shown in Figure 1.15

(a). Two scenarios were conducted for experiments based on this 15-panel HYDICE scene. One

was spectral discrimination among the five panel signatures, p1, p2, p3, p4, and p5. The other was

to identify the 15 panels unsupervisedly using only knowledge obtained directly from the data.

EXAMPLE 26.3

(spectral discrimination)

Like Example 26.1, spectral discrimination was performed by MPCM-PSSC where the number of stages

required for MPCM-PSSC was calculated by (26.6) to be M¼ 13 and the stage levels Dkf g13k¼1 were obtained
by (26.7). To implement MPCM-PSSC algorithm, we also needed to determine an appropriate set of stage

thresholds.

Using the same way conducted in Example 26.1, the desired set of stage thresholds tkf g13k¼1 were obtained
in Table 26.10 by (26.12) using noise-corrupted signatures with SNR set to 30:1 as variation of signature

tolerance.

Table 26.8 Spectral identification for a mixed signature, s ¼ 0:1s1 þ 0:1s2 þ 0:1s3 þ 0:6tþ 0:1s5 with
t¼ s4

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

s1 12 34 55 110 130 140 190 180 180 150 150 95 130 1556

s2 6 24 36 83 110 130 190 160 190 190 160 110 130 1519

s3 8 22 40 85 110 130 160 160 170 160 170 120 170 1505

s4 6 14 42 87 110 150 170 130 150 140 130 72 96 1297

s5 6 20 31 74 110 110 140 130 150 170 160 130 270 1501

Table 26.9 Spectral identification for a mixed signature, s ¼ 0:1s1 þ 0:1s2 þ 0:1s3 þ 0:1s4 þ 0:6t with
t¼ s5

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

s1 10 26 54 72 120 150 180 170 190 160 160 120 140 1552

s2 4 20 35 56 92 130 180 160 180 210 170 130 170 1537

s3 6 16 41 58 94 120 150 160 180 170 170 150 160 1475

s4 6 16 47 72 94 150 190 140 170 160 150 98 170 1463

s5 2 6 28 37 88 110 130 130 150 150 150 130 230 1341

Table 26.10 Stage thresholds for five panel signatures with SNR 30:1

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13

p1 2 1 5 10 14 24 23 16 16 16 9 4 4

p2 2 2 14 9 13 23 24 15 13 11 10 4 4

p3 1 4 6 8 16 19 21 13 11 11 7 6 5

p4 3 6 3 11 15 21 23 20 16 12 7 7 3

p5 3 6 4 10 16 19 21 18 13 10 7 4 3
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Table 26.11 tabulates discrimination results obtained by MPCM-PSSC among the five panel signature

vectors pif g5i¼1 in Figure 1.16.
As shown in Table 26.11, p1 and p2 were more similar each other than other three panel signature vectors

since the discrimination could be accomplished in stage 2 in terms of spectral variation compared to other

signature discrimination that was already discriminated in stage 1.

EXAMPLE 26.4

(spectral identification)

The experiments conducted in this example were very interesting and offered several intriguing results and

observations. It was designed to identify the 19 R panel pixels, pij in Figure 1.15(b) by MPCM-PSSC. Since

the panel pixels p13, p23, p33, p43, p53 have size of 1 m� 1 m that is smaller than the pixel size, their abun-

dance fractions present in single pixels can be at most 1= 1:56ð Þ2 ¼ 0:4109 that can be interpreted as approxi-

mately 50% of the pixel size. As a result, the performance in identification of these subpixel panels can be

expected to be very challenging and difficult. On the other hand, due to its very high spatial and spectral

resolution the spectral variations of image pixels in this HYDICE scene can be very subtle and sensitive.

Therefore, using the five panel signatures pif g5i¼1 in Figure 1.16 as a data base may not be appropriate.

Instead, a more effective data base must be obtained in an unsupervised means directly form data. In doing

so, the result of the 34 target pixels generated directly from the scene by an unsupervised fully constrained

least squares (UFCLS) method developed in Heinz and Chang (2001) and Chang (2003a) were used to form a

desired data base D. Among these 34 generated target pixels there were five panel pixels identified to corre-

spond to the five distinct panel signatures pif g5i¼1. Table 26.12 tabulates the results produced by MPCM-PSSC

using Algorithm 1 and Algorithm 2 for spectral identification along with the abundance fractions of the 19 R

pixels estimated by FCLS where an identification error was highlighted by shade.

According to Table 26.12, Algorithm 1 yielded the best performance in the sense that it only missed identi-

fication when the panels pixel, p13, p212, p33, p412, p43, p53 with estimated abundance fractions less than

0.3821. Algorithm 2 also made six identification errors, but it seemed that these misidentifications had no

clear tie to the abundance fractions as Algorithm 1 did. For example, it correctly identifies p212 whose abun-

dance was only 0.3141, but it misidentified the p32 whose abundance was 0.5343. Compared to Algorithm 2,

SAM and SID not only made the same 6 identification errors as did Algorithm 2, but also made two more

additional errors, which were panel pixels p511, p52 with abundance fractions, 0.7203 and 0.7789.

This experiment shows that MPCM-PSSC performed more effectively than a pixel-based spectral similar-

ity measure such as SAM and SID in Table 26.12. It should be noted that real target panel pixels in Table 26.12

are compared against the five panel signature vectors pif g5i¼1 for analysis.
It is interesting to note that if the five panel signature vectors pif g5i¼1 in Figure 1.16 were directly used for

identification, the results are reported in Chang (2003a) and are not as good as the results in Table 26.12 that

Table 26.11 Discrimination among five panel signature vectors using the stage thresholds in Table 26.10

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13

p1–p2 2 2 10 13 20 32 30 24 29 21 16 4 5

p1–p3 4 4 17 23 28 29 31 26 24 22 11 6 5

p1–p4 4 8 8 22 26 37 32 26 22 23 10 6 4

p1–p5 4 8 11 22 32 34 34 21 13 16 12 2 5

p2–p3 2 2 13 12 24 35 31 22 21 9 11 6 4

p2–p4 4 8 14 23 28 33 36 22 21 10 10 8 3

p2–p5 4 8 17 23 28 30 30 25 28 13 8 4 4

p3–p4 6 10 19 27 30 34 31 12 20 13 9 10 5

p3–p5 6 10 22 29 34 35 29 29 17 16 7 6 6

p4–p5 4 8 3 6 16 25 24 29 21 13 4 6 1
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were produced by using the real target panel pixels in Table 26.12. This is primarily due to the fact that the

panel signature vectors pif g5i¼1 obtained by averaging R panel pixels are not real pixels. As a result, the signa-

ture variations of real target panel pixel vectors were compromised. MPCM-PSSC seemed to remedy such

deficiency by capturing subtle spectral variations in multiple stages that were able to dictate changes in subtle

difference encountered in real data as shown in Table 26.13.

As a final comment, it should be noted that the 34 target pixels used in this experiment were obtained

according to Heinz and Chang (2001) that have shown to be sufficiently enough to represent the five distinct

panel spectral signature vectors. However, it did not imply that it required at least 34 target pixel vectors to do

Table 26.12 Identification of 19 R panel pixels in Figure 1.5(a)

Panel pixels Algorithm 1 Algorithm 2 SAM/SID Abundance fractions estimated by FCLS

p11 p1 p1 p1 1

p12 p1 p2 p2 0.4098

p13 p3 p2 p2 0.0499

p211 p2 p2 p2 0.5255

p221 p3 p2 p2 0.3141

p22 p2 p2 p2 0.6917

p23 p2 p2 p2 0.4221

p311 p3 p3 p3 0.8647

p312 p3 p3 p3 1

p32 p3 p2 p2 0.5343

p33 p2 p2 p2 0.3285

p411 p4 p4 p4 1

p412 p5 p4 p4 0.3821

p42 p4 p4 p4 0.7034

p43 p2 p2 p2 0.2242

p511 p5 p5 p4 0.7203

p521 p5 p5 p5 1

p52 p5 p5 p4 0.7789

p53 p2 p2 p2 0.1466

Table 26.13(a) Identification of p11

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p2 2 6 12 28 27 35 39 31 20 12 4 3 7 226

p3 6 8 19 29 25 37 37 31 19 14 8 4 5 242

p4 4 12 4 18 27 29 39 34 21 10 8 3 1 210

p5 2 8 3 21 29 30 36 27 17 10 10 4 5 202

Table 26.13(b) Identification of p12

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 2 8 4 20 29 42 39 31 15 12 7 4 5 218

p2 4 2 10 14 18 29 22 22 17 18 9 3 10 178

p3 4 8 21 27 28 39 24 28 18 18 9 8 6 238

p4 4 10 8 20 28 39 36 27 22 14 13 3 4 228

p5 4 10 7 25 28 38 31 26 24 16 13 4 4 230
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Table 26.13(c) Identification of p13

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 4 6 15 26 28 35 38 36 23 18 9 6 6 250

p2 6 0 19 12 13 32 29 21 15 18 9 5 5 184

p3 2 6 12 17 25 24 21 23 20 22 9 6 3 190

p4 6 8 19 24 29 40 33 26 14 12 9 5 5 230

p5 6 8 18 29 29 41 28 29 22 20 15 6 5 256

Table 26.13(d) Identification of p211

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 4 8 12 28 28 37 33 37 25 10 5 4 3 234

p2 2 2 6 6 11 26 24 14 13 10 3 3 6 126

p3 2 8 15 23 29 32 32 24 20 12 9 6 4 216

p4 4 10 14 28 27 38 36 27 16 4 7 3 4 218

p5 4 10 13 31 31 31 39 26 22 10 7 4 8 236

Table 26.13(e) Identification of p221

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 6 8 16 31 30 39 34 38 21 15 9 6 5 258

p2 4 2 10 9 15 32 21 15 13 15 9 3 6 154

p3 0 8 13 20 29 30 29 25 16 19 9 8 6 212

p4 6 10 18 27 29 42 31 30 14 11 11 3 4 236

p5 6 10 17 32 33 33 38 25 18 17 9 4 6 248

Table 26.13(f) Identification of p22

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 4 6 12 25 32 40 33 30 22 14 11 2 3 234

p2 2 0 10 9 13 27 30 17 22 14 11 1 6 162

p3 2 6 15 24 31 33 24 21 19 14 7 4 2 202

p4 4 8 14 27 31 33 36 28 21 12 13 1 2 230

p5 4 8 13 28 33 40 33 23 29 14 15 2 4 246

Table 26.13(g) Identification of p23

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 4 6 16 27 24 29 36 28 22 14 5 7 4 222

p2 2 0 16 13 17 28 29 17 20 16 5 6 7 176

p3 2 6 19 22 27 34 29 17 21 22 9 7 5 220

p4 4 8 18 29 31 44 39 24 19 10 9 6 3 244

p5 4 8 17 30 35 35 34 23 21 18 11 7 7 250
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Table 26.13(h) Identification of p311

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 6 12 18 34 20 29 45 34 27 12 7 5 3 252

p2 4 6 16 24 21 30 38 21 19 12 7 4 8 210

p3 0 4 3 11 11 28 22 19 26 12 7 7 4 154

p4 6 12 20 30 23 42 36 22 20 10 9 4 4 238

p5 6 14 19 37 25 37 33 23 26 16 13 5 6 260

Table 26.13(i) Identification of p312

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 6 8 19 29 25 37 37 31 19 14 8 4 5 242

p2 4 6 19 23 24 32 28 22 19 16 8 5 6 212

p3 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p4 6 10 19 27 24 42 32 29 16 16 12 5 4 242

p5 6 12 20 34 24 45 29 26 18 16 12 6 6 254

Table 26.13(j) Identification of p32

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 6 6 10 21 29 34 31 34 20 12 7 4 4 218

p2 6 0 16 11 12 23 24 13 16 14 7 5 11 158

p3 2 6 21 26 26 31 30 15 17 14 9 6 7 210

p4 6 8 14 25 28 35 38 28 21 14 9 5 5 236

p5 6 8 13 28 26 38 35 21 25 20 13 6 7 246

Table 26.13(k) Identification of p33

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 4 6 14 36 24 32 38 33 26 10 4 6 1 234

p2 4 0 12 20 17 39 25 24 16 16 4 5 8 190

p3 4 6 11 27 27 29 19 16 19 14 8 6 6 192

p4 4 8 16 38 29 45 35 27 13 10 8 5 2 240

p5 4 8 15 43 35 38 32 28 23 16 10 6 6 264

Table 26.13(l) Identification of p411

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 4 12 4 18 27 29 39 34 21 10 8 3 1 210

p2 4 8 14 28 26 38 38 29 19 10 8 0 6 228

p3 6 10 19 27 24 42 32 29 16 16 12 5 4 242

p4 0 0 0 0 0 0 0 0 0 0 0 0 0 0

p5 2 8 1 9 24 27 35 27 18 12 10 1 4 178
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Table 26.13(m) Identification of p412

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 2 10 3 14 27 30 36 33 23 16 5 4 5 208

p2 2 6 13 26 28 39 33 26 17 16 3 3 10 222

p3 6 10 20 29 24 35 25 22 22 20 7 4 6 230

p4 2 6 1 10 18 21 29 23 22 14 7 3 4 160

p5 0 8 0 15 24 24 28 26 20 16 11 4 4 180

Table 26.13(n) Identification of p42

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 6 8 7 18 23 31 38 35 25 14 8 4 3 220

p2 6 8 13 26 24 34 39 26 17 16 8 3 6 226

p3 6 12 20 27 26 34 27 26 20 22 10 6 6 242

p4 4 12 5 10 24 26 25 13 14 14 8 3 2 160

p5 6 8 4 15 28 25 26 22 20 16 8 4 6 188

Table 26.13(o) Identification of p43

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 6 8 11 28 23 29 35 30 18 11 6 3 6 214

p2 4 2 15 22 24 36 32 19 16 17 6 2 9 204

p3 4 6 22 27 26 40 34 23 19 21 8 5 5 240

p4 4 6 7 16 30 36 42 22 19 13 10 2 5 212

p5 6 10 8 25 34 31 45 19 23 17 12 3 7 240

Table 26.13(p) Identification of p511

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 2 10 7 13 24 24 32 25 18 10 11 6 2 184

p2 2 6 13 25 31 41 37 24 22 12 11 3 7 234

p3 6 10 20 32 29 41 29 26 17 18 11 8 3 250

p4 4 6 5 13 19 19 31 31 17 14 13 3 1 176

p5 2 10 4 12 29 22 26 14 17 10 13 2 3 164

Table 26.13(q) Identification of p521

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 2 8 3 21 29 30 36 27 17 10 10 4 5 202

p2 2 8 13 31 30 39 41 22 19 16 10 1 10 242

p3 6 12 20 34 24 45 29 26 18 16 12 6 6 254

p4 2 8 1 9 24 27 35 27 18 12 10 1 4 178

p5 0 0 0 0 0 0 0 0 0 0 0 0 0 0
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so. There may have some unsupervised target detection and classification algorithms such as those developed

in Chapter 17 that can generate a fewer number of target pixel vectors than 34 but still include pixels that can

represent all the desired five panel signature vectors. In this case, these generated target pixel vectors can be

used as a database as well. As expected, the conclusion drawn from Table 26.13 will remain unchanged.

26.6 Conclusions

This chapter introduces a new concept of PSSC for hyperspectral signature characterization. It is

derived from a technique called MPCM that was previously developed for progressive image

reconstruction and edge detection. Unlike the commonly used SSC that performs coding with hard

decision, PSSC characterizes a hyperspectral signature in a sequence of soft decisions in multiple

stages to produce a spectral profile of progressive changes in spectral variation of a spectral signa-

ture vector. The idea of MPCM-based PSSC (MPCM-PSSC) is to use a sequence of soft decision-

based quantizers to generate priority codes for a hyperspectral signature vector that can be used to

prioritize signature values across its spectral range whose priorities are specified by stage levels

implemented in various stages. Such priority codes allow users to decompose and reconstruct a

hyperspectral signature vector progressively in accordance with the priorities assigned to spectral

signature values specified by various wavelengths. As a result, a spectral profile of progressive

changes in spectral variation can be generated for a hyperspectral signature vector and can be fur-

ther used to dictate subtle differences in spectral characterization. To substantiate the utility of

MPCM-PSSC in applications spectral discrimination and identification are used for illustration.

Experiments are also conducted to demonstrate unique features of MPCM-PSSC in hyperspectral

signature characterization such as progressive spectral changes, progressive signature decomposi-

tion, and progressive signature reconstruction that cannot be achieved by any spectral signature

coding.

Table 26.13(r) Identification of p52

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 4 10 5 22 31 25 40 27 18 12 7 3 2 206

p2 4 8 11 26 30 40 45 24 20 14 5 2 7 236

p3 6 12 18 29 28 38 33 24 17 20 9 5 5 244

p4 4 8 3 14 20 28 25 25 17 12 9 2 1 168

p5 2 8 2 11 26 23 26 16 17 10 11 3 3 158

Table 26.13(s) Identification of p53

Stage 1 2 3 4 5 6 7 8 9 10 11 12 13 SUM

p1 6 8 9 24 23 35 40 30 15 13 10 4 5 222

p2 4 2 13 20 26 38 29 17 13 17 10 3 10 202

p3 4 6 22 29 24 28 29 19 16 15 12 6 6 216

p4 4 6 7 16 28 38 37 24 12 11 8 3 4 198

p5 6 10 6 21 30 29 40 21 18 17 12 4 6 220
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VII

Hyperspectral Signal
Characterization

The hyperspectral signal coding in Part VI is designed to produce credible discrete versions of

hyperspectral signals as fingerprints so that these fingerprints provide sufficient information of

their own identities. But such signal coding does not necessarily tell you what a real signal looks

like and how it behaves. In other words, a signal identity and its fingerprint is one-to-one corre-

spondence relationship such as one-to-one identification between a person and his unique nick-

name where the nickname does not have to describe the person in detail. Using a more specific

example for illustration we consider a set of signals, sj
� �p

j¼1
to be used for data transmission.

When one of these signals is selected for transmission, it is its subscript instead of the signal itself

being transmitted. According to information theory, if a fixed length coding is used, only logp bits

required to derive a set of p code words corresponding to fingerprints of the p signals, sj
� �p

j¼1
for

signal transmission without actually transmitting these signals themselves. This is because a signal

can be identified by its subscript through its code word used as its fingerprint. By means of these p

code words signal coding is generally considered as discrete signal processing and used for hard-

decision-made applications such as signal detection, discrimination, classification, and identifica-

tion, but it certainly cannot be used for continuous signal processing-based applications, which

generally requires signal characterization rather than signal coding using only a discrete set of

code words. Therefore, Part VII is developed as a companion part of discrete-value hyperspectral

signal coding to deal with continuous-value hyperspectral signal characterization, which can be

considered as 1D continuous signal processing as opposed to hyperspectral signal coding to be

treated as 1D discrete signal processing.

Due to very high spectral resolution provided by hyperspectral imaging sensors the spectral

information among spectral bands is expected to be highly correlated, in which case a certain level

of redundant information can be removed. To address this issue, three topics are of major interest

in Part VII, which correspond to hyperspectral variable band selection for feature characterization

in Chapter 27, hyperspectral signal estimation in Chapter 28, and hyperspectral signal representa-

tion in Chapter 29, respectively. Chapter 27 develops an approach to band selection that allows

users to select variable number variable bands according to spectral characteristics of a
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hyperspectral signal. In other words, each hyperspectral signal requires its own bands to character-

ize its spectral profile. As a result, two different hyperspectral signals must have two different sets

of bands, each of which requires a different number of bands to be selected. This idea is derived

from variable length coding commonly used by source coding in information theory where each

source alphabet requires a code word with a different coding length derived from its probability.

A similar idea called dynamic dimensionality allocation (DDA) for progressive band selection

(PBS) was also explored in Chapter 23. As an alternative to variable number variable band selec-

tion to remove interband spectral correlation, a widely used technique in signal processing and

communications, Kalman filtering is further investigated in Chapter 28 for hyperspectral signal

estimation where three Kalman filter-based techniques, Kalman filter-based spectral signature

estimator (KFSSE), Kalman filter-based spectral signature identifier (KFSSI), and Kalman filter-

based spectral signature quantifier (KFSSQ), are developed to characterize hyperspectral signals.

A third approach to removing redundant spectral information is to represent a hyperspectral signal

in a more effective manner. One such representation is wavelets that make use of low-pass and

high-pass filters to retain different levels of details for signal approximation. Chapter 29 takes up

this approach to derive a wavelet-based signature characterization algorithm (WSCA) for hyper-

spectral signal representation that can be used for signature discrimination, classification,

and identification.
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27

Variable-Number Variable-Band
Selection for Hyperspectral Signals

This chapter presents a novel band selection-based feature characterization technique for a

hyperspectral signature vector, referred to as variable-number variable-band selection (VNVBS).

Since a hyperspectral signature vector is generally characterized by its spectral profile, its feature

characterization can be achieved by selecting appropriate bands from the original set of spectral

bands, and the number of bands to be selected is totally determined by its original spectral pro-

file. As a result, two hyperspectral signature vectors may require different sets of bands for spec-

tral feature characterization. Therefore, VNVBS allows users to select a different number of

variable bands in accordance with spectral characteristics of a hyperspectral signature vector. In

order for VNVBS to select an appropriate subset of bands for a hyperspectral signature vector, a

new band prioritization criterion, referred to as orthogonal subspace projector-based band priori-

tization criterion (OSP-BPC), is derived. It assigns a different priority score to each spectral band

of a hyperspectral signature vector such that various features can be captured by VNVBS.

Accordingly, VNVBS can be interpreted as a spectral band selection-based feature extraction

technique for hyperspectral signature characterization.

27.1 Introduction

Hyperspectral data are collected by hundreds of contiguous and highly correlated spectral

bands. Consequently, the same spectral bands used to acquire two different hyperspectral sig-

natures may not provide the same level of signature information. Furthermore, recent advances

in sensor technology have made it possible for sensor data to be acquired by more than hun-

dreds or thousands of spectral channels, for example, hyperspectral or ultraspectral data. Of

particular interest is chemical/biological (CB) defense for bioterrorism where CB data availa-

ble for analysis are generally spectral data rather than image data. However, it also comes at a

price that such wealthy spectral information is highly correlated. As a result, using all the hun-

dreds or thousands of spectral channels might not be a good choice for preserving spectral

information since a significant and crucial piece of information of interest may only be pro-

vided by a very narrow range of spectral coverage and could be overwhelmed by other domi-

nated spectral channels. For example, the crucial information of chemical data is provided by

the thermal range, and biological data are determined by their distinct protein spectral profiles,
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which are usually very small and can only be captured by very narrow diagnostic spectral

channels. Therefore, the information provided by their spectral profiles in signature characteriza-

tion becomes vital, and band selection (BS)-based spectral signature analysis and characterization

seem to be the most effective means to address this issue.

BS has been widely used in remote sensing image analysis for various application (Mausel et al.,

1990; Conese and Maselli 1993; Stearns et al., 1993; Chang et al., 1999; Huang and He, 2005). It

is discussed extensively in Chapters 21–23. However, most existing BS techniques are developed

for images where the number of bands is fixed, and the bands selected for each image pixel

vector are the same and identical. Unfortunately, a direct application of such image-based BS to

single spectral signature analysis and characterization is not feasible due to the following two

reasons. First, no sample spectral correlation among pixel vectors, which has been used by

image-based BS, is available for a single hyperspectral signature vector. Second a different

hyperspectral signature vector generally requires a different number of bands as well as different

spectral bands to characterize its spectral profile. More specifically, in order to characterize a

spectral signature vector effectively, variable-band numbers and variable bands should be

selected for different spectral signature vectors for signature analysis. This chapter presents a

new concept, referred to as variable-number variable-band selection (VNVBS), that can be used

to effectively characterize the spectral profile of a single hyperspectral signature vector rather

than a hyperspectral image pixel vector.

It is general understanding that commonly used BS techniques in remote sensing image proc-

essing are developed to explore correlation among spectral images rather than spectral correlation

within a single image pixel vector. Therefore, they can be viewed as image-based approaches. By

contrast, VNVBS is developed to only deal with single hyperspectral signature vectors, which may

come from a database or a spectral library or non-image sensors not from an image cube. There-

fore, there has no correlation among image pixel vectors that can be used by VNVBS. Instead, the

only available information that can be used by VNVBS is the spectral band-to-band correlation

within a single hyperspectral signature vector. Compared to the image-based BS, which considers

a three-dimensional image cube as a whole, VNVBS actually operates on one-dimensional hyper-

spectral signature vectors, and thus it can be considered as one-dimensional signature-based BS.

Additionally, both the band numbers and bands to be selected for each individual image pixel vec-

tor by the conventional image-based BS are always fixed and identical. To the contrary, VNVBS

selects a variable-band number and variable bands for any given hyperspectral signature vector. In

doing so, two key issues must be addressed: “How many bands are needed for VNVBS to perform

analysis on a hyperspectral signature vector?” and “What bands are crucial for this particular

hyperspectral signature vector?” Both of these issues can be simultaneously addressed by a new

approach, referred to as orthogonal subspace projector-based band prioritization criterion (OSP-

BPC) along with a so-called reference signature vector. OSP-BPC decomposes a hyperspectral

signature vector s to be processed into two OSP components with respect to a reference signature

vector from which a score for each particular band of the signature vector can be derived for priori-

tization. By virtue of OSP-BPC, the original band set V of a hyperspectral signature vector can be

rearranged and divided into two disjoint sets, denoted by V?
s and Vs, in accordance with OSP-BPC

assigned priority score for each band. Only those bands in V?
s have higher priorities than those in

Vs. Since the bands from V?
s varies with the hyperspectral signature vector s, two different hyper-

spectral signature vectors may result in different sets of V?
s because the number of bands to be

selected is different, and the selected bands are also different as well.

One interesting finding is noteworthy. VNVBS can be used as a feature selection method.

Compared to other traditional spectral similarity measures such as Euclidean distance (ED),

spectral angle mapper (SAM) (Schowengerdt, 1997; Chang 2003a), spectral information
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divergence (SID) (Chang 2000, 2003a), which utilize the full band information, VNVBS

judiciously selects bands that can best describe the spectral characterization in the sense of

OSP. As a consequence, it can remove redundant spectral information, while retaining vital

and crucial information so as to improve performance in spectral signature analysis and

characterization. This is a task more than just spectral similarity.

27.2 Orthogonal Subspace Projection-Based Band Prioritization Criterion

Orthogonal subspace projector (OSP) approach has been widely used for hyperspectral target

detection and classification (Harsanyi and Chang, 1994). It extends a standard signal detection

model by dividing signature vectors of interest into two types of signals, called desired target

signature vector, d, to be detected and undesired target signature vectors to be eliminated. The

performance in detecting d can be improved by eliminating the undesired signature vectors prior

to detection of d. This section extends the OSP concept to a band prioritization criterion.

Assume that U is an undesired signature matrix formed by placing all undesired target signature

vectors as its column vectors. To eliminate all the signature vectors in U, an orthogonal subspace

projector specified by (2.86) can be used for this purpose and defined by

P?
U ¼ I� UU# ð27:1Þ

where U# ¼ UTU
� ��1

UT is the pseudoinverse of U and I is an identity matrix. Applying P?
U to a

hyperspectral signature vector s leads to a new signature vector denoted by ŝ defined as follows:

ŝ ¼ P?
U s ¼ I� UU#

� �
s ð27:2Þ

where the undesired signature vectors in U have been eliminated from original signature vector s

and ŝ is the signature vector resulting from projecting s onto the subspace P?
U . The geometric rela-

tionship between s, P?
U , and ŝ can be described in Figure 27.1.

By taking advantage of the OSP concept outlined by (27.1) and (27.2), a hyperspectral signature

vector can be decomposed into two orthogonal projection components where the spectral bands of

a hyperspectral signature vector can be ranked and selected according to their priorities measured

by an OSP-based criterion, referred to as OSP-BPC presented in details in the following.

Assume that s ¼ s1; s2; . . . ; sLð ÞT is a hyperspectral signature vector to be processed and r ¼
r1; r2; . . . ; rLð ÞT is the so-called reference signature vector against which the s is compared, where

Undesired signature U

Orthogonal subspace P P s
u
⊥ u

⊥

Original signature s

Figure 27.1 Geometric interpretation of between s, P?
U , and ŝ.
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L denotes the total number of bands used to acquire the signature vector s. Two orthogonal projec-

tors based on the reference signature vector r, Pr and P
?
r , can be further be defined by

Pr ¼ rr# ð27:3Þ

P?
r ¼ I� Pr ð27:4Þ

where r# ¼ rTrð Þ�1
rT is the pseudoinverse of r. By means of (27.3) and (27.4), a hyperspectral

signature vector s can be projected onto two orthogonal subspaces P?
r and Pr and decomposed into

two orthogonal projection components s?r and sr, respectively, defined by

s?r ¼ P?
r s ¼ I� rr#

� �
s

sr ¼ Prs ¼ rr#
� �

s
ð27:5Þ

In general, the reference signature vector r is selected in such a way that it shares some information

with the signature vector s to be processed in order to avoid s?r being empty when s is projected

onto P?
r and Pr via (27.5). However, it should be noted that on some occasions, this may not be

the case where the selected reference signature vector r may turn out to be either parallel to the

signature vector s, which results in s?r ¼ ? , or orthogonal to the signature vector s, which results

in sr ¼ ? .

OSP-BPC algorithm

1. Preprocess the signature vector s by expanding the s into (Lþ 4)-dimensional column

vector by adding two zeros to both ends of s into the form of ð0; 0; s1; s2; . . . ; sL; 0; 0Þ.
2. Assume that the spectral value on the lth band of the signature vector s is sl, l¼ 1, 2 . . . L.

For the lth band, signature sl group its four neighboring bands, sl�2, sl�1, slþ1, slþ2 from

ð0; 0; s1; s2; . . . ; sL; 0; 0Þ to form a vector centered at sl defined by

s5l ¼ sl�2; sl�1; sl ; slþ1; slþ2ð ÞT ð27:6Þ

Similarly, for the l-band of two orthogonal components, s?r , sr, denoted by s?rl and srl , we can

also define s?r
� �5

l
and srð Þ5l as follows:

s?r
� �5

l
¼ s?rl�2

; s?rl�1
; s?rl ; s

?
rlþ1

; s?rlþ2

� �T

srð Þ5l ¼ srl�2
; srl�1

; srl ; srlþ1
; srlþ2

� �T
ð27:7Þ

3. Calculate inner products between vector s5l and the two vectors s?r
� �5

l
and srð Þ5l defined

in (27.7) by

s5l ; s?r
� �5

l

D E
¼ s5l

� �T
s?r
� �5

l

s5l ; srð Þ5l
D E

¼ s5l
� �T

srð Þ5l
ð27:8Þ
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4. For the lth band signature sl, there is a pair of priority scores associated with it, defined by

s5l ; s?r
� �5

l

D E
; s5l ; srð Þ5l
D E� �

ð27:9Þ

5. According to (27.9), the original band set V ¼ 1; 2; . . . ; Lf g can be divided into two dis-

joint subsets, denoted by V?
s and Vs, and defined by

V?
s ¼ l : s5l ; s?r

� �5
l

D E
i s5l ; srð Þ5l
D E

; l ¼ 1; 2; . . . L
n o

Vs ¼ l : s5l ; s?r
� �5

l

D E
h s5l ; srð Þ5l
D E

; l ¼ 1; 2; . . . L
n o ð27:10Þ

such that V?
s collects those bands that contain more information in P?

r than that in Pr in the

sense of OSP, while the set Vs does oppositely.

The motivation of using the four adjacent neighboring bands in (27.6) comes from the image

processing which uses four-neighbor connectivity and eight-neighbor connectivity to account for

inter-pixel spatial correlation within a 3� 3 window (Gonzales and Woods, 2002). This idea is

extended to the spectral domain to capture inter-band correlation within a 5-band 1� 5 window.

Of course, the same idea can also be applied to 7-band, 9-band windows, etc. However, according

to our experiments, using 5-band 1� 5 window seems to be the best compromise because using

a window of a band number greater than 5 has little improvement on performance at the expense

of computational complexity, while the performance using 5-band window indeed improves signif-

icantly over that using 3-band window.

27.3 Variable-Number Variable-Band Selection

The pair of s5l ; s?r
� �5

l

D E
and s5l ; srð Þ5l

D E
defined in (27.8) associated with the lth band signature sl is

considered as two correlated prioritization scores of the lth band, which are essentially two pieces

of information contained in two orthogonal subspaces, P?
r and Pr. Due to the principle of orthogo-

nality (Poor, 1994), the information in P?
r generally provides innovations information about

the signature vector s with respect to reference signature vector r. Therefore, only the s5l ; s?r
� �5

l

D E

in (27.8) is used to rank the bands in V according to descending order of its magnitude. The

ranked band set resulting from using s5l ; s?r
� �5

l

D E
priority can be further broken up into two disjoint

sets, V?
s and Vs, determined by (27.10). By realigning V?

s and Vs, a new priority-ranked band set

will be generated for further band selection, denoted by V�
s

V�
s ¼ V?

s ;Vs

� � ð27:11Þ

In what follows, VNVBS is developed by only selecting those bands in the set V?
s , based on

the pair of priority scores defined by (27.9). Since the size of the set V?
s varies with the signa-

ture vector s to be prioritized, the number of bands to be selected for various hyperspectral

signatures is not fixed a priori, but rather determined by comparison between s5l ; s?r
� �5

l

D E
and

s5l ; srð Þ5l
D E

via (27.10).
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In hyperspectral signature characterization, a frequently encountered application is signature

discrimination, which involves two different signature vectors, s1 and s2. In this case, VNVBS is

implemented using the following steps, referred to as VNVBS-based hyperspectral signature

discrimination (VNVBS-HSD).

VNVBS-HSD

1. Given two signature vectors to be discriminated, s1 and s2, select a reference signature vec-

tor r onto which both s1 and s2 are orthogonally projected. The issue of how to select the r

will be discussed in detail at the end of Section 27.5.

2. Obtain the priority-ranked band sets for the s1 and s2 according to (27.10), denoted

by V�
s1
¼ �

V?
s1
;Vs1

�
and V�

s2
¼ �

V?
s2
;Vs2

�
, respectively. A geometric interpretation of the

relationship between V�
s1
¼ �

V?
s1
;Vs1

�
and V�

s2
¼ �

V?
s2
;Vs2

�
is depicted in Figure 27.2

as follows.

3. Find a new band set, denoted by V?ðs1; s2Þ which is generated by the V?
s1

and V?
s2

as

follows:

V?ðs1; s2Þ ¼
V?

s1
\V?

s2
if V?

s1
\V?

s2
6¼ ?

V?
s1
[V?

s2
if V?

s1
\V?

s2
¼ ?

(

ð27:12Þ

In other words, the V?ðs1; s2Þ is considered as those bands that can be used for discrimina-

tion between signature vectors s1 and s2 in the sense that V?ðs1; s2Þ can best preserve the

information required by s1 and s2 for signature discrimination.

4. Generate two new signatures vector s�1 and s�2 for both signature vectors s1 and s2, respec-
tively, based on the bands selected by (27.12).

5. Use a spectral similarity measure such as SAM, SID, or ED to perform signature dis-

crimination on the signature vectors s�1 and s
�
2 obtained in step 4.

Two notes on the criterion specified by (27.12) are worthwhile.

1. For the case of nonempty-intersection, that is, V?
s1
\V?

s2
6¼ ? .

TheV?
s1
\V?

s2
is chosen due to the fact that it carries more critical spectral information than

V?
s1
[V?

s2
in discrimination between s1 and s2 based on the following two reasons.

signature S1

signature S2

S1{r⊥}S2{r⊥}Pr
⊥

S2{r}

S1{r}

Pr

Figure 27.2 Geometry interpretation of the relationship between V�
s1
¼ �

V?
s1
;Vs1

�
and V�

s2
¼ �

V?
s2
;Vs2

�
.
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a. Since V?
s1
and V?

s2
retain more crucial local spectral information of s1 and s2 in P?

r than that

in Pr in terms of discriminating spectral signatures s1 and s2 via orthogonal projection,

the bands in V?
s1
\V?

s2
is the smallest band set that can achieve the best possible spectral

discrimination between s1 and s2.

b. On the other hand, if the V?
s1
[V?

s2
is chosen instead of V?

s1
\V?

s2
, the bands in ð½V?

s1
[

V?
s2
� � ½V?

s1
\V?

s2
�Þ may potentially reduce discrimination power between s1 and s2 due to

the fact that the bands in V?
s1
� ðV?

s1
\V?

s2
Þ and V?

s2
� ðV?

s1
\V?

s2
Þ are either spectrally

representative for s1 or s2, but not for both. For example, using the bands from V?
s1
�

ðV?
s1
\V?

s2
Þ may be effective in better differentiating s1 from s2, but not necessarily the

other way around because the bands in V?
s1
� ðV?

s1
\V?

s2
Þ are not part of V?

s2
and cannot

effectively discriminate s2 from s1 as those bands in V?
s2
do. Similarly, it is also true for

the bands in V?
s2
� ðV?

s1
\V?

s2
Þ which have better discrimination of s2 from s1, but do not

necessarily have better discrimination of s1 from s2. Therefore, if bands in both band sets

V?
s1
� ðV?

s1
\V?

s2
Þ and V?

s2
� ðV?

s1
\V?

s2
Þ are selected, these bands may be able to dis-

criminate one from another but may be also very likely to deteriorate discrimination

between s2 and s1. More specifically, an improvement upon discrimination of s1 from s2
using the bands from V?

s1
� ðV?

s1
\V?

s2
Þ may further impair the discrimination of s2 from

s1, and vice versa. A comprehensive study on comparison between using V?
s1
[V?

s2
and

V?
s1
\V?

s2
demonstrated that selecting bands from V?

s1
\V?

s2
outperformed those selected

from V?
s1
[V?

s2
in discrimination between s1 and s2 in both ways, that is, discrimination

of s1 from s2 as well as discrimination of s2 from s1.

2. For the case of empty-intersection, that is, V?
s1
\V?

s2
.

Since no bands are in common, the best way to achieve both discrimination of s1 from s2
and discrimination of s2 from s1 is to select all the bands in V?

s1
[V?

s2
for V?ðs1; s2Þ, which

turns out to be the smallest band set in discrimination between s1 and s2.

So, to have better discrimination between s1 and s2, both the better discrimination of s2 from s1 and

the better discrimination of s2 from s1 must be achieved. Taking the intersection V?
s1
\V?

s2
is the

only way to accomplish the task while retaining the smallest possible band set.

Another note is also worth being mentioned. Despite the fact that VNVBS-HSD is developed

to discriminate one signature from another, its functionality is not limited to signature discrimi-

nation. For example, if a signature is known to be detected, VNVBS-HSD turns out to be a

detector for this particular signature. On the other hand, if a group of signatures of interest are

available for classification, then VNVBS can be used as a signature classifier. Furthermore, if

there is a database to be used for signature identification, VNVBS can become a signature

identifier.

Finally, we summarize the differences of VNVBS from commonly used image-based BS

techniques described in Section 6.7 and Chapters 21–23 which are generally performed via

various criteria such as variance, signal-to-noise ratio (SNR), and information divergence.

1. VNVBS only involves the spectral correlation among individual bands within a hyperspectral

signature vector as opposed to conventional image-based BS techniques, which consider each

individual band image as a whole. Therefore, VNVBS must rely only on inter-band spectral

correlation to select bands comparing to conventional image-based BS techniques which

make use of spectral correlation among image pixels to select desired bands. As a result, the

number of bands to be selected by VNVBS varies with the signature vector to be processed,

while the number of bands chosen by the conventional image-based BS techniques are fixed

for all image pixels,

Variable-Number Variable-Band Selection for Hyperspectral Signals 805



2. The band prioritization criterion used in VNVBS is OSP-BPC, which is easy and simple to

implement. It also deviates from commonly used BS criteria such as variance, SNR, and infor-

mation divergence.

Interestingly, VNVBS can also be performed on hyperspectral signature vectors acquired by dif-

ferent numbers of bands such as gas data whose band numbers are different. In doing so, two

approaches are suggested. One is to select their common bands to yield the same number of bands.

The other is to consider all bands while performing zero-interpolation if bands in one signature are

missing in the other signature. As a result, two hyperspectral signature vectors acquired by differ-

ent numbers of spectral bands can be prioritized by OSP-BPC and characterized by VNVBS via

their spectral features. Although these two strategies are applicable to any spectral similarity mea-

sure, there is no follow-up prioritization as what OSP-BPC does that can be developed for any

spectral similarity measure in further spectral feature characterization. This benefit cannot be

gained by any band selection technique developed for images.

27.4 Experiments

To demonstrate the utility of VNVBS in hyperspectral signature characterization, two completely

different data sets were used for experiments and two particular applications, signature discrimina-

tion and mixed signature classification/identification were of interest and further considered for

comparative analysis with SAM and SID used as spectral similarity measures. Nevertheless, other

applications can also be explored for VNVBS.

27.4.1 Hyperspectral Data

The hyperspectral data used for computer simulations presented in this section were the five

AVIRIS reflectance spectral signature vectors, blackbrush, creosote leaves, dry grass, red soil, and

sagebrush, shown in Figure 1.8. Each of these five spectral signature vectors has 158 bands after

water bands were removed and can be considered as a 158-dimensional hyperspectral signature

vector where each signature component is specified by a particular spectral wavelength. According

to Chapter 2 in Chang (2003a), the spectral profiles of blackbrush, creosote leaves, and sagebrush

were close to each other. In particular, the creosote leaves and sagebrush even have very close

spectral values. A detailed quantitative analysis among these three signature vectors is provided in

Chapter 2 in Chang (2003a). In this section, these five signature vectors constitute a spectral library

or database to be used to evaluate the performance of VNVBS in three different applications, sig-

nature discrimination, classification, and identification.

27.4.1.1 Signature Discrimination

Three similar signatures blackbrush, creosote leaves, and sagebrush were used for discrimination and

the reference vector r specified by (27.3) and (27.4) was chosen to be a signature vector obtained

by averaging these three signature vectors, ðblackbrushþ creosote leavesþ sagebrushÞ=3.
Table 27.1 lists the bands prioritized by VNVBS according to (27.9), where the original set of bands

was divided into two subsets of bands,V?
s and Vs via (27.10).

As noted in Table 27.1, the V?
s obtained for creosote leaves from VNVBS via orthogonal sub-

space decomposition is empty. This case occured when either s5l ; s?r
� �5

l

D E
i s5l ; srð Þ5l
D E

for all l 2
1; 2; . . . ; Lf g or s5l ; s?r

� �5
l

D E
h s5l ; srð Þ5l
D E

for all l 2 1; 2; . . . ; Lf g. However, it should be noted that

whether or not a particular band was removed or preserved was completely determined by how a
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reference signature vector was selected and how the local spectral correlation described by (27.10)

was involved among its four neighboring bands.

It should be noted that VNVBS grouped four-band neighbors of a spectral band to generate a

five-band vector to capture its local spectral shape features rather than the spectral global tend-

ency of a hyperspectral signature vector across the entire wavelengths. If we carefully compare

the flat regions and edges of blackbrush, creosote leave, and sagebrush, the local spectral shapes

captured by flat wavelengths of these three signature vectors were very close to each other, while

the edges were much more different from each other. This finding explained why VNVBS

favored local edges over global flat regions. According to OSP-BPC criterion, global flat regions

seemed to contain redundant information which had no benefit to discrimination compared to

local edges which contained spectral characteristics that generally improved distance among

three signatures in terms of spectral similarity.

Table 27.2 tabulates the values of SAM and SID applied to the three VNVBS-generated new

signatures of blackbrush, creosote leaves, and sagebrush by (27.12) where the upper and lower

values were obtained by the original full band set and VNVBS, respectively, and the least discrimi-

nation results are highlighted by shade.

It should be pointed out that the discriminatory power of a spectral measure was not determined

by the magnitude of its spectral similarity value, but rather by the relative magnitude of one spec-

tral value to another value. So, even though the values of SAM and SID obtained by full bands

were slightly larger than those obtained by VNVBS, the ratio of one SAM (or SID) value to

another SAM (or SID) value using VNVBS was greatly increased compared to that using full

bands. To see this more clearly, we normalized the least discrimination results, which were SAM

or SID values between blackbrush and sagebrush, to 1, and then a new table could be generated in

Table 27.3 from Table 27.2 where it clearly showed that the relative discrimination between two

signatures was greatly improved by VNVBS.

The above simple experiment demonstrated that the relative discrimination between these three

signature vectors could be significantly increased if VNVBS is used. This insight provided

Table 27.2 Discrimination among blackbrush, creosote leaves, and sagebrush using (27.12) and

Table 27.1

               full bands 

VNVBS 

(blackbrush, creosote) (blackbrush, sagebrush) (creosote, sagebrush) 

SAM 

             0.1767 

0.1234 

           0.0681 

0.0317 

          0.1289 

0.1145 

SID 

            0.0497 

0.0161 

          0.0063 

0.0011 

          0.0303 

0.0140 

Table 27.1 V?
s and Vs for blackbrush, creosote leaves, and sagebrush

S V?
s Vs

Blackbrush 21–25, 91–98, 118–158 1–20, 26–90, 99–117

Creosote leaves Empty 1–158

Sagebrush 1–23, 92–100, 121–158 24–91, 101–120
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evidence that in order to measure the effectiveness of VNVBS relative to full bands, a direct com-

parison using Table 27.2 may not be appropriate. To address this issue, a measure suggested in

Chang (2000) and Chang (2003a), called the relative spectral discriminatory power (RSDPW)

seems to fit our need and was be used for performance evaluation.

Assume that m is any given hyperspectral measure, and s1, s2 are a pair of two spectral signature
vectors to be measured. Let b be a third arbitrary signature vector with respect to which the two

signature vectors s1, s2 are compared against. The RSDPW of m, denoted by RSDPWm(s1,s2;b), is
defined in Chang (2000) and Chang (2003a) by

RSDPWmðs1; s2;bÞ ¼ max mðs1;bÞ=mðs2;bÞ;mðs2;bÞ=mðs1;bÞf g ð27:13Þ

which measures the discriminatory power of the measure m by finding the maximum of two ratios,

ratio of m(s1,b) to m(s2,b) and ratio of m(s2,b) to m(s1,b). The RSDPWm(s1,s2;b) defined

by (27.13) provides a quantitative index of spectral discrimination capability of a specific hyper-

spectral measure m between two spectral signature vectors s1 and s2 with respect to a third

signature vector b. Therefore, the higher the RSDPWm(s1,s2;b) is, the better discriminatory power

the m is. In addition, RSDPWm(s1,s2;b) is symmetric and bounded below by one which is achieved

by equality if and only if s1¼ s2. It should be noted that the reference signature vector r used in

OSP-BPC for VNVBS is similar to the concept of using a third signature vector b in RSDPW.

Using (27.13), Table 27.4 tabulates RSDPW values obtained by full bands and the VNVBS

using the SAM and SID as the measures m in (27.13) with the signature vector b chosen to be the

reference signature vector r which was the averaged signature vector over blackbrush, creosote

leave, and sagebrush, denoted by ðblackbrushþ creosote leavesþ sagebrushÞ=3.

Table 27.4 RSDPW values of SAM and SID with and without VNVBS

       full bands 

VNVBS 

(blackbrush, creosote) (blackbrush, sagebrush) (creosote, sagebrush) 

SAM 

1.0715 

2.3422 

2.1693 

1.3615 

2.3244 

3.1890 

SID 

1.5793 

10.2230 

3.7215 

2.0333 

5.8772 

20.7859 

Table 27.3 Rescaled discrimination among blackbrush, creosote leaves, and sagebrush using

from Table 27.2

       full bands 

VNVBS 

(blackbrush, creosote) (blackbrush, sagebrush) (creosote, sagebrush) 

SAM 

         2.59 

3.89 

        1 

1 

      1.89 

3.61 

SID 

         7.89 

14.64 

        1 

1 

       4.81 

12.73 
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The experimental results in Table 27.4 demonstrated that the relative discriminatory powers

were significantly increased by VNVBS in the sense that the higher the RSDPW value, the better

the discrimination between two signature vectors. On the other hand, the smaller the RSDPW

value is, the more difficult the discrimination between two signature vectors is.

To have better visual assessment, Figure 27.3(a) and (b) also shows the graphical represen-

tations of Table 27.4 where RSDPW was graphically plotted as the y-axis against a pair of

signature vectors (s1,s2) along the x-axis with the reference signature vector r specified by b.
For example, 1:(b,c) in Figure 27.3(a) represents RSDPWSAM(s1,s2;b) of SAM comparing s1¼
‘blackbrush’ against s2¼ ‘creosote leaves’ with b¼ r¼ ‘ðblackbrushþ creosote leavesþ
sagebrushÞ=3.

To Figure 27.3(a) and (b), a tremendous improvement of RSDPW values produced by

VNVBS over using full bands was visually apparent because RSDPW values between black-

brush (b) and sagebrush (s) was reduced, and the other two pairs, (b,c) and (c,s) were greatly

increased. More specifically, the contrast between similarity and dissimilarity of two signature

vectors in terms of RSDPW has been significantly enhanced and increased by VNVBS. Further-

more, comparing Figure 27.3(a) with Figure 27.3(b), SID was also shown to outperform SAM in

discrimination between blackbrush, creosote leave, and sagebrush because RSDPW values of

SID was much higher than that of SAM in terms of the contrast between signature similarity

and signature dissimilarity. Because of that, only SID would be used for study and analysis in

the following experiments.

27.4.1.2 Signature Classification/Identification

In this section, we further assumed that there was a class of signature vectors, blackbrush (b),

creosote leaves (c), dry grass (d), and sagebrush (s) of interest for classification. We then simulated

a mixed signature vector tmix by uniformly mixing ¼ b, ¼ c, ¼ d, and ¼ s as follows:

tmix ¼ 0:25 � bþ 0:25 � cþ 0:25 � dþ 0:25 � s ð27:14Þ

According to the results in Chang (2000) and Chang (2003a), the spectral signature profile of

blackbrush was more close to the spectral signature profile of sagebrush than to the spectral

signature profile of creosote leaves. Similarly, the spectral signature profile of the creosote

leaves was more close to the spectral signature profile of sagebrush than to the spectral signa-

ture profile of blackbrush. Therefore, both blackbrush and creosote leaves were considered as

mutated signature vectors of sagebrush. In this case, the total amount of abundance fractions

contributed by blackbrush, creosote leaves, and sagebrush is 75% compared to only 25%
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Figure 27.3 Comparison between RSDPWof VNVBS and full bands using SAM and SID.
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contributed by drygrass. As a result, it is natural to conclude that the mixture signature vector

tmix in (27.14) should be classified as sagebrush because sagebrush contributed more to the

mixed signature vector than any other three signature vectors. This interesting scenario sheds

some light on the impact of BS on signature analysis. In this case, the reference signature

vector r for VNVBS was simply chosen to be the tmix, Table 27.5 lists the bands prioritized

by VNVBS according to (27.9), where the original set of bands was divided into two subsets

of bands, V?
s and Vs via (27.10).

Like Table 27.1, V?
s is empty for tmix. This was very obvious because the reference signa-

ture vector r specified by (27.3)–(27.4) was equal to the signature vector s, both of which were

tmix. Table 27.6 tabulates the spectral similarity values measured by SID between VNVBS-

generated new signatures of tmix and each of its components, b, c, d, and s, according to the

bands selected by Table 27.5 where the upper and lower values in Table 27.6 were obtained by

the full band set and the priority-ranked band set V?
s , respectively. In particular, a smallest SID

value across a row was highlighted by shade for classification. The rescaled SID values, as

well as the corresponding RSDPW values with b specified by tmix, were also shown in Table

27.6 for direct comparisons.

The results in Table 27.6 demonstrated that SID using VNVBS greatly improved the perform-

ance for mixed signature classification over SID using full bands because the former could cor-

rectly classify the mixed signature into sagebrush while the latter could not. In addition, the

contrast between different discrimination powers provided by SID was also increased by

VNVBS compared to that by full bands as shown by the rescaled SID values in the second row

Table 27.5 V?
s and Vs for blackbrush, creosote leaves, and sagebrush

V?
s Vs

Blackbrush 25,26 1–24, 27–158

Creosote leaves 47,48,49 1–46, 50–158

Sagebrush 43–48 1–42, 49–158

Drygrass 13–23, 92–98, 119–158 1–12, 24–91, 99–118,

tmix None 1–158

Table 27.6 SID, rescaled SID, and RSDPW values between tmix and each component using

bands obtained by (27.12) and Table 27.5

full bands  

VNVBS 

(tmix

,b) (tmix

,s) (tmix

,c) (tmix

,d) 

SID 

       0.0052    

5e-005 

         0.0081     

1e-006 

       0.0661 

2e-005 

         0.0500      

0.0039 

Rescaled SID 

1 

50 

1.56 

1 

12.71 

20 

9.62 

3900 

RSDPW 

192.2 

20096 

123.3 

935720 

15.123 

45974 

20.00 

254.71 
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of Table 27.6. For example, the maximum ratio between these two pairs using full bands was

only 12.71 as opposed to 3900 using VNVBS.

To further investigate the impact of the reference signature vector used by the VNVBS, experi-

ments with different choices of the reference signature vector r were used, blackbrush, creosote

leaves, sagebrush, and drygrass, respectively. As a result, five RSDPWSID(t,x;b) plots were gener-
ated, each of which was produced by one particular choice of reference signature vector r as shown

in Figure 27.4 with SID used as a spectral similarity measure where ‘t’ was tmix, and “x” could be

any one of the four signatures, ‘b’, ‘c’, ‘s’, and ‘d’ which represent, blackbrush, creosote leaves,

sagebrush, and drygrass with b¼ tmix. Also the interpretation of RSDPW between two signature

vectors in Figure 27.4 was the same as that made in Figure 27.3(a) and (b).

As shown in Figure 27.4, using tmix as the reference signature vector seemed to outperform any

other selected reference signature vector.

The aforementioned experiments were also for mixed signature identification if a class of

signature vectors to be classified was replaced by a database or spectral library. In this case,

the mixed signature tmix would be identified as sagebrush via the assumed database D¼ {b,

c, d, s}.

27.4.1.3 Noise Effect on VNVBS

Finally, this section concludes with an investigation of noise effects on the performance of

VNVBS. Adding a Gaussian noise n to (27.13) yielded a noisy mixed signature as follows:

~t
mix ¼ 0:25 � bþ 0:25 � cþ 0:25 � dþ 0:25 � sþ n ð27:15Þ

Since it is shown in Section 27.4.1.2 that tmix was a better option for the reference signature vector,
~t
mix

was also selected as the reference signature vector r.

Table 27.7 tabulates the SID-measured spectral similarity values between ~t
mix

and each compo-

nent, b, c, d, and s, respectively, where a Gaussian noise was used to produce three different SNRs,
10 dB, 20 dB, and 30 dB as defined in Harsanyi and Chang (1994). The upper and lower entries in

0

1

2

3

4

5

6

7

1:(t,b)         2:(t,c)         3:(t,s)        4:(t,d)

mixture as reference
blackbrush as reference
creosote leave as reference
sagebrush as reference
drygrass reference

lo
g 1

0(
R

SD
PW

 )

Figure 27.4 RSDPW curves corresponding to five different selections of reference signatures of using

VNVBS with similarity measured by SID.
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Table 27.7 are the SID-values obtained using VNVBS and full bands, respectively, where a small-

est SID value was highlighted by shade to indicate the classification of ~t
mix

.

As a comparison, the RSDPW values between ~t
mix

and each component with three SNRs were

shown in Table 27.8. Similarly, the upper and lower entries in Table 27.8 were the RSDPW values

obtained using VNVBS and full bands, respectively.

An interesting finding can be observed from Tables 27.7 and 27.8. The higher the SNR value

is, the lower the noise level relative to the signal, and vice versa. Therefore, according to

Tables 27.7 and 27.8, when SNR¼ 10 dB which indicated that the noise level was high and the

signal was overwhelmed by noise, the SID values calculated by both VNVBS and full bands

classified ~t
mix

as blackbrush instead of sagebrush as the noise-free case did in Table 27.6 since

the spectral profile, especially the local spectral profile suffered from significant distortion due

to noise effects. However, when SNR¼ 20 dB or 30 dB which implied that signal began to show

its dominance compared to the case of SNR¼ 10 dB. As a result, the SID values using the

VNVBS correctly classified ~t
mix

as sagebrush compared to the SID values using full bands

which still classified ~t
mix

as blackbrush. This experiment further showed an advantage of using

VNVBS over using full bands.

Table 27.7 SID values between ~t
mix

and each of its components, b, c, d, s with three SNRs,

10 dB, 20 dB, and 30 dB

  full   

VNVBS 

(
mix~t ,b) (

mix~t ,c) (
mix~t ,s) (

mix~t ,d) 

10dB 0.0074 

0.0052 

0.0674 

0.0062 

0.0100 

0.0068 

0.0532 

0.0073 

20dB  0.0052 

0.0125 

0.0662 

0.0351 

0.0081 

0.0029 

0.0500 

0.0058 

30dB  0.0052 

0.00005 

0.0661 

0.00002 

0.0081 

0 

0.0500 

0.0039 

Table 27.8 RSDPW values between ~t
mix

and each of its components, b, c, d, s with three SNRs,

10, 20, and 30 dB

  full   

VNVBS 

(
mix~t ,b) (

mix~t ,c) (
mix~t ,s) (

mix~t ,d) 

10dB 

137.41 

14.62 

15.05 

4.82 

107.52 

11.28 

18.55 

8.34 

20dB  

194.71 

12.03 

15.13 

4.78 

123.59 

17.96 

19.94 

10.00 

30dB  

192.30 

12.12 

15.12 

4.77 

123.37 

18.05 

19.99 

10.04 
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27.4.2 NIST-Gas Data

In this section, the NIST-gas data set D shown in Figure 1.10 was used for experiments. It is the

same data set considered in Kwan et al. (2006) and available at the National Institute of Standard

Technology (NIST)’s web site (webbook .nis t.gov /chemistry) . It contains spectral sign ature vectors

of nine agents sif g9i¼1, eight of them, sif g9i¼2 are composed of 880 bands, and only one of them, s1,

consists of 825 bands.

27.4.2.1 Signature Discrimination

In this subsection, the eight agent signature vectors sif g9i¼2 with the same number of bands

were used as signature vectors to be discriminated. The agent s1 was removed from considera-

tion because it has a different number of bands from those used in other eight signature vec-

tors. As a result, the reference signature vector r for OSP-BPC was chosen to be the averaged

signature vector over s2, s3, s4, s5, s6, s7, s8, and s9. Table 27.9 lists the bands prioritized by

OSP-BPC according to (27.9), where the original set of bands, V was divided into two subsets

of bands, V?
s and Vs via (27.10).

Tables 27.10 tabulates the spectral similarity values of SID produced by VNVBS and full bands

in discriminating among the eight different agent signatures of s2–s9 where VNVBS was imple-

mented via (27.12) and the bands tabulated in Table 27.9.

Since Table 27.10 is symmetric, the SID values and RSDPW values are tabulated in the

upper and lower entries of Table 27.10, respectively. As shown in Table 27.10, the signature

discrimination performance was improved significantly by VNVBS over that produced by full

bands.

To have better visual assessment, Figure 27.5 shows the graphical representation of Table 27.10

where the RSDPW values were graphically plotted as the y-axis against pairs of signature vectors

along the x-axis in the order of (s2, s3), (s2, s4), . . . , (s2, s9), (s3, s4), . . . , (s3, s9), . . . , (s8, s9)
with b specified by the reference signature vector r. For example, (sj,sk) in Figure 27.5 represents

RSDPWSID(sj, sk;b) of SID comparing sj against sk with b set to the reference signature vector r

which was the averaged signature vector over s2 to s9. As shown in Figure 27.5, SID using VNVBS

clearly outperformed SID using full bands.

Table 27.9 V?
s and Vs for eight agents sif g9i¼2

Agent V?
s Vs

s2 599–636 1–598, 637–880

s3 61–69, 74–80, 190–196, 212–222, 309–317,

692–720

1–60, 70–73, 81–189, 197–211, 223–308,

318–691, 721–880

s4 28–51, 327–343 1–27, 52–326, 344–880

s5 127–132 1–126, 133–880

s6 1–9, 12–17, 262–281, 301–309, 318–324, 344–398,

403–407, 736–740, 742–880

10, 11, 18–261, 282–300 310–317, 325–343,

399–402, 408–735, 741

s7 138–146, 154–159, 383, 389–538, 554–597,

605–613

1–137, 147–153, 160–382 384–388,

539–553, 598–604, 614–880

s8 282–305 1–281, 306–880

s9 95–122, 182–189 1–94, 123–181, 190–880
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27.4.2.2 Signature Classification/Identification

Following the same treatment carried out in Section 27.4.1.2, we also simulated a mixed signature

tmix by uniformly mixing eight different agent signature vectors from s2 to s9, namely,

tmix ¼ 0:125 � s2 þ 0:125 � s3 þ 0:125 � s4 þ 0:125 � s5
þ 0:125 � s6 þ 0:125 � s7 þ 0:125 � s8 þ 0:125 � s9 ð27:16Þ

with the reference signature vector r chosen to be the same as that used in Section 27.4.2.1. As a

result, in this particular case, the reference signature vector r turned out to be the same signature

Table 27.10 Discrimination among eight agent signatures using (27.12) and Table 27.9 with SID

and RSDPW used as similarity measures on the upper and lower triangles

VNVBS 

full bands

s2 s3 s4 s5 s6 s7 s8 s9

s2

0 

0 

5.490 

3.648 

6.053 

3.514 

1.499 

2.202 

6.021 

4.480 

0.002 

1.069 

6.975 

3.645 

9.157 

6.100 

s3

5.391 

1.217 

0 

0 

5.371 

3.155 

3.966 

3.949 

2.597 

3.204 

3.506 

2.484 

2.456 

1.676 

5.845 

4.724 

s4

4.522 

1.054 

1.192 

1.154 

0 

0 

6.223 

2.943 

4.354 

3.934 

3.721 

2.185 

6.062 

3.383 

7.420 

4.523 

s5

2.905 

1.140 

15.665 

1.388 

13.138 

1.202 

0 

0 

5.491 

5.301 

1.454 

1.134 

6.409 

4.118 

3.373 

3.123 

s6

14.843 

1.404 

2.752 

1.153 

3.282 

1.331 

     43.121 

1.601 

0 

0 

2.338 

2.396 

0.127 

2.495 

7.804 

7.019 

s7

1.944 

3.235 

2.772 

2.657 

2.325 

3.068 

5.649 

3.689 

7.633 

2.304 

0 

0 

4.664 

2.506 

4.198 

3.824 

s8

5.544 

1.469 

1.028 

1.206 

1.226 

1.393 

16.108 

1.675 

2.677 

1.046 

2.851 

2.201 

0 

0 

7.423 

5.350 

s9

7.568 

2.066 

1.403 

2.515 

1.673 

2.178 

21.989 

1.811 

1.961 

2.901 

3.892 

6.685 

1.365 

3.035 

0 

0 

0

10

20

30

40

50

(s_j, s_k)

R
S

D
P

W

full bands

VNVBS

Figure 27.5 Comparison between RSDPWof VNVBS and full bands using SID for signature discrimination

among eight agents.
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vector to be classified, tmix. Table 27.11 tabulates the spectral similarity values produced by SID

between tmix and each of eight agents sif g9i¼2 using full bands and VNVBS, where the upper and

lower values in each entry of Table 27.11 were obtained by VNVBS and all the full 880 bands,

respectively, with a smallest value highlighted by shade for classification.

Like the AVIRIS experiments conducted in Section 27.4.1, the signature discrimination

performance was significantly improved using VNVBS compared to that produced using full

bands. Figure 27.6 also showed the graphical representation of the RSDPW values obtained

from Table 27.11 where the RSDPW values were graphically plotted as the y-axis against pairs of

signatures (tmix,sk) with k ¼ 2; 3; . . . ; 9 along the x-axis with b specified by the reference signa-

ture vector r.

For example, (t,sj) in Figure 27.6 represented the RSDPWSID(t
mix,sj;b) values produced by

SID comparing tmix against sj with b set to the reference signature vector r which was the

averaged signature vector over s2 to s9. Once again, as shown in Figure 27.6, VNVBS demon-

strated its superior performance to that produced using full bands in terms of the rescaled val-

ues of SID as shown in the second row of Table 27.11. For example, the maximum SID ratio

using full bands between eight pairs of (tmix, sk) with k ¼ 2; 3; . . . ; 9 was only 6.69 compared

to 3930 produced by VNVBS.

Table 27.11 SID, rescaled SID, and RSDPW values between mixed signature and each

component with and without VNVBS using bands obtained by (27.12)

VNVBS 

full bands 

(tmix , s2) (tmix , s3) (tmix , s4) (tmix , s5) (tmix , s6) (tmix , s7) (tmix , s8) (tmix , s9) 

SID 

2.17 

1.68 

0.007 

1.38 

1.84 

1.60 

2.73 

1.92 

0.003 

1.20 

0.001 

0.52 

2.37 

1.15 

3.93 

3.48 

Rescaled SID 

2170 

3.23 

7 

2.65 

1840 

3.08 

2730 

3.69 

3 

2.31 

1 

1 

2370 

2.21 

3930 

6.69 

RSDPW 

138.33 

1.683 

27.654 

1.383 

30.589 

1.597 

401.87 

1.920 

9.319 

1.199 

71.137 

1.992 

27.949 

1.146 

16.276 

3.479 

0

100

200

300

400

500

 (t,s2)    (t,s3)    (t,s4)    (t,s5)    (t,s6)  (t,s7)  (t,s8)  (t,s9)

R
S

D
P

W

full bands

VNVBS

Figure 27.6 Comparison between RSDPW of VNVBS and full bands using SID for mixed signature

classification.
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27.4.2.3 Signature Discrimination between Two Signatures with Different

Numbers of Bands

One of the strengths of VNVBS is its ability to discriminate two signature vectors with different

numbers of bands which was not found in the above AVIRIS experiments. To demonstrate this

advantage, the agent s1 with 825 bands was used for this purpose to be compared against the other

eight agents, s2–s9 with 880 bands. In doing so, two approaches were considered. One was to

extract bands from the signature vector with a larger number of bands to match the same number

of bands used by the signature vector with a smaller number of bands. As an opposite to the first

approach, a second approach was to expand the signature vector with a smaller number of bands to

match the same number of bands used by the signature vector with a larger number of bands by

zero-padding in the missing bands. These two approaches were considered in the following

experiments.

Extracting 825 Bands from the Original 880 Bands for s2–s9 with the Same Wavelength
Coverage as s1

In this case, the reference signature r for VNVBS was chosen by averaging from s1 to s�9, where s
�
k

(k ¼ 2; 3; . . . ; 9) denoted the signature with 825 bands extracted from the kth signature with origi-

nal 880 bands. In this case, the r had only 825 bands. Table 27.12 lists the bands prioritized by the

VNVBS according to (27.9), where the original set of bands was divided into two subsets of bands,

V?
s and Vs via (27.10).

Table 27.13 tabulates the SID-generated spectral similarity values obtained by VNVBS and full

bands, respectively, for comparison where VNVBS also outperformed the use of full bands.

Similar to Table 27.10, the SID values and RSDPW values are tabulated in the upper and lower

triangles of Table 27.13, respectively.

Expanding Original 825 Bands to 880 Bands Through Zero Padding

In this case, s^1 denoted the signature vector s1 after interpolating the original 825 bands to

880 bands by zero padding. Similarly, Table 27.14 lists the bands prioritized by VNVBS accord-

ing to (27.9), where the original set of bands was divided into two subsets of bands, V?
s and Vs

via (27.10).

Table 27.12 V?
s and Vs generated by Approach 1 from s1 to s9

S V?
s Vs

s1 596 1–595, 597–825

s�2 581–611 1–580, 612–825

s�3 37–44, 49–55, 165–171, 187–197, 284–292,

667–695

1–36, 45–48, 56–164, 172–186, 198–283,

293–666, 696–825

s�4 2–26, 302–318 1, 27–301, 319–825

s�5 102–107 1–101, 108–825

s�6 237–256, 275–284, 293,300, 319–382, 705,

710–825

1–236, 257–274, 285–292, 294–299, 301–318,

383–704, 706–709

s�7 113–121, 129–134, 358, 364–366, 368–506 1–112, 122–128, 135–357, 359–363, 367,

507–825

s�8 257–280 1–256, 281–825

s�9 70–79, 82–86, 89–97, 157–164 1–69, 80–81, 87–88, 98–156, 165–825
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Table 27.15 tabulates SID-generated spectral similarity values using VNVBS and full bands

respectively for comparison. Like Table 27.13, the SID values and RSDPW values were tabu-

lated in the upper and lower entries of Table 27.15, respectively, where VNVBS also demon-

strated its advantage by selecting bands compared to full bands.

Table 27.13 Discrimination among nine agent signatures from s1 to s
�
9 obtained by VNVBS and

full bands

VNVBS 

full 

bands 

s1 s*
2 s*

3 s*
4 s*

5 s*
6 s*

7 s*
8 s*

9

s1

0 

0 

0.18 

0.63 

5.08 

4.80 

7.77 

4.95 

6.34 

4.24 

6.01 

5.51 

3.27 

2.17 

8.11 

4.82 

9.74 

8.96 

s*
2

1.01 

1.72 

0 

0 

5.29 

3.62 

6.14 

3.51 

1.67 

2.17 

5.94 

4.40 

1.38 

1.04 

7.26 

3.67 

8.94 

6.08 

s*
3

4.10 

1.79 

4.14 

1.04 

0 

0 

5.36 

3.17 

3.96 

4.00 

259 

2.97 

3.31 

2.48 

2.45 

1.70 

5.84 

4.73 

s*
4

3.61 

1.62 

3.65 

1.05 

1.13 

1.10 

0 

0 

6.15 

2.99 

4.00 

3.56 

3.52 

2.15 

6.04 

3.43 

7.41 

4.48 

s*
5

3.84 

1.33 

3.79 

1.28 

15.75 

1.34 

13.87 

1.21 

0 

0 

5.72 

5.25 

1.19 

1.30 

6.40 

4.20 

3.37 

3.06 

s*
6

10.93 

1.99 

11.05 

1.16 

2.66 

1.11 

3.02 

1.22 

 42.00 

1.49 

0 

0 

2.23 

2.36 

0.18 

2.16 

7.80 

6.75 

s*
7

1.23 

5.30 

1.24 

3.08 

3..33 

2.95 

2.93 

3.26 

4.72 

3.96 

8.88 

2.65 

0 

0 

4.99 

2.54 

3.06 

3.74 

s*
8

4.17 

2.12 

4.22 

1.23 

1.01 

1.18 

1.15 

1.30 

16.04 

1.59 

2.61 

1.06 

 3.39 

2.49 

0 

0 

7.42 

5.36 

s*
9

5.73 

1.41 

5.79 

2.43 

1.39 

2.53 

1.58 

2.30 

22.02 

1.89 

1.90 

2.82 

4.65 

7.50 

3.37 

3.01 

0 

0 

Table 27.14 V?
s and Vs generated by Approach 2 from s1 to s9

s V?
s Vs

s^1 1–23, 620–621, 853–880 24–619, 622–852

s2 606–613, 624–636 1–605, 614–623, 637–880

s3 61–69, 74–80, 190–196, 212–222, 309–317,

692–720

1–60, 70–73, 81–189, 197–211, 223–308,

318–691, 721–880

s4 28–51, 327–343 1–27, 52–326, 344–880

s5 127–132 1–126, 133–880

s6 1–18, 262–281, 301–309, 318–325, 344–399,

403–407, 735–880

19–261, 282–300, 310–317, 326–343,

400–402, 408–734

s7 138–146, 154–159, 383, 389–531 1–137, 147–153, 160–382, 384–388, 532–880

s8 282–305 1–281, 306–880

s9 95–122, 182–189 1–94, 123–181, 190–880
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According to Tables 27.13 and 27.15, the two approaches did not have very much impact on

SID when full bands were used, but their discriminatory powers calculated for the rescaled SID

values and RSDPW values we significantly improved when VNVBS was used for SID.

One final comment is noteworthy. Two approaches proposed for VNVBS in Section 27.4.2.3

are specifically designed for signature vectors but not images to which standard BS techniques

such as Mausel et al. (1990), Conese and Maselli (1993), Stearns et al. (1993), Chang et al.

(1999), and Huang and He (2005), which are not applicable because the latter cannot process a

hyperspectral image whose image pixels vary with different number of bands. OSP-BPS allows

users to implement VNVBS for spectral characterization. To the author’s best knowledge, there

are no existing standard BS techniques that can be used to select bands from a single hyper-

spectral signature vector as what VNVBS does. Such benefit derived from VNVBS cannot be

gained by any image-based band selection.

By concluding this section, it is worth noting that there are significant differences between two

data sets, CB data and AVIRIS data. So, VNVBS also performed quite differently for both data

sets. The V?
s obtained for gas data tended to capture the peaks, while the V?

s obtained for hyper-

spectral AVIRIS data attempted to capture the edges of the spectral signature vectors. This is

because the peaks in the gas data and edges in the AVIRIS data are their most distinct spectral

features in their local spectral profiles. The VNVBS is particularly designed to characterize such

local properties of a signature vector.

Table 27.15 Discrimination among nine agent signatures from s^1 to s9 obtained by VNVBS and

full bands

VNVBS 

full 

bands 

s^
1 s2 s3 s4 s5 s6 s7 s8 s9

s^
1

0 

0 

0.20 

0.62 

5.85 

4.77 

7.72 

4.86 

5.38 

4.17 

∞
5.20 

3.20 

2.13 

8.03 

4.77 

10.5 

8.95 

s2

130.96 

1.65 

0 

0 

5.29 

3.64 

6.15 

3.50 

1.67 

2.19 

5.86 

4.47 

1.38 

1.05 

7.26 

3.64 

8.94 

6.05 

s3

31.57 

1.72 

4.14 

1.04 

0 

0 

5.37 

3.14 

3.96 

3.93 

2.59 

3.12 

3.31 

2.45 

2.45 

1.67 

5.84 

4.71 

s4

37.21 

1.52 

3.51 

1.07 

1.17 

1.13 

0 

0 

6.22 

2.91 

4.30 

3.81 

3.54 

2.14 

6.06 

3.37 

7.41 

4.49 

s5

497.44 

1.29 

3.79 

1.27 

15.75 

1.33 

13.36 

1.18 

0 

0 

5.41 

5.29 

1.19 

1.31 

6.40 

4.11 

3.37 

3.10 

s6

11.63 

1.94 

11.25 

1.17 

2.71 

1.12 

3.19 

1.27 

42.74 

1.50 

0 

0 

2.17 

2.38 

0.12 

2.29 

7.79 

6.81 

s7

105.25 

5.19 

124 

3.14 

3.33 

3.00 

2.82 

3.39 

4.73 

4.01 

9.04 

2.66 

0 

0 

4.99 

2.49 

3.06 

3.74 

s8

31.00 

2.07 

4.22 

1.25 

1.01 

1.20 

1.20 

1.35 

16.04 

1.60 

2.66 

1.06 

3.39 

2.49 

0 

0 

7.42 

5.33 

s9

22.58 

1.45 

5.79 

2.40 

1.39 

2.52 

1.64 

2.22 

22.02 

1.88 

1.94 

2.83 

4.65 

7.56 

3.37 

3.03 

0 

0 
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27.5 Selection of Reference Signatures

As noted, the selection of the reference signature vector r had significant impact on the perform-

ance. To address this issue, two general guidelines of how to select the reference signature vector r

based on our extensive experiments may be helpful.

1. Since the signature vector r is used as a reference signature vector between two signature vec-

tors s1 and s2, it should have some degree of correlation associated with both signature vectors.

Keeping this in mind, when spectral feature characterization is performed such as signature

discrimination via a database/spectral library, the best reference signature vector to be selected

is the average of all signature vectors in the database/spectral library so that any pair of the two

signature vectors drawn from the database/spectral library to be characterized can have some

correlation with the averaged signature vector. On the other hand, if a reference signature vector

is selected from the database/spectral library, the performance will be determined by how close

a signature vector is related to the other signature vector coming from the same database, which

is to be compared against. As a consequence, the performance may yield complete different

results. Such evidence was demonstrated in Section 27.4.

2. By contrast, if a mixed signature vector is to be classified/identified through a database/spectral

library which comprises each mixing component, then the best candidate for the reference sig-

nature vector r is the mixed signature vector itself. This is because the mixed signature vector

itself already provides the desired correlation for the classification/identification between this

mixed signature vector and each of its mixing components. Using the average of signature vec-

tors may only smear the spectral characteristics. This was also confirmed by the experiments in

Section 27.4.1.2.

27.6 Conclusions

This chapter presents a new approach to BS, called VNVBS for a single hyperspectral signature.

Unlike most band selection techniques which are designed for images, VNVBS is designed for

characterization of a single hyperspectral signature vector without a need of image sample correla-

tion. To select appropriate bands, an OSP-BPC is also developed, which decomposes the original

spectral signature vector into two orthogonal components that can be used for spectral characteri-

zation. Experimental results demonstrate that VNVBS is more effective in preserving information

for hyperspectral signature characterization than that using full band information in hyperspectral

signature characterization and analysis.
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28

Kalman Filter-Based Estimation
for Hyperspectral Signals

Most popular and widely used approaches in statistical signal estimation are mean squared error

(MSE) based approaches among which Kalman filtering (KF) is the most powerful and effective

technique that can be implemented in real time under a nonstationary environment. Recently, a

Kalman filtering approach to linear spectral unmixing, called Kalman filter-based linear spectral

unmixing (KFLU) was developed for mixed pixel classification by Chang and Brumbley (1999a,

1999b). However, its applicability to spectral characterization for spectral estimation, identifica-

tion, and quantification has not been explored. This chapter presents new applications of KF in

spectral estimation, identification, and abundance quantification for which three Kalman filter

(KF)-based spectral characterization signal processing (KFSCSP) techniques are developed. These

techniques are completely different from KFLU in the sense that the former performs a

Kalman filter across a spectral coverage wavelength by wavelength (i.e., band-by-band) as opposed

to the latter, which implements a Kalman filter pixel vector by pixel vector throughout an entire

image cube. In addition, the proposed Kalman filter-based techniques do not require a linear mix-

ture model as KFLU does. Accordingly, they are not linear spectral unmixing methods but rather

spectral signature filters operating as if they are spectral measures. More specifically, the state

equation implemented in KFLU is designed to keep track of pixel-to-pixel correlation present in a

hyperspectral image cube, whereas the state equation used by KFSCSP techniques is designed to

capture the band-to-band correlation within a single signature vector. As a result, KFSCSP tech-

niques can be used for both laboratory data and non-image data analysis compared with KFLU,

which is primarily developed for hyperspectral imagery. This is due to the fact that laboratory data

do not usually have pixel-to-pixel correlation of which KFLU can take advantage, but they do have

band-to-band correlation that can be taken into account by KFSCSP techniques. Also, KFSCSP

techniques do not require a linear mixture model as does KFLU, which assumes that image pixels

are linearly mixed by a number of image endmembers. Therefore, KFSCSP techniques do not need

image endmembers to form a linear mixture model for their implementation. Accordingly, they

would rather be considered as spectral signature filters.

28.1 Introduction

Kalman filtering (KF) has been widely used in statistical signal processing for the purpose of

parameter estimation (Poor, 1994). It makes use of a measurement equation (input/output

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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equation) and a state equation (process equation) to recursively estimate parameters of the state. A

new application of KF in linear spectral unmixing, called Kalman filter-based linear spectral

unmixing (KFLU), was recently developed by Chang and Brumbley (1999a, 1999b) for mixed

pixel classification. When a Kalman filter is implemented for linear spectral unmixing as a mixed

pixel classifier, the state vector x in the state equation is specified by the abundance vector a pres-

ent in an image, and the pixel vector r is specified by another equation called measurement equa-

tion from which a can be estimated. With the measurement equation, a Kalman filter takes

advantage of a linear mixture model commonly used in linear spectral unmixing to describe how a

pixel vector r is linearly mixed via a measurement equation. By recursively implementing these

two equations, KFLU generally produces better estimates of abundance fractions than other linear

spectral unmixing methods (Chang and Brumbley, 1999a, 1999b). Several advantages resulting

from the use of a Kalman filter are obvious for remote sensing image analysis. One is its ability to

deal with nonstationary data, which are generally true in remotely sensed imagery. Another is its

recursive structure that makes real-time processing feasible. A third advantage is its utilization of

two equations, measurement and state equations, which can be implemented in various forms to

accomplish different tasks such as smoothing, filtering, and prediction (Gelb, 1974).

This chapter re-invents the wheel by developing Kalman filter KF-based techniques for spectral

signature characterization rather than KFLU that is used for linear spectral unmixing. It explores

several new applications of KF in hyperspectral signature analysis for spectral estimation, identifi-

cation, and quantification by re-deriving the measurement and state equations, which result in vari-

ous techniques referred to as Kalman filter-based spectral characterization signal processing

(KFSCSP) techniques. Several prominent differences between KFLU developed by Chang and

Brumbley (1999a, 1999b) and KFSCSP techniques developed in this chapter are noteworthy and

described in the following.

In KFLU, the measurement equation is described by a linear mixture model used by linear spec-

tral mixture analysis (LSMA) and the state equation is included to perform abundance vector esti-

mation for the image endmembers, which are used to form a linear mixture model for spectral

unmixing. Therefore, KFLU actually operates on a hyperspectral image cube and performs image

classification by estimating abundance vectors via its state equation, while each image pixel vector

in the image cube serves as an input to the measurement equation. On the contrary, KFSCSP tech-

niques are rather different from KFLU in the sense that KFSCSP technique is a one-dimensional

(1D) signal-processing technique that exploits spectral variability of a single signature vector

across its spectral coverage to perform spectral analysis without referencing other data sample vec-

tors. As a result, the sample correlation used in the state equation by KFLU is not available in

KFSCSP techniques. So, if a KFSCSP technique is applied to an image cube, it only considers

each pixel vector as a single and independent signature vector without accounting for sample spec-

tral correlation. It then serves as a spectral signature filter rather than as an image classifier per-

formed by KFLU. Another significant difference is how the measurement equation is interpreted.

KFLU requires prior knowledge of image endmembers to define the measurement equation for

spectral unmixing. This is no longer true for a KFSCSP technique, because the data to be processed

by a KFSCSP technique are a single signature vector, not an image cube in which there is no linear

mixing involved. Additionally, a KFSCSP technique can be implemented solely as a signature

estimator, an identifier, or an abundance quantifier compared with KFLU, which is implemented

as an abundance vector estimator with image endmembers assumed to be known a priori. Finally,

the state equation used in KFLU is designed for linear spectral unmixing to keep track of the

changes in abundance fractions of image endmembers pixel vector by pixel vector. However, the

state equation used in a KFSCSP technique is designed to capture spectral variations within a sig-

nature vector across its spectral range wavelength by wavelength. Therefore, throughout this
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chapter, the term “signature vector” is used instead of “pixel vector” to reflect the distinction

between different types of data processed by a KFSCSP technique and KFLU.

28.2 Kalman Filter-Based Linear Unmixing

KF has been widely used in statistical signal processing for parameter estimation (Gleb, 1974). It

makes use of a measurement equation (input/output equation) and a state equation (process equa-

tion) to recursively estimate parameters of states. When a Kalman filter is implemented for spectral

unmixing as a mixed pixel classifier, the state vector x in an equation, called state equation, is

specified by the abundance vector a present in an image pixel vector r, which is specified by

another equation called measurement equation. With this formulation, a Kalman filter takes advan-

tage of a linear mixing model commonly used in spectral unmixing to describe how a pixel vector r

is linearly mixed via a measurement equation. Meanwhile, KFLU includes an additional equation,

state equation, which is absent in spectral unmixing to estimate the abundance fractions of the

abundance vector of the currently processed pixel vector in an image based on previously proc-

essed pixels. Implementing these two equations recursively, KFLU generally produces better esti-

mates of abundance fractions than spectral unmixing methods.

This and the following sections present several new applications of KF in spectral estima-

tion, identification, and quantification for hyperspectral signature characterization by re-

deriving the measurement and state equations, which results in several techniques referred to as

KFSCSP techniques. There are important and salient differences between KFLU and KFSCSP

techniques that are worth mentioning. In KFLU, the measurement equation is described by a

linear mixing model formed by a set of image endmembers and the state equation is included

to perform abundance vector estimator of these image endmembers via spectral unmixing.

Therefore, KFLU operates on a hyperspectral image as an image cube and performs image

classification using the estimated abundance vector produced by its state equation where each

image pixel vector is considered as an input to the measurement equation. Quite oppositely,

KFSCSP technique performs quite differently from KFLU in the sense that it is a one-dimen-

sional (1D) signal-processing technique that explores spectral variability within a single signa-

ture vector across the spectral range band by band where there are no sample vectors involved

such as sample covariance matrix used in KFLU. As a result, the sample correlation is not

available in KFSCSP technique. So, if it is applied to an image cube, it considers a pixel vector

as a single signature vector without accounting for sample correlation and performs as a spec-

tral signature filter rather than an image classifier as KFLU does. Another significant difference

is the use of the measurement equation. KFLU requires prior knowledge of image endmembers

to form a linear mixture model to implement the measurement equation for spectral unmixing.

This is not true for KFSCSP technique because the data to be processed are signature vector

and not an image cube, and there is no need of a linear mixture model. Additionally, KFSCSP

technique can be implemented as a signature estimator, an identifier, and an abundance quanti-

fier compared with spectral unmixing methods including KFLU, which can only be imple-

mented as an abundance vector estimator for image endmembers assumed to be known

a priori. Finally, since KFSCSP technique is not developed for image classification, the state

equation used in spectral unmixing to keep track of changes in abundance fractions of image

endmembers pixel vector by pixel vector is not applicable. Instead, the state equation used in

KFSCSP technique is designed to capture spectral variation of a signature vector across its

spectral coverage wavelength by wavelength.

Let r(x,y) be the location of a multispectral/hyperspectral imager pixel vector at the spatial

coordinate of (x,y), and L be the total number of spectral channels (bands). Then, r(x,y) is an L� 1
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column vector. We further assume that an r(x,y) can be modeled by a linear mixture of p

image endmembers, m1;m2; . . . ;mp which are present in the image with appropriate abundance

fractions, a1;a2; . . . ;ap with aj corresponding to the abundance fraction of the jth endmember mj

as follows:

rðx; yÞ ¼ Maðx; yÞ þ uðx; yÞ ð28:1Þ

where u(x,y) is a measurement or model error introduced at r(x,y) and M ¼ m1m2 � � �mp

� �
is the

image endmember matrix formed by m1;m2; . . . ;mp and can be viewed as a measurement matrix.

It should be noted that the endmember matrix remains invariant and independent of the spatial loca-

tion of r(x,y). However, the abundance fractions a1;a2; . . . ;ap are the parameters that vary with

pixel vector by pixel vector and need to be estimated. In order to simplify discussions, we represent

the image pixel vector r(x,y) by r(k), with the parameter k indicating the position of r(x,y) that is

processed in a top-down and left-right fashion. As a result, its corresponding abundance vector will

be denoted by a(k). One of major strengths of a Kalman filter is that it introduces a so-called state

equation, which keeps track of changes in states during their transitions and is absent in spectral

unmixing methods. If we interpret a state at position k as an abundance vector a(k), then the state

equation allows us to capture changes in abundance fractions residing in the image pixel vector r(k)

at the position k to the image pixel vector r(kþ 1) at the position kþ 1. More specifically, we can

model the state equation by

aðk þ 1Þ ¼ Fðk þ 1; kÞ � aðkÞ þ vðkÞ ð28:2Þ

where F(kþ 1, k) is an L� L transition matrix from the pixel vector at the position k to the pixel

vector at the position kþ 1, and v(k) can be considered as a state noise or model error at the position

k. In order to implement a Kalman filter, we assume that the noise u(k) in (28.1) is an additive white

noise given by

E u nð ÞuT kð Þ� � ¼ R ¼ s2
u � dnkIL�L ð28:3Þ

where dnk is Kronecker’s notation defined by dkk ¼ 1 for n ¼ k and dnk ¼ 0 for n 6¼ k. Similarly,

we can also assume that the noise v(k) in (28.2) is also an additive white noise given by

E v nð Þ � vT kð Þ� � ¼ Q ¼ s2
v � dnkIp�p ð28:4Þ

Using (28.1)–(28.4), a Kalman filter can perform three operations: smoothing, filtering, and predic-

tion, of which smoothing and filtering can be essentially derived from prediction by Gelb (1974).

Since we are only interested in filtering and prediction that can be used to estimate spectral signa-

tures, only these two operations will be reviewed and briefly discussed in the following. For all the

details of KF implementation, we refer to tGelb (1974). We assume that k is the spatial position of

the image pixel vector currently being processed and the observed image vectors described by (28.1)

are available up to k, rðiÞjki¼1. Let âðk þ 1jkÞ denote the minimum MSE prediction of the abun-

dance vector a(k) at the position kþ 1 and âðkjkÞ denote the minimum MSE estimate of the abun-

dance vector a(k) at the position k based on all the image pixel vectors rðiÞjki¼1 that are already

visited up to the position k. Similarly, Pðk þ 1jkÞ and Pðk þ 1jkÞ represent the one-step MSE pre-

diction error covariance matrix and MSE estimation error covariance matrix incurred at the
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position k. Then, a Kalman filter that performs linear spectral unmixing can be described in the

following procedures:

� Initial conditions

R andQ;

âð0j � 1Þ ¼ E að0Þ½ � is the mean of að0Þ
Pð0j � 1Þ ¼ Cov að0Þ½ � is the covariance matrix of að0Þ

� Kalman gain at k

KðkÞ ¼ Fðk þ 1; kÞPðkjk � 1ÞMT
� �

MPðkjk � 1ÞMT þ R
� ��1

� Abundance update at k

âðkjkÞ ¼ âðkjk � 1Þ þKðkÞ rðkÞ �Mâðkjk � 1Þ½ �
� Error measurement update at k

PðkjkÞ ¼ I�KðkÞM½ �Pðkjk � 1Þ
� Abundance prediction at kþ 1

âðk þ 1jkÞ ¼ Fðk þ 1; kÞâðkjkÞ
� Error measurement prediction at kþ 1

Pðk þ 1jkÞ ¼ Fðk þ 1; kÞPðkjkÞFTðk þ 1; kÞ þQ

So, KFLU performs abundance fraction estimation for mixed pixel classification using an image

cube with its measurement equation described by the kth image pixel vector r(k) and state equa-

tion characterized by the abundance vector a(k) present in the r(k). Therefore, the abundance vec-

tor a(k) is estimated via a recursive algorithm between the measurement equation and state

equation by running through all image pixel vectors, rð1Þ; rð2Þ; . . . in the entire image cube.

In what follows, we present three KFSCSP techniques that only deal with signature vectors to

perform spectral estimation, identification, and quantification rather than spectral classification

performed by KFLU, which needs knowledge of image endmembers to perform classification.

28.3 Kalman Filter-Based Spectral Characterization Signal-
Processing Techniques

Three KFSCSP techniques are derived and presented in this section, called Kalman filter-based

spectral signature estimator (KFSSE), Kalman filter-based spectral signature identifier (KFSSI),

and Kalman filter-based spectral signature quantifier (KFSSQ). In KFSSE, the input and output of

its measurement equation are specified by a noise-corrupted signature vector and its true signature

vector to be estimated, respectively. KFSSE then uses a state equation to predict spectral values of

the true signature vector across its spectral coverage via a signal model such as the Gaussian–Mar-

kov model. So, the role of KFSSE is to capture spectral signature changes between adjacent spec-

tral bands compared with KFLU, which is developed to capture changes in abundance fractions

between two adjacent pixel vectors. Most importantly, as noted previously, KFSSE does not need a

linear mixture model as required by KFLU. Therefore, there is no need for KFSSE to find image

endmembers to form a linear mixture model. On the other hand, KFSSI is developed to identify a
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signature vector via a matching signature vector chosen from a known database or spectral library.

In doing so, KFSSI is derived from KFSSE by replacing the true signature vector used in KFSSE

with an auxiliary signature vector that enables it to capture the matching signature vector in identi-

fying the unknown signature vector. According to functionality, both KFSSE and KFSSI are devel-

oped as signature vector estimators, but not abundance vector estimators as the way that KFLU is

originally designed. This is because no linear mixture model is used to unmix abundance fractions

of image endmembers. Unlike KFSSE or KFSSI, KFSSQ can be considered as a follow-up signa-

ture filter. It models its state equation as a zero-holder interpolator by taking a KFSSE-estimated

signature vector, that is, spectral estimate in its measurement equation as a system gain vector to

achieve spectral quantification of the estimated signature vector. As a result, the quantification of

the spectral signature value at the current lth band is used as a prediction of the spectral value at the

next adjacent band, the (lþ 1)st band. Its ability in spectral quantification makes KFSSQ particu-

larly useful in applications of chemical/biological (CB) defense where the lethal level of a CB

agent is determined by its concentration (Wang et al., 2004), and the collected samples are not

necessarily correlated as image pixel vectors in an image cube. Therefore, the quantification of a

CB agent is crucial in damage control assessment. Finally, in order to demonstrate the utility of the

three KFSCSP techniques in spectral estimation, identification, and abundance quantification,

experiments including computer simulations and real data are conducted for performance analysis.

28.3.1 Kalman Filter-based Spectral Signature Estimator

We assume that t ¼ t1; t2; . . . ; tLð ÞT is a true signature vector to be estimated and r ¼
r1; r2; . . . ; rLð ÞT is an observable signature vector from which the ture signature vector t can be

estimated. Since the measurement equation and the state equation described by (28.1) and (28.2)

are developed for image classification, they do not directly meet our current requirements and must

be modified as follows:

Measurement equation : rl ¼ cltl þ ul ð28:5Þ

State equation : tlþ1 ¼ fðl þ 1; lÞtl þ vl ð28:6Þ

where the index l denotes the lth band, c ¼ c1; c2; . . . ; cLð ÞT is a system gain vector, fðl þ 1; lÞ is a
transition parameter from the lth band to the lþ 1st band, and u ¼ u1; u2; . . . ; uLð ÞT and v ¼
v1; v2; . . . ; vLð ÞT are white noise vectors, all of which must be determined a priori. According to

Chang and Brumbley (1999a, 1999b), in order to implement (28.5) and (28.6) recursively, the ini-

tial condition to start the recursive algorithm between measurement and state equations is set to

t̂1 ¼ 0 by assuming that the estimate of true spectral signature at the first band is 0. The KF is then

implemented recursively until it reaches the last band (see recursive formulas (6–10) in Chang and

Brumbley (1999a)). Comparing (28.5) and (28.6) to (28.1) and (28.2), there are several salient

differences between KFLU and KFSSE. First of all, KFLU uses (28.1) and (28.2) to model the

same image vector. That is, (28.1) represents the status of the image pixel r, which is linearly

mixed by a set of p known image endmembers,m1;m2; . . . ;mp and (28.2) specifies its correspond-

ing abundance vector a ¼ a1;a2; . . . ;ap

� �T
that is unknown but needs to be estimated via (28.1).

Therefore, KFLU requires the prior knowledge of image endmembers to be used in the linear mix-

ture model (28.1). As a rather different approach, KFSSE is developed to estimate a target signa-

ture vector t rather than an abundance vector a. It consideres a true signature vector

t ¼ t1; t2; . . . ; tLð ÞT as a state vector in (28.6) and estimates the state vector band by band via an

observable vector r ¼ r1; r2; . . . ; rLð ÞT specified by the measurement equation (28.5). As a result,
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the variables in both equations (28.5) and (28.6) are scalars and represent spectral signature values

of the lth band of the target signature vector t within the observed signature vector r. In this case,

the measurement equation (28.5) is simply a true signature vector corrupted by noise u ¼
u1; u2; . . . ; uLð ÞT not a linear mixture model specified by (28.1). Another major difference is that

both (28.5) and (28.6) are linear functions of the same lth band of the true spectral signature t, tl.

This is different from (28.1) to (28.2), which are linear functions of two distinct vectors, image

vector r(k) and abundance vector a(k) with different dimensions L and p, respectively. Therefore,

compared with KFLU, in which input and output are an image pixel vector r(k) and an estimate of

the abundance vector a(k) and âKFLUðkÞ, respectively, the input of KFSSE is simply the lth band

spectral value of the observable spectral signature vector r, rl, and its output is an estimate of tl,

which is the lth band spectral value of true signature vector t, denoted by t̂
KFSSE

l . Furthermore, the

state in (28.6) is designed to predict the spectral value of the (lþ 1)st band of the true signature

vector t by updating the currently estimated spectral value of its lth band accoridng to the spectral

variation between two adjacent bands. This is quite different from the state in (28.2), which is

included to keep track of changes in abundance vectors between two adjacent image pixel vectors.

Besides, (28.6) models the relationship of the spectral signature values between one wavelength

and the next adjacent wavelength as a Gaussian–Markov process specified by the state transition

parameter fðl þ 1; lÞ and the additive Gaussian noise, v ¼ v1; v2; . . . ; vLð ÞT . If the variance s2
v or

standard deviation of v is set too low, then the state equation may not be effective enough to cap-

ture real variations in spectral values of one material. Accordingly, throughout the chapter, the

standard deviation of the state noise is always assumed to be high.

28.3.2 Kalman Filter-Based Spectral Signature Identifier

In the previous section, KFSSE is developed to estimate a true signature vector t through an

observed signature vector r. By remodeling its measurement and state equations, KFSSE can be

re-interpretated as a spectral signature identifier, which is referred to as KFSSI. In order to perform

spectral signature idenitification, it always assumes that there is a database or spectral signature

library available for this purpose, denoted by D ¼ skf gKk¼1, which is made up of K spectral signa-

ture vectors, s1; s2; . . . ; sk.
We suppose that the observable spectral signature vector is r ¼ r1; r2; . . . ; rLð ÞT , which needs to

be identified via a data base or spectral library, D ¼ skf gKk¼1. The idea is to use the measurement

equation to describe the observable spectral signature vector r as a noise-corrupted matching spec-

tral signature vector sk selected from D. An auxiliary spectral signature vector t is then introduced

in the state equation to model the state that describes the ability of identifying a given matching

signature vector s in the observable signature vector r. In other words, the identification of the

observable spectral signature vector r is performed by finding a particular spectral signature vector

sk from the D that best matches r. In this case, the measurement equation (28.5) and the state

equation (28.6) can be re-modeled as

Measurement equation : rl ¼ clskl þ ul ð28:7Þ
and

State equation : tlþ1 ¼ tl þ vl ð28:8Þ

respectively, where the scalar system gain cl is generally considered as 1. Unfortunately, (28.7) and

(28.8) are uncorrelated in the sense that there is no state parameter tl in the measurement equation.

In order to resolve this dilemma, we re-express (28.7) as

Measurement equation : rlþ1 ¼ skl=tlð Þtl þ ul ð28:9Þ
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where the matching spectral signature vector sk ¼ sk1; sk2; . . . ; skLð ÞT is included in the measure-

ment equation (28.9) and therefore is the signature vector to be used to match the observable signa-

ture vector r ¼ r1; r2; . . . ; rLð ÞT. The auxiliary spectral signature vector t in (28.9) then serves as a

bridge between the observable signature vector r and the matching signature vector sk to dictate the

ability of a given signature vector sk to match the observable signature vector r. As a result of

introducing the target signature vector t in (28.9) the system gain parameter cl in (28.7) is re-

expressed in (28.9) and becomes a spectral-varying parameter specified by skl=tl. Interestingly, the
use of such a spectral-varying system gain parameter by cl ¼ skl=tl takes care of the effects result-
ing from a matching signature vector sk in (28.9). This is a key difference between KFSSE and

KFSSI. Therefore, the KF using the pair of (28.9) and (28.8) to perform spectral signature identifi-

cation is called Kalman filter-based spectral signature identifier (KFSSI). In this case, the input is

provided by the observable spectral signature vector r ¼ r1; r2; . . . ; rLð ÞT to be identified by a par-

ticular signature vector in D ¼ skf gKk¼1 via KFSSI. And the output of KFSSI is the estimate of the

auxiliary signature vector t, t̂
KFSSIðsÞ ¼ t̂

KFSSI

1 ðsÞ; t̂KFSSI2 ðsÞ; . . . ; t̂KFSSIl ðsÞ
� �T

. To implement (28.8)

and (28.9) recursively, the initial condition used to start the recursive algoithm between measrue-

ment and state equations is set to t̂
KFSSI

1 ðsÞ ¼ 0 by assuming that the estimate of the auxiliary sig-

nature vector t at the first band is 0. Then KF is implemented recursively until it reaches the last

band. Since KF is an MSE-based estimation technique, the least squares error (LSE) between

t̂
KFSSI

l ðsÞ and the observable spectral signature r ¼ r1; r2; . . . ; rLð ÞT is used instead of MSE as a

quantitative measure defined by

LSEðr; skÞ ¼ jjr� t̂
KFSSIðskÞjj ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
XL

l¼1
rl � t̂

KFSSI

l ðskÞ
� �2

r

ð28:10Þ

Using (28.10), we define the observable spectral signature vector r ¼ r1; r2; . . . ; rLð ÞT as a particu-

lar spectral signature vector sk in D that yields the least value of LSE(r, s).

It is worth noting that in addition to the auxiliary spectral signature vector t introduced in (28.9),

another major distinction between KFSSE and KFSSI is that the latter identifies a signature vector

via D ¼ skf gKk¼1, whereas the former estimates the true signature vector without the need of D. As
a result, their measurement equations are implemented differently where the signature vector used

in the measurement equation (28.5) for KFSSE is the true signature vector t, whereas the signature

vector used in the measurement equation (28.7) or (28.9) for KFSSI is a matching signature vector

sk chosen from the database or spectral library, D ¼ skf gKk¼1. A third major distinction is that the

standard deviation of the state noise v, sv specified in (28.8), generally has a significant effect on

LSE compared to sv used by KFSSE, which does not have such effect on the estimation perform-

ance of KFSSE. This is because KFSSI performs identification via a matching signature vector in

D. Consequently, a small variation caused by sv may result in an incorrect identification. This is

particularly true when the spectral signature vectors in the D are similar. Additionally, a fourth

major distinction is that the two equations (28.8) and (28.9) implemented in KFSSI must process

two different signature vectors, observable signature vector r and matching signature vector sk,
compared with KFSSE, which only has the observable signature vector r processed in (28.5) and

(28.6). Accordingly, KFSSI is sensitive to the measurement noise su and the state noise sv, both of

which are correlated. However, this is not the case for KFSSE. So, in KFSSI, both measurement

noise and state noise must be appropriately addressed as will be demonstrated by the experiments

in the following sections.
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The relationship between KFSSE and KFSSI, which can be illustrated by the relationship

between constrained energy minimization (CEM) and orthogonal subspace projection (OSP) in

Chapters 2 and 12, is worth commenting on. CEM assumes that there is a desired target signature

vector d to be detected. This d actually corresponds to the target signature vector t assumed in

KFSSE to be estimated. It then uses d to generate detected abundance frcations of d present in all

the pixels in an image cube to perform target detection, whereas KFSSE estimates t̂
KFSSE

l to

approxmiate the lth band rl in the observed signature r. In other words, CEM performs target

detection in an image cube, whereas KFSSE estimates target abundance in a single signature vec-

tor. On the other hand, OSP assumes that there are p image endmembers that are used to unmix

pixel vectors in an image cube by estimating abundance fractions of each of p image enedmembers

present in each of the image pixel vectors. This is exactly what KFSSI does for a single signature

vector where it uses a database formed by K signatures D ¼ skf gKk¼1 that correspond to p image

endmembers used by OSP for unmixing and then identifies a signature vector from the database by

finding a best matching signature vector. This functionality is equivalent to that of OSP, which uses

its p estimated abundance fractions for each of image pxiel vectors to perform linear spectral

unmixing. The key difference is that CEM and OSP operate on image cubes, whereas both KFSSE

and KFSSI operate on single signature vector only.

28.3.3 Kalman Filter-Based Spectral Signature Quantifier

So far, KFSSE and KFSSI developed in the two previous subsections make attempts to perform

signature vector estimation and identification from an observable signature vector r. This

subsection presents another new application of KFSSE in spectral quantification to quantify a sig-

nature vector r, which is referred to as KFSSQ.

One of great challenges in hyperspectral data exploitation is spectral quantification. This is par-

ticularly important for CB defense where the concentrations of targets are of major interest rather

than their shapes and sizes generally encountered in image processing. The concentration of an

agent is a key element in the assessment of threat (Kwan et al., 2006). Over the past years, many

algorithms have been developed for quantification (Goetz and Boardman, 1989; Shimabukuro and

Smith, 1991; Settle and Drake, 1993; Smith et al., 1994; Tompkins et al., 1997; Heinz and Chang,

2001; Kwan et al., 2006). However, most of them are image analysis-based linear spectral unmix-

ing methods, which estimate abundance fractions of image endmembers assumed to be present in a

linear mixture model such as fully constrained least squares (FCLS) method (Heinz and Chang,

2001). The technique developed in this subsection is based on signature vector and allows quantifi-

cation of a particular material substance present in a single signature vector of interest band by

band without appealing for a linear mixing model. Once again, a direct application of KFSSE in

spectral quantification is not applicable, since the state equation described by (28.6) is the spectral

value tl but not its abundance fraction al, which is of interest in quantification. In order to estimate

the abundance fraction al in the state equation, the state tl in (28.6) is replaced with its abundance

fraction al and the system gain cl in (28.6) is replaced with the lth band of the target signature

vector t, tl. The state transition parameter fðl þ 1; lÞ is set to 1 such that the state equation is actu-

ally a zero-holder interpolator. The resulting measurement equation and state equation become

Measurement equation: rl ¼ al tl þ ul ð28:11Þ
State equation: alþ1 ¼ al ð28:12Þ

By virtue of the pair of (28.11) and (28.12), a KFSSQ can be designed and implemented to quan-

tify the target signature t ¼ t1; t2; . . . ; tLð ÞT present in the data sample vector r in terms of its
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abundance fraction al. In this case, the inputs of KFSSQ are observable signature vector r ¼
r1; r2; . . . ; rLð ÞT and target signature vector t ¼ t1; t2; . . . ; tLð ÞT. Its output is the estimate of al

associated with target signature vector t, denoted by âKFSSQ
l ðtÞ.

There are two scenarios that can be implemented for KFSSQ. One is that the target signature

vector t in (28.11) is assumed to be known as a priori. However, in many applications, we may not

have such prior knowledge. Under this circumstance, another scenario is that t can be estimated

from the observable signature vector r ¼ r1; r2; . . . ; rLð ÞTvia KFSSE where the tl in (28.11) is then

replaced by its KFSSE estimation, t̂
KFSSE

l . The resulting measurement equation becomes

Measurement equation : rl ¼ al t̂
KFSSE

l þ ul ð28:13Þ

The pair of (28.12) and (28.13) specifies the implementation of KFSSQ for unknown target signa-

ture vector t where the input is KFSSE-estimated t̂
KFSSE

l specified by (28.13) and the output is the

estimate of al in (28.12) corresponding to t̂
KFSSE

l , denoted by âKFSSQ
l ð̂tKFSSEÞ.

KFSSQ described by (28.12) and (28.13) is quite different from KFLU, which assumes all tar-

get signature vectors, that is, image endmembers are known a priori and then quantifies all the

known signatures present in the data vector r via a linear mixing model by FCLS. However, the

second scenario of KFSSQ specified by (28.12) and (28.13) can be implemented without prior

knowledge of the target signature vector t, a task that cannot be accomplished by KFLU.

In the following, the algorithmic steps of each of the three KFSCSP techniques, KFSSE, KFSSI,

and KFSSQ, are described. We assume that r ¼ r1; r2; . . . ; rLð ÞT and t ¼ t1; t2; . . . ; tLð ÞT are the

observable signature vector and the target signature vector to be estimated, respectively.

KFSSE

1. Initial conditions:
� Preset the values of su and sv.
� Set cl ¼ flþ1jl ¼ 1for all l ¼ 1; 2; . . . L.
� let t̂1j0 ¼ 0 and P1j0 ¼ Var t1½ � ¼ 1.

2. Start rl with l ¼ 1:
� Calculate Kalman gain

Kl ¼ ½flþ1jl � Pljl�1 � cl � cl � Pljl�1 � cl þ su

� ��1
:

� Update the state at l ¼ 1 by

t̂ljl ¼ t̂ljl�1 þ Kl rl � cl � t̂ljl�1

� �
:

� Update variance of the state at l ¼ 1 by

Pljl ¼ 1� Kl � cl½ � � Pljl�1:

� Predict the state at l þ 1 by

t̂lþ1jl ¼ flþ1jl � t̂ljl :
� Predict variance of the state at l þ 1 by

Plþ1jl ¼ flþ1jl � Pljl � flþ1jl þ sv:
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3. Increase l by 1 and proceed rl with l ¼ 2, repeat the five recursive steps outlined in step 2

until l ¼ L.

4. Output KFSSE-estimated t̂
KFSSE ¼ t̂

KFSSE

1 ; t̂
KFSSE

2 ; . . . ; t̂
KFSSE

L

� �T

with t̂
KFSSE

l ¼ t̂l for all

1 � l � L obtained from steps 2 and 3.

KFSSI

1. Initial conditions:
� Assume that D ¼ skf gKk¼1 is a given spectral library or database and sk is a matching signa-

tures selocted from D.
� Pre-set the values of su and sv.
� Set t̂1j0 skð Þ ¼ 0 and P1j0 ¼ Var t1½ � ¼ 1.
� Set cl ¼ skl =̂tl for all l ¼ 1; 2; . . . ; L.
� Set flþ1jl ¼ 1 for all l ¼ 1; 2; . . . ; L.

2. Start rl with l ¼ 1:
� Calculate Kalman gain

Kl ¼
�
flþ1jl � Pljl�1 � cl

�
cl � Pljl�1 � cl þ su

� ��1
:

� Update the state at l ¼ 1 by

t̂ljl ¼ t̂ljl�1 þ Kl rl � cl � t̂ljl�1

� �
:

� Update variance of the state at l ¼ 1 by

Pljl ¼ 1� Kl � cl½ � � Pljl�1:

� Predict the state at l þ 1by

t̂lþ1jl ¼ flþ1jl � t̂ljl :
� Predict variance of the state at l þ 1 by

Plþ1jl ¼ flþ1jl � Pljl � flþ1jl þ sv:

3. Increase l by 1 and proceed rl with l ¼ 2. Update cl ¼ skl =̂tl and repeat the five recursive steps

outlined in step 2 until l ¼ L.

4. Output KFSSI-estimated t̂
KFSSIðskÞ ¼ t̂

KFSSI

1 ðskÞ; t̂KFSSI2 ðskÞ; . . . ; t̂KFSSIL ðskÞ
� �T

with t̂
KFSSE

l ðskÞ ¼
t̂l for all 1 � l � L obtained from steps 2 and 3.

5. Find the s� which yields the minimum LSE between t̂
KFSSIðskÞ and r ¼ r1; r2; . . . ; rLð ÞT over sk

in D via (28.10), that is, s� ¼ arg minsk2DLSEðr; skÞ
	 


.

6. Identify r ¼ r1; r2; . . . ; rLð ÞT as the signature s�.

KFSSQ

1. Initial conditions:
� Preset the values of su.
� Set sv¼ 0.
� Assume that a(t) is the abundance vector corresponding to the target signature t. Set cl ¼ tl
for l ¼ 1; 2; . . . ; L.

� Let â1j0 tð Þ ¼ 0 andP1j0 ¼ Var a1½ � ¼ 1.
� Set flþ1jl ¼ 1 for all l ¼ 1; 2; . . . ; L.
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2. Start rl with l ¼ 1:
� Calculate Kalman gain

Kl ¼ ½flþ1jl � Pljl�1 � cl � cl � Pljl�1 � cl þ su

� ��1
:

� Update the state at l ¼ 1 by

âljl tð Þ ¼ âljl�1 tð Þ þ Kl rl � cl � âljl�1 tð Þ� �
:

� Update variance of the state at l ¼ 1 by

Pljl ¼ 1� Kl � cl½ � � Pljl�1:

� Predict the state at l þ 1 by

âlþ1jl ¼ flþ1jl � âljl :

� Predict variance of the state at l þ 1 by

Plþ1jl ¼ flþ1jl � Pljl � flþ1jl þ sv:

3. Increase l by 1 and proceed rl with l ¼ 2, update cl ¼ tl and repeat the five recursive steps out-

lined in step 2 until l ¼ L.

4. Output KFSSQ-estimated abundance vector âKFSSQðtÞ ¼ âKFSSQ
1 ðtÞ; âKFSSQ

2

� ðtÞ; . . . ; âKFSSQ
L ðtÞT

with âKFSSQ
l ðtÞ ¼ âl for all 1 � l � L obtained from steps 2 and 3.

28.4 Computer Simulations Using AVIRIS Data

In order to demonstrate the utility of KFSCSP techniques in spectral estimation, identification, and

quantification, computer simulations and real data experiments were conducted for performance

evaluation and analysis. For computer simulations, five Airborne Visible InfraRed Imaging Spec-

trometer (AVIRIS) reflectance data in Figure 1.8 are reproduced in Figure 28.1 for reference. There

are five signature vectors, blackbrush, creosote leaves, dry grass, redsoil, and sagebrush, to be used

for experiments where these spectra have 158 bands after water bands are removed.

According to Figure 28.1, the signatures of blackbrush, creosote leaves, and sagebrush are close

to each other in terms of spectral shape. In particular, the spectral signatures of creosote leaves and

sagebrush are very similar. A detailed quantitative analysis of these three signatures can be found

in Chang (2003a).

Since KFSCSP techniques are signature vector-based techniques not to be used for image pixel

vectors, KFSSE, KFSSI, and KFSSQ are not designed for classification. Therefore, their perform-

ance is evaluated by signature vector-based spectral measures such as spectral angle mapper

(SAM), spectral information divergence (SID) rather than image classifiers.

28.4.1 KFSSE

To implement KFSSE, the system gain cl in (28.5) was set to be 1 for all 1 � l � L, the standard

deviation of the state noise v, sv was empirically set to 103 and the standard deviation of the mea-

surement noise u, su was chosen to achieve signal-to-noise ratio (SNR)¼ 30 dB, where the SNR

was defined as the ratio of half a signature reflectance mean to the standard deviation of noise

(Harsanyi and Chang, 1994). It should be noted that throughout our extensive experiments, the

results demonstrated that KFSSE was robust to the selection of su and sv. More specifically, once

the value of sv was greater than 103, the su had limited impact on the performance of KFSSE.
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Therefore, for KFSSE implemented in this chapter, the values of su and sv were fixed at 30 dB and

103, respectively.

Figure 28.2(a)–(e) shows the five KFSSE-estimated reflectance spectra of the signature vectors

given in Figure 28.1. Since the values of the corresponding estimation errors obtained by KFSSE

were very small, Figure 28.3(a)–(e) shows the ratios of estimation errors to their corresponding

reflectance spectra in Figure 28.1 by the logarithm function to have better visual assessment.

According to Figure 28.3, KFSSE was very effective in estimating spectral signatures with esti-

mation errors nearly close to zero. Obviously, large estimation errors always occurred at wave-

lengths where their spectral values had changed drastically. To the contrary, if there was a smooth

transition between two wavelengths, the estimation errors were relatively small.

28.4.2 KFSSI

Two scenarios were implemented by KFSSI: one for subpixel target identification and the other for

mixed target identification with the target signature vector t to be identified and assumed to be

either known or unknown.

28.4.2.1 Subpixel Target Identification by KFSSI

First of all, we simulated a subpixel target implanted in a signature vector. Without loss of general-

ity, we assumed that the subpixel target signature was the creosote leaves (C) and the background

signature was the redsoil (R). Three target pixel vectors, t1, t2, and t3 were generated in accordance

Figure 28.1 Reflectances of creosote leaves, blackbrush, sagebrush, drygrass, and redsoil.
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with the abundance fractions of the subpixel target signature, creosote leaves set to 75%, 50%, and

25% mixed with the redsoil as the background signature to make up 100% abundance, respectively,

that is, t1¼ 3=4Cþ¼R, t2¼½ Cþ½R, and t3¼¼Cþ 3=4R. KFSSI was then implemented to identify

C from the three target signature vectors, t1, t2, and t3 via a database D¼ {creosote leaves and

redsoil}. The identification was carried out by first setting the values for both su and sv, then

randomly choosing a matching signature vector from the database D to match the unknown sub-

pixel target panel according to (28.8) and (28.9), and finally identifying the unknown subpixel

target panel as the one that yielded the minimum LSE. The resulting LSE corresponding to differ-

ent sizes of subpixel target panels were tabulated in Table 28.1 with sv ¼
ffiffiffiffiffiffiffiffiffiffi
1000

p
and various val-

ues of the standard deviation of noise u, su. However, it should be noted that the selection of su

was empirically chosen and dependent upon the target signature vector to be used for experiments.

The simulated data conducted in this section were designed to demonstrate and illustrate the utility

and effectiveness of KFSSI in signature identification under the impact of the parameter su.

In doing so, we had experimentally adjusted the value of su in accordance with our simulation

data to dictate the impact of subpixel target size on the performance. Figure 28.4(a) and (b)

plot the LSEs of creosote leaves and redsoil, respectively, versus the values of su for three

sizes of subpixel targets, 3=4, ½, and ¼, where the values of su varying from 10 to 1000 with step

size set to 10.
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Figure 28.2 KFSSE-estimated spectra of the five reflectance signatures in Figure 28.1.
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For example, in order to correctly identify the subpixel panel with ¼ size of a pixel, according

to Table 28.1, the su must be greater than 159 compared to the subpixel panel with 3=4 size of a pixel

which only requires su smaller than 12. Additionally, LSEs resulting from KFSSI was in propor-

tion to the values of su.

As pointed out, the selection of su and sv had a significant impact on the performance of KFSSI

and must be chosen appropriately in order to achieve acceptable LSEs. According to our exepri-

ments, once sv was fixed, the minimum value of su could be set approximately in the same order

of magnitude in order to correctly identify the subpixel target as creosote leaves. Table 28.2 is
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Figure 28.3 Ratios of the estimation errors to the five reflectance spectra in Figure 28.1 in the logarithm

functions.

Table 28.1 LSE corresponding to different sizes of subpixel target panels (creosote leaves) according to

(28.10) via D¼ {creosote leaves and redsoil}

Subpixel target panels (creosote leaves) ¼ pixel (su 	 159) ½ pixel (su 	 155) 3=4 pixel (su � 12)

Creosote leaves 4.4214 4.3616 4.4069

Redsoil 4.7903 4.5715 4.4273
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included here to illustrate the relationship between sv and su with three different values of sv and

seven subpixel targets of size specified by (1/8, 2/8, 3/8, 4/8, 5/8, 6/8, 7/8).

In order to provide further insights into KFSSI, similar experiments were also conducted by

replacing creosote leaves with blackbrush, sagebrush, and drygrass, with their results tabulated in

Tables 28.3–28.5, respectively.

According to Tables 28.2–28.5, two factors affected the selection of su. One is target size and

the other is the standard deviation of the state noise sv. When similar experiments were conducted

by replacing the creosote leaves with blackbrush, sagebrush, and drygrass, the changes in su were
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Figure 28.4 Relationship between su and LSE according to different sizes of the subpixel target.

Table 28.2 Relationship between sv and su with creosote

leaves as target signature embedded into redsoil

sv

ffiffiffiffiffi
10

p ffiffiffiffiffiffiffiffi
100

p ffiffiffiffiffiffiffiffiffiffi
1000

p

1/8 subpixel size su 	 18 su 	 53 su 	 158

2/8 subpixel size su 	 19 su 	 53 su 	 159

3/8 subpixel size su 	 22 su 	 55 su 	 157

4/8 subpixel size su 	 30 su 	 63 su 	 155

5/8 subpixel size su 	 123 su 	 108 su 	 177

6/8 subpixel size su � 5 su � 11 su � 12

7/8 subpixel size su � 9 su � 22 su � 52
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noticeable as shown in Table 28.2–28.5. Three interesting findings from Tables 28.2–28.5 are

intriguing.

Finding 1:When target size was fixed, the value of su was in proportional to the value of sv.

Finding 2: The range of su was closely related to the subpixel target signature to be identified.

For example, according to the study by Chang (2000, 2003a), the creosote leaves was the most

difficult signature to be discriminated, since it was very similar to both sagebrush and blackbrush.

Table 28.2 demonstrates this fact by providing this evidence that the range of su must be bounded

below from 18 to 123 as the subpixel target size from 1/8 to 5/8 with sv fixed at
ffiffiffiffiffi
10

p
. Interestingly,

once the size was greater than 5/8, the range of su was suddenly reversed from bounded below to

bounded above. The situation was slightly improved when the subtarget signature vector was sage-

brush in Table 28.3, where a sudden change in the range of su occurred at size ½. This phonemo-

non was further evidenced by the blackbrush in Table 28.4, where the range of su was all bounded

Table 28.3 Relationship between sv and su with sagebrush as

target signature embedded into redsoil

sv

ffiffiffiffiffi
10

p ffiffiffiffiffiffiffiffi
100

p ffiffiffiffiffiffiffiffiffiffi
1000

p

1/8 subpixel size su 	 12 su 	 33 su 	 92

2/8 subpixel size su 	 16 su 	 34 su 	 94

3/8 subpixel size su 	 45 su 	 52 su 	 96

4/8 subpixel size su � 4 su � 8 su � 7

5/8 subpixel size su � 8 su � 21 su � 47

6/8 subpixel size su � 10 su � 28 su � 70

7/8 subpixel size su � 12 su � 34 su � 88

Table 28.4 Relationship between sv and su with blackbrush as

target signature embedded into redsoil

sv

ffiffiffiffiffi
10

p ffiffiffiffiffiffiffiffi
100

p ffiffiffiffiffiffiffiffiffiffi
1000

p

1/8 subpixel size su 	 32 su 	 97 su 	 298

2/8 subpixel size su 	 30 su 	 93 su 	 284

3/8 subpixel size su 	 29 su 	 87 su 	 265

4/8 subpixel size su 	 26 su 	 80 su 	 239

5/8 subpixel size su 	 23 su 	 69 su 	 203

6/8 subpixel size su 	 18 su 	 52 su 	 150

7/8 subpixel size su 	 10 su 	 26 su 	 66

Table 28.5 Relationship between sv and su with drygrass as

target signature embedded into redsoil

sv

ffiffiffiffiffi
10

p ffiffiffiffiffiffiffiffi
100

p ffiffiffiffiffiffiffiffiffiffi
1000

p

1/8 subpixel size su � 4 su � 8 su � 13

2/8 subpixel size su � 10 su � 29 su � 74

3/8 subpixel size su � 16 su � 48 su � 138

4/8 subpixel size su � 22 su � 66 su � 195

5/8 subpixel size su � 27 su � 82 su � 248

6/8 subpixel size su � 31 su � 96 su � 294

7/8 subpixel size su � 35 su � 109 su � 337
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below from 10 to 32 that were inversely proprtional to target size with sv also fixed at
ffiffiffiffiffi
10

p
.

Finally, since the drygrass was very dissimilar to all the three signature vectors, creosote leaves,

sagebrush, and blackbrush, Table 28.5 reflects the fact that the range of su was all bounded above

from 4 to 35 that were proprtional to target size when with the sv was fixed at
ffiffiffiffiffi
10

p
, a case that was

completely opposite to blackbrush in Table 28.4.

Finding 3: The selection of initial values for su and sv was very much dependent on the data to

be processed, such as spectral similarity among signature vectors. This must be done on an empiri-

cal basis. For example, if signature vectors to be considered were spectrally distinct, the results

would be very robust to the selection. On the other hand, if the signature vectors were spectrally

similar, the results would be sensitive to how the initial values were selected. In the above experi-

ments, they were determined empirically based on a priori knowledge about the material substance

signatures and subpixel size. Nevertheless, from our extensive experiments a general guideline to

determine the initial values of su and sv may be useful. Without loss of generality, we can assume

a mixing signature vector specified by r ¼ sþ b, where s and b can be interpreted as the embedded

signature and background, respectively. In this case, the size of subpixel target also has a signifi-

cant effect on the subpixel target by the background signature. The initial guess for the value of su

to properly identify the signature vector s embedded into the signature vector r is closely related to

sv in a form of su ¼ 10 � sv � sðr�tÞ
max st;sbð Þ
h i

, where the target signature vector t is any auxiliary signa-

ture vector related to s as specified by (28.8) and (28.9). In regard to the value of sv, it can be

empirically set to
ffiffiffiffiffi
10

p
,

ffiffiffiffiffiffiffiffi
100

p
,

ffiffiffiffiffiffiffiffiffiffi
1000

p
, etc. However, we would like to point out that this guideline

only serves as a reference and should not take as a criterion for all the cases.

The above findings offer a new look of KFSSI in to how to use signature characterization to

perform subpixel target identification. The standard deviation of the measurement noise, su, used in

KFSSI is a very important parameter for identification and varies with the subpixel target signature

to be identified, which makes sense. These interesting findings cannot be observed by any spectral

measure as demonstrated in Tables 28.6–28.9, which show the results of the same experiments

using SAM and SID, where the SID values are given in parentheses. As shown in these tables, it was

impossible for SAM and SID to detect the subpixel target panel if its size was smaller than ½ size of

a panel. To the contrary, KFSSI could detect subpixel targets correctly even its size was smaller than

½ size of a pixel as long as su was chosen to be the values tabulated in Tables 28.2–28.5.

The above experiments demonstrate an important advantage of KFSSI which is that KFSSI

could perform well in the subpixel identification, even if the size of a subpixel target was less than

½ of ground sampling distance, that is, pixel resolution, which could not be achieved by any other

spectral measure.

Table 28.6 Identification of subpixel panels with creosote leaves

as a target signature vector embedded into redsoil by SAM and

SID

Subpixel size Creosote leaves Redsoil

1/8 0.5104 (0.4891) 0.0610 (0.0056)

1/4 0.4456 (0.3853) 0.1258 (0.0235)

3/8 0.3771 (0.2888) 0.1942 (0.0559)

1/2 0.3055 (0.2012) 0.2658 (0.1057)

5/8 0.2312 (0.1245) 0.3401 (0.1769)

3/4 0.1549 (0.0616) 0.4164 (0.2756)

7/8 0.0775 (0.0175) 0.4938 (0.4109)
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28.4.2.2 Mixed Target Identification by KFSSI

In order to make our experiments more interesting and appealing, we further simulated a mixed

pixel vector tmix by equally mixing ¼ blackbrush (sB), ¼ creosote leaves (sC), ¼ dry grass (sD),

and ¼ sagebrush (sS) as follows:

tmix ¼ 0:25sB þ 0:25sC þ 0:25sD þ 0:25sS ð28:14Þ

whose spectral signature vector is also shown in Figure 28.1. In this case, no signature vector was

preferred to another. KFSSI was used to identify unknown target signature vector t present in the

mixed pixel vector tmix using the database D¼ {drygrass, blackbrush, creosote leaves, sagebrush}.

Table 28.7 Identification of subpixel panels with sagebrush as a

target signature vector embedded into redsoil by SAM and SID

Subpixel size Sagebrush Redsoil

1/8 0.4010 (0.2685) 0.0504 (0.0039)

1/4 0.3484 (0.2056) 0.1030 (0.0162)

3/8 0.2938 (0.1494) 0.1576 (0.0378)

1/2 0.2374 (0.1005) 0.2140 (0.0697)

5/8 0.1794 (0.0597) 0.2720 (0.1133)

3/4 0.1202 (0.0282) 0.3312 (0.1706)

7/8 0.0603 (0.0075) 0.3911 (0.2442)

Table 28.8 Identification of subpixel panels with blackbrush as a

target signature vector embedded into redsoil by SAM and SID

Subpixel size Blackbrush Redsoil

1/8 0.5398 (0.2292) 0.0319 (0.0015)

1/4 0.5044 (0.1892) 0.0677 (0.0069)

3/8 0.4647 (0.1489) 0.1079 (0.0174)

1/2 0.4199 (0.1091) 0.1533 (0.0352)

5/8 0.3693 (0.0711) 0.2048 (0.0631)

3/4 0.3121 (0.0372) 0.2633 (0.1056)

7/8 0.2478 (0.0111) 0.3300 (0.1699)

Table 28.9 Identification of subpixel panels with drygrass as

target signature vector embedded into redsoil by SAM and SID

Subpixel size Drygrass Redsoil

1/8 0.1842 (0.0645) 0.0336 (0.0025)

1/4 0.1526 (0.0437) 0.0652 (0.0089)

3/8 0.1230 (0.0281) 0.0948 (0.0185)

1/2 0.0952 (0.0168) 0.1226 (0.0304)

5/8 0.0691 (0.0088) 0.1487 (0.0440)

3/4 0.0446 (0.0037) 0.1732 (0.0591)

7/8 0.0216 (0.0009) 0.1962 (0.0753)
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According to the composition of tmix, all the four signature vectors had equal opportunity to be

identified as the target signature vector. The resulting LSEs corresponding to four signature vectors

used to match the mixed pixel vector tmix were shown in Table 28.10.

Interestingly, since both blackbrush and creosote leaves were close to sagebrush by spectral

similarity measures, SAM and SID, KFSSI believed that blackbrush and creosote leaves were part

of sagebrush with small variations. As a consequence, it identified tmix as sagebrush. Table 28.10

demonstrates that KFSSI could successfully identify the mixed pixel tmix as sagebrush as long as

su � 50 and drygrass otherwise. As noted, the values of su and sv might be chosen comparably at

the same order of magnitude. In this case, sv was chosen to be 10, which was of the same order

as su � 50. If the sv in (28.8) was set to 103, which is similar to the value used in Table 28.1, the

LSEs resulting from KFSSI for subpixel target identification were large.

28.4.3 KFSSQ

This section presents experiments to further demonstrate the use of KFSSQ in quantification of

subpixel targets and target signature vectors present in mixed pixels. Compared with KFSSI, which

is used to identify an unknown target signature vector t, KFSSQ can also be implemented for the

target signature vector t, which is either unknown or known a priori. It should also be noted that

unlike KFSSI, there is no state noise vector v in the state equation (28.12) implemented by KFSSQ.

28.4.3.1 Subpixel Target Quantification by KFSSQ

Using the same subpixel targets t1, t2, and t3 simulated in Section 28.4.2.1, we implemented

KFSSQ to quantify these three creosote leaves-simulated subpixel target panels t1, t2, and t3 of

three respective sizes, 3=4, ½, and ¼ with two scenarios described in the following examples.

EXAMPLE 28.1

(Target signature vector t is known)

This example assumed that the target signature t was known to be creosote leaves. In this case, the pair of

(28.11) and (28.12) was implemented to quantify three subpixel targets of creosote leaves, t1, t2, and t3, and

the results are tabulated in Table 28.5. Since the subpixel target panels only occupied part of a pixel, its size

could be interpreted as portion of abundance fraction in terms of percentage. In this case, the three subpixel

target panels t1, t2, and t3 with size of 3=4, ½, and ¼ could be considered as targets with abundance fractions

75%, 50%, and 25%, respectively, with KFSSQ-estimated abundance fractions given in Table 28.11, where

the quantification results were very accurate with appropriate chosen values of su.

Table 28.10 LSE between the mixed pixel tmix and different matching signature vectors according to (28.10)

Blackbrush Creosote leaves Sagebrush Drygrass

tmix 17.4077 4.8313 4.5572 4.6092

Table 28.11 Abundance fractions estimated by KFSSQ

KFSSQ Quantification su in KFSSQ

t1¼ 25% creosote 0.2495 7.5677

t2¼ 50% creosote 0.5014 4.3506

t3¼ 75% creosote 0.7597 2.4521
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EXAMPLE 28.2

(Target signature vector t is unknown)

Unlike Example 28.1, the prior knowledge of target signature vector t was not given in this example. In this

case, KFSSQ must use (28.5) and (28.6) to first identify the target signature vector t that specified the three

subpixel targets t1, t2, and t3 where KFSSE was used for this purpose. The estimated t̂
KFSSE

was then used to

replace t in (28.11) to produce the abundance vector âKFSSQ specified by (28.12) in Table 28.6. As a result,

two different values of su were used for measurement noise in KFSSQ: one in (28.5) for KFSSE and the other

in (28.13) for KFSSQ. Since both were not correlated, they could be determined independently as tabulated in

Table 28.12.

Due to the fact that KFSSE could not correctly estimate the target signature vector t, provided the abun-

dance of subpixel target vector t was below 50%, in which case it was reasonable, the results for the size of

subpixel target being ¼ were not included in Table 28.12.

28.4.3.2 Mixed Target Quantification by KFSSQ

In this subsection, we used the same mixed pixel vector, tmix simulated in Section 28.4.2.2 for

further experiments. KFSSQ was implemented to quantify the four signatures, blackbrush, creo-

sote leaves, drygrass, and sagebrush, each of which shared a 25% abundance fraction in the pixel

vector tmix. Like Section 28.4.2.3.1, two scenarios were considered.

EXAMPLE 28.3

(All the four target signature vectors are known)

This example assumed that all the four signatures were known. The pair of (28.11) and (28.12) was imple-

mented for KFSSQ. Table 28.13 tabulates the quantification results of the four signatures with their appropri-

ately chosen values of su. However, it should be noted that the sensitivity of su was generally determined by

various applications. For example, when KFSSI and KFSSQ were implemented, the results would be sensitive

to the value chosen for su as shown in Tables 28.10 and 28.12. On the other hand, if KFSSE was implemented

as an estimator, the results would be relatively robust to the su.

As we can see from this table, KFSSQ-estimated abundance fractions of all the four signatures were very

accurate and close to true values. In order to make further comparison, the results produced by the FCLS

method were also included and tabulated in Table 28.14, where their results are comparable to those obtained

in Table 28.13.

Table 28.12 Abundance fractions estimated by KFSSQ

KFSSQ Quantification su in KFSSE su in KFSSQ

t2¼ 50% creosote 0.5056 30 dB 4.5247

t3¼ 75% creosote 0.7440 30 dB 2.6156

Table 28.13 Abundance fractions of the four signatures embedded into the mixed pixel

tmix estimated by KFSSQ

KFSSQ Quantification results su

25% Sagebrush 0.2504 7.9506

25% Blackbrush 0.2491 6.9136

25% Creosote leaves 0.2499 7.7778

25% D grass 0.2508 8.6420
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EXAMPLE 28.4

(Target signature vector is unknown)

The purpose of including this experiment was to demonstrate that KFSSQ could be implemented even if the

target signature vector was not known. The experiment conducted in Section 28.4.2.2 assumed that the exact

knowledge of target signature vector, sagebrush, is provided a priori. In this example, this prior knowledge

was not given. KFSSQ first used KFSSI to identify the unknown mixed target signature vector tmix of (28.14)

as sagebrush and then used KFSSE to estimate the sagebrush signature vector from tmix as the desired signa-

ture that was used in the follow-up abundance quantifier, KFSSQ, to estimate its abundance fraction, 0.28.

Compared with the value of 0.2504 in Table 28.13 and 0.25135 in Table 28.14, it was slightly off the true

abundance 0.25, but was still very good. This made sense since the results in Tables 28.13 and 28.14 are

obtained by assuming exact knowledge of the sagebrush as opposed to KFSSE-estimated sagebrush used in

this example.

As noted further, when KFSSQ was implemented in the above estimation, two cases were considered. If

the true signature vector t was used, the value of su was determined by (28.11). On the other hand, if the target

signature vector used in KFSSQ was estimated first by KFSSI followed by KFSSE, the value of su in (28.11)

was then determined by the value of su used by the two estimators, that is, both (28.5) for KFSSE and (28.7)

for KFSSI.

EXAMPLE 28.5

(Sensitivity of KFSSQ to su)

This experiment was designed to investigate the sensitivity of KFSSQ to the values of su in quantification of

subpixel targets. Experiments similar to those in Example 28.1 were conducted by using the values of su

given in Table 28.11 for three different target sizes (1/4, 1/2, and 3/4), where three proper ranges of su for

three different target sizes (1/4, 1/2, and 3/4) were fluctuated around 7.5, 4.3, and 2.4, respectively, for correct

quantification. Figure 28.5(a)–(c) plots the results of KFSSQ for three different target sizes (1/4, 1/2, and 3/4)

versus su with step size 0.1.

As shown by the plotted curves in Figure 28.5(a)–(c), the abundance fractions quantified by KFSSQ were

inversely proportional to the values of su. The curves in Figure 28.5 indicate that KFSSQ was indeed very

sensitive to the value of su, where an appropriate values of su must be carefully selected in order to perform

correct quantification for subpixel targets.

Finally, three concluding remarks are worth noting.

1. One is the selection of su. Since there is generally no prior knowldege available for analysis, it

is impossible to determine an appropriate value for su a priori. A general approch is to use a

trial-and-error approach to obtain a posteriori knowledge that can help to determine an ade-

quate range of the su. From there, the values for su can be properly selected by further experi-

ments. Nevertheless, a common guideline is that the more similar to signatures in the database

the target signature is, the smaller the su is required.

Table 28.14 Abundance fractions of the four target signature vectors

embedded into tmix estimated by FCLS

FCLS Quantification results

25% Sagebrush 0.25135

25% Blackbrush 0.24935

25% Creosote leaves 0.24922

25% Drygrass 0.25007
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2. It should be noted that KFSCSP techniques are signature vector-based not image pixel-

based techniques. Its performance is determined by the spectral profiles of hyperspectral

signature vectors not by data sample size or spectral correlation. Most importantly, KFSCSP

technique is not designed or developed as a classifier. Therefore, no prior knowldege of

training samples or classification information such as the number of classes to be classified

is required.

3. More experiments were also conducted for other data sets such as Cuprite in Figure 1.9. Since

the conclusions are nearly the same as what were presented in this section, the results are not

included here.
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Figure 28.5 KFSSQ-estimated abundance fractions versus values of su for different sizes of the subpixel

target with step size 0.1.
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28.5 Computer Simulations Using NIST-Gas Data

In order to demonstrate the utility of KFSSE in spectral estimation, identification, and quanti-

fication, the spectral signature vectors in the data set D to be used for experiments were those in

Fi gure 1.10 available a t t he National I nstitute of Standard Te ch nology (NIST)’s website http://

www.nis t.g ov/srd/nis t35. htm. It co ntai ns n ine ag ent sign atur es sif g9i¼1, eight of them, sif g9i¼2 are

composed of 880 bands, and only one of them, s1, consists of 825 bands.

As mentioned previously, since KFSCSP technique developed in this chapter is signature a vec-

tor-based and not an image-based technique, KFSSE, KFSSI, and KFSSQ are not designed for

classification. Therefore, their performance will be evaluated by signature vector-based spectral

measures such as SAM and SID rather than image classifiers.

28.5.1 KFSSE

To implement KFSSE, the system gain cl in (28.5) was set to be 1 for all 1 � l � L, the standard

deviation of the state noise v, sv, was empirically set to 103 and the standard deviation of the

measurement noise u, su, was chosen to make SNR¼ 30 dB, where the SNR was defined before.

It should be noted that throughout our extensive experiments, the results demonstrated that KFSSE

was robust to the selection of su and sv. More specifically, once the value of sv was greater than

103, the su had limited impact on the performance of KFSSE. Therefore, for KFSSE implemented

in this chapter, the su and sv were fixed at 30 dB and 103, respectively.

Figure 28.6(a)–(e) shows KFSSE-estimated spectra of the nine reflectance spectra in Fig-

ure 1.10. Since the values of the corresponding estimation errors obtained by KFSSE were very

small, Figure 28.7(a)–(e) shows the plots of taking logarithm function of ratios of estimation errors

to their corresponding reflectance spectra in Figure 1.10 to have better visual assessment.

According to Figure 28.7, KFSSE performed very effectively in estimating spectral signatures

with estimation errors nearly close to zero. Obviously, the large estimation errors always occurred

at wavelengths where their spectral values had drastic changes. On the contrary, if there was a

smooth transition between two wavelengths, the estimation errors were relatively small.

28.5.2 KFSSI

Two scenarios were implemented by KFSSI for subpixel target identification and mixed tar-

get identification with the target signature vector t to be identified assumed to be either

known or unknown.

28.5.2.1 Subpixel Target Identification by KFSSI

First of all, we used Figure 4.1 to simulated a subpixel target embedded into a pixel vector. Assume

that the subpixel target was the s6, and the background was s7. Figure 28.8(a) shows how a subpixel

target t1 of 3=4 pixel size was simulated. In order to simulate the subpixel target t1, we first simulated

1 pixel vector specified by s6 which was considered as the background signature and 3 pixel vec-

tors specified by s7 to form a 4-pixel square panel as shown at the bottom layer in Figure 28.8(a).

The 4-pixel square panel was then shrunk to its ¼ size by averaging all 4 pixel vectors to a 4-pixel

square panel with the same spatial resolution 1.56 m shown at the top layer of Figure 28.8 where

each pixel vector in the shrunk 4-pixel square panel was only ¼ size of its corresponding pixel

vector at the bottom layer of Figure 28.8(a) as a result of 1=4 s6 þ s7 þ s7 þ s7ð Þ. This shrinking
process is described in Figure 28.8. The shrunk 4-pixel vector at the top layer in Figure 28.8(a)

was the desired pixel vector p1 that contained a subpixel target t1 of 3=4 pixel size specified by
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Figure 28.6 KFSSE-estimated spectra of the nine reflectance spectra in Figure 1.10.
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Calcite. Similarly, two pixel vectors p2 and p3 shown in Figure 28.8(b) and (c) were also simualted

in the same fashion as results of 1=4 s6 þ s6 þ s7 þ s7ð Þ and 1=4 s6 þ s6 þ s6 þ s7ð Þ, respectively,
where p2 contained a subpixel target t2 of ½ pixel size specified by s7 and p3 contained t1 of ¼
pixel size specified by s6.
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Figure 28.7 Ratios of the estimation errors to the five reflectance spectra in Figure 1.10 by taking the loga-

rithm function.
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KFSSI was implemented to identify an unknown subpixel target panel generated by the three

panels p1, p2, and p3 in Figure 28.8(a)–(c) via a database D¼ {s6, s7}. The identification was car-

ried out by first setting the values for both su and sv, then randomly choosing a matching signature

vector from the database D to match the unknown subpixel target panel according to (28.8) and

(28.9), and finally identifying the unknown subpixel target panel as the one which yielded the min-

imum LSE. The resulting LSE corresponding to different sizes of subpixel target panels are tabu-

lated in Table 28.1 with various values of the standard deviation of noise u, su and also with

sv ¼ 1000. However, it should be noted that the selection of su empirically depended upon the

target signature vector to be used for experiments. The simulated data conducted in this section

were only used to demonstrate and illustrate the utility and effectiveness of KFSSI in signature

identification under the impact of the parameter su. In doing so, we had experimentally adjusted

the value of su in accordance with our simulation data to dictate the impact of subpixel target size

on the performance shown in Table 28.15. Figure 28.9(a) and (b) plot LSEs of s6 and s7, respec-

tively, versus the values of su for three sizes of subpixel targets, 3=4, ½, and ¼, where the values of

su varied from 10 to 1000 with step size set to be 10.
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Figure 28.7 (Continued)

Figure 28.8 Simulations of subpixel target panels: (a) subpixel target panel with ¼ s6þ 3=4 s7; (b) subpixel

target panels with ½ s6þ½ s7; (c) subpixel target panel with 3=4 s6þ¼ s7.

Table 28.15 LSE corresponding to different sizes of subpixel target panels (s6) according to (28.10) via

D¼ {s6, s7}

Subpixel target panels (s6) ¼ pixel (su 	 450) ½ pixel (su 	 30) 3=4 pixel (su � 550)

s6 328.68 452.01 535.10

s7 436.51 482.94 612.40
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For example, in order to correctly identify the subpixel panel with ¼ size of a pixel, according to

Table 28.1, the su must be greater than 450 compared to the subpixel panel with 3=4 size of a pixel

which only requires su smaller than 550. As pointed out at the end of Section 28.4, the selections

of su and sv had significant impact on the performance of KFSSI and must be chosen appropri-

ately in order to achieve acceptable LSEs. According to our exepriments, once sv was fixed, the

minimum value of su could be set approximately at the same order of magnitude in order to cor-

rectly identify the subpixel target as Calcite. Table 28.16 is included here to illustrate the relation-

ship between sv and su with three different values of sv, and seven subpixel targets of size

specified by (1/8, 2/8, 3/8, 4/8, 5/8, 6/8, and 7/8).

Table 28.17 tabulates the same experiments that were performed by SAM and SID, with the SID

values included in parentheses where there was impossible for SAM and SID to detect the subpixel

target panel if its size is smaller than ½ size of a panel. On the contrary, KFSSI could detect sub-

pixel targets correctly even its size was smaller than ½ size of a pixel as long as su was chosen to

be the values tabulated in Table 28.2.

The above experiments demonstrated an important advantage of KFSSI. More specifically,

KFSSI could perform well in the subpixel identification, even if the size of a subpixel target was
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Figure 28.9 Relationship between su and the corresponding LSE according to different sizes of the subpixel

target.
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less than ½ of ground sampling distance, that is, pixel resolution, which could not be achieved by

any other spectral measure.

28.5.2.2 Mixed Target Identification by KFSSI

In order to make our experiments more interesting and appealing, we further simulated a mixed

pixel vector tmix by mixing ¼ s3, ¼ s4, ¼ s6, and ¼ s7 together. In other words, tmix was simulated

by mixing equal amount of abundance among the four signature vectors as follows:

tmix ¼ 0:25s3 þ 0:25s4 þ 0:25s6 þ 0:25s7 ð28:15Þ

shown in Figure 28.1. In this case, no signature vector was preferred to another. KFSSI was used to

identify unknown target signature vector t present in the mixed pixel vector tmix using the database

D¼ {s3, s4, s6, s7}. According to the composition of tmix, all the four signature vectors had equal

opportunity to be identified as the target signature vector. The resulting LSEs corresponding to

different matching components to the mixed pixel vector are shown in Table 28.18.

Table 28.16 The relationship between sv and su with s6 as

target embedded into s7

sv

ffiffiffiffiffi
10

p ffiffiffiffiffiffiffiffi
100

p ffiffiffiffiffiffiffiffiffiffi
1000

p

1/8 subpixel size su 	 150 su 	 150 su 	 500

2/8 subpixel size su 	 150 su 	 140 su 	 450

3/8 subpixel size su 	 150 su 	 120 su 	 400

4/8 subpixel size su 	 5 su 	 25 su 	 30

5/8 subpixel size su � 90 su � 250 su � 800

6/8 subpixel size su � 50 su � 150 su � 500

7/8 subpixel size all values all values su � 500

Table 28.17 Estimated size of subpixel panels with s6 as target

embedded into s7 by SAM and SID

Subpixel size s6 s7

1/8 1.1180 (1.6294) 0.1570 (0.0702)

1/4 0.9410 (1.1529) 0.3340 (0.2206)

3/8 0.7525 (0.8004) 0.5226 (0.4211)

1/2 0.5651 (0.5282) 0.7099 (0.6636)

5/8 0.3911 (0.3172) 0.8840 (0.9492)

3/4 0.2380 (0.1579) 1.0370 (1.2890)

7/8 0.1081 (0.0483) 1.1669 (1.7161)

Table 28.18 LSE between mixed pixel and different matching signature vectors according to (28.10)

s3 s4 s6 s7

su � 400 1136.2 1686.6 628.64 444.48

400 � su � 2000 328.63 320.69 296.54 346.91

su 	 2000 334.15 312.87 337.90 351.16
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28.5.3 KFSSQ

This section presents experiments to further demonstrate the use of KFSSQ in quantification of

subpixel targets and target signature vectors present in mixed pixels. However, unlike KFSSI,

which was used to identify an unknown target signature vector t, KFSSQ could also be imple-

mented for the target signature vector t, which was either unknown or known as a priori. It should

also be noted that unlike KFSSI, there was no state noise vector v in the state equation (28.12)

implemented by KFSSQ.

28.5.3.1 Subpixel Target Identification by KFSSQ

Using the same subpixel targets t1, t2, and t3 simulated in Section 28.4.2.1, we implemented

KFSSQ to quantify these three Calcite-simulated subpixel target panels t1, t2, and t3 specified by
3=4, ½, and ¼ size of a pixel in Figure 28.8 with two scenarios described in the following examples.

EXAMPLE 28.6

(Target signature vector t is known)

This example assumed that the target signature vector t was known to be s6. In this case, the pair of (28.11)

and (28.12) was implemented to quantify three subpixel targets t1, t2, and t3 of s6. It should be noted that since

the subpixel target panels only occupied part of a pixel; its size could be interpreted as portion of abundance

fraction in terms of percentage. In this case, the three subpixel target panels t1, t2, and t3 with size of 3=4, ½, and

¼ could be considered as targets with abundance fractions 75%, 50%, and 25%, respectively, as indicated in

Table 28.19.

As shown in Table 28.19, KFSSQ-estimated quantification results were very accurate with appropriate

chosen values of su with no occurrence of sv.

EXAMPLE 28.7

(Target signature t is unknown)

Unlike Example 28.1, the prior knowledge of target signature vector t was not given in this example. In this

case, KFSSQ must first identify via (28.5) and (28.6) the target signature vector t that specified the three

subpixel targets t1, t2, and t3 where KFSSE was used for this purpose and the estimated target denoted by

t̂
KFSSE

. The estimated t̂
KFSSE

was then used to replace t in (28.11) to produce the abundance vector âKFSSQ

specified by (28.12) in Table 28.6. As a result, there were two different values of su used for measurement

noise in KFSSQ, one in (28.5) used for KFSSE and the other in (28.13) used for KFSSQ. Since both were not

correlated, they could be determined independently as tabulated in Table 28.20.

Due to the fact that KFSSE could not correctly estimate the target signature vector t provided that the

abundance of subpixel target t was below 50%, which was reasonable, the results for the size of subpixel

target being ¼ are not included in Table 28.20.

28.5.3.2 Mixed Target Quantification by KFSSQ

In this subsection, we used the same mixed pixel vector, tmix simulated in Section 28.4.2.2 for

further experiments. KFSSQ is implemented to quantify the four signature vectors, s3, s4, s6, and

Table 28.19 KFSSQ-estimated abundance fractions

KFSSQ Quantification su in KFSSQ

t1¼ 25% s6 0.2527 55000

t2¼ 50% s6 0.5000 31000

t3¼ 75% s6 0.7493 18000
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s7, each of which shared a 25% abundance fraction in the pixel vector tmix. Like Section 28.4.3.1 of

subpixel target quantification, two scenarios were also considered.

EXAMPLE 28.8

(All the four target signatures are known)

This example assumed that all the four signature vectors were known. The pair of (28.11) and (28.12) was

implemented for KFSSQ. Table 28.21 tabulates the quantification results of the four signature vectors with

their appropriately chosen values of su. However, it should be noted that the sensitivity of su was generally

determined by various applications. For example, when KFSSI and KFSSQ were implemented, the results

would be sensitive to the value chosen for su as shown in Tables 28.18 and 28.20. On the other hand, if

KFSSE was implemented as an estimator, the results would be rather robust to the su.

As we can see from Table 28.21, KFSSQ-estimated abundance fractions of all the four signature vectors

were very accurate and close to true values.

In order to make comparison, the results produced by FCLS were also included and tabulated in

Table 28.22, where their results comparable to those obtained in Table 28.21.

EXAMPLE 28.9

(Sensitivity of KFSSQ to su)

This experiment was designed to investigate sensitivity of KFSSQ to the values of su in quantification of

subpixel targets. Performing similar experiments conducted for Example 28.1, the results tabulated in

Table 28.20 KFSSQ-estimated abundance fractions

KFSSQ Quantification su in KFSSE su in KFSSQ

t2¼ 50% s6 0.4997 1000 46500

t3¼ 75% s6 0.7558 1000 30000

Table 28.21 Results of implementing KFSSQ for mixed pixel with target

signature vectors known

KFSSQ Quantification results su

25% s3 0.2563 47000

25% s4 0.2519 45000

25% s6 0.2518 51000

25% s7 0.2524 51000

Table 28.22 The abundance fractions of the four target signature vectors in tmix

estimated by FCLS

FCLS Quantification results

25% s3 0.2500

25% s4 0.2500

25% s6 0.2500

25% s7 0.2500
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Table 28.22 were used to select three proper ranges of su for three different target sizes (1/4, 1/2, and 3/4)

for correct quantification. Figure 28.10(a)–(c) plots their results of KFSSQ for three different target sizes

(1/4, 1/2, and 3/4) versus su with step size 0.1.

The curves plotted in Figure 28.10(a)–(c) show that the abundance fractions quantified by KFSSQ were

inversely proportional to the values of su, where the curves were flatted out throughout the range of su. This
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Figure 28.10 Results of KFSSQ versus values of su for different sizes of the subpixel target.
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indicates that KFSSQ was indeed very sensitive to the value of su where an appropriate value of su must be

carefully selected in order to perform correct quantification for subpixel targets.

Finally, a concluding remark on the selection of su is worthwhile. Since there is generally no prior knowl-

edge available for analysis, it is impossible to determine an appropriate value for su a priori. A general

approach is to use a trial-and-error approach to obtain a posteriori knowledge that can help to determine an

adequate range of the su. From there, the values for su can be properly selected by further experiments.

Nevertheless, a common guideline is that the more similar the target signature is to signatures in the database,

the smaller is the su required.

28.6 Real Data Experiments

In this section, the Hyperspectral Digital Imagery Collection Experiment (HYDICE) image scene

shown in Figure 1.15(a) was used for experiments, which has a size of 64� 64 pixel vectors with

15 panels in the scene and the ground truth map provided in Figure 1.15(b).

28.6.1 KFSSE

To implement KFSSE on the HYDICE real data, the variances of the two additive Gaussian noises v

and u in the state and measurement equations were set to sv ¼ 103 according to experiments con-

ducted by Chang and Brumbley (1999a, 1999b), and su was chosen as to achieve SNR¼ 30 dB.

Figure 28.11(a)–(e) shows estimates of the five panel signatures pi for i ¼ 1; 2; . . . ; 5, while Fig-

ure 28.12(a)–(e) shows the ratios of estimation errors to their corresponding reflectance spectra in

Figure 1.16 in terms of the logarithm function so as to achieve better visualization for assessement.

As shown in Figure 28.12, KFSSE performed relatively well in estimating the five panel

signatures.

28.6.2 KFSSI

In this subsection, the 19 R panel pixels in Figure 1.15(b) were used for experiments to evaulate the

performance of KFSSI in panel pixel identification. The variance of the measurement noise must

be adjusted in accordance with the problems to be considered. In implementing KFSSI, we

assumed that the five panel signatures pif g5i¼1 were given as a database D. KFSSI then used the

database D to identify each of the 19 R panel pixels. Once again, the identification was imple-

mented by first setting the values for both su and sv, then randomly choosing a matching signature

from the database D to match the unknown subpixel target panel according to (28.8) and (28.9),

and finally identifying the unknown subpixel target panel as the one that yielded the minimum

LSE. The experimental results are tabulated in Table 28.23, where an identification is highlighted

by shade and an incorrectly identified panel pixel is labeled by a cross. The range of su chosen for

each panel pixel is also listed in the last column with sv fixed at 10.

According to Table 28.23, 16 out of 19 R panel pixels were correctly identified except subpixel

pixel p23, which was wrongly identified as p1.

In order to make further comparison, Table 28.24 also tabulates the results obtained by SAM

and SID, where the values in the upper and lower values in each entry were obtained by SAM and

SID, respectively, with the SID values in parentheses. Like Table 28.23, the identification is high-

lighted by shade and the incorrectly identified panel pixels are labeled by a cross.

As shown in Table 28.24, both SAM and SID made the same six identification errors, p13, p33,

p411, p412, p43, and p53, four of which were subpixel panels, p13, p33, p43, and p53. In other words,

both the SAM and SID identified all the five subpixel panels pi3f g5i¼1 as p2 and only p23 was
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identified as p2 correctly. Comparing Table 28.23 with Table 28.24, KFSSI performed significantly

better than spectral measures.

Since the 19 R panel pixels were directly extracted from the real HYDICE image scene, there

existed sample correlation among the 19 R panel pixels, of which KFSSI and spectral measures did

not take advantage of. In order to further investigate this issue, these 19 R panel pixels were first

extracted from the original image cube and then concatenated pixel-by-pixel starting from panel

pixels p11, p12, p13, p211, p221, p22, p23, p311, p212, p32, p33, p23 to p411, p412, p42, p3, p511, p521,

p52, and p53 to retain sample correlation among panel pixels so that (28.2) implemented by KFLU

by Chang and Brumbley (1999a, 1999b) could be used to capture such sample correlation as it

processed these 19 lined-up R panel pixels as a vector. For a fair comparison, the same level of

prior knowledge about five panel signatures pif g5i¼1 used by KFSSI was also assumed for KFLU.

Table 28.25 tabulates the identification results produced by KFLU, which also made four identifi-

cation errors, p13, p32, p33, and p53, three of which were subpixel panels, p13, p33, and p53, where an

identification is highlighted by shade and an incorrectly identifiied panel pixel is labeled by a cross.
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Figure 28.11 KFSSE-estimated spectra of the five reflectance spectra in Figure 1.16.
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Comparing Table 28.25 to Tables 28.23 and 28.24, KFLU performed better than spectral mea-

sures due to its use of pixel-to-pixel sample correlation, but worse than KFSSI due to its failure of

capturing band-to-band spectral correlation as KFSSI did.

Finally, Table 28.26 summarizes incorrect panel pixel identification results produced by KFSSI

in Table 28.23, spectral measures SAM/SID in Table 28.24 and KFLU in Table 28.25.

According to Table 28.26, the best results were produced by KFSSI, with, the worst being

SAM/SID. Since two spectral measures, SAM/SID, did not take advantage of pixel-to-pixel or

band-to-band sample correlation, their results in Table 28.24 were the worst as expected with six

identification errors in Table 28.26. KFLU performed better than SAM/SID in that it reduced six

errors made by the SAM/SID to five errors in Table 28.26 by making use of its state equation to

capture pixel-to-pixel sample correaltion among the 19 panel pixels. However, it was KFSSI that

really showed its strength in identification by reducing five errors to only three errors in Table

28.26. Such imporvement was a result of KFSSI’s using a state equation to keep track of band-to-

band correlation, which turned out to be more crucial than the pixel-to-pixel correaltion used by

KFLU. Furthermore, SAM/SID and KFLU made nearly the same identification errors, that is, the

four errors on the four subpixel panels, p13, p33, p43, and p53 made by KFLU and also made by

SAM/SID in Table 28.26. Quite contrarily, the five out of six errors made by SAM and SID and

three out of five errors made by KFLU are correctly identified by KFSSI. Instead, two out of three
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Figure 28.12 Ratios of estimation errors to the five reflectance spectra in Figure 1.16.
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Table 28.23 LSEs corresponding to different 19 panel pixels using different matching panel signatures by

KFSSI according to (28.10)

p1 p2 p3 p4 p5 su

p11 328.1 328.8 328.8 328.1 328.3 [45, 450]

p12 169.5 428.0 462.2 561.3 846.5 < 1

p13 212.6 259.3 253.4 228.1 298.9 < 0.2

p211 1216.8 539.9 897.8 870.7 871.6 < 0.5

p221 971.3 523.3 864.7 661.0 677.5 [0.01, 0.1]

p22 280.8 240.3 290.0 2279.7 2758.4 [0.01, 0.2]

p23 223.3 244.0 232.3 1575.4 2072.0 Any value

p311 561.2 286.6 205.9 307.3 428.0 < 0.1

p312 1319.9 928.8 328.8 2077.1 2400.3 < 0.5

p32 1154.7 320.7 594.3 1309.0 1303.4 Any value

p33 1943.0 173.5 291.5 5909.0 6433.1 Any value

p411 345.8 345.7 346.4 344.0 345.2 [30, 60]

p412 351.9 353.4 364.0 335.0 335.7 [5, 25]

p42 338.8 335.4 339.3 328.5 330.1 [15, 45]

p43 240.6 269.8 265.6 228.2 245.5 [2, 8]

p511 2293.8 1865.3 2177.6 468.8 299.5 < 10

p521 656.0 560.2 597.1 383.5 293.8 < 45

p52 436.2 354.1 395.6 168.3 93.1 < 25

p53 274.6 228.6 228.4 268.5 253.5 [5, 80]

Table 28.24 Similarity values obtained by comparing the five subpixel panels pi3f g5i¼1 against the five panel

signatures, pif g5i¼1 using SAM and SID

p1 p2 p3 p4 p5

p11 0.0533 (0.0061) 0.0883 (0.0143) 0.0980 (0.0178) 0.1005 (0.0121) 0.1045 (0.0135)

p12 0.0084 (0.0000) 0.0413 (0.0022) 0.0656 (0.0052) 0.1157 (0.0172) 0.1255 (0.0232)

p13 0.0579 (0.0070) 0.0453 (0.0040) 0.0737 (0.0068) 0.1512 (0.0338) 0.1636 (0.0437)

p211 0.0436 (0.0026) 0.0151 (0.0000) 0.0401 (0.0025) 0.1459 (0.0252) 0.1536 (0.0310)

p221 0.0451 (0.0027) 0.0163 (0.0000) 0.0387 (0.0025) 0.1490 (0.0260) 0.1565 (0.0318)

p22 0.0387 (0.0025) 0.0169 (0.0000) 0.0473 (0.0027) 0.1378 (0.0234) 0.1465 (0.0300)

p23 0.0662 (0.0068) 0.0336 (0.0019) 0.0647 (0.0050) 0.1639 (0.0352) 0.1749 (0.0444)

p311 0.0808 (0.0082) 0.0817 (0.0083) 0.0538 (0.0040) 0.1556 (0.0265) 0.1565 (0.0299)

p312 0.0861 (0.0100) 0.0880 (0.0099) 0.0579 (0.0043) 0.1593 (0.0301) 0.1601 (0.0342)

p32 0.0845 (0.0084) 0.0479 (0.0026) 0.0467 (0.0024) 0.1819 (0.0396) 0.1907 (0.0477)

p33 0.1065 (0.0152) 0.0681 (0.0064) 0.0767 (0.0071) 0.2022 (0.0526) 0.2125 (0.0630)

p411 0.1535 (0.0316) 0.1897 (0.0473) 0.2031 (0.0536) 0.0467 (0.0035) 0.0411 (0.0027)

p412 0.1764 (0.0444) 0.2119 (0.0618) 0.2242 (0.0683) 0.0705 (0.0085) 0.0625 (0.0068)

p42 0.1170 (0.0175) 0.1503 (0.0286) 0.1671 (0.0350) 0.0101 (0.0000) 0.0252 (0.0014)

p43 0.0775 (0.0069) 0.0644 (0.0039) 0.0959 (0.0090) 0.1424 (0.0273) 0.1563 (0.0363)

p511 0.1380 (0.0278) 0.1713 (0.0414) 0.1844 (0.0475) 0.0368 (0.0035) 0.0177 (0.0000)

p521 0.1942 (0.0609) 0.2291 (0.0814) 0.2390 (0.0876) 0.0922 (0.0184) 0.0759 (0.0111)

p52 0.1521 (0.0343) 0.1862 (0.0497) 0.1973 (0.0551) 0.0510 (0.0058) 0.0327 (0.0019)

p53 0.0747 (0.0067) 0.0565 (0.0031) 0.0885 (0.0079) 0.1466 (0.0287) 0.1593 (0.0372)
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errors made in Table 28.26 by KFSSI are among those that were correctly identified by SAM/SID

and KFLU in Tables 28.23 and 28.24. These interesting findings in Table 28.26 demonstrated the

significant difference of KFSSI from SAM/SID and KFLU in the sense of their functionalities.

28.6.3 KFSSQ

As noted, the subpixel panels, p13, p23, p33, p43, and p53, had the same size of 1 m� 1 m smaller

than the 1:56 m� 1:56 m spatial resolution. This indicated that the size of these five subpixel pan-

els is 1= 1:56 mð Þ2 ¼ 0:41091 m2, which was smaller than 50% of pixel size. Therefore, KFSSE

could not accurately estimate the subpixel panels without prior knowledge. In this case, we

assumed that the five panel signatures pif g5i¼1 in Figure 1.16 were provided as a priori. Table

28.27 tabulates the quantification results of each of the 19 R panel pixels with their respective

chosen standard deviations of the measurement noise su, where the pi was used as the prior knowl-

edge for subpixel panel pi3 for each i ¼ 1; 2; 3; 4; and 5.

As shown in Table 28.27, KFSSQ performed very well in quantifying the five subpixel panels,

provided that the values of su were chosen approprately as given in the table. A remark similar to

the one made on the selection of su at the end of Section 28.4 was also applied to real image

experiments.

Table 28.25 KFLU-unmixed results for 19 R lined-up pixels

p1 p2 p3 p4 p5

p11 1.8861 �0.9656 0.1757 �0.8647 0.8395

p12 0.8643 0.1195 0.0080 0.0678 �0.0486

p13 0.2492 0.8463 �0.1677 0.7971 �0.7910

p211 0.0858 0.8540 0.0997 �0.2254 0.2138

p212 0.1913 0.8060 0.1103 �0.3100 0.2527

p22 �0.0210 0.8857 0.0405 0.0501 0.0214

p23 �0.2559 1.4540 �0.2504 0.4854 0.4880

p311 0.7414 �1.2288 1.5070 �0.8208 0.7968

p312 0.9121 �1.6183 1.7738 �0.7464 0.7100

p32 �0.6778 1.0766 0.5740 0.6857 �0.6361

p33 �0.9756 1.7707 0.1450 0.8814 �0.8706

p411 0.6155 �0.9269 0.1519 0.7564 0.4500

p412 0.4704 �1.0378 0.2250 0.7165 0.6234

p42 �0.0679 0.0421 �0.0056 1.0091 0.0441

p43 �1.0178 1.9227 �0.3714 1.5175 �1.1170

p511 0.0556 �0.1320 �0.0032 �0.1444 1.2131

p512 0.6630 �1.2352 0.1986 �0.7602 2.1914

p52 0.2635 �0.6100 0.1945 �0.2421 1.4157

p53 �0.9822 1.9771 �0.3898 1.1475 �0.8207

Table 28.26 Panel pixels wrongly identified by the three scenarios

Panel pixels wrongly identified

SAM/SID p13, p33, p411, p412, p43, p53
KFLU p13, p32, p33, p43, p53
KFSSI p23, p32, p33
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28.7 Conclusions

Spectral characterization provides important and crucial features in target discrimination, detec-

tion, classification, identification, and quantification. This chapter presents new applications of

Kalman filtering in spectral characterization and further develops three KFSCSP techniques, a

spectral abundance estimator, called KFSSE, a spectral quantifier, called KFSSQ, and a spectral

Table 28.27 Abundance fraction estimated by KFSSQ and su for

subpixel target panels using known target signatures

Subpixel panel Size of subpixel target su

p11 0.9993 9300

p12 0.4073 36000

p13 0.4109 33050

p211 0.5236 29500

p221 0.3435 43000

p22 0.6931 19300

p23 0.4106 33600

p311 0.8626 13000

p312 0.9965 7500

p32 0.5399 28000

p33 0.4109 33600

p411 0.9992 8900

p412 0.9975 7000

p42 0.7279 20500

p43 0.4115 33300

p511 0.7308 20000

p521 0.9985 11500

p52 0.7742 19500

p53 0.4107 33300

Table 28.28 Comparison among KFLU, KFSSE, KFSSI, and KFSSQ

KFLU KFSSE KFSSI KFSSQ

Functionality Abundance

estimator

âKFLU
ðnÞ

Signature

estimator

t̂
KFSSE

l

Signature

identifier t̂
KFSSI

l

Abundance

quantifier

âKFSSQ
l

Linear mixing model Yes No No No

Sample correlation Yes No No No

Data samples Image pixel

vector r(n)

lth band

scalar rl

lth band

scalar sl

lth band

scalar rl

Initial condition âð1Þ ¼ 0 t̂
KFSSE

1 ¼ 0 t̂
KFSSI

1 ¼ 0 âKFSSQ
1 ¼ 0

Measurement input Image pixel r(n) lth band scalar rl rl and sl rl and sl

Measurement output a(n) t̂
KFSSE

l t̂
KFSSI

l âKFSSQ
l

State input âKFLU
n ðnÞ t̂

KFSSE

l t̂
KFSSI

l âKFSSQ
l

State output âKFLU
nþ1 ðnÞ t̂

KFSSE

lþ1 t̂
KFSSI

lþ1 âKFSSQ
lþ1
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identification, called KFSSI. The proposed KFSSE, KFSSI, and KFSSQ are quite different from

the Kalman filter-based linear spectral unmixing developed by Chang and Brumbley (1999a,

1999b) in the sense that while the former is designed for one-dimensional spectral data the latter is

developed for unmixing image data. A comparison among KFLU, KFSSE, KFSSI, and KFSSQ is

summarized in Table 28.28.

It is worth noting that depending upon applications, the measurement and state equations used

to describe KFSSE, KFSSI, and KFSSQ are all different. For example, both KFSSE and KFSSI

have the state noise v included in their state equations, while KFSSQ does not have one in its state

equation. Moreover, KFSSE uses the same target signature vector t in both measurement equation

and state equation compared with KFSSI, which uses a matching signature vector s in its measure-

ment equation and the target signature vector t in its state equation. Due to the use of two different

signature vectors, t and s, KFSSI is more sensitive to both measurement noise u and state noise v,

both of which must be chosen appropriately and are generally selected at the magnitude of the

same order. On the other hand, KFSSE uses the target signature vector t in these two equations.

So, it is more robust to the noise in both equations. Since KFSSQ performs spectral quantification

using the zero-holder interpolator with noise involved this leads to the fact that measurement noise

u has a significant impact on the performance of KFSSQ as demonstrated in our experiments.
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29

Wavelet Representation for
Hyperspectral Signals

Wavelet analysis has been used successfully in many areas in signal and image processing. Its

applications to remote sensing have also been evidenced by many publications. This chapter pres-

ents a new application of wavelets in hyperspectral signature representation for spectral characteri-

zation. In particular, a new algorithm, called wavelet-based signature characterization algorithm

(WSCA), is developed for hyperspectral signature discrimination, classification, and identification.

The key idea of WSCA is to decompose a hyperspectral signature vector into two signature com-

ponents, referred to as detail and approximation signatures, respectively, via the discrete wavelet

transform (DWT) specified by Mallet’s algorithm where two types of filters, high-pass and low-

pass filters, are constructed to generate these two components. Two specific functions, called

“wavelet function,” and “scaling function,” are used for DWT to span two orthogonal vector spaces.

Since the wavelet function is effective in capturing the details of a signature vector that corresponds

to the high-frequency domain information of the original signature vector, it can be used to generate

signature details. On the other hand, the scaling function represents the low-frequency domain infor-

mation inherited in the original signature vector to retain majority of the signature vector; thus, it

can be used to produce the signature approximation. By means of these two details and approxima-

tion signatures, WSCA can perform self-tuning and self-correction to characterize a hyperspectral

signature vector for signature discrimination, classification, and identification.

29.1 Introduction

Wavelet analysis has been well studied and used successfully in many areas in signal and image

processing (Daubechies, 1992; Akansu and Haddad, 1992; Vetterli and Kovacevic, 1995; Strang

and Nguyen, 1996; Mallat, 1999). This chapter explores a new application of wavelet analysis in

hyperspectral signature characterization by taking advantage of its multiple-scale (multiscale)

representation. Two specific functions resulting from wavelet analysis, called “wavelet function”

and “scaling function,” are used to decompose a hyperspectral signature vector in multiscale

representation for characterization. In other words, an original hyperspectral signature vector can

be decomposed into detail signature component and approximation signature component via

wavelet function and scaling function whose shifted and scaled versions span two orthogonal

vector spaces. The wavelet function is effective in capturing details of a signature that

Hyperspectral Data Processing: Algorithm Design and Analysis, First Edition. Chein-I Chang.
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correspond to the high-frequency domain information of the original signature, while the scaling

function preserves the low-frequency domain information inherited in the original signature.

Generally, such wavelet transform can be discrete or continuous depending upon the scalars

used to translate and also dilate both the wavelet and scaling functions. In this chapter, only

discrete orthonormal bases of wavelets are of interest and a specific algorithm, called Mallat’s

algorithm considered in Mallat (1989), is used to construct a high-pass filter and a low-pass filter.

The pair of such high-pass and low-pass filters is then used to perform DWT for hyperspectral

signature characterization such as self-adjustment, similarity, discrimination, classification, and

so on.

This chapter marries two seemingly different approaches together, wavelets and Kalman filters

developed in Chapter 28, by taking advantage of the concept of an innovations process used in the

Kalman filtering to develop WSCA that can be used for various applications. With the introduction

of such an innovations process, a hyperspectral signature vector can be decomposed into two com-

ponents, detail signature and approximation signature, to perform self-adjustment in an iterative

manner. When a reference signature is available, WSCA can be used to perform signature self-

tuning to the reference signature, referred to as WSCA signature self-tuning (WSCA-SST). If a

hyperspectral signature vector is contaminated or even mistaken as some other similar signature,

WSCA can be used for signature self-correction, referred to as WSCA for signature self-correction

(WSCA-SSC). Such a WSCA-based approach can also be extended to the applications of hyper-

spectral signature self-discrimination, self-classification, and self-identification provided that a ref-

erence signature vector is given.

29.2 Wavelet Analysis

Wavelet analysis is a widely used technique in signal processing and communications, where its

applications range from one-dimensional (1D) signal processing, such as speech, sonar, and audio

processing, to multidimensional signal processing, such as two-dimensional (2D) image process-

ing and three-dimensional (3D) video processing. One of the major features of wavelet analysis is

the use of the so-called scaling function to generate a set of wavelets that decompose signals in

multiple pair-wise disjoint orthogonal representations, referred to as signal resolutions. When the

signals to be considered are one dimensional, the multiple signal resolutions are referred in this

chapter to as multiple signal scales. With this interpretation, the resulting multiple pair-wise dis-

joint orthogonal representations are then called multiscale signal representation. On the other hand,

if the signals to be considered are 2D or 3D images, the multiple signal resolutions are referred to

as image resolutions and the resulting multiple pair-wise disjoint orthogonal representations are

then called multiple image resolutions. Since the main focus of this chapter is 1D signal process-

ing, the term “multiscale” will be used throughout this chapter.

29.2.1 Multiscale Approximation

The idea of multiscale approximation of wavelet analysis is briefly reviewed in this section. First,

let Z and R denote the sets of integers and real numbers, respectively, and L2(R) denote the vector

space of measurable, square-integrable one-dimensional functions. More specifically, assume that f

(x) is a signal function and A2j is an operator that approximates the f(x) at the scale of 2j. Let V2j be

the multiscale approximation vector space, which can be interpreted as the set of all possible

approximations of functions in L2(R) at the scale of 2j. Then A2j f ðxÞ is the function that is most

similar to f(x) among all the possible approximation functions in V2j at the scale of 2j. For more

details about A2j , we refer to Mallat (1989).
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29.2.2 Scaling Function

Let V2jð Þj2Z represent a sequence of multiscale approximations of functions in L2(R). Then there

exists a unique function fðxÞ 2 L2ðRÞ, called a scaling function, that satisfies the following

property:

If we define f2j ðxÞ ¼ 2jfð2jxÞ for j 2 Z (the dilation of fðxÞ by 2j), then
ffiffiffiffi
2j

p
f2j x� 2�jn

� �� �

n2Z
is an orthonormal basis of V2jð Þj2Z .

Using the scaling function defined above, any randomly chosen function f ðxÞ 2 L2ðRÞ can be

approximated by

A2j f ðxÞ ¼ 2�j
X1

n¼�1
f ðuÞ;f2j ðu� 2�jnÞ� � � f2j ðx� 2�jnÞ ð29:1Þ

where

f ðuÞ;w2j ðu� 2�jnÞ� � ¼
ðþ1

�1
f ðuÞw2j ðu� 2�jnÞdu ð29:2Þ

Since (29.1) is a continuous approximation, its discrete approximation can be derived from (29.2)

as the following inner product:

Ad
2j
f ðxÞ ¼ f ðuÞ;f2j ðu� 2�jnÞ� �� �

n2Z ð29:3Þ

where Ad
2j
f ðxÞ is called a discrete approximation of f(x) at the scale of 2j. So far, we have intro-

duced the continuous and discrete approximations of a function only at a given multiscale level of

2j. In practice, only a signal at a finite scale is considered for measurement. Without loss of gener-

ality, it often assumes that the finite scale for measurement is normalized to 1. Therefore, let

Ad
1 f ðxÞ be the discrete approximation at the scale 1. In order to obtain the multiscale transform in

an iterative manner, the following equation allows us to compute all the discrete approximations

Ad
2j
f ðxÞ for j < 0 from Ad

1 f ðxÞ:
f ðuÞ;f2j ðu� 2jnÞ� �

¼
X1

k¼�1
f2�1ðuÞ;fðu� ðk � 2nÞÞh i f ðuÞ;f2jþ1ðu� 2�j�1kÞ� � ð29:4Þ

Furthermore, a low-pass filter can be defined to simplify (29.4). Let H be a discrete filter whose

impulse response is given by

8n 2 Z; hðnÞ ¼ f2�1ðuÞ;fðu� nÞh i ð29:5Þ

and also let ~H be a mirror filter with the impulse response given by

~hðnÞ ¼ hð�nÞ ð29:6Þ

such that (29.4) can be simplified as follows:

f ðuÞ;f2j ðu� 2jnÞ� � ¼
X1

k¼�1
~hð2n� kÞ f ðuÞ;f2jþ1ðu� 2�j�1kÞ� � ð29:7Þ
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29.2.3 Wavelet Function

In Section 29.2.1, a signal can be discretely approximated by Ad
2j
f ðxÞ at the signal scale of 2j via

(29.3). The resulting approximation error is the signal loss resulting from a signal representation of

f(x) at the scale of 2j, denoted by f 2j ðxÞ. Such detail signal f 2j ðxÞ can be characterized by the differ-
ence between the approximations of a signal f(x) at two consecutive scales 2jþ1 and 2j, where

f 2j ðxÞ is considered as the approximation of f(x) at the scale of 2j and can be obtained by orthogo-

nal projections of the original signal f(x) onto the orthogonal complement of V2l , denoted by O2j,

which is the orthogonal complement vector space of V2l in the space V2jþ1 . Similarly, the approxi-

mation of f(x) at the scale of 2jþ1, f 2jþ1ðxÞ, can also be obtained by mapping the original signal f(x)

into O2jþ1 .

Let V2jð Þj2Z be a sequence of multiscale vector spaces and fðxÞ be the scaling function. Also,

letC(x) denote a function whose Fourier transform is given by cðwÞ ¼ Gðw=2Þwðw=2Þ

GðwÞ ¼ e�jwHðwþ pÞ ð29:8Þ

Figure 29.1 Geometric interpretation between V2j and O2j.

Multiscale approximation space 
jV

2

Approximation space 12 jV Orthogonal detail space 
12 jO

Approximation space 
22 jV Orthogonal detail space 

22 jO

Figure 29.2 Geometric interpretation of approximation and orthogonal detail spaces at different scales.
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where HðwÞ and w wð Þ are the Fourier transforms of the discrete low-pass filter H defined by (29.5)

and scaling function fðxÞ, respectively. Therefore, the function C(x) defined by (29.8) satisfies the

following property:
ffiffiffiffi
2j

p
c2j ðx� 2�jnÞ

� �

n2Z
is an orthonormal basis of O2j

By the wavelet function, it is easy to find the orthogonal projection of f(x) and its corresponding

discrete version in the vector space O2j specified by

P
O2j f ðxÞ ¼ 2�j

X1

k¼�1
f ðuÞ;c2j ðu� 2�jnÞ� �

c2j ðx� 2�jnÞ ð29:9Þ

which yields the detail signal representation of f(x) at the scale of 2j. It is characterized by the set

of inner products

Dd
2j
f ðxÞ ¼ f ðuÞ;c2j ðu� 2�jnÞ� �� �

n2Z ð29:10Þ

Dd
2j
f ðxÞ is called the discrete detail signal of f(x) at the scale of 2j, which contains the information

difference between Ad
2j
f ðxÞ and Ad

2jþ1 f ðxÞ. Similarly, the multiscale wavelet transform can also be

computed iteratively and simplified by defining a high-pass and mirror filter. Let G be a discrete

filter with the impulse response given by

gðnÞ ¼ c2�1ðuÞ;fðu� nÞh i ð29:11Þ

and ~G be the corresponding mirror filter with the impulse response given by

~gðnÞ ¼ gð�nÞ ð29:12Þ

Following the same deviation in (29.4), we obtain

f ðuÞ;c2j ðu� 2jnÞ� � ¼
X1

k¼�1
~gð2n� kÞ � f ðuÞ;f2jþ1ðu� 2�j�1kÞ� � ð29:13Þ

Figure 29.1 delineates the geometric interpretation of the relationships between V2l and O2j with a

detailed block diagram shown in Figure 29.2.

29.3 Wavelet-Based Signature Characterization Algorithm

In this section, WSCA is developed for hyperspectral signal processing, which can perform signa-

ture self-tuning (SST) and signature self-correction (SSC), referred to as WSCA-SST and WSCA-

SSC, respectively.

29.3.1 Wavelet-Based Signature Characterization Algorithm for Signature
Self-Tuning

The SST ability of WSCA arises from the fact that a signature can be wavelet-decomposed into

two orthogonal signature components, called details signature and approximation signature, an

idea borrowed from the innovations process used in the Kalman filtering. Mallet’s algorithm

(1989) demonstrated that the wavelet decomposition and reconstruction of a signal f(x) could be

related to each other by the two flow diagrams depicted in Figure 29.3.
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The signal function f(x) represents the original hyperspectral signature, which will be later used

as a reference signature. The two signature components of f(x), Ddf(x) and Adf(x), are referred to as

its details and approximation signatures, respectively. The G and H in Figure 29.3 denote the high-

pass and low-pass filters derived from the wavelet function and scaling function, respectively, as

described in Section 29.2, where ~G and ~H are the corresponding mirror filters of G and H. Assume

that the detail signature of the original signature f(x) is Ddf(x). Let its noise-corrupted signature be

denoted by Dcorruptf(x). The Ddf(x) can then be self-tuned from Dcorruptf(x) through a feedback and

an iterative convergent process as described below.

Let the original signature f(x) be decomposed into two components:

f ðxÞ ¼ f ðxÞ � f̂ ðxÞ þ f̂ ðxÞ ð29:14Þ

where f̂ ðxÞ is a predicted signature produced by the flow diagram and the corrupted signature

Dcorruptf(x) serves as an input signature, and the approximation signature Adf(x) remains clean and

is exactly the same as depicted in Figure 29.3. After the resulting predicted signature, denoted by

f̂ ðxÞ, is generated as the output of the diagram depicted in Figure 29.4, an error signature, denoted

by eðxÞ, can be defined by eðxÞ ¼ f ðxÞ � f̂ ðxÞ. According to Kalman filtering, the error signature

eðxÞ is also referred to as innovations signature that contains new information that cannot be

predicted from the signature f ðxÞ. Such an innovations signature can be used to update f̂ ðxÞ in the

same way as is carried out by a Kalman filter. Using wavelet analysis, the error signature eðxÞ can
be further decomposed by downsampling into two components Dinnovationsf(x) and Ainnovationsf(x) as

shown in Figure 29.5.

 f (x)

A
d

D d

G
~

H
~

2

2

 f (x)

 f (x)

(a) Wavelet decomposition

D  f(x)d

A f(x )d

2  f (x)G

H2

(b) Wavelet reconstruction

Figure 29.3 Flow diagrams for both wavelet decomposition and reconstruction.

corrupt f (x)D

Ad

2

2

G

H f (x)

 f (x)ˆ

Figure 29.4 Flow diagram for generating a prediction signature of the original signature f(x).
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Using the innovations details signature Dinnovationsf(x) in Figure 29.5, we can further define a

new detail signature Dnewf (x) by

Dnewf ðxÞ ¼ Dinnovationsf ðxÞ þ Dcorruptedf ðxÞ ð29:15Þ

The Dnewf(x) obtained by (29.15) is then used to replace the corrupted detail signature Dcorruptf(x)

to produce a new reconstructed signature f̂
newðxÞ by up sampling Dnewf(x) and Adf(x) as shown in

Figure 29.6.

Accordingly, the new detail signature Dnewf(x) is more accurate than the corrupted signature

Dcorruptedf(x) so that the signature reconstructed from the Dnewf(x) is more similar than that recon-

structed from the Dcorruptf(x) in terms of least squares error (LSE). The same procedure is contin-

ued until the difference between two consecutive LSEs is within a prescribed threshold e. The
above procedure is called WSCA-SST and its detailed implementation is summarized as follows.

Wavelet-based signature characterization algorithm for self-tuning (WSCA-SST)

1. Let e be a stopping threshold and the initial value of LSE denoted by LSEold be zero.

2. Reconstruct the signature f̂ ðxÞ through the Dcorruptf(x).

3. Calculate the LSEnew between f̂ ðxÞ and f(x).
4. If (LSEnew�LSEold)< e, go to step 5. Otherwise, continue the following procedure:

a. Apply wavelet decomposition with the innovation signature eðxÞ ¼ f ðxÞ � f̂ ðxÞ as the input
to find the innovations details signature Dinnovationsf(x).

b. Sum the resulting Dinnovationsf(x) and Dcorruptf(x) to form a new detail Dnewf(x) according to

(29.15).

c. Replace the old Dcorruptf(x) with new generated detail Dnewf(x) and go to step 2.

5. Output f̂ ðxÞ as the prediction of f(x), and also output Dnewf(x) as the self-tuned version of

Dcorruptf(x).

For an illustrative purpose, Figure 29.7 depicts a flowchart that implements the five steps described

in the above WSCA-SST.

The above WSCA-SST is presented by taking the corrupted DWT details signature as an exam-

ple to show how it works. On the other hand, it can also be easily extended to the case of the

corrupted DWT approximation signature by simply replacing all the details signatures in WSCA-

SST with the approximation signatures. The only difference lies in the fact that the required

G
~

H
~

2

2

Dinnovations f(x)

Ainnovations f(x)

)(ˆ)()( xfxfx −=ε

Figure 29.5 Wavelet decomposition of error signature e(x) by down sampling.

)(new x fD

)(x fAd

2

2

(x)ˆ new
 fG

H

Figure 29.6 Reconstruction of f(x) using Dnewf(x) and Adf(x).
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number of iterations for corrupted approximation signatures is greater than that required for cor-

rupted detail signatures because the approximation signature contains much more information

about the original hyperspectral signature vector than does the detail signature.

29.3.2 Wavelet-Based Signature Characterization Algorithm for Signature
Self-Correction

In the case of WSCA-SST, either details signature or approximation signature is assumed to be

corrupted after DWT. What would it be if the original hyperspectral signature are corrupted by

Start

1. Predefine
stopping threshold 

2.  Initialize value of  
     LSE to be zero

Reconstruct the signature )(ˆ xf  through 

the )(xfD
corrupted according to Figure 29.4

Calculate the LSEnew

between )(ˆ xf  and  f (x)

If  (LSEnew –
LSEold) > ,

No

find the innovations details

signatures )(xfD
innovations

through 

)(ˆ)()( xfxfxε =

)(xfD
new

 = 

)(xfD
innovations + )(xfD

corrupted

Replace the old )(xfD
corrupted

with new generated detail 

)(xfD
new

output )(ˆ xf as the 

prediction of  f (x), and 

also output )(xfD
new

as the self-tuned 
version of 

)(xfD
corrupted

End

Yes

Figure 29.7 Flowchart for WSCA-SST.
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random noise, in which case both the approximation and details signatures are corrupted by

noise? Or even in the worst case where the original hyperspectral signature is mistaken as

another similar signature with both the approximation and details signatures corrupted by

some other signature? Following the same innovations approach described above, we can

generate two innovations signatures: one is the innovations approximation signature denoted

by Ainnovationsf(x) and the other is the innovations details signature denoted by Dinnovationsf(x).

Using these two innovations signatures, three methods for updating the approximation signa-

ture Acorruptedf(x) and detail signature Dcorruptedf(x) can be derived as follows:

1. Only update the old approximation signature

Anewf ðxÞ ¼ Ainnovationsf ðxÞ þ Acorruptedf ðxÞ ð29:16Þ

2. Only update the old details signature according to (29.15).

3. Update both the old details signature and old approximation signature according to (29.15) and

(29.16).

These three update methods produce three different LSEs. An optimal strategy is to choose an

update method that yields the minimum LSE, and then go back to the next feedback and iteration

step. This procedure is called WSCA-SSC and summarized as follows.

Wavelet-based signature characterization algorithm for signature self-correction (WSCA-SSC)

1. Let e be a stopping threshold and the initial value of LSE denoted by LSEold be zero.

2. Reconstruct the signature f̂ ðxÞ through the Dcorruptedf(x) and Acorruptedf(x).

3. Calculate the LSEnew between f̂ ðxÞ and f (x).
4. If (LSEnew�LSEold)< e, go to step 5. Otherwise, continue the following procedure:

a. Apply wavelet decomposition with the innovation signature eðxÞ ¼ f ðxÞ � f̂ ðxÞ as the input
to find the innovations details signature Dinnovationsf(x) and the innovation approximation

signature Ainnovationsf(x).

b. Regenerate three new LSEs according to (29.15), (29.16), or both, respectively, to

decide the updating rule, that is, only updating the old details signature or approxima-

tion signature, or both. The strategy is to choose a method that yields the minimum

new LSE.

c. Update the details signature, approximation signature, or even both according to the updat-

ing rule generated by step (b).

d. Replace the old Dcorruptedf(x) with new generated detail Dnewf(x), or replace the old

Acorruptedf(x) with new generated detail Anewf(x), or both according to the updating rule

generated by step (b). Then go back to step 2.

5. Output f̂ ðxÞ as the prediction of f(x), and also output Dnewf(x) as the self-tuned version of

Dcorruptedf(x) and Anewf(x) as the self-tuned version of Acorruptedf(x).

29.3.3 Signature Self-Discrimination, Classification, and Identification

In this section, WSCA-SSC will be extended to hyperspectral signature discrimination, classifica-

tion, and identification. The idea can be described as follows. When WSCA-SSC finally converges,

Wavelet Representation for Hyperspectral Signals 867



the resulting LSE can be served as a quantitative indication as well as a measure for signature

identification, classification, and discrimination. For signature discrimination, the input parameters

are two different signature vectors to be discriminated, rather than corrupted and reference signa-

ture vectors. The smaller the LSE, the more similar the two input signature vectors. It should be

noted that since the resulting LSE is not strictly symmetric, exchanging the roles of the two input

parameters might result in different LSEs. Therefore, in order for WSCA-SSC to be extended to

perform as a discriminator between two different signature vectors, we define the discrimination

power denoted by DPWSCA-SSC as

DPWSCA-SSCðs; tÞ ¼ LSEðt; sÞ þ LSEðs; tÞ ð29:17Þ

where s and t represent two different hyperspectral signature vectors to be discriminated, and

LSE(t,s) denotes the resulting LSE from WSCA-SSC with t as the signature vector to be

processed and s as the reference signature vector. In order for WSCA-SSC to be extended to

perform signature identification and classification, similar processes will be applied using

mixed signatures or subpixels as signatures to be processed. So far, the relationship between

WSCA, WSCA-SST, WSCA-SSC, and also signature self-discrimination, classification, and

identification can be depicted by the structure in Figure 29.8.

29.4 Synthetic Image-Based Computer Simulations

In order to demonstrate the utility of proposed WSCA, experiments using computer simulations

are conducted. For computer simulations, five Airborne Visible infra Red Imaging Spectrometer

(AVIRIS) reflectance data, blackbrush, creosote leaves, drygrass, red soil, and sagebrush, are used

and are shown in Figure 1.8. Each of these five spectral signatures has 158 bands after water bands

are removed and can be considered as a 158-dimensional hyperspectral signature where each sig-

nature component is specified by a particular spectral wavelength.

Wavelet-based signature
characterization algorithm  (WSCA)

Wavelet-based signature
characterization algorithm
for signature self-tuning

(WSCA-SST)

Wavelet-based signature 
characterization algorithm

for signature self-correction
(WSCA-SSC)

Hyperspectral signature 
self-discrimination, self-
classification and self-

identification 

Figure 29.8 Relationships derived from WSCA, which are WSCA-SST, WSCA-SSC, and signature self-

discrimination, classification, and identification.
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29.4.1 Signature Self-Tuning and Self-Denoising

Since blackbrush, creosote leaves, and sagebrush are very close in their spectral shapes, there are

two cases for us to discuss: the first case is that one signature’s details signatures are corrupted by

any other signatures. The second case is that one of these three signatures are considered as a

corrupted signature of the other two signatures, with both details and approximation signatures.

Either case provides us with a good example to analyze WSCA in signature self-tuned perform-

ance. The experiments were divided into two categories. In the first one, the signature was self-

tuned by detail signatures, and in the second one, the signature was self-denoised by both detail

and approximation signatures.

Experiment 29.4.1.1 (Self-tuned by detail signature)

In this experiment, the details signature of the discrete wavelet transformed blackbrush was cor-

rupted by the details signature of the creosote leaves. In order for the corrupted signature black-

brush to be self-tuned, the pure signature of blackbrush was used as the reference. The results

along with the resulting LSE for each step of iteration are shown in Figure 29.9(a)–(c). As can be

seen, the self-tuned signature was nearly the same original pure black signature.

Experiment 29.4.1.2 (Self-tuned by both detail and approximation signatures)

This experiment considered creosote leaves as a corrupted signature of blackbrush. In this case,

both the detail and approximation signatures of blackbrush were replaced with those of creosote
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Figure 29.9 Comparison between original and corrected signatures.
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leaves. The results are shown in Figure 29.10, where the self-tuned signature resulting from WSCA

matched the original pure signature with very high accuracy, which could be seen from the numeri-

cal value of resulting LSE between self-tuned and original signatures.

As for convergence rate, the results shown in Figures 29.9(d) and 29.10(d) demonstrated

that with both details and approximation signatures tuned at each iteration step, the conver-

gence speed was much faster than that obtained by only self-tuning the details signatures at

each iteration step.

29.4.2 Signature Self-Discrimination, Self-Classification, and Self-Identification

In this section, both simulated mixed hyperspectral signature and subpixels were used for

experiments with WSCA used as discriminator, classifier, and identifier. The discrimination

power defined by (29.4) was used as a measure for discrimination, classification, and

identification.

Experiment 29.4.2.1 (Signature self-discrimination)

Blackbrush, creosote leaves, and sagebrush were used here because of their close similarity. Their

DPWSCA are tabulated in Table 29.1.

The results in Table 29.1 further show that both blackbrush and creosote leaves were much

closer to sagebrush, which was consistent with the results of using other commonly used similarity

measures such as SAM and SID.
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Figure 29.10 Comparison between original and corrected signatures.
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Experiment 29.4.2.2 (Mixed pixel self-classification)

In this experiment, the mixed hyperspectral signature was simulated by equally mixing four differ-

ent materials, blackbrush, creosote leaves, sagebrush, and drygrass, each with abundance of 25%.

The classification results are shown in Table 29.2.

The smaller DPWSCA is more similar to the two signatures. The results demonstrated that

WSCA could successfully classify the equally mixed pixel as sagebrush, which can be explained

by the fact that both blackbrush and creosote leaves were close to sagebrush by spectral similarity

measures such as SAM and SID.

Experiment 29.4.2.3 (Subpixel self-identification)

In this experiment, the subpixels of different target sizes were simulated with creosote leave as the

target, mixed with drygrass as background. For example, the subpixel of 25% target size was simu-

lated by mixing three background pixels with one pixel of the target. The identification results are

shown in Table 29.3.

The results demonstrated that WSCA could successfully identify the subpixel as target creosote

leaves as long as the size of subpixel target creosote leaves was equal to or above 50%.

29.5 Real Image Experiments

So far, we have discussed much about the utility of hyperspectral signature self-clarification

using wavelet discrete decomposition, which can perform self-clarification given a relatively

Table 29.1 Discrimination power of WSCA

Blackbrush Creosote leaves Sagebrush

Blackbrush 0 6.1629e� 013 3.2014e� 013

Creosote leaves 0 3.3804e� 013

Sagebrush 0

Table 29.2 Discrimination power of WSCA

Blackbrush Creosote leaves Sagebrush Drygrass

2.6981e� 013 4.2723e� 013 1.6359e� 013 4.9961e� 013

Table 29.3 DPWSCA in 10�13 for subpixel with different target sizes

10% 20% 30% 40% 50%

Drygrass 0.8764 1.7519 2.6276 3.5044 4.3815

Creosote leaves 7.8858 7.0089 6.1327 5.2574 4.3810

60% 70% 80% 90% 100%

Drygrass 5.2563 6.1337 7.0097 7.8865 0.5892

Creosote leaves 3.5051 2.6282 1.7518 8.7540 9.2024

Wavelet Representation for Hyperspectral Signals 871



pure and clean signal as a reference. Intuitively, the farther the two hyperspectral signatures,

the more the number of iterations required. So this can be used to judge if one hyperspectral

signature is much closer to the another and further develop a technique to perform subpixel

identification. In the following experiments, two different ways to choose reference were con-

sidered, one using the five average panel signatures, pif g5i¼1, as the reference, and the other

using the average of the first two column panel signatures as the reference. Subpixel panels

pi3f g5i¼1 were the signatures to be identified.

Experiment 29.5.1 (WSCA-SSC)

In this experiment, five subpixel panels p13, p23, p33, p43, and p53 in the last column were considered

as contaminated signatures of the five panels signatures p1, p2, p3, p4, and p5 in Figure 1.16 that were

used as references for subpixel panels p13, p23, p33, p43, and p53 for self-correction. In other words,

WSCA-SSC was applied here to recover the original five panels signatures p1, p2, p3, p4, and p5 from

their corrupted versions, here considered as p13, p23, p33, p43, and p53. Figures 29.11–29.15 show the

WSCA-SSC results along with their corresponding LSEs.
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Figure 29.11 Original p1 and self-correction version from p13.
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Figure 29.12 Original p2 and self-correction version from p23.
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Experiment 29.5.2 (Subpixel self-identification using WSCA-SSC)

Since the panels p13, p23, p33, p43, and p53 in the last column have same size of 1 m� 1 m that is

smaller than the 1:56 m� 1:56 m spatial resolution, they are actually subpixel panels and provide a

good example with their corresponding spectral signature vectors considered to be discriminated

by WSCA-SSC with the reference signature vectors chosen to be the five panel signatures in Figure

1.16. Their DPWSCA-SSC are tabulated in Table 29.4, where a cross indicates an incorrect

identification.
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Figure 29.13 Original p3 and self-denoised version from p33.
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Figure 29.14 Original p4 and self-correction version from p43.
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Figure 29.15 Original p5 and self-correction version from p53.
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Table 29.4 DPWSCA-SSC in 10�9 for subpixel panel identification

p1 p2 p3 p4 p5

p11 2.3409 3.3172 3.9544 3.4417 3.5440

p12 0.3383 1.3113 2.6041 4.1124 4.5321

p13 2.2475 2.0926 3.1510 5.6057 6.2415

p211 1.6062 0.7910 1.8471 4.3584 4.5801

p221 1.4333 0.9931 2.0134 4.1615 4.4090

p22 1.5873 0.3540 1.9674 4.8817 5.2222

p23 2.3370 1.5089 2.6381 5.6607 6.1351

p311 3.0492 2.5057 1.2020 5.4509 5.5516

p312 3.2021 2.8915 1.6988 5.1001 5.1458

p32 2.8146 2.0061 0.8634 5.1692 5.4864

p33 3.4005 2.3932 2.2421 6.2933 6.6947

p411 6.0148 6.7728 7.2537 2.3320 2.2207

p412 5.8439 6.5981 7.2011 2.0997 2.1190

p42 4.5378 5.1850 5.6902 0.62061 1.0919

p43 2.7346 2.1622 2.8088 4.7516 5.3035

p511 4.7269 5.2888 5.8289 1.3884 0.4717

p512 7.9715 8.6424 9.0293 4.4454 3.7631

p52 5.8336 6.4115 6.7650 2.3867 1.4972

p53 2.6549 1.9019 2.6283 4.9607 5.4265

Table 29.5 SAM values for subpixel panel identification

p1 p2 p3 p4 p5

p11 0.0531 0.0873 0.0979 0.1008 0.1050

p12 0.0079 0.0411 0.0658 0.1160 0.1258

p13 0.0579 0.0453 0.0740 0.1516 0.1640

p211 0.0450 0.0160 0.0387 0.1495 0.1570

p221 0.0431 0.0151 0.0399 0.1462 0.1539

p22 0.0365 0.0163 0.0462 0.1375 0.1461

p23 0.0660 0.0338 0.0647 0.1643 0.1752

p311 0.0810 0.0818 0.0540 0.1561 0.1571

p312 0.0863 0.0876 0.0578 0.1598 0.1607

p32 0.0849 0.0477 0.0469 0.1827 0.1915

p33 0.1066 0.0684 0.0768 0.2028 0.2131

p411 0.1538 0.1897 0.2036 0.0464 0.0408

p412 0.1772 0.2127 0.2252 0.0709 0.0627

p42 0.1174 0.1505 0.1676 0.0100 0.0252

p43 0.0777 0.0646 0.0963 0.1429 0.1568

p511 0.1387 0.1717 0.1852 0.0369 0.0177

p521 0.1947 0.2294 0.2397 0.0923 0.0760

p52 0.1526 0.1863 0.1978 0.0509 0.0326

p53 0.0748 0.0568 0.0889 0.1470 0.1597
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As can be seen from Table 29.4, WSCA-SSC makes incorrect identification on four panel pixels

p13, p411, p43, and p53. In order to evaulate the performance of WSCA-SSC, SAM was used for

comparison. Table 29.5 tabulates its identification results where same six incorrect-made identifi-

cations were panel pixels p13, p33, p411, p412, p43, and p53. Similar experiments were also performed

by SID that also made incorrect identification on the same 6 panel pixels as did SAM. Therefore,

SID results are not included in this chapter. Comparing Tables 29.4 and 29.5, both WSCA-SSC and

SAM had trouble with identifying some subpixel panels p13, p43, and p53 in the third column

because their size is 1= 1:56 mð Þ2 ¼ 0:41091 m2, which is smaller than half the size of a pixel.

Nevertheless, WSCA-SSC still correctly identified two subpixel panels p23 and p33 compared to

only one p23 identified by SAM. In addition, WSCA-SSC made only four incorrect identifications

as opposed to six incorrect identifications made by SAM with two more errors on panel pixels p33
and p412.

These real image experiments demonstrated that WSCA outperformed SAM in real subpixel

identification. Such an advantage may result from the ability of WSCA-SSC that SAM does not

have in capturing detailed profile of spectral variations in a hyperspectral signature vector across

its spectral range as demonstrated in Experiment 29.6.

29.6 Conclusions

This chapter presents a new application of wavelet in hyperspectral signature characterization. In

particular, a WSCA is developed for signature self-correction, self-tuning, self-denoising, self-

discrimination, self-classification, and self-identification. The experimental results demonstrated

that the proposed algorithm WSCA performs effectively in self-correction, self-tuning and self-

denoising with high accuracy for a given reference. Most importantly, the results also show that

WSCA can successfully self-classify and also self-identify mixed hyperspectral signatures and

subpixel targets.
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VIII

Applications

As a final part to conclude this book a few applications are of particular interest to form Cate-

gory C. Chapter 30 includes two applications of hyperspectral target detection, subpixel target size

estimation and concealed target detection, both of which have unique issues to be addressed and

cannot be resolved by spatial domain-based techniques due to the fact that the targets of interest

are invisible either completely or partially to human eyes by inspection. Under such circumstances

detection of these targets must rely on their spectral characteristics rather than on their spatial

properties. These applications provide good examples to demonstrate unique advantages of hyper-

spectral imaging over traditional image processing. On the other hand, as noted in Chapter 1 (Sec-

tions 1.2 and 1.3), hyperspectral imagery shall not be considered as a straightforward extension to

multispectral imagery by simply adding more spectral bands. As a matter of fact, it is spectral

resolution, not total number of spectral bands, that matters. Consequently, techniques developed

for hyperspectral imaging are not necessarily applicable to multispectral imaging, specifically lin-

ear spectral mixture analysis (LSMA). Chapter 31 presents two nonlinear band dimensionality

expansion techniques, band expansion process (BEP), and kernel trick for kernelization, to make

hyperspectral imaging techniques also effective on multispectral imagery. Since hyperspectral

imaging techniques generally require a sufficient number of spectral bands to capture spectral

information for effective data processing the lack of spectral bands in multispectral imagery cer-

tainly impairs their processing ability. BEP allows users to expand the dimensionality of an origi-

nal multispectral image data by including new extra spectral bands created by nonlinear function to

be treated as a hyperspectral image so that hyperspectral imaging techniques can still work effec-

tively. On the other hand, due to the use of insufficient spectral bands the data sample vectors may

not be effectively unmixed linearly. Instead of expanding band dimensionality suggested by BEP,

the kernel trick allows users to perform kernelization on data transformation or on training samples

or on classifiers to make nonlinear decisions in a kernel-transformed feature space. It turns out that

these approaches do accomplish what they are designed for. Considering MR images as multi-

spectral images is not new. In fact, Vannier et al. (1985) showed that satellite remote sensing image

processing could be readily applied to solving MR classification problems if MR images could be

processed as multispectral images. One of most interesting applications of hyperspectral imaging

is to take advantage of techniques developed in Chapter 31 to solve magnetic resonance (MR)

imaging problems. Chapter 32 is included to show how the idea of applying hyperspectral imaging

can be applied to MR imaging. In particular, a long-standing partial volume effect issue in MR
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image classification can be addressed by formatting a partial volume estimation problem as a linear

spectral unmixing problem where linear spectral mixture analysis (LSMA) via nonlinear dimen-

sionality expansion developed in Chapter 31 can be used to perform spectral unmixing with

unmixed abundance fractions interpreted as partial volumes of tissue substances. In addition, to

further conduct quantitative study on MR imaging 3D ROC analysis developed in Chapter 3 is

also used for performance evaluation. It is believed that this chapter provides a new direction

referred to as quantitative MR imaging as an alternative, which is quite different from traditional

spatial domain-based structural approaches such as fuzzy c-means methods as well as statistical

approaches such as finite Gaussian mixture model coupled with the Markov random field.

878 Hyperspectral Data Processing: Algorithm Design and Analysis



30

Applications of Target Detection

Since there is no such a uniformly optimal technique that works for all applications, when it comes

to hyperspectral data exploitation users should ask themselves a simple question, “what are the

applications in which they are interested?” and “what are the benefits and advantages that a hyper-

spectral imaging sensor can provide for a specific application?” In fact, an application generally

determines what techniques should be used, but not the other around. This chapter presents two

interesting applications as examples, which require specific techniques to accomplish what they

are designed for. One is size estimation of a subpixel target embedded in a single pixel vector due

to its size smaller than pixel resolution determined by ground sampling distance (GSD). Under

such circumstances, the target can only be detected spectrally at subpixel level, not spatially as

ordinarily conducted by classical spatial domain-based image processing techniques. Besides,

subpixel detection generally does not estimate the subpixel target size. In other words, a subpixel

target detector may not be able to estimate the size of the subpixel targets that it detects. Therefore,

new approaches must be sought for subpixel size estimation. Another interesting application

is concealed target detection where targets to be detected are concealed by either natural back-

ground variations or hidden underneath man-made objects. As a result, many algorithms developed

for detecting exposed targets may not be directly applicable to detection of concealed targets. Most

importantly, the prior knowledge of the concealed targets is generally not available and detecting

concealed targets must be performed in an unsupervised manner due to nature of target conceal-

ment. Apparently, these two applications present great challenges in algorithm design because

they are not encountered in traditional image processing and spatial domain-based techniques

currently being used in the literature of classical image processing may not be applicable.

30.1 Introduction

One advantage provided by hyperspectral imaging is subpixel detection, which detects targets at

subpixel scale. In many applications such as reconnaissance and surveillance, targets of interest

may occur with low probabilities or may have relatively small size. The targets of this type are

special species in agriculture and ecology, rare minerals in geology, vehicles in a large battlefield,

etc. Under these circumstances, spatial-based image processing techniques may not be effective to

extract these targets, particularly, when the size of targets is smaller than pixel resolution (i.e.,

(GSD). These targets are embedded in a single pixel vector and referred to as subpixel targets. In

this case, spatial analysis-based techniques are unlikely to find these subpixel targets. We must rely

on techniques that make use of their spectral characteristics to detect their presence at subpixel
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scale. One such technique is constrained energy minimization (CEM) developed in Chapters 2 and

12, and also in Chang (2003a). In this chapter, we investigate an interesting issue associated with

subpixel detection. If a subpixel target is detected within a single pixel vector, what is its size? In

order to solve this problem, we develop an approach that enables us to reliably estimate the abun-

dance fraction of a subpixel target. Then we can multiply the obtained abundance fraction by GSD

to calculate its size. Such an approach is effective only if the true abundance fraction of a subpixel

target contained in a pixel vector is estimated accurately. A fully constrained least squares (FCLS)

method recently developed by Heinz and Chang (2001) for material quantification can be used for

this purpose where FCLS imposes two constraints, abundance sum-to-one constraint (ASC) and

abundance non-negativity constraint (ANC) on abundance fractions of image endmembers used to

form a linear mixture model. In order to make FCLS work in an unknown environment, automatic

target generation process (ATGP) similar to ATGP-EEA developed in Section 8.5.1 is further

incorporated into FCLS to make it unsupervised, referred to as ATGP-FCLS, which allows FCLS

to have ability in detecting subpixel targets without prior knowledge. This algorithm is a little bit

different from unsupervised FCLS (UFCLS) developed in Section 8.5.3 for endmember extraction,

but is proved to be very effective in estimating subpixel target size.

Over the past years various techniques have been developed for detecting and classifying

exposed targets in hyperspectral imagery, specifically, Hyperspectral Digital Imagery Collec-

tion Experiment (HYDICE) imagery. However, in many applications, targets of interest are

those concealed by natural background variations or hidden underneath man-made objects. In

this case, algorithms developed for exposed targets may not be directly applicable to concealed

target detection. The second part of this chapter investigates this issue and further develops an

algorithm, to be called computer-aided detection and classification algorithm (CADCA) for

unknown concealed targets, which can be carried out in three successive processes: (1) a band

selection procedure; (2) a band ratio approach; and (3) ATGP. The idea of CADCA takes

advantage of a band ratio transformation that can reduce effects caused by slopes and aspects

of topography or terrain as well as eliminate differential illumination effects caused by shad-

ows. However, such a band ratio approach requires a careful selection of bands to be used for

the band ratio. This is more difficult for hyperspectral imagery than multispectral imagery

since there are hundreds of bands from which we can select. Therefore, the first-stage process

of CADCA is to design an effective band selection procedure that can select an appropriate

band subset to be used for the band ratio in the second stage. The criterion particularly

designed for such a band selection is based on the orthogonal projection correlation between

two bands. If two bands have very little orthogonal projection correlation, this implies that the

projections of one band onto the other should be very close. In this case, one band can repre-

sent the other band. So, eliminating one band will not sacrifice too much information provided

by the other band in terms of orthogonal projection (OP). This criterion is further used to

design ATGP for automatic target detection. The consistency of using the same OP criterion

maximizes the overall performance of CADCA. On the whole, CADCA is a computer auto-

mated algorithm that can be implemented sequentially by a band selection procedure followed

by a band ratio transformation and finally complete by ATGP, which detects and classifies con-

cealed targets. As shown by experimental results, concealed targets can be effectively detected

and classified by CADCA.

30.2 Size Estimation of Subpixel Targets

Prior to size estimation detection must be performed to find targets of interest. When an image

scene is unknown such a detection must be carried out in an unsupervised manner. The algorithm
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to be used for this purpose is ATGP which is similar to ATGP-EEA developed in Section 8.5.1, and

can be described as follows.

Algorithm for Automatic Target Generation Process

1. Initial condition:

Select a pixel with maximal vector length as an initial target signature of interest denoted by t0.

Let e be the prescribed error threshold and U(0)¼ [t(0)].

Set k ¼ 1.

2. At k � 1 iteration, apply P?
U via (2.78) to all data sample vectors r and find the kth data sample

vector t(k), which has the maximum orthogonal projection defined by

tðkÞ ¼ arg
n
maxr

h
P?
½Uðk�1Þ�r

� �T

P?
½Uðk�1Þ�r

� �io
ð30:1Þ

where Uðk�1Þ ¼ tð0Þtð1Þ � � � tðk�1Þ� �
is the data matrix and Uðk�1Þ ¼ Ø if k � 1 ¼ 0.

3. Calculate

hk ¼
�
tðkÞ

�T
P?
Uðk�1Þt

ðkÞ ð30:2Þ

and compare hk to a prescribed threshold e.
4. Stopping rule:

If hk < e, go to step 5. Otherwise, continue.
5. At this stage, ATGP is terminated and the target UðkÞ ¼ Uðk�1ÞtðkÞ

� � ¼ tð1Þtð2Þ . . . tðkÞ
� �

gener-

ated at this point is the desired target set, which contains k targets.

It should be noted that the stopping rule in step 4 used by ATGP described above is different

from that used by ATGP-EEA in Section 8.5.1 where the former makes use of hk in (30.2) to

measure the residual from two consecutive OPs while the latter uses VD to determine the numbers

of targets required to generate p.

30.3 Experiments

In this section, synthetic and real hyperspectral image experiments were conducted to substantiate

and validate the utility of ATGP-FCLS in size estimation of subpixel targets. The data to be used

for experiments was the HYDICE image shown in Figure 1.15(a) with ground truth map of Figure

1.15(b).

30.3.1 Synthetic Image Experiments

In order to evaluate our approach, we simulated a synthetic image scene based on Figure 1.15(a)

and (b) and the five panel signatures in Figure 1.16. First of all, 400 grass samples extracted from

Figure 1.15(a) were used to simulate the image background. Two panel signatures, p1 and p2 were

used to simulate two sets of target panels, p11, p12, p13 and p21p22, p23, respectively. The three

panels in each set had size ranging from 100%, 50%, and 25% of pixel size (i.e., GSD¼ 1.5m),

namely, 2.25m2, 1.125m2, and 0.5625m2, respectively. Figure 30.1(a) and (b) shows how the tar-

get panels p12 and p13 with size being 50% and 25% of pixel size were simulated. For example, in

order to simulate the panel p12, we first simulated 2-pixel vectors specified by the grass signature

and 2-pixel vectors specified by the panel signature p1 to form a 4-pixel square panel where each of
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4-pixel vectors in the panel had size of 2.25m2 and the resulting 4-pixel square panel had size of

9m2. This 4-pixel square panel was then shrunk to its 1/4 size by averaging all 4-pixel vectors to

reduce the 4-pixel square panel with size of 9m2 to a 4-pixel square panel with size of 2.25m2

where each pixel vector was only 1/4 size of its corresponding pixel vector as a result of

1=4 p1 þ p1 þ grassþ grassð Þ. This shrinking process was similar to the pyramid method devel-

oped by Burt and Adelson (1983) illustrated in Figure 4.1, where a pixel in an upper layer was

obtained by averaging 4 pixels in its immediate lower layer in a pyramid. The two sets of the six

simulated targets, p11, p12, p13 and p21, p22, p23, were then implanted in the image background as

shown in Figure 30.1(a) with the ground truth map of the six implanted target panels shown in

Figure 30.1(b) where their precise spatial coordinates are specified in the parentheses in p11(10,5),

p12(10,10), p13(10,15), p21(15,5), p22(15,10), and p23(15,15).

Assume that no prior knowledge was provided for the simulated image scene. So the exact loca-

tions of these six target panels were not supposed to be known a priori and must be found by an

unsupervised method. In this case, ATGPwas used to find these six targets plus other potential targets

in the simulated image scene in Figure 30.1(a). As a result, eight targets were generated and shown in

Figure 30.2 where they were labeled in accordance with the order that they were found by ATGP.

In order to see how effective ATGP worked, the ground truth map in Figure 30.1(b) was used to

verify the eight ATGP-generated targets. It turned out that the pixels labeled by 2 and 6 corre-

sponded to panels P11 and P21 and the other six targets, numbered by 1, 3, 4, 5, 7, and 8, were not

panels. One comment is worthwhile. Since ATGP used the OSP projector P?
½2;6� to project all the

image pixel vectors into the space that was orthogonal to the space linearly spanned by the targets,

#2 and #6. As a result, the signatures that were similar to signatures of #2 and #6 were annihilated

by P?
½2;6�. The P?

½2;6�-eliminated pixel vectors included the subpixel panels, p12(10,10), p13(10,15),

p22(15,10), and p23(15,15), that were specified by signatures of #2 and #6. As a consequence, they

were not detected by ATGP after the targets #2 and #6 were extracted. As we noted, the six targets

#1, #3, #4, #5, #7, and #8 were not panel pixels, and they were not annihilated by P?
½2;6�. Therefore,

these six targets were detected by ATGP subsequently. Now, we used these eight ATGP-generated

targets as a posteriori target information to find other potential targets in the image scene in Fig-

ure 30.1(a). Four methods were used for this purpose, LSOSP, sum-to-one constrained least

squares (SCLS), NCLS, and FCLS. Their respective results are shown in Figure 30.3 where SCLS

was particularly included for comparison since it is also a partially abundance-constrained least

squares unmixing method developed in Heinz and Chang (2001) and Chang (2003a).

Figure 30.1 (a) Simulated image scene and (b) ground truth map of six implanted panel targets.
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As we can see, when the detected target #2 was used as the desired target information the other

seven targets (i.e., targets #1, #3, #4, #5, #6, #7, and #8) were considered as undesired targets and

annihilated by LSOSP. As a result, the second images in Figure 30.3(a) and (d) only show the

targets specified by the signature of target #2 where all the four methods picked up additional two

target panels, p12 and p13 whose signatures were similar to the signature of target #2. Similarly,

when the target #6 was used as the desired target information and the other seven targets (i.e.,

targets #1, #2, #3, #4, #5, #7, and #8) were considered as undesired targets and annihilated by

LSOSP, all the four methods also pulled out additional two target panels, p22 and p23, in the sixth

image in Figure 30.3(a) and (d). These experiments demonstrated that LSOSP, SCLS, NCLS, and

FCLS methods could be used for subpixel target detection.

Since our main focus is size estimation of subpixel targets and only the targets p11, p12, p13 and

p21, p22, p23 had ground truth to validate our results only these six targets would serve as our inter-

est for the follow-up size estimation. Of course, we could also conduct experiments for the other

six found nonpanel targets. But, their results could not be used to substantiate our algorithm due to

the lack of ground truth. Because of that, experiments of these six nonpanel targets, #1, #3, #4, #5,

#7, and #8, are not included in this chapter.

In order to see whether the four methods, LSOSP, SCLS, NCLS, and FCLS, could be further

used to estimate size of these panel targets, we calculated the abundance fractions generated by

these four methods. Table 30.1 tabulates their corresponding results. From Table 30.1, FCLS

yielded the best results while NCLS was the second best, but very close to FCLS. Table 30.2 also

tabulates the error percentage obtained from Table 30.1 by (30.3), which computed the ratio of the

estimation error of target size to the true target size:

E ¼ 100%� jtrue size� estimated sizej
true size

: ð30:3Þ

As shown in Table 30.2, the estimated error was increased as the target size was decreased.

When a target fully occupied a pixel, no estimated errors were produced by all the four methods.

However, when the target size was only one-quarter of a pixel size, FCLS performed slightly better

than NCLS, but significantly better than LSOSP and SCLS.

Figure 30.2 Eight targets detected by ATGP.
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These experiments provided evidence that fully abundance-constrained method was required to

achieve better target size estimation when targets were smaller than pixel resolution.

It is worth noting that ATGP is an unsupervised method. When it is used, it assumes that no

knowledge is provided a priori. Consequently, the knowledge of ATGP-generated targets

remain unknown. In order to identify these target signatures, a database or spectral library is

generally required. In our simulations, ATGP was implemented with no given prior knowl-

edge. The eight targets extracted by ATGP were still unknown. The ground truth of the simu-

lated image in Figure 30.1(b) was only used to identify which detected target belonged to the

Figure 30.3 Unmixed results of Figure 30.1(a) by (a) LSOSP; (b) SCLS; (c) NCLS; (d) FCLS.

884 Hyperspectral Data Processing: Algorithm Design and Analysis



implanted panels so that these targets could be further used to evaluate the effectiveness of

subpixel target size estimation.

Finally, a concluding remark on the above experiment is noteworthy. Although the concept of

virtual dimensionality (VD) developed in Chapter 5 can also be used to estimate the number

of target pixels to be detected in this experiment, VD generally underestimates the number of

unsupervised targets as will be demonstrated in the following section. This is because VD is

designed to detect spectrally distinct signatures not necessarily distinct target pixels, in which case

two target pixels with similar spectral signatures can be detected as distinct targets. One such type

of targets is anomalies discussed in Chapter 18. So, VD was not used in this experiment. Instead,

Figure 30.3 (Continued)
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selecting 8 as the number of targets of interest was purely an empirical choice based on the fact

that there were five panel signatures and three background signatures to account for three scenarios

of abundance fractions, 25%, 50%, and 75%, of background signature.

30.3.2 HYDICE Image Experiments

In this section, the HYDICE image scene in Figure 1.15(a) was used for real image experiments to

further validate the idea proposed in this chapter. As noted, the panels, p13, p23, p33, p43, and p53, in

the third column have spatial resolution of 1m that is smaller than the pixel size, 1.5m. These five

panels could serve as subpixel targets to evaluate the four methods, LSOSP, SCLS, NCLS, and

FCLS. By assuming that no ground truth was provided, ATGP was applied to find 41 targets shown

in Figure 30.4 where the threshold was set to 2:54� 105, as the same threshold used in Heinz and

Chang (2001).

These obtained 41 targets were then used as a posteriori target information to classify the

HYDICE image scene in Figure 1.15(a). Now, if we compared these 41 detected targets against

the ground truth in Figure 1.15(b), we found that the 10th, 34th, 5th, and 4th targets corresponded

to p11, p211, p312, and p521, respectively. Additionally, both the 23rd and 36th targets detected two

panel pixels, p411, p412 in row 4. Since only these targets had ground truth to verify our results,

Figure 30.5 only shows the classification results produced by these targets where the classification

results in columns (d) and (e) were produced by the two panel pixels p411, p412 labeled by ATGP-

detected 23rd and 36th targets. Apparently, using these six targets, all the four methods demon-

strated different degrees of detecting and classifying the 19 R panel pixel vectors.

Table 30.3 tabulates the abundance fractions of all the 19 R panel pixel vectors detected in

Figure 30.5 by the four methods, LSOSP, SCLS, NCLS, and FCLS.

Since both panel pixels p411, p412 vectors were detected by ATGP as the 23rd and 36th targets,

there were two rows of abundance fractions for each of the three panels in row 4, p411, p412, p42,

and p43 in Table 30.3 where the abundance fractions in the 1st and 2nd rows were detected by using

the signatures of the target #23 and target #36, respectively. Interestingly, despite the fact that

Table 30.1 Abundance fractions estimated by LSOSP, SCLS, NCLS, and FCLS

LSOSP SCLS NCLS FCLS

p11 (1 pixel) 1.0000 1.0000 1.0000 1.0000

p12 (50% of pixel) 0.5130 0.4952 0.5142 0.4958

p13 (25% of pixel) 0.3387 0.3256 0.3031 0.2908

p21 (1 pixel) 1.0000 1.0000 1.0000 1.0000

p22 (50% of 1 pixel) 0.5642 0.5814 0.5189 0.4710

p23 (25% of 1 pixel) 0.3699 0.3917 0.2877 0.2206

Table 30.2 Error (%) resulting from LSOSP, SCLS, NCLS, and FCLS

LSOSP SCLS NCLS FCLS

p11 (1 pixel) 0.00 0.00 0.00 0.00

p12 (1 pixel) 2.60 0.96 2.85 0.83

p13 (1 pixel) 35.46 30.22 21.23 16.34

p21 (1 pixel) 0.00 0.00 0.00 0.00

p22 (1 pixel) 12.85 16.29 3.78 5.80

p23 (1 pixel) 47.95 56.70 15.06 11.77
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ATGP detected both panel pixels p411, p412 they were detected by target #23 and target #36 as

distinct target pixels. However, only the information of the target #23 could pull out all the three

panels in row 4. This phenomenon was evidenced by Table 30.3 where the abundance fractions in

the second row were detected by LSOSP and SCLS using the target #36 were negative and were

zeros detected by NCLS and FCLS. There were some additional interesting results, which could

also be observed from Table 30.3. According to the results in Table 30.3, the panel pixel p11 was

detected as a pure pixel, the panel pixels, p312 and p521 were detected as two-pixel panels which

contained at least one pure pixel, and the panel in row 4 was made up of two pure pixels, p411,

p412. The sizes of these four panels estimated by the four methods were very close. The only excep-

tion was the panel in row 2 which was found to be composed of two mixed pixels p211, p221. As a

result, its panel size estimated by LSOSP and SCLS was twice much that estimated by NCLS and

FCLS. It is also interesting to note that the size of all the five targets, 10th, 5th, 23rd, 36th, and 4th,

found by ATGP was estimated to be of full pixel size compared to the 34th target, which had an

approximate 4=5 size of a full pixel size. This is because the 34th target pixel detected by ATGP

was a Y pixel vector, not an R pixel vector like the other five 10th, 5th, 23rd, 36th, and 4th targets.

In this case, the 34th target was considered as a mixed pixel vector, but was detected by ATGP as a

pure pixel vector. Consequently, the four methods, which used the 34th target to produce the two R

pixel vectors, p211, p221 for the panel in row 2, resulted in inaccurate abundance fraction estimates

of the R pixels. As an example, Table 30.4 tabulates FCLS estimated abundance fraction map of all

the R and Y pixels that masked the panel p21. As shown in Table 30.4, the 34th target appeared as a

Y pixel vector with its abundance estimated by FCLS as 1.0000, which indicated that the Y pixel

vector was a pure pixel vector. The two real R pixel vectors, p211, p221 were next to its left and

lined up vertically to make up the panel in row 2. They were estimated by FCLS as mixed pixels

with their corresponding abundance fractions, 0.5216 and 0.3455, respectively.

Finally, according to the ground truth provided in Figure 1.15(b), it should be noted that panels,

P21, P31, P41, and P51 are of 2-pixel size, that is, P21 made up of two panel pixels, p211 and p221;

P31 made up of two panel pixels, p311 and p312; P41 made up of two panel pixels, p411 and p412; P51

Figure 30.4 Forty-one targets detected in the scene of Figure 1.15(a) by ATGP.
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made up of two panel pixels, p511 and p521. Despite the fact that ATGP only detects p211 labeled by

#34, p312 labeled by #5, p411 labeled by #23, p412 labeled by #36, and p521 labeled by #4, FCLS did

manage to extract three ATGP-missed panel pixels, p221, p311, and p511 as shown in Table 30.3. It is

interesting to compare the results in Figure 8.10(i) produced by ATGP-EEA, which extracted VD-

determined nVD¼ 9 target pixels that only included three panel pixels, p11, p312, and p521 as end-

member pixels. It demonstrated that ATGP-FCLS using 41 unsupervised target pixels was able to

extract all 19 R pixels including six pure panel pixels, which are p11, p211, p311, p411, p412, and p521.

This example demonstrated that ATGP implemented as an unsupervised method did not always

extract pure pixels, in which case ATGP was better considered as unsupervised target detection

Figure 30.5 Abundance fractions of the 15 panels in Figure 1.15(b) estimated by LSOSP, SCLS, NCLS,

and FCLS.

888 Hyperspectral Data Processing: Algorithm Design and Analysis



algorithm as also demonstrated in Chapter 17 than being considered as an endmember extraction

algorithm. Therefore, VD understated the number of unsupervised targets. This interesting issue

will be further explored in Chang (2013).

With the GSD of 1.56m, the 15 panels with size of 3 m� 3 m, 2 m� 2 m and 1 m� 1 m shown

in Figure 1.15 are supposed to occupy three different 3.70, 1.64, and 0.41 pixel sizes, respectively,

where an abundance fraction of 1.0 corresponds to 1 pixel size. Obviously, the abundance fraction

estimates of the R pixel vectors in Table 30.3 did not provide accurate size estimation for each of

the 15 panels. This is because some of abundance fractions have spread over Y pixel vectors that

surround the R pixel vectors. The leakage of such abundance fractions into Y pixel vectors must be

included to account for target size estimation. The reason for this inclusion can be best explained

by the following example. If we would like to reconstruct an exploded airplane from its debris

Figure 30.5 (Continued)
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spread over a wide range of areas, we need to find all the pieces all over locations in order to

reassemble the airplane, even though the size of the airplane is relatively small compared to a large

spread area of its debris. In light of this interpretation Table 30.4 tabulates FCLS-estimated abun-

dance fractions of 2 R and 12 Y pixel vectors surrounding the panel P21 where the two R pixel

vectors at the center make up the panel P21 and the other 12 Y pixel vectors are their neighboring

pixel vectors mixed with the background. According to Table 30.4, the estimated abundance frac-

tions of the two R pixel vectors are 0.5216 and 0.3455, which indicated that the panel P21 was not a

single pure pixel vector. So, if only abundance fractions of R pixel vectors, p211, p221 in Table 30.3

were used to estimate the size of the panel P21, its size would be 0.8671 pixel size, i.e.,

Table 30.3 Abundance fractions of all the 19 R panel pixel vectors in the 15 panels estimated by LSOSP,

SCLS, NCLS, and FCLS in Figure 3.5

LSOSP SCLS NCLS FCLS

p11 (#10) 1.0000 1.0000 1.0000 1.0000

p12 0.4701 0.4634 0.4450 0.4091

p13 0.1190 0.1135 0.0804 0.0496

p211 (#34) 0.8144 0.8062 0.5824 0.5216

p221 0.8273 0.8283 0.4516 0.3455

Total 1.6417 1.6345 1.0340 0.8671

p22 0.7330 0.7701 0.6169 0.6899

p23 0.3218 0.3527 0.3841 0.4177

p311 0.9052 0.9052 0.8640 0.8647

p312 (#5) 1.0000 1.0000 1.0000 1.0000

Total 1.9052 1.9052 1.8640 1.8647

p32 0.5985 0.5985 0.5292 0.5367

p33 0.3997 0.3997 0.3549 0.3614

p411 (#23) 1.0000 1.0000 1.0000 1.0000

p412 (#36) 1.0000 1.0000 1.0000 1.0000

Total 2.0000 2.0000 2.0000 2.0000

p42 0.4318 0.4606 0.5464 0.5306

0.4713 0.4571 0.1616 0.1938

Total 0.9031 0.9177 0.7080 0.7244

p43 0.3966 0.3953 0.2234 0.2543

�0.0914 �0.0908 0 0

Total 0.3052 0.3045 0.2234 0.2543

p511 0.7216 0.7178 0.7216 0.7217

p521(#4) 1.0000 1.0000 1.0000 1.0000

Total 1.7216 1.7178 1.7216 1.7217

p52 0.6646 0.6637 0.7801 0.7769

p53 0.1057 0.0959 0.1537 0.1412

Table 30.4 FCLS-estimated abundance fraction map of R and Y pixel vectors that mask the panel P21

0 0 0.1057 0.2199 0.0846

0.0171 0.1017 0.5216

R panel pixel, p211

1.0000 0.1158

0 0.1550 0.3455

Red panel pixel, p221

0.7520 0.0574

0.0123 0 0 0.0841 0
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0.5216þ 0.3455¼ 0.8671, which may not be accurate. However, if the estimated abundance frac-

tions of 12 Y pixel vectors in Table 30.4 were included in size estimation, the total estimated abun-

dance fraction would be 3.5727, which corresponds to 3.5727 pixel size, very close to its true 3.70

pixel size. This simple example suggested that in order to reliably estimate the size of panel tar-

gets, we need to include all estimated nonzero abundance fractions that contributed to the panels. It

was indeed the case shown in Table 30.5, which tabulates abundance fractions of the R and Y pixel

vectors in the 15 panels estimated by LSOSP, SCLS, NCLS, and FCLS in Figure 30.5.

Compared to Table 30.3, which only computed the estimated abundance fractions of R pixel

vectors for target size estimation, Table 30.5 produced more accurate results by including the esti-

mated abundance fractions of Y pixel vectors.

30.4 Concealed Target Detection

As another example for target detection applications, this section investigates a more difficult

problem, concealed target detection, which has not received much attention in the past. On many

occasions, a concealed target can be camouflaged by man-made objects or shaded by natural back-

ground. The main issue in detection of concealed targets is how to remove the shadow covered on

or over the target surface to expose the targets for detection. One effective means is band ratio

(Robinove, 1982; Crippen, 1988), which can be used for this purpose. However, due to the fact

that hyperspectral images are generally collected by hundreds of contiguous spectral bands, it is

very challenging to select appropriate bands to be used for band ratio. Exhausting all possible pair

combinations does not seem to be practically feasible. Accordingly, one key component in detect-

ing concealed targets is how to select proper pairs of bands to compute their band ratio.

Band selection has been widely used for various purposes for data dimensionality, data com-

pression, feature extraction, etc. (see Chapters 6, 19, 21–23). Many criteria for band selection have

been proposed in the past to find bands that retain most of information. For instance, distance mea-

sures (Bhattacharyya distance, Jeffreys–Matusita distance), information theoretic approaches

(divergence, transformed divergence, and mutual information), and eigen analysis (principal com-

ponents analysis (PCA)) have been applied to multispectral images for optimal band selection.

Table 30.5 Abundance fractions of all the R and Y panel pixel vectors in the 15 panels estimated by LSOSP,

SCLS, NCLS, and FCLS in Figure 30.5

LSOSP SCLS NCLS FCLS

p11 3.2094 3.1368 3.1432 3.0329

p12 1.0191 0.9728 1.2892 1.2639

p13 �0.2302 �0.2254 0.0885 0.0496

P21 5.2066 4.9628 3.7033 3.5727

p22 1.2023 1.3001 1.1969 1.4674

p23 0.4698 0.5247 0.5672 0.6148

P31 4.0116 4.0119 4.0922 4.0978

p32 2.5240 2.5239 1.9474 2.0073

p33 0.7715 0.7715 0.4934 0.5144

P41 3.7346 3.7762 3.5161 4.1374

p42 2.6265 2.7857 1.7554 1.9011

p43 0.6861 0.7495 0.5367 0.6132

P51 4.5061 4.5382 3.8530 3.6857

p52 1.5076 1.5119 1.8493 1.8321

p53 0.2772 0.1859 0.4666 0.4604
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In particular, the use of the divergence measure for band selection has shown promise in hyper-

spectral imagery where it is also used as a band selection criterion for hyperspectral pixel classifi-

cation (Chang et al., 1999). However, it requires computing divergences for all the possible

combinations of band subsets. When the divergence measure is applied to hyperspectral imagery,

such a direct calculation of divergences becomes formidable. In order to alleviate this problem, an

alternative is also reported in Stearns et al. (1993) and Chang et al. (1999). However, according to

our experiments, the divergence and other aforementioned criteria are not suitable for the band

ratio. So, this section presents a new band selection that is based on a criterion, called between-

bands orthogonal projection correlation (BBOPC) whose idea arises from the orthogonal subspace

projection (OSP) approach developed by Harsanyi and Chang (1994). First of all, we can arrange

image pixel vectors in a 2D band image, Bl line by line as a 1D band image pixel vector, bl.

BBOPC Band Selection Algorithm

1. Apply a pyramid coding to reduce the size of band images, V ¼ Blf gLl¼1.

2. Construct a band image vector for each reduced band image. Let ~V be the set of entire band images,

denoted by ~V ¼ blf gLl¼1 where bl is the lth band image vector constructed from the lth band image

Bl and L is the total number of band images. Assume that the initial band set is ~V0 ¼ Ø.

3. Select a band image vector with the largest vector norm as the first initial band image denoted

by bmax,1 where the norm is defined by the length of a vector, that is,

bmax;1 ¼ arg maxBl2Vb
T
l bl

� 	 ð30:4Þ

and let ~V1 ¼ ~V0 [ bmax;1

� 	
.

4. At the kth stage, calculate the orthogonal projections of all band image vectors in ~V � ~Vk�1 and

find the one with the maximal orthogonal projection, denoted by bmax,k,

bmax;k ¼ arg maxbj2~V�~Vk
P?

~Vk�1
bj

� �
T P?

~Vk�1

� �n o
ð30:5Þ

where ~Vk�1 be the band set selected at the k�1st stage. Then, let ~Vk ¼ ~Vk�1 [ bmax;k

� 	

5. Compute and check if the orthogonal projection correlation index (OPCI) given by

hk ¼ bTmax; kP
?
~V�~Vk

bmax;k < e ð30:6Þ

6. If (30.6) is true, the algorithm is terminated. Otherwise, go to step 4. It should be noted that at

the worst case, BBPOC is always terminated after it exhausts all the bands.

30.5 Computer-Aided Detection and Classification Algorithm
for Concealed Targets

The band ratio has been commonly used for multispectral data to reduce the effects caused by

topological slope and aspects or to eliminate differential illumination effects caused by shadows

(Jensen, 1996).

Let Bj and Bk be the jth and kth band image vectors. A band-ratioed image vector obtained by

taking the ratio of Bj to Bk, denoted by BRjk, is defined as follows:

BRjk ¼ Bj=Bk: ð30:7Þ
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Assume that the gray level range for all band image vectors is given by g1; g2; . . . ; gTf g in ascend-

ing order. In case there is a pixel in Bk taking gray level value 0, the gray level of the corresponding

pixel in the band ratio image vector BRjk of (30.7) will be simply set to Bj to prevent the denomi-

nator of (30.7) from taking 0. As a result, the gray level range of the BRjk is between 1=gT and gT.
Now, combining ATGP in conjunction with the BBOPC-based band selection algorithm dis-

cussed in Section 30.4 along with the band-ratioed image obtained by (30.7), the desired CADCA

for concealed targets can be implemented as follows.

Computer-aided detection and classification algorithm

1. Apply BBOPC band selection algorithm to select an appropriate band set ~Vk for the band ratio.

2. Apply the band ratio specified by (30.7) to generate band-ratioed images.

3. Apply ATGP to detect concealed targets.

4. Apply a target classifier to perform classification of each detected concealed targets.

30.6 Experiments for Concealed Target Detection

Two HYDICE datasets to be used in the experiments were two different image scenes taken in

Maryland in August 1995 using 210 bands with spectral coverage 0.4–2.5mm of resolution 10 nm

and GSD approximately 0.78m. Figure 30.6 shows an image scene with size of 128� 128 pixel

vectors. Three vehicles of the same type are parked underneath the trees on the left edge and

aligned vertically and circled by V1, V2, and V3 from bottom to top. Except V1, which is partially

revealed, the other two vehicles V2 and V3 are completely concealed.

In this experiment, BBOPC used a two-layer pyramid to reduce the image size and generated

seven bands (band numbers: 16, 41, 53, 57, 63, 83, and 96) with e ¼ 0:0003 for band ratio transfor-
mation, which resulted in 7 � 6 ¼ 42 band-ratioed images obtained by (30.7). It was then followed

by ATGP where 12 target signatures were detected and generated and each target signature was

classified in an individual image. It should be noted that many of the targets detected were back-

ground signatures such as grass, trees, or unknown interferers. Figure 30.7(a) only shows that three

vehicles V1, V2, and V3 in Figure 30.6 were effectively detected and classified by CADCA. Since

CADCA is an abundance estimation-based classifier, the resulting images were gray-scaled.

Figure 30.6 A HYDICE image scene.
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In order to segment the detected and classified targets from the background, we used a Winner-

Take-All (WTA) rule to threshold the gray-scaled image in Figure 30.7(a) and produced its thresh-

olded image in Figure 30.7(b) where only concealed vehicles were shown in the image. The WTA

rule used here was based on the maximum of abundance fractions resident within a pixel. It calcu-

lated the abundance fractions of 12 target signatures present in a pixel vector estimated by CADCA

and assigned the pixel the target whose value yielded the maximal abundance. As a result of this

WTA assignment, a gray-scaled image in Figure 30.7(a) was converted to a binary image in Figure

30.7(b) with one assigned to the target and zero otherwise.

Figure 30.8 shows another HYDICE image scene of size 128� 128 pixel vectors and has a

large grass field with tree lines running along the left edge and three vehicles are parked under-

neath trees where there are two vehicles, circled by V1 (bottom one) and V2 (upper one) along

with the left tree line and a third circled by V3 hidden under the top tree line. In addition to these

three vehicles, two different material-made objects, circled by O1 (bottom one) and O2 (upper

one), are located near the center to the left. Covered under O1 and O2 are two vehicles, indicated

V4 and V5, respectively. Except V2, all other four vehicles, V1, V3, V4, and V5, belong to the

same type of vehicles. As shown in Figure 30.8, all five vehicles are completely concealed.

Figure 30.7 Detected concealed targets: (a) gray-scaled image; (b) thresholded image.

Figure 30.8 Another HYDICE image scene.
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Only visible targets in the figure are O1 and O2. Apparently, from Figure 30.8, there are no clues

about these vehicles and their corresponding locations.

Similarly, Figure 30.9(a) shows gray-scaled images resulting from applying CADCA to

Figure 30.8 where seven bands (band numbers: 16, 53, 56, 60, 63, 82, and 96) were also selected

by BBOPC using a two-layer pyramid and threshold e ¼ 0:0001 for band ratio transformation. The

resulting 7 � 6 ¼ 42 band-ratioed images were used for ATGP to detect and generate 24 target

signatures for classification. Like Figure 30.7, most of the detected targets in Figure 30.8 were

uninteresting or unwanted background signatures. As shown in Figure 30.9, V1 was detected in

Figure 30.9(a) while V2 and V3 were detected in Figure 30.10(c). Further, V4 and V5 were

also detected in Figure 30.9(b) and (d), respectively (see bright spots within the two objects,

O1 and O2).

Figure 30.10 shows thresholded binary images of Figure 30.10(a–d) obtained by WTA where

V1, {V2,V3}, V4, and V5 were detected in Figure 30.10(a), 30.10(c), 30.10(b), and 30.11(d),

respectively.

As noted, V2 and V3 are different vehicles but were classified as the same type of vehicles

because their spectra were very close. Furthermore, despite the fact that V4 and V5 are of the

same type of vehicles, they were detected and classified in two different images because the two

objects O1 and O2 used to cover these two vehicles are made by different materials. These results

were interesting. Unlike V1, V2 and V3 which are shaded by trees, V4 and V5 are hidden under-

neath O1 and O2.

30.7 Conclusions

This chapter presents a new application of fully abundance-constrained LSMA to subpixel target

size estimation. The idea is to apply an unsupervised target detection algorithm, ATGP, to find

subpixel targets of interest, and then implement FCLS to estimate the abundance fractions of

Figure 30.10 Detected concealed targets.

Figure 30.9 Detected concealed targets.
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subpixel targets present in the image, and finally use the obtained abundance fractions to calculate

their sizes. For such an approach to be effective, an accurate estimate of abundance fraction for a

subpixel target is required. In this case, a fully constrained abundance LSMA such as FCLS is

implemented for this purpose. Despite that abundance-constrained linear unmixing has been stud-

ied extensively for material quantification, the issue of subpixel target size estimation investigated

in this chapter has never been explored in the past. Four LSMA methods are used for validation,

which are an unconstrained method, LSOSP, two partially constrained least-squares methods,

SCLS, NCLS, and a fully constrained method, FCLS. As demonstrated in simulated and real image

experiments, the need of the fully abundance-constrained methods is evident when the target size is

smaller than GSD. The target estimation error is increased as the target size is decreased. In addi-

tion to subpixel target size estimation this chapter also explores another application, the problem of

concealed target detection, and further develops a computer automated method for detecting and

classifying unknown concealed targets, to be called computer-aided detection and classification

algorithm (CADCA). Since the targets of interest are either shaded by natural background

or hidden underneath man-made objects, a band ratio transformation is used to reduce the effects

caused by topographic aspects or differential illumination. In order to select appropriate

band images to be used for band ratio, a BBOPC approach is also proposed for this purpose. Since

the unknown concealed targets is now uncovered by the custom-designed band ratio transforma-

tion, an unsupervised target detection algorithm, ATGP is readily applied. It is worth noting that

the criterion for ATGP is based on orthogonal subspace projection, which is also used for BBOPC.

Such consistent design principle allows CADCA to achieve its best possible overall performance.
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31

Nonlinear Dimensionality Expansion
to Multispectral Imagery

Hyperspectral imaging sensors have been around more than two decades. Interestingly, there is no

cut-and-dried definition available in the literature to differentiate hyperspectral imagery from mul-

tispectral imagery. A general understanding of distinction between these two is that a hyperspectral

image is acquired by hundreds of “contiguous” spectral channels/bands with very fine spectral

resolution, while a multispectral image is collected by tens of “discrete” spectral channels/bands

with low spectral resolution. If this interpretation is used, we then run into a dilemma, “how many

spectral channels are sufficiently enough for a remotely sensed image to be called a hyperspectral

image?” or “how fine the spectral resolution should be for a remote sensing image to be considered

as a hyperspectral image?” For example, if we take a small set of hyperspectral band images with

spectral resolution 10 nm, say five band images, to form a five-dimensional image cube, do we still

consider this newly formed five-dimensional image cube as a hyperspectral image or simply a

multispectral image? If we adopt the former definition based on the number of bands, this five-

dimensional image cube should be viewed as a multispectral image. On the other hand, if we adopt

the latter definition based on spectral resolution, the five-dimensional image cube should be con-

sidered as a hyperspectral image. So, which one is correct? Thus far, it seems that there is no

general consensus to settle this issue. This chapter makes an attempt to address this issue from a

perspective of linear spectral mixture analysis (LSMA) via the pigeon-hole principle described in

Chapter 1 so that a multispectral imaging (MSI) can be explored in such a way that hyperspectral

imaging (HSI) can also be applicable to multispectral imagery. Two approaches are introduced in

this chapter for such an exploration, both of which can be considered as reverse operations of data

dimensionality reduction discussed in Chapter 6. One is band expansion process (BEP) originated

from the band generation process (BGP) proposed by Ren and Chang (2000a), which can be

viewed as a reverse process of dimensionality reduction by band selection (DRBS) in Chapter 6.

The resulting LSMA is called band dimesnionality expansion (BDE)-based LSMA. The other is

feature dimensionality expansion (FDE) derived from the kernel-based approaches discussed in

Chapters 2 and 15. The resulting LSMA is then called kernel-based LSMA.

31.1 Introduction

It is known that a hyperspectral imager can discriminate and quantify materials more effectively

via much better spectral resolution than a multispectral imager can. However, an interesting issue
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seems to be overlooked and has never been addressed, “how to define and differentiate hyperspec-

tral imagery from multispectral imagery”. Until we can settle this issue, the algorithm design for

hyperspectral imagery cannot be effective. This has been the case over the past years where hyper-

spectral imagery has been considered and viewed as a natural extension of multispectral imagery

under a common sense that hyperspectral imagery has more spectral bands with finer resolutions

than multispectral imagery with low spectral resolution. With this intuitive generalization, in early

days a general approach to designing HSI algorithms has been the one that extends algorithms

developed for multipsectral imagery in a straightforward fashion. One of such techniques is the

maximum likelihood-based classification and estimation (Landgrebe, 2003). Unfortunately, using

this multispectral-to-hyperspectral extension may not be a best way to design algorithms for hyper-

spectral image analysis as already discussed and addressed in Chapter 1 (Section 1.2). We believe

that one of main causes may be due to the fact that there is no specific criterion or definition that

can be used to distinguish a hyperspectral image from a multispectral image in a rigorous and

mathematical means. Because of that, we do not know how to take advantage of benefits provided

by hyperspectral imagery, which cannot be found in multispectral imagery so that these advantages

can be best utilized in designing and developing HSI algorithms. This chapter investigates this

issue by exploring the connection between HSI and MSI techniques.

Assume that there are p spectral signatures in a remote sensing image with L being the total num-

ber of spectral channels used for data acquisition and collection. From a linear spectral mixture anal-

ysis (LSMA) point of view, LSMA is performed by solving a linear system consisting of L equations

specified by L spectral channels/bands and p unknowns corresponding to p image endmembers.

When L > p, the system is an over-determined system, in which case the considered remote sensing

image is defined as a hyperspectral image. Conversely, if L < p, the system is an underdetermined

system, in which case we can define the considered remote sensing image as a multispectral image.

More specifically, if we consider that there are the p image endmembers to serve as a set of p basis

vectors for L equations, LSMAwith L > p is called under-complete linear spectral mixture analysis

(UC-LSMA) due to the insufficient number of basis vectors to represent the data. Conversely, if

L < p, LSMA is called over-complete linear spectral mixture analysis (OC-LSMA) because there

are more basis vectors than what we need to represent the data. At the first glimpse, the way that

UC-LSMA and OC-LSMA are defined above seems to be out of reach and not intuitive. However,

the following rationales should provide the ground to support the above definitions.

First, the relationship between L and p needs to be explored. On one hand, L is the number of

spectral channels/bands and determines how many equations required to be used. On the other hand,

p is the number of image endmembers (considered as signal sources) and determines how many

unknown signal sources resident in the data to be solved via the L equations. By virtue of the

pigeon-hole principle described in Chapter 1 (Section 1.3), one spectral channel/band is represented

by an equation and can be viewed as a pigeon-hole to characterize, specify, and accommodate one

spectral distinct signal source, that is, image endmember, which can be considered as a pigeon. For

UC-LSMA where L is greater than p, it means that more pigeon-holes than pigeons can be used for

pigeon accommodation. Obviously, there are L

p

� �
¼ L!

p!ðL� pÞ! ways to use one pigeon-hole to accom-

modate p pigeons, one pigeon-hole for one pigeon. On the other hand, for OC-LSMA where L is

less than p, there are more pigeons than pigeon holes. So, in this case, more pigeons fly into fewer

pigeon holes in which case at least one pigeon hole must accommodate more than one pigeon.

When it occurs, all the pigeons in a single pigeon-hole cannot be separated and discriminated one

from another. Interestingly, similar definitions to UC-LSMA and OC-LSMA can also be found in

independent component analysis (ICA) (Hyvarinen et al., 2001) where an under-complete ICA

(UC-ICA) is developed to blindly separate p statistically independent signal sources using L data
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samples with L > p, while an over-complete ICA (OC-ICA) is to blindly separate p statistically

independent signal sources using L data samples with L < p. These two definitions provide a base

of how UC-LSMA and OC-LSMA are defined as above. More specifically, UC-LSMA is developed

for a hyperspectral image, which solves an overdetermined system with no solutions. To address this

issue, one commonly used technique is dimensionality reduction described in Chapter 6, which

reduces an over-determined system to a solvable system that is, L¼ p that can produce a solution.

In contrast, OC-LSMA is generally developed for a multispectral image which solves an underdeter-

mined system with many solutions. In this case, OC-LSMA needs dimensionality expansion to aug-

ment the system to find a best solution in some sense of optimality with L = p . Accordingly,

UC-LSMA and OC-LSMA essentially deal with completely opposite problems.

Over the past years, we have seen many efforts devoted to expanding MSI techniques to solve HSI

problems (Richards and Jia, 1999; Landgrebe, 2003) and have achieved some success. However, there

is little work, which does the other way around by taking advantage of HSI techniques to solve MSI

problems. In doing so, we need to resolve the issue of OC-LSMA used for MSI which is an insufficient

number of spectral bands. This chapter developed two approaches based on a concept of dimensional-

ity expansion. One is band dimensionality expansion (BDE) that expands original data dimensionality

by creating new spectral band images via nonlinear functions. It is originated from the band generation

process (BGP) proposed by Ren and Chang (2000a) and can be considered as band expansion process

(BEP), which is essentially a reverse process of dimensionality reduction by band selection (DRBS)

presented in Chapter 6. The other approach is feature dimensionality expansion (FDE) via nonlinear

kernels discussed in Chapter 15. However, it should be noted that unlike BEP/BDE, FDE actually

expands features extracted from the original data space into a higher dimensional feature space via

nonlinear kernels. Such FDE is quite different from BDE, which produces new spectral bands gener-

ated from the original spectral bands by nonlinear functions. Nevertheless, both BDE and FDE are

developed to resolve the same issue caused by OC-LSMA, that is, there are no sufficient spectral

channels/bands in a remote sensing image cube to be used to accommodate more signal sources that

the image can handle. Furthermore, BDE and FDE also share similar ideas in the sense that the dimen-

sionality expansion in FDE and BDE must be carried out by nonlinear functions. In other words, the

use of nonlinear functions in the BDE and nonlinear kernels in FDE is a key to success in making

hyperspectral imaging techniques applicable to multispectral imagery because OC-LSMA is linear.

31.2 Band Dimensionality Expansion

As shown in Chang and Brumbley (1999a, 1999b), the performance of OSP was considerably

degraded if it was used for multispectral image classification due to an insufficient number of spec-

tral bands to be used for orthogonal subspace projection. In order to address this issue, a recent

effort in extending OSP to multispectral imagery was investigated by Ren and Chang (2000a)

where an extended version of OSP, called Generalized OSP (GOSP), was developed by including

a new technique, referred to as BGP, which allows users to expand spectral band dimensionality

via nonlinear functions.

31.2.1 Rationale for Developing BDE

The idea of the BGP developed in Ren and Chang (2000a) arises from a second-order random process

specified by the first-order and second-order statistics. If we view the original spectral bands image as

the first-order statistical images, we can generate a set of second-order statistical spectral bands that

capture correlation between spectral bands. These correlated images provide useful second-order sta-

tistical information among bands, which is missing in the set of the original spectral bands. The

desired second-order statistics including auto-correlation, cross-correlation, and nonlinear correlation

Nonlinear Dimensionality Expansion to Multispectral Imagery 899



can be used to create nonlinearly correlated images. If there is a need of statistics of high orders, the

same process can be carried out for this purpose. The concept of producing second-order or high-

order correlated spectral bands coincides with moment generating functions used to generate various

orders of moments for a random process. Despite that such a BDE may not have real physical mean-

ing; it does provide a significant advantage to cope with the issue of the insufficient number of spec-

tral band images. To shed light on this idea, we consider the following two examples.

As the first example, a farmer would like to give his own 17 cows to his three sons according to

proportions of 17 cows, 1/2, 1/3, and 1/9. Obviously, there is no way to do so by simple arithe-

mitics. However, if we introduce one hypothetic cow into 17 cows to make up a total of 18 cows,

the problem is the well-solved because 1/2, 1/3, and 1/9 of 18 cows are 9 cows, 6 cows, and 2 cows,

which are summed up exactly 17 cows. This simple example illustrates the idea of introduction of

new band images by the BEP.

Another good example, which is more technical, is ternary Huffman coding from information

theory. Assume that there is an information source X with six source alphabets {a,b,c,d,e,f} specified

by their respective probabilities given by 0:3; 0:25; 0:2; 0:15; 0:05; 0:05f g. The source entropy is

HðXÞ ¼ �½0:3 log 0:3þ 0:25 log 0:25þ 0:2 log 0:2þ 0:15 log 0:15

þ0:05 log 0:05þ 0:05 log 0:05� ð31:1Þ

Suppose that these source alphabets are encoded by three source code word alphabets denoted by

0; 1; 2f g. What is the optimal Huffman code for {a,b,c,d,e,f}? Since the number of source alphabets is

even, there is an unused node in a ternary Huffman coding tree. The best way is to leave this unused

node as a leave rather than an internal node so that this unused node will produce the longest codeword

as shown in Figure 31.1 rather than at the first internal node with shortest coding length shown in

Figure 31.2.

To achieve the desired code in Figure 31.1, we create a hypothetic source alphabet by introducing

a dummy source alphabet x in Figure 31.1 so that this dummy alphabet x will be treated as a
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Figure 31.1 Huffman coding with an introduced dummy source alphabet x.
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source alphabet with zero probability, thus it will have longest source code word, which does not

exist. This idea is similar to the previous cow example described above where a hypothetic cow was

introduced to make 17 cows a total of 18 cows so that the various proportions can be calculated

based on the 18 cows. In the end such introduced hypothetic cow or dummy alphabet only serves as

part of calculation but will not be counted for real.

31.2.2 Band Expansion Process

BEP presented in this section is essentially the same as BGP. It is renamed to reflect more accu-

rately what the process does. Nevertheless, these two terminologies can be used interchangeably.

Let Blf gLl¼1 be the set of all original spectral band images. The first set of second-order-statistics

spectral band images is generated based on autocorrelation. They are constructed by multiplying each

individual spectral band image by itself, that is, B2
l

� �L

l¼1
. A second set of second-order-statistical

spectral band images are made up of all cross-correlated spectral band images, which are produced by

correlating any pair of two different spectral band images, that is, BlBkf gL;Ll¼1;k¼1;l 6¼k. Adding these two

sets of second-order-statistics spectral band images to Blf gLl¼1 produces a total of Lþ Lþ L

2

� �
¼

L2þ3L
2

spectral band images. If more spectral band images are needed, other nonlinear functions may

also be used to generate the so-called nonlinear correlated spectral band images. For example, we

calculate third-order, fourth-order auto- or cross-correlated spectral band images or use a square-root

function to produce
ffiffiffiffiffi
Bl

p� �L

l¼1
or a logarithm function to produce log Blð Þf gLl¼1 to stretch out lower

gray level values. In what follows, we describe several ways to generate second-order, third-order,

fourth-order auto- and cross-correlated spectral band images and some nonlinear correlated spectral

band images.
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Figure 31.2 Huffman coding without introducing a dummy source alphabet x.
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Algorithm for Band Expansion Process

Step 1. First-order band image: Blf gLl¼1 ¼ set of original spectral band images.

Step 2. Second-order correlated spectral band images:

i. B2
l

� �L

l¼1
¼ set of auto-correlated spectral band images.

ii. BkBlf gL;Lk¼1;l¼1;k 6¼l ¼ set of cross-correlated spectral band images.

In case a re-scaling is needed, auto- or cross-correlated spectral band images can be normal-

ized by the variances of spectral band images such as s2
Bl

� ��1

B2
l

� �
and sBk

sBl
ð Þ�1

BkBlf g.
Step 3. Third-order correlated spectral band images:

i. B3
l

� �L

l¼1
¼ set of auto-correlated spectral band images.

ii. B2
kBl

� �L;L

k¼1;l¼1;l 6¼k
¼ set of two cross-correlated spectral band images.

iii. BkBlBmf gL;L;Lk¼1;l¼1;m¼1;k 6¼l 6¼m ¼ set of three cross-correlated spectral band images.

Similarly, like Step 2, if a rescaling is needed, auto- or cross-correlated spectral band

images can be normalized by the variances of spectral band images such as s3
Bl

� ��1

B3
l

� �
,

s2
Bk
sBl

� ��1

B2
kBl

� �
, and sBk

sBl
sBm

ð Þ�1
BkBlBmf g.

Step 4. Nonlinear correlated spectral band images:

i.
ffiffiffiffiffi
Bl

p� �L

l¼1
¼ set of spectral band images stretched out by the square-root.

ii. log Blð Þf gLl¼1 ¼ set of spectral band images stretched out by the logarithmic function.

It is worth noting that all the spectral band images generated by BEP are produced nonlinearly.

These spectral band images should offer useful information for data analysis because they provide

useful nonlinear spectral information to help to improve performance. However, we should point

out that according to our experience, using the cross-correlated spectral band images generated by

Step 2(ii) is generally sufficient to accommodate the need of BEP. Additionally, using the set of

auto-correlated spectral band images produced by Step 2(i) may sometimes cause nonsingularity

problems in matrix computation because they are self-correlated and usually very close to the orig-

inal spectral band images. It is suggested that they should not be used alone and can only be used in

conjunction with cross-correlated spectral band images. This can be well explained by the fact that

a covariance matrix including variances and co-variances provides more information than a diago-

nal matrix, which only includes variances.

31.3 Hyperspectral Imaging Techniques Expanded by BDE

In this section, three well-known HSI techniques, orthogonal subspace projection (OSP), con-

strained energy minimization (CEM), and RX-detector (RXD) described in Chapter 12 are consid-

ered as candidates to be expanded by BDE as MSI techniques. This is because each of these three

techniques requires a different level of target knowledge. For OSP to work effectively, the com-

plete knowledge of image endmembers including background must be provided a priori. Since

such full target knowledge required by OSP is nearly impossible to obtain, specifically for image

background, CEM is then developed to cope with this dilemma where only targets of interest are

required to know in advance while the complete image background can be discarded. When obtain-

ing partial knowledge of interesting targets becomes infeasible, RXD may be used to serve as this

purpose for anomaly detection. In what follows, OSP, CEM, and RXD will be generalized to BEP-

OSP, BEP-CEM, and BEP-RXD by including BEP as a preprocessing for BDE.
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31.3.1 BEP-Based Orthogonal Subspace Projection

The BEP-based OSP introduced in this section operates in two phases. The first phase implements

BEP to create additional new spectral bands from the original spectral bands. The objective of BEP

is to make use of nonlinear correlation functions to produce a new set of second-order statistical

bands. It is then followed by the second phase carried out by OSP. The procedure to implement the

BEP-based orthogonal subspace projection (BEP-OSP) is summarized as follows:

Phase (1) Band Generation Process

i. Produce a set of second-order correlated spectral bands using auto-correlation or cross-cor-

relation functions.

ii. Produce a set of nonlinearly correlated spectral bands using nonlinear functions, square

root, or logarithm functions.

iii. Form a new set of bands by including both original spectral bands and spectral bands gener-

ated by steps (i) and (ii).

Phase (2) OSP

i. Apply OSP to the new set of spectral bands produced by BEP.

31.3.2 BEP-Based Constrained Energy Minimization

In analogy with BEP-OSP, CEM was also extended by the concept of BEP to BEP-based con-

strained energy minimization (BEP-CEM) in Chang et al. (2000).

Phase (1) Band Generation Process

i. Produce a set of second-order correlated spectral bands using autocorrelation or cross-corre-

lation functions.

ii. Produce a set of nonlinearly correlated spectral bands using nonlinear functions, square

root, or logarithm functions.

iii. Form a new set of bands by including both original spectral bands and spectral bands gener-

ated by step (i) and (ii).

Phase (2) CEM

i. Apply CEM to the new set of bands produced by BEP.

31.3.3 BEP-Based RX-Detector

Despite the fact that using BEP to develop BEP-OSP and BEP-CEM was investigated in Ren and

Chang (2000a) and Chang et al. (2000), respectively, it is interesting to note that the concept of

using BEP as BDE for RXD to derive a BEP-Based RX-detector (BEP-RXD) has never been

explored. In what follows, we summarize its implementation.

Phase (1) Band Generation Process

i. Produce a set of second-order correlated spectral bands using auto-correlation or cross-cor-

relation functions.

ii. Produce a set of nonlinearly correlated spectral bands using nonlinear functions, square

root, or logarithm functions.

iii. Form a new set of bands by including both original spectral bands and spectral bands gener-

ated by Steps (i) and (ii).

Phase (2) RXD

i. Apply RXD to the new set of bands produced by BEP.
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One note on BEP-RXD is worth being mentioned. In addition to CEM and RXD, adaptive

RXDs (ARXD) and adaptive CEM (ACEM), both of which using adaptive window sizes to form

local covariance/covariance matrices to expand BEP to their corresponding generalized versions in

exactly the same way as BEP-RXD is done, referred to as BEP-ARXD and BEP-ACEM. Figure

31.3 summarizes the utility of BDE in various operators and transformations where BEP-MLC is a

BEP-based maximum likelihood classifier, which operates MLC on the BEP-expanded data space.

31.4 Feature Dimensionality Expansion by Nonlinear Kernels

Unlike BDE, which expands band dimensionality to resolve the issue in use of an insufficient

number of spectral bands, FDE makes a rather different attempt by expanding features used by

classification to a high dimensional feature space via a nonlinear kernel so that the linear nonse-

parability issue arising in the original data space can be resolved in a new feature space. Its idea

can be briefly illustrated by the following example. Assume that a three-dimensional (3D) pyramid

shown in Figure 31.5(a) is viewed in a two-dimensional space. It must require two views, a 2D top

view shown in Figure 31.5(b) and a 2D side view shown in Figure 31.5(c) to completely envision

what a pyramid looks like in a 3D space.

Using the pyramid in Figure 31.4(a) as an example, solving a linear nonseparable problem in an

original data space is similar to viewing a pyramid in a two-dimensional data space, which requires

two different views, top and side views, to capture its shape, which can only be visualized in a three-

dimensional space. This is equivalent to expanding two top and side views to a single view of a pyra-

mid in a three-dimesnional space shown in Figure 31.4(a), which becomes linearly separable problem.

Band dimensionality expansion (BDE)

BDE by soft decision 
made LSMA

BDE by hard decision
made classification

BDE by classification  

BEP-CEM 
BEP-ACEM 

BDE by transformation 

Any BDE 
transformations  

BEP-RXD 
BEP-ARXD 

BEP-
NCLS 

BEP-
LSOSP 

BEP-
FCLS 

BEP-
SVM

BEP-
MLC

BEP-
FLDA 

Figure 31.3 Band dimensionality expansion techniques for multispectral imagery.
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(b) 2D top view (c) 2D side view 
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Figure 31.4 A three-dimensional pyramid can be viewed by jointly 2 two-dimensional top and side views.
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Two kernel-based approaches are generally developed in the literature. One is FDE by trans-

form, which utilizes a nonlinear kernel function to map a component analysis-based transformation

such as PCA, ICA into a higher dimensional feature space so that nonlinear separable data features

can be recognized by a linear classifier in this new feature space. The main hurdle of this approach

is excessive computational complexity resulting from kernelization where all data sample vectors

are considered as feature vectors to be kernelized. The second approach is FDE by classification,

which only kernelizes the training sample vectors used to train classifiers such as SVM and FLDA.

As a consequence, the issue of computational complexity caused by data sample vectors in FDE

by transform is mitigated by computational complexity which is only involved with the training

sample vectors. In what follows, these two approaches are presented in two separate subsections.

31.4.1 FDE by Transformation

Kernel-based approaches have found great success in many applications in the sense that feature

vectors extracted from the original data space are nonlinearly transformed to a higher feature

dimensional space to resolve the issue of linear nonseparable problems. This section presents a

kernel version of the most widely used transformation, principal components analysis (PCA)

developed by Scholkopf et al. (1999b).

For presenting, we reiterate the PCA described in Section 6.2.1.1. Assume that rif gNi¼1 is a set of

L-dimensional image pixel vectors, and m is the mean of the sample pool S obtained by

m ¼ 1=Nð ÞPN
i¼1 ri. Let X be the sample data matrix formed by X ¼ r1r2 � � � rN½ �. Then, the sam-

ple covariance matrix of the sample pool S can be calculated by

K ¼ 1=Nð Þ XXT
	 
 ¼ 1=Nð Þ PN

i¼1 ri � mð Þ ri � mð ÞT	 

. If we further assume that llf gLl¼1 is the set

of eigenvalues obtained from the covariance matrix K and vlf gLl¼1 are their corresponding unit

eigenvectors, that is, jjvl jj ¼ 1, we can define a diagonal matrix Ds with variances s2
l

� �L

l¼1
along

the diagonal line as

Ds ¼
s2
1 0 0

0 } 0

0 0 s2
L

2

64

3

75 ð31:2Þ

and an eigenvector matrix L specified by vlf gLl¼1 as

L ¼ v1v2 � � � vL½ � ð31:3Þ
such that

Ds ¼ LTKL ð31:4Þ
Using the eigenvector matrix L, a linear transform jL defined by

jLðrÞ ¼ LTr ð31:5Þ
transforms every data sample ri to a new data sample, ~ri by

~ri � LTri ð31:6Þ
As a result, the mean of new jL-transferred data samples ~rif gNi¼1 becomes ~m ¼ 1=Nð ÞPN

i¼1 ~ri
and its resulting covariance matrix is reduced to a diagonal matrix given by

~K ¼ ð1=NÞ
XN

i¼1

~ri � ~mð Þ ~ri � ~mð ÞT ¼ LTKL ¼ Ds ð31:7Þ
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Equation (31.7) implies that the jL-transferred data matrix ~X ¼ ~r1~r2 � � �~rN½ � has been de-correlated
or whitened by the matrix L, which is referred to as a whitening matrix (Poor, 1994). The trans-

form jL defined by (31.6) is generally called principal component transform and the lth component

of X̂ is formed by

jvl ðXÞ ¼ vTl X ð31:8Þ

and is called the lth principal component (PC) which consists of vTl ri
� �N

i¼1
that are jvl -transferred

data samples corresponding the lth eigenvalue ll. The PCA is a process that implements the trans-

form jL defined by (31.5) to obtain a set of PCs via (31.6) or (31.8) with all 1 � l � L.

PCA is a process that implements the transform jL defined by (31.5) to obtain a set of PCs via

(31.6) or (31.8) with all 1 � l � L. To achieve DR, only those PCs specified by eigenvectors that

correspond to first q largest eigenvalues will be retained, while the PCs specified by eigenvectors

corresponding to the remaining (L–q) smaller eigenvalues will be discarded. In what follows, we

follow the approach proposed in Scholkopf et al. (1999b) to extend the PCA to the so-called Kernel

PCA (K-PCA) via a nonlinear function.

Assume that the original data space X is made up of N L-dimensional data sample vectors

rif gNi¼1, X ¼ rif gNi¼1 and f is a nonlinear function which maps the data space X into a feature space

F, with dimensionality yet to be determined by a kernel, that is,

f : X ! F: ð31:9Þ
We further assumed that the mapped data samples into the feature space are centered, that is,
PN

i¼1 fðriÞ ¼ 0. Now we can define the sample covariance matrix in the feature space F by the

fðriÞf gNi¼1

�K ¼ 1=Nð Þ
XN

i¼1

fðriÞfðriÞT ð31:10Þ

Using the same argument outlined by (31.1–31.5), let �l1 � �l2 � � � � � �lL be the eigenvalues of �K
specified by (31.10) and �vlf gLl¼1 be their corresponding eigenvectors with unit length, that is,

�vTl �vl ¼ 1. Then,

�K�vl ¼ ll�vl ð31:11Þ

Multiplying both sides of (31.11) by f(rk) results in

fðrkÞ�K�vl ¼ llfðrkÞ�vl ð31:12Þ
Since �vl lies in the space linear spanned by the data samples in the space F, fðriÞf gNi¼1, it can

expressed by

�vl ¼
XN

i¼1

�g lifðriÞ ð31:13Þ

where �g l ¼ �g l1; �g l2; . . . ; �g lNð ÞT is a combinitorial coefficient vector of �vl . Substituting (31.10) and

(31.13) into (31.12) yields

N�ll �F�gl ¼ �F
2
�gl ð31:14Þ
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where

�Fij ¼ fðriÞTfðrjÞ ¼ fðriÞ � fðrjÞ ð31:15Þ
To find a solution to (31.14), we only need to solve

N�ll�gl ¼ �F�gl ð31:16Þ

Using (31.16) and �vTl �vl ¼ 1 gives rise to

1 ¼ �vTl �vl ¼
XN

i;j¼1

�g li�g lj fðriÞ � fðrjÞ
� � ¼ �gl � �F�gl

� � ¼ �ll �gl � �glð Þ ð31:17Þ

To find the lth principal component in the feature space F, we project all data samples f(r) in F

onto the lth eigenvector �vl via the following equation:

�vl � fðrÞð Þ ¼
XN

i¼1

�g li fðriÞ � fðrÞð Þ ð31:18Þ

It should be noted that to calculate (31.15) and (31.18), we only need to perform dot products

without actually using explicit forms of the nonlinear function f, which is referred to as kernel

trick in Section 2.4.1.

31.4.2 FDE by Classification

Two types of FDE by classification are considered, one using sample spectral correlation and the

other using intrapixel spectral correlation.

31.4.2.1 FDE by Classification using Sample Spectral Correlation

The FDE by classification using sample spectral correlation take advantage of spectral correlation

among sample vectors to improve and enhance classification. This type of classifiers includes hard

decision-made classifiers such as MLC and soft decision-made detectors, RXD and CEM, all of

which include either sample spectral covariance matrix or sample spectral correlation matrix as

additional spectral information to improve their performance in solving non-linear separable

problems. Their kernel counterparts are referred to as kernel-based MLC (KMLC), kernel-based

FLDA (K-FLDA), kernel-based RXD (KRXD), and kernel-based CEM (KCEM). Since the sample

spectral covariance/correlation matrix used by this type of classifiers for FDE is formed by all

the data sample vectors, its size determines computational complexity, which turns out to be the

same issue encountered in FDE by transform. However, an advantage of these classifiers used for

FDE over FDE by transform is that these classifiers can be made adaptive classifiers by considering

various window sizes to capture local spectral correlation to replace the global sample spectral

correlation. As a result, the number of the sample vectors embraced by a local window is only

limited to the window size which can significantly ease computational complexity. The resulting

classifiers are referred to as Kernel-based adaptive MLC (KAMLC), kernel-based adaptive RXD

(KARXD), Kernel-based adaptive CEM (KACEM).

Two interesting facts are noteworthy.

1. Unlike other classifiers used for FDE which use interpixel sample spectral covariance or sample

correlation matrix, Fisher’s linear discriminant analysis (FLDA) discussed in Chapter 2.3.1.1 uses
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the interpixel within-class and between-class scatter matrices to perform classification. Since the

between-class scatter matrix has only rank of p� 1 where the p is the number of classes to be

classified. This implies that the rank of Fisher’s ratio is p� 1. So, in this case, KFLDA discussed

in Section 2.4.2 does not require a full rank to calculate the within-class scatter matrix. This fact

significantly reduces computational complexity by using singular value decomposition (SVD)

discussed in Chapter 6 in a similar manner that a local window is used to reduce the size of the

sample covariance/correlation matrix.

2. It should be also noted that the kernel-based support vector machines (KSVM) in Section 2.4.3

can be considered as a special case of this type of FDE by classification since it does not use any

interpixel sample spectral correlation.

31.4.2.2 FDE by Classification using Intrapixel Spectral Correlation

The FDE by classification using intrapixel spectral correlation has been discussed in Chapter

15 where three KLSMA-based classifiers, kernel-based orthogonal subspace projection

(KOSP), kernel-based least-squares orthogonal subspace projection (KLSOSP), kernel-based

non-negativity constrained least squares (KNCLS), and kernel-based fully constrained least

squares (KFCLS) are derived. These classifiers make use of intrapixel spectral correlation pro-

vided by the signature matrix M in (2.78). Since these classifiers are operated on a single pixel

vector basis, their kernel-based counterparts are determined by the number of signatures, p,

used in the M not the data size and signatures used to unmix data sample vectors. Accordingly,

the kernelization trick is actual performed on the classifiers themselves not on training samples

or on data sample vectors. This type of FDE by classification is the third kernelization

approach described in Section 15.2.4. As a consequence, their computational complexity is

significantly reduced because the value of the p is very small compared to the data size. In this

case, all the KLSMA classifiers developed in Chapter 15 are easy to implement.

Finally, Figure 31.5 summarizes two approaches to FDE where various transformations used in

FDE by transform and various classifiers used by FDE by classifiers are described.

Feature dimensionality expansion(FDE)

FDE by soft decision
made classifiers

FDE by hard decision
made classifiers

FDE by classification

KPCA 

FDE by transformation

Kernel-based
projection pursuit

(KPP)

KICA 

KNCLS KLSOSP KFCLS 
KMLC KSVM

KFLDA
Sample spectral

correlation

KCEM 
KACEM 

KRXD 
KARXD 

Figure 31.5 Feature dimensionality expansion techniques for multispectral imagery.
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31.5 BDE in Conjunction with FDE

It is obvious that BDE can also be implemented in conjunction with FDE by taking advantages

provided by both BDE and FDE. Figure 31.6 depicts various combinations of BDE with FDE.

31.6 Multispectral Image Experiments

The multispectral image data used for experiments is shown in Figure 31.7. The image scene was

collected by the Satellite Pour l’Observation de la Terra (SPOT) system in three spectral bands,

two of which are from visible region of electromagnetic spectrum, band 1: 0.5–0.59mm and band

2: 0.61–0.68mm and the third band is from near-infrared region of electromagnetic spectrum,

0.79–0.89mm. The ground sampling distance is 20m. The image scene has size 256� 256 was

taken over Northern Virginia where in the scene there are the Falls Church High School, the Little

River Turnpike, a lake at the upper right corner and the Mill Creek Park.

According to the ground truth obtained from visiting the site as well as provided by the Google

Earth, there are at least four signatures, buildings, roads/parking lots, water, and vegetation in the

scene with training samples selected from the four marked areas shown in Figure 31.8 to represent

these four different classes. The signatures used to form the signature matrix M for LSMA were

Figure 31.7 Three spectral band images of SPOT data.

FDE by soft decision-made
classifiers/detectors

FDE by hard decision
made classification

BDE 

K-BEP-NCLS K-BEP-SVM K-BEP-FLDAK-BEP-LSOSP K-BEP-FCLS

K-BEP-RXD 
K-BEP-ARXD 

K-BEP-CEM 
K-BEP-ACEM

K-BEP-MLC

Figure 31.6 BDE in conjunction with FDE.
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obtained by sample means of training samples from the four marked areas, that is,

M¼ [mlake,mvegetation,mbuilding,mroads] wheremarea is the sample mean of the area.

To carry out BEP, two sets of BEP bands were used, autocorrelated bands and cross-correlated

bands, where both autocorrelated bands and cross-correlated bands were normalized by their corre-

sponding variances of spectral band images. Six experiments were conducted to evaluate the effec-

tiveness of BEP and kernelization in conjunction with LSMA in performance analysis where

LSMA, BEP6þLSMA, BEP9þLSMA, KLSMA, BEP6þKLSMA, and BEP9þKLSMA were

Figure 31.8 Training samples selected from four areas in Northern Virginia.

Figure 31.9 Unmixed results of SPOT data produced by (a) LSOSP, (b) NCLS, and (c) FCLS.
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used to perform spectral unmixing with BEP6 and BEP9 defined as

BEP6 ¼ original three spectral bandsþ three cross-correlated spectral bands

BEP9 ¼ original three spectral bandsþ three cross-correlated spectral bands
þthree auto-correlated spectral bands

Experiment 31.1 (LSMA)

In this experiment three LSMA techniques, LSOSP, NCLS, and FCLS were operated on the three-

band original SPOT data without nonlinear dimensionality expansion. Figure 31.9(a)–(c) shows

the unmixed results of the SPOT data produced by LSOSP, NCLS, and FCLS, respectively, where

FCLS obviously outperformed the other two, LSOSP and NCLS.

Experiment 31.2 (BEP6þLSMA)

This experiment was conducted in the same way that Experiment 31.1 was performed except that

LSOSP, NCLS, and FCLS were applied to BEP6 image data. Figure 31.10(a)–(c) shows the

unmixed results produced by LSOSP, NCLS, and FCLS, respectively, where FCLS was still the

best followed by NCLS as the second best with LSOISP being the worst. Compared to results

shown in Figure 31.9, FCLS performed nearly the same with no obvious improvements, LSOSP

was indeed slightly improved, but NCLS was improved drastically. This experiment shows that

three LSMA-based techniques could be benefited from three extra cross-correlated spectral bands,

which actually provided useful spectral information that could improve the unmixing ability.

Experiment 31.3 (BEP9þLSMA)

The only difference between this experiment and Experiment 31.2 was the data which included three

more auto-correlated spectral bands in addition to the three cross-correlated spectral bands. Fig-

ure 31.11(a)–(c) shows the unmixed results produced by LSOSP, NCLS, and FCLS, respectively.

Figure 31.10 Unmixed results of SPOT data produced by (a) LSOSP, (b) NCLS, and (c) FCLS with using BEP 6.
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Compared to the results in Figure 31.10, the improvement from BEP6 to BEP9 was very little

and hardly recognized. This implies that including autocorrelated spectral bands did not really help

much once cross-correlated spectral bands are used.

Experiment 31.4 (KLSMA)

This experiment was conducted to see how much improvement that LSMA could be benefited from

kernelization where RBF kernel was used with three different values of s selected empirically.

Figures 31.12–31.14 show the unmixed results produced by KLSOSP, KNCLS, and KFCLS,

respectively, where in all cases FCLS remained the best, but interestingly, LSOSP and NCLS per-

formed very closely.

If we compare the results against their counterparts without kernelzation, the improvement

resulting from kernelization was very significant, specifically, LSOSP.

In the previous four experiments, only one nonlinear dimensionality technique was imple-

mented, either BEP or kernelization but not both. The following two experiments was performed

to see whether or not unmixing ability can be further improved if both BEP and kernelization are

used for nonlinear dimensionality expansion.

Experiment 31.5 (BEP6þKLSMA)

This experiment implemented KLSMA on the image data produced by BEP6. Figures 31.15–31.17

show the unmixed results produced by KLSOSP, KNCLS, and KFCLS, respectively.

Compared to the results shown in Figs 31.12–31.14, the difference between “KLSMA without

BEP” and “KLSMAwith BEP6” was not very visible. In other words, the advantages provided by

Figure 31.11 Unmixed results of SPOT data produced by (a) LSOSP, (b) NCLS, and (c) FCLS with using BEP 9.
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Figure 31.13 Unmixed results of SPOT data produced by KNCLS with different values of s.

Figure 31.12 Unmixed results of SPOT data produced by KLSOSP with different values of s.
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Figure 31.14 Unmixed results of SPOT data produced by KFCLS with different values of s.

Figure 31.15 Unmixed results of SPOT data produced by KLSOSP using BEP6 with different values of s.
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Figure 31.16 Unmixed results of SPOT data produced by KNCLS using BEP6 with different values of s.

Figure 31.17 Unmixed results of SPOT data produced by KFCLS using BEP6 with different values of s.
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BEP seemed to vanish after kernelization. This indicated that kernelization is more effective than

BEP when considering came spectral unmixing. This made sense because pixels in multispectral

images are generally heavily mixed, and the pixel mixtures may not be linear either.

Experiment 31.6 (BEP9 þ KLSMA)

This experiment was performed by taking both advantages, BEP9 and kernelization. Figures

31.18–31.20 show the unmixed results produced by KLSOSP, KNCLS, and KFCLS, respec-

tively. As we can see by comparing the results to those in Experiment 31.5 BEP9 seemed not

to provide any better benefit than BEP6 did, a similar phenomenon observed in Experiments

31.2 and 31.3 regardless of whether kernelization was used.

Based on the above six experiments, we can draw the following conclusions.

1. When LSMA is used, BEP could significantly improve unmixing performance.

2. Including cross-correlated spectral bands was sufficiently enough to implement BEP.

3. Kernelization could also significantly improve unmixing performance when the data dimension-

ality was small.

4. KLSMA seemed to outperform “BEPþLSMA,” particularly in both LSOSP and NCLS.

5. Once kernelization was used, the advantage of using BEP vanished. This implied that the ker-

nelization had better ability in improving spectral unmixing than BEP did. As a result, using

kernelization in conjunction with BEP did not really provide much benefit in unmixing

improvement.

Figure 31.18 Unmixed results of SPOT data produced by KLSOSP using BEP9 with different values of s.
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Figure 31.19 Unmixed results of SPOT data produced by KNCLS using BEP9 with different values of s.

Figure 31.20 Unmixed results of SPOT data produced by KFCLS using BEP9 with different values of s.
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To conclude this section, it is worth mentioning that there is another application of applying

BEPþLSMA and KLSMA to magnetic resonance (MR) image classification presented in the

following chapter, Chapter 32. The superior performance of KLSMA to LSMA in quantitative

analysis will be shown in this chapter and has been also demonstrated in Wong (2011) by experi-

ments using synthetic magnetic resonance (MR) brain images provided by McGill University

(h tt p :/ / ww w. b ic .m ni. mc g il l. c a/b r ain we b /). Th o se wh o a re i nte re s ted in q u an ti t ative st ud ie s a nd

analyses are encouraged to find details in this reference.

31.7 Conclusion

When hyperspectral imagery (HSI) was available for data processing in early 1990s, a common

approach is to extend existing multispecral imaging techniques in a straightforward manner for

processing HSI with a general understanding that hyperspectral imagery is an extension of

Nonlinear dimensionality expansion for multispectral imagery

Feature dimensionality
expansion by component

analysis

Feature dimensionality
expansion by classification

(see Fig. 31.22)
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Figure 31.21 Nonlinear dimensionality expansion techniques to multispectral imagery.
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Figure 31.22 Feature dimensionality expansion by classification techniques to multispectral imagery.
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multispectral imagery by including more spectral bands with better spectral resolutions.

Unfortunately, this is generally not true. One main reason is that issues to be resolved in HSI such

as subpxiels, mixed pixels, and endmembers are quite different from those in multispectral imag-

ery (MSI) such as land cover/use classification, geographical information system (GIS), etc. The

work in Chang (2003a) was developed to design statistical signal processing algorithms for sub-

pixel detection and mixed pixel classification from a viewpoint of HSI. Some of them such as

orthogonal subspace projection (OSP) and constrained energy minimization (CEM) have been

shown to be promising in LSMA. However, as noted in Ren and Chang (2000a) such hyperspectral

imagery-based developed techniques suffer from an issue of intrinsic dimensionality constraint,

which does not necessarily guarantee that the same success can also be applied to multispectral

imagery. This chapter investigates this issue and further develops two approaches to nonlinear

dimensionality expansion to MSI. One is band dimensionality expansion (BDE) which creates

new spectral band images resulting from implementing nonlinear functions on the original MSI

data via a band generation process (BEP). As a result of BEP, the expanded MSI data will have

sufficient band dimensionality and can be treated as if it is a hyperspectral image so that hyper-

spectral imaging techniques are readily applied. As an alternative to BDE, another dimensionality

expansion is referred to as FDE which makes use of the kernel trick to perform kernelization on

features derived from data sample vectors or training samples data or classifiers themselves in

which case, no band dimensionality expansion is required, but features have been nonlinearly

expanded in a higher dimensional feature space. Figure 31.21 describes these two types of non-

linear dimensionality expansion to multispectral imagery, BDE and FDE where various techniques

developed each approach in this chapter are detailed in block diagrams in Figures 31.21 and 31.22.
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32

Multispectral Magnetic
Resonance Imaging

Due to recent advances in instrument technology, applications of remote sensing are no more

confined to geoscience and earth science but have rather expanded to other areas such as medi-

cal diagnosis, food safety and inspection, law enforcement, defense, homeland security, and

so on. Chapter 31 explores an expansion of hyperspectral imaging (HSI) techniques to multi-

spectral imaging (MSI). This chapter deals with another new expansion of HSI to magnetic

resonance (MR) imaging. Specifically, the problem of partial volume estimation (PVE) will be

studied here. In the past years, two general approaches, a finite Gaussian mixture (FGM)

model-based statistical approach and a fuzzy c-means (FCM)-based structural approach have

been implemented in conjunction with Markov random field (MRF) to investigate PVE prob-

lems. This chapter develops a third spectral approach, which is completely different from the

two above-mentioned approaches. It is a new PVE approach, which is based on linear spectral

mixture analysis (LSMA) discussed in Part III of this book and Chapter 31. It assumes that an

MR image voxel is linearly mixed with tissues of different types via a linear mixing model

from which it can be further unmixed into abundance fractions of these tissues in terms of their

partial volumes. To further effectively explore intravoxel spectral information within an MR

image, two nonlinear expansions using nonlinear band dimensionality and nonlinear kernels

developed in Chapter 31 are also used to explore inherent nonlinear spectral information,

which can help increase the accuracy of LSMA-unmixed partial volume estimates. In order to

conduct a quantitative study and analysis of PVE, the synthetic images provided by McGill’s

BrainWeb MR image database are used for experiments where a 3D receiver operating charac-

teristics (3D ROC) analysis introduced in Chapter 3 is used for performance evaluation.

32.1 Introduction

Magnetic resonance imaging (MRI) is an advanced medical instrument technology, which provides

high contrast of image intensity of information about soft tissues that can be used for image analy-

sis (Sebastiani and Barone, 1991; Wright, 1997). Therefore, one of the fundamental tasks of MRI

is tissue classification, which is generally accomplished by segmentation. Technically speaking,

classification and segmentation are two completely different concepts. The classification generally

requires a set of training samples to perform class membership assignment, which can be carried
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out in a supervised or an unsupervised manner depending upon how training samples are produ-

ceed a priori using prior knowledge or a posteriori obtained directly from the data. On the other

hand, segmentation intends to group data samples into a finite number of homogeneous regions, p,

according to a certain criterion such as similarity of image intensities, custom-designed features,

and so on. Therefore, segmentation is usually performed in an unsupervised manner without

assuming any prior knowledge other than the value of p. Many efforts have been devoted to design

and development of segmentation algorithms, most of them based on the concept of c-means

(k-means) clustering and their various fuzzy versions (Bezdek, 1981; Bezdek et al., 1984). As a

result, it is generally referred to as an automatic or unsupervised processing. In order for segmenta-

tion to perform classification, a set of training samples is generally required.

Due to the fact that MR image data are obtained by three image pulse sequences, T1, T2, and

proton density (PD), MR image data are indeed a 3D image cube where each image pixel is

actually a three-dimensional vector, referred to as voxel, of which each component is a pixel spec-

ified by one particular image sequence. Consequently, one very challenging issue encountered in

MR image classification is the so-called partial volume effect in the sense that a data sample can

be assigned to more than one class (Choi et al., 1991; Santago and Gage, 1993; Laidlaw et al.,

1998; Harris et al., 1999; Ruan et al., 2000; Shattuck et al., 2001; Leemput et al., 2003; Siadat

and Soltanian-Zade, 2007; Klauschen et al., 2009). Interestingly, a similar issue in PVE, called

mixing effect, also occurs and presents a great challenge to remote sensing image processing

where such mixing effect results from two types of mixing activities encountered in a remote

sensing image pixel vector: macrospectral mixture (Singer and McCord, 1979) and intimate mix-

ture (Hapke, 1981), both of which model a mixed pixel as a linear and nonlinear combination of a

finite number of basic signatures, called endmembers, respectively. Nevertheless, Hapke’s non-

linear mixing model can be linearized by a method suggested by Johnson (1983). Accordingly,

LSMA has become a major technique in remote sensing image classification to perform linear

spectral unmixing (Keshava and Mustard, 2002). In essence, what is PVE to MRI is the same as

what is spectral unmixing to MSI.

The similarity between MRI and MSI was first realized by Vannier et al. (1985) who suggested

that many multispectral satellite image processing techniques could readily be applied to MR

image data, although they did not particularly specify what these techniques were. Recently,

hyperspectral imaging has emerged as an advanced technique in remote sensing (Chang, 2003a).

Many efforts have also been made in applying hyperspectral imaging techniques to MRI and

achieved some success has been achieved in MR tissue classification (Wang, et al., 2001, 2002,

2003; Chen et al., 2005; Wong and Chang, 2008; Wong, 2008). Unfortunately, the issue of PVE

was not specifically addressed there. This is because the connection with PVE and spectral unmix-

ing was not established then and was not realized either.

There are many approaches proposed to solve PVE. Two mainstreams have been studied

over the past years. One is parametric methods via statistical approaches (Choi et al., 1991;

Santago and Gage, 1993; Laidlaw et al., 1998; Harris et al., 1999; Ruan et al., 2000; Shattuck

et al., 2001; Leemput et al., 2003; Siadat and Soltanian-Zade, 2007; Klauschen et al., 2009).

An early attempt along this line was made by Choi et al. who used a linear mixture to model

an MR image voxel as a finite Gaussian mixture where signal sources in the mixture were

assumed to be Gaussian distributed so that Dempster et al.’s expectation-maximization (EM)

algorithm (Dempster et al., 1977) could be used to find mixing coefficients in the mixture to

solve PVE. This approach is referred to as two-step framework in Siadat and Soltanian-Zadeh

(2007), which assumed a density mixture model in the first step followed by a histogram fitting

in the second step (i.e., Gaussian mixture). Another is nonparametric methods, which can be

considered as structural approaches and are mainly fuzzy c-means (FCM)-based techniques
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(Wells, III, et al., 1996; Pham and Prince, 1999; Ahmed et al., 2002; Liew and Yan, 2003;

Siyal and Yu, 2005). In order to further take into account spatial information, both approaches

(parametric and nonparametric methods) include Markov random field (MRF) (Zhang et al.,

2001; Scherrer et al., 2009) to capture spatial properties within a custom-designed neighboring

system, called cliques. Such EM-MRF-based and FCM-MRF-based approaches along with

their various adaptive versions have accounted for most research works currently reported in

MR image classification and analysis. Although as good as they can be theoretically, each of

them suffers from several drawbacks in practical applications. In the case of parametric meth-

ods, assumption of finite Gaussian mixture is made, which is generally not true in real applica-

tions. In particular, the noise assumed in the mixture to account for the model error is

generally not Gaussian (Gravel et al., 2004). Second, the computational complexity of using

EM in conjunction with MRF to find mixing components is exceedingly high and expensive.

This is probably the main reason that only two different tissue types have been considered in

many works (Siadat and Soltanian-Zadeh, 2007). With regard to nonparametric methods, the

main issue concerns the used initial condition that requires selecting seed samples to initialize

a clustering process is generally randomly generated that usually results in inconsistent and

unreproducible results. Most importantly, if there are more than three image sequences used

for data collection, including flair images, the 3� 3 cliques-based neighboring system used by

MRF in both approaches must be extended to dimensionality higher than 3, which presents a

great challenge, if not impossible. Finally, the number of classes to be considered by both

approaches has been limited to three or four based on the fact that there are only three brain

tissues of interest, white matter (WM), gray matter (GM), and cerebral spinal fluid (CSF), in

MR brain image analysis. This constraint limits the use of two popular software algorithms,

SPM 5/8 and FAST, which will break down if the number of classes exceeds three for SPM

5/8 and six for FAST. However, it is obvious that there are more tissue types in brain MR

images in addition to WM, GM, and CSF, such as brain skull, fat, blood vessels, and muscles,

which certainly have significant impacts on PVE and cannot be simply ignored and discarded.

In order to resolve the above-mentioned PVE issues, this chapter develops a third approach

from a hyperspectral imaging perspective (Chang, 2003a). It is an LSMA-based technique,

which is completely different from the classical FCM-MRF-based structural (spatial) and the

EM/FGM-MRF-based statistical approaches. It is an approach similar to Choi et al.’s PVE

approach (1991) in the sense that both make use of a linear mixing model to cope with PVE

effects, but quite different in other aspects. Unlike mixing models used in MRI that assume

data samples can be modeled by a finite Gaussian mixture where the EM algorithm is imple-

mented to find partial volumes for tissue types in the mixture, the proposed LSMA does not

make this assumption. Instead, it uses the least-squares error (LSE) as an optimal criterion to

unmix various tissue types by finding their abundance fractions present in the mixture in terms

of their corresponding partial volumes where no probability distributions are involved to

describe the tissue types. As a result, it does not require probability distribution estimation as

many parametric methods do, such as Gaussian distributions. Second, the number of tissues of

various types can be arbitrary and determined by practical needs. Specifically, the number of

tissue types can go beyond three and six, which are the upper limits imposed on two popular

software packages commonly used in the literature, SPM 5/8 with the software available at

ht tp://www.fil.ion.ucl.ac.uk/spm/software/SPM8/ and FAST ( FMRIB’s Automated Segmenta-

tion Tool) in Smith (2000), Smith et al. (2004) and Zhang et al. (2001) with the software avail-

able at http:// www.fmrib.ox.ac.uk/fsl/, respective ly. T hi rd, LSMA is a pi xe l-based a pproach,

which relies only on spectral properties to perform various tasks, such as subpixel detection,

mixed pixel classification, quantification, and so on. Consequently, its computational complex-

ity is very low. Fourth, it can use other tissue types of no interest such as brain skull or fat to
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suppress background via unmixing so as to increase the unmixing ability to improve accuracy

of partial volume estimation (PVE), a task which is difficult for EM-MRF and FCM-MRF

approaches to accomplish. However, since this LSMA-based approach does not include MRF

to account for spatial correlation captured by a neighboring system, LSMA must further

explore more spectral properties to make up this deficiency. In doing so, an approach called

band expansion process (BEP), similar to band generation process (BGP) proposed by Ren and

Chang (2000a), is incorporated into LSMA to generate a new set of extra spectral bands from

the original MR images by a nonlinear function. By virtue of BEP, the original MR images can

include nonlinear spectral information in expanded MR images. LSMA is then implemented in

conjunction with BEP to perform PVE and is called BEP-LSMA (Wong, 2008; Wong and

Chang, 2008). As an alternative, LSMA can also explore nonlinear spectral information via a

nonlinear kernel to allow spectral unmixing to convert nonlinear decisions for partial volume

estimation to linear decisions in a high-dimensional feature space instead of the original MR

images. Such an approach is called kernel-based LSMA (KLSMA).

Several advantages of LSMA using nonlinear expansions over the mixed model-based EM

approach are (1) no Gaussian assumption made for tissue types or noise or model error; (2) no

probability distribution estimation required; and (3) low computational complexity. On the other

hand, there are also advantages of LSMA using nonlinear expansions over FCM-based

approaches. First, unlike FCM which is primarily developed for data clustering with fuzzy intro-

duced to make soft decisions that can be used for PVE, LSMA is mainly designed for PVE.

Second, FCM-based methods generally cannot find subtle objects such as abnormal tissue types

if their samples are relatively few, in which case these small objects are very much likely to be

assigned to a large cluster owing to a small size of clusters made up of such small objects. Third,

if there are tissues of the same type scattering in more than one disconnected regions, which are

far away from each other, these tissue samples are also very likely to be clustered into two sepa-

rate connected regions according to their spatial locations in which case they will be considered

as different objects. All the above-mentioned issues are not encountered in LSMA, which is per-

formed on a single voxel basis and does not use sample spatial correlation to perform its tasks.

Fourth, in PVE the volumes of tissue types of interest, referred to as abundance fractions in

LSMA, are considered as parameters to be estimated. Therefore, parametric mixing model

approaches generally perform better than nonparametric FCM clustering approach. Most impor-

tantly, LSMA can use undesired tissue types to suppress their interfering effects on classification

of desired tissue via unmixing to enhance desired tissue type discriminability, while FCM can

only group undesired tissue types as separate clusters for segmentation but not for suppression.

32.2 Linear Spectral Mixture Analysis for MRI

A fundamental task of MRI is tissue classification. Traditionally, it takes advantage of

intervoxel spatial correlation to perform spatial domain-based classification by voxel membership

assignment. In other words, a spatial domain-based classification technique performs no more than

class labeling for data samples via a clustering or segmentation process. As a result, MR image

voxels must be classified by hard decisions, that is, discrete decisions. Unfortunately, since many

tissue substances in MR images may be indeed mixed by more than one tissue substance within a

single voxel, it is more realistic and effective to classify an MR image voxel by soft decisions

based on the proportion of each of these tissue substances present in the particular voxel. In the

past, two mainstreams are investigated for such soft decisions, referred to as PVE. One is a para-

metric approach that makes use of a mixing model to estimate partial volumes of each of tissue

substances present in a voxel, also referred to as a mixel (Choi et al., 1991; Santago and Gage,

1993; Laidlaw et al., 1998; Harris et al., 1999; Ruan et al., 2000; Shattuck et al., 2001; Leemput
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et al., 2003; Siadat and Soltanian-Zade, 2007; Klauschen et al., 2009). The other is a nonparametric

approach, which uses FCM-based clustering techniques for the same purpose (Wells, III, et al.,

1996; Pham and Prince, 1999; Ahmed et al., 2002; Liew and Yan, 2003; Siyal and Yu, 2005).

Recently, a third approach has been investigated by Vannier et al. (1985) where MR images are

considered as multispectral images and each spectral image results from a particular magnetic

pulse sequence designed for data acquisition. In light of this interpretation, LSMA discussed in

Part III is readily applied to MR image analysis. It assumes that there are three spectral images

obtained by three magnetic resonance tissue parameters, spin-lattice (T1), spin–spin (T2) relaxa-

tion times, and PD where each data sample r is a three-dimensional image voxel. Suppose that

there are a number of principal tissue substances {mj} such as GM, WM, and CSF, to form a set of

basic constituents. LSMA models each MR image voxel r as a linear mixture of {mj} with appro-

priate abundance fractions, {aj}. The goal of LSMA is to use these tissues substances {mj} to

unmix r by solving a linear inverse problem via a linear mixing model to find the unknown abun-

dance fractions, {aj}. The estimated abundance fraction âj is considered as a partial volume of the

jth tissue substances mj. By virtue of such unmixed partial volumes fâjg, various tasks of image

analysis can be performed for MR images. Several early attempts have been made using LSMA for

MR brain images and shown promise in solving certain problems, such as subpixel detection,

mixed pixel classification, and quantification that cannot be resolved by traditional spatial domain-

based image processing techniques (Wang et al., 2001, 2002, 2003; Chen et al., 2005; Wong and

Chang, 2008; Wong, 2008). Nevertheless, LSMA also suffers from an inherited drawback of using

a limited number of image pulse sequences to obtain MR images. For a spatial domain-based tech-

nique, this may not be a problem since it mainly relies on intervoxel spatial correlation among data

sample voxels to perform its tasks. But for a technique such as LSMA, which makes exclusive use

of spectral information to characterize tissue substances, the lack of spectral band images can cer-

tainly impair its ability in performing tasks. In order to address this issue, an interesting approach

proposed by Ren and Chang (2000a) introduced the concept of BGP that allowed users to create

additional nonlinear spectral information from the original set of spectral images via nonlinear

functions. This idea was successfully applied to MR images (Ouyang et al., 2008a) as band dimen-

sionality expansion (BDE) where BGP was renamed as BEP. As an alternative to BDE that

expands band dimensionality of the original data space, an approach that used nonlinear kernels to

expand linear classifiers to resolve the linear nonseparability issue was also investigated in Wong

(2011). These two approaches are rather different. BDE is particularly designed to address the

issue arising in an insufficient number of spectral band images, whereas the kernel approach

expands capability of linear classifier to deal with linearly nonseparable problems more effectively

in a kernel-transformed feature space. Both are proved to be promising in multispectral imaging

(Wong and Chang, 2008; Wong, 2008; Liu et al., 2009). Interestingly, the idea of using LSMA via

a nonlinear kernel to expand feature dimensionality has not been explored for MR image analysis

in the past. Despite that BDE was investigated in Ouyang et al. (2008a), BDE was demonstrated

ineffective if the SVM was implemented alone, but has become very useful and effective when the

SVM was implemented coupled with the independent component analysis (ICA).

This chapter considers three LSMA methods: abundance-unconstrained least-squares orthogonal

subspace projection (LSOSP), partially abundance nonnegativity-constrained least-squares (NCLS),

and abundance-fully constrained least-squares (FCLS) for nonlinear dimensionality expansion. The

first technique is to operate the three LSMA-based methods, LSOSP, NCLS, and FCLS, on band

dimensionality-expanded image data with additional new band images generated by BEP, referred

to as BEP-LSOSP, BEP-NCLS, and BEP-FCLS, respectively. A second technique is to expand

LSOSP, NCLS, and FCLS into a high dimensional feature space via nonlinear kernels, referred to as

K-LSOSP, K-NCLS, and K-FCLS. A third technique is to combine both BEP and kernelization to
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implement K-LSOSP, K-NCLS, and K-FCLS on BEP-expanded data, referred to as K-BEP-LSOSP,

K-BEP-NCLS, and K-BEP-FCLS. The goal of this chapter is to introduce these approaches to dem-

onstrate how the commonly known and well-established linear spectral unmixing can be reinvented

to be used as effective MRI analysis techniques in tissue characterization in terms of PVE.

Since LSMA is basically an estimation technique, i.e., estimating abundance fractions to

perform classification, it is a soft classifier as opposed to commonly used hard classifiers that

perform classification via class labeling assignment. As a result, the traditional receiver operating

characteristic (ROC) analysis designed for hard classifiers for performance evaluation in medical

diagnosis cannot be directly applicable to LSMA, which makes soft decisions on estimated

abundance fractions to perform classification. To deal with this issue, the three-dimensional

receiver operating characteristic (3D ROC) analysis developed in Chapter 3 is used for perform-

ance evaluation. In addition to detection probability PD and false alarm probability PF, an

additional parameter t is introduced in a third dimension as a threshold to convert abundance

fractions to hard decisions for class membership assignment. In order to substantiate LSMA-based

methods, two image sets are used for experiments. One dataset is set of synthetic brain MR images

obtained from a website http://www.bic.mni.m cgill .ca/brainweb/ that provided ground truth which

can be used to conduct quantitative study and analysis. The second dataset is a set of real MR

images obtained in Taichung Veterans General Hospital to validate the utility of LSMA-based

methods in real applications so that it paves a way for developing computer assisted software to

help radiologists in doing better PVE of MR tissue substances.

32.2.1 Orthogonal Subspace Projection to MRI

In order to see how the concept of LSMA can be applied to brain MRI, we assume that a

multispectral brain MR image contains three major brain tissue substances, WM, GM, CSF, along

with background tissue substances such as fatness, water, or blood vessels, to form a set of desired

endmembers, fs1; s2; . . . ; spg that will be used to describe a linear model. For any brain image

pixel r, it can be represented by a linear combination of fs1; s2; . . . ; spg with their respective coef-

ficients fa1;a2; . . . ;apg, which are unknown and yet to be found. In this case, these coefficients

are referred to as abundance fractions, which indicate how much abundance of each of p endmem-

bers attributed to the sample r. Despite that the eigenimaging filter (Windham et al., 1988) was the

first work to envision the idea that a sequence of MR images can be weighted to produce a compos-

ite for feature extraction, it is interesting to note that a natural connection of MRI to spectral

unmixing has not been investigated and explored until recent works reported (Wang et al., 2001,

2002) where a hyperspectral image processing technique, orthogonal subspace projection (OSP),

was successfully applied to MR image classification and spectral characterization. In this section,

OSP will be discussed in detail.

OSP was originally developed for hyperspectral image classification (Harsanyi and Chang,

1994) and discussed in Chapter 2. It models an image pixel as a linear mixture of finite number

of known signatures assumed to be present in the image. More specifically, suppose that L is the

number of spectral bands (channels). In our case, an MR image sequence is actually a collec-

tion of coregistered L spectral bands. So, the ith image pixel in an MR image sequence can be

considered as an L-dimensional pixel vector.

Let r be an L� 1 column pixel vector in a hyperspectral image. Assume that there is a set

of p MR substances of interest present in the image and s1; s2; . . . ; sp are their corresponding

signatures, called MR tissue signatures. Let S be an L� p MR signature matrix denoted by

S ¼ ½s1; s2; . . . ; sp�, where sj is an L� 1 column vector represented by the signature of the jth

MR tissue substance present in the MR image sequence. Let a ¼ ða1;a2; . . . ;apÞT be a p� 1
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abundance column vector associated with r, where aj denotes the fraction of the jth MR

tissue signature sj present in the pixel vector r. Then the signature of r can be represented

by a linear mixture model described by (2.75) with the signature matrix M replaced by the

MR tissue substance signature matrix S as follows:

r ¼ Saþ n ð32:1Þ
where n is noise or can be interpreted as either a measurement error or a model error. It should be

noted that (32.1) uses different notations of s1; s2; . . . ; sp and S to represent p MR tissue sub-

stance signature matrix, to differentiate, respectively, the MRI from m1;m2; . . . ;mp and M in

(2.75), which has been used for remote sensed imagery in previous chapters.

Equation (32.1) assumes that the knowledge of MR tissue substance signatures, S, must be

given a priori. Without loss of generality, we further assume that d ¼ sp is the desired MR

tissue signature to be detected in (32.1) and U ¼ s1; s2; . . . ; sp�1

� �
is the undesired signature matrix

made up of the remaining p� 1 undesired MR tissue substance signatures in S. Then, we rewrite

(32.1) as:

r ¼ dap þ Ugþ n ð32:2Þ
where g is the abundance vector associated with U. Equation (32.2) allows us to design the

following orthogonal subspace projector, denoted by P?
U to annihilate U from r prior to

detection of d get rid of boldface.

P?
U ¼ I� UU# ð32:3Þ

where U# ¼ UTU
� ��1

UT is the pseudoinverse of U. Applying P?
U in (32.3) to (32.2) results in

P?
Ur ¼ P?

Udap þ P?
Un ð32:4Þ

Using the signal-to-noise ratio (SNR) as the criterion for optimality, the optimal solution to

(32.4) is given by (2.77), which is a matched filter Md defined by

Md P?
Ur

� � ¼ kdTP?
Ur ð32:5Þ

where the matched signal is specified by d and k is a constant. Setting k ¼ 1 in (32.5) yields the

following OSP filter dOSP(r):

dOSPðrÞ ¼ dTP?
Ur ¼ dTP?

Ud
� �

ap þ dTP?
Un ð32:6Þ

The OSP specified by (32.6) detects only the abundance fraction, which does not reflect true

amount of the desired MR tissue signature d. In order to reliably estimate the abundance fraction

of d, a least-squares OSP, dLSOSP(r), is given by

dLSOSPðrÞ ¼ dTP?
Ud

� ��1
dTP?

Ur ¼ dTP?
Ud

� ��1
dOSPðrÞ ð32:7Þ

where the constant dTP?
Ud

� ��1
is included in (2.79) to account for the least-squares estimation

error (Chang, 1998, Chang et al., 1998b).

Due to mathematical tractability, LSMA is widely implemented as an unconstrained technique

that does not impose any constraint on the abundance fractions a1;a2; . . . ;ap of the MR tissue

substance signatures s1; s2; . . . ; sp. However, it has been shown in the literature, for example,
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constrained LSMA can improve unconstrained LSMA in many aspects (Chang, 2003a) such

as subpixel detection, mixed pixel classification, identification, and specifically quantification

when accurate abundance fraction estimation is required. This is also of particular importance for

finding accurate partial volumes of MR tissue substances such as CSF, WM and GM as shown in

Figure 32.1. As constrained LSMA is considered, two abundance constraints can be imposed on

a1;a2; . . . ;ap in (32.1): abundance sum-to-one constraint (ASC), that is,
Pp

j¼1 aj ¼ 1 and abun-

dance nonnegativity constraint (ANC), a � 0, that is, aj � 0 for all 1 � j � p. Such constrained

LSMA is referred to as abundance-constrained LSMA (AC-LSMA) considered in Chapter 14.

A general and common approach to solving AC-LSMA is to estimate abundance fractions in

the sense of LSE while satisfying the imposed constraints, which are referred to as LSE-based

AC-LSMA. More specifically, the model in (32.1) is interpreted as least-squares error problem:

r� Sað ÞT r� Sað Þ ð32:8Þ

with n modeled as least-squares error, while constraining the abundance fractions a1;a2; . . . ;ap on

the model in (32.1) to find least-squares error solutions. As a result, three types of LSE-based

abundance-constrained LSMA are generally considered (Chang, 2003a): sum-to-one constrained

least-squares (SCLS) that implements only the ASC, NCLS that implements only the ANC, and

FCLS that implements both ASC and ANC. Despite the fact that constrained LSMA may require

more sophisticated algorithmic implementations, the payoff is sometimes great and worthwhile,

specifically for material quantification. Most importantly, it generally produces more accurate

abundance fraction estimation, specifically for PVE.

32.2.2 Band Expansion Process-Based OSP

In order for OSP to perform effectively, one key requirement is to assume that there is sufficient

data dimensionality for OSP to carry out orthogonal subspace projections. In other words, OSP

utilizes spectral bands to capture spectral characterization profiled in an image pixel. If the data

dimensionality is too small, the spectral profiles provided by spectral bands may not have sufficient

Figure 32.1 An example of a 3-band MR image cube acquired by T1, T2, and PD unmixed into three images

to show brain tissue substances: CSF GM, WM respectively.
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spectral information for data analysis. It seems natural to hyperspectral imagery since it generally

has hundreds of spectral bands to be used for data collection. However, it is not the case for

MR images, which usually have only a few spectral bands that can be spared to be used for data

analysis. In this case, the performance of OSP will be considerably degraded due to an insufficient

number of spectral bands. If we use one-band MR image to accommodate one brain tissue

substance, the number of substances to be accommodated should not exceed the number of MR

band images, which is generally three. Unfortunately, there are always more than three brain tissue

substances such as GM, WM, and CSF, fatness, blood, water, and so on, plus noise. In this case,

the band expansion process-based OSP (BEP-OSP) described in Section 31.3.1 seems appropriate

to be used for this purpose.

A procedure of implementing the BEP-OSP is briefly described in Chapter 31 (Section 31.2.2)

by two stages, BEP followed by OSP as follows.

BEP-OSP

Stage 1: Use the BEP to expand spectral dimensionality.

Stage 2: Implement an unconstrained OSP/LSOSP or constrained OSP such as FCLS to perform

linear spectral unmixing.

32.2.3 Unsupervised Orthogonal Subspace Projection

According to (32.1), OSP needs complete prior knowledge of target signal sources s1; s2; . . . ; sp. In
many practical applications, such prior knowledge is extremely difficult to obtain, if not impossible.

In order to mitigate this dilemma, OSP is extended to an unsupervised version of OSP where the

target knowledge can be automatically generated directly from the data in an unsupervised manner.

The algorithm to be used for this purpose is the automatic target generation process (ATGP)

described in Section 30.2, which was previously developed to find potential target pixels that can be

used to generate a signature matrix used in an unsupervised manner.

Now, by virtue of ATGP, we can extend OSP in (32.6) or LSOSP in (32.7) to an unsupervised

orthogonal subspace projection (UOSP), referred to as ATGP-OSP, which produces its own

signature matrix S ¼ t0; t1; . . . ; tp�1

� �
for (32.1) that is obtained directly from the image and is

made up of the p target pixel vectors t0; t1; t2; . . . ; tp�1 generated by ATGP. The implementation

of ATGP-OSP can be briefly summarized as follows.

ATGP-OSP algorithm

1. Preset the value of p, number of signatures of interest.

2. Apply the ATGP to generate p target signatures, t0; t1; t2; . . . ; tp�1.

3. Form a desirable signature matrix, S ¼ t0; t1; . . . ; tp�1

� �
for (32.1).

4. Due to the unavailability of prior knowledge of signatures, LSOSP classifier, dLSOSP(r)
described by (32.7), must be applied to classify each of p signatures t0; t1; t2; . . . ; tp�1. In other

words, LSOSP classifier must be performed p times to classify all the p signatures. In this case,

in order to classify the jth signature tj, the d and U in dLSOSP(r) are specified by tj and

Uj ¼ t0 . . . tj�1tjþ1 . . . tp�1

� �
.

32.3 Linear Spectral RandomMixture Analysis for MRI

Recall that (32.1) is essentially a deterministic model, which assumes that signal sources

s1; s2; . . . ; sp used for mixing are deterministic sources and the abundance fractions a1;a2; . . . ;ap
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are unknown constants and need to be estimated by solving unconstrained or constrained optimiza-

tion problems. The OSP and FCLS developed in Section 32.2.1 provide unconstrained and con-

strained solutions, respectively.

In this section, we look into an alternative to the linear mixing model used in (32.1) in a very

different way. In particular, we assume that the signal sources s1; s2; . . . ; sp in (32.1) are no longer

deterministic sources, but rather random sources. More specifically, the signal sources s1; s2; . . . ; sp
are considered as mutual statistically independent random processes. Given the nature of nonsta-

tionarity present in MR images, this assumption seems reasonable. On the other hand, two signal

sources, which are considered to be distinct, are supposed to be uncorrelated in some sense. Mutual

statistical independency provides, a good criterion to define distinct signal sources. With these

assumptions in mind, a recently developed and well-established technique, called ICA, plays a key

role in materializing such a new development.

More specifically, the key idea of ICA assumes that data are linearly mixed by a set of separate

statistically independent signal sources, and these signal sources can be demixed according to their

statistical independency measured by mutual information. In order to validate its approach, an

underlying but very crucial assumption is that at most one signal source in the mixture model can

be allowed to be a Gaussian source. This is due to the fact that a linear mixture of Gaussian sources

is still a Gaussian source. More precisely, by modifying the model in (32.1), we let x be a mixed

signal source vector expressed by

x ¼ As ð32:14Þ
where A is an L� p mixing matrix and s is a p-dimensional signal source vector with p signal

sources needed to be separated. It should be noted that the noise n in (32.1) is now absorbed as

an independent random source in the mixing model (32.14). Two scenarios are of interest in

implementing ICA. One is the case that the mixing matrix A in (32.14) has more dimensions

than it requires for blind signal separation, that is, L > p. In this scenario, ICA has fewer bases

(i.e., signal sources) than the samples provided (i.e., observations in the observable vector x)

and, thus, referred to as under complete ICA (UC-ICA), which implies that ICA has under

representative bases. In this case, UC-ICA can be considered as a counterpart of under

complete LSMA (UC-LSMA), discussed in Chapter 31. According to system theory, UC-ICA

described by (32.14) is actually an over determined system, in which case there exists no solu-

tion to (32.14). In order to resolve this dilemma, a DR is generally used to reduce dimensional-

ity of the mixing matrix A from L to p to make (32.14) solvable. At the other extreme, if

(32.14) has fewer samples than the sources to be demixed, that is, L < p, ICA of this type is

called over complete ICA (OC-ICA), which implies that it has over representative bases to

solve an under determined system for (32.14). This OC-ICA turns out to be a counterpart of

over complete LSMA (OC-LSMA), defined in Chapter 31. As a consequence, there are many

solutions to (32.14), and it requires selecting best ICs to perform classification. Interestingly,

there is very little work reported about how to cope with OC-ICA, particularly how to address

the issues caused by insufficient ICs and the use of random initial projection vectors, which

result in inconsistent ICs. However, due to the nature of OC-ICA, only a limited number of

ICs are available to be used for signal source separation. When the number of signal sources is

greater than the number of ICs, some of ICs are forced to accommodate more than one signal

source in which case there is no way to use such a particular IC to characterize signal sources.

Another issue is the use of random initial projection vectors, which also cause random mix-

tures of signal sources as well as noise in each of ICs. Unfortunately, such severe disadvan-

tages that have been overlooked and never been addressed effectively in the past will be

investigated in this chapter and solutions will also be provided.
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32.3.1 Source Separation-Based OC-ICA for MR Image Analysis

ICA has shown great success in functional magnetic resonance imaging (fMRI), which is a method

that provides functional information of MR images in time series as a temporal function. Recently,

a new application of ICA to MR image (MRI) analysis was investigated by Nakai et al. (2004) for

contrast enhancement of GM and WM. A major difference between fMRI and MRI analyses is the

mixing matrix to be used by ICA for signal source separation. Since the samples for fMRI are

collected along a temporal sequence with the number of samples, denoted by L, generally greater

than the number of sources to be separated, denoted by p, the ICA implemented in fMRI is actually

under complete in the sense that ICA deals with underrepresentation of a mixed model, referred to

as UC-ICA. Under such circumstance, ICA intends to solve an over determined system with L

equations specified by the number of samples and p unknowns represented by signal sources to be

separated, and there will be no solutions for L > p in general because more than one IC must be

used to accommodate a single signal source. This may be one reason that UC-ICA generally

requires dimensionality reduction. By contrast, the samples used for MRI analysis are a stack of

images obtained by different pulse sequences specified by three magnetic resonance tissue parame-

ters: spin-lattice (T1), spin–spin (T2) relaxation times, and PD. So, generally speaking, these three

images, T1 weighted, T2 weighted, and PD weighted, can be used for MRI analysis. If the number

of signal sources to be separated, p, is greater than the number of different combinations of pulse

sequences, L, with L < p, then one IC must be used to accommodate more than one signal source.

In this case, ICA must deal with an under determined system using an over complete representa-

tion of a mixed model, referred to as OC-ICA. Accordingly, fMRI and MRI analyses are essen-

tially different applications and approaches developed for one application usually cannot be

directly applied to another. However, in order to take advantage of ICA implemented as UC-ICA

in the same way that it is applied to the fMRI, Nakai et al. assumed that the number of sensors, L, is

greater than or equal to the number of sources, p, where the number of sensors corresponds to the

combinations of acquisition parameters echo time (TE) and repetition time (TR), and a signal

source is represented by a tissue cluster characterized by a unique combination of T1 and T2 relax-

ation times. Using the changes in signal intensity of each tissue cluster reflected by combinations

of TR and TE before and after an ICA transform, the contrast resulting from effects of ICA can be

used to perform image evaluation for a particular tissue such as GM and WM. Unfortunately,

Nakai et al.’s ICA approach overlooked a crucial and important issue. If we interpret the number

of pulse sequences used in MR acquisition, denoted by L, and brain tissue substances such as GM,

WM, CSF, muscle, skin, fat, and so on, as signal sources to be separated, denoted by p, the L is

actually less than p, not greater than p. Consequently, the problem to be solved for MRI analysis is

indeed an under determined system with L < p that violates the key assumption made in Nakai’s

et al.’s ICA approach as well as in most ICA-based approaches used for fMRI. Interestingly, little

work has been done regarding the use of OC-ICA to perform MRI analysis. Another issue that was

not addressed by Nakai et al. is the use of random initial projection vectors by ICA to produce

independent components (ICs). The problem with this random approach results from the fact that

the final sets of projection vectors produced by two distinct random initial projection vectors are

not necessarily the same. As a consequence, an ICA transform implemented by the same user in

different runs or different users at the same time will produce different sets of ICs. This serious

inconsistency undermines repeatability of ICA and makes ICA unstable. In addition, due to the

use of random initial projection vectors, the order of ICA-generated ICs is completely random and

does not necessarily indicate the significance or importance of an IC in its appearing order. In other

words, an IC generated earlier need not be more important than ones generated later. Consequently,

image evaluation must wait until all ICs are generated.
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Most importantly, since the representation of a mixing model used by ICA is over complete,

there are no sufficient ICs to accommodate brain tissue substances in addition to the WM, GM,

and CSF. Namely, many single ICs can be used to separate more than one signal sources so that

there is no unique solution to select which IC is the best for particular signal source. What is worse

is that due to use of random initial projection vectors, brain tissue substances are also forced to be

randomly mixed in different ICs. These two reasons, that is, (1) many solutions for OC-ICA and

(2) the use of random initial projection vectors, are exactly the cause of inconsistent ICs in final

results. For example, WM, GM, and CSF may be randomly accommodated in a single IC as will

be demonstrated in our experiments in this chapter. Under such a circumstance, there is no best

way to select a single IC to discriminate these three brain tissue substances from one another. This

inevitable phenomenon is caused by the use of random initial projection vectors by ICA and the

lack of ICs resulting from the inherent nature in OC-ICA. This chapter aims at addressing these

two issues and further develops a rather different approach to implementing ICA, OC-ICA to

improve Nakai’s et al.’s ICA approach, which was actually UC-ICA.

32.3.2 Band Expansion Process Over complete ICA for MR Image Analysis

As noted in Section 32.3.1, OC-ICA suffers from two major issues. One is the same problem as

OSP does, which is insufficient data dimensionality where a dimension expansion (DE) is required

for OC-ICA to make a mixing matrix a square matrix as opposed to the UC-ICA, which requires

DR for the same purpose. The BEP developed in Section 32.2.2 to resolve this issue for OSP can

be directly applicable to OC-ICA. In other words, BEP expands dimensions by creating new

nonlinearly correlated images with original MR images. These newly generated images combined

with the original set of MR images provide a sufficient number of images required for the ICA to

perform blind source separation where ICA to be used in this section is the FastICA developed by

Hyvari nen and Oja (http://i da.first.f raunhofer.de/ � anton/soft ware.htm l).

The second issue is essentially the same problem arising in both UC-ICA and OC-ICA, that is,

inconsistency caused by the use of random initial conditions by any ICA algorithm. In order to

cope with this problem, a new concept, called prioritized ICA (PICA), introduced in Chapter 6

is used to prioritize ICA-generated ICs according to a custom-designed criterion. The three

PICA-based algorithms developed in Wang and Chang (2006a) as well as in Section 6.4: eigen-

vector-prioritized PICA (Eigen-PICA), high-order statistics-prioritized PICA (HOS-PICA), and

ATGP-prioritized PICA (ATGP-PICA), will be used to implement the PICA. Since the data dimen-

sionality is L, there are L ICs generated by the ICA, denoted by fICigLi¼1.

32.3.2.1 Eigenvector-Prioritized ICA

A simplest way to prioritize ICs is to use eigenvalues as a priority measure. The idea of the eigen-

PICA comes from the PCAwhere the PCs are ordered by data variance. In this case, the initial set

of projection vectors used by FastICA is determined by a set of eigenvectors of the data matrix.

Eigen-PICA algorithm

1. Apply the BEP to expand data dimensionality if there is a need such as in the case of OC-ICA.

2. Find a set of eigenvectors of the data matrix fvjgLj¼1
arranged in order of magnitude of their

corresponding eigenvalues.

3. Use each of fvjgLj¼1
generated in step 1 as an initial projection vector, FastICA produce fICigLi¼1

in accordance with priorities determined by the magnitude of eigenvalues.
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It should be noted that eigenvalues are derived from the sample data covariance matrix and

represents second-order statistics. As a result, on some occasions demonstrated in our experiments,

using eigenvectors specified by eigenvalues may not be as effective as other criteria described in

the following.

32.3.2.2 High-Order Statistics-Based PICA

The HOS-PICA is to prioritize FastICA-generated ICs whose significance is measured by high-

order statistics. Two types of high-order statistics are of major interest: the third-order statistics,

referred to as skewness, and the fourth-order statistics, referred to as kurtosis. The algorithm to

implement HOS-PICA is summarized as follows.

HOS-PICA algorithm

1. Apply BEP to expand data dimensionality if there is a need such as in the case of OC-ICA.

2. FastICA is used to randomly generate a unit vector as an initial projection vector to produce

each of ICs.

3. Calculate the following criterion for ICi that combines third and fourth orders of statistics for zi:

JðICiÞ ¼ 1=12ð Þ k3i
� �2 þ 1=48ð Þ k4i � 3

� �2
; JðICiÞ ¼ k3i or JðICiÞ ¼ k4i ð32:22Þ

where k3i ¼ E z3i
� � ¼ 1

MN

PMN
n¼1 zin

� �3
and k4i ¼ E z4i

� � ¼ 1
MN

PMN
n¼1 zin

� �4
are sample means of

third and fourth orders of statistics in the ICi. It should be noted that (32.22) is taken from (5.35)

in Hyvarinen et al. (2001), which is used to measure the negentropy by high-order statistics.

4. Prioritize the fICigLi¼1 in accordance with the magnitude of J(ICi).

32.3.2.3 ATGP-Prioritized PCA

Using ATGP as an initialization algorithm, a set of L projection vectors can be used as an initial

condition for ICA.

ATGP-PICA algorithm

1. Apply BEP to expand data dimensionality if there is a need such as in the case of OC-ICA.

2. Use ATGP to produce set of projection vectors ftjgLj¼1
arranged in their appearing orders.

3. Use each of ftjgLj¼1
generated in step 1 as an initial projection vector, FastICA produce fICigLi¼1

in accordance with priorities determined by order that ftjgLj¼1
were generated by the ATGP.

As a concluding remark, the three PICA-based algorithms presented in this section are derived

from different perspectives and have their own merits. The HOS-PICAwas developed to prioritize

the order of ICs resulting from the use of random initial projection vectors. The process of IC

prioritization by HOS-PICA is performed after all the ICs are generated. Unlike HOS-PICA,

eigen-PICA and ATGP-PICA do not need to generate all ICs prior to IC prioritization. More spe-

cifically, both eigen-PICA and ATGP-PICA do not wait for all ICs to be generated. Instead, they

prioritize ICs while generating the ICs. The priorities of ICs are already determined by the order

that initial projection vectors are generated by an initialization algorithm, not by a criterion used by

HOS-PICA. As a consequence, once the set of initial projection vectors is determined, the IC prior-

ity is also determined accordingly.
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32.4 Kernel-Based Linear Spectral Mixture Analysis

The BEP presented in Section 32.2.2 is developed to resolve the issue of insufficient band dimen-

sionality so that LSMA techniques such as OSP can still be effective by incorporating expanded

images. This section presents a complete opposite approach, called kernel-based LSMA tech-

niques developed in Chapter 15 for MR image analysis. Instead of expanding the original band

dimensionality, we introduce nonlinear kernels into LSMA-based classifiers in Section 32.2.1

to make them perform linear decisions in a high dimensional feature space to solve linear non-

separable problems in the original MR image data space by mapping the original MRI data space

to a new feature space to deal with the issue of linear non-separable features. As a result, the four

LSMA-based classifiers, OSP, LSOSP, NCLS and FCLS in Chapter 12 can be further extended

to their kernel versions, Kernel Orthogonal Subspace Projection (K-OSP), Kernel LSOSP

(K-LSOSP), Kernel Non-negative Constrained Least Squares (K-NCLS) and Kernel Fully Con-

strained Least Squares (K-FCLS) as discussed in Chapter 15 for hyperspectral imaging and in Sec-

tion 31.4 of Chapter 31 for multispectral imaging. For details we refer readers to these two

chapters. Since OSP and KOSP are originally developed for abundance detection not estimation,

they are not of particular interest in PVE. Only three kernel versions of LSMA are studied for MR

image experiments.

32.5 Synthetic MR Brain Image Experiments

In this section, a series of experiments were conducted via synthetic images to substantiate the

utility of OC-ICA in MR image analysis and to demonstrate its advantages over the traditional ICA.

The synthetic images to be used for experiments in this section are the axial T1, T2, and proton

density MR brain images (with 5-mm section thickness, 0% noise, and 0% intensity

nonuniformity) resulting from the MR imaging simulator of McGill University, Montreal, Canada

(available at www.bic.mni .mcgill.ca/ brainw eb/). Th e image volu me provide d separate volumes of

tissue classes, such as CSF, GM, WM, bone, fat, and background. The use of these web MR brain

images is to allow researchers to reproduce our experiments for verification. Figure 32.2(a) shows

three MR brain images with provided specifications where the first image is obtained by

modality¼ PD, protocol¼ ICBM, phantom_name¼ normal, slice_thickness¼ 5mm, noise¼ 0%,

INU (intensity nonuniformity)¼ 0%, the second image by modality¼T1, protocol¼ ICBM, phan-

tom_name¼ normal, slice_thickness¼ 5mm, noise¼ 0%, INU¼ 0%, and the third image by

moda li ty ¼ T2 , prot oco l ¼ IC BM, ph anto m_n ame ¼ no rm al, sli ce_t h ickn ess ¼ 5 mm, no ise ¼ 0%,

INU ¼ 0%. Figure 32.2(b) provides the ground truth a lso avai l a b l e o n w e b s i t e w w w. b i c . m n i .

mcgill.ca/ brainweb/ for brain tissue subst ances in the images in Figure 32.2(a ), which will be used

to verify the results obtained for our experiments.

Despite the fact that there are many other brain tissue substances such as fat, bone, and

blood that also constitute the brain, the three main tissue substances, CSF, GM, and WM are

usually of major interest for clinical diagnosis, and these tissue signatures can be generally

obtained by their anatomical structures. It has been shown in Hahn and Peitgen (2000) that the

skull had significant effects on tissue classification. In this case, the skull signature was specifi-

cally included in the signature matrix as a separate and unwanted signature for signature removal.

In addition, all signatures other than CSF, GM, WM, and skull were of no interest in brain tissue

classification; they could be considered as the background signatures as a whole for background

suppression. Accordingly, to implement the LSMA, the signature matrix M is specified by M¼
[CSF GM WM skull B], where the background signature B was obtained by averaging the signa-

tures of skin, muscle, fat, and glial matter, connective with their training samples extracted in

Figure 32.3 according to the ground truth provided in Figure 32.2(b). In the following
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Figure 32.3 Tissues training sample regions for CSF, GM, WM, skull, muscle, connective, skin, fat, and

glial matter of synthetic brain MR images.

Figure 32.2 Synthetic MR images along with ground truth of brain tissue substances in images.
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experiments, LSOSP, NCLS, and FCLS are implemented for spectral unmixing using one of the

three major brain tissue substances, CSF, GM, and WM, as the desired signature d with other

signature plus skull and background signatures as unwanted signatures used for background

suppression.

Two experiments were conducted by operating LSMA on (1) the three original MR images

shown in Figure 32.2 without using BEP and (2) the three original MR images combined with six

BEP-generated bands (auto correlated and cross-correlated bands).

Since it has been shown in Wong (2008) that operating LSMA on the three original MR images

combined with three BEP-generated bands (i.e., cross-correlated bands) produced results slightly

worse than those combined with six BEP-generated bands (i.e., auto correlated and cross-

correlated bands), the figures produced by experiments using three cross-correlated band images

are not included here, but rather referred to Wong (2008) to avoid unnecessary duplication.

Experiment 32.1 Operating LSMA on the original three MR images

Figures 32.4–32.7 show classification of CSF, GM, and WM in terms of their unmixed results as

PVE produced by the LSOSP, NCLS, and FCLS using the original three MR images with 0%, 5%,

10%, and 20% noise INU fields.

By visual inspection, NCLS produced the best classification in terms of PVE via unmixed

results of CSF, GM, and WM in the original MR images. In particular, WM was classified with

less false classification compared to LSOSP and FCLS. FCLS was able to classify CSF and GM

tissues; however, the background of the MR image was falsely classified into WM. On the other

hand, LSOSP showed the worst classification results. Although the important brain tissues CSF,

GM, and WM could be distinguished from one another, the contrast of these tissues against the

background was not as clear as the constrained techniques, NCLS and FCLS. Furthermore, Fig-

ures 32.4–32.7 show that the PVE results were gradually reduced as the intensity of INU fields

was increased from 0% to 20%. Visual assessment also showed that the unconstrained method,

LSOSP, had less effect from the INU fields than NCLS and FCLS had. By contrast, NCLS was the

one that had most effects from the INU fields. For example, the top portion of the GM tissue in

Figure 32.4 Classification of CSF, GM, and WM by their unmixed results in the original synthetic MR

images with 0% noise INU fields produced by (a) LSOSP, (b) NCLS, and (c) FCLS.
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Figure 32.7(b) could clearly identify the corruption effect resulting from the INU field. In order to

conduct a quantitative study of PVE by unmixed abundance fractions, the 3D ROC analysis devel-

oped in Chapter 3 was used for performance evaluation. Figures 32.8–32.11 show the mean classi-

fication rates of 3D ROC curves along with three respective 2D ROC curves for INU fields of

various intensities: 0%, 5%, 10%, and 20%.

As shown in Figures 32.8–32.11, NCLS clearly outperformed the other two methods: LSOSP

and FCLS.

Experiment 32.2

Operating LSMA on the three original MR images combined with six BEP-generated bands

(autocorrelated and cross-correlated bands) as shown in Figure 32.12 where the signature

Figure 32.6 Classification of CSF, GM, and WM by their unmixed results in the original synthetic MR

images with 10% noise INU fields produced by (a) LSOSP, (b) NCLS, and (c) FCLS.

Figure 32.5 Classification of CSF, GM, and WM by their unmixed results in the original synthetic MR

images with 5% noise INU fields produced by (a) LSOSP, (b) NCLS, and (c) FCLS.
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Figure 32.7 Classification of CSF, GM, and WM by their unmixed results in the original synthetic MR

images with 20% noise INU fields produced by (a) LSOSP, (b) NCLS, and (c) FCLS.

(b) 2D ROC curve of (PD,PF)

(c) 2D ROC curve of (PD,τ) (d) 2D ROC curve of (PF,τ) 
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(a) 3D ROC curve

Figure 32.8 3D ROC analysis of LSOSP, NCLS, and FCLS methods operating original MR images with 0%

noise INU fields.
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matrix M¼ [CSF GM WM skull B] is used to unmix CSF, GM, and WM. The noise used was

specified by 0%, 5%, 10%, and 20% INU fields.

Following the same treatment conducted for Experiment 32.1, Figures 32.13–32.16

show classification of CSF, GM, and WM in terms of PVE by their unmixed results produced by

LSOSP, NCLS, and FCLS using expanded MR images composed of the original three MR images,

three autocorrelated, and three cross-correlated bands generated by the BEP with four different

noise INU fields of 0%, 5%, 10%, and 20%.

Comparing the results in Figures 32.13–32.16 with those in Figures 32.4–32.7, it was apparent

that the BEP did improve LSMA performance in unmixing. This was mainly due to the fact that

LSMA techniques were intrapixel multispectral processing techniques that took advantage of extra

spectral information provided by autocorrelated and cross-correlated bands via BEP. However, it

was not the case shown in Ouyang et al. (2006) where the SVM gained only little benefit from

BEP because it was the interpixel-based multispectral classification technique, which was designed

to take care of intervoxel spatial correlation not intraspectral correlation.

In order to further conduct a quantitative analysis on performance, the 3D ROC analysis

was used for evaluation. These quantification methods show different merits in measuring

(a) 3D ROC curve (b) 2D ROC curve of (PD,PF)

(c) 2D ROC curve of (PD,τ) (d) 2D ROC curve of (PF,τ) 
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Figure 32.9 3D ROC analysis of LSOSP, NCLS, and FCLS methods operating original MR images with 5%

noise INU fields.
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classification via unmixed PVE results. The 3D ROC analysis provides a tool to evaluate the

relative performance of detection probability to false alarm probability. Figures 32.17–32.20

show the 3D ROC curves along with their three corresponding 2D ROC curves for the results

in Figures 32.13–32.16, where FCLS seems to be the best in most cases.

For a further comparison, Table 32.1 also gives Az of 3D ROC curves for mean classification

rates of CSF, GM, and WM produced by LSOSP, NCLS, and FCLS using three bands (original

bands) in Figures 32.8–32.11 and nine bands (original plus six BEP-expanded bands) in

Figures 32.17–32.20.

From Table 32.1, FCLS remained the best classifier in terms of highest Az of (PD,PF) in all

scenarios except the case of 20% noise with a very small fallout. It should be noted that both the

curve of (PD,t) and the curve of (PF,t) generally behaved oppositely. That is, the better the detector,
the higher the Az of (PD,t) and the smaller the Az of (PF,t). So, a good detector should have a high

Az of (PD,PF) with an appropriate compromise between the Az of (PD,t) and the smaller Az of

(PF,t). By taking this into consideration, it seems that FCLS using six BEP-expanded MR images

always yielded the best performance.

While the visual inspection of Figures 32.4–32.7 against 32.13–32.16 and Figures 32.8–32.11

against 32.17–32.20 provides qualitative evaluation of relative performance of LSMA with/

(a) 3D ROC curve (b) 2D ROC curve of (PD,PF)

(c) 2D ROC curve of (PD,τ) (d) 2D ROC curve of (PF,τ) 
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Figure 32.10 3D ROC analysis of LSOSP, NCLS, and FCLS methods operating original MR images with

10% noise INU fields.
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  (a) 3D ROC curve (b) 2D ROC curve of (PD,PF)

(c) 2D ROC curve of (PD,τ) (d) 2D ROC curve of (PF,τ)

0 0.2 0.4 0.6 0.8 1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

τPF

PD

LSOSP

NCLS

FCLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

PF

PD

LSOSP
NCLS
FCLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

PD

LSOSP
NCLS
FCLS

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

τ

PF

LSOSP
NCLS
FCLS

Figure 32.11 3D ROC analysis of LSOSP, NCLS, and FCLS methods operating the original MR images

with 20% noise INU fields.

Table 32.1 Az of 3D ROC curves for mean classification rates of CSF, GM, and WM for three-tissue (GM,

WM, and CSF) classification of LSOSP, NCLS, and FCLS using three bands (original bands), six bands

(original plus three BEP-expanded bands), and nine bands (original plus six BEP-expanded bands).

INU field

Number of

bands used

LSOSP (Az(PD,PF),

Az(PD,t), Az(PF,t))

NCLS (Az(PD,PF),

Az(PD,t), Az(PF,t))

FCLS (Az(PD,PF), Az(PD,t),

Az(PF,t))

0% noise 3 (0.6999,0.6589,0.4370) (0.9104,0.6096,0.3048) (0.9182,0.6195,0.0929)

9 (0.89856,0.77758,0.5265) (0.95263,0.74603,0.3434) (0.92764,0.70764,0.13637)

5% noise 3 (0.7128,0.6548,0.3996) (0.9096,0.6181,0.3024) (0.9205,0.6222,0.0921)

9 (0.72801,0.86923,0.71575) (0.85198,0.60066,0.30038) (0.89822,0.51055,0.071433)

10% noise 3 (0.7815,0.6284,0.3422) (0.9036,0.6217,0.3062) (0.9219,0.6208,0.0915)

9 (0.81937,0.85872,0.708) (0.86388,0.57327,0.28478) (0.8983,0.50266,0.069633)

20% noise 3 (0.8550,0.6847,0.3614) (0.8930,0.6249,0.2966) (0.9240,0.6167,0.0905)

9 (0.88367,0.78043,0.53958) (0.95052,0.74283,0.36173) (0.94355,0.57861,0.14488)
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without BEP, another objective measure, called quantification least-squares error (QLSE) defined

by (32.17), calculated the error of abundances between the estimated abundance fractions as PVE

and their corresponding ground truth values. Table 32.2 gives QLSE of three-tissue (GM,WM, and

CSF) classification produced by LSOSP, NCLS, and FCLS using three bands (original bands) and

nine bands (original plus six BEP-expanded bands).

According to Table 32.2, the QLSE performance of LSMA techniques using BEP was worse

compared to their counterparts without using BEP when no or only partial abundance constraints

were imposed. However, the QLSE was significantly improved when abundance constraints were

fully imposed, as shown in the last column of FCLS in Table 32.2. In addition, the upper rows

produced by Experiment 32.4.1.1 in Table 32.1 gives QLSE obtained from Figures 32.3–32.6

where it is interesting to note that FCLS yielded the largest error compared to LSOSP and NCLS.

However, the results were reversed as shown in the lower rows produced by Experiment 32.2 in

Table 32.2 when nine expanded MR images were used including the original three MR images

Figure 32.12 An example of nine-band image cube obtained from three origin MR images, three cross-

correlated, and three autocorrelated band images.

Table 32.2 Quantification least-squares error (QLSE) of abundance estimated of CSF, GM, and WM for

three-tissue (GM, WM, and CSF) classification of LSOSP, NCLS, and FCLS using three bands (original

bands) and nine bands (original plus six BEP-expanded bands)

Noise INU field (%) Number of bands used LSOSP NCLS FCLS

0 3 0.124253 0.0989178 0.139521

9 0.237682 0.1060890 0.0234141

5 3 0.120411 0.0987043 0.140209

9 0.230962 0.1000280 0.0237175

10 3 0.120253 0.0993571 0.141210

9 0.246652 0.1034280 0.0252616

20 3 0.121424 0.1001290 0.144188

9 0.299590 0.0986234 0.0320658
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combined with six BEP-expanded bands (autocorrelated and cross-correlated). Nevertheless, in

both experiments, the performance of NCLS was right in between.

Prior to performing kernel-based LSMA, the prior knowledge of tissue signatures (M) was

obtained from the areas shown in Figure 32.3 based on provided ground truth in Figure 32.2

(b) where only four tissues of interests, CSF, GM, WM, and skull were obtained by averag-

ing the training samples of these four signatures in Figure 32.3 and the fifth signature was

obtained by averaging the training samples of other signatures in Figure 32.3. Based on the

study in Wong (2008), this five-signature matrix (M) usually provided best classification

results. Once the signature matrix (M) was obtained, both the original 0% and 20% INU

Figure 32.14 Classification of CSF, GM, and WM by their unmixed results using BEP-expanded nine bands

(T1, T2, PD, cross-correlation BEP, and autocorrelation BEP) with 5% noise INU field produced by

(a) LSOSP, (b) NCLS, and (c) FCLS with five substances (CSF, GM, WM, skull, and background).

Figure 32.13 Classification of CSF, GM, and WM by their unmixed results using BEP-expanded nine bands

(T1, T2, PD, three cross-correlation BEP, and three auto-correlation BEP) with 0% noise INU field produced

by (a) LSOSP, (b) NCLS, and (c) FCLS with five substances (CSF, GM, WM, skull, and background).
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synthetic brain MR images were classified using kernel-based LSMA techniques, K-LSOSP,

K-NCLS, and K-FCLS presented in Section 32.4. In addition, following a similar treatment

to that carried out in Section 31.5 experiments were also conducted by combining the BEP-

preprocessed MR images with LSOSP, NCLS, and FCLS and their kernel counterparts K-

BEP-LSOSP, K-BEP-NCLS, and K-BEP-FCLS to see if the BEP could improve the perform-

ance. As noted earlier, only the cross-correlated band images were used since they provided

sufficient spectral information for LSMA according to Wong (2008). Besides, the radial basis

Figure 32.16 Classification of CSF, GM, and WM by their unmixed results using BEP-expanded nine bands

(T1, T2, PD, cross-correlation BEP, and autocorrelation BEP) with 20% noise INU field produced by

(a) LSOSP, (b) NCLS, and (c) FCLS with five substances (CSF, GM, WM, skull, and background).

Figure 32.15 Classification of CSF, GM, and WM by their unmixed results using BEP-expanded nine bands

(T1, T2, PD, cross-correlation BEP, and autocorrelation BEP) with 10% noise INU field produced by

(a) LSOSP, (b) NCLS, and (c) FCLS with five substances (CSF, GM, WM, skull, and background).
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function (RBF) has been widely used in kernel-based methods. Hence, it was used in our test

kernel-based LSMA in which case only the parameter s needed to be appropriately deter-

mined. Since the range of the parameter s varies with different kernel-based LSMA methods, in

order to make comparable analysis, each MR image band was normalized to the range of [0,1] so

that the selection of the parameter s could be made between 0 and 1. As a result, the value of the

s was selected empirically to achieve the best possible visual classification in which case for each

kernel-based LSMA method, s¼ 0.1 for K-LSOSP, s¼ 0.1 for K-NCLS, s¼ 0.05 for K-FCLS,

s¼ 0.1 for K-BEP-LSOSP, s¼ 0.1 for K-BEP-NCLS, and s¼ 0.05 for K-BEP-FCLS.

Figure 32.21 shows respectively their classification results obtained by using LSMA-unmixed

abundance fractions as their PVE for the cases of 20% INU field-corrupted MR images classifica-

tion. Since CSF, GM, and WM were the main tissue of interest, other classification results were

not included in the figures. As mentioned earlier, same conclusions could also be drawn for both

0% INU and 20% INU noise corruption. For this reason, only the 20% INU noise-corrupted MR

brain image PVE results are shown in the following.

Some noteworthy observations can be made on Figure 32.21 by visual inspection. First, kernel-

based approaches greatly improved their counterparts without using kernels. For example, it was

easily observed by comparing Figure 32.21(a) with Figure 32.21(b) where the LSOSP approach

was not able to distinguish CSF, GM, and WM tissues, but K-LSOSP was able to clearly classify

(a) 3D ROC curve (b) 2D ROC curve of (PD,PF)

(c) 2D ROC curve of (PD,τ) (d) 2D ROC curve of (PF,τ) 
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Figure 32.17 3D ROC analysis of LSOSP, NCLS, and FCLS methods operating nine expanded MR images

with 0% noise INU fields.
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these tissues. Moreover, the K-LSOSP PVE results shown in Figure 32.21(a) produced the least

false positive classification. In particular, the CSF and GM PVE results showed little false positive

classification.

On the other hand, K-NCLS and K-FCLS produced better PVE results by classification for

the three main brain tissues shown in Figure 32.21(b) and (c) than K-LSOSP. However, they

also suffered from higher false positive detection. For example, muscle tissue was misclassified

into WM as presented in Figure 32.21(b) and (c), and skin/connectives were falsely classified

into GM. In the case of K-BEP-LSMA results, K-BEP-LSOSP and K-BEP-NCLS methods

provided better results than K-BEP-FCLS. Moreover, the INU noise corruption effect indeed

showed significant impact on the methods in Figure 32.21(a) and (b). Furthermore, a

great improvement could be observed from most of the kernel-based LSMA PVE results as

presented in Figure 32.21(d)–(i). Nevertheless, the INU corruption effect was still visible for

K-LSOSP PVE results in Figure 32.21(d), which indicated that the K-LSOSP was still sensi-

tive to INU corruption.

Since Figure 32.2(b) provides the ground truth of brain tissues used to simulate the MR images,

this allows us to conduct a quantitative analysis among various proposed LSMA-based methods,

(a) 3D ROC curve (b) 2D ROC curve of (PD,PF)

(c) 2D ROC curve of (PD,τ) (d) 2D ROC curve of (PF,τ) 
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Figure 32.18 3D ROC analysis of LSOSP, NCLS, and FCLS methods operating nine expanded MR images

with 5% noise INU fields.
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BEP-LSOSP, K-LSOSP, K-BEP-LSOSP, BEP-NCLS, K-NCLS, K-BEP-NCLS, BEP-FCLS,

K-FCLS, and K-BEP-FCLS. Figure 32.22 shows 3D ROC curves (PD versus PF versus t) along
with three 2D ROC curves (PD versus PF, PD versus t, and PF versus t) of these methods plotted

for the cases of 20% INU where (a–d), (e–h), and (i–l) are plots generated by LSOSP, NCLS, and

FCLS methods, respectively. The ROC analyses of the 0% and 20% INU noise-corrupted brain MR

images are again identical. Hence, only the 20% INU results are presented.

In addition to the ROC curves, the area under curve (Az) value was calculated for each of 2D

ROC curves. It is worth noting that the best performance of Az for the overall detection (PD versus

PF) and true positive detection (PD versus t) is 1, while the highest false positive performance (PF
versus t) is 0. With this in mind, the resulting Az values were calculated for each method and

tabulated in Table 32.3 where the bold-faced numbers represent the best performance values under

each classification criterion (overall, true positive, and false positive detection). In addition, the 0%

INU noise corrupted is included in this table because the benefits of kernel-based techniques can

be easily observed.

As shown in Table 32.3, all the kernel-based techniques produced better overall PVE than the

non-kernel-based techniques. In particular, the overall PVE based on Az under the 2D ROC curve

of PD versus PF suggested that K-LSMA increased correct classification rates while also decreasing

(a) 3D ROC curve (b) 2D ROC curve of (PD,PF)

(c) 2D ROC curve of (PD,τ) (d) 2D ROC curve of (PF,τ) 
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Figure 32.19 3D ROC analysis of LSOSP, NCLS, and FCLS methods operating nine expanded MR images

with 10% noise INU fields.
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false positive detection rates. Also, based on the values of PD versus t and PF versus t, the K-

LSMA performed better than the non-kernel-based LSMA in terms of higher true positive rate and

lower false positive rate.

If the true positive rate were the main criteria of concern, K-NCLS and K-FCLS techniques

would had demonstrated superior performances for 0% and 20% INU-corrupted MR images

experiments. Interestingly, LSMA combining BEP with kernels improved true positive perform-

ance, but it also introduced more distortions to the MR images and thus, generally speaking, they

did not outperform K-NCLS and K-FCLS. Furthermore, kernel-based techniques did not find a

substantial amount of improvement in the case of 0% INU-distorted MR image experiment. But,

they did significantly improve the performance for 20% INU MR PVE. This strongly suggested

that kernel-based techniques could suppress noise effects when MR images are heavily corrupted

by unknown noise.

In addition, according to Table 32.3, K-LSMA could improve performance by reducing false

positive rate. For example, K-LSOSP yielded the lowest Az values for both cases of 0% and 20%

INU-distorted MR images, while BEP-LSOSP showed the worst false positive performance. Fur-

thermore, The K-BEP-NCLS and K-BEP-FCLS outperformed K-NCLS and K-FCLS. However,

K-BEP-LSOSP did not show any advantage over K-LSOSP. Similar to true positive performance,

little improvement of K-LSMA was observed over the non-kernel-based LSMA for the 0% INU

(a) 3D ROC curve (b) 2D ROC curve of (PD,PF)

(c) 2D ROC curve of (PD,τ) (d) 2D ROC curve of (PF,τ) 
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Figure 32.20 3D ROC analysis of LSOSP, NCLS, and FCLS methods operating nine expanded MR images

with 20% noise INU fields.
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Figure 32.21 Classification results of three main brain tissues with 20% INU field produced by (a) BEP-

LSOSP, (b) BEP-NCLS, (c) BEP-FCLS, (d) K-LSOSP, (e) K-NCLS, (f) K-FCLS, (g) K-BEP-LSOSP, (h) K-

BEP-NCLS, and (i) K-BEP-FCLS with five substances (CSF, GM, WM, skull, and background).
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MR image experiment. On the contrary, false positive rate was greatly reduced for the 20% INU-

distorted MR images, which suggested that K-LSMA improved non-kernel-based LSMA in heav-

ily noise-corrupted MR image.

Finally, as for overall performance, the values of PD versus PF in Table 32.3 suggest that K-

BEP-FCLS produced the best PVE. In general, K-LSMA outperformed non-kernel-based

LSMA in terms of overall performance. In addition, K-BEP-LSOSP and K-BEP-FCLS showed

better PVE results than their kernel-based counterparts. However, it was not true for K-BEP-

NCLS, which did not perform better than K-NCLS. Also, K-LSMA showed little advantages in

the 0% INU-distorted MR image experiments, but it did improve performance significantly for

20% INU-distorted MR image experiments.

In summary, both kernel-based LSMA (i.e., K-LSOSP, K-NCLS, and K-FCLS) and kernel-

BEP-based LSMA (i.e., K-BEP-LSOSP, K-BEP-NCLS, and K-BEP-FCLS) significantly outper-

formed non-kernel-based LSMA (i.e., LSOSP, NCLS, and FCLS). Moreover, according to the

above 3D analysis, the kernel-based LSMA showed great improvement in the true positive rate,

false positive rate, and overall performance over non-kernel-based LSMA. If the kernel-based

LSMA were further extended by combining the BEP, only slight improvement was observed.

(i) 3D ROC curve (j) 2D ROC curve of (PD, PF) (k) 2D ROC curve of (PD,τ) (l) 2D ROC curve of (PF, τ)
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Figure 32.22 3D ROC, PD versus PF, PD versus t, and PF versus t curves for 20% INU noise-corrupted MR

images with (a)–(d) generated by BEP-LSOSP, K-LSOSP, and K-BEP-LSOSP, (e)–(h) generated by BEP-

NCLS, K-NCLS, and K-BEP-NCLS, and (i)–(l) generated by BEP-FCLS, K-FCLS, and K-BEP-FCLS.
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However, without using kernels, the BEP did indeed help LSMA improve performance signifi-

cantly as reported in Wong (2008). Finally, all the experiments conducted in this section demon-

strated that the greatest advantage of the K-LSMA is the ability of using kernels in improving

performance when the MR image is corrupted by high INU noise.

This benefit suggested that the KLSMA can be a promising technique in applications of MR

image analysis.

32.6 Real MR Brain Image Experiments

The real MR images used for experiments were obtained in the TaiChung Veterans General Hospi-

tal (TCVGH) to further validate the utility of the proposed LSMA-based intrapixel techniques in

real images in calculating partial volumes of brain tissues. The MR images shown in Figure 32.23

(a) were obtained from one normal volunteer by a whole body 1.5-T MR system (Sonata, Siemens,

Erlangen, Germany). The routine brain MR protocol consisted of axial spin echo T1 weighted

Figure 32.23 Three real MR images in (a) along with training samples in (b).

Multispectral Magnetic Resonance Imaging 951



images (TR/TE¼ 400/9ms), proton density image (TR/TE¼ 4000/10ms), and T2 weighted

images (TR/TE¼ 4000/91ms). Other imaging parameters included for this experiment were slice

thickness¼ 6mm, matrix¼ 256� 256, field of view (FOV)¼ 24 cm, and number of excitations

(NEX)¼ 2. These images are shown in Figure 32.23(a). Training sample sets for 10 classes were

selected according to their anatomical structures shown in Figure 32.23(b).

By visual inspection of Figures 32.23–32.26, the PVE results produced by all the techniques

separated the three major substances clearly in general. However, there were also some supposedly

WM substances showing in GM-generated images by all the techniques. Moreover, similar to the

synthetic brain image experiment, OSP and LSOSP produced similar estimated abundances and so

did NCLS and FCLS. Another observation is that the skull showed up in the WM images generated

by all the techniques. This suggested that using a skull stripping as a preprocessing to remove the

skull prior to classification may actually improve PVE results.

Figure 32.24 Classification results of the original real MR images produced by (a) LSOSP, (b) NCLS, and

(c) FCLS.

Figure 32.25 Classification results of the three main brain tissues with BEP-expanded six bands (T1, T2,

PD, and cross-correlation BEP) produced by (a) OSP, (b) LSOSP, (c) NCLS, and (d) FCLS techniques with

five substances (CSF, GM, WM, skull, and background).
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With this image dataset including three original images in Figure 32.23(a) and three additional

BEP-generated images in Figure 32.23(c), the same experiments conducted for the synthetic

images in Section 32.5 were repeated where the training samples from GM, WM, CSF, and skull

were selected by an experienced radiologist, as shown in Figure 32.27.

In addition to the four tissues in Figure 32.27, a fifth tissue signature used as a background

signature was obtained by taking the average over other unwanted tissue signatures plus the actual

background of MR images to form a five-signature matrix M to be used for LSMA to unmix the

three main brain tissues of interest, CSF, GM, and WM as their PVEs. Figures 32.28(a)–(c), 32.28

(d)–(f), and 32.28(g)–(i) show the PVE results of CSF, GM, and WM using three non-kernel-based

LSMA methods (LSOSP, NCLS, and FCLS), three K-LSMA methods (K-LSOSP, K-NCLS, and

K-FCLS), and three K-BEP-LSMA methods (K-BEP-LSOSP, K-BEP-NCLS, and K-BEP-FCLS),

respectively.

The parameter s used in the RBF kernels by K-LSMA was emperically chosen by s¼ 0.1 for

K-LSOSP, K-BEP-LSOSP, K-NCLS, and K-BEP-NCLS and s¼ 0.05 for K-FCLS and

K-BEP-FCLS. According to the results shown in Figure 32.28, NCLS demonstrated the best clas-

sification in terms of their unmixed PVEs among all LSMA methods. In particular, CSF and GM

were classified correctly with little false positive classification as shown in Figure 32.28(b), (e),

and (h) when NCLS, K-NCLS, and K-BEP-NCLS were used. On the other hand, the worst

Figure 32.27 Tissues training sample regions for CSF, GM, WM, and skull for the real brain MR images.

Figure 32.26 Classification results of three main brain tissues with BEP expanded nine bands (T1, T2, PD,

cross-correlation BEP, and auto-correlation BEP) produced by (a) LSOSP, (b) NCLS, and (c) FCLS with five

substances (CSF, GM, WM, skull, and background).
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performance was LSOSP-based methods. As shown in Figures 32.28(a), (d), and (g), WM was

classified with significant false positives from skull and muscle when LSOSP, K-LSOSP, and K-

BEP-LSOSP were used. Generally speaking, K-LSMA improved the false positive classification

rate. In particular, the false classification of the skull and muscle tissues into WM for LSOSP

shown in Figure 32.28(a) was significantly reduced as shown in Figure 32.28(d). Similar to syn-

thetic image experiments, K-BEP-LSMA had very little improvement on the false positive

classification.

Figure 32.28 Classification results of three main brain tissues of real brain MR image produced by (a)

LSOSP, (b) NCLS, (c) FCLS, (d) K-LSOSP, (e) K-NCLS, (f) K-FCLS, (g) K-BEP-LSOSP, (h) K-BEP-NCLS,

and (i) K-BEP-FCLS with five substances (CSF, GM, WM, skull, and background).

954 Hyperspectral Data Processing: Algorithm Design and Analysis



32.7 Conclusions

Spectral processing of multispectral MR images for partial volume estimation (PVE) is a new

approach in MR image analysis where tissue substances are characterized by spectral information

provided by MR image pulse sequences rather than spatial domain-based processing, which relies

on spatial information provided by spatial correlation among sample pixels. As a result, spectral

processing performs soft decisions on every pixel vector based on estimated abundance fractions

of tissue substances to produce their partial volumes as opposed to spatial domain-based process-

ing that makes hard decisions on every pixel vector based on class-labeling assignment. In order to

materialize the concept of using spectral processing LSMAwas first introduced by Wang et al. in a

series of papers (Wang et al., 2000, 2001, 2003) in MR image classification where only

unconstrained LSMA methods were investigated. This chapter extends their methods to two con-

strained LSMA methods and explores their utility in MR tissue characterization. Experimental

results demonstrate that constrained LSMA generally performs better than unconstrained LSMA

methods in terms of using unmixed results as PVE, specifically, tissue quantification, a task that

cannot be accomplished by spatial domain-based processing techniques. However, it is the tissue

quantification that can be used to calculate partial volumes of tissues, which are crucial in diagno-

sis of many diseases in progressive stages such as Alzheimer’s diseases.

LSMA via nonlinear expansions has great potential in partial PVE since it is primarily

designed to explore and take advantage of spectral properties provided by image sequences

used for data collection. At present, an MR image slice can be processed as a 3D image cube

formed by T1, T2, and PD. However, it is our belief that in future MR instruments may

advance their technology to hyperspectral imagers like many others such as one in ophthalmol-

ogy (Johnson et al., 2007) where more than three sequences will be used to characterize more

soft tissue types, for example, tumors, anomalies. In this case, the information provided by

these sequences is more crucial and vital than spatial information. Specifically, abnormal tis-

sues usually neither have a large sample pool to provide reliable statistics nor have sufficient

spatial information to allow spatial domain-based techniques to work effectively. Under such

circumstances, MR image analysis must rely on the spectral information that can be obtained

by stacking MR images as a multispectral or hyperspectral image by including extra band

images generated by other image pulse sequences so that MR images can be processed as

spectral band images with the total number greater than three. As a consequence, many cur-

rently available 3D techniques, such as 3D adaptive FCM segmentation (Ahmed et al., 2002;

Liew and Yan, 2003; Siyal and Yu, 2005) and MRF (Zhang et al., 2001; Scherrer et al., 2009),

may not be applicable to such high dimensions due to complexity of designing neighboring

systems to capture spatial properties in a data space with dimensions higher than three. This is

exactly where our proposed LSMA shows promise in future development of MRI and has

advantages over the existing EM-MRF based or FCM-MRF-based techniques in PVE.
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33

Conclusions

Writing a comprehensive book on hyperspectral data processing is very challenging since new

applications and developments emerge any time as time goes along. Accordingly, keeping track

of this area becomes realistically impossible or formidable if it can be done. During the course

of preparing this book, the table of contents has been constantly revised to meet this high

demand. Eventually, an attempt to cover all topics in this area is not only impossible but also

beyond reality. To this end, this book is aimed to narrowing its scope and coverage to

the research which has been carried out in the Remote Sensing Signal and Image Processing

Laboratory (RSSIPL) at the University of Maryland, Baltimore County (UMBC), after my first

book was published in 2003 (Chang, 2003a). Even in this case the materials to be included in

this book also grow exponentially and exceed the original plan set for this book. To resolve this

dilemma, several new interesting topics which are still ongoing and have potential in further

development will not be discussed in this book; instead, they will be the main themes in my third

book, entitled Real Time Hyperspectral Image Processing due to its publication by Springer-

Verlag in 2013. Nevertheless, a brief review of these new topics will provide readers with a

quick glimpse and also offer a peek at this cutting-edge research in this area. A second part of

this final chapter is included to serve this purpose. The first part of this chapter summarizes what

are presented in this book and provides further insights into topics which have potentials in

future developments, but are not yet to explore at the time of writing this book.

33.1 Design Principles for Nonliteral Hyperspectral Imaging Techniques

Two principles, pigeon-hole principle and principle of orthogonality, have been backbones for

designing and developing nonliteral hyperspectral imaging techniques presented in this book and

Chang (2003a). While the pigeon-hole principle is a fundamental rule in discrete mathematics

(Epp, 1995), the orthogonality principle is the most important criterion in designing mean squared

error (MSE) estimation algorithms (Poor, 1994). If these two principles are intellectually inter-

preted to design algorithms, many new ideas and approaches will then follow naturally as

described in the following.

33.1.1 Pigeon-Hole Principle

The pigeon-hole principle says that if p pigeons flying into L pigeon-holes (nests) with L < p, then

there exists at least one pigeon-hole that must accommodate at least two or more pigeons. So, if we
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interpret pigeons and pigeon-holes as material substances to be recognized and spectral bands,

respectively, then a spectral band which is essentially a pigeon-hole can be used to accommodate a

target substance, which is considered as a pigeon. In the following section, we described how this

principle is used to interpret design rationales used for hyperspectral data processing.

33.1.1.1 Multispectral Imagery Versus Hyperspectral Imagery

First, the pigeon-hole principle can be used to resolve a long-standing controversial issue, which

has been bothering researchers in remote sensing. From a linear spectral mixture analysis (LSMA)

point of view, a linear mixing model can be used to describe a linear system of L algebraic equa-

tions to solve p unknowns. More specifically, each of these L linear equations is specified by one

particular spectral band where the p unknowns are specified by abundance fractions of p image

endmembers that are used to form the desired linear mixing model. The fact that LSMA utilizes an

L-equation p-unknown system to unmix data sample vectors in terms of their unknown abundance

fractions can be interpreted as the pigeon-hole principle using L pigeon-holes to accommodate p

pigeons. So, when L < p is true, there exists at least one pigeon-hole that must accommodate at

least two or more pigeons which implies that at least one spectral band must be used to accommo-

date at least two or more image endmembers in which case it is a multispectral imaging problem.

On the other hand, if L � p, there have more pigeon-holes than pigeons. In this case, we can use

one spectral band to accommodate no more than one image endmembers, which is a hyperspectral

imaging problem. Such interpretation also occurs in independent component analysis (ICA)

in Hyvarinen et al. (2001), which can be interpreted exactly in the same way by the pigeon-hole

principle. It makes use of a linear mixing model formed by L linear equations and p statistically

independent random signal sources whose are unmixed by unknown weights via blind source sepa-

ration. Accordingly, when L < p, ICA is called over-complete ICA as opposed to under-complete

ICA if L � p. If the same language used by ICA is also applied to interpret LSMA, multispectral

imaging and hyperspectral imaging can be further interpreted as over-complete LSMA and under-

complete LSMA, respectively. Details of these discussions are provided in Chapter 31.

33.1.1.2 Virtual Dimensionality

Virtual dimensionality (VD) presented in Chapter 5 is another example that uses the pigeon-hole

principle to define how many spectrally distinct signatures are present in hyperspectral data. How-

ever, as discussed in Chapter 5, VD is not a one-size-fit-all-applications criterion and cannot be

fixed at a constant for all applications. In other words, VD must vary with targets of interests. To

further address this, VD can be extended to a more general concept called target-specified VD,

which will be studied in Chang (2013).

33.1.1.2.1 First-Order Spectral Statistics-Based Approaches
The key idea behind VD is the use of the pigeon-hole principle that was not explicitly explored in

Harsanyi, Farrand, and Chang (HFC) method (1994). It assumes that each spectral band is

considered as a pigeon-hole and can be used to accommodate only one target signal source as a

pigeon. It further assumes that noise is a zero-mean random process, and target signal sources are

deterministic and only contribute their energies to the first-order spectral statistics, that is, the sam-

ple spectral mean. With these assumptions, the sample spectral correlation matrix and sample

spectral covariance matrix are used to calculate the differences between their corresponding eigen-

values. If the difference is greater than zero, a sample spectral correlation matrix-calculated eigen-

value will be greater than its corresponding sample spectral covariance matrix-calculated

eigenvalue in which case it concludes that there must be a target signal source contributed to the
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sample mean of this particular spectral component. To materialize the above conjecture it formu-

lates the difference between sample spectral correlation matrix-calculated eigenvalue and sample

spectral covariance matrix-calculated eigenvalue for each of L spectral dimension as a binary com-

posite hypothesis testing problem to determine if there is a target signal source present in the con-

sidered spectral dimension. By taking advantage of the Neyman–Pearson detection theory, a

Neyman–Pearosn detector can be designed for such a test where a test fails if the alternative

hypothesis is true to indicate that there is a target signal source present in the particular spectral

dimension. Its effectiveness is completely determined by a given false alarm probability. The

beauty of the HFC method is that its estimated value for VD varies with false probabilities, which

can be adjusted according to different applications.

A general issue arising in the use of VD is that users always believe in that VD and the HFC

methods are tied together as a pair and think that VD can only be found by the HFC method. As a

result of such a misinterpretation of VD, some controversial issues occur (Bajorski, 2009). One

major complaint about VD is that when the HFC method does not work as expected, it blames that

VD is not appropriately defined. In the following section, we address this issue and clarify some

controversial disputes that mislead users to misinterpreting VD.

In analogy with intrinsic dimensionality (ID) (Fukunaga, 1990), which defines the minimum

number of parameters to represent high-dimensional data, VD is also a concept that defines an

effective spectral dimensionality which is the number of spectrally distinct signatures required

to characterize and represent a hyperspectral image. As a matter of fact, the effectiveness of VD

is actually determined by its utility in various applications depending on different types of spec-

tral signatures of major interest as well as the techniques used to find these signatures, both of

which are the keys to its success. The HFC method is developed as one technique to determine

VD in a similar manner that the principal component analysis (PCA) is used as one technique to

determine ID. So, when the HFC method does not work effectively, it should not be concluded

that VD is not correctly defined. It simply implies that the HFC method is not applicable to the

considered applications. Similarly, the same conclusion cannot also be drawn for ID when PCA

fails in finding a correct number of parameters. For example, the number of endmembers, nE,

for an endmember extraction algorithm to generate is generally not the same as the number of

image endmembers required for LSMA to perform spectral unmixing nLSMA. Also neither of nE
and nLSMA should be the same as the number of anomalies nA even though all these signal sources

are considered as spectrally distinct signatures. This indicates that the value of VD should vary

with applications which ultimately determine the techniques to be used to estimate VD. Further-

more, if we assume that each spectral band can be used to accommodate one particular material

substance via the pigeon-hole principle, then the number of bands to selected, nBS, and the num-

ber of dimensions required to be retained after dimensionality reduction (DR), nDR, can also be

determined by VD as well, but their values should also be different since DR and band selection

(BS) are completely different processes in terms of how to preserve the desired information.

Accordingly, the HFC method should not be considered as a one-size-fit-all-applications tech-

nique. This issue is addressed with great details in Chapter 5 where two types of approaches based

on criteria driven by data characterization and data representation are developed to determine VD,

and the HFC method is considered as a data characterization-driven technique.

The primary reason that the HFC method may not be effective on some occasions is due to the

fact that the HFC method does not differentiate different types of spectrally distinct signatures

because it is an application-independent technique. For example, it does not distinguish an end-

member from an anomaly where the former is a pure signature while the latter may be a subpixel

or mixed pixel signature. To resolve this issue, the HFC method must take into account the targets

of interest for which it considers as spectrally distinct signatures. To do so, we extend the HFC
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method by replacing the eigenvalues considered in the binary hypothesis testing problem with

target signatures generated by a specific algorithm which is, in turn, determined by a particular

application. Since an algorithm to be used to produce targets of interest can be designed based

on spectral statistics of different orders, the HFC method can be further extended from a data

characterization-driven technique using the sample spectral mean to a data characterization-driven

technique using statistics of orders higher than the first order. Two types of algorithms can be used

for this purpose. First is the automatic target generation process (ATGP), which is based on

second-order statistics and developed by Ren and Chang (2003), and the second is high-order

statistics (HOS) algorithm developed by Ren et al. (2006). When the HFC method uses ATGP-

generated targets and HOS-generated targets as spectrally distinct signatures for VD estimation, it

will be referred to as second-order HFC method and HOS HFC method, respectively, while the

original HFC method will be considered as the first-order HFC method.

33.1.1.2.2 Second-Order Spectral Statistics-Based HFC Methods
To develop second-order statistics HFC method, we revisit the idea behind the HFC method and

investigate its difference from PCA which is the well-known second-order statistics-based trans-

form. Despite the fact that both use sample spectral correlation and sample spectral covariance

matrices to derive criteria, they also differ from each other greatly in many aspects. When PCA is

used for VD estimation, two ways are generally used (also see Section 5.3.1 in Chapter 5). One is

to plot the distribution of eigenvalues fljgLj¼1
in descending order and find a sudden drop which

indicates where VD is. The problem with this approach is how much gap between two consecutive

eigenvalues is considered as a sudden drop. As an alternative, it calculates the ratio of the

accumulative sums of the eigenvalues in descending order to the total sum of eigenvalues, RlðpÞ ¼
Pp

j¼1 lj

� �
=

PL
j¼1 lj

� �
and determines VD by setting a prescribed percentage a%., that is,

VDPCAða%Þ ¼ arg minp RlðpÞ � a=100½ �� � ð33:1Þ

In this case, selecting an appropriate a% in (33.1) as a cutting-threshold is also challenging. In a

completely different approach, the HFC method implements a binary hypothesis test for each spec-

tral dimension to see if a Neyman–Pearson detector fails for this particular spectral dimension. In

this case, the HFC method tests if each of spectral dimensions can be used to accommodate one

signal source as opposed to PCA using eigenvalues to determine the total number of signal sources

instead of a signal source in an individual spectral dimension. How effective such a detector is then

determined by the false alarm probability, PF. Another difference is that PCA uses the second-order

statistics such as variance to determine VD while the HFC method uses the first-order statistics

which is the sample spectral mean vector to determine VD. In hyperspectral data exploitation, the

signatures of interest are generally spectrally distinct and have several unique features. For exam-

ple, they usually do not have a large pool of sample vectors present in the data. So, they are

insignificant targets in the sense of signal energy characterized by eigenvalues. As a result, the

variance resulting from these sample vectors described as second-order of spectral statistics is rela-

tively small and is nearly negligible. So using second-order spectral statistics such as variance may

not be effective. On the other hand, these spectrally distinct signatures are generally contributed as

a first-order of spectral statistics which are more significant and crucial than the variance. In this

case, the HFC method can be very effective in determining whether or not a spectral dimension

contains a signature. This also explains why the HFC method works effectively when the sample

pools of target signatures are small in which case PCA fails because the variances of such target

signatures are very small compared to that of background signatures. Finally, both PCA and the
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HFC method do not explicitly provide a means of finding signatures of interest. Nevertheless, we

can always use these eigenvectors that corresponds to selected eigenvalues as desired basic ele-

ments, that is, feature vectors to signatures of interest. In other words, PCA selects the first largest

VDPCA(a%)¼ p eigenvalues to identify the signatures of interest. Similarly, the HFC method finds

the VDNP
HFCðPFÞ ¼ p spectral dimensions determined by the Nyeman–Pearson detector which are

not necessarily the same as the first p eigenvectors specified by PCA. In this case, the signatures of

interest found by the HFC method as feature vectors will not be the same eigenvectors found by

PCA. Consequently, a direct use of PCA-generated eigenvectors to derive the second-order HFC

method for VD estimation seems not to be applicable. Recently, several efforts on developing

second-order spectral statistics-based approaches have been reported. One is referred to maximum

orthogonal complement algorithm (MOCA) developed by Kuybeda et al. (2007). Two others are

maximum orthogonal subspace projection (MOSP) developed by Xiong and Chang (2010) and

automatic target generation process/Mahalanobis distance (ATGP/MD) developed by Jiao (2010).

Interestingly, all these approaches are actually derived from ATGP with its details discussed in

Sections 8.5.1 and 30.2.

The idea of ATGP is to first find a data sample vector, tATGP0 , with the maximal vector length

that will be considered as a spectral signal source. To make sure that a spectral dimension which

has been used to accommodate the data sample vector tATGP0 will not be used again to accommo-

date another spectral signal source, an orthogonal subspace projection (OSP) is performed to find a

data space htATGP0 i? that is orthogonal to the space htATGP0 i linearly spanned by tATGP0 . ATGP then

finds a second data sample vector with the maximal vector length in the space htATGP0 i?, denoted
by tATGP1 as a second spectral signal source. In this case, it requires another spectral dimension as a

second dimension to accommodate this second spectral signal source tATGP1 . To find a third spectral

signal source, ATGP finds a data sample vector with the maximal vector length, tATGP2 as a third

spectral signal source in the space htATGP0 ; tATGP1 i? that is orthogonal to the space linearly spanned

by tATGP0 and tATGP1 . The same process is repeated over and over again to find tATGP3 , tATGP4 , etc. The

key issue is when ATGP should be terminated. In the original ATGP, the algorithm is terminated by

a prescribed error threshold e. However, in many applications such error threshold selection is

somewhat subjective and difficult to determine. An alternative to selection of error threshold is to

determine the number of spectral signal sources required for ATGP to extract. This leads to an

interesting conjecture: “Can a stopping rule of ATGP be used to estimate VD?” The three above-

mentioned approaches, MOCA, MOSP, and ATGP/MD, are particularly designed to come up

different appropriate stopping rules to terminate ATGP, which turns out to the same issue in finding

an effective criterion to estimate VD. In other words, once ATGP is terminated at the mth target,

tATGPm , the value of VD is then estimated as m, that is, nVD¼m.

More specifically, for each 1 � l � L we define

tATGPl ¼ argfmaxrjjP?
Sl
rjjg ð33:2Þ

hl ¼ jjt�l jj2 ð33:3Þ

where Sl ¼ tATGP0 ; tATGP1 ; . . . ; tATGPl�1

� �
. It should be noted that Slf g is monotonically increasing at l

in the sense that S1 � S2 � � � � � Sl and hlf g is monotonically decreasing at l in the sense that

h1 � h2 � � � � � hl . Now the stopping rule of ATGP can be cast as a binary composite hypothesis

testing problem given by

H0 : hl 	 pðhl jH0Þ ¼ p0ðhlÞ
versus

H1 : hl 	 pðhl jH1Þ ¼ p1ðhlÞ
for l ¼ 1; 2; . . . ; L ð33:4Þ
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where the alternative hypothesis H1 and the null hypothesis H0 represent target signal subspace and

background subspace, respectively. To make (33.4) work, we need to find probability distributions

under both hypotheses. Because the orthogonal complement subspace projections of data sample

vectors P?
Sl
ri under H0 are supposed to be noise sample vectors, it is reasonable for MOCA to

assume that the vector P?
Sl
ri under H0 behaves as independent identically Gaussian random vari-

ables. Moreover, hl is the maximal residuals of orthogonal projection (OP) obtained in hSli? under

H0. By virtue of extreme value theory (Leadbetter, 1987), hl can be modeled as a Gumbel distribu-

tion, that is, Fvl ðhlÞ is the cumulative distribution function (cdf) of vl given by

Fvl ðxÞ 	 exp �e
� 2 log Nð Þ1=2 x�s2ðL�lÞ

s2
ffiffiffiffiffiffiffiffiffiffi
2ðL�lÞ

p � 2 log Nð Þ1=2þ 1
2
2 log Nð Þ�1=2

log log Nþlog 4pð Þ
� �8

><

>:

9
>=

>;
ð33:5Þ

By virtue of (33.4) and (33.5), we can derive two detectors, one is ATGP-Bayes detector, d
Bayes
ATGP,

which assumes the uniform cost and equal likely prior probabilities in (2.1) and ATGP-Neyman

Pearson detector, dNPATGP which assumes no prior information as follows:

d
Bayes
ATGPðhlÞ ¼

1; LðhlÞ � t

0; LðhlÞ < t

(

ð33:6Þ

and

dNPATGPðhlÞ ¼
1; > t

k; LðhlÞ ¼ t

0; < t

8
>><

>>:
ð33:7Þ

where k is the probability that H1 is true when L(hl) is equal to the threshold t and the false alarm

probabilities of d
Bayes
ATGP for (33.6) and d

NP
ATGP for (33.7) are given by

PF d
Bayes
ATGP

� �
¼

Z

Lðhl Þ�t

p0ðhlÞdhl and PF dNPATGP
	 
 ¼

Z

LðhlÞ�t

p0ðhlÞdhl ð33:8Þ

where p0ðhlÞ ¼ pðhl jH0Þ ¼ pvl ðhlÞ resulting from the use of the linear mixture model with i.i.d.

noise. For a given false alarm probability PF, VD
Bayes
ATGPðPFÞ and VDNP

ATGPðPFÞ can be defined as

ATGP-HFC methods, which are based on the first two orders of spectral statistics, as follows:

VD
Bayes
ATGPðPFÞ ¼ arg min1�l�L d

Bayes
ATGPðPF Þ ¼ 0

n on o
ð33:9Þ

VDNP
ATGPðPFÞ ¼ arg min1�l�L dNPATGPðPFÞ

� �� � ð33:10Þ

where the bracket dNPATGPðPFÞ
� �

in (33.10) is the largest integer smaller or equal to dNPATGPðPFÞ. For
details we refer readers to the reference, Chang et al. (2011c).
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33.1.1.2.3 High-Order Spectral Statistics-Based Approaches
Many hyperspectral targets of interest are generally insignificant and their occurrences usually

have low probabilities with small populations; their contributions to second-order spectral statistics

are usually very limited. Consequently, using the first two order spectral statistics-based techniques

such as the first-order spectral statistics, sample spectral mean in the HFC method and the first two

order spectral statistics, i.e., ATGP in the ATGP-HFC method to determine VD may sometimes

ineffective. Therefore, this section further extends the HFC method to high-order spectral statistics

(HOS) HFC method which can be used to estimate VD for applications in hyperspectral target

analysis where target signal sources of interest are spectrally characterized by HOS (Chang and

Xiong, 2010). This can be accomplished by replacing ATGP-generated targets used in (33.4) used

for the ATGP-HFC method with targets generated by HOS-based algorithms. Specifically, let

tHOSl

� �L

l¼1
denote the HOS-generated targets which can be divided into two groups of signal sour-

ces, one representing signal sources sl including target signals and background signatures, while

others are noise nl . Then (33.4) becomes a binary hypothesis testing problem for HOS-statistics

signal sources, that is, noise nl under H0 versus signal sl under H1, 1 � l � L. One point should be

noted here is that the signals sl have different meanings when they are generated by different HOS

methods. For example, when PCA is used to generate the feature vectors, which optimize

the second-order spectral statistics, the background or target signals with large area are more effec-

tive to be detected. However, HOS methods such as skewness, kurtosis, fifth moment, and ICA

are more effective to find the target signals with small populations, which are more significant to

high-order spectral statistics.

The binary hypothesis test (33.4) can be re-expressed by

H0 : zl ¼ 0

versus

H1 : zl > 0

for l ¼ 1; 2; . . . ; L ð33:11Þ

where zl is the maximum of vectors residuals given by zl ¼ max1�i�N jjPtHOS
l

rijj2 and PtHOS
l

ri is the

OP of each pixel vectors ri, 1 � i � N, to the subspace spanned by each signal source vector

tHOSl 1 � l � L, that is sl and nl , where PtHOS
l

¼ tHOSl tHOSl

	 
T
tHOSl

� ��1

tHOSl

	 
T
. As we know, the

maximum of residuals of projection vectors on the signal subspace is a high value contributed by

the signals in this direction under H1, whereas the noise under H0 is a low value which is governed

by the maximal norm noise residual. Under the null hypothesis H0 with the white Gaussian noise

assumption, the cdf of zl is Gumbel distribution (Leadbetter, 1987) given by

F0ðzÞ 	 exp �e
� 2 log Nð Þ1=2 z�s2ðL�lÞ

s2
ffiffiffiffiffiffiffiffiffiffi
2ðL�lÞ

p � 2 log Nð Þ1=2þ 1
2
2 log Nð Þ�1=2

log log Nþlog 4pð Þ
� �8

><

>:

9
>=

>;
ð33:12Þ

In addition, under the alternative hypothesis H1 with the uniformly distribution assumption as in

Kuybeda et al. (2007), a posteriori probability distribution is given by

pðH1 j zlÞ ¼ F0ðzlÞ
zlp0ðzlÞ þ F0ðzlÞ ð33:13Þ

pðH0 j zlÞ ¼ zlp0ðzlÞ
zlp0ðzlÞ þ F0ðzlÞ ð33:14Þ

where p0 zlð Þ is the pdf zl under H0.
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Like ATGP-HFC methods, two detectors are used to determine VD by our HOS-HFC methods

as follows:

d
Bayes
HOS ðzlÞ ¼

1; if LðzlÞ > 1

0; if LðzlÞ � 1


ð33:15Þ

dNPHOSðhlÞ ¼
1; > t

k; LðhlÞ ¼ t

0; < t

8
><

>:
ð33:16Þ

where LðzlÞ ¼ pðH1 j zlÞ=pðH0 j zlÞ. Using (33.15) and (33.16), VD can be determined by calcu-

lating

VD
Bayes
HOS ¼

XL

l¼1
d
Bayes
HOS ðzlÞ ð33:17Þ

and

VDNP
HOS ¼

XL

l¼1
dNPHOSðzlÞ
� � ð33:18Þ

where the false alarm rates are given by

PFðdNPÞ ¼
Z

LðzlÞ�t

p0ðzlÞdzl and PFðdNPÞ ¼
Z

Lðzl Þ�t

p0ðzlÞdzl ð33:19Þ

The above HOS-HFC methods stem from the HFC method to determine VD using the target

signals generated by various HOS criteria, such as variance used by PCA, skewness, kurtosis, fifth

moment, and mutual information used by ICA. It takes advantage of assumptions of Gaussian

noise distribution under H0 and uniformly distribution under H1.

33.1.2 Principle of Orthogonality

The pigeon-hole principle cannot work alone effectively by itself. When L < p in which case there

are at least two or more material substances which must be accommodated by a single spectral

band. To mitigate this problem, spatial domain-based techniques using intersample spatial correla-

tion are generally implemented. This may explain why most multispectral imaging techniques are

developed based on spatial domain correlation. On the other hand, if L � p, it implies that there

are more spectral bands than material substances to be recognized. As a result, a single spectral

band can be used to accommodate no more than one material substance. Under such a circum-

stance, two scenarios can occur. One is absence of material subtances in a single spectral band

in which case only noise assumed to be in the band. The other is the presence of one material

substance in a single spectral band. In the latter case, there should be a means to be used to guaran-

tee that once a single spectral band is used to accommodate one material substance, it cannot be

used again to accommodate other material substances. The principle of orthogonality provides a

solution to resolve this issue and it turns out to be a very effective means of accomplishing

this goal.

For an illustrative purpose, we use the orthogonal subspace projection (OSP) detector

developed in Chapter 12 as an example. It is primarily designed based on the principle of ortho-

gonality and specified by dOSPDðrÞ ¼ MdP
?
Ur ¼ kdTP?

Ur in (12.9). It involves two operators, a

Conclusions 963



matched filter Md and an orthogonal subspace projector, P?
U to perform spectral unmixing for

LSMA. First, it takes advantage of a signal detection model (12.1) formulated by a binary

hypothesis testing problem (2.1). It then separates a desired signature d from a set of undesired

signatures, U to re-expressed (12.1) as (12.2) so that all the undesired signatures in U can be

annihilated by P?
U prior to detection of the desired signature d. This is then followed by a

matched filer Md to extract the signature d. If the number of spectral bands, L, is greater than

the number of signatures, p, used for LSMA, the pigeon-hole principle allows each of p signa-

tures to be accommodated in one spectral band and also no more than one signature accommo-

dated in a single spectral band. Furthermore, since the desired signature d is separated from the

undesired signatures in U in different spectral bands, the principle of orthogonality allows

the operator P?
U to eliminate all the undesired signatures in U, while making sure that it does

not have effect on the desired signature d. In the mean time, it also allows the matched filter

Md to extract only the desired signature d since signatures other than d had been eliminated by

P?
U via the principle of orthogonality.

Another good illustrative example is ATGP discussed in Section 33.1.1.2.2 which has a wide

range of applications such as unsupervised target detection, endmember extraction, anomaly

detection, and VD estimation. It performs a succession of orthogonal subspace projections to

generate a set of targets so that these targets statistically un-correlated in the least squares sense.

However, this can only occur when the total number of spectral bands is greater than the number of

targets to be generated. A joint use of principle of orthogonality and the pigeon-hole principle

guarantee to make ATGP work effectively.

33.2 Endemember Extraction

Endmember extraction has received considerable interests in recent years. This is mainly

because with very high spectral resolution provided by hundreds of contiguous spectral bands

hyperspectral sensors are capable of extracting many unknown and subtle signal sources which

cannot be generally resolved by multispectral sensors. One of such signal sources is endme-

mbers which provides crucial and vital information in data exploitation. Particularly, endmem-

bers can be used to specify spectral classes present in the data. According to the definition in

Schowengerdt (1997), an endmember is an idealized, pure signature for a class. So, technically

speaking, an endmember is a signature generally available in a spectral library or database, and

it is not necessarily a data sample vector present in the data. With this clarification, a pure data

sample vector is specified by an endmember, but may not be the other around. Unfortunately, in

real applications pure data sample vectors probably never exist because they may be conta-

minated by many unexpected effects resulting from noise, clutters, unknown interferers, etc.

Accordingly, when an endmember extraction algorithm is applied to real data, it intends to

find those data sample vectors which are most likely pure and represent endmembers. In

unsupervised LSMA (ULSMA) discussed in Chapter 17, such data sample vectors are referred

to as virtual signatures (VSs) and can be found by an unsupervised algorithm to be used for

spectral unmixing.

Due to the nature of purity in endmembers, convexity geometry has been a key notion to design

algorithms to find endmembers. An earliest attempt was reported by Boardman (1994) who used

OP to develop one of best known endmember extraction algorithms, pixel purity index (PPI). Since

there is no prior knowledge that can be used to find endmembers, its idea uses a set of randomly

generated unit vectors, to be called skewers, to point to as many different projection directions as

possible. All data sample vector are then orthogonally projected on each of these skewers where

the maximal or minimal projection on each skewer can be calculated. For each data sample vector,
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a PPI count can be produced by counting many skewers on which this particular data sample vector

has either maximal or minimal projection. By adaptively thresholding PPI counts obtained for all

data sample vectors, a set of candidates for endmembers can be generated and further used to

extract a desired set of endmembers by human intervention. To alleviate the random nature caused

by using skewers resulting from PPI and human intervention, Chang and Plaza (2006) developed

an initialization-specified PPI where an endmember initialization algorithm, ATGP was used to

generate a specific set of initial skewers and Chang et al. (2010) took a complete opposite direction

by considering PPI as a random algorithm where the result produced by PPI using one set of

random initial skewers is considered as a realization of such a random algorithm.

Another attempt deviated from using of OP was made by Ifarraguerri and Chang (1999) who

appealed for the concept of positive convex cone to satisfy abundance non-negativity constraint

(ANC) imposed on endmembers and then searched for a set of data sample vectors with maximal

convex cone volume within the data space. The vertices of the found convex cone are the desired

endmembers. Since then several similar ideas using the concept of non-negative matrix factoriza-

tion (NMF) developed in Lee and Seung (1999) were further explored for endmember extraction,

for example, the work by Pauca et al. (2006).

A third attempt was reported by Craig (1994) who proposed a minimal volume transform

(MVT)-based approach to satisfy both ANC and abundance sum-to-one (ASC) imposed on end-

members to find a set of data sample vectors that forms a simplex with minimal volume which

includes all the data sample vectors. The MVT criterion has played a key role in the development

of NMF-based minimal volume constrained non-negative matrix factorization (MVC-NMF) devel-

oped by Miao and Qi (2007), and linear programming-based minimal volume enclosing simplex

(MVES) was developed by Chan et al. (2009).

A fourth attempt was further made by Winter who developed an N-finder algorithm

(N-FINDR) (Winter, 1999a, 1999b, 2004). It is very similar to MVT. But instead of minimiz-

ing simplex volume it maximizes the volumes of simplexes that are embedded in data sample

space. In other words, Craig deflated simplexes that contain all data sample vectors until it

reaches a simplex with minimal volume, whereas Winter took an opposite approach by inflat-

ing simplexes embedded in data space until it reaches a simplex with maximal volume. Up to

now the concept of the Winter approach is probably the most widely used criterion in the

literature to design an endmember extraction algorithm due to its close tie with spectral

unmixing. Therefore, it is interesting to provide a little history for an evolution of the N-

FINDR development over the past years.

Since the Winter N-FINDR was first proposed (Winter, 1999a, 1999b, 2004; Winter and Winter,

2000), many efforts have been devoted to improving this algorithm in the sense of computational

efficiency. According to Winter’s criterion finding a simplex of maximal volume should exhaust all

possible simplexes. While such an exhaustive search is nearly impossible in practice, two

approaches have been investigated in the past. One is to grow simplexes one vertex after another

such as the simplex growing algorithm (SGA) developed Chang et al. (2006). The other is modifi-

cations of the Winter algorithm in terms of implementing N-FINDR sequentially similar to the one

developed in Winter (2004) which implements two iterative loops with the outer loop iterated for

data sample vectors and the inner loop iterated for endmember replacement. Many improved

N-FINDR algorithms reported in the literature belong to the latter category which uses such a

sequential Winter N-FINDR as a base to develop different variants (Plaza and Chang, 2005, 2006;

Wu et al., 2008; Chowdhury and Alam, 2007; Zortea and Plaza, 2009; Dowler and Andrews, 2011;

Du et al., 2008a, 2008b; Wang et al., 2009). One major approach is to modify the algorithmic

structure used in the sequential Winter N-FINDR. An earliest attempt was made in Plaza and

Chang (2005) and Plaza and Chang (2006) where an algorithm was specifically laid out to fill in
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missing details in Winter (1999a, 1999b) to implement a different version of sequential N-FINDR.

It was then followed by various versions developed by Wu et al. (2008), Chowdhury and Alam

(2007), Zortea and Plaza (2009), and Dowler and Andrews (2011). With an interesting twist of

swapping two loops in the Winter N-FINDR (2004), that is, making the inner loop an outer loop

and the outer loop an inner loop, Wu et al. (2008) derived another version of the sequential Winter

N-FINDR algorithm, called SuCcessive N-FINDR (SC N-FINDR). Unfortunately, the work in

Wu et al. (2008) was not referenced in Du et al. (2008a, 2008b) and Wang et al. (2009) where their

developed algorithms either identical or very close to the SC N-FINDR.

While many N-FINDR developers have placed their focus on sequential implementation of

N-FINDR (Winter, 1999a, 1999b, 2004; Winter and Winter, 2000; Chowdhury and Alam, 2007;

Zortea and Plaza, 2009; Dowler and Andrews, 2011; Du et al., 2008a, 2008b; Wang et al., 2009),

the issue of using initial conditions in N-FINDR has been overlooked. This is in fact a serious

problem with reproducibility of final selection of endmembers since N-FINDR produces different

final results if different sets of random initial conditions are used. Three ways have been suggested

to resolve this issue. One is to use an endmember initialization algorithm (EIA) to generate an

appropriate set of initial endmembers such as automatic target generation (ATGP) in Plaza

and Chang (2005). Another is real-time N-FINDR processing developed in Wu et al. (2010)

which takes the first p input data sample vectors as initial endmembers. A third one is random N-

FINDR proposed in Chang et al. (2009), Wu (2009), and Chang et al. (2011), which considered

N-FINDR as random algorithm to repeatedly implement N-FINDR with different sets of random

initial endmembers until a stopping rule is met.

According to the algorithmic structure implemented in IN-FINDR developed in Section 7.2.3.2,

the inner loop is indeed a two-loop sequential process with one loop iterating N data sample

vectors for each a given fixed endmember position and the other loop iterating p endmember

positions, which is the number of endmembers, while the outer loop simply iterates another new

set of endmembers found by the inner loop in a previous iteration. So, in order to make such an

implementation more clearer and attractive Xiong et al. (2011) revisited IN-FINDR and separated

the inner loop implemented in the IN-FINDR from its outer loop to have it implemented as a stand-

alone algorithm, referred to as SeQuential N-FINDR (SQ N-FINDR). By virtue of this new defined

SQ N-FINDR, IN-FINDR can be re-implemented in a broader sense as a three-loop (outermost,

outer, and inner loops) sequential process where the outermost loop is used to iterate a new

initial set of p endmembers generated by the outer loop; the outer and inner loops are designed to

iterate data sample vectors and endmember positions separately. When the inner loop iterates

p endmember positions and the outer loop iterates N data sample vectors, it is called the SQ N-

FINDR. When these two loops are reversed, the resulting two-loop process is called SC N-FINDR.

As a result, in analogy with SC N-FINDR, the performance of SQ N-FINDR is also heavily deter-

mined by its used initial conditions. In this case, in order to mitigate this random issue, they can be

jointly implemented with the outermost loop carried out in IN-FINDR, respectively. The resulting

IN-FINDR algorithms are referred to as iterative SQ N-FINDR (ISQ N-FNDR) and iterative SC

N-FINDR (ISC N-FINDR). With this interpretation/IN-FINDR developed in Section 7.2.3.2 is in

fact the ISQ N-FINDR which is identical to the sequential N-FINDR in Wu et al. (2008) as well as

the IN-FINDR referred in Chang et al. (2009), Wu (2009), and Xiong et al. (2011), all of which

include a third loop to implement SQ N-FINDR or SC N-FINDR repeatedly by taking final set of

endmembers generated in the previous run as a new set of initial conditions for next run. To the

author’s best knowledge, many algorithms designed to implement N-FINDR in the literature can

be considered to be either identical or equivalent to SQ N-FINDR, SC N-FINDR, or IN-FINDR

one way or another. Interestingly, it is believed that IN-FINDR remains the only one which has

never been explored in the literature except those in Wu et al. (2008), Chang et al. (2009),

966 Hyperspectral Data Processing: Algorithm Design and Analysis



Wu (2009), and Xiong et al. (2011) and is yet to be explored in the future. More details can be

found in Chang (2013).

Several dilemmas resulting from implementing N-FINDR described above have led to the

development of SGAwhich finds p endmembers by growing simplexes one vertex at a time where

each new endmember is specified by a newly added vertex that yields the maximal volume of

simplexes being considered (Chang et al., 2006). As we recall in Section 7.2.3.3, where a

multiple-replacement version of IN-FINDR, referred to as s-IN-FINDR, is developed the number

of endmembers needed to be replaced in each iteration is set to s. When s¼ 1, it is reduced to the

single-replacement IN-FINDR. On the other hand, when s¼ p, s-IN-FINDR becomes the original

version of N-FINDR. So, this idea can be also carried over to generalize SGA to s-SGAwhere the

number of initial endmembers needed to start with SGA is set to s. In this case, implementing s-

SGA requires two-stage processes. The first-stage process is to find a set of s initial endmembers

that maximizes volumes of s-simplexes to initialize SGA, and the second-stage process is to grow

and find the maximal simplex volume starting from an (sþ 1)-simplex to a p-simplex. Using

this generalization, when s¼ 1 and 2, s-SGA is reduced to 1-SGA and 2-SGA as described in Sec-

tion 8.3 and Figure 8.1. As a consequence, the computational complexity of implementing s-SGA

is the sum of computational costs of two-stage processes, that is, computation complexity of find-

ing an optimal set of s initial endmembers plus computational complexity of finding growing sim-

plexes with maximal volumes starting from the number of vertices, sþ 1 to p. As s is increased, the

heavy computational load begins to shift from finding growing simplexes with maximal volumes to

finding an optimal set of s initial endmembers. When it reaches p, that is, s ¼ p, no process of

growing simplexes is needed and the entire computational cost is completely determined by find-

ing an optimal set of p initial endmembers. In this case, p-SGA becomes the original version of N-

FINDR, which can be considered as a special case of s-SGAwith s set to p.

The three design rationales, OP, convex cone, and simplex described above are main trends for

designing and developing endmember extraction algorithms. Interestingly, these three are actually

derived from three versions of how to implement LSMA discussed in Chang (2003a) which are

abundance-unconstrained LSMA, least squares OSP (LSOSP), ANC-constrained constrained least

squares (NCLS) (a partially abundance-constrained LSMA), and (ANC,ASC)-constrained fully

constrained least squares (FCLS) (fully abundance-constrained LSMA). So, it is not a surprise to

see that the least-squares error (LSE) used as a criterion for spectral unmixing performed by

LSMA can also be used as a design criterion to find endmembers where three LSE-based endmem-

ber extraction algorithms corresponding to LSOSP, NCLS, and FCLS can also be developed,

unsupervised LSOSP (ULSOSP), unsupervised non-negativity constrained least squares (UNCLS)

by Chang and Heinz (2000), iterative error analysis (IEA) by Neville et al. (1999), and

unsupervised fully constrained least squares (UFCLS) by Heinz and Chang (2001) as their three

respective representatives. All these discussions can be found in Chapter 8. According to the

studies in Chang et al. (2010) and Chapter 11, the use of maximal simplex volume as a criterion is

among best criteria for extracting endmembers. This makes sense from a view point of linear

convexity where two constraints, ASC and ANC must be satisfied, while the OP does not satisfy

any one of these two constraints. Interestingly, the convex cone-based approach such as VCA

actually implements the OP criterion with ANC. As a result, in general, VCA does not perform as

good as N-FINDR. However, for a convex cone to also satisfy the ASC the convex cone analysis

(CCA) developed by Ifarraguerri and Chang (1999) was designed for this purpose. This similarity

can also be found in LSMAwhere the abundance-unconstrained LSOSP, ANC-constrained NCLS

and (ASC,ANC)-constrained FCLS can be considered as respective counterparts of PPI, ANC-

constrained convex cone-based VCA, and (ASC,ANC)-constrained simplex-based N-FINDR.

More details on endmember extraction from this perspective will be explored in Chang (2013).
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Since the above-mentioned approaches, PPI, CCA, and MVT/N-FINDR are developed for

finding all the endmembers simultaneously at once, their computational complexity is generally

very high and expensive, particularly, for CCA and MVT/N-FINDR. To mitigate and alleviate

this computational problem, two approaches have been investigated. One is to make endmem-

ber extraction a two-iterative sequential process instead of a simultaneous process. Examples

include IN-FINDR, SC N-FINDR, Miao and Qi (2007), Wu et al. (2008) and Chan et al.

(2009) and most recently, SQ N-FINDR in Chang et al. (2011). A second approach is to grow

endmembers one at a time until it reaches the desired number of endmembers. In this regard,

OP-based ATGP (Ren and Chang, 2003), convex cone-based vertex component analysis (VCA)

(Nascimento and Dias, 2005), and simplex-based SGA (Chang et al., 2006) are developed for

this purpose where ATGP, VCA, and SGA represent three categories of abundance constraints,

no abundance constraint corresponding to OP, ANC corresponding to convex cone and both

ANC and ASC corresponding to simplex. Tables 33.1 and 33.2 with their corresponding coun-

terparts of block diagrams depicted in Figures 33.1 and 33.2 summarize relationships among

algorithms developed based on three design criteria, OP, convex cone, and simplex plus LSE

as well as how to find endmembers simultaneously or one after another by growing end-

members sequentially.

As recalled in PART II (Chapters 7–11) in this book, endmember extraction algorithms (EEAs)

are treated on the basis of algorithmic implementation, viz. SiMultaneous EEAs (SM-EEAs),

SeQuential EEAs (SQ-EEAs), initialization-driven EEAs (ID-EEAs), and random EEAs (REAAs).

Tables 33.1 and 33.2 and Figures 33.1 and 33.2 provide another categorization of endmember

extraction a which will be discussed in great detail in Chang (2013) which is based on various

abundance constraints imposed on algorithms according to the abundance constraints imposed on

EEAs from abundance-unconstrained OP-based EEAs, partially abundance-constrained convex

cone-based EEAs and fully abundance-constrained simplex-based EEAs.

In addition to criteria described above, OP, linear convexity, and LSE, there is a fourth criterion

that can be used to find endmembers. It considers endmembers as statistically independent random

signal sources where mutual information is the criterion to be used to identify endmembers. The

Table 33.1 Least squares (LS)-based endmember extraction algorithms

Constraints How to find endmembers Algorithms

No constraint Growing endmembers ULSOSP

ANC Growing endmembers UNCLS

ANC, ASC Growing endmembers IEA/UFCLS

Table 33.2 Categories of endmember extraction algorithms using convexity geometry as a criterion

Constraints Criterion How to find endmembers Algorithms

No constraint Orthogonal projection All p endmembers PPI

Growing endmembers ATGP

ANC Convex cone/NMF All p endmembers CCA

Growing endmembers VCA

ANC, ASC Simplex All p endmembers MVT/N-FINDR

Growing endmembers SGA
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first work reported in the literature is the one developed by Wang and Chang (2006b), referred to as

ICA-based SQ-EEA discussed in Section 8.6.5. However, the abundance vectors blindly separated

by ICA are not necessarily positive signal sources. To address this need, Oja and Plumbley (2004)

developed an approach to finding positive abundance vectors that satisfy the ANC. Nevertheless, it

should be noted that such an approach does not satisfy the ASC. Otherwise, the separated sources

will not be statistically independent.

As a final comment on endmember extraction, it has been misleading using various terminologies

to represent endmember extraction. As a matter of fact, endmember extraction, endmember

selection, and endmember determination are all completely different concepts. First, endmember

extraction is a task to extract signatures which are supposed to be endmembers in the data without

prior knowledge, while endmember selection is performed by singling out a set of potential end-

member candidates which are supposed to be known a priori. In general, it is a follow-up task of

endmember extraction. On the other hand, endmember determination is to determine whether a

given signature is an endmember. It does not perform endmember extraction or endmember selec-

tion. Instead, it generally requires performing linear spectral unmixing (LSU) to determine if a given

set of signatures used for unmixing are endmembers. It may be a main reason why endmember

extraction is confused with linear spectral unmixing. In his 1999’s paper (1999b), Winter proposed

an autonomous spectral endmember determination where the knowledge of endmember as not pro-

vided. To resolve this issue, Winter develops endmember “finding” (Note: not endmember

“extraction”) via the so-called N-finder algorithm to first find potential endmember candidates using

maximal simplex volume as a criterion and then further performs LSU determine whether the found

potential endmember candidates are indeed endmembers. So, basically, Winter did not use LSU to

find endmembers, but rather used it to determine endmembers. However, since a simplex also satis-

fies ASC and ANC, LSMA has been also used as a means of extraction endmembers such as itera-

tive error analysis (Neville et al., 1999) and unsupervised fully constrained least squares (UFCLS)

(Heinz and Chang, 2001). But it does not imply that endmember extraction must be implemented in

conjunction with LSU or considered as a LSU technique. As a matter of fact, as shown in Chang

et al. (2010) where five different criteria were investigated, using LSMA may be effective but may

No constraints ANC ANC, ASC 

Growing  
p endmembers ULSOSP UNCLS UFCLS 

Figure 33.1 Relationships among LSE-based endmember extraction algorithms.
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p endmembers  
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NMF CCA/MVT/N-FINDR

ANC 

SGA ATGP 
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ANC 

ANC 

ASC 

ASC 

ANC 

ANC 

Figure 33.2 Relationships among convexity-based endmember extraction algorithms.
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not be as good as maximal simplex volume for endmember extraction. On the other hand, as also

shown in Chang et al. (2010), signatures used for LSU are not necessarily pure signatures as

endmembers and can be mixed signatures. This provides further evidence that endmember extrac-

tion and LSMA are indeed separate techniques designed for different tasks. So, performing LSU is

not a part of endmember extraction. However, when LSU is performed in an unsupervised

manner when no prior knowledge of endmembers is available, endmember extraction can always

be used as a preprocessing step to find potential endmembers which will be later determined by

the follow-up LSU, which can be considered as a similar approach proposed by Winter’s

N-FINDR. Accordingly, LSU and endmember extraction can be benefited by each other.

33.3 Linear Spectral Mixture Analysis

Linear spectral mixture analysis (LSMA) is a theory developed for sub-sample and mixed sample

analysis discussed in Chapter 2, whereas LSU is a technique to carry out LSMA to unmix data

sample vectors via a linear mixing model into a number of basic constituent spectra assumed to

make up the entire data sample vectors with appropriate abundance fractions of these constituent

spectra. In spite of this distinction, these two terminologies have been used interchangeably in the

literature. Depending on whether or not the signature knowledge is available, LSMA can be carried

out by supervised LSMA (SLSMA) or ULSMA.

There are three crucial differences between LSMA and classification. One is that the spectral

unmixing performed by LSMA produces abundance fractional maps considered as soft decisions

as opposed to classification, which produces classification maps considered as hard decisions.

Another difference is that LSMA only requires signature knowledge to form a linear mixture

model and does not need training samples as required by classification. Even for ULSMA, the

signature knowledge can be obtained by endmember extraction algorithms or unsupervised virtual

signature finding algorithms (UVSFAs) developed in Chapter 17 where the only training samples

are endmembers or virtual signatures themselves. So, the cross-validation used by classification via

a set of training samples to evaluate performance is not applicable to LSMA. A third difference is

background suppression. LSMA takes the advantage of OSP to eliminate effects of undesired

signatures to improve background suppression so as to enhance unmixing ability of desired signals,

a task that generally cannot be done by classification. Due to the lack of background knowledge

such background suppression cannot be evaluated quantitatively but is better evaluated by visual

assessment of each of abundance fractional maps. Nevertheless, the 3D ROC analysis developed

in Chapter 3 can be further used as an evaluation tool to allow users to perform quantitative

analysis and study of abundance fractional maps.

33.3.1 Supervised LSMA

Solving LSMA is a least squares estimation problem. It makes use of a linear mixing model

specified by

r ¼ Maþ n ð33:20Þ

whereM is a signature matrix formed by a set of p known signatures,m1;m2; . . . ;mp and n can be

interpreted in various applications. When the n is considered as a model error, the solution to

(33.20) is given by (12.24) as

âLSðrÞ ¼ MTM
	 
�1

MTr ð33:21Þ
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which is the least squares estimation of the abundance vector a (Shimabukuro and Smith, 1991;

Settle and Drake, 1993). On the other hand, if n is interpreted as a Gaussian noise in Section

12.3.3, the solution to (33.20) is the given by the Gaussian Maximum Likelihood (GML) estimator

(Settle, 1996; Chang, 1998a) as

âGMLðrÞ ¼ MTM
	 
�1

MTr ð33:22Þ

which is the MSE estimate of abundance vector a that is identical to (33.21).

As a completely different treatment, Harsanyi and Chang (1994) developed an OSP-based

approach to LSMA form a signal detection point of view. Instead of considering (33.20) as an

estimation problem by estimating abundance fractions of all endmembers m1;m2; . . . ;mp all

together as (33.21) and (3.22) the OSP idea considers the problem of (33.20) as a multiple signal

detection problem for p signal sources m1;m2; . . . ;mp present in the data where it makes use of

signal-to-noise (SNR) as a criterion (also known as deflection criterion in detection theory) to mea-

sure signal detection performance. In this case, it only assumes that the noise is additive but not

necessarily Gaussian. According to (33.20), the signal detection is carried out by considering Ma
as a single signal source which is actually a mixed signal source linearly combining the p signal

sources, m1;m2; . . . ;mp. Thus, it does not discriminate multiple signal sources detected in the

data. To resolve this issue, OSP extends the standard single-signal detection approach by a two-

stage process to solve (33.20) as a multiple-signal detection problem. More specifically, Let d ¼
mp be the desired signal source to be detected. Under this circumstance, all the remaining signal

sources, p signal sources m1;m2; . . . ;mp�1, will be considered as interferers to mp which must be

annihilated prior to detection of mp so as to increase as well as enhance detectability of mp. The

key idea of OSP is to introduce an operator for this purpose to eliminate the influence of these

p� 1 undesired signal sources m1;m2; . . . ;mp�1 prior to detection of the desired signal source

mp. In other words, let U ¼ m1m2 . . .mp�1

� �
be an undesired signal source matrix. An operator

defined by

P?
U ¼ I� UU# ð33:23Þ

maps all data sample vectors onto a space, hm1;m2; . . . ;mp�1i?, orthogonal to the space linearly

spanned by the p� 1 signal sources m1;m2; . . . ;mp�1. Taking advantage of operating P?
U on the

model in (33.20) results in

P?
Ur ¼ P?

Udap þ P?
Un ð33:24Þ

where the undesired signatures in U have been annihilated and the original noise n has also been

suppressed to ~n ¼ P?
Un. The role of P

?
U plays in (33.24) is to remove all signal sources other than d

from the mixed signal sourceMa so that only the desired signal source d will be present in P?
Ur. In

this case, the desired signal source will also be suppressed by P?
U as P?

Ud. As a consequence,

(33.24) becomes a standard model commonly used in communications and signal processing to

detect the single signal source P?
Ud. The optimal solution to (33.24) previously derived from (12.5)

to (12.9) in Chapter 12 is a matched filter, Md, given by

Md P?
Ur

	 
 ¼ kdT P?
Ur

	 
 ¼ k P?
Ud

	 
T
r for some constant k: ð33:25Þ

Two interpretations can be made on (33.25). One is to interpret OSP as a matched filter using

the “d” as the desired matching signal source to extract d from all data sample vectors P?
Ur in the
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space hUi? ¼ hm1;m2; . . . ;mp�1i?. Alternatively, OSP can also be interpreted as a matched filter

which a matched signal source “P?
Ud” to extract the desired signal source from data sample vector

r in the original data space. Using (33.25) the abundance fraction of the desired signal source can

be detected as

âOSP
p ðrÞ ¼ kdT P?

Ur
	 
 ¼ k P?

Ud
	 
T

r for some constant k ð33:26aÞ
where the constant k is generally set to k¼ 1 for the purpose of detection. Accordingly, for the OSP

to perform multiple signal detection, two-stage processes can be designed in sequence as follows.

The first-stage process separates a desired signal source d from other signal sources which form

an undesired signal source matrix U so that an undesired signal source annihilator P?
U is applied to

all data sample vectors in the original data space to suppress the effects of the undesired signal

sources on detection of the desired signal source d. This is then followed by the second-state pro-

cess, which implements a matched filter to extract the desired signal source d. Such a two-stage

process can be considered as an information-processed matched-filter which has been studied in

great details in Chang (2007c). For example, since OSP assumes that the complete knowledge of

signal sources, m1;m2; . . . ;mp is known a priori, it can take advantage of P?
U and d to carry out

two-stage processes in Figure 33.3. However, in many applications such knowledge may not be

available. In this case, the a priori knowledge of P?
U and the desired signal source d must

be replaced with the a posteriori knowledge R�1 where R is the auto-correlation matrix formed by

all data sample vectors and the data sample vector currently being processed r. As a result, âOSP
p ðrÞ

becomes an anomaly detector, âAD
p ðrÞ ¼ k R�1r

	 
T
r ¼ krTR�1r which is exactly so-called RX-

detector developed by Reed and Yu (1990). On the other hand, the above two-stage process in

Figure 33.3 can also be implemented as the one-shot operation process by linear constrained mini-

mum variance (LCMV) filter developed by Chang (2002b) and Chang (2003a, Chapter 11) where

the detection of d and annihilation of U are carried out simultaneously at the same time. Many

more details can be also found in Chapter 12.

It has been shown in Settle (1996) and Chang (1998a) that the constant k accounts for estima-

tion accuracy and cannot be arbitrary if (33.26a) is used to estimate the abundance fraction of

d¼mp in which case k must be set by k ¼ dTP?
Ud

	 
�1
. When OSP implements (33.26a) by setting

k ¼ dTP?
Ud

	 
�1

âLSOSP
p ðrÞ ¼ dTP?

Ud
	 
�1

dT P?
Ur

	 
 ¼ dTP?
Ud

	 
�1
P?
Ud

	 
T
r ð33:26bÞ

it is called LSOSP (Tu et al., 1997), which produces exactly the same abundance fraction estimated

by (33.21) and (33.22) for the endmember mp, â
LS
p ðrÞ ¼ âGML

p ðrÞ where âLS
p ðrÞ and âGML

p ðrÞ are
the pth component of the estimated abundance vectors âLSðrÞ ¼ âLS

1 ðrÞ; âLS
2 ðrÞ; . . . ; âLS

p ðrÞ
� �T

r ⊥
UP

First-stage process
annihilation of m1,..,mp-1

Second-stage process
matched filter 

rd U
⊥

P
T ( () ) rdrdr UU

TT
p PP ⊥⊥ == κκα )(ˆ OSP

rU
⊥

P

Figure 33.3 A block diagram of âOSP
p .

972 Hyperspectral Data Processing: Algorithm Design and Analysis



and âGMLðrÞ ¼ âGML
1 ðrÞ; âGML

2 ðrÞ; . . . ; âGML
p ðrÞ

� �T

, respectively. The key difference between

(33.26a) and, (33.21), and (33.22) is that the former only estimates the abundance fraction of one

particular signal sourcemp as opposed to the latter which estimates abundance fractions of all the p

signal sources, m1;m2; . . . ;mp simultaneously. In other words, the LSOSP basically makes a sig-

nal detector âOSP
p ðrÞ a signal estimator âLSOSP

p ðrÞ in terms of converting âOSP
p ðrÞ-detected abun-

dance fraction to the âLSOSP
p ðrÞ-estimated abundance fraction.

Furthermore, replacing the constant k in Figure 33.3 with dTP?
Ud

	 
�1
results in Figure 33.4

depicted as follows.

As noted earlier, if the a priori knowledge of P?
U is not available, a posteriori knowledge R�1

with R being the autocorrelation matrix formed by all data sample vectors can be used to replace

P?
U . In this case, the â

LSOSP
p ðrÞ in (33.26a) and Figure 33.4 becomes the âCEM

d ðrÞ ¼ dTR�1r
dTR�1d

given by

(2.33) where the desired signal source d is identified by a target signal source of interest, t. Finally,

it should be noted that the LSOSP, âLSOSP
p ðrÞ bridges the gap between the OSP detector, âOSP

p ðrÞ
and LS estimator, âLS

p ðrÞ ¼ âGML
p ðrÞ. By virtue of LSOSP, the OSP can be further extended to

abundance-constrained least squares methods, NCLS and FCLS methods discussed in Chapter 2

and Chang (2003a).

There are several approaches to extending SLSMA. It has been shown by Juang and Katagiri

(1992) that the LSE r�Mað ÞT r�Mað Þ resulting (33.20) is not an appropriate criterion for clas-

sification. It is also known that Fisher linear discriminant analysis is very effective in classification

due to its use of Fisher’s ratio particularly designed for class discrimination. So, one approach is to

replace the LSE criterion used by LSMAwith classification criterion, Fisher’s ratio. The resulting

LSMA is called Fisher’s LSMA (FLSMA) discussed in Chapter 13. It turns out that the LSE

r�Mað ÞT r�Mað Þ used by LSMA becomes Fisher’s ratio for FLSMA r�Mað ÞTS�1
W r�Mað Þ

where SW is the within-class scatter matrix defined in (13.1). Another is to generalize the LSE

criterion r�Mað ÞT r�Mað Þ to a weighted LSE criterion, denoted by r�Mað ÞTA r�Mað Þ
where the weighting matrix A is a positive definite matrix. The resulting LSMA is called weighted

abundance constrained LSMA (WACLSMA) discussed in Chapter 14. Consequently WACLSMA

can be considered as a generalized LSMA which includes the standard LSMA and FLSMA as it

special cases by setting A¼ identity matrix I and S�1
W , respectively.

33.3.2 Unsupervised LSMA

While SLSMA has been well studied in the literature, ULSMA has not received as much attention

as it should have due to the following reasons. To perform LSMA effectively, the accurate signature

knowledge is required. In SLSMA, such knowledge is provided by a set of constituent spectra,

mj

� �p

j¼1
, referred to as endmembers in the literature, which are known provided by either prior

r ⊥
UP

First-stage process
annihilation of m1,..,mp-1

Second-stage process
matched filter

rd U
⊥

P
TrU

⊥
P ( ) rdddr UU

⊥–⊥
= PP

TT 1LSOSP
)(α̂

( ) 1–⊥
dd UP

T

Figure 33.4 A block diagram of âLSOSP
p .
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knowledge or visual inspection. However, according to the definition in Schowengerdt (1997), an

endmember must be an idealized, pure signature for a class. Unfortunately, as reported in many

recent results (Chang et al., 2006; Wu et al., 2009) this is generally not true for real datasets where

a true endmember may never exist. Nevertheless, this does not prevent users from using the term of

endmembers. To address this issue, the desired endmembers required by LSMA must be obtained

directly from the data to be processed. However, this easier said than done because finding an

appropriate set of mj

� �p

j¼1
for LSMA is very challenging and not a trivial matter with two issues

involved. The first one is to determine how many signatures should be used by LSMA for spectral

unmixing. The concept of VD developed in Chapter 5 is particularly designed to address this issue

with extensive discussion in Section 33.1.1 where VD is defined as the number of spectrally distinct

signatures, p in hyperspectral data instead of the number of endmembers. Once the value of the p is

determined, the second and following issue is how to find these p signatures, mj

� �p

j¼1
. Obviously,

each of mj

� �p

j¼1
represents one distinct spectral class and is not necessarily an endmember. Some

of mj

� �p

j¼1
may be even mixed signatures. Accordingly, the term of endmembers commonly used

in LSMA to represent these basic constituent spectra is misleading. A better terminology may be

virtue endmembers (VEs) to reflect this fact that VEs represent spectrally distinct signatures in

correspondence to the definition of VD. Because of that VD-estimated value is generally greater

than the number of endmembers. In other words, the number of VEs, nVE, is generally not the

same as the number of endmembers, nE. In this case, an endmember extraction algorithm may

not be effective to extract all necessary VEs. The ULSMA presented in Chapter 17 is specifically

developed to resolve issues of determining the value of p and finding a desired set of VEs, referred

to as virtual signatures (VSs) to reflect that VSs are real pixels directly extracted in the data.

33.4 Anomaly Detection

Anomaly detection received little interest in early days in remote sensing. There are several rea-

sons attributed to this incident. One is due to applications which are mainly focused on geographic

information processing such as land cover/use classification. Another is the use of multispectral

imagery which has very low spatial and spectral resolutions. As a consequence, anomalies may be

very much likely either embedded or mixed with other material substances in a single pixel vector.

Under such circumstances, anomalies may have been contaminated or smeared by other dominant

substances. Third, most remote sensing image processing techniques developed for such applica-

tions are spatial domain-based methods which are designed to take advantage of spatial correlation

to perform image analysis. Since anomalies usually appear in a very limited spatial extent, such

spatial domain-based methods can hardly capture their existence. Finally, anomalies do not provide

much information to multispectral image analysts who are more interested in geographic informa-

tion rather than target information. However, the advances of hyperspectral imaging sensors have

revolutionized the way to process multispectral imagery. Due to the very high spectral resolution

provided by hyperspectral sensors, many subtle substances that are generally unknown a priori or

cannot be identified by visual assessment can now be uncovered for data analysis. On many occa-

sions such substances are most interesting targets and provide crucial and critical information that

can assist image analysts to solve many problems which cannot be resolved by multispectral imag-

ing processing analysis. These applications may include agriculture, ecology, geology, environ-

mental monitoring, law enforcement, military, and medical diagnosis. For example, subtle targets

of interest can be special species in agriculture, unusual migrations in ecology, rare minerals in

geology, toxic wastes in environments, drug trafficker or smugglers in law enforcement, vehi-

cles/tanks in battlefields, cancerous cells or tumors in medical diagnosis, etc., just name a few.
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Such target signal sources generally appear in a form of abnormalities that are distinct from their

surroundings. Therefore, how to characterize these types of target signal sources becomes crucial

in image analysis. Three features can be suggested to characterize these target signal sources as

anomalies: (1) existence, (2) presence, and (3) population. The reason of being anomalies is

because they are not known a priori. On the other hand, anomalies usually occur with low proba-

bilities. Therefore, their existence generally cannot be detected by any supervised means or visual

inspection. As for presence, the spatial extent of anomalies is generally overlooked since they can

be present as subpixel targets with their size smaller than pixel size or as mixed pixels mixing with

the background or other substances. Most importantly, once anomalies do appear, their population

cannot be large due to the nature of being anomalies. As a result, anomalies are generally consid-

ered as insignificant targets compared to the entire data. Unfortunately, several issues arising in

anomalies have not been investigated or explored in the past. First, how large is it for a target to be

considered as an anomaly in terms of its size? Second, how much spectral distinction is it for an

anomaly to respond to its surrounding neighborhood? Third, how much sensitivity is it for an

anomaly to noise? Fourth, how effective is it for an anomaly to distinguish itself from other anoma-

lies? In particular, if two or more anomalies are close together, how can these anomalies be

detected as separate anomalies? Finally, how can these anomalies be detected effectively by taking

into account all the above-mentioned issues?

Many algorithms have been developed for anomaly detection over the past years and can be

roughly categorized into two classes, second-order statistics methods and high-order statistics

methods in terms of spectral statistics among data sample vectors. The detectors in the first class

can be considered as either Mahalanobis distance-based filters which are variants of an algorithm

developed by Reed and Yu (1990), referred to as RX detector (RXD) (Chang, 2003a) or matched

filter-based detectors. The RXD-like detectors are primarily derived from generalized likelihood

ratio test and adaptive subspace detectors via Gaussian noise assumption. One the other hand, the

matched filter-based detectors do not make such assumption and simply makes use of the data

sample spectral correlation matrix to whiten the sample data prior to implementation of a matched

filter. Interestingly, the detectors of both types arrive at the same functional form due to the use of

second-order statistics. The detectors in the second class take advantage of higher order statistics

such as skewness (third order), kurtosis (fourth order), statistical independence (mutual informa-

tion), or projection pursuit (relative entropy). It has been shown in Chang and Hsueh (2006) that

when an early detected anomaly had a strong signature, it would affect detectability of follow-up

anomalies, specifically for those anomalies with weak signatures. One way to mitigate this prob-

lem was to perform target discrimination once an anomaly was detected before searching for next

anomalies. Such anomaly detection combined with target discrimination gives rise to anomaly

classification (Chang and Chiang, 2002). However, in doing so, the process must be carried out in

real time which cannot be implemented by most anomaly detection algorithms such as the RXD.

The “real-time” referred here means that the pixel to be processed must be carried out in a causal

manner that the pixels involved in data processing are only those that were already processed. To

resolve this issue, a causal RX detector (CRXD) was further developed in to make the RXD a real-

time processor. Recently, an adaptive anomaly detector, referred to dual window-based eigen sepa-

ration transform (DWEST) was developed by Kwon et al. (2003) to address local properties of

anomalies using an inner/outer window approach, and it was further investigated by a nested

spatial window-based approach (Liu and Chang, 2004). These window-based adaptive anomaly

detectors were designed to adapt local variability. However, some other issues such as size of

anomalies, the response of anomalies to their surroundings, sensitivity of anomalies to noise, still

remain and unsolved. One is of particular interest, “what is an anomaly?” In other words, what

types of targets are considered as anomalies? A first attempt to address this issue was made in
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Chang and Hsueh (2006), which concluded that an anomaly should be closely related to its size

relative to the image to be processed. The following simple example provides a clue of how contro-

versial this issue is. Figure 33.5(a) and (b) shows a set of the same various target panels with four

different sizes implanted in two simulated Gaussian noise-corrupted image backgrounds with sizes

of 64
 64 pixel vectors and 200
 200 pixel vectors, respectively, where the five panels in the first

column are size of 6
 6 pixel vectors, the five panels in the second column are size of 3
 3 pixel

vectors, the five panels in the third column are size of 2
 2 pixel vectors, and then the five panels

in the fourth column are size of 1
 1 pixel vectors.

The target implantation is done by replacing the background pixels with target panel pixels.

Figure 33.6(a) and (b) shows the results of operating RXDF on these two images in Figure 33.5(a)

and (b), respectively.

Figure 33.6 Results of operating RXD on images in Figure 33.3(a) and (b).

Figure 33.5 Target panels with four various sizes implanted in two uniform image backgrounds with sizes of

64
 64 pixel vectors and 200
 200 pixel vectors.
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An immediate finding by comparing the results in Figure 33.6(b) to that in Figure 33.6(a)

leads to an interesting observation: the target panels of sizes 2
 2 and 1
 1 that are detected

by RXDF in Figure 33.6(b) as anomalies now become undetectable and are no longer anoma-

lies in Figure 33.6(a) where two images in Figure 33.6(a) and (b) are shown in the same size

for clear and better visual assessment. Moreover, the target panels of sizes 6
 6 and 3
 3

detected in Figure 33.6(a) also become smeared and blurred due to noise compared to their

counterparts in Figure 33.6(b) which are detected clearly as anomalies. Why does the same

RXDF produce so different results for the same set of target panels except that the processed

image size is different? This simple example sheds light on a tricky issue in anomaly detec-

tion, “what does really it mean by anomaly?” Some answers can be found in the work by

Chang and Hsueh (2006).

Despite the fact that many approaches described above have been developed for anomaly

detection, an interesting approach to anomaly detection has been recently proposed by Liu and

Chang (2008). It is called multiple-window anomaly detection (MWAD) which implements

multiple a set of multiple windows to detect targets with varying sizes in order to avoid being

trapped in the controversial definition of anomaly as demonstrated by the example presented in

Figures 33.5 and 33.6. The idea is inspired by Figure 33.6(a) and (b), where the same target

panels implanted in two different image sizes are detected by the same RXD in different abun-

dance fractions. Since the size of the image to be processed must be fixed, it cannot be changed

in the same way that is conducted in Figure 33.6 by the same RXD. To resolve this issue, the

images processed in Figure 33.6(a) and (b) by RXD are now replaced by the images that

are used to form the sample spectral correlation matrix for RXD to mimic two different

image sizes. In other words, our proposed idea makes RXD adaptive to variable sizes of the

sample covariance matrix used in RXD while keeping the original image size unchanged.

More specifically, the sample covariance matrix used by RXD is formed by only image pixels

within a designated window, in which case the window size determines the sample covariance

matrix. Accordingly, adjusting the size of the sample covariance matrix used in RXD is similar

to adjusting the original image size except that the sample covariance matrix used by RXD

now varies with each image pixel vector that it processes. With this interpretation, the Reed-

Yu’s RXD can be viewed as a global anomaly detector where the entire image is considered as

a single window to form the sample covariance matrix to capture the spectral variation pro-

vided by the entire image. More details about using various windows to perform anomaly

detection are included in Chang (2013).

For many applications such as military/intelligence gathering or combat fields anomalies

generally appear as moving targets. Therefore, developing real time processing algorithms for

anomaly detection is highly desirable and critical. A detailed study on this subject can be

found in Chang (2013).

33.5 Support Vector Machines and Kernel-Based Approaches

In remote sensing image classification, one of most widely used techniques is maximum likelihood

classifier (MLC), which is based on Mahalanobis distance. Since MLC is essentially a weighted

distance measure with the weighting matrix specified by sample covariance matrix, it is not partic-

ularly designed for classification. Consequently, it does not necessarily yield the best classification.

It has been shown in pattern classification that Fisher’s linear discriminant analysis (FLDA) is one

of best classifiers due to the fact that the Fisher’s ratio used by FLDA as a criterion is specifically

to be designed for classification where the Fisher ratio is defined by a ratio of the between-class

scatter matrix to the within-class scatter matrix. In both cases, these two classifiers require second-
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order statistics to calculate the weighting matrix for MLC and scatter matrices for FLDA. Accord-

ingly, MLC or FLDA may not work effectively if either data statistics cannot be well characterized

by second-order statistics or the second-order statistics used to characterize the data are not reli-

able. In the former case, classifiers must go beyond second-order statistics such as high-order sta-

tistics-based classifiers, projection pursuit, neural networks, etc. As for the latter case, two

circumstances may occur. One is that the used training samples are not appropriately selected. The

other is that the pool of selected training samples is too small to constitute credible statistics. The

support vector machines (SVMs) arises from such needs. First of all, since an SVM is designed to

find an optimal hyperplane to maximize the margin between two classes of training samples,

referred to as support vectors for separation, it does not require a large number of training samples

to achieve the best maximal separation margin. As a result, the SVM performance in classification

is very sensitive to selection of support vectors. For example, consider the following example

shown in Figure 33.7 where two datasets are denoted by S1, which consists of all data sample

vectors belonging to two classes marked by open circles “�” and crosses “
” and S2 which is set

S1 with exclusion of two data sample vectors, D� and F
 where the subscripts “�”, and “
” indi-

cates classes to which theses support vectors belong. In addition, two sets of training samples

fAx;B
;G�;H�g and fC
;E�g defined as support vectors are used for training SVMs.

Assume that the dotted line in Figure 33.7 is the optimal hyperplane. There are four cases worth

being discussed.

1. Implement an SVM using fC
;E�g as support vectors to classify the dataset S2 in which case it

reaches a perfect classification.

2. Implement an SVM using fAx;B
;G�;H�g as support vectors to classify the dataset S2 in

which case the data sample vectors are labeled by C
 and E� are within the margin but still in

correct sides of the optimal hyperplane.

3. Implement an SVM using fC
;E�g as support vectors to classify the dataset S1 in which case

the SVM misclassified D� and F
.
4. Implement an SVM using fAx;B
;G�;H�g as support vectors to classify the dataset S1 in

which case the SVM not only misclassified D� and F
, but also C
 and E�.

Optimal 
hyperplane 

x 

A 

Support 
vectors 

B 

G 

H
C 

E 

D F 

Support 
vectors 

Figure 33.7 Different sets of support vectors used by SVMs.
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Cases 1 and 2 demonstrate the significance of selecting appropriate support vectors. In addition,

these two cases also show that if the worst sample vectors are selected as support vectors, SVM

performs its best where in our cases, the set of support vectors, fC
;E�g is the worst sample vec-

tors compared to the set of fAx;B
;G�;H�g which are not. Because of that the SVM can be con-

sidered as the worst-case classifier compared to the statistics-based MLC and FLDA, which can be

considered average-case classifiers. To penalize those training samples which are inappropriately

selected, a set of slack variables ji specified by (2.63) in Chapter 2 are introduced in Case 2 to

account for the costs incurred by each of these training samples with 0 � ji � 1.

Cases 3 and 4 demonstrate linear nonseparability encountered in pattern classification where

linear classifiers have difficulty with classifying certain data sample vectors using linear decisions

regardless of how training samples are selected. In Figure 33.7, D� and F
 are such data sample

vectors. Like Case 2, a set of slack variables ji must be introduced in Cases 3 and 4 to penalize

those training samples which are linear nonseparable to account for their costs with 0 � ji � 1

and ji > 1, respectively. So, the four cases can be summarized as follows.

1. Case 1 achieves perfect classification without a need of slack variables.

2. Case 2 requires a set of slack variable jif g to penalize inappropriately selected training samples,

fAx;B
;G�;H�g, with 0 � ji � 1. However, if C
 and E� are used as support vectors, the SVM
can achieve perfect classification without using slack variables as Case 1.

3. Case 3 requires a set of slack variables ~ji
� �

to penalize linear nonseparable training samples,

D� and F
 with ~ji > 1.

4. Case 4 requires a set of slack variables, jif g [ ~ji
� �

to penalize inappropriately selected training

samples C
 and E� and linear nonseparable training samples, D� and F
, respectively, where a
set of slack variable jif g with 0 � ji � 1 similar to Case 2 is used to penalize inappropriately

selected training samples, C
 and E� and another set of slack variables with ~ji > 1 similar to

Case 3 to penalize linear nonseparable training samples, D� and F
. In this particular case, a

kernel must be used to resolve linear nonseparability issue to account for the case of using a set

of slack variables with ~ji > 1.

As noted in Figure 33.7, it is impossible to find linear lines to separate the two training samples, D�
and F
 no matter how linear decision boundaries are drawn in the data space. This implies that

using slack variables to penalize such training samples still cannot change the fact that,

fAx;B
;G�;H�g, SVM is a linear machine. To further resolve linear nonseparable problems, ker-

nel-based approaches have been developed for this purpose. The key idea is to map the original

data space into a high dimensional feature space via a nonlinear kernel mapping so that linear non-

separable problems in the original space can be resolved in this new feature space. Generally

speaking, two types of kernel-based approaches have been investigated. One is kernel-based trans-

formations which map component analysis-based transformations into a feature space such as ker-

nel-based PCA (KPCA) (Scholkopf et al., 1999b) described in Section 30.4.2, which is the most

popular kernel-based component analysis transformation. Its idea is to kernelize the projection

vectors produced by a component analysis in the original space. Using the PCA as an illustrative

example, the eigenvectors considered as projection vectors of the PCA are kernelized via Equa-

tions (30.9)–(30.13) by the sample covariance matrix formed by all the kernelized data sample

vectors in the new feature space. However, one of major difficulties with such kernel-based trans-

forms is computational complexity due to its use of all data sample vectors to perform the kernel-

ized component analysis transformation. If the number of data sample vectors is huge, kernel-

based transformations will incur computational problems which require tremendous computer

power to find kernelized projection vectors. This is a severe obstacle to overcome for hyperspectral
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imagery whose data size is generally very large. This may be one of reasons that kernel-based

transformations are not preferred in applications of hyperspectral data exploitation.

As an alternative, a second kernel-based approach is to kernelize the training samples to be used

for classification instead of kernelizing component analysis transformation for entire data space.

One of significant advantages resulting from such training sample-kernelization is that only train-

ing samples rather than entire data set are required to perform kernelization. This approach

turns out to be a major trend in developing new hyperspectral imaging algorithms, for example,

kernel-based SVM (KSVM) and kernel-based FLDA (KFLDA) discussed in Chapter 2. Similarly,

kernel-based FLSMA (KFLSMA) and kernel-based WACLSMA (KWACLSMA) can also be

derived for FLSMA and WACLSMA respectively by the same treatment (Liu, 2011). Nevertheless,

it should be noted that the benefit of using the second training samples-based approach to kerneli-

zation is also traded for a need of judicious selection of training samples which involves two

issues, how many training samples are sufficiently enough and how these training samples are

selected. In addition, there are also two issues in using kernels as well. One is selection of parame-

ters and their appripriate values for kernels to be used. The other is computational complexity

which is generally very high since the kernel-mapped feature space usually has very high dimen-

sions. In supervised classification, these two issues in selection of training samples are resolved by

prior knowledge obtained from ground truth such as spectral libraries, data bases, or visual inspec-

tion. But as noted in Section 33.2.2, supervised classification may not be reliable if the training

samples are neither representative nor accurate. This is often the case in real applications, specifi-

cally for hyperspectral images where many subtle material substances cannot be identified by

ground truth and visual assessment. Accordingly, unsupervised classification may be a better

approach. However, for unsupervised classification to be effective, the above-mentioned two issues

must be appropriately addressed. In doing so, one is to reduce the prior knowledge as much as

possible so that its impact on classification can be minimal. The constrained minimum energy

(CEM) described in Chapter 2 is derived for this purpose where only desire target knowledge is

required. The other is anomaly detection such as RX detector (RXD) developed by Reed and Yu

(1990) discussed in Section 33.4 where no prior knowledge is required at all. Unfortunately, when

CEM and RXD are extended to their kernel counterparts, KCEM and KRXD also run into the same

issues that the kernel-based component analysis transformations have where the sample covarian-

ce/correlation matrix must be calculated from the entire dataset to account for a posteriori infor-

mation. To mitigate this dilemma, current research being conducted in the Remote Sensing Signal

and Image Processing Laboratory (RSSIPL) at University of Maryland, Baltimore County (UMBC),

has been directed to addressing the issue of finding unsupervised training samples which can even-

tually solve issues arising in the kernel-based component analysis transformations. Most recently, a

third approach is to kernelize classifiers instead of training samples where LSMA can be further

extended to kernel-based LSMA where the three spectral unmixing methods, LSOSP, NCLS, and

FCLS are extended to their kernel counterparts in Chapter 15. Using similar ideas, the three least-

squares unsupervised algorithms, ATGP, UNCLS, and UFCLS, developed for finding unsupervised

target signal sources in Chapters 8 and 17 can also be extended to kernel-based ATGP (KATGP),

kernel-based UNCLS (KUNCLS), and kernel-based UFCLS (KUFCLS) (Wong, 2011).

Finally, an interesting approach to extending kernel-based classifiers on the used kernels is

worth pursuing (Liu, 2011). In Section 2.4.1, three types of commonly used kernels, radial

basis function (RBF) kernel, polynomial kernel, and sigmoid function kernel, are described.

Among them the RBF kernel given by

exp � 1

2s2
jjx� yjj2

� �
ð33:27Þ
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is the most popular one used by many kernel-based classifiers. Analogous to the treatment for the

WACLSMA presented in Chapter 13, Equation (33.27) can be further extended to weighted RBF

kernel by including a weighting matrix A as follows:

exp � 1

2s2
x� yð ÞTA x� yð Þ

� �
ð33:28Þ

where A is a positive definite matrix similar to the one defined in (14.2). Three special cases can

be derived from (33.28):

1. When A ¼ s2
AI, Equation (33.28) is reduced to (33.27) where s

2
A is different from s2 in (33.28).

2. When A¼R�1 or K�1, Equation (33.28) can be considered as Mahalanobis distance kernel.

3. When A is set to S�1
W , which is the inverse of the within-class scatter matrix, SW defined in

(13.1), Equation (33.28) becomes Fisher’s kernel similar to the one developed for Fisher’s

LSMA (FLSMA) in Chapter 14.

33.6 Hyperspectral Compression

Hyperspectral compression becomes a necessity when hyperspectral data volume goes beyond the

capability of used computers. This is particularly crucial for space-borne hyperspectral imaging

sensors with limited computing power due to the payload constraint. In addition, due to limitation

on bandwidth and data transmission rate, data preprocessing is generally required prior to data

being down-linked to the ground stations for transmission and communication. Data compression

provides an effective means of reducing data volumes and can be interpreted in various ways. From

an information theory point of view, data compression performs data compaction with either no

loss of entropy or entropy reduction. From a signal/image processing point of view, data compres-

sion performs lossless and lossy coding in the sense of some optimal criteria such as MSE, SNR,

and peak SNR (PSNR). Eventually, the effectiveness of a data compression technique must be

evaluated by a certain performance measure. One generally used for this purpose is compression

ratio (CR), which is defined by the ratio of the original data size to compressed data size.

Unfortunately, this criterion may not be applicable to hyperspectral data exploitation where sub-

sample and mixed-sample signal sources may be inadvertently suppressed if no extra care is taken

due to the fact that such signal sources may occupy only a single data sample vector or very few

data sample vectors. To address this issue, Chapter 19 develops the so-called exploitation-based

hyperspectral data compression (EHDC) for hyperspectral information compression (HIC), which

performs compression in terms of information not data itself such as CR. Since how much spectral

information provided by hundreds of spectral bands to be retained primarily varies with applica-

tions in data exploitation, EHDC is particularly designed for this purpose to meet various tasks.

Because of that, such an information compression is called exploitation-based compression in

terms of preserving information rather than reducing data size. To accomplish this goal, Chapters

20 and 21 are developed to derive two types of EHDC for HIC, DR, and band selection (BS) with a

significant difference between them. The main task of DR is to reduce the original data space to a

lower data space via various means such as transformations (e.g., PCA), feature extraction (e.g.,

FLDA), and classification (e.g., LSMA). This type of EHDC compacts the complete set of data

sample vectors in the original data into a manageable data space in a lossless or lossy manner so

that the desired spectral information can be retained and preserved for future data exploitation. In

contrast to DR, BS performs a completely different form of EHDC, which only selects a subset of

desirable spectral bands from the full band set. So, technically speaking, BS actually performs data
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reduction instead of data compression since no compression is involved in data processing other

than BS. On the other hand, BS is in fact an EHDC technique because it performs information

compression by only selecting a desired set of spectral bands for information preservation while

completely discarding the information provided by unselected spectral bands.

One common issue in implementing DR and BS is required knowledge of how many dimen-

sions needed to be retained, q or how many bands needed to be selected, ~q, a priori. Another com-

mon issue is the DR-retained dimensions and BS-selected bands are determined by and should

vary with the values of q and ~q. In other words, when these values are changed, all the DR-retained
dimensions and BS-selected bands are also different. As a consequence, traditional processes to

perform DR and BS may be applicable but may not be effective. In addition, since DR performs a

transformation to compact the entire original data into a new transformed data space compared to

BS, which only selects desired subset from a full set of bands where each band has its own infor-

mation that may not be shared by other bands, the number of bands required by BS, ~q, is generally
greater than the number of DR-transformed dimensions, q. EHDC develops a new concept of pri-

oritizing DR-processed dimensions and BS-selected spectral bands in Chapters 20 and 21 to

resolve this dilemma. The key idea is to design prioritization criteria to produce priority scores

that can be used to rank the order of DR-processed dimensions and BS-selected spectral bands. By

virtue of this ranking order DR and BS can be performed progressively in the sense that previous

selected dimensions and bands can be used for dimensionality expansion and reduction. To materi-

alize such a utility two dual processes, progressive dimensionality expansion and progressive

dimensionality reduction are then derived to perform progressive DR and BS in a forward or a

backward manner. It is worth noting that the progressive processes presented in Chapters 20 and

21 are different from sequential processes commonly used in signal and image processing, which

process data sample vectors one at a time in a one-shot process but do not process all data sample

vectors in a progressive fashion where subsequent processes improve the results produced by pre-

vious processes. Theoretically, the progressive dimensionality expansion process can start off with

the first dimension or the first band until it reaches the last dimension or last band. Such a progres-

sive process operates in a forward manner by expanding dimensionality. Similarly, the progressive

dimensionality reduction process can carried be out in an exactly reverse order where the progres-

sive process operates in a backward manner by starting full bands and the gradually reducing

dimensionality. Obviously, this progressive process can be made more efficient and effective if it

does not always begin with the first dimension or the first band for dimensionality expansion and

with the last dimension and last band for dimensionality reduction. In this case, a feasible range for

selected dimensions and bands can be very useful. The VD developed in Chapter 5 seems to pro-

vide good estimates for lower and upper bounds on this range as demonstrated by experiments in

Chapters 20 and 21 where the initial dimensionality estimates for both bounds can be determined

by the value of VD, denoted by nVD, as a lower bound, while the upper bound can be determined

by 2nVD, that is, nVD; 2nVD½ �.
Up to now, the traditional DR and BS are performed by fixing the value of q or ~q at a constant

value during data processing. In reality, this may not be necessarily the case. For example, in

LSMA different signatures pose different degrees of difficulty to be unmixed. Therefore, unmixing

all signatures using the same number of dimensions or bands may not be adequate. Accordingly, q

and ~q should be considered as variables and can adapt their values with different target signature

signal sources for data analysis, even for the same application. In this case, the traditional DR and

BS are not applicable to such dynamic changes. Fortunately, the two dual progressive processes for

dimensionality reduction and dimensionality expansion developed in Chapters 20 and 21 offer a

solution. Despite that nVD and 2nVD can be used to provide lower and upper bounds on these two

dual progressive processes to perform dimensionality expansion and reduction, it will be
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interesting and desirable to see if the range of nVD; 2nVD½ � can be narrowed down to a reason esti-

mate to save further computational complexity and cost because on some occasions the value of

VD, the range of nVD; 2nVD½ �, may be large. For example, for the Cuprite reflectance data in Figure

1.12, the value of VD is estimated as nVD¼ 22 where nVD; 2nVD½ � and the range may be still too

broad. In doing so a new concept, referred to as dynamic dimensionality allocation (DDA) is fur-

ther developed in Chapter 22. By taking advantage of DDA, the traditional DR and BS, referred to

as fixed-dimensionality reduction (FDR) and fixed dimensionality band section (FDBS) can be

extended to variable dimensionality reduction (VDR) and variable dimensionality band selection

(VDBS), respectively.

Suppose that there are p spectral signatures, mj

� �p

j¼1
assumed to be present in the data and dj is

the band dimensionality required for mj to be discriminated from other spectral signatures

mif gpi¼1;i 6¼j . Then DDA is developed to produce a variable dimensionality dj for VBDS to allocate

a number of spectral bands particularly for the signaturemj where dj ¼ nVD þ qj . The idea of DDA

originates from the Hamming code, which uses 4 information bits and 3 parity check bits for sin-

gle-bit correction and double-bit detection. Once again, the interpretation of the pigeon-hole prin-

ciple can also be used to shed light on the concept. Assume that the use of a spectral band is

dictated by a binary bit with “1” being “in use” and “0” being “no use.” Then the value of VD,

nVD in dj indicates how many information bits required to retain the desired information provided

by mj

� �p

j¼1
and qj additional bands in dj produced by DDA, referred to as parity-check bands cor-

respond to parity-check bits to be used by the Hamming codes to clarify the confusion among the p

spectral signatures, mj

� �p

j¼1
. With this interpretation, the upper bound 2nVD can be actually

decreased to nVD þ log nVD so that the range of nVD; 2nVD½ � can be further reduced to

nVD; nVD þ log nVD½ �. However, it should be noted that the benefit of using parity-check bands is

derived from a need of parity signature discrimination or classification. If an application only

involves signatures without performing further signature analysis such as endmember extraction,

target detection, then finding qj may not be necessary because there is no need for parity check

bands and nVD may suffice for BS.

Similarly, the exactly same concept of DDA can also be applied to DR where the parity-check

bands are now defined as parity-check transformed dimensions. However, as shown in Safavi

(2010), the qj produced in dj by DDA for an additional number of parity-check transformed dimen-

sions did not offer the same benefits for DR as it did for BS in Chapter 22. There is one major

reason attributed to the ineffective use of qj. For BS case, each spectral band is considered as a

separate signal source providing a different level of spectral information. This is not true for DR

because each dimension is a new dimension transformed by the complete set of data sample vec-

tors. As a result, each transformed dimension already contains necessary discrimination informa-

tion among mj

� �p

j¼1
. Therefore, additional qj parity-check transformed dimensions do not

necessarily increase discriminatory power among mj

� �p

j¼1
. However, it does not imply that DR

cannot be benefited by DDA. Besides, due to nature of DR the information in a lower transformed

data space is always included in a higher transformed data space compared to BS with each band

providing its own information that may not be shared by other bands. Accordingly, parity-check

bands works more effectively for VDBS than parity-check transformed dimensions for VDR.

Nevertheless, the additional parity-check transformed dimensions may not have lost their advan-

tages in DR. For example, according to the experiments conducted in Safavi (2010), LSMA was

supervised with the signature matrix provided by prior knowledge which remains the same during

the DR. In reality the knowledge of the signature matrix M is unknown, and the signatures in M

must be obtained directly from the data and the M should adapt to the values of q. Under such
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circumstance, the parity-check transformed dimensions derived from DDAwill provide benefits in

reducing instability and uncertainty caused by unsupervised knowledge. How much effect or

impact on improvement is yet to be seen and needs further investigation.

The concepts of VDR and VDBS were first introduced in conjunction with DDA as

dynamic dimensionality reduction and dynamic band selection in Safavi et al. (2011) and Liu

et al. (2011), respectively, where no de-correlation of dimensions and bands was included to

remove possible redundant dimensions and bands. As noted earlier, dimensionality de-corre-

lation may not be of great concern since a projection pursuit-based DR technique that pro-

duces mutually OP index components can be considered as a dimensionality de-correlation

process. However, this is not true for BS where the selected bands are original spectral bands

which have not been processed by any de-correlation technique. As a result, if a band is

selected because of its high priority score, its adjacent bands will also be very likely to be

selected due to the fact that they are closely correlated with the selected band and may also

have high priority scores. In order to address this issue, a new approach to BS, called pro-

gressive band selection (PBS), is particularly investigated in Chapter 23 as a result of PBDP

implemented in conjunction with DDA and band de-correlation during the process of BS.

More details on progressive band processing can be found in Chang (2013).

33.7 Hyperspectral Signal Processing

The hyperspectral data considered in Chapters 7–23 are three-dimensional image cubes where

each data sample is actually a pixel vector. So, the data processing carried out in this manner can

be viewed as hyperspectral image processing in Category A where two types of correlation are of

interest. One is correlation provided by data samples in terms of their spatial locations while pay-

ing no attention to interband spectral correlation. This is generally referred to as intersample spa-

tial correlation and is commonly used in traditional image processing to develop spatial domain-

based algorithms to perform tasks such as edge detection, region growing, clustering, segmenta-

tion, etc. Early data processing for remote sensing data, for example, geographical information

system (GIS), belongs to such an approach, which can be considered as spatial domain-based data

analysis. The other type of correlation is provided by data samples regardless of their spatial loca-

tion. It is a complete opposite to the above-mentioned intersample spatial correlation and can be

referred to as intrasample spectral correlation which has been explored and investigated in great

detail in Chapter 17. The key difference between these two types of correlation can be well

explained by the following example. Let S ¼ rif gNi¼1 be a set of N data sample vectors where ri ¼
ri1; ri2; . . . ; riLð ÞT is the ith data sample vector, L is the total number of spectral bands, and the i

indicates the ith spatial location of ri. Let Pð1Þ;Pð2Þ; . . . ;PðNÞf g denote a permutation of N spa-

tial locations, 1; 2; . . . ;Nf g. There are N! permutations of 1; 2; . . . ;Nf g with SP ¼
rPð1ÞrPð2Þ � � � rPðNÞ
� �

denoting one data matrix with data samples arranged in a particular order of

1; 2; � � � ;Nf g specified by a permutation Pð1Þ;Pð2Þ; � � � ;PðNÞf g. Now, the intersample correlation

matrix and intrasample correlation matrix provided by SP are 1=Nð ÞPN
i¼1 S

P SP
	 
T

and

1=Nð ÞPN
i¼1 rPðiÞr

T
PðiÞ, respectively. In comparison between these two sample correlation matrices,

it is very clear that
PN

i¼1 rPðiÞr
T
PðiÞ is independent of permutations and remains the same, that is,

PN
i¼1 rPðiÞr

T
PðiÞ ¼

PN
i¼1 rir

T
i for any permutation P even though the samples reshuffled by permuta-

tions, while
PN

i¼1 S
Q SQ
	 
T

will result in another different sample spatial correlation matrix if

another permutation Q is used. That is,
PN

i¼1 S
P SP
	 
T 6¼ PN

i¼1 S
Q SQ
	 
T

if P and Q are two
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different permutations of 1; 2; . . . ;Nf g since it alters spatial correlation among data samples when

data samples are re-arranged in different spatial coordinates. Nevertheless, intersample spatial cor-

relation and intrasample spectral correlation share one thing in common, that is, they both produce

sample statistics when N> 1. In this case, the intersample spatial correlation and intrasample spec-

tral correlation are more specifically referred to as sample intersample spatial correlation and sam-

ple intrasample spectral correlation to indicate the vital role of sample size plays in generation of

sample statistics by S ¼ rif gNi¼1. Throughout this book, only sample intrasample spectral correla-

tion is of interest, specifically, interband spectral information (IBSI) introduced in Chapter 17.

Three scenarios can be developed to effectively use such IBSI(S) with various sizes of training

sample pool S and can be described as follows:

1. The size of S, N¼ jSj, is very large:
In this scenario, the sample pool is the entire data sample vectors. This type of scenario is gener-

ally to use IBSI(S) to perform background suppression such as RX detector by Reed and Yu

(1990) and subpixel detector such as CEM in Chang (2003a) where the S consists of entire data

sample vectors.

2. The size of S, N¼ jSj, is relative small:

This scenario generally makes use of IBSI(S) to perform subtle target detection as demonstrated

in Chapter 17, to find targets of interest such as anomalies, endmembers, man-made objects,

particularly, those targets which are generally scattered and may not be clustered together as a

group or a region.

3. The size of S, N¼ jSj, is one, that is, N¼ 1:

The third scenario is the case that no sample statistics is available, that is, S is a singleton made

up of the data sample vector r itself only. Under such a circumstance, the only available data

information is the intrasample spectral correlation IBSI(r) that can be used for data analysis. As

a result, processing the data sample vector r becomes a one-dimensional (1D) signal processing

of r along wavelengths, which is exactly the topic to be covered in the second category of this

book, Category B: Hyperspectral Signal Processing.

Assume that a given data sample vector is a signature vector without reference to others (i.e.,

N¼ 1). What the best we can do is to explore as much spectral information across the entire

wavelength range as possible to specify the data sample vector for spectral characterization. For

this purpose, we can consider a general case that a spectral signature s(l) is a 1D continuous-

wavelength real-valued signal defined on a wavelength range of [a,b]. For s(l) to be

implemented in discrete signal processing, s(l) must be sampled according to a sampling inter-

val, Dl. For example, for a HYDICE data sample vector, there are 210 spectral channels over

[0.4mm, 2.5mm] with spectral resolution 10 nm, in which case, the sampling interval is Dl¼ 10

nm where s(lDl) where sðlDlÞ ¼ sl can be considered as the spectral value of the lth spectral

channel to form a spectral signature vector given by s ¼ s1; s2; . . . ; sLð ÞT where L is the total

number of samples corresponding to the total number of spectral channels. So, Dl actually deter-

mines the spectral resolution. When the interval is relatively small, the spectral bands can be

considered as contiguous spectral channels and the data sample vector is a hyperspectral signa-

ture. Otherwise, the spectral bands are considered as discrete spectral channels, and the data

sample vector is a multispectral signature.

Once a spectral signature s ¼ s1; s2; . . . ; sLð ÞT is acquired; there are two ways to process the

spectral value sl of the lth spectral channel in either a discrete manner, referred to as signal coding

or in a continuous manner, referred to as signal estimation.
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33.7.1 Signal Coding

Signal coding represents a signal by a finite number of discrete values, to be called code words. For

example, a real value can be encoded as a binary representation used by computers as bits. In

communications, coding is carried out by a quantizer with quantization levels specified by a

desired set of discrete values. So, the simplest encoder or quantizer is sign detector, known as

hard-limiter, which only detects the sign change of a signal or delta modulator with only two dis-

crete values. In hyperspectral signal processing, the signals are represented by real-valued spectral

values slf gLl¼1 across the wavelength range lDf gLl¼1 and IBSI(s) is spectral correlation provided by

L signals, slf gLl¼1 within the signature vector s ¼ s1; s2; . . . ; sLð ÞT. One earliest attempt to perform

signal coding on slf gLl¼1 was the spectral analysis manager (SPAM) by Mazer et al. (1988), which

is actually implemented as two sign detectors to detect a sign change between the current spectral

signal sl and spectral mean and a sign change in spectral signals between the two adjacent bands,

sl � 1 and sl þ 1, of the current being processed band, sl. SPAM was later improved by spectral

feature-based binary coding (SFBC) developed by Qian et al. (1996) by adding a third sign detec-

tor, which detects a sign change in spectral deviation from the spectral mean by a prescribed

threshold. Since each sign detector requires one bit to dictate the sign change, SPAM and SFBC

can be viewed as 2-bit encoder/qunatizer or 3-bit encoder/quantizer or sign detector, respectively.

The ideas of SPAM and SFBC are further explored in Chapter 24 to derive many variations from

information theory perspectives such as median partition (MP) binary coding, halfway partition

(HP) binary coding, and equal probability partition (EPP) binary coding. While these binary cod-

ing methods may be effective on many occasions, they may not be so if the signature vector s ¼
s1; s2; . . . ; sLð ÞT has a sophisticated and complex spectrum across L spectral signals slf gLl¼1. This is

because binary coding only uses up to 2-bit memory to store spectral changes of two adjacent

bands and may fail to capture and characterize their spectral behaviors. Nevertheless, these coding

methods are still considered as memoryless coding since they are implemented as 2-bit or 3-bit

quantizers as scalar quantizers (Gersho and Gray, 1992). In order to resolve this dilemma, a con-

cept of vector coding similar to vector quantization (Gersho and Gray, 1992) is introduced in Chap-

ter 25. One such vector coding is developed based on texture analysis, called spectral derivative

feature coding (SDFC) where the sign detector used by binary coding is replaced with a spectral

texture descriptor. Another is derived from arithmetic coding, called spectral feature probabilistic

coding (SFPC) which can keep track of all spectral changes across the entire set of slf gLl¼1. How-

ever, implementing vector coding generally requires high computational complexity. Chapter 26

further develops a progressive coding, called multiple-stage PCM (MPCM)-based progressive

spectral signature coding (MPCM-PSSC), which takes advantages of simplicity of scalar coding in

implementation as well as capability of vector coding in capturing spectral changes in slf gLl¼1.

33.7.2 Signal Estimation

The basic goal of the above-mentioned signal coding is designed to generate a credible fingerprint

of each of spectral signals, slf gLl¼1 so that these fingerprints provide sufficient information for their

own identities. But such signal coding does not necessarily tell you what the real signal is. In other

words, a signal identity and its fingerprint is one-to-one correspondence such as one-to-one identi-

fication between a person and his unique nickname, known as code words. Using a more specific

example for illustration, let slf gLl¼1 be used for data transmission. When one of these signals is

selected for transmission, it is its subscript instead of the signal itself being transmitted. According

to information theory, if a fixed length coding is used, only log L bits required to derive a set of L

code words corresponding to fingerprints of the L signals, slf gLl¼1 for signal transmission without
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actually transmitting the signal itself. This is because a signal can be identified by its subscript

through its code word used as its fingerprint. Such processing performed by signal coding is indeed

1D discrete-value signal processing and can be only used for hard-decision-made applications such

as signal detection, discrimination, classification, identification, but certainly cannot be used for

continuous value (real-valued) signal processing-based applications, which require soft decisions

such as signal quantification, in which case signal coding does not suffice to characterize slf gLl¼1

provided by a signature vector. In order to address this issue, the encoder used by signal coding

must be replaced by an operator that can reconstruct the signal to be processed for signal recovery.

This is particularly important and critical in applications in chemical/biological agent detection

where the agent concentration is crucial to determine various levels of threat and fatality. In this

case, each of slf gLl¼1 must be approximated by its estimate ŝl rather than its code word. PART VII

in this book is particularly developed for this purpose where three approaches, variable number

variable band selection for hyperspectral signal charcaterization in Chapter 27, Kalman filtering-

based estimation for hyperspectral signals in Chapter 28, and wavelet representation for hyper-

spectral signals in Chapter 29, are investigated.

33.8 Applications

Despite that only a few applications are presented in Category C in this book many other applica-

tions such as agriculture food quality and safety inspection, homeland security, chemical/biological

sensing, and medical imaging, have emerged as major players of hyperspectral imaging sensors in

various SPIE conferences, International Symposium on Spectral Sensing Research (ISSSR) and

IEEE symposia, conferences, and workshops. The applications presented in this book are only of

particular interest to the author’s preference. The two applications considered in Chapter 30 are

subpixel target size estimation and concealed target detection, both of which pose difficulties for

conventional spatial domain-based techniques since targets of interest in these applications cannot

be visualized by inspection and can only be resolved by their spectral not spatial information. As

noted in Sections 1.2 and 1.3, HyperSpectral imaging (HSI) is not a direct extension to Multi-

Spectral imaging (MSI). As a result, techniques developed for hyperspectral imaging are not neces-

sarily applicable to multispectral imagery. To make hyperspectral imaging techniques also effective

in multispectral image analysis, Chapter 31 explores differences between HSI and MSI and further

develops two approaches to nonlinear dimensionality extension, band dimensionality expansion

(BDE), and kernelization to expand the ability of HSI in dealing with multispectral imagery. Chap-

ter 32 presents one of promising applications to make HSI techniques also work for multispectral

imagery where the techniques developed in Chapter 31 are directly applied to magnetic resonance

images, which can be considered as multispectral images.

33.9 Further Topics

It is nearly impossible to write a book to cover all interesting topics as it was originally planned.

This is certainly the case for this book. In particular, real-time hyperspectral image processing has

become an emerging and booming area in recent years, and many research efforts have been

reported and published in the literature on a fast pace track. The following sections only provide a

preview of this topic. More details can be found in Chang (2013).

33.9.1 Causal Processing

Causal processing is a prerequisite to real-time processing. It only uses the data samples that

were already visited in the past but not those in the future for data processing. With this
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content, spatial domain-based literal techniques in traditional image processing are generally

not causal because they are primarily developed to take advantage of spatial correlation among

data samples. For example, texture-based and window-based image processing techniques are

usually not applicable to real-time processing. This is also true for most anomaly detection

techniques such as the commonly used anomaly detector, RX detector (Reed and Yu, 1990),

and CEM detector (Harsanyi, 1993) which are not real-time detectors because they require the

entire dataset to compute a global covariance or correlation matrix prior to detection. By con-

trast, the pixel-based nonliteral techniques developed for hyperspectral imagery are actually

causal processing techniques due to the fact that no interpixel spatial correlation is involved in

which case, the processing can be carried out pixel-by-pixel on a single pixel basis. A good

representative of this type of processing is least-squares-based LSMA techniques, LSOSP,

NCLS, and FCLS method, all of which can be implemented in real time since they process

data pixel by pixel without using any interpixel spatial correlation.

33.9.2 Real-Time Processing

The importance of real-time processing has been recently realized and recognized in many appli-

cations. In some applications, for example, on-board spacecraft data processing system, it is very

useful to have high levels of processing throughput. Specially, as data rate generated by spacecraft

instruments is increasing at speed, on-board data processing has been largely absent from remote

sensing missions. Many advantages can be benefited from real-time processing. One is detection of

moving targets. This is critical and crucial in battlefield when moving targets such as tanks or

missile launching vehicles pose real threat to ground troops. The real-time data processing pro-

vides timely intelligence information, which can help to reduce casualty. Another is on-board data

processing. For space-borne satellites, real-time data processing can significantly reduce mass stor-

age of data volume. A third advantage is chip design. Since it can be implemented in real time the

computational load can be largely reduced. Furthermore, it can also provide a payload relief in

aircrafts and satellites. Over the past years, many subpixel detection and mixed pixel algorithms

have been developed and shown to be very versatile. However, their applicability to real-time proc-

essing problems is generally restricted by the very complex computational workloads.

One key issue in designing a real-time processing algorithm is that real-time processing must be

performed in such a fashion that the output should be produced immediately at the same time as an

input comes in. As a matter of fact, no such a real-time processing algorithm exists in real world

applications since there is always a time lag resulting from data processing. However, form a prac-

tical appoint of view, such a time delay is determined by a specific application. For example, in

surveillance and reconnaissance applications, finding moving targets is imminent for decision

making and the responding time must be very short. In this case, very little time delay should be

allowed. As another example, for applications in fire damage management/assessment, the time to

respond can be minutes or hours in which case the allowable time delay can be longer. So, an

algorithm that can meet such a time constraint can be considered as a real-time processing algo-

rithm. Another key issue is that a real-time processing algorithm must be carried out causally in the

sense that the data samples used for processing are only those up to the data sample vector cur-

rently being processed (Gelb, 1974). More specifically, no future data sample vectors after the

current data sample vector can be allowed to be used for data processing. In many applications, the

concept of such causality is not considered as a prerequisite to real-time processing as long as an

algorithm can be fast processed with negligible time. In this case, it is generally considered as a

real-time processing algorithm. Nevertheless, technically speaking, such an algorithm is neither a

real-time processing algorithm nor a causal processing algorithm.
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33.9.3 FPGA Designs for Hardware Implementation

Over the last few years, several research efforts have been directed toward the incorporation of

specialized hardware for accelerating remote sensing-related calculations aboard airborne and sat-

ellite sensor platforms. Enabling on-board data processing introduces many advantages, such as

the possibility to reduce the data downlink bandwidth requirements at the sensor by both prepro-

cessing data and selecting data to be transmitted based upon predetermined content-based criteria.

On-board processing also reduces the cost and the complexity of ground processing systems so that

they can be affordable to a larger community. Other remote-sensing applications that will soon

greatly benefit from onboard processing are future sensor missions as well as future Mars and plan-

etary exploration missions, for which on-board processing would enable autonomous decisions to

be taken on board.

In recent years, rapid advances in VLSI technology have large impact on modern digital signal

processing. Over the past years, we have witnessed that the number of transistors per chip has

doubled about once a year. Therefore, VLSI design of complex algorithms becomes more and

more feasible. A major difficulty with implementing these algorithms in real time is computation

of the inverse of a matrix. Systolic arrays provide a possibility. But it requires a series of Givens

rotations to decompose a matrix into triangular matrices that can be implemented in real time.

Unfortunately, such Givens rotations cannot be realized in hardware. To resolve this issue, the Giv-

ens rotations must be performed by operations such as adds, ORs, XORs, shifts that can be realized

in hardware architecture. In order to do so, the COordinate Rotation DIgital Computer (CORDIC)

algorithm is developed by Volder (1959), which allows us to convert a Givens rotation to a series of

shifts-adds operations. Using systolic arrays architecture in conjunction with the CORDIC algo-

rithm, we can implement a matrix inverse computation in a set of shifts-adds operations. As a

result, it makes field programmable gate arrays (FPGA) design feasible to become a versatile tech-

nique for a wide range of applications in hyperspectral data exploitation because of its hardware

advantages for fast data processing. The insights into FPGA design with real-time implementation

have also been investigated in recent years. However, it also requires specific applications to real-

ize its benefits such as application-specific integrated circuit (ASIC). One is to make use of orthog-

onal subspace projection (OSP) to design various hyperspectral imaging algorithms for real-time

implementation. Its FPGA design was investigated in Wang (2003) and Chang and Wang (2008)

where a QR-decomposition (QRD)-based matrix triangularization approach along with the well-

known Feddeeva algorithm is used to calculate the pseudoinverse, U # ¼ UTU
	 
�1

UT for the OSP

detector and a CORDIC, key to the QR-decomposition in FPGA, with systolic array architecture

was also proposed. This FPGA design architecture has been successfully simulated with real

hyperspectral imagery.

Another application is to design real-time implementation of CEM which has shown prom-

ise in hyperspectral data exploitation where its systolic array implementation was developed in

Chang and Wang (2007). Unlike the OSP, CEM involves the computation of the inverse of the

sample spectral correlation matrix instead of computation of the pseudo-inverse of a matrix,

U # ¼ UTU
	 
�1

UT as does OSP. In this case, the CORDIC algorithm is readily applicable and

there is no need of using the Faddeeva algorithm for conversion. Depending upon how to com-

pute the input stream, two methods are of interest. Method 1 computes the input stream from

image pixel vectors directly, while Method 2 computes the sample spectral correlation matrix

R. These two module-based method were proposed in Chang and Wang (2007). For Method 1,

five modules are required. The first module is to design an array of CORDIC circuits where the

pixel stream is fed into the module and the upper triangular matrix R
upper
t is updated in real

time. This is followed by the second module which applies backsubstitution to compute the
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inverse of R
upper
t , invR. Then Module 3 uses a distributed arithmetic to calculate c ¼

R
upper
tð ÞT

h i�1

d ¼ invRT�d where the d is the desired target signature. Next, Module 4 is devel-

oped to obtain the desired filter vector w by finding w ¼ invR�c. Finally, Module 5 is to pro-

duce the results by applying an FIR filter to the current input pixel streams. Method 2 takes an

alternative approach by first computing the auto-correlation matrix R. Four modules are pro-

posed for this method. Module 1 is the design of auto-correlator that calculates the sample

correlation matrix R. It is then followed by Module 2, which uses the CORDIC circuits to

triangularize ½Rjd�. Next, Module 3 applies the backsubstitution to obtain the desired filter vec-

tor w. Finally, Module 4 produces the filter output energy dCEMðrÞ ¼ wTr for target detection

by applying an FIR filter to the current input pixel streams. Details of FPGA implementations

of OSP and CEM can be found in Wang (2003), Chang and Wang (2007), Chang and Wang

(2008), and Chang (2013).

33.9.4 Parallel Processing

Parallel processing is sometimes confused with real-time processing because it can also be imple-

mented in real time. As a matter of fact, these two processes are completely different. The need of

real-time processing arises from requirement of processing huge volumes of data and large data

storage resulting from data communication. The real-time processing provides a great advantage

of process-then-forget benefit in the sense that the processed data are immediately output and will

not be stored during the entire process. All pixel-based LSMA techniques can be generally imple-

mented to unmix data in real time. The need of parallel processing also arises from the demand of

processing enormous volumes provided by hyperspectral data. Parallel processing implements a

divide-and-conquer strategy in dividing the data to be processed into a number of small data sub-

sets so that all the data subsets can be processed in parallel so as to increase processing speed. So,

if a real-time processing algorithm does not have a parallel structure, it cannot be implemented as a

parallel processing algorithm. On the other hand, a parallel processing algorithm does not require

to be implemented in real time if it is not causal. While these two processes are not correlated with

each other, it is certainly desirable to have both in algorithm design by taking advantage of their

strengths to improve better data processing performance. As for designing and developing real-

time hyperspectral imaging algorithms, readers can consult the book by Chang (2013). With regard

to high performance computing via parallel processing, Plaza and Chang (2007a) provides a good

reference for those who are interested in this topic.

33.9.5 Progressive Hyperspectral Processing

Progressive hyperspectral data processing is a new concept that has not been much explored in the

past. Despite the fact that several chapters, Chapter 20–21, 23 and 26 in this book are devoted to

this particular subject it seems still in its infancy in many applications, specifically, satellite data

communication and transmission which must handle enormous data in an effective and efficient

manner. A progressive process decomposes hyperspectral data processing into a number of

sequential stages and processes data stage-by–stage progressively in the sense that the results

obtained by previous stages are retained and also used to improve subsequent stages where only

the new innovations information that is not available in previous stages is used for data updating.

This is quite different from a sequential processing which processes data samples in a sequential

manner where each data sample is fully processed not gradually processed. In addition to those

discussed in this book several new developments for progressive processing have been recently
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explored and investigated. Two major trends are of interest. One is progressive band processing in

various applications, for example, anomaly detection, endmemeber extraction, and linear spectral

unmixing. It is different from progressive band/spectral dimensionality processing in Chapters 20–

21, progressive band selection in Chapter 23 and progressive signature coding in Chapter 26 in the

sense that progressive band processing is developed for operators particularly designed for specific

applications where the operators work like a Kalman filter which can be updated by a recursive

equation and innovations information. Another trend is real-time causal processing where data

sample vectors are progressively processed in real time as well as causality in the sense that opera-

tors particularly designed for specific applications are updated by results obtained by those data

sample vectors already visited and the information provided by the current being processed data

sample vector via an iterative equation. These two trends pave the way of developing a new theory

for progressive hyperspectral processing which is one of main themes in Chang (2013).
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Glossary

2D ROC two-dimensional receiver operating characteristic, Chapter 3

3D ROC three-dimensional receiver operating characteristic, Chapter 3

AC-FLSMA abundance-constrained FLSMA, Chapter 13

ACE adaptive coherence estimation, Chapter 16

AC-LSMA abundance-constrained linear spectral mixture analysis, Chapters 14, 32

ACLS-FLDA abundance-constrained least squares FLDA, Chapters 13, 14

AMD adaptive matched detector, Chapter 2

ANC abundance non negativity constraint, Chapter 14

ASC abundance sum-to-one constraint, Chapter 14

ASD adaptive subspace detector, Chapter 2

AVIRIS airborne visible/infrared imaging spectrometer, Chapter 1

BD band de correlation, Chapter 23

BBOPC between band orthogonal projection criterion, Chapter 30

BDE band dimensionality expansion, Chapter 31

BEP band generation process, Chapter 31

BEP-CEM Chapter 31

BEP-KLSMA Chapter 31

BEP-LSMA Chapter 31

BEP-OSP generalized OSP, Chapter 31

BP band prioritization, Chapters 21, 23

BS band selection

C-SFPC circular-spectral feature probabilistic coding, Chapter 25

CA component analysis, Chapters 6, 17

CADCA computer-aided detection and classification algorithm, Chapter 30

CA-ULSMA component analysis-based unsupervised LSMA, Chapter 17

CBS constrained band selection, Chapters 6, 23

CCA convex cone analysis, Chapter 7

CEM constrained energy minimization, Chapters 2, 12

CMD covariance-based Mahalanobis distance, Chapter 16

CMFD covariance-based matched filter distance, Chapter 16

DDA dynamic dimensionality allocation, Chapter 22
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DP dimensionality prioritization, Chapter 20

DR dimensionality reduction, Chapters 6, 19, 20

DRBS dimensionality reduction by band selection, Chapters 19, 21, 23

DRT dimensionality reduction by transform, Chapters 6, 19, 20

DWT discrete wavelet transform, Chapter 29

EHDC exploitation-based hyperspectral data compression, Chapter 19

EEA endmember extraction algorithm, Chapters 7–11

EIA endmember initialization algorithm, Chapter 9

FDE feature dimensionality expansion, Chapter 31

FLSMA Fisher’s linear spectral mixture analysis, Chapter 13

FCLS fully constrained least squares method, Chapters 2, 14, 15

FPGA field programming gate arrays, Chapter 33

FVC-FLSMA feature vector constrained FLSMA, Chapter 13

GLRT generalized likelihood ratio test, Chapter 2

GML Gaussian maximum likelihood, Chapters 2, 12, 16

HFC Harsanyi–Farrand–Chang, Chapters 5, 33

HOS high-order statistics, Chapters 6, 8, 17, 33

HSI hyperspectral imaging

HYDICE hyperspectral digital imagery collection experiment, Chapter 1

IBSI interband spectral information, Chapter 17
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ICA independent component analysis, Chapters 6, 19, 20, 32

ID intrinsic dimensionality, Chapter 5

IDICA-DR initialization-driven ICA-DR, Chapters 6, 8–11, 32, 33

ID-EEA initialization-driven EEA, Chapter 9

ID-PIPP initialization-driven projection index-based prioritized projection pursuit,

Chapters 6, 20

IED-EEA initial endmember-driven EEA, Chapter 9

IN-FINDR iterative N-FINDR, Chapters 7–11

KFCLS kernel-based FCLS, Chapters 15, 31, 32

KNCLS kernel-based NCLS, Chapters 15, 31, 32

KFSCSP Kalman filter-based spectral characterization signal processing, Chapter 28

KFSSE Kalman filter-based spectral signature estimation, Chapter 28

KFSSD Kalman filter-based spectral signature discriminator, Chapter 28

KFSSI Kalman filter-based spectral signature identifier, Chapter 28

KFSSQ Kalman filter-based spectral signature quantifier, Chapter 28

KCEM kernel-based CEM, Chapter 31

KLSMA kernel-based LSMA, Chapters 15, 31, 32

KLSOSP kernel-based LSOSP, Chapters 15, 31, 32

KOSP kernel-based OSP, Chapters 15, 31

LCDA linearly constrained discriminant analysis, Chapter 12

LCMV linearly constrained minimum variance, Chapters 2, 12

LCVF lunar crater volcanic field, Chapter 1

LRT likelihood ratio test, Chapter 2

LS-LSMA least squares-based linear spectral mixture analysis, Chapters 12–15, 17

LSE least squares error, Chapters 2, 12

LSMA linear spectral mixture analysis, Chapters 2, 12–15, 17

LSOSP least squares OSP, Chapters 12–15
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LS-ULSMA least squares-based unsupervised LSMA, Chapter 17

LSU linear spectral unmixing

MD Mahalanobis distance, Chapter 16

M-PIPP mixed projection index-based prioritized projection pursuit, Chapters 6, 20

MLC maximum likelihood classifier, Chapters 12, 16

MNF maximum noise fraction, Chapter 6

MPCM multistage PCM, Chapter 26

MRI magnetic resonance imaging, Chapter 32

MSI multispectral imaging, Chapter 31

NAPC noise adjusted principal component, Chapter 6

NCLS non negativity constrained least squares method, Chapters 2, 13–15

N-FINDR N-finder algorithm, Chapters 7–11

NWHFC noise-whitened Harsanyi–Farrand–Chang, Chapters 5, 33

OC-ICA over-complete ICA, Chapters 31, 32

OC-LSU over-complete linear spectral unmixing, Chapter 31

OSP orthogonal subspace projection, Chapters 2, 12–15, 17, 27, 31, 32

PBDE progressive band dimensionality expansion, Chapter 21

PBDP progressive band dimensionality process, Chapter 21

PBDR progressive band dimensionality reduction, Chapter 21

PBS progressive band selection, Chapter 23

PC principal component, Chapters 6, 20, 31

PCA principal components analysis, Chapters 6, 20, 31

PIC projection index components, Chapters 6, 20

PIPP projection index-based projection pursuit, Chapters 6, 20

PI-PRPP projection index-based prioritized projection pursuit, Chapters 6, 20

PP projection pursuit, Chapters 6, 20

PPI pixel purity index, Chapters 7–11

PSC progressive signature coding, Chapter 26

PSDE progressive spectral dimensionality expansion, Chapter 20

PSDP progressive spectral dimensionality process, Chapter 20

PSDR progressive spectral dimensionality reduction, Chapter 20

PSSC progressive spectral signature coding, Chapter 26

PVE partial volume estimation, Chapter 32

REEA random EEA, Chapter 10

RICA-DR random ICA-DR, Chapter 10

RPPI random pixel purity index, Chapter 10

RMD correlation-based Mahalanobis distance, Chapter 16

RMFD correlation-based matched filter distance, Chapter 16

ROC receive operating characteristic, Chapter 3

RXD RX detector, Chapters 2, 16, 33

S-SFPC split-spectral feature probabilistic coding, Chapter 25

SAM spectral angle mapper, Chapters 16, 24

SC-N-FINDR successive N-FINDR, Chapters 8–11

SC-PCA successive PCA, Chapter 8

SDFC spectral derivative feature coding, Chapter 25

SFBC spectral feature-based binary coding, Chapters 24, 25

SFPC spectral feature probabilistic coding, Chapter 25

SGA simplex growing algorithm, Chapters 8–11
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SID spectral information divergence, Chapter 16

SM-EEA simultaneous EEA, Chapter 7

SM-N-FINDR simultaneous N-FINDR, Chapter 7

SPAM spectral analysis manager, Chapters 24, 25

SPICA-DR statistics prioritized ICA-DR, Chapter 6

SQ-EEA sequential EEA, Chapter 8

SQ-N-FINDR sequential N-FINDR, Chapter 8

SSE signal subspace estimate, Chapter 5

SM-PCA simultaneous PCA, Chapter 20

SSC spectral signature coding, Chapters 24–26

SVD singular value decomposition, Chapter 6

TCIMF target-constrained interference-minimized filter, Chapters 2, 12

TE target embededness, Chapter 4

TI target implantation, Chapter 4

UC-ICA under-complete ICA, Chapter 32

UC-LSMA under-complete linear spectral mixture analysis, Chapter 32

UFCLS unsupervised fully constrained least squares, Chapters 8, 17

UNCLS unsupervised non negativity constrained least squares, Chapters 8, 17

UTD uniform target detector, Chapter 16

UTSFA unsupervised training sample finding algorithm, Chapter 17

VCA vertex component analysis, Chapters 8, 10, 11

VD virtual dimensionality, Chapter 5

VS Virtual signature, Chapter 17

WAC-LSMA weighted abundance-constrained linear spectral mixture analysis, Chapter 14

WSCA wavelet-based signature characterization algorithm, Chapter 29

WSCA-SSC wavelet-based signature characterization algorithms for signature self-correction,

Chapter 29

WSCA-SST wavelet-based signature characterization algorithms for signature self-tuning,

Chapter 29

996 Glossary



Appendix

Algorithm Compendium

This appendix compiles many algorithms described in this book, most of which have been devel-

oped in the Remote Sensing Signal and Image Processing Laboratory (RSSIPL) at the University of

Maryland, Baltimore County. In order to help readers implement these important algorithms, their

MATLAB codes are also included for reference so that readers can write their own program codes

without relying on software packages such as ENVI, ERDAS, etc. Each algorithm is described

according to its functionality and its categorization and is then followed by its MATLAB codes.

A.1 Estimation of Virtual Dimensionality

The concept of virtual dimensionality (VD) was first coined in the book by Chang (2003a) and

later published by Chang and Du (2004). It is defined as the number of spectrally distinct signa-

tures present in the data and has received considerable interest in unsupervised hyperspectral data

exploitation since it was introduced in 2003. Many approaches have been developed for estimating

the value of VD. Nevertheless, the most popular algorithm to be used for this purpose is the one

developed by Harsanyi et al. (1994a), whose idea was the origin of VD. All the details of VD along

with techniques developed to estimate VD can be found in Chapter 5.

A.1.1 Harsanyi–Farrand–Chang Method

� Algorithm name: Harsanyi–Farrand–Chang (HFC) method
� Authors: J. C. Harsanyi and Chein-I Chang
� Category: preprocessing
� Designed criteria: eigenvlaues of sample correlation/covariance matrix
� Designed method: Neyman–Pearson detection theory
� Typical use (LOI’s addressed): estimation of number of spectral distinct signatures
� Inputs: reflectance or radiance cube
� Outputs: a positive integer and false alarm probability
� Assumptions: no prior knowledge required
� Sensitivity to LOI (target knowledge): moderate
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
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� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

The HFC method was first envisioned in Harsanyi et al. (1994a) to detect spectral signatures

present in AVIRIS data. It was then used to find the now-popular terminology, VD (Chapter 17

in Chang (2003a) and Chapter 5 in this book), which is defined as the number of spectral distinct

signatures and later published in Chang and Du (2004). It calculates the difference between

eigenvlaues in sample correlation matrix and sample covariance matrix and makes use of

Neyman–Pearson detector to determine the value of VD.

MATLAB Codes of HFC Method

function number=HFC(HIM,t);

%

% HFC gives the VD number estimated by given false alarm property using HFC

% method.

%

% There are two parameters,HFC(HIM,t) where the HIM is the

% Hyperspectral image cube, which is a 3-D data matrix

% [XX,YY,bnd] = size(HIM), XX YY are the image size,

% bnd is the band number of the image cube.

% t is the false alarm probability.

%

% HFC uses the HFC algorithm developed by Dr. Chein-I Chang,

% see http://www.umbc.edu/rssipl/. The Matlab code was

% programmed by Jing Wang in Remote Sensing Signal and

% Image Processing Lab.

%

[XX,YY,bnd] = size(HIM);

pxl_no = XX*YY;

r = (reshape(HIM,pxl_no,bnd))’;

R = (r*r’)/pxl_no;

u = mean(r,2);

K = R-u*u’;

%======HFC=====

D1=sort(eig(R));

D2=sort(eig(K));

sita=sqrt((D1.^2+D2.^2)*2/pxl_no);

P_fa=t;

Threshold=(sqrt(2))*sita*erfinv(1-2*P_fa);

Result=0;

for m=1:bnd

if ((D1(m,1)-D2(m,1))>Threshold(m,1))

Result(m,1)=1;
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else

Result(m,1)=0;

end

end

fprintf(’The VD number estimated is’);

disp(sum(Result));

number=sum(Result);

A.1.2 Noise-Whitened Harsany–Farrand–Chang (NWHFC) Method

� Algorithm name: noise-whitened Harsanyi–Farrand–Chang (HFC) method.
� Authors: Chein-I Chang
� Category: preprocessing
� Designed criteria: eigenvlaues of sample correlation/covariance matrix
� Designed method: Neyman–Pearson detection theory
� Typical use (LOI’s addressed): estimation of number of spectral distinct signatures
� Inputs: reflectance or radiance cube
� Outputs: a positive integer and false alarm probability
� Assumptions: no prior knowledge required
� Sensitivity to LOI (target knowledge): moderate
� Sensitivity to noise: low
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

The NWHFC method is a noise-whitened version of the HFC method and was developed in

Chang (2003a) and Chang and Du (2004). It requires a reliable method to estimate the noise

covariance matrix.

MATLAB Codes of the NWHFCMethod

function number=NWHFC(HIM,t)

%

% NWHFC gives the VD number estimated by given false alarm property using

% NWHFC method.

%

% There are two parameters, NWHFC(HIM,t) where the HIM is the

% Hyperspectral image cube, which is a 3-D data matrix

% [XX,YY,bnd] = size(HIM), XX YY are the image size,

% bnd is the band number of the image cube.

% t is the false alarm probability.

%

% HFC uses the NWHFC algorithm developed by Dr. Chein-I Chang,

% see http://www.umbc.edu/rssipl/. The Matlab code was

% programmed by Jing Wang in Remote Sensing Signal and

% Image Processing Lab.

%
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[XX,YY,bnd] = size(HIM);

pxl_no = XX*YY;

r = (reshape(HIM,pxl_no,bnd))’;

R = (r*r’)/pxl_no;

u = mean(r,2);

K = R-u*u’;

%======Noise estimation=====

K_Inverse=inv(K);

tuta=diag(K_Inverse);

K_noise=1./tuta;

K_noise=diag(K_noise);

%=====Noise whitening===

y=inv(sqrtm(K_noise))*r;

y=reshape(y’,XX,YY,bnd);

%=====Call HFC to estimate===

number=HFC(y,t);

A.2 Data Sphering

The purpose of data sphering is to allow users to analyze data structure characterized by high-order

statistics. Before doing so, the data samples characterized by the first two orders of statistics, that is,

mean and variances/covariances must be removed. The data sphering is designed to accomplish this

task. It first removes the data sample mean by setting data set centered at the origin and then

de-correlates data samples by zeroing all covariances via diagonalization of data sample covariance

matrix. Finally, it normalizes data sample variances to 1 by placing all de-correlated data samples on

the unit sphere. So, by means of matrix diagonalization and variance normalization, all data samples

characterized by high-order statistics are either inside the sphere characterized by sub-Gaussian or

outside the sphere characterized by super-Gaussian. Technically speaking, a whitening processing is

a part of data sphering that only de-correlates data samples without normalization. However, in statis-

tical signal processing and communications community as well as in many application whitening is

indeed data sphering. In this book, we particularly make a distinction between them. In other words,

whitening only de-correlates data samples by making co-variances zero but does not normalize vari-

ances to 1. It is only a part of data sphering. Details of data sphering can be found in Chapter 6.

� Algorithm name: data sphering
� Category: preprocessing
� Designed criteria: eigenvalues
� Designed method: sample covariance matrix
� Typical use (LOI’s addressed): preprocessing
� Inputs: reflectance or radiance cube
� Outputs: gray-scale images
� Assumptions: no prior knowledge required
� Sensitivity to LOI (target knowledge): high to high-order statistics
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� Sensitivity to noise: low
� Operating Bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

Data sphering, also known as a whitening processing in statistical signal processing and

communication, is a commonly used method to remove data sample vectors characterized

by the first two-order statistics. It is a required preprocessing step prior to ICA (Hyvarinen

and Oja, 2001).

MATLAB Codes of Data Sphering

function sphered_data=data_sphering(HIM)

% Initial variables

[row column band]=size(HIM);

% Center the data

HIM_row=reshape(HIM,row*column,band);

HIM_zeromean=HIM_row-repmat(mean(HIM_row),row*column,1);

cov=HIM_zeromean’*HIM_zeromean/(row*column);

% Eigen decomposition

[V D]=eig(cov);

% Transform the data set

for i=1:band,

sphered_data(i,:)=(V(:,i)’*HIM_zeromean’)./(D(i,i)^.5*row);

end

% Transform the data back

sphered_data=reshape(sphered_data’,row,column,band);

A.3 Dimensionality Reduction by Transform

Four transformations are used to perform data dimensionality reduction (DR). Two are of second-

order statistics-based transformations, data variance-based principal components analysis (PCA),

and signal-to-noise ratio (SNR)-based maximum noise fraction (MNF). The other two are of high-

order statistics (HOS)-based transformations, independent component analysis (ICA), and high-

order statistical moment-based transforms. Details of these four DR transformations can be found

in Chapter 6.

A.3.1 PCA

� Algorithm name: principal components analysis (PCA)
� Category: component analysis-based transform
� Designed criteria: eigenvalues
� Designed method: sample covariance matrix
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� Typical use (LOI’s addressed): data representation by eigenvectors
� Inputs: reflectance or radiance cube
� Outputs: gray-scale images
� Assumptions: no prior target knowledge required
� Sensitivity to LOI (target knowledge): targets of high-order statistics
� Sensitivity to Noise: low
� Operating Bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

PCA (Gonzalez and Woods, 2002) is probably the most widely used component analysis trans-

form that allows users to data in terms of eigenvalues/eigenvectors via eigen-decomposition

where data are preserved and retained according to data variances in the descending order.

MATLAB Codes of PCA

function [PCs]=PCA(HIM,M);

bnd=size(HIM,3);

xx=size(HIM,1);

yy=size(HIM,2);

x=reshape(HIM,xx*yy,bnd);

x=x’;

L=size(x,1);

K=size(x,2);

u=mean(x,2); %dimension of u is 1*L

x_hat=x-u*ones(1,K);

m=mean(x,2);

C=(x*x’)/size(x,2)-m*m’;

%===========

[V,D]=eig(C);

d=(diag(D))’;

[oo,Index]=sort(d);

for m=1:L

D_sort(1,m)=d(1,Index(1,Lm));

V_sort(:,m)=V(:,Index(1,Lm));

end

D=diag(D_sort);

V=V_sort;

D=D(1:M,1:M);

V=V(:,1:M);

1002 Appendix: Algorithm Compendium



%====for the matrix with full column rank, so the

A=V’;

x_whitened=A*(x_hat);

PCs=x_whitened;

A.3.2 MNF

� Algorithm name: maximum noise fraction (MNF)
� Authors: A.A. Green, M. Berman, P. Switzer, and M.D. Craig
� Category: component analysis-based transform
� Designed criteria: signal-to-noise ratio
� Designed method: sample covariance matrix
� Typical use (LOI’s addressed): data representation by SNR
� Inputs: reflectance or radiance cube
� Outputs: gray-scale images
� Assumptions: no prior target knowledge required
� Sensitivity to LOI (target knowledge): high-order statistics
� Sensitivity to Noise: high
� Operating Bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

MNF was developed by Green et al. (1988) and further modified by Lee et al. (1990) and

referred to as Noise Adjusted Principal Component (NAPC) transform. It represents data in

terms of SNR rather than data variances as PCA does.

MATLAB Codes of MNF

function [ImageCub_MNF,Matrix_of_Vector]=MNF(ImageCub);

Last_volumn=-10000000000.0000001;

[height,width,NumberOfSpectrum]=size(ImageCub);

ImageCub_MNF=zeros(height,width,NumberOfSpectrum);

% ————————————————— begin to compute Matrix_of_Vector ———————————————— %

meanSpect=zeros(NumberOfSpectrum,1);

for II=1:height

for JJ=1:width

meanSpect=meanSpect+squeeze(ImageCub(II,JJ,:))/height/width;

end

end

TotalCovariance=zeros(NumberOfSpectrum,NumberOfSpectrum);

for II=1:height

for JJ=1:width

TotalCovariance=TotalCovariance+(squeeze(ImageCub(II,JJ,:))-

meanSpect)*(squeeze(ImageCub(II,JJ,:))-meanSpect)’/height/width;

end
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end

Matrix_F=zeros(NumberOfSpectrum,NumberOfSpectrum);

Cov_inv=inv(TotalCovariance);

for II=1:NumberOfSpectrum

Matrix_F(II,II)=sqrt(Cov_inv(II,II));

end

adjusted_Cov=Matrix_F’*TotalCovariance*Matrix_F;

[V,D]=eig(adjusted_Cov);

eig_value=zeros(NumberOfSpectrum,2);

for II=1:NumberOfSpectrum

eig_value(II,1)=D(II,II);

eig_value(II,2)=II;

end

%disp(eig_value);

V_sort_min_to_max=sortrows(eig_value,1);

Matrix_of_Vector_before=zeros(NumberOfSpectrum,NumberOfSpectrum);

for II=1:NumberOfSpectrum

Matrix_of_Vector_before(:,II)=squeeze(V(:,V_sort_min_to_max(NumberOf-

Spectrum-II+1,2)));

end

Matrix_of_Vector=Matrix_F*Matrix_of_Vector_before;

% ——————————————— end of computing Matrix_of_Vector ———————————————— %

for II=1:height

for JJ=1:width

r=squeeze(ImageCub(II,JJ,:))-meanSpect;

ImageCub_MNF(II,JJ,:)=Matrix_of_Vector’*r;

end

end

A.3.3 ICA

� Algorithm name: ICA
� Category: component analysis-based transform
� Designed criteria: infinite-order statistics
� Designed method: blind source separation via a linear mixture model
� Typical use (LOI’s addressed): no prior knowledge is required
� Inputs: reflectance or radiance cube
� Outputs: gray-scale images
� Assumptions: no prior target knowledge required
� Sensitivity to LOI (target knowledge): high
� Sensitivity to noise: low
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:
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ICA (Hyvarinen et al., 2001) is widely used in blind source separation via a linear mixture

model, which assumes that there exists at most one Gaussian source. A fast algorithm developed

by Hyvarinen and Oja (1997), called FastICA, is the most used algorithm to implement ICA.

When ICA is implemented to perform DR, it suffers from a serious issue that the results are not

repeatable and inconsistent due to its use of random initial conditions. As a result, the ICA-gener-

ated independent components (ICs) generally appear in a random order. In this case, the IC appear-

ing earlier does not necessarily imply that it is more important or significant than that generated

later. In order to resolve this issue, three versions of ICA, referred to as ICA-DR1,

ICA-DR2, and ICA-DR3, have been proposed by Wang and Chang (2006a, 2006b) and re-named

as statistics prioritized ICA-DR (SPICA-DR), random ICA (RICA-DR), and initialization driven

ICA-DR (IDICA-DR) in Sections 6.4.1–6.4.3, respectively. In all the three algorithms, an algo-

rithm developed by Hyvarinen and Oja (1997), called FastICA, is modified and implemented in

MATLAB codes to realize ICA. To distinguish it from the original FastICA, it is named “My

FastICA” and is provided as follows.

MATLAB Codes of My FastICA

function [ICs]=My_fastica_v5(HIM,M);

bnd=size(HIM,3);

xx=size(HIM,1);

yy=size(HIM,2);

x=reshape(HIM,xx*yy,bnd);

x=x’;

L=size(x,1);

K=size(x,2);

%====Data sphering =====

u=mean(x,2); %dimension of u is 1*L

x_hat=x-u*ones(1,K);

m=mean(x,2);

C=(x*x’)/size(x,2)-m*m’;

%===========

[V,D]=eig(C);

A=inv(sqrtm(D))*V’; % A is the whitening matrix....

x_whitened=A*(x_hat);

%=======

clear x;

clear x_hat;

%====rank the eigenvalues, which is used for using the eigenvector as

%initialization

%

% d=(diag(D))’;

% [oo,Index]=sort(d);

%

%

% for m=1:L
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% D_sort(1,m)=d(1,Index(1,L+1-m));

% V_sort(:,m)=V(:,Index(1,L+1-m));

% end

%

% D=diag(D_sort);

% V=V_sort;

%=====

%====Sphering finished

threshold = 0.0001;

B=zeros(L);

for round=1:M

fprintf(’IC %d’, round);

%===initial condition ===

w=rand(L,1)-0.5;

% w=V(:,round); Eigenvectors initialization

%===

w=w-B*B’*w;

w=w/norm(w);

wOld=zeros(size(w));

wOld2=zeros(size(w));

i=1;

while i<=1000

w=w-B*B’*w;

w=w/norm(w);

fprintf(’.’);

if norm(w-wOld)<threshold | norm(w+wOld)<threshold

fprintf(’Convergence after %d steps\n’, i);

B(:,round)=w;

W(round,:)=w’;

break;

end

wOld2=wOld;

wOld=w;

w=(x_whitened*((x_whitened’*w).^3))/K-3*w;

w=w/norm(w);

i=i+1;

end

if (i>1000)

fprintf(’Warning! can not converge after 1000 steps \n, no more

components’);

break;

end

round=round+1;

end

ICs=W*x_whitened;
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% figure;

% for m=1:M

% s=reshape(abs(ICs(m,:)),xx,yy); subplot(6,8,m);

% imagesc(s); axis off;colormap(gray);

% end

MATLAB Codes of SPICA-DR (ICA-DR1)

function [IC_sorted]=sort_IC_DR1(HIM,M);

clear J;

bnd=size(HIM,3);

xx=size(HIM,1);

yy=size(HIM,2);

[ICs]=My_fastica_v5(HIM,M);

ICs=abs(ICs);

% %====Show the ICs in the original order===

% figure;

% for m=1:size(ICs,1)

% s=reshape(abs(ICs(m,:)),xx,yy);

% s=255*(s-min(min(s))*ones(size(s,1),size(s,2)))/(max(max(s))

-min(min(s)));

% temp=mean(reshape(s,xx*yy,1));

% subplot(6,8,m); imshow(uint8(s));

% % title(m);

% %

% end

%======Calculate the contrast function

for m=1:size(ICs,1);

s=ICs(m,:);

var1=var(s);

mean1=mean(s);

sita=sqrt(var1);

skew_temp=sum((s-mean1).^3)/(xx*yy-1);

kurt_temp=sum((s-mean1).^4)/(xx*yy-1);

J(1,m)=(skew_temp.^2)/12+((kurt_temp-3).^2)/48;

end

%======IC sorting ========

[a,b]=sort(J);

b=flipud(b’);

IC_sorted=ICs(b’,:);

%=========Show the ICS after sorting...
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figure;

for m=1:size(ICs,1)

s=reshape(abs(IC_sorted(m,:)),xx,yy);

s=255*(s-min(min(s))*ones(size(s,1),size(s,2)))/(max(max(s))

-min(min(s)));

temp=mean(reshape(s,xx*yy,1));

subplot(6,8,m); imshow(uint8(s));

% title(m);

%

end

MATLAB Codes of RICA-DR (ICA-DR2)

function [IC_selected]=sort_IC_DR2(HIM,M,run_times);

bnd=size(HIM,3);

xx=size(HIM,1);

yy=size(HIM,2);

fprintf(’first ICA run \n’);

[ICs]=My_fastica_v5(HIM,M*2);

set1=abs(ICs);

set_com=set1;

size1=ones(1);

for round=1:run_times

fprintf(’ICA run, order is %d \n’,round+1);

[ICs]=My_fastica_v5(HIM,2*M);

set2=abs(ICs);

set_com_new=[];

distance=0;

for m=1:size(set_com,1)

for n=1:size(set2,1)

temp1=sqrt(sum(set_com(m,:).^2)); % SAM

temp2=sqrt(sum(set2(n,:).^2));

distance(m,n)=acos(sum(set_com(m,:).*set2(n,:))/(temp1*temp2));

end

t=distance(m,:)<=0.5;

if (sum(t)>=1)

set_com_new=cat(1,set_com_new,set_com(m,:));

end

end

set_com=set_com_new;

fprintf(’the size of set_Com is’);

size(set_com_new)

size1(round,1)=size(set_com_new,1);

if (size(set_com_new,1)<=M)
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break;

end

end

IC_selected=set_com;

MATLAB Codes of IDICA-DR (ICA-DR3)

function [Loc,Sig]=My_ATGP(HIM,M);

bnd=size(HIM,3);

xx=size(HIM,1);

yy=size(HIM,2);

r=reshape(HIM,xx*yy,bnd);

r=r’;

%=====Find the first point

temp=sum(r.*r);

[a,b]=max(temp);

if (rem(b,xx)==0)

Loc(1,1)=b/xx;

Loc(1,2)=xx;

elseif (floor(b/xx)==0)

Loc(1,1)=1;

Loc(1,2)=b;

else

Loc(1,1)=floor(b/xx)+1; % y

Loc(1,2)=b-xx*floor(b/xx); % x

end

Sig(:,1)=r(:,b);

fprintf(’1\n’);

%==========

for m=2:M

U=Sig;

P_U_perl=eye(bnd)-U*inv(U’*U)*U’;

y=P_U_perl*r;

temp=sum(y.*y);

[a,b]=max(temp);

if (rem(b,xx)==0)

Loc(m,1)=b/xx;

Loc(m,2)=xx;

elseif (floor(b/xx)==0)

Loc(m,1)=1;

Loc(m,2)=b;
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else

Loc(m,1)=floor(b/xx)+1; % y

Loc(m,2)=b-xx*floor(b/xx); % x

end

Sig(:,m)=r(:,b);

disp(m)

end

%

% figure; imagesc(HIM(:,:,30)); colormap(gray); hold on

% axis off

% axis equal

% for m=1:size(Loc,1)

% plot(Loc(m,1),Loc(m,2),’o’,’color’,’g’);

% text(Loc(m,1)+2,Loc(m,2),num2str(m),’color’,’y’,’FontSize’,12);

% end

%

Since IDICA-DR requires an initialization algorithm to generate a specific set of initial condition,

the following My FastICA implements the FastICA using ATGP-generated data sample vectors

(program is called My_ATGP) as its initial condition

MATLAB Codes of My FastICA for IDICA-DR (ICA-DR3)

function [ICs]=My_fastica_DR3(HIM,M);

bnd=size(HIM,3);

xx=size(HIM,1);

yy=size(HIM,2);

x=reshape(HIM,xx*yy,bnd);

x=x’;

L=size(x,1);

K=size(x,2);

%====Sphering =====

u=mean(x,2); %dimension of u is 1*L

x_hat=x-u*ones(1,K);

m=mean(x,2);

C=(x*x’)/size(x,2)-m*m’;

%===========

[V,D]=eig(C);

A=inv(sqrtm(D))*V’; % A is the whitening matrix....

x_whitened=A*(x_hat);

%====for cuprite data===

clear x;

clear x_hat;

%=========for initialization
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[Loc,Sig]=My_ATGP(reshape(x_whitened’,xx,yy,L),M);

W_initial=Sig;

threshold = 0.0001;

B=zeros(L);

%===============find the first point=========

for round=1:M

fprintf(’IC %d’, round);

%===Initial condition

w=W_initial(:,round);

%===

w=w-B*B’*w;

w=w/norm(w);

wOld=zeros(size(w));

wOld2=zeros(size(w));

i=1;

while i<=1000

w=w-B*B’*w;

w=w/norm(w);

fprintf(’.’);

if norm(w-wOld)<threshold | norm(w+wOld)<threshold

fprintf(’Convergence after %d steps\n’, i);

B(:,round)=w;

W(round,:)=w’;

break;

end

wOld2=wOld;

wOld=w;

w=(x_whitened*((x_whitened’*w).^3))/K-3*w;

w=w/norm(w);

i=i+1;

end

if (i>1000)

fprintf(’Warning! cannot converge after 1000 steps \n, no more

components’);

break;

end

round=round+1;

end

ICs=W*x_whitened;

figure

for m=1:M

s=reshape(abs(ICs(m,:)),xx,yy);

s=255*(s-min(min(s))*ones(size(s,1),size(s,2)))/(max(max(s))
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-min(min(s)));

temp=mean(reshape(s,xx*yy,1));

subplot(5,6,m); imshow(uint8(s));

%

end

A=W;

% x_re_ICA=V*sqrtm(D)*(A*ICs)+u*ones(1,xx*yy);

A.3.4 HOS-DR

Variance-based PCA and SNR-based MNF represent second-order statistics-based component

analysis transformations to perform DR. At the other extreme, ICA is an infinite-order statistics-

based component analysis that makes use of mutual information to measure statistical indepen-

dency among all ICs. However, due to complexity of implementing mutual information, the com-

monly used FastICA is actually developed by combining the third and fourth moments as a

criterion to measure the dependency among its generated components. So, technically speaking,

the FastICA-generated components are not really statistically independent. Instead, they can be

only considered as high-order statistically dependent. HOS-DR is developed to extend DR trans-

formation with order of statistics higher than 2 (Ren et al., 2006). In this context, the FastICA

(Hyvarinen and Ojha, 1997) can be considered as a special case of HOS-DR transformation.

� Algorithm name: high-order statistics DR (HOS-DR)
� Authors: H. Ren and Chein-I Chang
� Category: component analysis-based transform
� Designed criteria: statistical moments higher than 2
� Designed method: moment projection
� Typical use (LOI’s addressed): no prior knowledge is required
� Inputs: reflectance or radiance cube
� Outputs: gray-scale images
� Assumptions: no prior target knowledge required
� Sensitivity to LOI (target knowledge): high
� Sensitivity to noise: low
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

ICA is widely used in blind source separation via a linear mixture model, which assumes that

there exists at most one Gaussian source. A fast algorithm developed by Hyvarinen and Oja

(1997), called FastICA, is the most used algorithm to implement ICA.

MATLAB Codes of HOS-DR

function [ICs]=high_order(HIM,M,k,Initial);

% HIM is the image cube.
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% M is the number of components to generated using high order

% k is the order of statistics. For example, k=3, is the skewness, k=4, is

% the kurtosis, k=5 is the 5th moment, and so on...

% Initial condition preference, 0 is the random initial, 1 is the eigen

% initial, 2 is the unity initial. default is 0

if nargin < 3

fprintf(’Please identify the order of statistics!’);

ICs=[];

else

if nargin < 4

Initial=0;

end

bnd=size(HIM,3);

xx=size(HIM,1);

yy=size(HIM,2);

x=reshape(HIM,xx*yy,bnd);

x=x’;

L=size(x,1);

K=size(x,2);

%===input x is a matrix with size=L*K;

%====Sphering =====

u=mean(x,2); %dimension of u is 1*L

x_hat=x-u*ones(1,K);

%===jing’s code of cov

m=mean(x,2);

C=(x*x’)/size(x,2)-m*m’;

%===========

[V,D]=eig(C);

A=inv(sqrtm(D))*V’; % A is the whitening matrix....

x_whitened=A*(x_hat);

clear x;

clear x_hat;

% Seperating , using high-order

threshold = 0.01;

B=zeros(L);

y=x_whitened;

W=ones(1,L);

P_U_perl=eye(bnd);

for round=1:M
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fprintf(’IC %d’, round);

%===initial condition ===

switch (Initial)

case 0

w=rand(L,1);

case 1

w=V(:,round); % Final version

case 2

w=ones(L,1);

otherwise

w=rand(L,1);

end

i=1;

while i<=100 % maximum times of trying..

a=(y.*repmat((w’*y).^(k-2),bnd,1))*y’; %skewness

a=a/K; % get the sample mean as expectation

[V,D]=eig(a);

D=abs(D);

[C,I]=max(diag(D));

V1 = V(:,I);

fprintf(’.’);

distance(round,1,i)=norm(w-V1);

distance(round,2,i)=norm(w+V1);

if norm(w-V1)<threshold | norm(w+V1)<threshold

fprintf(’Convergence after %d steps\n’, i);

B(:,round)=w;

W(round,:)=w’;

break;

end

w=V1;

i=i+1;

end

%===if not converge. then use the results after 10 iterations

B(:,round)=w;

W(round,:)=w’;

%=======

P_U_perl=eye(bnd)-W’*inv(W*W’)*W;

y=P_U_perl*y;

end

ICs=W*x_whitened;

figure;

for m=1:M
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s=reshape(abs(ICs(m,:)),xx,yy);

s=255*(s-min(min(s))*ones(size(s,1),size(s,2)))/(max(max(s))

-min(min(s)));

temp=mean(reshape(s,xx*yy,1));

subplot(5,6,m); imshow(uint8(s));

%

end

end

A.4 Endmember Extraction Algorithms

The MATLAB codes of three major endmember extraction algorithms, pixel purity index (PPI)

algorithm with fast iterative PPI (FIPPI), N-finder algorithm (N-FINDR), simplex growing algo-

rithm (SGA) are provided in this section.

A.4.1 Pixel Purity Index

� Algorithm name: PPI
� Authors: J. Boardman
� Category: convex geometry
� Designed criteria: orthogonal projection
� Designed method: randomly generated vectors, called skewers
� Typical use (LOI’s addressed): endmember extraction with number of endmembers to be known
� Inputs: reflectance or radiance cube
� Outputs: endmembers
� Assumptions: the number of skewers to be generated, K must be sufficiently large
� Sensitivity to LOI (target knowledge): high to K as well as skewers
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

PPI was first developed by Boardman to extract endmembers (Boardman, 1994) and is available

in ENVI software. Unfortunately, its detailed steps in implementation are not available for users

who would like to make modifications or changes at their discretion. Its MATLAB codes pro-

vided in the following serve this purpose. It is developed based on the concept of the convex

geometry and the criterion of orthogonal projection. It first generates a set of K random unit

vectors, called skewers, to cover all possible projection directors and then orthogonally projects

all data sample vectors on these skewers to find the maximal and minimal orthogonal projections

of each skewer. For each data sample vector, it counts the number of skewers on which its

orthogonal projections yield either maximal or minimal projections. This count is referred to as

the PPI count, which will be used to determine whether or not a particular data sample vector is

an endmember. In doing so, a threshold needs to be specified in advance. In ENVI, this is done

manually. In addition, since its skewers are generated randomly, the results are not repeatable. In

other words, the same user running PPI in different times or different users running PPI at

the same time will all have different results. This serious drawback can further be fixed by
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initialization-driven PPI (ID-PPI), such as a fast iterative PPI (FIPPI) algorithm (Chang and

Plaza, 2006), and random PPI (RPPI) (Chang et al., 2010).

MATLAB Codes of PPI

function [eeindex score duration]=PPI(imagecub,skewer_no)

% The Matlab PPI algorithm

% ————— Input variables ———————————

% ’imagecub’ - The hyperspectral image cube

% ’skewer_no’ - The number of skewers

%

% ————— Output variables —————————

% ’eeindex’ - The locations of the final endmembers (x,y)

% ’score’ - The PPI score of each pixel

% ’duration - The number of seconds used to run this program

% Initial Variables

[rows columns bands]=size(imagecub);

score=zeros(rows*columns,1);

switch_results=1;

% Record the start CPU time

start=cputime();

% Separate the total number of skewers into several sets and each set uses 500

skewers

skewer_sets=floor(skewer_no/500)+1;

last_skewer_no=mod(skewer_no,500);

for i=1:skewer_sets

if (skewer_sets-i) == 0,

skewer_no=last_skewer_no;

else

skewer_no=500;

end

% Generate skewers

rand(’state’,sum(100*clock));

skewers=rand(bands,skewer_no)-0.5;

% Normalize skewers

for i=1:skewer_no,

skewers(:,i)=skewers(:,i)/norm(skewers(:,i));

end

% project every sample vector to the skewers
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projcub=reshape(imagecub, rows*columns, bands);

proj_result=projcub*skewers;

% Find the extrema set for each skewer and add 1 to their score

for i=1:skewer_no,

max_pos=find(proj_result(:,i)==max(proj_result(:,i)));

min_pos=find(proj_result(:,i)==min(proj_result(:,i)));

score(max_pos)=score(max_pos)+1;

score(min_pos)=score(min_pos)+1;

end

end

% Find the pixel which has score larger than 0

result=find(score>0);

% Find the position of the p highest scores

%result=[];

%for i=1:skewer_no,

% result=[result find(max(score)==score,1)];

% score(find(max(score)==score,1))=0;

%end

% Convert one dimension to two dimension index

if(switch_results),

eeindex=translate_index(result,rows,columns,1);

else

if(mod(result,rows)==0)

eeindex(2,:)=floor(result./rows);

else

eeindex(2,:)=floor(result./rows)+1;

end

eeindex(1,:)=mod(result-1,rows)+1;

end

duration=cputime()-start;

MATLAB Codes of Fast Iterative Pixel Purity Index

function [FinalPositions running_time]=FIPPIoptimized(Image,

InitialSkewers)

% Fast Iterative Pixel Purity Index Algorithm

%

% Input parameters:

% ———————————————

% Image: Hyperspectral image data after MNF dimensionality reduction

% InitialSkewers: Positions of ATGP-generated pixels
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%

% Output parameter:

% ———————————————

% FinalPositions: Positions of FIPPI-generated endmember pixels

% running_time - The total running time used by this run

%

% Authors: Chein-I Chang and Antonio Plaza

% Minor Modified by Chao-Cheng Wu

% Check CPU time at the beginning

start=cputime;

% Code initialization for data and visualization

[ns,nl,nb]=size(Image);

[VD,kk]=size(InitialSkewers);

Extrema=zeros(ns,nl);

ProjectionScores=zeros(ns,nl);

subplot(2,1,1);

imagesc(Image(:,:,1)); colormap(gray);

title(’Pixels extracted by FPPI:’);

set(gca,’DefaultTextColor’,’black’,’xtick’,[],’ytick’,[],’data-

aspectratio’,[1 1 1]);

po1 = get(gca,’position’);

% Use ATGP-generated pixels as the initial skewers

NewSkewers=InitialSkewers;

% Begin iterative process

Other = 1;

SkewersUsed = [];

while (Other >= 1)

[ne,np]=size(NewSkewers);

disp([’Iteration: ’ int2str(Other)]);

disp([’Skewers: ’ int2str(ne)]);

for k = 1:ne

[ne_old,kk]=size(SkewersUsed);

skewer=squeeze(Image(NewSkewers(k,1),NewSkewers(k,2),:));

skewer=skewer/norm(skewer);

SkewersUsed = union(SkewersUsed,skewer);

[ne_new,kk]=size(SkewersUsed);

subplot(2,1,2);

drawnow;

plot(skewer);

title([’Current skewer: ’ int2str(k)]);
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if (ne_new~=ne_old)

% Project all the sample data vectors onto this particular skewer

for i=1:ns

for j=1:nl

pixel = squeeze(Image(i,j,:));

ProjectionScores(i,j) = dot(skewer,pixel);

end

end

% Obtain the extrema set for each skewer (maximum and minimum

% projection)

[vals,mpos] = max(ProjectionScores(:));

[vals,pos] = min(ProjectionScores(:));

mposx = floor((mpos-1)/ns)+1; mposy = mod(mpos-1,ns)+1;

posx = floor((pos-1)/ns)+1; posy = mod(pos-1,ns)+1;

% Display the pixel positions of the pixels in the extrema set

drawnow;

subplot(2,1,1);

text(mposx,mposy,’o’,’Margin’,1,’HorizontalAlignment’,’center’,’

FontSize’,22,’FontWeight’,’light’,’FontName’,’Garamond’,’Color’,

’yellow’);

drawnow;

subplot(2,1,1);

text(posx,posy,’o’,’Margin’,1,’HorizontalAlignment’,’center’,’

FontSize’,22,’FontWeight’,’light’,’FontName’,’Garamond’,’Color’,

’yellow’);

% Increase PPI count of extrema pixels

Extrema(posy,posx)=Extrema(posy,posx)+1;

Extrema(mposy,mposx)=Extrema(mposy,mposx)+1;

% Incorporate sample vectors with PPI count greater than zero to

% the skewer set

vnew = [ mposx mposy ; posx posy ];

NewSkewers = union(NewSkewers,vnew,’rows’);

end

end

% Check stopping rule

[ne2,np]=size(NewSkewers);

if (ne2==ne)

Other = 0;

else

Other = Other+1;
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% Extrema=zeros(ns,nl);

end

end

% Produce the positions of the final endmember set

Binary = Extrema>0;

ne = sum(Binary(:));

disp([’Extracted endmembers: ’ int2str(ne)]);

FinalPositions = zeros(ne,2);

Current = 1;

for i=1:ns

for j=1:nl

if Binary(i,j)>0

FinalPositions(Current,1)=i;

FinalPositions(Current,2)=j;

Current = Current+1;

end

end

end

% Check CPU time at the end

stop=cputime;

running_time=stop-start;

A.4.2 N-finder Algorithm

� Algorithm name: N-finder algorithm (N-FINDR)
� Authors:M.E. Winter
� Category: convex geometry
� Designed criteria: maximum simplex volume
� Designed method: finding a simplex with maximum volume
� Typical use (LOI’s addressed): endmember extraction with number of endmembers to be known
� Inputs: reflectance or radiance cube
� Outputs: endmembers
� Assumptions: All the vertices of a simplex with maximal volume should be specified by

endmembers
� Sensitivity to LOI (target knowledge): high to value of p
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

The N-FINDR (Winter, 1999a, 1999b, 2004) is a popular endmember extraction algorithm

(EEA) other than PPI. It is quite different from PPI in terms of its design criterion. The N-

FINDR makes use of maximum simplex volume as a criterion as opposed to orthogonal projec-

tion used by PPI. So, its design criteria make PPI an unconstrained EEA and N-FINDR a fully
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constrained EEA. Like PPI, which requires prior knowledge of the number of skewers, K, N-

FINDR also needs to know the number of endmembers, p, a priori. Similar to PPI, N-FINDR

also suffers the same issue encountered in PPI, which is its use of random initial conditions that

result in unrepeatable and inconsistent endmember results. This issue is also addressed by

Chang et al. (Plaza and Chang, 2006; Chang et al., 2011b). Another serious issue arising in N-

FINDR implementation that is not encountered in PPI is its very high computational complexity.

Many research efforts have been reported to address this issue. Details can be found in Xiong

et al. (2011) and Chang (2013). Also, real-time implementation of N-FINDR has also been

proposed in Wu et al. (2010) with details in Chang (2013).

MATLAB Codes of N-FINDR

function [endmemberindex duration]=NFINDR(imagecube,p)

% The N-FINDR algorithm

% ————— Input variables ———————————

% ’imagecube’ - The data transformed components [row column band]

% ’p’ - The number of endmembers to be generated

%

% if band > p, then the program will automatically use Singular Value Decomposi-

tion to calculate the volume

% ————— Output variables —————————

% ’endmemberindex - The locations of the final endmembers (x,y)

% ’duration - The number of seconds used to run this program

% Set initial condition

endmemberindex=[];

newvolume = 0;

prevolume = -1;

[row, column, band]=size(imagecube);

switch_results=1;

% Determine to use SVD to calculate the volume or not

if(band > p),

use_svd=1;

else

use_svd=0;

end

% Start to count the CPU computing time

start=cputime();

% Randomly select p initial endmembers

rand(’state’,sum(100*clock));

for i=1:p

while(1)

temp1=round(row*rand);

temp2=round(column*rand);

if(temp1>0 & temp2>0)

Appendix: Algorithm Compendium 1021



break;

end

end

endmemberindex=[endmemberindex;[temp1 temp2]];

end

endmemberindex=endmemberindex’;

% Generate endmember vector from reduced cub

display(endmemberindex);

endmember=[];

for i=1:p

if(use_svd)

endmember=[endmember squeeze(imagecube(endmemberindex(1,i),

endmemberindex(2,i),:))];

else

endmember=[endmember squeeze(imagecube(endmemberindex(1,i),

endmemberindex(2,i),1:p-1))];

end

end

% calculate the endmember’s volume

if(use_svd)

s=svd(endmember);

endmembervolume=1;

for i=1:p,

endmembervolume=endmembervolume*s(i);

end

else

jointmatrix=[ones(1,p) ; endmember];

endmembervolume=abs(det(jointmatrix))/factorial(p-1);

end

% The main algorithm

while newvolume > prevolume, % if the new generated endmember volume is larger

than the old one, continue the algorithm

% Use each sample vector to replace the original one, and calculate new volume

for i=1:row,

for j=1:column,

for k=1:p,

caculate=endmember;

if(use_svd),

caculate(:,k)=squeeze(imagecube(i, j, :));

s=svd(caculate);

volume=1;

for z=1:p,

volume=volume*s(z);

end
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else

caculate(:,k)=squeeze(imagecube(i, j, 1:p-1));

jointmatrix=[ones(1,p);calculate];

volume=abs(det(jointmatrix))/factorial(p-1); % The formula of

Simplex volume

end

if volume > endmembervolume,

endmemberindex(:,k)=[i;j];

endmember=calculate;

endmembervolume=volume;

end

end

end

end

prevolume=newvolume;

newvolume=endmembervolume;

end

stop=cputime();

duration=stop-start;

% Switch results for the standard

if(switch_results)

endmemberindex(3,:)=endmemberindex(1,:);

endmemberindex(1,:)=[];

endmemberindex=endmemberindex’;

end

A.4.3 Simplex Growing Algorithm

� Algorithm name: simplex growing algorithm (SGA)
� Authors: C.-I Chang
� Category: convex geometry
� Designed criteria: maximum simplex volume
� Designed method: growing maximum-volume simplexes
� Typical use (LOI’s addressed): endmember extraction with number of endmembers to be known
� Inputs: reflectance or radiance cube
� Outputs: endmembers
� Assumptions: All the vertices of simplexes generated by SGA must be endmembers
� Sensitivity to LOI (target knowledge): high to value of p
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:
The SGAwas developed in Chang et al. (2006) to address several serious implementation issues

in N-FINDR. It produces one endmember at a time by growing simplexes vertex by vertex to
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resolve the computational issue. In addition, the issue caused by random initial conditions can

also be addressed by implementing SGA in real time (Chang et al., 2010).

MATLAB Codes of SGA

function [endmemberindex duration]=SGA(imagecube,p)

% Simplex Growing Algorithm

% - - - - - - - Input variables - - - - - - - - - - - -

% ’imagecube’ - The data transformed components [row column band]

% ’p’ - The number of endmembers to be generated

%

% if band > p, then the program will automatically use Singular Value Decomposi-

tion to calculate the volume

% - - - - - - - Output variables - - - - - - - - - - -

% ’endmemberindex - The locations of the final endmembers (x,y)

% ’duration - The number of seconds used to run this program

% Set initial condition

n=1;

initial=0;

[row, column, band]=size(imagecube);

% Determine to use SVD to calculate the volume or not

if(band > p),

use_svd=1;

else

use_svd=0;

end

% Start to count the CPU computing time

start_time=cputime();

% Randomly Select a point as the initial point

endmemberindex=[ceil(row*rand);ceil(column*rand)];

% The main algorithm

while n<p, % if get enough endmember group, it stops

% Generate endmember vector from reduced cub

endmember=[];

for i=1:n

if(use_svd)

endmember=[endmember squeeze(imagecube(endmemberindex(1,i),

endmemberindex(2,i),:))];

else

endmember=[endmember squeeze(imagecube(endmemberindex(1,i),

endmemberindex(2,i),1:n))];

end

end
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% Use each sample vector to calculate new volume

newendmemberindex=[];

maxvolume=0;

for i=1:row,

for j=1:column,

if(use_svd)

jointpoint=[endmember squeeze(imagecube(i,j,:))];

s=svd(jointpoint);

volume=1;

for z=1:n+1,

volume=volume*s(z);

end

else

jointpoint=[endmember squeeze(imagecube(i,j,1:n))];

jointmatrix=[ones(1,n+1);jointpoint];

volume=abs(det(jointmatrix))/factorial(n); % The formula of a simplex

volume

end

if volume > maxvolume,

maxvolume=volume;

newendmemberindex=[i;j];

end

end

end

endmemberindex=[endmemberindex newendmemberindex]; % Add this pixel into

the endmember group

%nfinder_plot(endmemberindex);

n=n+1;

if initial==0, % Use new pixel as the initial pixel

n=1;

endmemberindex(:,1)=[];

initial=initial+1;

end

end

duration=cputime()-start_time;

% Switch the results back to X and Y

endmemberindex(3,:)=endmemberindex(1,:);

endmemberindex(1,:)=[];

endmemberindex=endmemberindex’;

A.5 Supervised LSMA and KLSMA

Linear spectral mixture analysis (LSMA) is a mathematical theory that models a data samples as

linear mixtures of a finite number of basic spectral constituents with appropriate weights from

which data samples can be solved by finding these weights via a linear inverse problem. Linear
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spectral unmixing is one of its applications. It assumes that there are p basic material substances

mj

� �p

j¼1
that can be used to represent data sample vectors in linear forms with their corresponding

abundance fractions aj

� �p

j¼1
that are unknown parameters. The spectral unmixing is then per-

formed by finding best estimates of aj

� �p

j¼1
, denoted by âj

� �p

j¼1
, and referred to as unmixed abun-

dance fractions. In real applications, two physical constraints must be imposed on the used linear

mixing model, which are abundance sum-to-one constraint (ASC),
Pp

j¼1 aj ¼ 1, and abundance

nonnegativity constraint (ANC), aj � 0 for all 1 � j � p. Three LSMA-based techniques devel-

oped in Chang (2003a) have been widely used for spectral unmixing. These are unconstrained

orthogonal subspace projection (OSP)/least squares OSP, partially ANC-constrained method, Least

Squares nonnegativity-constrained least squares (NCLS) and a fully abundance-constrained

method, Constrained Least Squares (FCLS). Since OSP/LSOSP, NCLS, and FCLS are linear tech-

niques, they may have difficulty solving linear nonseparable problems. To address this issue, these

three techniques are further extended to their kernel-based counterparts, called Kernel OSP/LSOSP

(KOSP/KLSOSP), Kernel NCKS (KNCLS), and Kernel FCLS (KFCLS).

A.5.1 OSP, LSOSP, KOSP, and KLSOSP

� Algorithm name: orthogonal subspace projection (OSP)
� Authors: J.C. Harsanyi and Chein-I Chang
� Category: spectrally matched filter
� Designed Criteria: SNR ratio
� Designed Method: A priori, supervised and unconstrained least squares-based linear spectral

mixture analysis
� Typical use (LOI’s addressed): detection, classification, discrimination, identification
� Inputs: reflectance or radiance cube, complete target knowledge
� Outputs: gray-scale abundance fractional images
� Assumptions: complete prior target knowledge required
� Sensitivity to LOI (target knowledge): high
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, real Time
� Brief description:

The OSP approach was first developed in Harsanyi’s Ph.D. dissertation in 1993 (Harsanyi, 1993)

and was later published in IEEE Transaction on Geoscinece and Remote Sensing, July 1994

(Harsanyi and Chang, 1994). It is a linear unmixng method that takes advantage of a linear mix-

ture model to detect, classify, and identify targets of interest. The idea is to separate target sour-

ces into desired and undesired targets and then use an orthogonal project to reject the desired

targets before a matched filtration takes place. So, it operates two functions in sequence: an

undesired target rejecter followed by a spectral matched filtration. Since OSP was originally

designed as a detector and cannot accurately estimate signature abundance fractions, a least

squares version of OSP, referred to as least squares OSP (LSOSP) was further developed in

Chang et al. (1998b) for abundance fraction estimation. The only difference between OSP and

LSOSP is that LSOSP includes a normalization constant to account for estimation error incurred

in the OSP-derived detector (Chang, 2009). So, the MATLAB codes provided in the following is

a more general version of OSP, LSOSP.
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MATLAB Codes of LSOSP

% Least Square Orthogonal Subspace Projection

% input: image = image cube

% d = desire signature vector

% U = undesired signature matrix

% output: temp = resulting image cube

function temp=LSOSP(image,d,U)

[x y z]=size(image);

temp = zeros(x,y);

%Find the projectors that is orthogonal complement of U

[l,J] = size(U);

I = eye(l,l);

Pu=I-U*inv(U’*U)*U’;

lsosp = (d’*Pu)/(d’*Pu*d);

% perform least-squares-based estimator on all image vectors

for i = 1:x

for j = 1:y

for k = 1:z

r(k) = image(i,j,k);

end;

temp(i,j)=lsosp*r’;

end;

end;

MATLAB codes of KLSOSP

%% Kernel based LSOSP function

% Input:

% image = image cube input

% d = desired signature, example: [2;3;4]

% U = undesired signature matrix

% sig = parameter that control RBF kernel function

% output:

% temp = resulting map

function temp=KOSP(image,d,U,sig)

[x y z]=size(image);

temp = zeros(x,y);

% perform least squares-based estimator on all image vectors

KdU = kernelized(d,U,sig,0);%disp(KdU),
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KUU = kernelized(U,U,sig,0);%disp(KUU),

Kdd = kernelized(d,d,sig,0);

KUd = kernelized(U,d,sig,0);%disp(KUd),

for i = 1:x

for j = 1:y

for k = 1:z

r(k,1) = image(i,j,k);

end;

Kdr = kernelized(d,r,sig,0);%disp(Kdr),

KUr = kernelized(U,r,sig,0);%disp(KUr),

temp(i,j)=(Kdr-KdU*inv(KUU)*KUr);%/(Kdd-KdU*inv(KUU)*KUd);

end;

end;

%% kernelization function

function results = kernelized(x,y,d,chk)

x_l = size(x,2);

y_l = size(y,2);

results = zeros(x_l,y_l);

for i = 1:x_l

for j = 1:y_l

results(i,j)= exp((-1/2)*(norm(x(:,i)-y(:,j))^2)/(d^2));

%RBF kernel (can be changed)

end

end

if chk == 1

results = results-(sum(sum(results))/(x_l*y_l))*ones(x_l,y_l);

elseif chk == 2

N = (1/(x_l*y_l))*ones(x_l,y_l);

results = results-N*results-results*N+N*results*N;

end

A.5.2 NCLS and KNCLS

� Algorithm name: nonnegativity least squares (NCLS)
� Authors: Chein-I Chang and Daniel Heinz
� Category: least squares error-based spectral filter
� Designed criteria: least squares error
� Designed method: A priori, supervised and ANC-constrained LSMA
� Typical use (LOI’s addressed): detection, classification, discrimination, identification
� Inputs: reflectance or radiance cube, complete target knowledge
� Outputs: gray-scale abundance fractional images
� Assumptions: complete prior target knowledge required
� Sensitivity to LOI (target knowledge): high
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
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� Effectiveness: high
� Implementation: simple, easy to use, real time
� Brief description:

Nonnegativity constrained least squares (NCLS) was developed to improve OSP in signal detec-

tion (Chang and Heinz, 2000b). It imposes ANC on the linear mixing model to make sure that

the unmixed abundance fractions are nonnegative. Despite not being fully constrained, on many

occasions NCLS can perform abundance estimation as well as a fully abundance-constrained

method in. However, in signal detection, NCLS generally performs better than unconstrained

and fully constrained methods.

MATLAB Codes of NCLS

function [abundance,error_vector]=NCLS(MatrixZ,r1)

% input MatrixZ is the signatures of endmembers. It is of size [ bands p].

% input x is the signature whose abundance is to be estimated.

% output abundance is the abundance of each material in r1. It is of size [p 1].

% output error_vector is the error vector of size [bands 1].

% This function is written according to Dr. Chang’s first book , P 47

x=r1; %rename r1 as x;

M=size(MatrixZ,2);

count_R=0;

count_P=M;

R=zeros(M,1);

P=ones(M,1);

%tolerance=0.000001;

d=zeros(M,1);

Alpha_ls=inv(MatrixZ’*MatrixZ)*MatrixZ’*x;

Alpha_ncls=Alpha_ls;

min_Alpha_ncls=min(Alpha_ncls);

M_t_r=MatrixZ’*x;

invMtM=inv(MatrixZ’*MatrixZ);

while(min_Alpha_ncls<-0.000000001)

for II=1:M

if((Alpha_ncls(II)<0)&(P(II)==1))

R(II)=1;

P(II)=0;

end %%% end of if (Alpha_ncls(II)<0)

end % end of for II=1:M

S=R;

goto_step6=1;

while(1)

sum_R=sum(R);

Alpha_R=zeros(sum_R,1);

count_for_Alpha_R=0;

for II=1:M
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if (R(II)==1)

count_for_Alpha_R=count_for_Alpha_R+1;

Alpha_R(count_for_Alpha_R)=Alpha_ls(II);

index_for_Lamda(count_for_Alpha_R)=II;

end

end

count_1_for_P=0;

Sai_column=[];

for II=1:M

if (P(II)~=1)

Sai_column=[Sai_column squeeze(invMtM(:,II)) ];

end

end

Sai=[];

for II=1:M

if (P(II)~=1)

Sai=[Sai

squeeze(Sai_column(II,:)) ];

end

end

Lamda=inv(Sai)*Alpha_R;

if(max(Lamda)<0)

break;

end

[max_Lamda,index_Max_Lamda]=max(Lamda);

P(index_for_Lamda(index_Max_Lamda))=1;

R(index_for_Lamda(index_Max_Lamda))=0;

sum_R=sum(R);

Alpha_R=zeros(sum_R,1);

count_for_Alpha_R=0;

for II=1:M

if (R(II)==1)

count_for_Alpha_R=count_for_Alpha_R+1;

Alpha_R(count_for_Alpha_R)=Alpha_ls(II);

index_for_Lamda(count_for_Alpha_R)=II;

end

end

Sai_column=[];

for II=1:M

if (P(II)~=1)

Sai_column=[Sai_column squeeze(invMtM(:,II)) ];

end
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end

Sai=[];

for II=1:M

if (P(II)~=1)

Sai=[Sai

squeeze(Sai_column(II,:)) ];

end

end

Lamda=inv(Sai)*Alpha_R;

Phai_column=[];

for II=1:M

if (P(II)~=1)

Phai_column=[Phai_column squeeze(invMtM(:,II)) ];

end

end

if (size(Phai_column,2)~=0)

Alpha_s=Alpha_ls-Phai_column*Lamda;

else

Alpha_s=Alpha_ls;

end

goto_step6=0;

find_smallest_in_S=zeros(M,2);

find_smallest_in_S(:,1)=Alpha_s;

find_smallest_in_S(:,2)=[1:M]’;

sort_find=sortrows(find_smallest_in_S,1);

for II=1:M

if ((S(II)==1)&(Alpha_s(II)<0))

P(II)=0;

R(II)=1;

goto_step6=1;

end

end

end % end of while (gotostep6==1)

Phai_column=[];

for II=1:M

if (P(II)~=1)

Phai_column=[Phai_column squeeze(invMtM(:,II)) ];

end

end
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if (size(Phai_column,2)~=0)

Alpha_ncls=Alpha_ls-Phai_column*Lamda;

else

Alpha_ncls=Alpha_ls;

end

min_Alpha_ncls=min(Alpha_ncls);

end % end of while

abundance=zeros(M,1);

for II=1:M

if (Alpha_ncls(II)>0)

abundance(II)=Alpha_ncls(II);

end

end

error_vector=MatrixZ*abundance-x;

MATLAB codes of KNCLS

function ab = KNCLS(r,M,d)

% Non-negative constrain Least-square abundance estimator

% input M = signature matrix to be estimated.

% input r = image pixel vector.

% output abundance = abundance vector correspondence to the signature

% matrix.

% initial stage k = 0

k = 0;

[x,y] = size(M);

P = 1:y;

R = [];

%least square estimate of abundance

inv_MTM = inv(kernelized(M,M,d,0));

a_ls = inv_MTM*kernelized(M,r,d,0);

%initially set abundance to least square abundance

ab = a_ls;

%iterate until all ab is positive

while any(ab<-0.5) && k<50

% disp(k)

% clc,

k = k+1;

% find negative index and move them from P to R

neg_ind = find(ab<0);

1032 Appendix: Algorithm Compendium



[P,R] = move_index(P,R,neg_ind);

S = R;

%initialize lum so the for loop can run at least once

lum = 1;

% iterate until all lum is smaller or equal to zero

j=0;

while any(lum>=0) && j<50

% disp(j)

j = j+1;

a_R = a_ls(R);

% define the steer matrix by removing row and columns defined by P

a_steer_mat = inv_MTM;

a_steer_mat(:,P) = [];

a_steer_mat(P,:) = [];

% calculate Lagrange multiplier lum

lum = ((a_steer_mat)^(-1))*a_R;

% if lum contains positive value

if any(lum>0) && j<1000

% find the maximum lum move its index from R to P create a new

% lum by removing the max lum

j = j+1;

lum_max_ind = R(find(lum == max(lum)));

[R,P]=move_index(R,P,lum_max_ind);

a_steer_mat = inv_MTM;

a_steer_mat(:,P) = [];

a_steer_mat(P,:) = [];

a_R = a_ls(R);

lum_new = ((a_steer_mat)^(-1))*a_R;

% form another lum steering matrix

lum_steer_mat = inv_MTM;

lum_steer_mat(:,P) = [];

if length(lum_steer_mat) == 0

lum_steer_mat = 0;

end;

% calcuate the abundance base on R and P and lum_new. If any

% value specify by index S is negative move it from P to R.

a_S = a_ls - lum_steer_mat*lum_new;

s_neg_ind = S(find(a_S(S)<0));

[P,R]= move_index(P,R,s_neg_ind);

end;

end;

% calculate the new abundance base on the new lum found

lum_steer_mat = inv_MTM;

lum_steer_mat(:,P) = [];
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ab = a_ls - lum_steer_mat*lum;

end;

return;

% Move index function

function [P_new,R_new] = move_index(del_ind, get_ind, move_ind)

n = length(move_ind);

if n>0

for i = 1:n

a = find(del_ind == move_ind(i));

del_ind(a)=[];

b = get_ind - move_ind(i);

if any(b == 0)

get_ind = get_ind;

else

get_ind = [get_ind,move_ind(i)];

end;

end;

end;

P_new = sort(del_ind);

R_new = sort(get_ind);

return

function results = kernelized(x,y,d,chk)

x_l = size(x,2);

y_l = size(y,2);

results = zeros(x_l,y_l);

for i = 1:x_l

for j = 1:y_l

results(i,j)= exp((-1/2)*(norm(x(:,i)-y(:,j))^2)/(d^2));

end

end

if chk == 1

results = results-(sum(sum(results))/(x_l*y_l))*ones(x_l,y_l);

elseif chk == 2

N = (1/(x_l*y_l))*ones(x_l,y_l);

results = results-N*results-results*N+N*results*N;

end

return,

A.5.3 FCLS and KFCLS

� Algorithm name: fully constrained least squares (FCLS)
� Authors: Daniel Heinz and Chein-I Chang
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� Category: least squares error-based spectral filter
� Designed criteria: least squares error (LSE)
� Designed Method: a priori, supervised and fully constrained LSMA
� Typical use (LOI’s addressed): detection, classification, discrimination, identification
� Inputs: reflectance or radiance cube, complete target knowledge
� Outputs: gray-scale abundance fractional images
� Assumptions: complete prior target knowledge required
� Sensitivity to LOI (target knowledge): high
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, real time
� Brief description:

Fully constrained least squares (FCLS) was developed in Heinz and Chang (2001) as an abun-

dance estimator to accurately estimate abundance fractions. Therefore, as far as unmixing is

concerned, FCLS is one of best designed linear estimator. But it does not imply that FCLS is

also best for other applications such as detection, discrimination, classification, etc. As a matter

of fact, NCLS generally outperforms FCLS in these applications, where NCLS does not comply

with the constraint of ASC, specifically, in signal detection, where signals to be detected are

corrupted by noise and ASC is certainly violated.

MATLAB Codes of FCLS

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

% – Fully Constrain Least-Squares (FCLS) abundances estimate –

%

% function: results = FCLS(image,M,tol)

%

% input: image = image of size [X,Y,Z]

% M = endmember matrix of size [Z,p]

% tol = NCLS tolerance, e.g. -1e-6

%

% output: results = resulting abundance map of size [X,Y,p]

%- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -

function results = FCLS_v2(image,M,tol)

[x,y,z] = size(image);

num_p = size(M,2);

results = zeros(x,y,num_p);

for i = 1:x

for j = 1:y

r = reshape(image(i,j,:),z,1);

delta = 1/(10*max(max(M)));

s = [delta.*r;1];

N = [delta.*M;ones(1,num_p)];

[ab] = NCLS(s, N, tol);
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ab = reshape(ab,[1,1,num_p]);

results(i,j,:) = ab;

end;

end;

return;

function [abundance]=NCLS(x, MatrixZ, tol)

% input MatrixZ is the signatures of endmembers. It is of size [bands p].

% input x is the signature whose abundance is to be estimated.

% output abundance is the abundance of each material in r1. It is of size [p 1].

% This function is written according to Dr. Chang’s first book , P 47

M=size(MatrixZ,2);

R=zeros(M,1);

P=ones(M,1);

invMtM=(MatrixZ’*MatrixZ)^(-1);

Alpha_ls=invMtM*MatrixZ’*x;

Alpha_ncls=Alpha_ls;

min_Alpha_ncls=min(Alpha_ncls);

j=0;

while(min_Alpha_ncls<-tol && j<500)

j = j+1;

for II=1:M

if((Alpha_ncls(II)<0)&&(P(II)==1))

R(II)=1;

P(II)=0;

end %%% end of if (Alpha_ncls(II)<0)

end % end of for II=1:M

S = R;

goto_step6=1;

counter = 0;

while(goto_step6==1)

index_for_Lamda = find(R==1);

Alpha_R = Alpha_ls(index_for_Lamda);

Sai = invMtM(index_for_Lamda,index_for_Lamda);

inv_Sai = (Sai)^(-1); % remember inversion of Sai

Lamda=inv_Sai*Alpha_R;

[max_Lamda,index_Max_Lamda]=max(Lamda);

counter = counter+1;

if ( max_Lamda<=0 || counter == 200 )

break;

end

temp_i = inv_Sai; % simplify the inversion of matrix

temp_i(1,:) = inv_Sai(index_Max_Lamda,:);

if index_Max_Lamda>1
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temp_i(2:index_Max_Lamda,:) = inv_Sai(1:index_Max_Lamda-1,:);

end

inv_Sai_ex = temp_i;

inv_Sai_ex(:,1) = temp_i(:,index_Max_Lamda);

if index_Max_Lamda>1

inv_Sai_ex(:,2:index_Max_Lamda) = temp_i(:,1:index_Max_Lamda-1);

end

inv_Sai_next = inv_Sai_ex(2:end,2:end) - inv_Sai_ex(2:end,1)*inv_Sai_ex

(1,2:end)/inv_Sai_ex(1,1);

P(index_for_Lamda(index_Max_Lamda))=1;

R(index_for_Lamda(index_Max_Lamda))=0;

index_for_Lamda(index_Max_Lamda) = [];

Alpha_R = Alpha_ls(index_for_Lamda);

Lamda=inv_Sai_next*Alpha_R;

Phai_column = invMtM(:,index_for_Lamda);

if (size(Phai_column,2)~=0)

Alpha_s=Alpha_ls-Phai_column*Lamda;

else

Alpha_s=Alpha_ls;

end

goto_step6=0;

for II=1:M

if ((S(II)==1)&&(Alpha_s(II)<0))

P(II)=0;

R(II)=1;

goto_step6=1;

end

end

end % end of while (gotostep6==1)

index_for_Phai = find(R==1);

Phai_column = invMtM(:,index_for_Phai);

if (size(Phai_column,2)~=0)

Alpha_ncls=Alpha_ls-Phai_column*Lamda;

else

Alpha_ncls=Alpha_ls;

end

min_Alpha_ncls=min(Alpha_ncls);

end % end of while
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abundance=zeros(M,1);

for II=1:M

if (Alpha_ncls(II)>0)

abundance(II)=Alpha_ncls(II);

end

end

return;

MATLAB Codes of KFCLS

function [abundance,error_vector]= KFCLS(M,r1,delta,d)

% input M is the signatures of endmembers. It is of size [ bands p].

% input r1 is the signature whose abundance is to be estimated.

% input delta is the parameter to control ASC: see explanation on Dr. Chang’s

first book , P 183

% usually, delta is 1/(10*max(max(A));

% output abundance is the abundance of each material in r1. It is of size [p 1].

% output error_vector is the error vector of size [bands 1].

tic

%Dan’s: optimal

A=M;

numloop=size(A,2);

e=delta;

eA=e*A;

E=[ones(1,numloop);eA];

EtE=kernelized(E,E,d,0);

[m,n] = size(EtE);

One=ones(m,1);

iEtE=inv(EtE);

iEtEOne=iEtE*One;

sumiEtEOne=sum(iEtEOne);

weights=diag(iEtE);

c=0;

sample=r1;

er=e*sample;

f=[1;er];

Etf=kernelized(E,f,d,0);

tol=1e-7;

%fcls1a

%%%% THIS IS lamdiv2

ls=iEtE*Etf;

lamdiv2=-(1-(ls’*One))/sumiEtEOne;

x2=ls-lamdiv2*iEtEOne;

x2old=x2;

if (any(x2<-tol))
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Z=zeros(m,1);

iter=0;

while(any(x2<-tol) && iter >(m))

Z(x2<-tol)=1;

zz=find(Z);

x2=x2old; % Reset x2

L=iEtE(zz,zz);

ab=size(zz);

lastrow=ab(1)+1;

lastcol=lastrow;

L(lastrow,1:ab(1))=(iEtE(:,zz)’*One)’;

L(1:ab(1),lastcol)=iEtEOne(zz);

L(lastrow,lastcol)=sumiEtEOne;

xerow=x2(zz);

xerow(lastrow,1)=0;

lagra=L\xerow;

while (any(lagra(1:ab(1))>0)) % Reset Lagrange multipliers

maxneg=weights(zz).*lagra(1:ab(1));

[yz,iz]=max(maxneg); % Remove the most positive

Z(zz(iz))=0;

zz=find(Z); % Will always be at least one (prove)

L=iEtE(zz,zz);

ab=size(zz);

lastrow=ab(1)+1;

lastcol=lastrow;

L(lastrow,1:ab(1))=(iEtE(:,zz)’*One)’;

L(1:ab(1),lastcol)=iEtEOne(zz);

L(lastrow,lastcol)=sumiEtEOne;

xerow=x2(zz);

xerow(lastrow,1)=0;

lagra=L\xerow;

end

%problem with lamscls zz may be null

if ~isempty(zz)

x2=x2-iEtE(:,zz)*lagra(1:ab(1))-lagra(lastrow)*iEtEOne;

end

iter=iter+1;

end

end

abundance=x2;

error_vector=A*abundance-r1;

function results = kernelized(x,y,d,chk)

x_l = size(x,2);

y_l = size(y,2);

results = zeros(x_l,y_l);

for i = 1:x_l

for j = 1:y_l
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results(i,j)= exp((-1/2)*(norm(x(:,i)-y(:,j))^2)/(d^2));

end

end

if chk == 1

results = results-(sum(sum(results))/(x_l*y_l))*ones(x_l,y_l);

elseif chk == 2

N = (1/(x_l*y_l))*ones(x_l,y_l);

results = results-N*results-results*N+N*results*N;

end

A.6 Unsupervised Hyperspectral Target Detection

One of major strengths resulting from hyperspectral imaging is the ability to find subtle targets of

interest such as subpixel targets, anomalies that cannot be resolved by multispectral imaging. How-

ever, it also comes with an issue of how to find them, since such targets are generally not visualized

by inspection and must be found in an unsupervised manner without prior knowledge. This part

extends the three supervised LSMA-based techniques, OSP/LSOSP, NCLS, and FCLS, to their

unsupervised counterparts, automatic target generation process (ATGP), unsupervised NCLS

(UNCLS), and unsupervised FCLS (UFCLS).

A.6.1 ATGP

� Algorithm name: automatic target generation process (ATGP)
� Authors: H. Ren and Chein-I Chang
� Category: unsupervised least squares-based filter
� Designed criteria: orthogonal projection (OP)
� Designed method: maximum OP
� Typical use (LOI’s addressed): detection, classification, discrimination, identification
� Inputs: reflectance or radiance cube
� Outputs: gray-scale abundance fractional images
� Assumptions: no target knowledge required
� Sensitivity to LOI (target knowledge): high
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, real time
� Brief description:

The ATGP is derived from an algorithm, called automatic target detection, and classification

(ATDCA) developed by Ren and Chang to find target pixels of interest for recognition without

having prior target knowledge (Ren and Chang, 2003). It performs successive orthogonal projec-

tions to find a data sample vector, considered as a target of interest, which has the maximal pro-

jection after each orthogonal projection. The potential of ATGP has been shown to have a wide

range of applications, such as VD determination, anomaly detection, endmember extraction,

unsupervised LSMA, etc.

1040 Appendix: Algorithm Compendium



MATLAB Codes of ATGP

function [loc,Sig]=ATGP_new(HIM,num_targets);

% input HIM is the Hyperspectral data cube of size [height width bands].

% input M is the number of target p that you need to extract.

% output Sig is the signatures corresponding to the extracted targets. It is of

size [bands p].

% output loc is the positions of the targets. It is of size [p 2]

% with the first column being the vertical position, the second column being the

horizontal position.

bnd=size(HIM,3);

xx=size(HIM,1);

yy=size(HIM,2);

r=reshape(HIM,xx*yy,bnd);

r=r’;

%=====Find the first point

temp=sum(r.*r);

[a,b]=max(temp);

if (rem(b,xx)==0)

Loc(1,1)=b/xx;

Loc(1,2)=xx;

elseif (floor(b/xx)==0)

Loc(1,1)=1;

Loc(1,2)=b;

else

Loc(1,1)=floor(b/xx)+1; % y

Loc(1,2)=b-xx*floor(b/xx); % x

end

Sig(:,1)=r(:,b);

%==========

for m=2:num_targets

U=Sig;

P_U_perl=eye(bnd)-U*inv(U’*U)*U’;

y=P_U_perl*r;

temp=sum(y.*y);

[a,b]=max(temp);

if (rem(b,xx)==0)

Loc(m,1)=b/xx;

Loc(m,2)=xx;

elseif (floor(b/xx)==0)

Loc(m,1)=1;

Loc(m,2)=b;
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else

Loc(m,1)=floor(b/xx)+1; % y

Loc(m,2)=b-xx*floor(b/xx); % x

end

Sig(:,m)=r(:,b);

%disp(m)

end

%

% figure; imagesc(HIM(:,:,30)); colormap(gray); hold on

% axis off

% axis equal

% for m=1:size(Loc,1)

% plot(Loc(m,1),Loc(m,2),’o’,’color’,’g’);

% text(Loc(m,1)+2,Loc(m,2),num2str(m),’color’,’y’,’FontSize’,12);

% end

%

loc(:,1)=Loc(:,2);

loc(:,2)=Loc(:,1);

A.6.2 UNCLS

� Algorithm name: unsupervised non-negativity constrained least squares (UNCLS)
� Authors: Chein-I Chang and Daniel Heinz
� Category: unsupervised least-squares-based filter
� Designed criteria: least squares error
� Designed method: least squares constrained method
� Typical use (LOI’s addressed): detection, spectral unmixing, classification, quantification
� Inputs: reflectance or radiance cube
� Outputs: gray-scale abundance fractional images
� Assumptions: no target knowledge required
� Sensitivity to LOI (target knowledge): moderate
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

The UNCLS is an unsupervised version of the NCLS developed by Chang and Heinz (2000b).

Unlike NCLS, which requires complete a priori target knowledge to perform spectral unmixing,

UNCLS performs unsupervised target detection by using the NCLS to generate a set of potential

targets directly from the data to be processed. So, its main goal is to find targets of interest

without any prior knowledge. Because of that, UNCLS is primarily used for target detection and

endmember extraction as opposed to NCLS, whose main functionality is spectral unmixing.

That is, the NCLS and the UNCLS have rather different applications.

MATLAB Codes of UNCLS

function [location_pair,spectrum_of_targets]=UNCLS(ImageCub,

NumberOfClass);
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% input ImageCub is of size [height width bands].

% input NumberOfClass is the number of target p that you need to extract.

% output spectrum_of_targets is the signatures corresponding to the extracted

targets. It is of size [bands p].

% output location_pair is the positions of the targets. It is of size [p 2] with

the first column being the vertical position, the second column being the

horizontal position.

NumberOfClass=NumberOfClass-1;

[height, width, NumberOfSpectrum]=size(ImageCub);

[xx, yy, bnd]=size(ImageCub);

r=reshape(ImageCub,xx*yy,bnd);

r=r’;

%height=size(ImageCub,1);

%width=size(ImageCub,2);

%MatrixH=zeros( NumberOfSpectrum, NumberOfClass+1);

location_pair=zeros(NumberOfClass,2);

Brightest=10^(-100);

count=0;

NumberOfExisted=1;

%=====Find the first point=====

temp=sum(r.*r);

[a,b]=max(temp);

if (rem(b,xx)==0)

Loc(1,1)=b/xx;

Loc(1,2)=xx;

elseif (floor(b/xx)==0)

Loc(1,1)=1;

Loc(1,2)=b;

else

Loc(1,1)=floor(b/xx)+1; % y

Loc(1,2)=b-xx*floor(b/xx); % x

end

%location_pair(1:NumberOfExisted,:)=squeeze(BrightForEachClass(1,:));

location_pair(:,1)=Loc(:,2);

location_pair(:,2)=Loc(:,1);

MatrixH=r(:,b);

for II=1:NumberOfClass

% disp([ ’ Class : ’ int2str(II) ]);

% disp(II+NumberOfExisted);

minError=0.0000000000000000000000001;
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for b=1:xx*yy

trypixel=r(:,b);

max_value=max(trypixel);

if (max_value>0)

[abundance]= NCLS(MatrixH,trypixel);

error_vector=MatrixH*abundance-trypixel;

error=error_vector’*error_vector;

if(error>minError)

minError=error;

if (rem(b,xx)==0)

location_pair(II+NumberOfExisted,1)=xx;

location_pair(II+NumberOfExisted,2)=b/xx;

elseif (floor(b/xx)==0)

location_pair(II+NumberOfExisted,1)=b;

location_pair(II+NumberOfExisted,2)=1;

else

location_pair(II+NumberOfExisted,1)=b-xx*floor(b/xx);

location_pair(II+NumberOfExisted,2)=floor(b/xx)+1;

end

end

end

end

MatrixH=[MatrixH

squeeze(ImageCub(location_pair(II+NumberOfExisted,1),location_pair(II+

NumberOfExisted,2),:))];

end

spectrum_of_targets=MatrixH;

A.6.3 UFCLS

� Algorithm name: unsupervised fully constrained least squares (UFCLS)
� Authors: Daniel Heinz and Chein-I Chang
� Category: unsupervised least-squares-based filter
� Designed criteria: least squares error
� Designed method: least squares constrained method
� Typical use (LOI’s addressed): detection, spectral unmixing, classification, quantification
� Inputs: reflectance or radiance cube
� Outputs: gray-scale abundance fractional images
� Assumptions: no target knowledge required
� Sensitivity to LOI (target knowledge): moderate
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation: simple, easy to use, but not real time
� Brief description:

The UFCLS is an unsupervised version of the FCLS developed by Heinz and Chang (2001).

Unlike FCLS, which requires complete a priori target knowledge to perform spectral unmixing

for abundance fraction estimation, UFCLS performs unsupervised target detection by using
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FCLS to generate a set of potential targets directly from the data to be processed. It is identical

to UNCLS with the only difference that UFCLS uses FCLS instead of NCLS to find targets of

interest. So, its main goal is to find targets of interest without any prior knowledge. Because of

that, UFCLS is primarily used for target detection and endmember extraction as opposed to

FCLS, whose main functionality is to unmix data sample vectors in terms of abundance frac-

tions. Therefore, FCLS and UFCLS indeed have different applications.

MATLAB Codes of UFCLS

function [location_pair,spectrum_of_targets]=UFCLS(ImageCub,

NumberOfClass);

% input ImageCub is of size [height width bands].

% input NumberOfClass is the number of target p that you need to extract.

% output spectrum_of_targets is the signatures corresponding to the extracted

targets. It is of size [bands p].

% output location_pair is the positions of the targets. It is of size [p 2] with

the first column being the vertical position, the second column being the

horizontal position.

NumberOfClass=NumberOfClass-1;

[height, width, NumberOfSpectrum]=size(ImageCub);

[xx, yy, bnd]=size(ImageCub);

r=reshape(ImageCub,xx*yy,bnd);

r=r’;

%height=size(ImageCub,1);

%width=size(ImageCub,2);

%MatrixH=zeros( NumberOfSpectrum, NumberOfClass+1);

location_pair=zeros(NumberOfClass,2);

Brightest=10^(-100);

count=0;

NumberOfExisted=1;

%=====Find the first point

temp=sum(r.*r);

[a,b]=max(temp);

if (rem(b,xx)==0)

Loc(1,1)=b/xx;

Loc(1,2)=xx;

elseif (floor(b/xx)==0)

Loc(1,1)=1;

Loc(1,2)=b;

else

Loc(1,1)=floor(b/xx)+1; % y

Loc(1,2)=b-xx*floor(b/xx); % x
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end

%location_pair(1:NumberOfExisted,:)=squeeze(BrightForEachClass(1,:));

location_pair(:,1)=Loc(:,2);

location_pair(:,2)=Loc(:,1);

MatrixH=r(:,b);

delta=1/10/max(max(MatrixH));

for II=1:NumberOfClass

% disp([ ’ Class : ’ int2str(II) ]);

% disp(II+NumberOfExisted);

minError=0.0000000000000000000000001;

for b=1:xx*yy

trypixel=r(:,b);

max_value=max(trypixel);

if (max_value>0)

[abundance]= FCLS(MatrixH,trypixel,delta);

error_vector=MatrixH*abundance-trypixel;

error=error_vector’*error_vector;

if(error>minError)

minError=error;

if (rem(b,xx)==0)

location_pair(II+NumberOfExisted,1)=xx;

location_pair(II+NumberOfExisted,2)=b/xx;

elseif (floor(b/xx)==0)

location_pair(II+NumberOfExisted,1)=b;

location_pair(II+NumberOfExisted,2)=1;

else

location_pair(II+NumberOfExisted,1)=b-xx*floor(b/xx);

location_pair(II+NumberOfExisted,2)=floor(b/xx)+1;

end

end

end

end

MatrixH=[MatrixH

squeeze(ImageCub(location_pair(II+NumberOfExisted,1),location_pair(II+

NumberOfExisted,2),:))];

end

spectrum_of_targets=MatrixH;

A.7 Constrained Band Selection

DR and band selection (BS) have been widely used for data compression. MATLAB codes of sev-

eral component analysis-based DR techniques have been provided in Section A.3. This section

presents a new approach to BS, called constrained band selection (CBS), which is based on the

constrained energy minimization (CEM) developed for target detection in Chapter 2.

� Algorithm name: constrained band selection (CBS)
� Authors: Chein-I Chang and Su Wang
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� Category: spectral filter
� Designed criteria: least squares error
� Designed method: linearly least squares constrained method
� Typical use (LOI’s addressed): BS
� Inputs: reflectance or radiance cube
� Outputs: gray-scale abundance fractional images
� Assumptions: prior knowledge of the number of bands to be selected
� Sensitivity to LOI (target knowledge): moderate
� Sensitivity to noise: moderate
� Operating bands: VNIR through LWIR
� Maturity: mature/operational
� Effectiveness: high
� Implementation:
� Brief description:

CBS was introduced in Chang and Wang (2006) to explore the idea of CEM that can be used for

BS. It interprets a band image as a desired target signature vector while considering other band

images as unknown signature vectors. As a result, the proposed CBS linearly constrains a band

image while also minimizing band correlation or dependence provided by other band images is

referred to as CEM-CBS. Four different criteria, referred to as band correlation constraint

(BCC), band correlation minimization (BCM), band dependence constraint (BDC), and band

dependence minimization (BDM), are derived for CEM-CBS. Since dimensionality resulting

from conversion of a band image to a vector may be huge, the CEM-CBS is further reinterpreted

as linearly constrained minimum variance (LCMV)-based CBS by constraining a band image as

a matrix, where the same four criteria BCM, BCC, BDC, and BDM can also be used for LCMV-

CBS. In order to determine the number of bands required to select, p, a recently developed con-

cept, called virtual dimensionality (VD) is used to estimate the p. Once the p is determined, a set

of p desired bands can be selected by the CEM/LCMV-CBS. In what follows, only MATLAB

codes of four versions of CEM-CBS are provided, but these codes can be easily modified for

their counterparts of LCMV-CBS.

MATLAB Codes of CEM/BCC

function [ band_select, newcube ] = CEM_BCC(imagecube, num);

close all;

[ xx, yy, band_num ] = size(imagecube);

%%%% get band image correlation %%%%

test_image = reshape(imagecube, xx*yy, band_num);

R = test_image * test_image’/band_num;

tt = inv(R);

%%%% get prioritization score for each band %%%%

for i = 1: band_num

endmember_matrix = reshape(squeeze(imagecube(:, :, i)), xx*yy, 1);

W = tt * endmember_matrix * inv(endmember_matrix’ * tt * endmember_matrix);

for j = 1: band_num

if (i ~= j)
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test = reshape(squeeze(imagecube(:, :, j)), xx*yy, 1);

score(i, j) = test’ * W;

else

score(i,j) = 1;

end

end

end

clear endmember_matrix;

clear W;

clear i,j;

%%%% select small subset of original bands %%%%

weight = zeros(1, band_num);

for i = 1: band_num

test = score(i,:);

scalar = sum(test) - score(i,i);

weight(i) = scalar;

end

%weight = abs(weight);

original = 1:band_num;

coefficient_integer = weight * 100000;

band_select = zeros(1, num);

i = 1;

while (i <= num)

max_coe = max(coefficient_integer(:));

index = find(coefficient_integer == max_coe);

if (length(index) == 1)

band_select(i) = original(index);

i = i + 1;

else

j = 1;

while (j <= length(index))&(i <= num )

band_select(i) = original(index(j));

i = i + 1;

j = j + 1;

end

end

coefficient_integer(index) = -10^10;

end

band_sort = sort(band_select);

clear coefficient_integer;

clear max_coe

clear index;

clear i;

clear j;

%get new imagecube

newcube = zeros(xx,yy, num);
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for i = 1: xx

for j = 1: yy

test = squeeze(imagecube(i,j,:));

newcube(i,j,:) = test(band_sort);

end

end

MATLAB Codes of CEM/BCM

function [ band_select, newcube ] = CEM_BCM(imagecube, num);

close all;

[ xx, yy, band_num ] = size(imagecube);

%%%% get band image correlation %%%%

test_image = reshape(imagecube, xx*yy, band_num);

R = test_image * test_image’/band_num;

%%%% get prioritization score for each band %%%%

for i = 1: band_num

endmember_matrix = reshape(squeeze(imagecube(:, :, i)), xx*yy, 1);

W = tt * endmember_matrix * inv(endmember_matrix’ * tt * endmember_matrix);

score(i) = W’ * R * W;

end

clear endmember_matrix;

clear W;

clear i;

%%%% select small subset of original bands %%%%

%weight = abs(score);

original = 1:band_num;

coefficient_integer = weight * 100000;

band_select = zeros(1, num);

i = 1;

while (i <= num)

max_coe = max(coefficient_integer(:));

index = find(coefficient_integer == max_coe);

if (length(index) == 1)

band_select(i) = original(index);

i = i + 1;

else

j = 1;

while (j <= length(index))&(i <= num )

band_select(i) = original(index(j));

i = i + 1;

j = j + 1;

end
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end

coefficient_integer(index) = -10^10;

end

band_sort = sort(band_select);

clear coefficient_integer;

clear max_coe

clear index;

clear i;

clear j;

%get new imagecube

newcube = zeros(xx,yy, num);

for i = 1: xx

for j = 1: yy

test = squeeze(imagecube(i,j,:));

newcube(i,j,:) = test(band_sort);

end

end

MATLAB Codes of CEM/BDM

function [ band_select, newcube ] = CEM_BDM(imagecube, num);

close all;

[ xx, yy, band_num ] = size(imagecube);

%%%% get band image correlation %%%%

test_image = reshape(imagecube, xx*yy, band_num);

R = test_image * test_image’/band_num;

%%%% get prioritization score for each band %%%%

for i = 1: band_num

endmember_matrix = reshape(squeeze(imagecube(:, :, i)), xx*yy, 1);

R_new = R - endmember_matrix * endmember_matrix’;

R_new = R_new/(band_num -1);

tt = inv(R_new);

W = tt * endmember_matrix * inv(endmember_matrix’ * tt * endmember_matrix);

score(i) = W’ * R * W;

end

clear endmember_matrix;

clear W;

clear i;

%%%% select small subset of original bands %%%%

%weight = abs(score);

original = 1:band_num;

coefficient_integer = weight * 100000;
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band_select = zeros(1, num);

i = 1;

while (i <= num)

max_coe = max(coefficient_integer(:));

index = find(coefficient_integer == max_coe);

if (length(index) == 1)

band_select(i) = original(index);

i = i + 1;

else

j = 1;

while (j <= length(index))&(i <= num )

band_select(i) = original(index(j));

i = i + 1;

j = j + 1;

end

end

coefficient_integer(index) = -10^10;

end

band_sort = sort(band_select);

clear coefficient_integer;

clear max_coe

clear index;

clear i;

clear j;

%get new imagecube

newcube = zeros(xx,yy, num);

for i = 1: xx

for j = 1: yy

test = squeeze(imagecube(i,j,:));

newcube(i,j,:) = test(band_sort);

end

end
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Adaptive subspace detector (ASD, dASD), 41–43, 44,

55, 61

extensions of, 43
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computer simulations using, 831–842

Airborne visible infrared imaging spectrometer

(AVIRIS) data sets, 156, 330–331, 760

Algorithm design, 10

Algorithm evaluation process, 102

Algorithm-generated endmembers, 202–203

Algorithm initiation, 266

initial endmembers required for, 313

Algorithm performance, 102

issues determining, 266–267
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compendium of, 997–1051

efficacy of, 526–527, 539–540

endmember pixels extracted by, 261

to extract pixel information, 528

for finding endmembers, 201–202

performance of, 540

for pixel information analysis, 539

pixel information extracted by, 536, 538

quantification, 828

results produced by, 532–534

RX-anomaly detection, 539

two-dimensional image compression, 541

Algorithm termination, 267

Alternative hypothesis, 66
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See also N-finder (N-FINDR) algorithm
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AMD-based subsample target detection, 41.
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components analysis (PCA); Progressive high-
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canonical, 195
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literal, 1

mixed sample, 10

nonliteral, 1, 6–7

real-to-complex, 4–5

ROC, 10, 41, 63

spatial domain–based literal, 7

subsample, 10

ANC-LSMA, 418. See also Abundance non-

negativity constraint (ANC); Linear spectral

mixture analysis (LSMA)

An information criterion (AIC), 6, 127, 130–131,

138, 165

Anomalies, defining, 975–976

Anomalous pixels, 467, 526, 527, 530, 534,

537–538

Anomalous pixel vectors, 14

Anomaly classification, 975

Anomaly detection, 383, 386–390, 467, 474, 527,

559, 560–561

multiple-window, 977

performance of, 387–388

by RXD detection algorithm, 122–123

signal-to-noise ratio and, 387

Anomaly detection algorithms, 527–528, 975

Anomaly detectors, 384–385, 972, 974–977

global, 977

APDP/AHSD identification of a mixed signature,

730–733. See also A posteriori discrimination

probability (APDP);

APDP/AHSD identifications, 737–739

APDP/HSD identification of a mixed signature,

730–733. See also . See also Hamming spectral

distance (HSD)

APDP/HSD identifications, 736–737, 737–738

APDP values,730

A posteriori correlation, hyperspectral measures

weighted by, 474–477

A posteriori correlation–based hyperspectral

measures, 476
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A posteriori discrimination probability (APDP), 719,

720, 729, 740. See also APDP entries

A posteriori information, 357, 375, 482

A posteriori knowledge, 972, 973

trial-and-error approach to, 841

A posteriori probability distributions, 366, 962

A posteriori target information, 886

A posteriori-weighted hyperspectral measures,

identification errors resulting from, 478

Approximation error, 776

Approximation signatures, 860, 863, 864

corruption of, 865–866, 866–867

signatures self-tuned by, 869–870

Approximation spaces, 862

A priori correlations, hyperspectral measures

weighted by, 473–474

A priori information, 357, 358, 375, 383, 482

A priori knowledge, 972, 973, 974, 975

Arbitrary-bit encoders, 771

Area under curve (AUC), 64, 68, 82, 90, 93, 612,

706, 713–714

Area under curve (AUC) values, 946, 950

Arithmetic coding (AC), 718, 741, 755–756

as a memory coding method, 757

with SFPC, 756–758

in spectral signature coding, 742–743

Array processing, 131

ASC-LSMA, 418. See also Abundance sum-to-one

constraint (ASC); Linear spectral mixture

analysis (LSMA)

Asymptotic equipartition property theorem, 288

ATGP-based ICA, 555. See also ATGP-ICA-EEA;

Automatic target generation process (ATGP);

Independent component analysis (ICA) entries

ATGP–Bayes detector, 961

ATGP-extracted pixels, 536

ATGP-FastICA algorithm, 604. See also FastICA

entries

ATGP-FastICA cube, FCLS quantification for, 608

ATGP-FCLS algorithm, 880, 888–889. See also

Fully constrained least-squares (FCLS) method

in subpixel target size estimation, 881

ATGP-generated BKG/target VSs, 504. See also

Background entries; Background (BKG) virtual

signatures (VSs); Virtual signatures (VSs)

ATGP-generated pixels, 326

ATGP-generated simplexes, 329

ATGP-generated target pixels, 319, 407, 422,

431, 506

ATGP-generated targets, 190, 317

ATGP-generated target sample vectors, 325

ATGP-generated vectors, 189

ATGP-HFC methods, 961, 962. See also Harsanyi–

Farraud–Chang (HFC) method

ATGP-HOS-EEA, 277. See also Endmember

extraction algorithms (EEAs); High-order

statistics (HOS)

ATGP-ICA-EEA, 277, 278, 279, 280, 282, 283, 284,

285. See also Independent component analysis

(ICA) entries

ATGP-ID-PIPP algorithm, 589. See also

Initialization-driven PIPP (ID-PIPP);

Projection index (PI)-based projection

pursuit (PIPP)

ATGP-IN-FINDR, 314, 315. See also Iterative

N-finder algorithm (IN-FINDR)

ATGP-kurtosis-EEA, 278, 279, 280, 282, 283,

284, 285

ATGP–Neyman–Pearson detector, 961

ATGP-N-FINDR, 276, 278, 279, 280, 281, 282,

283, 284, 285, 315. See also N-finder algorithm

(N-FINDR)

ATGP-OSP algorithm, 928. See also Orthogonal

subspace projection (OSP)

ATGP/PCA relationship, 321–322. See also Principal

components analysis (PCA)

ATGP-PPI, 276, 278, 279, 280, 281, 282, 283, 284,

285, 322, 323. See also Pixel purity index (PPI)

entries

endmember extraction by, 323, 324, 325, 326,

327, 328

ATGP/PPI relationship, 319–320

ATGP-prioritized PICA (ATGP-PICA) algorithm,

931, 932. See also Prioritized ICA (PICA)

ATGP-SC N-FINDR, 275–276, 314, 315

ATGP-skewness-EEA, 278, 279, 280, 282, 283, 284,

285. See also Endmember extraction algorithms

(EEAs)

ATGP-SQ-N-FINDR, 314, 315. See also SeQuential

N-FINDR (SQ N-FINDR)

ATGP-UVSFA, 512, 513. See also Unsupervised

virtual signature finding algorithms (UVSFAs)

target VSs extracted by, 491, 492, 493, 495

ATGP-VCA, 275, 322, 323. See also Vertex

component analysis (VCA)

endmember extraction by, 323, 324, 325, 326,

327, 328

Atmospherically corrected data, 534

Autocorrelated bands, 910, 938, 942, 943

Autocorrelated spectral band images, 902

Autocorrelation matrix, 135, 972

Autocovariance matrix, 135

Automated morphological endmember extraction

(AMEE), 230–231, 240, 538, 539
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Automated morphological endmember extraction

(AMEE) algorithm (AMEEA), 201, 204, 207,

209, 527

pixel extraction using, 533, 534

Automatic EEA (AEEA), 204. See also Endmember

extraction algorithms (EEAs)

Automatic PPI (APPI), 289. See also Pixel purity

index (PPI) entries

Automatic target detection, 18

Automatic target detection and classification

program (ATDCA), 272, 405

Automatic target generation process (ATGP), 142,

149–151, 152, 153–155, 157, 159, 161, 162,

163, 164, 165, 189–190, 194, 204, 248, 314,

315, 317, 318, 329, 339, 348, 405, 408, 409,

418, 467, 487, 488, 527, 528, 531, 538, 539,

589, 959. See also ATGP entries

applications of, 964

for CADCA, 880

data sample vectors and, 960

development of, 319

endmember extraction by, 323, 324, 325, 326,

327, 328

endmembers generated by, 344

for finding potential interferers, 430–431

in generating desired signatures, 626

pixels extracted by, 160, 342, 343, 532–533, 534

for producing background knowledge, 427

relationships with PPI and VCA, 319–323

simplex volumes and, 343, 344

stopping rule of, 960–961

used as an EIA, 344

Automatic target generation process (ATGP)

algorithm, 881, 882, 883

in finding target locations, 882, 883, 886–887, 896

as an initialization algorithm, 595

in locating subpixel targets, 895–896

MATLAB codes for, 1040–1042

as an unsupervised method, 884–885

as an unsupervised target detection algorithm,

888–889

Automatic target generation process–EEA

(ATGP-EEA), 243, 248–249, 255, 256, 257,

258, 259, 260, 261, 262, 263, 264, 272, 276,

277, 278, 317, 318, 320, 880, 881, 888. See also

Endmember extraction algorithms (EEAs)

algorithm for, 249

Automatic target generation process/Mahalanobis

distance (ATGP/MD) approach, 960

Auxiliary functions, 59

Auxiliary signature vector, 827

Averaged panel pixel detection rates, 706, 713–714

Averaged risk, 36, 97

Averaged signature vectors, 813, 815

of gas data set, 753

Average Hamming spectra distance (AHSD), 720,

721, 725, 726, 727, 728, 729, 730, 731, 732,

733–735, 736–738, 739. See also AHSD entries;

APDP/AHSD entries

AVIRIS Cuprite data, 577. See also Airborne visible

infrared imaging spectrometer (AVIRIS)

AVIRIS Cuprite scene, 534–537

AVIRIS data experiments, 444–460, 746–749,

758–760

AVIRIS data simulation, classification results of, 749

AVIRIS experiments, 270–271, 309–313, 323, 815

AVIRIS image experiments, 478–482, 534

AVIRIS image scenes, 23–24

AVIRIS laboratory reflectance data, 725

AVIRIS reflectance data, 868

A-weighted AC-LSMA, types of, 414. See also

Abundance-constrained LSMA (AC-LSMA);

Linear spectral mixture analysis (LSMA)

A-weighted LSE problems, 413. See also Least-

squares error entries

A-whitened LSE, 414. See also Least-squares error

entries

Background (BKG), 333, 483, 484, 485. See also

BKG entries; Clean background; Image

background; Noisy background

estimating, 43

Gaussian noise and clean panels embedded in,

110–112

implanting target pixels into, 105

target insertion into, 101

Background image, corrupted by Gaussian noise, 532

Background (BKG) knowledge

ATGP for providing, 427

from secondary data, 39

unsupervised, 429–432

Background (BKG) matrix, 54

Background (BKG) mean, 47

Background (BKG) pixels, 429, 466, 505

adding panel pixels to, 109

replaced with implanted panel pixels, 333

Background (BKG) signature matrix, 81

Background (BKG) signatures, 28–29, 89, 113, 511,

515, 525, 531

additional, 432

complete knowledge of, 420

determining numbers of, 485

no prior knowledge about, 420–426

radiance spectra of, 335
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Background (BKG) signatures (Continued )

reflectance spectra of, 333

simulated, 333

spectral signatures of, 333, 334

Background (BKG) statistics, 41

Background (BKG) suppression, 503, 509,

511, 970

Background (BKG) virtual signatures (VSs), 491,

492, 503–505, 505–510, 519

Band correlation, 685

Band correlation constraint (BCC), 622, 624, 625,

626, 637, 650, 651, 652

algorithms/MATLAB codes for, 1047–1049

endmembers extracted by IN-FINDR

corresponding to, 632, 635, 645, 649,

653–654

UFCLS-mixed panel results corresponding to,

642, 648

UFCLS-mixed panel results produced by, 631

Band correlation minimization (BCM), 621–622,

624, 625, 626, 637, 650, 651, 652.

See also LCMV-BCM

algorithms/MATLAB codes for, 1049–1050

endmembers extracted by IN-FINDR

corresponding to, 632, 635, 645, 649,

653–654

UFCLS-mixed panel results corresponding to,

642, 648

UFCLS-mixed panel results produced by, 631

Band de-correlation (BD), 544, 614, 663, 678,

684–686, 686–687, 715. See also BD entries

BP followed by, 687

as a preprocessing step, 684

Band dependence constraint (BDC), 622, 624, 625,

626, 637, 650, 651, 652

endmembers extracted by IN-FINDR

corresponding to, 632, 635, 645, 649,

653–654

UFCLS-mixed panel results corresponding to,

642, 648

UFCLS-mixed panel results produced by,

631

Band dependence minimization (BDM), 621–622,

624, 625, 626, 637, 650, 651, 652.

See also LCMV-BDM

algorithms/MATLAB codes for, 1050–1051

endmembers extracted by IN-FINDR

corresponding to, 632, 635, 645, 649,

653–654

UFCLS-mixed panel results corresponding to,

642, 648

UFCLS-mixed panel results produced by, 631

Band dimensionality expansion (BDE), 18, 899–902,

919, 924. See also Progressive band dimension-

ality expansion (PBDE); Sequential band

dimensionality expansion (SBDE)

in conjunction with FDE, 909

hyperspectral imaging techniques expanded by,

902–904

rationale for developing, 899–901

Band dimensionality expansion (BDE)-based

LSMA, 897. See also Linear spectral mixture

analysis (LSMA)

Band dimensionality expansion techniques, 904

Band expansion process (BEP), 18, 877, 897, 899,

901–902, 919, 924. See also BEP entries;

K-BEP entries

incorporated into LSMA, 923

LSMA performance and, 938

Band expansion process algorithm, 902

Band expansion process–based OSP (BEP-OSP),

927–928. See also Orthogonal subspace

projection (OSP)

Band expansion process over-complete ICA, for MR

image analysis, 931–932. See also Independent

component analysis (ICA) entries

Band extraction, 816–818

Band generation process (BGP), 899, 924

Band image correlation matrix, 621

Band images, orthogonalizing, 685–686

Band image vectors, 892–893

Band-interleaved-by-pixel (BIP), 178

Band numbers

classification performance and, 658–661

for hyperspectral signatures, 682

Band prioritization (BP), 198, 199, 543, 544,

615–617, 683, 687, 715, 718

applications of, 624–651, 652

BD followed by, 616, 687–688

criteria for, 617–624

dimensionality prioritization vs., 614, 624

PBDP and, 613

progressive band dimensionality expansion via,

614, 655–656

progressive band dimensionality reduction via,

614, 654

Band prioritization, 540

Band prioritization/band de-correlation (BP/BD)

approach, 616, 687–688. See also BP/BD

entries

Band ratio, 891

Band ratio approach, 18

for CADCA, 880

Band reduction/expansion, 614
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Band selection (BS), 31, 543, 616–617, 635, 663,

683–684, 715, 891–892, 981–983. See also BS

entries; Constrained band selection (CBS);

Progressive band selection (PBS)

for CADCA, 880

crucial issues arising in, 614

dimensionality reduction by, 196–197

dimensionality reduction vs., 632–635

divergence measure for, 892

hyperspectral, 682

impact on signature analysis, 810

issues arising in, 613, 664–665

new approach to, 197–198

progressive band dimensionality process vs., 616

Band selection–based spectral compression,

dimensionality reduction by, 556–557

Band selection procedure, 18

Band SeQuential (BSQ), 178

Band-to-band correlation, 820

Band variances, 617

Band vectors, 686

Basis functions, 59

Basis vectors, skewers as, 316

Bayes cost, 63

Bayes detector (dBayes), 36, 37, 38, 961

Bayes rule, 37

BBOPC band selection algorithm, 892, 893. See also

Between-bands orthogonal projection

correlation (BBOPC)

BD/BP-PBS algorithm, 687–688. See also Band

de-correlation (BD); Band prioritization (BP);

Band prioritization/band de-correlation

(BP/BD) approach

BP/BD-PBS algorithm vs., 688

BD de-correlated bands, 691

BD preprocessing, 688

BD-removed bands, 695

BEP6 þ KLSMA experiment, 912–916. See also

Band expansion process (BEP); Kernel-based

LSMA (KLSMA)

BEP6 þ LSMA experiment, 910, 911, 912.

See also Linear spectral mixture analysis

(LSMA)

BEP9 þ KLSMA experiment, 916–918. See also

Kernel-based LSMA (KLSMA)

BEP9 þ LSMA experiment, 910, 911–912. See also

Linear spectral mixture analysis (LSMA)

BEP-based ACEM (BEP-ACEM), 904. See also

Constrained energy minimization (CEM)

BEP-based ARXD (BEP-ARXD), 904. See also

Adaptive RXDs (ARXDs); RX detector

(RXD, dRXD)

BEP-based constrained energy minimization

(BEP-CEM), 902, 903. See also Constrained

energy minimization (CEM)

BEP-based maximum likelihood classifier

(BEP-MLC), 904. See alsoMaximum

likelihood classifier (MLC)

BEP-based orthogonal subspace projection

(BEP-OSP), 902, 903

BEP-based RX-detector (BEP-RXD), 902, 903–904.

See also RX detector (RXD, dRXD)
BEP effectiveness tests, 910–911, 912

BEP-expanded bands, 941–942

BEP-expanded MR images, FCLS using, 939.

See also BEP-preprocessed MR images;

Magnetic resonance (MR) entries

BEP-FCLS method/technique, 924. See also

Fully constrained least-squares (FCLS)

method

BEP-generated bands, brain tissue classification and,

936–951

BEP-generated images, 953

BEP þ LSMA (BEP-LSMA), 923. See also Linear

spectral mixture analysis (LSMA)

applying to magnetic resonance image

classification, 918

BEP-LSOSP method/technique, 924. See also

Least-squares-based orthogonal subspace

projection (LSOSP)

BEP-NCLS method/technique, 924. See also

Non-negativity abundance-constrained

least-squares (NCLS) method

BEP-preprocessed MR images, 943. See also

BEP-expanded MR images; Magnetic

resonance (MR) entries

Best binary coding method, 728

Between-bands orthogonal projection correlation

(BBOPC), 892, 896. See also BBOPC band

selection algorithm

Between-class scatter matrices, 46, 47, 58, 360, 361,

362, 393, 396–397, 908

Between-class scatter matrix/within-class scatter

matrix criterion, 362

Binary classification, 46, 47

Binary classification problems, reducing

multiclass classification problems to,

53–54

Binary code words, 719, 720, 721, 722, 723,

724–725, 744

L-dimensional, 728

L-length, 736–739

M–block length, 776

Binary code word sets, 720
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Binary coding, 9, 16–17, 717, 719, 720–723, 986

effectiveness of, 740

for spectral signatures, 719–740

in spectral identification, 729

Binary coding methods, 725

best, 728

results of, 727–730

spectral, 741

spectral identification and, 733–736

Binary composite hypothesis-testing approach, 62

Binary composite hypothesis-testing problem, 41

Binary decisions, 48

Binary encoders, progressive, 776

Binary hard decisions, 69

Binary hypothesis–based detectors, 36–38

Binary hypothesis test, 365, 959, 962

HFC vs. PCA methods and, 139

Binary hypothesis-testing problem, 36, 64, 66,

136–137

Binary images, 546

Binary signature coding schemes, 717, 719

Binary strings, encoding, 755–756

Binary-valued stage components, 775

Binary values, 719–720, 741, 742

Biometric recognition, 95–99

Biometric recognition system, evaluation of, 95

Bit allocation, 667

Bit plane coding, 719, 720

Bit position, 784

Bit rates, 764, 768, 771

Bits, 668

BKG class, signatures in, 485–486. See also

Background (BKG) entries

BKG data sample vectors, 487

BKG signature extraction, 508–509

Blind source separation technique, 244

BP applications. See also Band prioritization (BP)

using highest-prioritized bands, 625–635

using least prioritized bands, 635–646

using mixed highest-prioritized and least-

prioritized bands, 646–651

BP/BD bands, highest-prioritized, 692–693,

702–703. See also Band prioritization/band

de-correlation (BP/BD) approach

BP/BD-PBS algorithm, 687, 688

BD/BP-PBS algorithm vs., 688

BP concept, 662–663

BP criteria (BPCs), 615–616, 674–677, 688, 806

BP/ID-BD algorithm and, 689

classification-based, 619–620

comparison of, 624, 650

FLDA-based, 619–620

highest-prioritized bands selected by, 651

highest-prioritized spectral bands selected

by, 625

high-order statistics–based, 618, 658

infinite-order statistics–based, 618–619

for investigating DDA, 674

least-prioritized bands selected by, 652

OSP-based, 620

second-order statistics–based, 617–618,

674, 693

SNR-based, 618

variance-based, 617–618

BP experiments, 624–651, 652

BP/ID-BD algorithm, 688, 689

Brain imaging, 87–91

Brain MRI, 925. See alsoMagnetic resonance (MR)

brain imaging; Magnetic resonance (MR)

imaging (MRI)

Brain MR protocol, 951–952

Brain tissue classification, 87–91, 933–935,

935–936, 936–951

Brain tissues, 922

classification results of, 948, 951, 952, 953, 954

Brain tissue substances, 928, 930, 931, 933–935,

935–936, 936–951s

ground truth of, 89

BrainWeb MR image database, 920

Breast imaging, 83–87

Breast tissues, detection results for, 86, 87

Breast tumor detection, 84–87

BS/2D compression algorithm, 556. See also Band

selection (BS)

BS/3D-cube compression algorithm, 557

BS-selected spectral bands, 982

BS techniques, 196–197, 800

CA-based unsupervised virtual signature finding

algorithm (CA-UVSFA), 486, 488–489, 524.

See also Component(s) analysis (CA)-based

entries

Calcite signature, 112, 152, 296

CA-LSMA performance, 513. See also Linear

spectral mixture analysis (LSMA)

Candidate algorithms, selecting, 102

Canonical analysis, 195

CA transform, 168, 170

Cauchy–Riemann equation, 5

CA-ULSMA procedure, 489–490, 499–503,

505–510. See also Linear spectral mixture

analysis (LSMA); Unsupervised LSMA

(ULSMA)

quantification results from, 513–517
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CA-ULSMA/SLSMA comparative analysis, 501.

See also Linear spectral mixture analysis

(LSMA)

Causal processing, real-time, 991

Causal processing, 987–988

Causal RX detector (CRXD), 975. See also RX

detector (RXD, dRXD)
CA-UVSFA procedure, 488–489. See also CA-based

unsupervised virtual signature finding algorithm

(CA-UVSFA); Unsupervised virtual signature

finding algorithms (UVSFAs)

CB agents, quantification of, 825. See also Chemical/

biological entries

CB data, 799

AVIRIS data vs., 818

CEM-based criteria, disadvantage of, 622. See also

Constrained energy minimization (CEM)

CEM-based hyperspectral measure (MDCEM), 475,

476, 479

CEM-based mixed sample classification techniques,

54

CEM detected panels, 567–569

CEM detection results, 119–121

CEM detector, 988

CEM filter (dCEM), 374, 379–383

CEM implementation, 375–376, 376–377

CEM–matched filter distance (MFDCEM), 476–477.

See alsoMatched filter distance (MFD)

CEM solution, 375

Change detection, 773

Characteristic polynomial equation,

591, 595

Chemical/biological agent detection, 3D ROC

analysis in, 91–95. See also CB agents

Chemical/biological (CB) defense, 799, 828.

See also CB entries

Chemical/biological warfare (CBW) agents, 91

Chemical/biological warfare (CBW) defense, 10

Chemical data, spectral signatures of, 787

Chemical/infrared data signatures, spectral, 21

Cholesky decomposition, 175

Circular-SFPC (C-SFPC), 741, 757, 758, 759–760,

761, 762, 763, 764, 765, 766–768, 769, 770.

See also Spectral feature probabilistic coding

(SFPC)

performance of, 771

Classification, 195

CEM-based, 54

with hard decisions, 45–54, 62

linear spectral mixture analysis vs., 970

with soft decisions, 54–57, 62

supervised and unsupervised, 980

Classification-based BPC, 619. See also BP criteria

(BPCs)

Classification-based criteria, 615

Classification error, 353

Classification performance

band number and, 658–661

quantitative analysis of, 445

Classification rates, 600–603

Classification results, 944, 945, 946, 947, 948

of brain tissues, 948, 951, 952, 953, 954

Classifiers, 29

hyperspectral measures working as, 482

kernelizing, 440–441, 980

“Class-map/pattern”-based spatial analysis, 503

Class membership–labeling process/technique, 392,

481

Class sample covariance matrices, 600

Clean background

clean panels embedded in/implanted into,

106–107, 109

endmembers embedded in/implanted into,

232–233, 235

Gaussian noise and clean panels implanted

into, 108

Clean target panel pixels, 145, 146

Clean targets, 107

Cliques, 922

Clustering algorithms, 275

Clutter space, 42

C-means clustering method, 584

C-means/K-means clustering algorithm, 266.

See also k-means method

c-means method, 275. See also C-means entries;

Fuzzy c-means (FCM) entries; ISODATA

entries

Code, 774

Code book, 666, 774

Code words, 774, 986

M–block length binary, 776

Coding methods

DDA results by, 670–672

discrimination powers of, 758

Coding schemes, 666, 670, 717, 719

Coin flipping experiments, 287–288, 289, 290

Column vectors, 176, 484, 772, 773

Combinatorial vectors, 58

Complete knowledge

generating, 383

of target signatures, 372

Complete knowledge simulation, 402

Component(s) analysis (CA), 168

Component analysis (CA)-based techniques, 486
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Component analysis (CA)-based transforms, 11

Component analysis–based ULSMA (CA-ULSMA),

483, 485, 486, 488–490. See also Unsupervised

LSMA (ULSMA)

Component(s) analysis methods, 14

Component(s) analysis transform, 549

Component-based algorithms, 467

Component dimensionality, 125

Component prioritization-based projection pursuit,

191

Component spectral signatures, modeling,

214

Component transform techniques, 293

Compression performance, criteria used to measure,

546–547

Compression ratios (CRs), 542, 562, 981

Computational burden, reducing, 292

Computational complexity, 242, 247, 262, 264, 284,

290, 907, 908, 979, 980

Computational costs, 220–221, 239,

241, 244

Computer-aided detection and classification

algorithm (CADCA), 880, 893, 894, 896

for concealed targets, 892–893

Computer-simulated data, 102

Computer simulations, 725–730

synthetic image–based, 868–871

using AVIRIS data, 831–842

using NIST-gas data, 843–852

Computing resources limits, 222

Concealed target detection, 879, 891–892,

895

applications of, 877

experiments for, 893–895

Concealed target detection problem, 896

Concealed targets

computer-aided detection/classification algorithm

for, 892–893

detecting unknown, 18

Concentration threshold, 92

Confusing data sample vectors, 52

Connectivity, four- and eight-neighbor, 803

Constant false alarm rate (CFAR) detector, 41.

See also Generalized LRT (GLRT)-based

CFAR

Constants, absorbing into threshold, 40

Constrained band correlation/dependence

minimization, 620–624

Constrained band selection (CBS), 197–198,

620–621

algorithms/MATLAB codes for,

1046–1051

Constrained energy minimization (CEM), 8, 41,

43–44, 56, 61, 62, 114–122, 352, 357, 372,

392, 475, 476, 615, 621, 902, 980, 989.

See also CEM entries

algorithms/MATLAB codes for, 1046, 1047–1049,

1049–1050, 1050–1051

alternative approach to implementing,

374–375

extending, 377

FVC-FLSMA vs., 395–396, 400–401, 403–405,

407–409

in hyperspectral target detection, 79

OSP vs., 57, 358, 376, 377, 379–383, 828

as partial knowledge version of OSP, 383–384

signature suppression by, 383

as a special case of TCIMF, 378–379

Constrained FIR linear filter, 623

Constrained least-squares methods, 409–410

Constrained linear spectral unmixing, 251

Constrained LSMA, 927. See also Linear spectral

mixture analysis (LSMA)

new application of, 895–896

Constrained LSMA methods, 955. See also Linear

spectral mixture analysis (LSMA)

Constrained objective function, 198

Constrained optimization problem, 51, 66, 376, 377

Constraint constant, 52–53

Constraint matrix, 395

Constraint vectors, 56

Contaminated signatures, 872, 736

Contaminated spectral correlation, 479

Contiguous spectral bands, 356

Continuous approximations, 861

Continuous signal processing, 717

Continuous-value hyperspectral signal

characterization, 797

Converged projection vector, 584

Convergence issues, 283

Convex cone analysis (CCA), 201, 202, 204, 207,

214–215, 240, 242, 967, 968

VCA vs., 247

Convex geometry algorithm, 201. See also Convexity

geometry

Convex geometry–based criteria, 209–228

Convex geometry–based methods, 339

Convex geometry–based endmember extraction,

209–228

Convex hulls

growing, 247–248

volumes of, 257, 349

Convexity-based endmember extraction algorithms,

relationships among, 969
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Convexity geometry, 209, 212, 214–215, 215–225,

964–965

categorization of, 203

in endmember extraction, 202

COordinate Rotation DIgital Computer (CORDIC)

algorithm, 989–990

Corrected signatures, 869, 870

Correctly detected sample pool, 75

Correlation. See also De-correlated entries

band-to-band, 820

pixel-to-pixel, 820

Correlation-based least-squares error problem, 416

Correlation coefficient matrix, 172

Correlation coefficients (CCs), 369, 370, 371

Correlation eigenvalues, 127, 128, 135, 136

Correlation filter-based distance (RMFD), 237

Correlation matrix–calculated eigenvalues, 957–958

Correlation matrix–weighted hyperspectral

measures, 475, 482

Correlation matrix–weighted matched filter distance,

476–477

Correlation-weighted hyperspectral measures, 469,

477

classification rates resulting from, 480, 481

confused with classifiers, 480

performance of, 479

for target discrimination/identification, 472–477

Correlation-weighted measures, 465–466

Corrupted detail/approximation signals, 865–866,

866–867

Corruption effect, 936

Cost functions, 37, 64

Cost matrix, 36

Co-variance–based PCA, 172

Covariance eigenvalues, 127, 128, 135, 136

Covariance matrix, 44, 172, 173, 180

of Gaussian–Markov noise, 369–370

Covariance matrix–calculated eigenvalue, 957–958

Covariance matrix–weighted hyperspectral

measures, 474–475

Covariance matrix–weighted matched filter distance,

475

Creosote leaves

abundance fractions of, 369, 372

detection of, 382, 386–390

detection results of, 386, 388–390

Criteria. See also Convex geometry–based

criteria; Custom-designed criteria; Data

characterization-driven criteria; Data

representation–driven criteria;

Data characterization–driven criteria;

Deflection criterion; Design criteria;

Eigen-based component analysis criteria;

Eigenvalue distribution-based criteria;

Endmember extraction criteria; FA-based

criteria; NP detection–based criteria; Projection

index (PI)-based criteria; Second-order

component analysis (CA)-based criteria;

Statistics-based criteria; Stopping criterion

between-class scatter matrix/within-class scatter

matrix, 362

for detection problems, 64

for DRT, 195

for finding endmember sets, 339

for kth moment–based SQ-EEA, 253

for optimality, 102

Cross-correlated band images, 943

Cross-correlated bands, 910, 938, 942, 943

Cross-correlated spectral band images, 901, 902

Cuprite AVIRIS image scene, 23

Cuprite data, 19, 20, 21–22, 23, 156, 157, 158, 160,

162, 163, 165, 237, 258–260, 309, 310, 312,

313, 323, 325, 330–331, 536–537, 598, 647,

656, 657

Cuprite image data scenes, 310

Cuprite image scene, 2, 326, 534–537

IN-FIND-extracted endmembers from, 690–692

Cuprite mining site, Nevada, 534

Cuprite reflectance, results for, 262

Cuprite reflectance data, 670–672, 688

“Curse of dimensionality,” 6, 209

Custom-designed criteria, 549

Custom-designed data processing techniques, 545

Custom-designed endmember initialization

algorithm (EIA), 203, 204

Custom-designed initialization algorithms, 313,

588–589, 595

Custom-designed signal detection, in the noise

model, 359

d, as orthogonal to U, 374. See also (d,U)-model

Dark-point-fixed (DPF) transform, 214

Data, 542. See also Information entries

for RN-FINDR, 291

Data analysis

multivariate, 585

random initial conditions in, 268

targets of hyperspectral, 13

Database identification, 34, 35

Data characterization–driven criteria, 138–140,

144–149, 164–166

virtual dimensionality as determined by, 126–140

Data compaction, 683. See also Data compression

entries
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Data compression, 15, 541, 545, 981. See also

Information compression entries

endmember extraction–based hyperspectral,

542

exploitation-based hyperspectral, 542

exploitation-based lossy hyperspectral, 15

hyperspectral, 4

information compression vs., 8–9, 546, 547

LSMA-based hyperspectral, 542

success in, 545, 546

Data compression criteria, 541–542

Data compression issues, 15

Data compression ratio, 547

Data correlation matrix, 395

Data covariance matrix (K�1), 415

Data cube, full image, 230. See also Image cube

Data dilation, 231

Data dimensionality, 125, 589–590

reducing, 346

Data dimensionality reduction, 11, 168–199, 296,

305–306, 309, 346, 897

Data exploitation, hyperspectral, 7, 526

Data information, 542

PSDE, PSDP, and PSDR and, 581

Data matrix, 174

hyperspectral image and, 177–178

Data processing techniques, 80

custom-designed, 545

Data reduction, 683

Data representation

to determine virtual dimensionality, 140

PC-based, 584

Data representation–driven criteria, 149–155,

164–166

virtual dimensionality determined by, 140–144

Data representation system, selecting, 125

Data sample categories, 75

Data sample correlation, 469–470

Data sample correlation matrix, 136, 375

Data samples, 66, 180

projection values of, 488

unmixing, 492–499, 500, 501, 502

Data sample vectors, 49, 52, 54, 66, 175, 209, 210,

211, 249–250, 251, 273, 290, 309, 469, 484,

486, 603, 656, 964, 978, 979, 985

analyzing, 483

automatic target generation process and, 960

as endmembers, 316–317

finding maximum lengths of, 272–273

finding sample means of, 273–274

processed as 1D signals, 16

randomly selected, 265

RPPI-produced, 310

unmixing, 357

Data size reduction–based CF approach, 542

Data sphering, algorithms/MATLAB codes for,

1000–1001. See also Sphered data;

Sphering entries

Data training sample covariance matrix, 397

Data variances, 135, 176, 196–197

DDA results. See also Dynamic dimensionality

allocation (DDA)

by Purdue data coding methods, 672–673

by reflectance cuprite data coding methods,

670–672

DDAvalues, 693

Decision function, 53

Decision rules, 36

Decoded spectral signatures, 781

De-correlated bands, highest-prioritized, 695

De-correlated data, 183

De-correlated random process, 364

Deflection criterion, 971

dLS(r), 370, 371, 372, 380–382

dLS(r)/least-squares linear spectral mixture analysis

relationship, 362–364

Demixing matrix, 185

Dependent parameters, 95

Derivatives, calculating, 4–5

Design criteria, 542, 543

for EEAs, 330, 348–349

for SM-EEAs, 240

for SQ-EEAs, 264

Desired endmembers, 329

Desired signature knowledge, obtaining, 483–484

Desired signature matrix, 422–424

Desired target signature, 356

Desired target signature matrix (D), 56, 377, 378

Desired target signature vectors, 801

Detail signatures, 860, 863, 864

corruption of, 865–866, 866–867

signatures self-tuned by, 869–870

Detected abundance fractions, 92, 93

comparison of, 379, 382

Detected concealed targets, 895

Detection-based criteria, 615

“Detection” decision, 64

Detection methods/techniques, producing ROC

curves for, 73

Detection performance analysis, 78

Detection performance–based 2D receiver operating

characteristics (ROC) curves, 31

Detection power, 66, 137

Detection power/true-positive rate/probability, 73
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Detection probability, 137, 366

Detection probability/rate, 66

Detection probability/rate/power, 68

Detection problems, criteria for, 64

Detection rate (PD), 64, 69, 78, 99

Detection techniques, evaluating, 64

Detector performance, 69, 72, 99

Detectors, 29

evaluating, 64

Detector statistics, 67

Deterministic approach, 322

Deterministic detector, 38

Deterministic models, 928–929

Deviation from EPP (EPPD), 724, 725, 726, 727,

728, 729, 730, 731, 732, 733–735, 736–738,

739. See also Equal probability partition (EPP)

binary coding

Diagonal matrix, 172, 173, 180

Digital Airborne Imaging Spectrometer (DAIS

7915), 534, 537–539

Digital numbers (DNs), 54, 358

Dilation operations, 231

Dimensionality allocation, 668

Dimensionality constraints, intrinsic, 919

Dimensionality de-correlation, 984

Dimensionality expansion

band, 18

nonlinear, 18

Dimensionality expansion/reduction processes,

progressive, 982

Dimensionality prioritization (DP), 199, 543,

544, 549, 581, 582, 583, 584–585, 683.

See also DP entries

band prioritization vs., 614, 624

PSDP and, 589–590, 613

transformed components representation for,

585–589

Dimensionality reduction (DR), 31, 32, 168, 209,

212, 261, 293, 296, 320, 321, 328, 329, 340,

523–524, 549, 543, 582, 584, 626, 958,

981–983. See also DR entries; Progressive band

dimensionality reduction (PBDR); Progressive

spectral dimensionality reduction (PSDR);

Variable dimensionality reduction (VDR)

applying ICA to, 185–186, 306

by band selection–based spectral compression,

556–557

band selection vs., 632–635

as a crucial preprocessing step, 326

for data, 296, 305–306, 309

by feature extraction–based transforms,

195–196

by high-order statistics–based components

analysis transforms, 179–184

impact of, 349

impact on EEAs, 344–348

implementing, 581

by infinite-order statistics–based components

analysis transforms, 184–190

issues in, 608, 613, 664–665

by projection pursuit–based components analysis

transforms, 190–194

PSDP and, 613

for RN-FINDR, 291

by second-order statistics–based component

analysis transforms, 170–179

spectral, 549, 550, 552

by transform-based spectral compression,

550–556

Dimensionality reduction by band selection (DRBS),

897, 899. See also DR by band selection

(DRBS)

Dimensionality reduction by band selection (DRBS)

techniques, 11

Dimensionality reduction by transform (DRT)

techniques, 11. See also DR by transform (DRT)

Dimensionality reduction (DR) techniques, 11, 223,

245, 335, 337

best and worst, 520

Dimension expansion (DE), 931

Discrete approximations, 861

Discrete detail signal, 863

Discrete signal processing, 717

Discrete wavelet transform (DWT), 551, 558,

859, 860

Discriminant analysis, 195–196

Discriminant function, 366

Discriminant vectors, 393

Discriminating spectral signatures, 805

Discrimination

identification vs., 774

OSP-based hyperspectral measures for, 473

Discrimination power (DP), 805, 868.

See also Discriminatory powers

for subpixel panel identification, 873, 874

of WSCA, 871

Discrimination threshold, 788

Discriminatory powers, 818. See also Discrimination

power (DP); Relative spectral discriminatory

power (RSDPW)

measurement of, 808

Distance measures

results of,730

between signature vectors, 784
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Distance metric, 481

Distinct panel signatures, extraction of, 637–646

Distribution asymmetry, 179

Distribution flatness, 179

Divergence measure, for band selection, 892

Divide-and-conquer strategy, 990

Dot products, 437, 438

DP criterion, 581. See also Dimensionality

prioritization (DP); Discrimination

power (DP)

DP-ranked priority scores, 581

DP via PIPP, 590. See also Projection index

(PI)-based projection pursuit (PIPP)

DRBS/3D compression process, 557. See also

Dimensionality reduction by band selection

(DRBS) entries

DR by band selection (DRBS), 32, 168, 169–170,

196–197, 198, 199, 547, 548, 549, 556, 581.

See also Dimensionality reduction (DR)

DR by transform (DRT), 32, 168, 198–199,

547, 548, 549, 556, 581, 582, 982, 983.

See also Dimensionality reduction by

transform (DRT) techniques

algorithms/MATLAB codes for, 1001–1015

criteria for, 195

effectiveness of, 584

DR-processed dimensions, 982

DRT/DRBS, 547, 548, 549, 556. See also

Dimensionality reduction by band selection

(DRBS) entries; Dimensionality reduction

by transform (DRT) techniques

DR transforms, 199, 247, 340–342, 344, 345

selecting, 212

Dual window–based eigen separation transform

(DWEST), 975

Dummy source alphabet, 900–901

(d,U)-model, 357–358, 366, 383. See also d; U

OSP-model vs., 379–380

signal detection perspective derived from,

359–360

Dynamic band selection (DBS), 686

Dynamic dimensionality allocation (DDA), 15,

543–544, 612, 664–682, 687, 688, 798,

983–984

applications of, 665–666

coding techniques for determining, 667–669

determining, 666

development of, 682

effectiveness of, 669

endmember extraction using, 671, 672

experiments for, 669–681

fixed-size band allocation and, 682

Hamming code–based, 669

Huffman coding for, 668

Shannon coding for, 668

Early data processing, for Remote sensing data, 984

Echo time (TE), 930

EEA þ LSMA approach, 519. See also Endmember

extraction algorithms (EEAs); Linear spectral

mixture analysis (LSMA)

EEA-extracted pixels, 340, 535, 536, 539

EEA performance, DR impact on, 344

EEA performance evaluations, 344

EEAyield, 343

Effective dimensionality (ED), 124

Effective spectral dimensionality (ESD), 957

EIA approach, 278–280. See also Endmember

initialization algorithms (EIAs)

EIA-driven EAAs, 278. See also Endmember

extraction algorithms (EEAs); Endmember

initialization algorithm (EIA)-driven EEAs

(EIAD-EEAs)

EIA-EEAs, 205, 278, 315

EIA-FCLS-EEA, 278. See also Fully constrained

least-squares (FCLS) method

EIA-generated initial endmembers, 265

EIA-HOS-EEA, 277. See also High-order statistics

(HOS) entries; High-order statistics

(HOS)-based EEAs

EIA-ICA-EEA, 277. See also Independent

component analysis (ICA) entries

EIA-PP-EAAs, 278. See also Projection pursuit (PP)

entries

EIA-SM-EEAs, 275, 277, 278. See also Endmember

initialization algorithm (EIA)-driven SM-EEAs

(EIAD-SM-EEAs); Simultaneous endmember

extraction algorithms (SM-EEAs)

EIA-SQ-EEAs, 275, 278. See also Sequential

endmember extraction algorithms (SQ-EEAs)

Eigen-analysis, 138

Eigen-based component analysis, 127

Eigen-based component analysis criteria, 128–129

Eigen component analysis transforms, 170–175

Eigenvalue categories, 129–130

Eigenvalue distribution, 166

Eigenvalue distribution-based criteria, 127–128

Eigenvalue locations, 131

Eigenvalue problem, generalized, 58

Eigenvalues

maximum, 361

sample correlation matrix–calculated, 957–958

sample covariance matrix–calculated, 957–958

Eigenvector classes, 133
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Eigenvector matrix, 171, 591

Eigenvector-prioritized PICA (eigen-PICA)

algorithm, 931–932. See also Prioritized ICA

(PICA)

Eigenvectors, 58

as initial projection vectors, 189

convex cone analysis and, 214–215

generating projection vectors as, 591

PCA-transformed components specified by,

582–583

Eight-neighbor connectivity, 803

Embedded block coding with block truncation

(EBCOT), 558

Embedded signatures, abundance fractions of,

840–841

EM-MRF-based approaches, 922. See also

Expectation-maximization (EM) algorithm;

Markov random field (MRF)

Empirical indicator function (EIF), 127, 130, 165

Empty intersection, 805

Encoding, SFPC algorithm for, 756

Encoding methods, 16–17

Endmember bundles, 517

Endmember determination, 969

Endmember extraction, 7–8, 12, 31, 101, 201–206,

256–263, 314, 315, 324, 325, 326, 327, 328,

340–341, 341–342, 467, 526–527, 559, 561,

646–651, 653–654, 656–658, 964–970.

See also Extracted endmembers

by FCLS-EEA, 226–228

by IN-FINDR, 632–635, 635–636, 637, 643–645,

649, 653–654, 656–658

improving, 296

linear spectral unmixing and, 519

PBS and, 688–690

PSDP, 598–599

second-order statistics–based, 228–230

statistics-based approaches to, 228

subpixel effects on, 332

terminologies related to, 969

ULSMA vs., 517–524

uniqueness of, 208

using DDA, 671, 672

using ICA, 344

Endmember extraction algorithms (EEAs), 12, 106,

152, 201–206, 339, 518–519, 527, 968–970.

See also Initialization-driven EEAs (ID-EEAs);

Random endmember extraction algorithms

(REEAs); Sequential endmember extraction

algorithms (SQ-EEAs)

algorithms/MATLAB codes for, 1015–1025

best design criteria for, 348–349

categorization of, 202, 205, 286, 968

classes of, 339

design criteria for, 330

design of, 208–209

development of, 207, 208, 967

effectiveness of, 111, 266, 282

endmember pixel generation and, 532

impact of dimensionality reduction on, 344–348

initial conditions to terminate, 267

initialization of, 266

least-squares–based, 968

major issues in, 265

pixels extracted by, 343–344, 533

relationships among, 316–349, 348, 969

selecting an initial set of endmembers for,

267–268

ultimate goal of, 266

using reduced data, 347

Endmember extraction application, 112–113

Endmember extraction–based hyperspectral data

compression, 542

Endmember extraction criteria, 202

Endmember extraction issues, 208

Endmember “finding,” 208, 241, 969

Endmember information, characterized by

high-order statistics, 347

Endmember initialization algorithm (EIA)-driven

EEAs (EIAD-EEAs), 266, 271, 275–277.

See also EIA-driven EAAs

Endmember initialization algorithm (EIA)-driven

SM-EEAs (EIAD-SM-EEAs), 271. See also

Simultaneous endmember extraction algorithms

(SM-EEAs)

Endmember initialization algorithms (EIAs), 265,

271, 315, 318

custom designed, 203

for SM-EEAs, 274–275

sharing features with SQ-EEAs, 274–275

Endmember matrix, 142, 393, 823

Endmember numbers

determining, 314

issues in, xxiii–xxiv

Endmember pixel generation, endmember extraction

algorithms and, 532

Endmember pixels, 254, 293, 325, 326, 527,

529–530, 531

extracted by algorithms, 261

extracted by PPI, 233–239, 340–341

extracted by SM-EEAs, 237

initial, 329

Endmember pixel vectors, 14

Endmember purity, 517
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Endmembers, 7, 8, 32, 54, 207, 274–275, 411,

527. See also Final endmembers; Image

endmembers; Initial endmembers;

Virtue (virtual) endmembers (VEs)

accurate number of, 329

appropriate number of, 266

convex cone analysis and, 214–215

defined, 201

desired, 329

embedded in clean background, 235

embedded in noisy background, 235–236

extracted, 317

extracted by IN-FINDR, 599

extracted by N-FINDR, 520

extracted by PPI and RPPI, 294–295, 306,

307, 310

falsely alarmed, 328

as hyperspectral signatures, 665

implanted into clean background, 232–233

implanted into noisy background, 233–234,

234–235

in simulated synthetic scene, 336

with IN-FINDR, 216–218, 218–222, 690–692

LSMA and, 351

manually selected, 289

mineral, 324

minimal simplex volume and, 214

number of image, 898

for PPI, 210, 211

presetting the number of, 267

random initial, 287, 289

required by linear spectral mixture analysis, 974

selecting an initial set for EEA, 267–268

selection of, 203

with SM-FINDR, 216

statistics constituted by, 338

true, 288, 289

Endmember selection, 517–518, 969

Endmember sets

criteria for finding, 339

maximum simplex volume and, 339–344

Entropy, 194, 624, 625, 637, 650, 651, 652, 657,

675–677, 689, 691, 693, 694–699, 699–702,

703–706, 707–712, 713–714

endmembers extracted by IN-FINDR

corresponding to, 632, 634, 644, 645,

649, 653–654

infinite-order statistics–based BPCs and, 619

maximum, 722

UFCLS-mixed panel results corresponding to,

640, 647

UFCLS-mixed panel results produced by, 629

ENVI 3.6, 212

Environment for visualizing images (ENVI), 207,

316. See also ENVI software

ENVI software, 177, 210, 212. See also Environment

for visualizing images (ENVI); MATLAB-

based PPI (MATLAB-PPI)

Equal probability partition (EPP) binary coding, 725,

726, 727, 728, 729, 730, 731, 732, 733–735,

736–738, 739, 986

spectral deviation of, 724

Equal probability partition (EPP) binary coding

scheme, 717, 719, 720, 722–723

Error signature, 864

wavelet decomposition of, 865

Error threshold (g), 127, 141, 142, 144, 960

selection of, 267

Error vectors, 227

Estimated abundance fractions, 250, 380, 924

of panel pixels, 514, 515, 518

Estimated abundance vector, 822

Estimates, notation for, 29

Estimation accuracy, 383

Estimation error(s), 55, 832

of a, 40
Estimation error ratios, 834, 843, 845–846, 852, 854

Euclidean distance (ED), 14, 251, 254, 273, 275,

465, 470–471, 482, 593, 725, 726, 727, 728,

729, 730, 731, 732, 733–735, 736–738, 739.

See also OSP-based Euclidean distance (EDOSP)

Euclidean distance (ED)-SDFC, implementation of,

745. See also Spectral derivative feature coding

(SDFC)

Exhaustive searches, 267–268

Expand-and-reduce operations, 583

Expanded image cubes, 605

Expectation-maximization (EM) algorithm, 921, 922

Experiment design, 10

for synthetic image experiments, 101–123

Experiments. See also HYperspectral Digital

Imagery Collection Experiment (HYDICE);

Synthetic image experiments

benefits of, 578

at Purdue Indiana Indian Pine test site, 25–26

repeatable, 10, 102

synthetic image–based, 1

Experiments-based comparative study/analysis,

323–329

Exploitation algorithm, 527

Exploitation application, 553

Exploitation-based application compression, 547

Exploitation-based applications, 548, 559–561

Exploitation-based compression criteria, 545, 550
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Exploitation-based criteria, 547

Exploitation-based hyperspectral data compression

(EHDC), 542, 545–580, 981–982

Exploitation-based lossy hyperspectral data

compression, xxiv, 15

Extracted endmembers, 317

simplexes formed by, 344

Extracted error (XE), 127, 129–130, 165

Extreme value theory, 961

FA-based criteria, 146. See also

Factor analysis (FA)

Factor analysis (FA), 129. See also FA-based criteria

Factor analysis (FA)-based Malinowski’s error

theory, 127, 129–130

“False alarm” (FA) decision, 68

False alarm probability (probabilities) (PF), 37–38,

62, 137, 143, 326, 538, 577, 648, 959, 961

predetermined, 137

False alarm probability/rate (PF), 64, 66, 69, 74, 99

Falsely alarmed endmember pixels, 295

Falsely alarmed endmembers, 328

Falsely alarmed pixels, 294

Falsely alarmed sample pool, 75

“False negative” (FN) decision, 64, 68

False negative rate/probability, 73

“False positive” (FP) decision, 64, 68

False positive rate/probability, 72

False rejection rate (FRR), 96, 98–99

FAST algorithm, 922

FastICA, 583, 604. See alsoMy FastICA

algorithms/MATLAB codes for, 1005

learning algorithms with, 596

FastICA algorithm, 186, 188–190, 292–293,

489, 931

FastICA-generated ICs, 254, 572. See also

Independent components (ICs)

Fast iterative PPI (FIPPI), 322. See also Pixel purity

index (PPI) entries

algorithms/MATLAB codes for, 1015, 1017–1020

FCLS classification method, 626. See also Fully

constrained least-squares (FCLS) method

FCLS classification results, 448, 605–607

FCLS-estimated abundance fraction map, 890

FCLS/IEA-EEA, 205. See also Endmember

extraction algorithms (EEAs); Iterative error

analysis (IEA)

FCLS/KFCLS curves, 451, 454, 457, 459, 460, 463.

See also Kernel-based FCLS (KFCLS)

FCLS-mixed pixel quantification results, 118

FCLS performance, 445

FCLS quantification, for ATGP-FastICA cube, 608

FCLS-unmixed abundance fractions, 501, 609–611,

660, 661–662, 674, 679–681, 696, 697,

703–706, 707–712

FCLS unmixed pixels, abundance fractions of, 608

FCLS-unmixed results, 152–154, 607

FCM-based methods, 923. See also Fuzzy c-means

(FCM) entries

FCM-MRF-based approaches, 922. See alsoMarkov

random field (MRF)

FDE by classification, 905, 907–908. See also

Feature dimensionality expansion (FDE)

using intrapixel spectral correlation, 908

using sample spectral correlation, 907–908

FDE techniques, for multispectral imagery, 908, 909

Feature characterization, hyperspectral, 17

Feature dimensionality expansion (FDE), 897,

899, 919

by classification, 905, 907–908, 918

by nonlinear kernels, 904–909

by transformation, 905–907

Feature extraction (FE), 168

Feature extraction (FE)-based transforms, 11.

See also FE transform

dimensionality reduction by, 195–196

Feature space, 46

Feature transforms, 195, 196, 199

Feature vector–constrained FLSMA (FVC-FLSMA),

391, 392–395, 409–410. See also Fisher’s

LSMA (FLSMA); Linear spectral mixture

analysis (LSMA)

FLDA and LSOSP vs., 399–400

FLDA, LSOSP, TCIMF, and CEM vs., 403–405,

406, 407–409

quantitative results produced by, 403, 405

relationship between OSP and, 396

relationship between LCDA and, 396–397

relationships with LCMV, TCIMF, and CEM,

395–396

TCIMF and CEM vs., 400–401

Feature vectors, 47, 48, 195, 196, 655

FE transform, 168. See also Feature extraction (FE)

entries

Field programmable gate array (FPGA), 102, 989.

See also FPGA designs

Fifth moment, 182

50–50% cross validation, for performance analysis,

600

Filter output SNR, 359

Filters

discrete wavelet transform and, 859

distinctions among, 378–379

LCMV, 972
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Final endmembers

extracted by a REEA, 288

inconsistent selection of, 314

Final results, inconsistency in, 315

Finite Gaussian mixture (FGM) model, 920

Finite impulse response (FIR), 621

Finite impulse response (FIR) linear filter, 44, 197,

373, 377

First endmember selection process, 273

for SGAs, 273

First-order coding methods, 771

First-order spectral statistics–based approaches,

957–959

First-order statistics, 959

HFC vs. PCA methods and, 139

First-order zero-mean Gaussian–Markov noise

(GMN), 369

Fisher linear discriminant function, 360, 361

Fisher’s kernel, 981

Fisher’s linear discriminant analysis (FLDA), 624,

625, 637, 650, 651, 652, 907–908, 977–978.

See also Fisher’s ratio–based linear discriminant

analysis (FLDA); FLDA entries; Kernel-based

Fisher’s linear discriminant analysis (KFLDA)

endmembers extracted by IN-FINDR

corresponding to, 632, 634, 644, 645,

649, 653–654

UFCLS-mixed panel results corresponding to,

641, 648

UFCLS-mixed panel results produced by, 630

weighting matrix derived from, 416–417

Fisher’s linear discriminant analysis (FLDA)-

based BPC, 619–620. See also BP criteria

(BPCs)

Fisher’s linear discriminant analysis perspective,

from OSP-model, 360–362

Fisher’s LSMA (FLSMA), 8, 13, 352–353, 391–410,

435, 973. See also Linear spectral mixture

analysis (LSMA)

utility of, 398

Fisher’s ratio, 46, 47, 58, 195, 391, 393, 410,

908, 977

Fisher’s ratio–based linear discriminant analysis

(FLDA), 11, 45–48, 61, 62, 168, 195–196, 199,

352, 391, 392, 402, 412. See also Fisher’s linear

discriminant analysis (FLDA); FLDA entries;

Kernel-based Fisher’s linear discriminant

analysis (KFLDA)

finding successive feature vectors for, 47–48

FVC-FLSMA vs., 399–400, 403–405, 406,

407–409

Fisher’s Rayleigh quotient, 361–362, 391, 393

Five-panel signature detection, 79–80, 83

Five-panel spectral signatures, 28

Fixed-dimensionality reduction (FDR), 983.

See also Dimensionality reduction (DR)

Fixed dimensionality bad selection (FDBS), 983

Fixed-length coding, 666, 669, 986

Fixed-point algorithm, 596

Fixed-point-free (FPF) transform, 214

Fixed-size band allocation, dynamic dimensionality

allocation and, 682

Fixed-size band selection (FSBS), PBS vs.,

686–687

Fixed-size dimensionality, 543

FLDA-based binary classification, 47. See also

Fisher’s linear discriminant analysis (FLDA)

FLDA-generated classifier, 46

FLDA-generated feature vectors, 393

FLSMA performance, 405, 407, 410. See also

Fisher’s LSMA (FLSMA)

fMRI analysis, 930

Fourier transforms, 863

Fourier transform/series, 140

Four-neighbor connectivity, 803

Four-stage spectral/spatial hyperspectral

compression, 560, 561

Fourth central moment, 179

Fourth-order statistics, 932

Fourth-order statistics–based kurtosis, 182

Fourth-order statistics–based SQ-EEA, 252–253.

See also Kurtosis-EEA; Sequential endmember

extraction algorithms (SQ-EEAs)

FPGA designs, for hardware implementation,

989–990. See also Field programmable gate

array (FPGA)

Fractional abundance image, 395

Fractional abundance maps, 352, 392

Fractional abundance vector, 351–352

Full abundance constraints, 348–349

Full image data cube, 230

Fully abundance-constrained least-squares (FCLS)

method, 81, 82, 83, 84, 85, 89–91, 229–230.

See also FCLS entries; Full abundance

constraints; Fully constrained least-squares

(FCLS) method

for spectral unmixing, 159

Fully abundance-constrained methods, 436, 884

Fully constrained least-squares–EEA (FCLS-EEA),

201, 204, 205, 209, 225, 226–227, 234–235,

240, 255, 278. See also Endmember extraction

algorithms (EEAs)

modification of, 227–228

results of, 232
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Fully constrained least-squares (FCLS) method, 111,

114, 339, 352, 353, 392, 397, 410, 412, 422,

424, 425, 427, 431, 432, 434, 436, 444, 449,

451, 452, 454, 457, 459, 460, 462, 463, 492,

493–494, 495–496, 497, 498, 499, 500, 502,

505, 506, 507, 508, 510, 512, 513, 514, 515,

516, 517, 518, 850, 882, 883, 884–885, 886,

887, 888–889, 890, 891, 896, 910, 911, 912, 967

for abundance fraction estimation, 895–896

AFCLS-FLSMA vs., 401–402, 403–405, 406, 407

algorithms/MATLAB codes for, 1026, 1028,

1034–1036

brain tissue classification by, 936–951

in detecting R panel pixels, 432

kernel version of, 462

for material quantification, 880

operating on MR images, 935–936

quantitative results produced by, 402, 403,

405, 409

for spectral unmixing, 603–604, 605–607

total error from, 512, 513, 514

using BEP-expanded MR images, 939

Functional magnetic resonance imaging (fMRI), 930

Fuzzy c-means (FCM), 920. See also FCM entries

Fuzzy c-means (FCM)-based techniques,

921–922

FVC-FLSMA-generated weighting matrix, 396.

See also Feature vector–constrained FLSMA

(FVC-FLSMA)

FVC-FLSMA performance, 409

Gas data, 751, 764, 786

classification results for, 752, 753

Gas data set, signature vectors and average signature

vector of, 753. See also NIST entries

Gaussian assumption, 72

Gaussian distributions, 39, 73–74

zero-mean, 73

Gaussian-fitted 3D ROC curves, generating, 76.

See also Gaussian-fitted ROC curves; Three-

dimensional (3D) ROC curves

Gaussian-fitted data, 95

Gaussian-fitted ROC curves, 94, 97–99, 100. See also

Gaussian-fitted 3D ROC curves

generating, 73–74

Gaussian kernels, 449

Gaussian–Markov model, 824. See also Gaussian–

Markov process

Gaussian–Markov noise (GMN), 368–371

covariance matrix of, 369–370

detection results in, 370, 371, 373

Gaussian–Markov process, 826

Gaussian maximum likelihood (GML), 971

Gaussian maximum likelihood classifier (GMLC),

352. See alsoMaximum likelihood classifier

(MLC)

using OSP-model, 366

Gaussian maximum likelihood detector/estimator,

355

Gaussian maximum likelihood estimator (dGML),

144, 357, 367, 377, 391, 412, 415, 436, 971

Gaussian maximum likelihood estimation (GMLE),

391, 412, 415, 436, 971

Gaussian noise, 38, 108, 110, 111, 112, 131, 143,

144, 233, 305, 356–357, 811, 971

additive, 334

background image corrupted by, 532

in orthogonal subspace projection, 364–372

Gaussian noise assumption, 366

Gaussian noise–corrupted scenario, 303–305

Gaussian noise corruption, 299

Gaussian random variables, 290, 317, 322

Gaussian random vectors, 247, 272.

See also Gaussian vectors

Gaussian signal sources, 554

Gaussian skewers, 319, 320

Gaussian sources, 185, 929

Gaussian VCA, 290. See also Vertex component

analysis (VCA)

Gaussian vectors, randomly generated, 321. See also

Gaussian random vectors

Generalized eigenvalue problem, 58

Generalized LRT (GLRT), 41. See also Likelihood

ratio test (LRT)

Generalized LRT (GLRT)-based CFAR, 62. See also

Constant false alarm rate (CFAR) detector

Generalized OSP (GOSP), 899. See also Orthogonal

subspace projection (OSP)

Geographical information system (GIS), 355

Geometry-based techniques, 46

Gershgorin circle theorem, 132–134

Gershgorin disks, 132, 133, 134

Gershgorin radii (GR), 127, 133–134,

134–135, 166

Gershgorin radius–based methods, 131–135

Givens rotations, 989

Global anomaly detector, 977

Global flat regions, 807

Global sample covariance matrix, 600

Glossary, 993–996

GLRT detector, 41. See also Generalized LRT

(GLRT) entries

Gmix, 751–753

Google Earth, 909
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Gradient changes

in spectral value, 744–745

in spectral variation, 751–752, 771

Gradient descent learning algorithm/program, 594,

596

Gram-Schmidt orthogonalization-based band

de-correlation (GSO-BD) algorithm,

685–686

Gray level range, 893

Gray levels, maximal and minimal, 619

Gray-scaled images, 893–894, 895

Gray-scale fractional abundance images, 399

Ground sampling distance (GSD), 3, 879, 896

Ground truth, 25, 26, 305, 503, 505

of brain tissue substances, 89

Ground-truth-corresponding endmember (mineral)

pixels, 270–271

Ground-truth information, 537

Ground truth map, 26, 27

of panel targets, 882

Ground truth mineral endmembers, 270

Ground truth mineral pixels, 259, 270

Ground-truth mineral spectra, 746, 749

Ground truth pixels, 312. See also Ground truth

mineral pixels

Ground truth samples, 309

Gumbel distribution, 961, 962

Halfway partition (HP) binary coding, 725, 726, 727,

728, 729, 730, 731, 732, 733–735, 736–738,

739, 986

Halfway partition (HP) binary coding scheme, 717,

719, 720, 722

Halfway partition deviation (HPD), 724, 725, 726,

727, 728, 729, 730, 731, 732, 733–735,

736–738, 739

Hamming code–based DDA, 669. See also Dynamic

dimensionality allocation (DDA)

Hamming coding, 666, 670, 672, 673, 678,

679–681

for static dimensionality allocation, 669

Hamming distance (HD), 741, 746, 749, 784.

See also Hamming spectral distance entries

Hamming distance (HD)-SDFC, 747, 748, 749, 750,

751, 753, 754, 764, 766. See also Spectral

derivative feature coding (SDFC)

implementation of, 745

performance of, 764, 766

RSDPW values for, 752, 766

Hamming spectral distance (HSD), 720, 721, 725,

726, 727, 728, 729, 730, 731, 732, 733–735,

736–738, 739. See also Hamming distance (HD)

Hamming spectral distance values, 726, 727,

728, 729, 730–731, 731–732, 733–736,

736–738, 739

Hapke nonlinear mixing model, 921

“Hard” coding, 773

Hard decision–based quantizers, 774

Hard-decision classification, 445

Hard decision–made classifiers, 60

Hard-decision-making detector, 79, 82

Hard decisions, 33

basis of, 39

binary, 69

classification with, 45–54, 62

detectors with, 35

Hard quantization, 774

Hardware implementation, FPGA designs for,

989–990

Harsanyi–Farraud–Chang (HFC) method, 126,

135–138, 155–163, 164, 165, 323, 420, 423,

563, 957, 958–960, 962. See also HFC/NWHFC

method; Noise-whitened Harsanyi–Farraud–

Chang (NWHFC) method

algorithms/MATLAB codes for, 997–1000

PCA method vs., 139–140

principal components analysis vs., 959–960

virtual dimensionality estimated by, 532

HFC/NWHFC method, 489–490, 532. See also

Harsanyi–Farraud–Chang (HFC) method;

Noise-whitened HFC (NWHFC) method

Hierarchical foreground/background analysis, 519

High compression ratios, 541

Higher-order statistics–based criteria, 615

Highest-prioritized bands, 636, 646–651

BP applications using, 625–635

selected by BP criteria, 651

Highest-prioritized BP/BD bands, 702–703. See also

Band de-correlation (BD); Band prioritization

(BP); Band prioritization/band de-correlation

(BP/BD) approach

Highest-prioritized de-correlated bands, 695

Highest-prioritized/least-prioritized band mixing,

BP applications using, 646–651

High-frequency domain information, 860

High interband correlation, 616

High-order IBSI, 466, 467. See also Interband

spectral information (IBSI)

High-order spectral statistics–based approaches,

962–964

High-order spectral statistics (HOS) HFC

(HOS-HFC) methods, 962–963. See also

Harsanyi–Farraud–Chang (HFC) method;

High-order statistics (HOS)
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High-order spectral targets, 485

High-order statistics (HOS), 182–183, 202,

209, 230, 257, 282, 547, 596. See also HOS

entries

endmember information characterized by, 347

of IBSI(S), 485, 486, 487, 488

types of, 932

High-order statistics band prioritization criteria, 662

High-order statistics–based BPC (BP criteria), 618,

658. See also BP criteria (BPCs)

High-order statistics–based components analysis

transforms, dimensionality reduction by,

179–184

High-order statistics (HOS)-based DR (HOS-DR)

transforms, 255, 326, 349. See also

Dimensionality reduction (DR)

algorithms/MATLAB codes for, 1012–1015

High-order statistics (HOS)-based EEAs

(HOS-EEAs), 201, 204, 243, 252, 255, 272,

280. See also Endmember extraction algorithms

(EEAs)

results produced by, 282, 285

High-order statistics–based PICA (HOS-PICA)

algorithm, 931, 932. See also Prioritized ICA

(PICA)

High-order statistics (HOS)-based SM-EEAs, 230,

252. See also Simultaneous endmember

extraction algorithms (SM-EEAs)

High-order statistics (HOS)-based SQ-EEAs,

252–254, 260, 261. See also Sequential

endmember extraction algorithms (SQ-EEAs)

High order statistics (HOS) methods, 962, 975

High-order target VSs, 505. See also Virtual

signatures (VSs)

High-pass filters, discrete wavelet transform and, 859

High priority scores, 688

High priority sources, 684

High-resolution hyperspectral data, 674

High-spectral-resolution issues,1

High spectral/spatial resolution, 483

Homogeneous background pixels, 531

Homogeneous pixels, 467, 526, 527, 531, 534, 539

HOS algorithms, 959. See also High order statistics

(HOS) entries

HOS-based algorithms, 962. See also High order

statistics (HOS)-based entries

HOS criteria, 688

HOS-ICPA, 254

Hotelling transform, 170

Householder transformation, 175

HSD/normalized HSD values, 733–735. See also

Hamming spectral distance (HSD)

Huffman coding, 666, 670, 672, 673, 678, 679–681,

900–901

ternary, 900

Huffman coding–based DDA, 668. See also Dynamic

dimensionality allocation (DDA)

Human eye inspection, 111

HYDICE data, 26–28, 156, 157, 158, 160, 162, 165,

212, 228, 237–239, 258, 260–261, 305, 306,

307, 310, 312, 313, 315, 325–326, 345, 436,

577, 674–682. See also HYperspectral Digital

Imagery Collection Experiment (HYDICE)

ICA-DR and, 346

panels in, 636

HYDICE data coding methods, DDA results by, 678

HYDICE data experiments, 460–462, 463

HYDICE data panel pixels, unmixed abundance

fractions of, 679–681, 703–706

HYDICE experiments, 268–270, 305–309

HYDICE image experiments, 281, 477–478,

886–891

HYDICE image/imagery/image scenes, 399, 402,

419, 426, 503, 603, 624, 635, 660, 661, 694,730,

764, 790, 852, 853, 880, 881, 893, 894–895

HYDICE panel scene, 27–28

HYDICE scene, 562, 570–571

CA-UTFA results for, 509

results for, 263

HYDICE vehicle scene, 26–27

Hyperplanes, normal vectors of, 49, 50

Hyperspectral analysis, unsupervised, 13–14

Hyperspectral band selection, 682

Hyperspectral compression, 549, 581, 981–984.

See also Hyperspectral data compression

drawback of, 543

major approaches to, 549

mixed component transforms for, 554–556

by PBDP, 653–656

by PSDP, 597–598

Hyperspectral data, 772, 806–812

high-resolution, 674

as an information source, 665

virtual dimensionality of, 11, 124–167

Hyperspectral data analysis, targets of, 13

Hyperspectral data collection, 799

Hyperspectral data compression, 4, 546

endmember extraction–based, 542

exploitation-based, 542

exploitation-based lossy, 15

LSMA-based, 542

in preprocessing hyperspectral data, 580

Hyperspectral data exploitation, 7, 174, 526, 542

challenges to, 467
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Hyperspectral data preprocessing, hyperspectral data

compression in, 580

Hyperspectral data sample vector, 773

HYperspectral Digital Imagery Collection

Experiment (HYDICE), 20. See also HYDICE

entries

Hyperspectral feature characterization, 17

Hyperspectral image analysis, ample detection and

mixed sample classification in, 60

Hyperspectral image compression, 8–9

Hyperspectral image cube, 186

Hyperspectral image experiments, 725, 730–739,

881–891

real, 258–262

Hyperspectral image(s)/imagery. See also

Hyperspectral imaging entries

benefits of, 355

collection of, 614

as a data matrix, 177–178

defined, 898

features of, 550

issues of, 3–4

mixed PCA/ICA component analysis for, 571

multispectral imagery vs., xxiv–xxv, 4–7, 897, 957

noise in, 112

signal-to-noise ratio in, 365

spectral unmixing applications in, 356

using LSMA to compress, 559

virtual dimensionality estimated for real, 155–163,

164, 165

Hyperspectral image (HSI) processing, 526, 918–919

further topics related to, 987–991

hyperspectral signal processing vs., xxv, 7, 16

Hyperspectral image scenes, 21, 22, 23–24, 27,

28, 29

Hyperspectral image sensor, 124

Hyperspectral imaging (HSI), 79–83

advances in,1

applications of, 987

challenges in, 31

growth of, xxiii

issues to be resolved in, 919

for magnetic resonance imaging problems,

877–878

misconceptions related to, 4–5

multispectral imaging vs., 897, 987

natural interpretation of, 5–7

subpixel detection via, 879–880

variable-length coding and, 666

Hyperspectral imaging algorithms, 463, 898

applications for, 101

standardized data sets for, 123

Hyperspectral imaging books, 3

Hyperspectral imaging publications, 2–3

Hyperspectral imaging sensors, 207, 582

strengths of, 484

Hyperspectral imaging (HSI) techniques, 899, 902

applications for, 9

applying to MRI, 921

effective, 139

expanded by BDE, 902–904

expansion of, 920

Hyperspectral Imaging: Techniques for Spectral

Detection and Classification (Chang), xxiii

Hyperspectral information, 138–139

Hyperspectral information compression (HIC), 15,

541–544, 545, 609–610, 981

Hyperspectral information compression concept,

xxiv

Hyperspectral information compression systems,

547–549

block diagrams for, 560, 561

Hyperspectral information compression technique,

547

Hyperspectral measure design, traditional approach

to, 469

Hyperspectral measures, 469–482

averaged performance of, 480

block diagram of, 477

correlation matrix–weighted, 475

correlation-weighted, 469, 477

covariance matrix–weighted, 474–475

for discrimination, 473

for identification, 473–474

panel-based, 477

pixel-based, 477

for target discrimination/identification, 470–472,

472–477

types of, 14

weighted by a posteriori correlation, 474–477

weighted by a priori correlation, 473–474

working as classifiers, 482

Hyperspectral mixture analysis, linear, 80–83

Hyperspectral sample vector, 484

Hyperspectral signal characterization, 797–798

continuous-value, 797

Hyperspectral signal coding, 9, 16–17, 717–718

Hyperspectral signal estimation, 797

Hyperspectral signal/image processing

conferences, 2

Hyperspectral signal processing, 984–987

hyperspectral image processing vs., xxv,

7, 16

Hyperspectral signal representation, 797

1092 Index



Hyperspectral signals, 16

Kalman filter–based estimation for, 820–858

one-dimensional, 9

variable number variable band selection for,

799–819

wavelet representation for, 859–875

Hyperspectral signal subspace identification by

minimum error (HySime), 142–144, 149, 165,

166, 335. See also SSE/HySime-estimated

values

Hyperspectral signature characterization, 9

progressive spectral signature coding for, 796

wavelets in, 859

Hyperspectral signatures, 488

endmembers as, 665

proximity of, 872

vector coding for, 741–771

Hyperspectral signature vectors, 9, 859

characterization of, 799

decomposing, 801, 802

Hyperspectral target detection, 79–80

applications of, 877

Hyperspectral variable band selection,

797–798

Hypothesis (hypotheses)

alternative, 66

null, 66

Hypothesis-testing problem, 38, 77

IBSI(S) sample spectral statistics, 483, 484, 485, 486,

488, 518, 985, 986. See also Interband spectral

information (IBSI)

high-order, 485, 486, 487, 488

IBSI(SBKG) sample spectral statistics, 484–485, 486

second-order, 485

IBSI(Starget) sample spectral statistics, 484, 486

high-order, 485

ICA/2D compression, 551–552. See also

Independent component analysis (ICA)

entries

ICA/2D compression algorithm, 551–552

ICA/3D compression algorithm, 552

ICA algorithms, use of random initial conditions by,

931

ICA-based spectral/spatial compression techniques,

569

ICA-based SQ-EEA, 969. See also Sequential

endmember extraction algorithms (SQ-EEAs)

ICA-decompressed image cube, 573

ICA-DR transform, 347. See also Dimensionality

reduction (DR)

HYDICE data and, 346

ICA-EEA. See Independent component analysis

(ICA)-based EEAs; Independent component

analysis–based endmember extraction

algorithm (ICA-EEA)

ICA/JPEG2000 Multicomponent compression,

performance of, 563, 564, 568, 570

ICA (m ¼ 0, n ¼ 9) scenario, 572–573

ICA/spatial compression techniques,

569, 579

ICA transforms, 562

IC prioritization, 583, 932. See also Independent

components (ICs)

by HOS-PICA, 932

ID-BD algorithm, 688, 689. See also Band

de-correlation (BD); Information

divergence–based band de-correlation

approach

Idempotent projector, 359

Identification

discrimination vs., 774

OSP-based hyperspectral measures for, 473–474

Identification errors, 477, 478, 791, 852. See also

Incorrect identification

Identity mapping, 437

Identity matrix (I), 173, 180, 368, 395, 413

ID-ICPA, 254

IDOSP.D identification measure, 474, 477, 478

IDOSP identification measure, 474, 477, 478

ID-PCA algorithm, 595–596. See also Initialization-

driven PCA (ID-PCA); Principal components

analysis (PCA)

ID-PIPP-generated PICs, 588. See also Initialization-

driven PIPP (ID-PIPP); Projection index

(PI)-based projection pursuit (PIPP)

ID-PP algorithm, 194. See also Initialization-driven

projection pursuit (IDPP, ID-PP)

ID-PPI, 204. See also Pixel purity index (PPI) entries

IEA-extracted pixels, 536. See also Iterative error

analysis (IEA)

IED-1-SGA, 273, 276, 278, 279, 280, 281, 282, 283,

284, 285. See also Initial endmember-driven

(IED) initialization; Simplex growing

algorithms (SGAs)

IED-2-SGA, 273, 276, 278, 279, 280, 281, 282, 283,

284, 285

IED-ATGP, 278. See also Automatic target

generation process (ATGP)

IED-ATGP-EEAs, 272, 276, 278, 279, 280, 281, 282,

283, 284, 285. See also Endmember extraction

algorithms (EEAs)

IED-HOS-EEAs, 272, 278. See also High-order

statistics (HOS)-based SQ-EEAs
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IED-ICA-EEAs, 272, 278, 279, 280, 282, 283, 284,

285. See also Independent component analysis–

based endmember extraction algorithm

(ICA-EEA)

IED-IEA, 273–274. See also Iterative error analysis

(IEA)

IED-kurtosis-EEA, 278, 279, 280, 282, 283, 284, 285

IED-PP-EEA, 278. See also Projection pursuit (PP)

IED-SGAs, 273, 278. See also Simplex growing

algorithms (SGAs)

simplex volumes and, 344

IED-skewness-EEA, 278, 279, 280, 282, 283,

284, 285

IED-UFCLS, 272, 278. See also Unsupervised fully

constrained least-squares (UFCLS) method

IED-UFCLS-EEA, 276, 278, 279, 280, 281, 282,

283, 284, 285

IED-UNCLS, 272. See also Nonnegativity constraint

least-squares (NCLS) method; Unsupervised

nonnegativity constrained least-squares

(UNCLS) method

IED-VCA, 272, 276, 277, 278, 279, 280, 281, 282,

283, 284, 285. See also Initial endmember-

driven (IED) initialization; Vertex component

analysis (VCA)

IICA/2D compression algorithm, 553. See also

Inverse transform of ICA (IICA)

IICA/3D compression, 554

IICA/3D compression algorithm, 554

IICA/3D Multicomponent JPEG2000 compression

system, 553–554

IICA/3D-SPIHT compression system, 553–554.

See also Set partitioning in hierarchical trees

(SPIHT); SPIHT entries; 3D-SPIHT entries

IICA/JPEG2000 Multicomponent compression,

performance of, 563, 564, 569, 570

Image analysis

pattern class–based vs. target class–based, 5

pixel-based, 33

Image background

characterized by supervised knowledge,

402–403

characterized by unsupervised knowledge,

405–409

experiments to represent, 426–427

target insertion into, 101

Image-based BS, 800. See also Band selection (BS)

Image-based BS techniques, variable-number

variable-band selection vs., 805

Image compression

hyperspectral, 8–9

spatial, 542

Image cubes. See also Data cube

expanded, 605

hyperspectral, 186

Image endmembers, 13

number of, 898

prior knowledge of, 825

Image pixels, 12

Image pixel vectors, 29, 466, 491–492, 823

Image processing

hyperspectral, 7

image classification in multispectral, 8

image quality/classification accuracy in, 64

progressive, 656

sequential, 656

Image resolutions, 860

multiple, 860

Images, dividing into tiles, 558

Image thresholding, 195

Image thresholding method, 47

Image vectors, 826

Imaging techniques, applications for

hyperspectral, 9

Imbedded error (IE), 127, 129–130, 165

Implanted panel pixels, replaced with background

pixels, 333

Implanted panels

abundance fractions for, 565

synthetic image with, 419

Implanted targets, 108

Inconsistency issues, 283

Incorrect identification, on panel pixels, 875.

See also Identification errors

Independence-based ICA, 168. See also Independent

component analysis (ICA) entries

Independent component analysis (ICA), 11, 18, 255,

260, 261, 292, 293, 294, 295, 306, 307, 310,

325, 326, 328, 329, 337, 338, 345, 467, 486,

488, 505–508, 519, 520–524, 543, 551,

554–555, 582–583, 584, 585, 608, 898–899,

929–931, 957. See also FastICA entries; ICA

entries; Independence-based ICA; Over-com-

plete ICA (OC-ICA); Random ICA entries;

Under-complete ICA (UC-ICA)

algorithms/MATLAB codes for, 1004–1012

applying to dimensionality reduction, 185–186

implementing, 186, 929

in endmember pixels extraction, 341–342,

343, 344

to perform DR, 340

p values estimated by, 340–341

SGA in conjunction with, 338

use for DR, 306
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Independent component analysis (ICA)-based EEAs,

243. See also Independent component analysis–

based endmember extraction algorithm

(ICA-EEA)

Independent component analysis (ICA)-based

SQ-EEAs, 254. See also Sequential endmember

extraction algorithms (SQ-EEAs)

Independent component analysis–based endmember

extraction algorithm (ICA-EEA), 201, 203, 207,

209, 254, 257, 258, 260, 261, 262, 263, 264,

272. See also Independent component analysis

(ICA)-based EEAs

Independent component analysis (ICA) transform,

169, 184–186

Independent components (ICs), 169, 188–190,

292–293, 551, 572, 573, 582–583, 584, 596,

930–931. See also FastICA-generated ICs;

Prioritized ICs

generating, 583

produced by ATGP-FastICA algorithm, 604

ranking, 555, 583

ranking the orders of, 584

super-Gaussian, 186

Independent parameters, 95

Indiana Indian Pine test site, 2, 444–445, 459,

478–479, 599–603, 658–659, 672–674, 690.

See also Purdue Indiana Indian Pine data

IN-FIND–extracted endmembers, from Cuprite

scene, 690–692

IN-FIND–extracted mineral signatures, 688

IN-FINDR–found pixels, 650

IN-FINDR–generated endmembers, 431

Infinite-order (1-order) statistics–based BPC,

618–619. See also BP criteria (BPCs)

Infinite-order statistics–based components analysis

transforms, dimensionality reduction by,

184–190

Information. See also Data entries; Hyperspectral

information compression; Pixel information;

Spectral information entries

analysis of, 526

extracting from pixels, 526

from hyperspectral data, 665

generating from image data, 474

spectrally de-correlating, 551

Information bits, 668

Information compression, 546, 547. See also Data

compression entries

data compression vs., 8–9, 546, 547

hyperspectral, 15

Information compression systems, key components

of, 547–549

Information criterion (AIC), 6, 127, 130–131,

138, 165

Information divergence (ID), 188, 194, 588, 624,

625, 626, 637, 650, 651, 652, 657, 675–677,

684, 689, 691, 693, 694–699, 699–702,

703–706, 707–712, 713–714. See also Spectral

information divergence (SID)

endmembers extracted by IN-FINDR

corresponding to, 632, 634, 644, 645,

649, 653–654

infinite-order statistics–based BPCs and, 619

UFCLS-mixed panel results corresponding to,

640, 648

UFCLS-mixed panel results produced by, 629

Information divergence–based band de-correlation

approach, 684. See also ID-BD algorithm

Information loss, 545

Information of endmembers, 288

Information-processed matched filter, 972

Information recovery, 546

Information retrieval, 545, 546

Information spectral dimension/bands, 669

Information theoretic criterion (ITC), 127, 130–131,

166

Information theory, 288

Inherent nonlinear spectral information,

920

Initial band selection, 687

Initial conditions, 266

categorization of, 204

impact of, 309

random, 329

selecting appropriate, 283

to terminate an EEA, 267

Initial endmember–driven EEAs (IED-EEAs), 204,

266, 271, 272–274, 278, 286

categorization of, 204

Initial endmember–driven SQ-EEAs (IED-SQ-

EEAs), 271, 274, 278. See also Sequential

endmember extraction algorithms (SQ-EEAs)

Initial endmember–driven (IED) initialization, 265,

276. See also IED entries

Initial endmember pixels, 329

Initial endmembers, 328. See also IED entries

appropriately selected, 265

EIA-generated, 265

generated by custom-designed initialization

algorithms, 287

random, 313, 316, 325, 328

randomly generated, 265

Initialization algorithms, 322, 328, 329, 590

custom-designed, 287, 588–589, 595
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Initialization-driven EEAs (ID-EEAs), 12, 203, 205,

206, 265–286, 271–277, 280, 315, 316, 318,

595, 968. See also Endmember extraction

algorithms (EEAs)

block diagram of, 277

categorization of, 266, 278

endmembers extracted by, 279–284

pixels extracted by, 284, 285

REEAs vs., 287

Initialization-driven ICA-DR (IDICA-DR,

ICA-DR3), 169, 186, 189, 596, 604.

See also Dimensionality reduction (DR);

Independent component analysis (ICA)

entries

algorithms/MATLAB codes for, 1005, 1009–1010,

1010–1012

Initialization-driven PCA (ID-PCA), 591, 595–596.

See also Principal components analysis (PCA)

advantages of, 596

Initialization-driven PIPP (ID-PIPP), 588–589, 590.

See also Projection index (PI)-based projection

pursuit (PIPP)

Initialization-driven projection pursuit (IDPP,

ID-PP), 191, 194

Initialization-driven VCA (ID-VCA), implementing

VCA as, 277. See also Vertex component

analysis (VCA)

Initialization issues, 266–271

Initial projection vectors, eigenvectors as, 189

Initial set of endmembers, selecting, 267–268

Initial vectors, randomly generating, 593.

See also Initial projection vectors

Inner product matrix, 175

Innovation approximation signature, 867

Innovation detail signature, 867

Innovations signature, 864

In-reproducibility, 314

Interband correlation, 683, 684, 688, 803

Interband redundancy, 616

Interband spectral correlation, 805

Interband spectral information (IBSI), 466, 483, 484.

See also IBSI(S) sample entries

Interband spectral information of signature ri
(IBSI[ri]), 484

Interdistance-to-intradistance ratio, 391–392,

393, 396

Interference, eliminating, 421–422

Interference matrix, 81, 89

Interference/noise suppression, 378

Interferers, unknown, 56

Interferer signature, 511

Interpixel between-class scatter matrices, 908

Interpixel within-class scatter matrices, 908

Intersample spatial correlation, intrasample spatial

correlation vs., 984

Intersection

empty, 805

non-empty, 804

Intimate mixture, 921

Intimate spectral mixture, 435

Intraband criterion, 684

Intraband spectral information, 772

Intrapixel spectral correlation, 908

FDE by classification using, 908

Intrasample spatial correlation, intersample spatial

correlation vs., 984

Intravoxel spectral information, 920

Intrinsic dimensionality (ID), 124, 125,

126, 958

finding using eigenvalues, 127

Intrinsic dimensionality constraint, 919

INU (intensity nonuniformity) noise–corrupted brain

MR images, 946

INU noise corruption, 944, 945, 946, 947

Inverse ICA/2D compression, 553. See also IICA

entries

Inverse ICA/3D compression, 553–554

Inverse PCA/2D compression, 553. See also

Principal components analysis (PCA)

Inverse PCA 3D compression, 553–554

Inverse transform of ICA (IICA), 553. See also IICA

entries; Independent component analysis (ICA)

entries

Inverse transform of PCA (IPCA), 553. See also

IPCA entries; Principal components analysis

(PCA)

IPCA/2D compression algorithm, 553. See also

Inverse transform of PCA (IPCA)

IPCA/3D compression, 554

IPCA/3D compression algorithm, 554

IPCA/3D Multicomponent JPEG2000 compression

system, 553–554

IPCA/3D-SPIHT compression system, 553–554.

See also Set partitioning in hierarchical trees

(SPIHT); SPIHT entries; 3D-SPIHT entries

IPCA/JPEG2000 Multicomponent compression, 564,

566, 567, 569, 570

ISODATA algorithm/process, 266, 274, 275, 276,

278, 283, 481

ISODATA (C-means) clustering method, 584.

See also C-means entries

ISODATA-N-FINDR, 276, 278, 279, 280, 281, 282,

283, 284, 285. See also N-finder (N-FINDR)

algorithm
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ISODATA-PPI, 276, 278, 279, 280, 281, 282, 283,

284, 285. See also Pixel purity index (PPI)

entries

Iterated constrained endmember (ICE), 265–266

Iterated constrained endmember (ICE) algorithm,

207, 209, 225

Iterative error analysis (IEA), 201, 204, 207, 209,

273, 339, 527, 538, 539, 967. See also

FCLS/IEA-EEA; IEA-extracted pixels; IED-IEA

endmember pixels generated by, 531

pixel extraction using, 532–533, 534

Iterative error analysis–EEA (IEA-EEA), 243, 251,

275, 286. See also Endmember extraction

algorithms (EEAs)

algorithm for, 251

UFCLS-EEA vs., 251

Iterative N-finder algorithm (IN-FINDR), 421,

429–430, 528, 966–967, 968. See also Iterative

N-FINDR (IN-FINDR); N-finder (N-FINDR)

algorithm

DDAvalues and, 671–672

endmember extraction by, 599, 632–635,

635–636, 637, 643–645, 649, 653–654,

656–658

Iterative N-FINDR (IN-FINDR), 206, 216–218, 240,

314–315. See also Iterative N-finder

algorithm (IN-FINDR); Random IN-FINDR

(RIN-FINDR)

comparative study of versions of, 222–223

endmember pixels extracted via, 268–269,

270, 271

flow chart of, 218

implementation versions of, 218–222

random versions of, 296–305

results of, 297, 299, 301, 303, 306, 307,

310, 311

sequential versions of, 243

using a different set of random initial conditions,

306–309

Iterative process, 544

Iterative SC N-FINDR (ISC N-FINDR) algorithm,

966. See also Iterative N-finder algorithm

(IN-FINDR)

Iterative SQ N-FINDR (ISQ N-FINDR) algorithm,

966. See also Iterative N-finder algorithm

(IN-FINDR)

Joint Service Agent Water Monitor (JSAWM)

program, 91

JPEG2000 algorithms, 541, 550–551, 551–552,

557–558. See also 3D Multicomponent JPEG

JPEG-2000 lossless compression, 546

JPEG2000 Multicomponent spatial compression,

561–562, 580

performance of, 566, 567, 568, 570

JSAWM hand-held assay (JSAWM-HHA), 91

Kalman filter–based estimation, for hyperspectral

signals, 820–858. See also Kalman filter–based

spectral signature estimator (KFSSE)

Kalman filter–based linear spectral unmixing

(KFLU), 820–822, 822–824, 857, 858.

See also KFLU entries

KFSCSP techniques vs., 821

KFSSE vs., 825–826

KFSSQ vs., 829

as 1D signal-processing technique, 822

panel pixels wrongly identified by, 856

performance of, 854

Kalman filter (KF)-based spectral characterization

signal processing (KFSCSP) techniques, 820,

824–831. See also KFSCSP entries

Kalman filter–based spectral signature estimator

(KFSSE), 798, 824, 825–826, 841, 849, 857,

858. See also KFSSE entries

algorithmic steps of, 829–830

in estimating spectral signatures, 832

implementing, 831–832, 843, 852

KFLU vs., 825–826

KFSSI vs., 827, 828

utility of, 843

Kalman filter–based spectral signature identifier

(KFSSI), 798, 824–825, 826–828, 841, 857, 858

advantage of, 837, 847–848

algorithmic steps of, 829, 830

implementing, 832–839, 843–848, 852–856

KFSSE vs., 827, 828

mixed target identification by, 838–839, 848

panel pixels wrongly identified by, 856

state equation use by, 854

subpixel target identification by, 832–838,

843–848

utility and effectiveness of, 833, 846

Kalman filter–based spectral signature quantifier

(KFSSQ), 798, 824, 825, 828–829, 857, 858

abundance fractions estimated by, 839–840, 857.

See also KFSSQ entries

algorithmic steps of, 829, 830–831

implementing, 839–842, 856–857

KFLU vs., 829

mixed target quantification by, 840–842, 849–852

performance of, 856, 858

sensitivity to su, 841–842, 850–852

subpixel target identification by, 849
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Kalman filter–based spectral signature quantifier

(KFSSQ) (Continued )

subpixel target quantification by, 839–840

use in quantification, 849–852

Kalman filter–based techniques, 17, 798

Kalman filtering (KF), 798, 820, 864. See also

KF- entries

applications of, 820–821

new applications of, 857–858

WSCA and, 860

Kalman filters (KFs), 991

advantages of, 821

applications of, 822–824

implementing, 823

as mixed pixel classifiers, 822

strengths of, 823

Kaolinite/alunite mixed pixel, 534

Karhunen–Loeve transform (KLT), 170–171,

542, 543

K-BEP-FCLS classification results, 945–946.

See also Band expansion process (BEP);

Kernel entries; Kernel-based FCLS (KFCLS)

K-BEP-FCLS method/technique, 925, 943, 944,

945–949, 950, 953–954. See also Fully

constrained least-squares (FCLS) method

K-BEP-LSOSP classification results, 945–946.

See also Least-squares-based orthogonal

subspace projection (LSOSP)

K-BEP-LSOSP method/technique, 925, 943, 944,

945–949, 950, 953–954

K-BEP-NCLS classification results, 945–946

K-BEP-NCLS method/technique, 925, 943, 944,

945–949, 950, 953–954. See also Non-

negativity abundance-constrained least-

squares (NCLS) method

Kernel-based adaptive CEM (KACEM), 907.

See also Adaptive CEM (ACEM); Constrained

energy minimization (CEM)

Kernel-based adaptive MLC (KAMLC), 907.

See alsoMaximum likelihood classifier (MLC)

Kernel-based adaptive RXD (KARXD), 907.

See also Adaptive RXDs (ARXDs);

RX detector (RXD, dRXD)
Kernel-based algorithms, 462

Kernel-based approaches, 52, 57, 905, 944–951,

977–981

Kernel-based ATGP (KATGP), 980. See also

Automatic target generation process (ATGP)

Kernel-based CEM (KCEM), 907, 980. See also

Constrained energy minimization (CEM)

Kernel-based classifiers, 463, 980–981

Kernel-based classification, 57–60

Kernel-based FCLS (KFCLS), 353, 434, 435,

439–440, 444, 451, 452, 454, 456, 457, 459,

460, 462, 463, 908, 912, 914, 915, 916, 917,

980. See also Fully constrained least-squares

(FCLS) method; K-BEP-FCLS entries;

K-FCLS entries

algorithms/MATLAB codes for, 1026, 1028,

1034–1035, 1038–1040

using an RBF kernel, 448, 451

Kernel-based Fisher’s linear discriminant

analysis (KFLDA), 58–59, 60, 907, 908, 980.

See also Fisher’s linear discriminant analysis

(FLDA)

Kernel-based FLSMA (KFLSMA), 980.

See also Fisher’s LSMA (FLSMA)

Kernel-based LSMA (KLSMA, K-LSMA), 8, 60,

434–463, 897, 910, 923, 980, 933. See also

Linear spectral mixture analysis (LSMA);

KLSMA entries

algorithms/MATLAB codes for, 1025–1040

applying to magnetic resonance image

classification, 918

benefits of, 444

extensions of least-squares–based techniques and,

436–441

kernelization and, 440–441

performance of, 947, 949–951, 953–954

relative performance of, 456, 463

to resolve nonlinear separability issue, 434

spectral unmixing and, 462

using polynomial kernels, 452

using RBF kernels, 452, 459

Kernel-based LSMA techniques, 943, 944

Kernel-based LSOSP (KLSOSP), 353, 434, 436–438,

443, 444, 445, 451, 452, 453, 454, 455, 456,

458, 461, 462, 908, 912, 913, 914, 916, 980.

See also Least-squares-based orthogonal

subspace projection (LSOSP)

algorithms/MATLAB codes for, 1026, 1027–1028

using an RBF kernel, 446, 449

Kernel-based MLC (KMLC), 907. See alsoMaxi-

mum likelihood classifier (MLC)

Kernel-based methods/techniques, 18, 57

Kernel-based NCLS (KNCLS, KNCKLS), 353,

434, 435, 436, 438–439, 444, 445, 449, 451,

452, 453, 454, 456, 458, 459, 460, 461, 462,

908, 912, 913, 915, 916, 917, 980. See also

Non-negativity abundance-constrained least-

squares (NCLS) method

algorithms/MATLAB codes for, 1026, 1028,

1032–1034

using an RBF kernel, 447, 450
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Kernel-based OSP (KOSP), 353, 435, 462, 908.

See also Orthogonal subspace projection

(OSP)

Kernel-based RXD (KRXD), 907, 980. See also RX

detector (RXD, dRXD)

Kernel-based support vector machine (KSVM),

59–60, 353, 440, 908, 980. See also Support

vector machines (SVMs)

Kernel-based techniques, 435–436

results of, 946–951

Kernel-based transformations, 979

Kernel-based UFCLS (KUFCLS), 980. See also

Unsupervised fully constrained least-squares

(UFCLS) method

Kernel-based UNCLS (KUNCLS), 980. See also

Nonnegativity constraint least-squares (NCLS)

method; Unsupervised nonnegativity

constrained least-squares (UNCLS) method

Kernel-based WAC-LSMA (KWACLSMA), 980.

See also Abundance-constrained LSMA

(AC-LSMA); Weighted abundance–constrained

LSMA (WAC-LSMA)

Kernel counterparts, 449, 454, 455, 462

Kernelization, 440–441, 979–980

experiments using, 912–916, 916–918

kernel trick for, 877

LSMA and, 443, 444

role of, 441

Kernel orthogonal subspace projection (KOSP), 933

algorithms/MATLAB codes for, 1026, 1027

Kernel PCA (K-PCA), 906. See also Principal

components analysis (PCA)

Kernels, 59, 230–231. See also RBF kernels

effectiveness of, 449

nonlinear, 57, 933

polynomial, 452–454

types of, 980–981

Kernel support vector machine (K-SVM), 59–60.

See also Support vector machines (SVMs)

Kernel trick, 57, 58, 437, 440

for kernelization, 877

Kernel types, 57

KFCLS algorithm, 439–440. See also Fully

constrained least-squares (FCLS) method;

Kernel-based FCLS (KFCLS)

K-FCLS classification results, 945–946

K-FCLS method/technique, 924–925, 933, 943, 944,

945–949, 950, 953–954

KFLU-performed abundance fraction estimation,

824. See also Kalman filter–based linear

spectral unmixing (KFLU)

KFLU-unmixed results, for lined-up pixels, 853, 856

KFSCSP techniques, 822, 857–858. See also Kalman

filter (KF)-based spectral characterization signal

processing (KFSCSP) techniques

Kalman filter–based linear spectral unmixing

vs., 821

as signature vector–based techniques, 842, 843

utility of, 831

KFSSE-estimated reflectance spectra, 832.

See also Kalman filter–based spectral signature

estimator (KFSSE); Signal subspace estimation

(SSE)

KFSSE-estimated spectra, 833, 843, 844, 853

KFSSE estimation, 829

KFSSQ-estimated abundance fractions, 842.

See also Kalman filter–based spectral signature

quantifier (KFSSQ)

KFSSQ-estimated abundance fractions, 840–841

KFSSQ-estimated quantification results, 849, 850

KL expansion, 170, 171. See also Karhunen–Loeve

transform (KLT)

KLSMA classifiers, 457. See also Kernel-based

LSMA (KLSMA, K-LSMA)

KLSMA experiment, 912

KLSMA performance, evaluating, 445

K-LSOSP classification results, 945–946. See also

Least-squares-based orthogonal subspace

projection (LSOSP)

K-LSOSP method/technique, 924–925, 933, 943,

944, 945–949, 950, 953–954

k-means method, 275. See also C-means/K-means

clustering algorithm

KNCLS algorithm, 439, 440. See also Non-

negativity abundance-constrained least-squares

(NCLS) method

K-NCLS classification results, 945–946

K-NCLS method/technique, 924–925, 933, 943, 944,

945–949, 950, 953–954. See also Nonnegativity

constraint least-squares (NCLS) method

kth moment–based SQ-EEA, criterion for, 253.

See also Sequential endmember extraction

algorithms (SQ-EEAs)

kth moment of statistics, 187, 193

kth normalized central moment, 182–183

kth order statistics, 184, 187, 193, 588

Kuhn–Tucker conditions, 438

Kullback–Leibler information measure, 472

Kurtosis, 11, 179, 181, 183, 184, 193, 243, 252, 587,

599, 618, 624, 625, 637, 650, 651, 652, 657,

675–677, 689, 691, 692–693, 694–699,

699–702, 703–706, 707–712, 713–714, 932

endmembers extracted by IN-FINDR corresponding

to, 632, 633, 643, 645, 649, 653–654
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Kurtosis (Continued )

equations of, 586

fourth-order statistics–based, 182

UFCLS-mixed panel results produced by, 628

UFCLS-mixed panel results corresponding to,

639, 647

Kurtosis-EEA, 255, 256, 257, 258, 259, 260, 261,

262, 263, 264. See also Fourth-order

statistics–based SQ-EEA

Kurtosis transform, 184

Kurtosis transform DR (Kurtosis-DR), 169.

See also Dimensionality reduction (DR)

Laboratory data, 19–20, 786

Lagrange (Lagrangian) multiplier method, 181, 376

Lagrange multipliers, 52–53, 394

Lagrange multiplier vectors, 52, 60, 438

Lagrange multiplier vector set, 51

Lagrangians, 51, 182, 376, 394

“Land cover” classes, 25

Land cover/use classification, 599–603, 658–660,

672, 690–694

“Land use” classes, 25

LCMV-based optimization problem, 623.

See also Linearly constrained minimum

variance (LCMV) entries

LCMV-BCC, 624. See also Band correlation

constraint (BCC)

LCMV-BCM, 623. See also Band correlation

minimization (BCM)

LCMV-BDC, 624. See also Band dependence

constraint (BDC)

LCMV-BDM, 623. See also Band dependence

minimization (BDM)

LCMV filter, 972

LCMV-generated weighting matrix, 396

LCMV-weighted abundance fully constrained LSE

problem, 416

LCMV-weighted abundance nonnegativity-

constrained LSE problem, 416

LCMV-weighted abundance sum-to-one constrained

LSE problem, 416

LCMV-weighted AC-LSMA, 412, 415–416, 422,

424, 425, 427, 431, 432. See also Abundance-

constrained LSMA (AC-LSMA)

LCMV-weighted FCLS, 416. See also Fully

constrained least-squares (FCLS) method

LCMV-weighted NCLS, 416. See also Non-

negativity abundance-constrained least-squares

(NCLS) method

LCMV-weighted SCLS, 416. See also Sum-to-one

constrained least-squares (SCLS) entries

LCVF data, 156, 157, 158, 159, 161,

164, 165

L-dimensional binary code words, 721, 722, 723,

724–725, 728, 741–742, 743

L-dimensional column vectors, 176

L-dimensional data samples, 54

L-dimensional mixed signal source vector, 185

L-dimensional signature vectors, 741

L-dimensional weighting vector, 373

Learning algorithms, 593–594, 596

Learning rules, 266–267

Least-prioritized bands, 636–637, 638–642,

646–651, 652

BP applications using, 635–646

selected by BP criteria, 652

Least-prioritized/highest-prioritized band mixing

BP applications using, 646–651

Least-priority scores, 635, 636

Least-squares AC-LSMA, 432–433. See also

Abundance-constrained LSMA (AC-LSMA)

Least-squares (LS) approach, 47, 362

Least-squares (LS)-based algorithms, 467, 487

Least-squares (LS)-based endmember extraction

algorithms, 968

Least-squares–based estimator, 55–56

Least-squares–based linear spectral mixture

analysis (LS-LSMA), 355, 391, 434, 435, 501.

See also LS-LSMA techniques

relationship between dLS(r) and, 362–364,
369

relationships with OSP and LSOSP, 364, 390

Least-squares-based orthogonal subspace projection

(LSOSP), 8, 61, 80, 81, 82, 83, 84, 85, 89–91,

114, 352, 353, 396, 437, 444, 445, 449, 450,

451, 452, 453, 454, 455, 458, 461, 492,

493–494, 495–496, 497, 498, 499, 500, 502,

505, 506, 507, 508, 509, 512, 513, 514, 515,

516, 517, 518, 882, 883, 884, 886, 887,

888–889, 890, 891, 896, 910, 911, 912, 967,

972, 973. See also LSOSP entries

algorithms/MATLAB codes for, 1026, 1027

brain tissue classification by, 936–951

FVC-FLSMA vs., 399–400, 403–405, 406,

407–409

operating on MR images, 935–936

relationships with OSP and LS-LSMA, 364,

390

total error from, 512, 513, 514

Least-squares (LS)-based techniques, 352

Least-squares (LS)-based ULSMA (LS-ULSMA),

483, 485, 486–488. 491–499. See also

Unsupervised LSMA (ULSMA)
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Least-squares (LS)-based unsupervised virtual

signature finding algorithm (LS-UVSFA),

487–488, 524. See also Unsupervised virtual

signature finding algorithms (UVSFAs)

Least-squares error(s) (LSE, LSEs), 13, 202, 209,

225, 249–250, 362, 391, 411, 575–576,

621–622, 827, 833–835, 839, 846, 848, 865,

922, 927, 967

corresponding to panel pixels, 855

as a distance measure, 745

for quantitative analysis, 159

relationship to su, 847

of virtue endmembers, 165

Least-squares error–based approach, 318

Least-squares error–based constrained spectral

unmixing methods, 339

Least-squares error (LSE)-based EEAs, 243, 248,

249–250. See also Endmember extraction

algorithms (EEAs)

Least-squares error (LSE)-based transform, 170

Least-squares error (LSE) criterion, 352

Left singular vector matrix, 175

Likelihood ratio test (LRT), 37, 38, 39, 50–62, 65,

67–68, 99, 137, 355, 365, 366

Linear binary classifier, 49

Linear data representations, 140

Linear discriminant function, 48, 49–50, 59

Linear filters, finite impulse response, 44

Linear hyperspectral imaging, issues in, xxiii

Linear hyperspectral mixture analysis, 80–83.

See also Linear spectral mixture analysis

(LSMA)

Linearly constrained discriminant analysis (LCDA)

relationship between FVC-FLSMA and, 396–397

Linearly constrained discriminant analysis (LCDA),

352–353, 392

Linearly constrained minimum variance (LCMV),

43, 392

Linearly constrained minimum variance (LCMV),

615

Linearly constrained minimum variance (LCMV),

622–623

Linearly constrained minimum variance (LCMV)

adaptive beamforming, 197–198

Linearly constrained minimum variance (LCMV)

approach, 392

Linearly constrained minimum variance (LCMV)

approach

relationship between FVC-FLSMA and,

395–396

Linearly constrained optimization problem, 377

Linearly constrained optimization problem, 44

Linearly mixed data, 184–185

Linear mixing model, 113, 435, 445, 519, 520, 559,

822, 957, 970. See also Linear mixture model

Linear mixture analysis theory, 434

Linear mixture model(s), 54, 185, 358, 824, 825

Kalman filters and, 821

Linear mixture model–based OSP, 11, 168. See also

Orthogonal subspace projection (OSP)

Linear nonseparability, 904–905, 979

Linear nonseparable problems, 52, 57

Linear optimal filter, 360

Linear programming–based minimal volume

enclosing simplex (MVES), 965

Linear regression model, 140, 144

Linear separability problem, 50

for support vector machines, 51–54

Linear spectral mixture analysis (LSMA), xxiv, 12,

32, 45, 152, 157, 161, 225–228, 351–353, 355,

391–410, 411, 434, 441, 442, 459, 462, 463,

469, 483, 542, 559, 603–608, 660–661, 682,

694–714, 898, 909, 910–912, 918, 957, 967,

969, 970–974. See also BEP-LSMA; Fisher’s

LSMA (FLSMA); Kernel-based LSMA

(KLSMA); LSMA entries; Normalized LSMA;

Supervised LSMA (SLSMA); Unsupervised

LSMA (ULSMA); Weighted abundance–

constrained LSMA (WAC-LSMA)

advantages of, 923

algorithms/MATLAB codes for, 1025–1040

brain tissue classification by, 936–951

classification vs., 970

drawbacks of, 924

endmembers required by, 974

Kalman filter–based linear spectral unmixing and,

821

kernelization and, 443, 444

for MRI, 923–928

operating on MR images, 935–936, 936–951

OSP-based approach to, 971, 972, 973

in partial volume estimation, 955

for performance evaluation, 159

problems solved by, 411–413

QLSE performance of, 939–941

in remote sensing image classification, 921

spectral processing and, 955

spectral unmixing and, 664, 878

techniques developed for, 352, 353

Linear spectral mixture analysis (LSMA)

applications, 113–114

Linear spectral mixture analysis (LSMA)-based

SQ-EEAs, 248–251. See also Sequential

endmember extraction algorithms (SQ-EEAs)
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Linear spectral mixture analysis (LSMA) methods,

896

Linear spectral random mixture analysis (LSRMA),

435

for MRI, 928–932

Linear spectral unmixing (LSU), 81, 125, 152,

969–970

endmember extraction and, 519

Linear spectral unmixing (LSU) techniques, 215,

351–352, 435

Linear SVM, 59. See also Support vector machines

(SVMs)

Linear transformation, 40

Linear transforms, 591

Linear unmixing, 358. See also Linear spectral

unmixing (LSU) entries

Lined-up pixels, KFLU-unmixed results for, 853,

856

Literal analysis, 1

spatial domain–based, 7

L-length binary code words, 736–739

Lloyd’s algorithm I, 758

Loading factors, 617, 618, 620

Lossless data compression, 546

Lossy compression, 542, 543

Lossy compression techniques, 561–562, 569

Lossy hyperspectral data compression, 15

Low-frequency domain information, 860

Low-pass filters, discrete wavelet transform and, 859

Low probability detector (LPD, dLPD), 384–385
Low signal/high noise bands, 27

Low spectral resolution multispectral imagery, 5

LS-based algorithms, 485, 492. See also

Least-squares entries

LS-based LSMA/CA-based ULSMA, 517–518.

See also Component(s) analysis entries; Linear

spectral mixture analysis (LSMA);

Unsupervised LSMA (ULSMA)

LSE-based AC-LSMA, 412, 927. See also

Abundance-constrained LSMA (AC-LSMA);

Least-squares error entries

LSE-based endmember extraction algorithms, 967

relationships among, 969

LS-estimated abundance vector, 363

LS estimation error, 367

LS-LSMA performance, 513. See also Least-

squares–based linear spectral mixture analysis

(LS-LSMA). See also Linear spectral mixture

analysis (LSMA)

LSMA-based hyperspectral data compression, 542

LSMA-based hyperspectral image compression,

550

LSMA-based intrapixel techniques, 951

LSMA-based methods, 924–925

quantitative analysis among, 945–946

LSMA-based techniques, 80–81, 82, 89, 143–144,

922–923

LSMA classifiers, 449, 452, 454, 455, 457

LSMA experiments, 911

LSMA extensions, 434, 435, 436

LSMA models, 351

LSMA performance, 505, 511, 524–525

evaluation of, 460–462

LSMA performance evaluation, 503

LSOSP-based methods, 953–954. See also Least-

squares-based orthogonal subspace projection

(LSOSP)

LSOSP classification results, 446

LSOSP/KLSOSP curves, 449, 452, 453, 455, 458,

461. See also Kernel-based LSOSP (KLSOSP)

LSOSP-mixed pixel classification results, 115–117

LSOSP performance, 407

LSOSP-unmixed abundance fractions, 114

LS-SLSMA techniques, 352, 353. See also Least-

squares entries; Supervised LSMA (SLSMA)

LS-ULSMA procedure, 503–505. See also

Unsupervised LSMA (ULSMA)

quantification results from, 513–517

LS-UVSFA/CA-UVSFA, 518–519, 525. See also

Component(s) analysis entries; Unsupervised

virtual signature finding algorithms (UVSFAs)

(m ¼ 1, n ¼ 8)-PCA/ICA transform scenario, 574,

576. See also Independent component analysis

(ICA); Principal components analysis (PCA)

(m ¼ 2, n ¼ 7)-PCA/ICA transform scenario, 575

Macrospectral mixture, 921

Magnetic resonance (MR) brain imaging, 87–91.

See also Brain MRI

Magnetic resonance (MR) brain wave library, 102

Magnetic resonance (MR) breast imaging, 83–87

Magnetic resonance (MR) image analysis,

multispectral, 19

Magnetic resonance (MR) image classification,

applying BEP þ LSMA and KLSMA to, 918

Magnetic resonance (MR) imaging (MRI), 920–921.

See alsoMR entries

band expansion process over-complete ICA for,

931–932

connection to spectral unmixing, 925

future development of, 955

linear spectral random mixture analysis for,

928–932

LSMA for, 923–928
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multispectral, 19, 920–955

orthogonal subspace projection to, 925–927

Magnetic resonance (MR) imaging problems,

hyperspectral imaging for, 877–878

Magnetic resonance tissue parameters, 930

Mahalanobis classifier/maximum likelihood

classifier, 482

Mahalanobis distance (MD), 40, 367, 384, 412,

465, 978

Mahalanobis distance–based filters, 975

Mahalanobis distance–based Gaussian maximum

likelihood estimation (GMLE), 391, 412

Mahalanobis distance (MD)-based measures, 470

Mahalanobis distance kernel, 981

Mahalanobis distance (MD)-like measure (MDRX),

474, 475, 476, 479

Malinowski’s error theory, 127, 129–130, 166

Mallat’s algorithm, 859, 860, 863

Margin of separation, 50

Markov random field (MRF), 920, 922

Matched filter, 360, 363–364, 482

Matched filter–based detectors, 975

Matched filter–based distance, 465. See also

Matched filter distance (MFD)

Matched filter–based hyperspectral measures,

470

Matched filter distance(MFD). See also Correlation

filter-based distance (RMFD); Matched filter–

based distance; MFD-based hyperspectral

measures

correlation matrix–weighted, 476–477

covariance matrix–weighted, 475

Matching signal, 40

Matching signature vectors, 827, 833, 858

Material quantification, FCLS method for, 880

Material signature vector, 472

MATLAB-based PPI (MATLAB-PPI), 204, 206,

210, 211–214, 240. See also ENVI software;

Pixel purity index (PPI) entries

panel pixels extracted by, 213

MATLAB codes, 997–1051

MATLAB software package, 1–2

Matrices, 29

Matrix factorization, 174–175

Matrix inversion, 989

Matrix projection matrix, 253

Maximal gray levels, 619

Maximal linear spectral unmixed error (MLSUE),

225

Maximal/minimal OP, 319. See also Orthogonal

projections (OPs)

Maximal/minimal simplex volume (MSV), 266

Maximal OPs, 325, 329, 337. See also Orthogonal

projections (OPs)

Maximal orthogonal subspace projection, 323

Maximal projection learning algorithm, 593

Maximal projections, 211–212, 321

Maximal simplex volume, 215–225, 257, 348–349

Maximal variance, 595

Maximal volume, VCA-found, 329

Maximal volume–based EEAs, 339. See also

Endmember extraction algorithms (EEAs)

Maximum eigenvalues, 361

Maximum entropy, 722

Maximum filter output SNR, 360

Maximum IC projection, 505. See also Independent

components (ICs)

Maximum likelihood–based classification/

estimation, 898

Maximum likelihood classifier (MLC), 474–475,

599–603, 674, 977–978. See alsoMLC entries

Maximum likelihood detector, 41, 366

OSP as, 365

Maximum likelihood estimates, of abundance

fraction, 367

Maximum likelihood estimator, OSP as, 365

Maximum noise fraction (MNF), 168, 169, 176–177,

212, 232, 255, 268–269, 270, 271, 293, 294,

295, 306, 307, 310, 320, 325, 337, 338, 345,

346, 347, 519, 520–524

algorithms/MATLAB codes for, 1003–1004

in endmember pixels extraction, 341–342, 343

p values estimated by, 340–341

Maximum noise fraction (MNF) transform, 112, 618

Maximum orthogonal complement algorithm

(MOCA), 960, 061

Maximum orthogonal projection, 227, 247

Maximum orthogonal subspace projection (MOSP)

approach, 960

Maximum PC projections, 505. See also Principal

components (PCs)

Maximum SID ratio, 815. See also Spectral

information divergence (SID)

Maximum simplex volume, 518

endmember sets and, 339–344

Maxmin-distance algorithm, 274, 275, 276, 278.

See alsoMinimax detector

Maxmin-N-FINDR, 276, 278, 279, 280, 281, 282,

283, 284, 285. See also N-finder (N-FINDR)

algorithm

Maxmin-PPI, 276, 278, 279, 280, 281, 282,

283, 284, 285. See also Pixel purity index (PPI)

entries

M–block length binary code word, 776
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MD-based hyperspectral measures, 479. See also

Mean deviation (MD)

performance of, 480

M-dimensional priority unit vector, 784

MD-weighted abundance fully constrained LSE

problem, 415. See also Least-squares error

entries

MD-weighted abundance nonnegativity-constrained

LSE problem, 415

MD-weighted abundance sum-to-one constrained

LSE problem, 415

MD-weighted AC-LSMA, 412, 415, 422, 424, 425,

427, 431, 432. See also Abundance-constrained

LSMA (AC-LSMA)

MD-weighted FCLS, 415. See also Fully constrained

least-squares (FCLS) method

MD-weighted NCLS, 415. See also Non-negativity

abundance-constrained least-squares (NCLS)

method

MD-weighted SCLS, 415. See also Sum-to-one

constrained least-squares (SCLS) entries

Mean detection rate (RD), 78

Mean deviation (MD), 723, 744

Mean false alarm rate (RF), 78

Mean squared error (MSE), 142, 312, 542, 543, 547,

594. See alsoMSE entries

used for compression, 570, 580

Mean squared error approach, 318

Mean squared error (MSE)-based approaches, 820

Mean squared error (MSE)-based transform, 170

Mean squared error (MSE) estimation algorithms,

956

Measurement equation, 820–821, 822, 826, 828, 858

modified, 825

remodeling, 826–827

Measurement matrix, 823

Measurement noise, 827, 858

standard deviation of, 837

Median partition (MP) binary coding, 725, 726, 727,

728, 729, 730, 731, 732, 733–735, 736–738,

739, 986

Median partition (MP) binary coding scheme, 717,

719, 720, 721–722

Median partition deviation (MPD), 723–724, 725,

726, 727, 728, 729, 730, 731, 732, 733–735,

736–738, 739

Memory coding method, 757

Memoryless coding, 986

Mercer’s theorem, 57, 60

MFD-based hyperspectral measures, 479. See also

Matched filter distance(MFD)

Mineral endmembers, 324

Mineral signatures, 112, 113, 114, 144, 146, 281, 535

extracting, 298

extracting panel pixels corresponding to, 301–303

pure, 309, 312

true, 259

Mineral signature vectors, discrimination among,

747

Mineral spectra, USGS ground-truth, 746, 749

Mineral spectral signatures, 331, 441

Minimal gray levels, 619

Minimal/maximal OP, 319. See also Orthogonal

projections (OPs)

Minimal projections, 211–212, 488

Minimal projection value, 488

Minimal simplex volume, 214–215

Minimal volume constrained non-negative matrix

factorization (MVC-NMF), 965

Minimal volume enclosing simplex (MVES), 965

Minimal volume transform (MVT)-based approach,

965

Minimax detector, 37, 38. See alsoMaxmin entries

Minimum description length (MDL), 6, 127,

130–131, 138, 165

Minimum IC projection, 505. See also Independent

components (ICs)

Minimum misclassification canonical analysis

(MMCA), 619–620

Minimum simplex volume, 518

Minimum volume transform (MVT), 201, 202,

207, 208–209, 214, 215, 240, 242, 317.

See alsoMVT/N-FINDR

VCA vs., 247

Minor components (MCs), 616–617, 635–636

“Miss” decision, 64, 68

Mixed (m,n)-PCA/ICA compression algorithm, 555.

See also Independent component analysis

(ICA); Mixed PCA/ICA entries; Principal

components analysis (PCA)

Mixed (m,n)-PCA/ICA transform, 555, 556.

See also PCA/ICA

Mixed component analysis, for spectral/spatial

compression, 570–576

Mixed component–compressed/decompressed image

cubes, 574, 575

Mixed component transforms, for hyperspectral

compression, 554–556

Mixed highest-prioritized and least-prioritized bands,

BP applications using, 646–651

Mixed panel classifiers, 81

Mixed panel pixels, simulated, 105

Mixed PCA/ICA approach, 577, 579. See alsoMixed

(m,n)-PCA/ICA entries
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Mixed PCA/ICA component analysis, 587

for hyperspectral imagery, 571

Mixed pixel analysis, 580

Mixed pixel–based techniques, 392

Mixed pixel classification, 114, 395, 410, 445, 492

Kalman filters and, 821

performance in, 575–576

RBF kernels and, 451

Mixed pixel classification problem, 358

Mixed pixel classification/quantification, 567

Mixed pixel classifiers, 399

Mixed pixel information, 479

Mixed pixel panel quantification, 569–570, 577–580

Mixed pixel panels, 331–332

abundance fractions for, 566, 570

Mixed pixel quantification, 114, 576–577

Mixed pixels, 26, 32, 33, 467, 526, 527, 539

Mixed-pixel self-classification, 871

Mixed pixel vectors, 14, 838–839, 840–841, 848,

849–850. See also tmix mixed pixel vector

Mixed projection index–based prioritized PP

(M-PIPP), 587. See also Projection index

(PI)-based projection pursuit (PIPP)

Mixed sample analyses, 10, 31, 33–62

classification of, 45

subsample analysis vs., 34–35

Mixed sample classification, 34, 45, 60

Mixed sample classification techniques, CEM-based,

54

Mixed sample identification, prior knowledge of, 34

Mixed sample quantification, 34

Mixed samples, 33

subsamples vs., 60

subsample target vs., 34

Mixed-sample targets, simulation of, 104

Mixed sample vectors, 525

Mixed signature classification, 748–749, 751–755

Mixed signature discrimination/identification, 470

Mixed signatures

noisy, 811

spectral identification for, 789–790

Mixed signature vectors, 789, 809, 810, 819

Mixed target identification, by KFSSI, 838–839, 848

Mixed target quantification, by KFSSQ, 840–842,

849–852

Mixed target signature vector, identifying unknown,

841

Mixing effect, 921

Mixing matrices, 185, 186

for signal source separation, 930

MLC-classification, 658–659, 672. See also

Maximum likelihood classifier (MLC)

MLC class rates

in Purdue data, 699–702

using PBS prioritized bands, 694–699

MLC performance, 690

MLC rates, 691–694

of PBS, 693

MNF-DR transform, 345. See also Dimensionality

reduction (DR); Maximum noise fraction

(MNF) entries

Model error, 970

Models, interpreting, 77

Modified spectral mixture analysis, 517

Monte Carlo simulations, 102

Morphological eccentricity index (MEI), 231

Moving target detection, 988

MP binary code word, 724. See alsoMedian partition

(MP) binary coding entries

MPCM-based progressive spectral signature coding

(MPCM-PSSC), 772, 773–774, 783–786, 796,

986. See alsoMPCM-PSSC entries; Multistage

pulse coding modulation (MPCM); Progressive

spectral signature coding (PSSC)

applications of, 786

discrimination results obtained by, 791

panel pixel identification by, 791–796

performance of, 789

results produced by, 791

unique features of, 796

versatility of, 786

MPCM decoded signal points, 783

MPCM decoding algorithm, 777–778, 783

MPCM encoded priority code words, 779

MPCM-encoded progressive spectral signatures, 780

MPCM-encoded signal samples, 782

signal reconstruction of, 783

MPCM encoding, stages required for, 778

MPCM encoding algorithms, 776–783

MPCM-PSSC spectral discrimination algorithm,

784–785. See alsoMPCM-based progressive

spectral signature coding (MPCM-PSSC)

MPCM-PSSC spectral identification algorithm 1,

785–786, 791

MPCM-PSSC spectral identification algorithm 2,

786, 791

MR brain image analysis, 922. See alsoMagnetic

resonance (MR) entries

MR brain image experiments, real, 951–954

MR brain images, 933–934

MRI experiments, K-LSMA and, 933

MR image (MRI) analysis, 955

source separation–based OC-ICA for, 930–931

MR image data, 921
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MR images

combined with BEP-generated bands, 936–951

as multispectral images, 877, 924

quantitative, 878

MR image voxels, classifying, 923

MR instruments, advances in, 955

MR tissue signatures, 925–926

MR tissue substance signatures, 926

MSE estimation error covariance matrix, 823–824.

See alsoMean squared error (MSE) entries

MSE prediction error covariance matrix,

823–824

MSE values, 564, 566, 567

MSI data, expanded, 919. See alsoMultispectral

imaging (MSI)

MSI techniques, 899

M-stage thresholds, 785

Multichannel erosion, 231

Multi-channel morphological processing,

230–231

Multiclass classification problems, reducing to

binary classification problems, 53–54

Multidimensional data, representing, 124, 125

Multiple background synthetic image experiment,

564–567

Multiple-class classification, 47

Multiple correlation coefficient, 173

Multiple endmember spectral mixture analysis, 517

Multiple image resolutions, 860

Multiple regression theory, 173

Multiple-replacement IN-FINDR, 218, 219–220.

See also Iterative N-finder algorithm

(IN-FINDR)

Multiple-signal detection, 63

Multiple signal detection/classification, generating

3D ROC curves for, 77–78

Multiple-signal detection model, 77–78

Multiple signals

joint detection of, 82

single signal detection of, 82–83

Multiple-stage PCM (MPCM), 772, 773. See also

MPCM entries; Multistage pulse coding

modulation (MPCM)

Multiple subsample targets, 56

Multiple-window anomaly detection (MWAD), 977

Multiscale approximation, 860

Multiscale approximation space, 862

Multiscale signal representation, 860

Multiscale wavelet transform, 863

Multisignal detection, 65

Multisignal detection/classification, 70

Multispectral brain MR images, 925

Multispectral data, 3-band SPOT, 6

Multispectral image experiments, 463, 909–918

Multispectral image processing, image classification

in, 8

Multispectral imagery

FDE techniques for, 908, 909

hyperspectral imagery vs., xxiv–xxv, 4–7, 897, 957

issues of, 3–4

low spectral resolution, 5

nonlinear dimensionality expansion to, 18,

897–919

processing, 974

Multispectral imagery vs. hyperspectral imagery

issue, xxiv–xxv, 4–7, 897, 957

Multispectral images

defined, 898

MR images as, 877, 924

Multispectral imaging (MSI), 877, 920, 921.

See alsoMSI entries

hyperspectral imaging vs., 897, 987

Multispectral imaging techniques, spatial domain–

based, 355–356

Multispectral magnetic resonance (MR) image

analysis, 19

Multispectral magnetic resonance (MR) imaging, 19,

920–955

Multispectral MR images, special processing of, 955

Multispectral signature vector, 9

Multispectral-to-hyperspectral approaches, 355

Multistage pulse coding modulation (MPCM), 718,

772, 773, 774–783. See alsoMPCM entries

applying to SSC, 778

Multivariate data, determining ID in, 124

Multivariate data analysis, 585

Muscovite signature, 114

Mutual information concept, 185

MVT/N-FINDR, 968. See alsoMinimum volume

transform (MVT); N-finder (N-FINDR)

algorithm

My FastICA, algorithms/MATLAB codes for,

1005–1007, 1010–1012. See also FastICA

entries

NAPC transform algorithm, 178–179. See also

Noise-adjusted principal component (NAPC)

entries

National Institute of Standards and Technology

(NIST), 19, 749. See also NIST entries

Natural logarithm function, 760

NCLS classification results, 447. See also Non-

negativity abundance-constrained least-squares

(NCLS) method
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NCLS/KNCLS curves, 450, 456, 458, 459, 461,

462. See also Kernel-based NCLS (KNCLS,

KNCKLS)

NCLS performance, 445

N-coin flipping experiments, 287–288, 289, 290

N-dimensional column vectors, 176. See also

L-dimensional entries

Nearest neighbor rule–based classifiers, 481–482

Negentropy, 194, 588, 657, 675–677, 689, 692,

693, 694–699, 699–702, 703–706, 707–712,

713–714

Neural networks, 435

Newton’s method, 266

Neyman–Pearson (NP) detector (dNP), 37, 38, 41, 64,

66, 68, 137, 958, 959, 960, 961

normalized, 75

Neyman–Pearson (NP) detection problem, 65–67

Neyman–Pearson (NP) detection theory, 41, 65, 69,

127, 958. See also NP detection–based criteria

Neyman–Pearson (NP) lemma, 66–67

N-finder (N-FINDR) algorithm, 112–113, 142,

149–151, 152–155, 157, 201, 202, 203, 204,

205, 207, 209, 215, 216, 242, 288, 317, 329,

339, 348, 423, 425, 519–524, 527, 528, 538,

539. See also Iterative N-finder algorithm

(IN-FINDR); N-FINDR entries; Random

N-FINDR (RN-FINDR)

algorithms/MATLAB codes for, 1015,

1020–1023

development of, 965–967

dilemmas related to, 967

for endmember extraction, 314, 520

implemented as SM-EEA, 317–318

initial conditions in, 966

maximal volume simplexes and, 342–343

pixel extraction using, 532–533, 534

pixels extracted by, 158–159, 162, 163, 164, 165,

341, 342, 343

simplex volumes and, 343, 344, 345, 346, 347, 348

versions of, 205, 206

N-FINDR þ LSMA, 519, 520. See also Linear

spectral mixture analysis (LSMA); N-finder

(N-FINDR) algorithm

N-FINDR difficulties, 330

N-FINDR–extracted endmember pixels, 535, 536,

537–539

N-FINDR extraction, of mineral signatures,

671–672

Nine-replacement IN-FINDR (9-IN-FINDR), 223,

224. See also Iterative N-finder algorithm

(IN-FINDR)

9-signature matrix, 28–29

NIST/EPA gas-phase infrared database, 19–20, 21.

See also National Institute of Standards and

Technology (NIST)

NIST-gas data, 813–818

computer simulations using, 843–852

NIST-gas data experiments, 749–755, 760–764,

786–790

NIST-gas data set, 760, 813. See also Gas data entries

NISTwebsite, 813

NMF-based minimal volume constrained non-

negative matrix factorization (MVC-NMF),

965

Noise. See also Gaussian noise; Non-Gaussian noise;

White noise

effect on VNVBS, 811–812

in hyperspectral imagery, 112

statistics of, 41

unstructured, 43

Noise-adjusted principal component (NAPC), 212

Noise-adjusted principal component (NAPC)

transform, 169, 176, 177–179, 618

Noise assumptions, 356–357

experiments to examine, 367–372

Noise class, 127, 131

Noise-corrupted matching spectral signature vector,

826

Noise-corrupted signatures, 790

Noise corruption, 108, 944, 945, 946, 947

Noise covariance matrix, 178

estimating, 179

Noise detection, 84

Noise effect, 532–533

Noise fraction (NF), 176–177

Noise models, signal detection in, 359

Noise suppression, 378

Noise-whitened Harsanyi–Farraud–Chang

(NWHFC) method, 138, 143, 144, 155–163,

164, 165, 420–421, 423. See also HFC/NWHFC

method

algorithms/MATLAB codes for, 999–1000

virtual dimensionality estimated by, 532

Noise whitening, effect of, 371–373

Noisy background

clean panels embedded in/implanted into,

107–108, 109–110

endmembers embedded in/implanted into,

233–234, 235–236

noisy endmembers embedded in/implanted into,

234–235, 236

Noisy endmembers

embedded in noisy background, 236

implanted into noisy background, 234–235
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Noisy mixed signatures, 811

Non-empty intersection, 804

Non-Gaussianity, 186

Non-Gaussian noise, 131, 135

Non-kernel-based LSMA methods, 953

Nonlinear band dimensionality expansion

techniques, 877, 878

Nonlinear dimensionality expansion (NDE), 919

to multispectral imagery, 18, 897–919

Nonlinear dimensionality expansion techniques, 918

Nonlinear functions, 435

Nonlinear kernels, 18, 57, 933

feature dimensionality expansion by, 904–909

Nonlinearly correlated images, 900

Nonlinear separability, 434

Nonlinear spectral information, inherent, 920

Nonliteral analysis, 1, 6–7

Nonliteral hyperspectral imaging techniques, design

principles for, 956–965

Non-negative matrix factorization (NMF), 965

Non-negativity abundance-constrained least-squares

(NCLS) method, 80–81, 82, 83, 84, 85, 89–91

effectiveness of, 83

Nonnegativity constraint least-squares (NCLS)

method, 111, 248, 352, 353, 392, 397, 410, 412,

434, 436, 444, 449, 450, 451, 452, 453, 454,

456, 457, 458, 459, 461, 462, 492, 493–494,

495–496, 497, 498, 499, 500, 502, 505, 506,

507, 508, 510, 512, 513, 514, 515, 516, 517,

518, 882, 883, 884–885, 887, 886, 888–889,

890, 891, 896, 910, 911, 912, 967.

See also NCLS entries

algorithms/MATLAB codes for, 1026, 1028–1032

brain tissue classification by, 936–951

kernel version of, 462

operating on MR images, 935–936

total error from, 512, 513, 514

Nonparametric methods, 921–922

Nonstationary data, 821

Normalization constant, 40

Normalized AMD (NAMD), 40, 61. See also

Adaptive matched detector (AMD)

Normalized CEMs, in hyperspectral target detection,

79. See also Constrained energy minimization

(CEM)

Normalized correlation eigenvalues, 128

Normalized covariance eigenvalues, 128

Normalized detected signal strength, 75

Normalized ED values, 726. See also Euclidean

distance (ED)

Normalized eigenvalue distribution, finding first

sudden drop in, 128

Normalized endmember matrix, 228, 229

Normalized Hamming spectral distance values, 726,

727, 728, 729, 733–736

Normalized LSMA, 81. See also Linear spectral

mixture analysis (LSMA)

Normalized Neyman–Pearson detector, 75

Normalized spectral matched filter, 374

Normal vectors, of hyperplanes, 49, 50

Notations, 29–30

“Not true” decision, 64

NP detection–based criteria, 14, 166. See also

Neyman–Pearson (NP) detection theory

Null hypothesis, 66

Object function, 52

Objective functions, 196–197. See also Constrained

objective function

Oblique subspace projection, 362

Observable signature vector, 827, 829

On-board data processing, 989

1D discrete-value signal processing, 987

1D hyperspectral signal processing, 16

One-dimensional (1D) continuous signal processing,

797

One-dimensional hyperspectral signal, 9

One-dimensional (1D) signal-processing techniques

KFLU as, 822

KFSCSP technique as, 821

One-dimensional signature–based BS, 800. See also

Band selection (BS)

One-dimensional (1-D) spectral signature, 783

One-dimensional (1D) transform coding technique,

773

1D-spectral/2D-spatial compression, 550

1D spectral compression, 550

One-step MSE estimation error covariance matrix,

823–824. See alsoMean squared error (MSE)

entries

One-step MSE prediction error covariance matrix,

823–824

OP-based algorithms, 328. See also Orthogonal

projections (OPs)

OP-based EEAs, 202, 339. See also Endmember

extraction algorithms (EEAs)

Optical real-time adaptive spectral identification

system (ORASIS), 517

Optimal abundance vector, 438

Optimal code, 668

Optimal coding performance, 664–665

Optimal component transform, 549

Optimal feature matrix, 59

Optimality, specifying criteria for, 102
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Optimal projection vector, 184

Optimal threshold (t), 74

Optimal weighting vector, 374, 377

Optimal weight vector, 50, 52, 57

Optimization problems, linearly constrained, 44

Orthogonal complement space, 249

Orthogonal complement subspaces, 319

Orthogonal complement vector space, 862

Orthogonal detail spaces, 862

Orthogonality principle, 686, 956, 963–964

Orthogonalization-based band de-correlation, 684,

685–686

Orthogonal projection (OP)-based EEAs, 242–243,

318–329. See also Endmember extraction

algorithms (EEAs)

Orthogonal projection divergence (OPD), 14, 465,

470–471, 473

Orthogonal projections (OPs), 208, 209–214, 266,

317, 319, 320, 323, 329, 967

for CADCA, 880

as EEA design criteria, 330

in endmember extraction, 202

maximal, 329

maximum residuals of, 961

uses of, 318

Orthogonal projection subspaces, 320, 322. See also

Orthogonal subspace projection (OSP)

Orthogonal projection vector, 317

Orthogonal subspace projection (OSP), 6, 8, 43, 45,

48, 54–56, 61, 62, 80, 114, 140–142, 143–144,

168, 189, 196, 199, 243, 248–249, 352, 353,

356, 357–358, 902, 925, 926. See also Least-

squares-based orthogonal subspace projection

(LSOSP); Linear mixture model–based OSP;

OSP entries

algorithms/MATLAB codes for, 1026–1028

band expansion process–based, 927–928

capability of, 56

CEM vs., 358, 379–383, 828

derivation of, 390

Gaussian noise assumption in, 365

Gaussian noise in, 364–372

implemented without knowledge, 383–390

implemented with partial knowledge, 372–383

implementing, 13

interpreting, 971–972

kernel-based, 933

maximal, 323

to MRI, 925–927

perspectives to derive, 358–364

relationship between FVC-FLSMA and, 396

relationships with LSOSP and LS-LSMA, 364

relationship with CEM, 57, 376, 377

as a special case of TCIMF, 378

success of, 365

weighting matrix derived from, 417–418

Orthogonal subspace projection (OSP) approach,

318, 355–390. See also OSP approach

Orthogonal subspace projection (OSP)-based

algorithm, 487

Orthogonal subspace projection (OSP) operator, 592

Orthogonal subspace projector (OSP), 89, 183, 192,

248–249, 359, 411, 436, 586, 624, 625, 637,

650, 651, 652, 883. See also OSP projector

(dOSP)
endmembers extracted by IN-FINDR

corresponding to, 632, 634, 644, 645,

649, 653–654

UFCLS-mixed panel results corresponding to,

641, 648

UFCLS-mixed panel results produced by, 630

Orthogonal subspace projector (OSP) approach, 801.

See also OSP approach

Orthogonal subspace projector–based band

prioritization criterion (OSP-BPC). See BP

criteria (BPCs); OSP-based BPC (OSP-BPC);

OSP-BPC algorithm

Orthogonal subspace projector (OSP) detector,

963–964

Orthonormalized eigenvectors, 174

OSP anomaly detector (OSPAD, dOSPAD), 383, 384,
385, 386–390. See also Orthogonal subspace

projection entries; Orthogonal subspace

projector entries

OSP approach, 356, 473. See also Orthogonal

subspace projection (OSP) approach;

Orthogonal subspace projector (OSP) approach;

OSP-based approach

OSP-based algorithms, applications for, 356–357

OSP-based approach, to linear spectral mixture

analysis, 971, 972, 973

OSP-based BPC (OSP-BPC), 620, 799, 800,

801–803, 806. See also BP criteria (BPCs)

OSP-based divergence, 473

OSP-based Euclidean distance (EDOSP), 473, 475

OSP-based hyperspectral measures, 479, 480

for discrimination, 473

for identification, 473–474

OSP-based maximum likelihood classifier

(MLCOSP), 475. See alsoMaximum likelihood

classifier (MLC)

OSP-based methods, 149–151, 152–155, 339

pixels extracted by, 159–162, 163, 164, 165

VD estimated by, 157, 166
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OSP-based signal detector (dOSPD), 361
OSP-BPC algorithm, 802–803, 818. See also BP

criteria (BPCs)

reference signature vector for, 813

OSP classifier (dOSP), 357, 361, 367, 368, 370, 372,

378, 380–382

OSP learning rule, 227

OSP-model, 357–358, 364

(d,U)-model vs., 379–380

Fisher’s linear discriminant analysis perspective

from, 360–362

Gaussian maximum likelihood classifier using,

366

parameter estimation perspective from, 362

signal detection perspective derived from,

359–360

signal detector in Gaussian noise, 365–366

whitening according to, 369

OSP performance, 899

improving, 371

OSP-projected data sets, 192, 253

OSP projector (dOSP), 55–56. See also Orthogonal

subspace projector (OSP)

OSP-weighted abundance-constrained LSE

problems, types of, 417–418. See also Least-

squares error(s) (LSE, LSEs)

OSP-weighted abundance fully constrained LSE

problem, 418. See also Least-squares error(s)

(LSE, LSEs)

OSP-weighted abundance nonnegativity-constrained

LSE problem, 418. See also Least-squares

error(s) (LSE, LSEs)

OSP-weighted abundance sum-to-one constrained

LSE problem, 417. See also Least-squares

error(s) (LSE, LSEs)

OSP-weighted AC-LSMA, 413, 417–418, 422, 424,

425, 427, 431, 432. See also Abundance-

constrained LSMA (AC-LSMA); Linear

spectral mixture analysis (LSMA)

OSP-weighted FCLS, 418. See also Fully

constrained least-squares (FCLS)

method

OSP-weighted NCLS, 418. See also Non-negativity

abundance-constrained least-squares (NCLS)

method

OSP-weighted SCLS, 418. See also Sum-to-one

constrained least-squares (SCLS) entries

Outer product matrix, 175

Over-complete ICA (OC-ICA), 18, 899, 929, 930,

931, 957. See also Independent component

analysis (ICA) entries

utility of, 933

Over-complete linear spectral mixture analysis

(OC-LSMA), 898, 899

Over-complete LSMA, 957. See also Linear spectral

mixture analysis (LSMA)

Panel-based hyperspectral measures, 477

Panel center pixels, 503

Panel detection, 567–569

Panel pixel detection rates, averaged, 706, 713–714

Panel pixel groups, 660–661, 661–662

Panel pixel identification

incorrect, 854, 856

KFSSI in, 852

by MPCM-PSSC, 791–796

Panel pixels, 105, 106–107, 108–109, 110–112, 144,

145, 146, 268–269, 278, 280, 296, 419–420,

513, 578, 632. See also Pixel panels

abundance fractions of, 423, 425, 426, 427,

428, 429

abundance fractions simulated for, 529

AMEE-extracted, 531

averaged detection rates of, 698–706

detection rates of, 443

endmembers corresponding to, 632, 645

estimated abundance fractions of, 514, 515

extracted by MATLAB-PPI, 213

extracted by PPI and N-FINDR, 113

extracted by SGA, 337

extracted by VCA, 336

extracting, 239

failure to extract, 281–282

HYDICE data, 679–681, 703–706

incorrect identification on, 875

LSEs corresponding to, 855

pure, 299, 504–505

quantification results of, 856

sample correlation among, 853

superimposed over background pixels, 301

target, 499

types of, 530

unmixed results of, 509

unmixing, 511–512, 523

visible, 111

wrongly identified, 854, 856

Panel pixel superimposition, 108–109

Panel pixel vectors, abundance fractions of, 886–887,

890

Panels

abundance fraction results of, 421, 427–429,

431, 432

abundance fractions of, 563, 564, 888–889

mixed pixel, 566, 569–570, 577–580
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simulated, 332–334

single pixel, 564

subpixel, 105, 331–332, 399, 427, 429, 566,

567–569, 576, 791, 834, 835, 836, 837–838,

855, 856, 872, 873, 874

subpixel target, 852

unmixed results of, 513, 521–523

Panel shrinking process, 843

Panel signature corruption, 111

Panel signatures, 268–269, 326, 398, 419, 460–462,

477, 508, 515

complete knowledge of, 420

as endmembers, 306, 309

no prior knowledge about, 420–426

Panel signature vectors, 791–792

discrimination among, 791

Panel simulations, 104–106

Panel targets, ground truth map of, 882

Parallel processing, 990

Parameter estimation, 414, 820, 822

weighting matrix derived from, 414–416

Parameter estimation perspective, 412

from OSP-model, 362

Parameters, uncontrollable, 1

Parametric methods, 921–922

Parity-check bands, 983

Parity-check transformed dimensions, 983

Partial derivatives, 5

Partial knowledge, 380–383

OSP implemented with, 372–383

Partially abundance-constrained least-squares

unmixing method, 882

Partially abundance-constrained LSMA method,

967

Partially abundance-constrained methods, 436

Partially abundance NCLS method, 924. See also

Non-negativity abundance-constrained least-

squares (NCLS) method

Partial volume effect, 921

Partial volume estimation (PVE), 920, 923, 949, 952,

953, 955

approaches to solving, 921–922

Passive sensor array processing, 131

Pattern-based multispectral imaging techniques, 4

Pattern class–based image analysis, 5

Pattern classification, 3, 266, 352, 362, 391, 414

target classification vs., 8

Pattern classification techniques, 416

spatial-based, 8

Pavia image scene, 537, 538, 539

PBDE process, 655. See also Progressive band

dimensionality expansion (PBDE)

PBDP prioritized cuprite scene, endmember

extraction results of, 657. See also Progressive

band dimensionality process (PBDP)

PBDR process, 654. See also Progressive band

dimensionality reduction (PBDR)

PBS band prioritization (BP), 718. See also Band

prioritization (BP); Progressive band selection

(PBS)

PBS prioritized bands, MLC class rates using,

694–699

PCA/2D compression, 551–552. See also Principal

components analysis (PCA)

PCA/2D compression algorithm, 551–552

PCA/3D compression algorithm, 552

PCA/ATGP relationship, 321–322. See also

Automatic target generation process (ATGP)

PCA-based DR (PCA-DR), 169. See also

Dimensionality reduction (DR); PCA-DR

transform; Principal components analysis

(PCA)

PCA-based priority score, 617–618

PCA-based spectral compression, 571–572

PCA-decompressed image cube, 572

PCA-DR transform, simplex volumes and, 345.

See also Dimensionality reduction (DR);

PCA-based DR (PCA-DR)

PCA-generated principal components, 177

PCA/ICA, obstacles to implementing, 551.

See also Independent component analysis

(ICA); (m ¼ 1, n ¼ 8)-PCA/ICA transform

scenario; Mixed (m,n)-PCA/ICA transform

PCA/ICA 2D compression system, 551

PCA/ICA 3D compression system, 552

PCA/JPEG2000 Multicomponent compression,

performance of, 564, 566, 568, 570

PCA (m ¼ 9, n ¼ 0) scenario, 571–572

PCA method, HFC method vs., 139–140

PCA/spatial compression techniques, 569, 579

PCA-transformed components, specified by

eigenvectors, 582–583

PCA-transformed data space, 584

PCA transforms, 562

PC-based data representation, 584. See also Principal

components (PCs)

PC sequence, 592

PCs/ICs, number retained, 551. See also Independent

components (ICs)

p-dimensional unity vector, 225

Peak SNR (PSNR), 542. See also Signal-to-noise

ratio (SNR)

Performance analysis, 329

Performance criteria, 542
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Performance evaluation

quantification analysis for, 463

3D ROC analysis for, 89

Performance measures, implementing, 745

PG-PCA algorithm, 592. See also Principal

components analysis (PCA); Progressive

PCA (PG-PCA)

Phantoms, 102

PICA-based algorithms, 931–932

PIC prioritization, 609. See also Projection index

components (PICs)

PIC prioritization index, 587

Pigeon-hole principle, 4, 5–7, 18, 356, 613, 615, 665,

897, 898, 956–963, 983

PI/PI, 608. See also Projection index (PI)

for PSDP, 598–599

PIPP-generated PICs, 587, 590. See also Projection

index (PI)-based projection pursuit (PIPP);

Projection index components (PICs)

Pixel-based hyperspectral measures, 477

Pixel-based image analysis, 33

Pixel extraction, 149–151, 159–162, 163, 164, 165

Pixel extraction/information, 526–540

Pixel information, 536, 538

algorithms selected to extract, 528

extracted from hyperspectral imagery, 466

extracting, 526, 532

Pixel information analysis, 467

algorithms for, 539

via synthetic images, 528–534

Pixel information extraction, 467

Pixel information processing, 14

Pixel-level spectral information, 356

Pixel panels, 419. See also Panel pixels

mixed, 331–332, 577–580

pure, 331–332

Pixel purity index (PPI), 201, 202, 203, 204, 205,

209–214, 243, 255, 232–233, 241, 288, 339,

348, 488, 518, 527, 528, 538, 539, 964–965,

967, 968. See also Automatic PPI (APPI);

MATLAB-based PPI (MATLAB-PPI); PPI

entries; Random PPI (RPPI)

algorithms/MATLAB codes for, 1015–1017

design rationale of, 316

development of, 207

drawbacks of, 212

endmember pixels extracted via, 268–269,

270, 271

endmembers extracted by, 294–295, 306, 307,

310, 323, 324, 325, 326, 327

in finding appropriate skewers, 282

implemented as SM-EEA, 317–318

implementing, 314, 317

issues in, 210

pixels extracted by, 340–341, 343, 532–533, 534

as a random algorithm, 314

relationships with VCA and ATGP, 319–323

sequential versions of, 318

simplex volumes and, 343

versions of, 204, 205

Pixel purity index (PPI) algorithm, 112–113, 142

Pixels, 12, 14, 29. See also Two-pixel panels

abundance fractions of, 423, 425, 426, 427,

428, 429

alunite/kaolinite mixed, 534

AMEE-extracted, 535, 536, 537, 539

anomalous, 467, 526, 527, 530, 534, 537–538

ATGP-extracted, 536

ATGP-generated, 407

background, 333, 429, 505

detection rates of, 443

EEA-extracted, 340, 535, 536, 539

endmember, 254, 261, 293, 325, 527, 529–530,

531

extracted by ID-EEAs, 284, 285

falsely alarmed, 294, 295

ground-truth-corresponding endmember (mineral),

270–271

ground truth mineral, 270

homogeneous, 467, 526, 527, 531, 534, 539

homogeneous background, 531

IEA-extracted, 536

implanted panel, 333

mixed, 26, 32, 33, 467, 526, 527, 539

N-FINDR–extracted endmember, 535, 536,

537–539

panel, 105, 106–107, 108–109, 110–112, 144, 145,

146, 213, 239, 268–269, 278, 280, 281–282,

296, 299, 301–303, 331–332, 336, 337,

419–420, 504–505, 509, 511–512, 513, 514,

515, 518, 529, 530, 531, 578, 632, 660–661,

661–662, 679–681, 703–706, 698–706,

713–714, 732, 852, 853, 855, 856, 875

panel center, 503

performance of unmixing, 698, 707–712

PPI-extracted endmember, 535, 536, 537–539

pure, 21–22, 295, 296, 467, 526, 527, 531,

541, 887

spatial locations of, 312

spectral signatures of, 26

subpanel, 441

target, 791

target panel, 499

total number of, 78

1112 Index



types of, 526, 527–528, 530

UFCLS-extracted, 536

UTDA-extracted, 535, 536, 538

utility of, 527

Pixel-to-pixel correlation, 820, 854

Pixel vectors, 14, 29, 368, 526, 822, 887, 890, 891

convex cone analysis and, 214–215

extracted by PPI, 293–294

target, 792–796

Polynomial kernels, 452–454, 455–456, 980

kernel-based LSMA using, 452

Power of the test, 72

p parameter, estimating, 351

PP-EEAs, initializing, 278. See also Endmember

extraction algorithms (EEAs); Projection

pursuit (PP)

PPI/ATGP relationship, 319–320. See also

Automatic target generation process (ATGP);

Pixel purity index (PPI) entries

PPI counts, 211, 212, 269, 289, 290, 316–317,

319, 965

PPI-extracted endmember pixels, 535, 536, 537–539

PPI failure, 280–281

PPI-generated endmembers, 266

PPI uncertainty, 322

PPI/VCA relationship, 320–321. See also Vertex

component analysis (VCA)

Predetermined false alarm probability, 137

Predicted error (g), 783
Predicted signature, 864

Prescribed stage threshold, 784

Prewhitening process, 365

Primary set of eigenvalues, 129

Principal components (PCs), 169, 171–172, 486,

488, 489, 543,551, 571–572, 584, 586,

616–617, 635–636, 906

Principal components analysis (PCA), 11, 125, 126,

127, 129, 168–169, 170–172, 230, 232, 255,

293, 294, 295, 306, 307, 310, 320, 325, 337,

338, 345, 347, 467, 486, 488, 519, 520–524,

543, 551, 554–555, 585, 608, 616, 905–906, 958

algorithms/MATLAB codes for, 1001–1003

band usage and, 635

in endmember pixels extraction, 341–342, 343

Harsanyi–Farraud–Chang method vs., 959–960

properties of, 584

p values estimated by, 340–341

Principal components analysis–EEA (PCA-EEA),

201, 230. See also Endmember extraction

algorithms (EEAs)

Principal components transformation (PCT), 170.

See also Principal component transform

Principal component transform, 906. See also

Principal components transformation (PCT)

Prioritization criteria, 543

Prioritized bands, with PBS, 706

Prioritized ICA (PICA), 931. See also PICA-based

algorithms

Prioritized ICs, 254. See also Independent

components (ICs)

Prioritized PCs, 595. See also Principal components

(PCs)

Priority codes, 772, 773–774, 796

Priority code words, 774, 776–777, 784

graphical plot of, 778–779

MPCM encoded, 779

Priority-ranked band sets, 803, 804

Priority scores, 617, 618, 620, 651–653, 803, 982

PCA-based, 617–618

of a spectral band, 621

for spectral dimensions, 582

Priority unit vectors, 784

Prior knowledge

contaminated or inaccurate, 516

of image endmembers, 825

unavailability of, 517

Prior target knowledge, 356

Probability density function, 66, 73

Probability distributions, 36–37, 66, 188, 961

Probability of rejection, 65

Processes, iterative, progressive, and sequential, 544

Process-then-forget benefit, 990

Progressive band dimensionality expansion (PBDE),

653, 655–656, 662

terminating, 655

unmixing performance of, 660

via BP, 614, 655–656

Progressive band dimensionality process (PBDP), 15,

199, 543, 544, 613–663, 683, 684, 715, 718.

See also PBDP prioritized cuprite scene

advantages of, 616

band selection vs., 616

experiments for, 656–661

hyperspectral compression by, 653–656

issues addressed/mitigated by, 664

performing, 651–653

potentials of, 662–663

progressive performance of, 669–670

PSDP vs., 613, 658, 683

in spectral unmixing, 660

Progressive band dimensionality reduction (PBDR),

653, 655, 656, 662

as a sequential backward process, 655

starting, 654
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Progressive band dimensionality reduction (PBDR)

(Continued )

unmixing performance of, 660

via BP, 614, 654

Progressive band selection (PBS), 15, 544, 616, 663,

683–715, 718, 798, 984. See also PBS entries

benefits of, 715

effectiveness of, 688

FSBS vs., 686–687

implementing, 687–688

MLC rates of, 693

origination of, 683–684

with prioritized bands, 706

Progressive band selection experiments, 688

Progressive band/spectral dimensionality processing,

991

Progressive binary encoders, 776

Progressive coding, 9, 17

for spectral signatures, 772–796

Progressive dimensionality expansion/reduction

processes, 982

Progressive dimensionality reduction (PDR), 683

Progressive edge detection, 773

Progressive high-order statistics component analysis,

596

Progressive hyperspectral processing, 990–991

Progressive image processing, 656

Progressive independent component analysis,

596

Progressive MPCM-encoded signal, 778. See also

Multistage pulse coding modulation (MPCM)

Progressive PCA (PG-PCA), 591. 592. See also

Principal components analysis (PCA)

SM-PCA vs., 592

Progressive principal components analysis, 591–596

Progressive process, 544

sequential process vs., 655–656

Progressive processing, 773

Progressive signature coding (PSC), 718, 772

Progressive spectral dimensionality expansion

(PSDE), 581, 597–598, 605, 653. See also

PSDE entries

as a sequential forward process, 598

Progressive spectral dimensionality expansion via

PIPP (PSDE-PIPP), 583, 585. See also

Projection index (PI)-based projection

pursuit (PIPP)

Progressive spectral dimensionality process (PSDP),

15, 199, 543, 544, 581–612

algorithms in, 589–596

experiments for, 598–608

hyperspectral compression by, 597–598

issues addressed/mitigated by, 664

PBDP vs., 613, 658, 683

progressive performance of, 669–670

PSDE and PSDR implementation and, 610

Progressive spectral dimensionality process via PIPP

(PSDP-PIPP), 583. See also Projection index

(PI)-based projection pursuit (PIPP)

Progressive spectral dimensionality reduction

(PSDR), 581, 597, 653

as a sequential backward process, 598

Progressive spectral dimensionality reduction via

PIPP (PSDR-PIPP), 583, 585, 600. See also

Projection index (PI)-based projection pursuit

(PIPP)

Progressive spectral identification process, 789

Progressive spectral signature changes, 786

Progressive spectral signature coding (PSSC),

772–796. See alsoMPCM-based progressive

spectral signature coding (MPCM-PSSC)

advantages of, 773

for hyperspectral signature characterization, 796

MPCM-based,772, 773–774, 783–786

SSC and, 773

Progressive spectral signatures

MPCM-encoded, 780

Progressive spectral/spatial compression, 557, 558

Progressive stage-by-stage decoded spectral

signatures, 781

Projection direction matrix, 585

Projection index (PI), 190–194

Projection index (PI), 585, 586, 587, 599

role in producing projection vectors, 608

Projection index (PI)-based criteria, 193–194,

587–588

Projection index (PI)-based PRioritized Projection

Pursuit (PI-PRPP), 191, 193–194, 587–588,

590

Projection index (PI)-based projection pursuit

(PIPP), 191–192, 583, 584, 585–586, 613.

See also Projection index–projection pursuit

(PIPP) algorithm; R-PIPP algorithm

Projection index components (PICs), 191, 192, 193,

194, 583, 586, 599, 669

ID-PIPP-generated, 588

PIPP-generated, 587, 590

Projection index–projection pursuit (PIPP)

algorithm, 192, 586. See also Projection index

(PI)-based projection pursuit (PIPP)

in conjunction with DP, 608–609

Projection pursuit (PP), 191, 585

Projection pursuit (PP) approach, 184

Projection pursuit (PP)-based algorithms, 272
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Projection pursuit (PP)–based components

analysis transforms, dimensionality reduction

by, 190–194

Projection pursuit (PP)-based DRT, 583. See also

Dimensionality reduction by transform (DRT)

techniques

Projection pursuit (PP)-based EEAs, 243. See also

Endmember extraction algorithms (EEAs)

Projection sequence, 253

Projection subspaces, 322

Projection values, of data samples, 488

Projection vector generation algorithm (PVGA), 184,

253–254

Projection vectors, 46, 47, 179, 193, 226, 252–254,

317, 587, 593, 683, 932

algorithm for finding, 183–184, 253–254

generating, 584

generating as eigenvectors, 591

kernelizing, 979–980

maximum of residuals of, 962

orthogonal, 317

randomly generated, 590

Projection vector sequence, 586

Projectors. See also Orthogonal subspace projector

(OSP); OSP projector (dOSP); Signal subspace

projector

idempotent, 359

random, 254

PSDE algorithm, 597–598. See also Progressive

spectral dimensionality expansion (PSDE)

PSDE implementation, 610

PSDE/PSDR, 603–604. See also Progressive spectral

dimensionality reduction (PSDR)

PSDE via DP, 609. See also Dimensionality

prioritization (DP)

PSDP endmember extraction, 598–599. See also

Progressive spectral dimensionality process

(PSDP)

PSDR algorithm, 597. See also Progressive spectral

dimensionality reduction (PSDR)

PSDR implementation, 610

PSDR via DP, 609. See also Dimensionality

prioritization (DP)

p-SGA, 967. See also Simplex growing algorithms

(SGAs)

p-signal projection matrix, 141, 142

p-successive replacement IN-FINDR (p-SC IN-

FINDR), 221–222, 244. See also Iterative

N-finder algorithm (IN-FINDR)

Pulse code modulation (PCM), 772, 774, 775.

See alsoMultistage pulse coding modulation

(MPCM)

Purdue data classes, 694–699, 699–702

classification rates of, 675–677

Purdue data coding methods, DDA results by,

672–673

Purdue Indiana Indian Pine data, 20, 24, 25–26,

156–157, 158, 159, 161, 163, 164, 165, 436,

444–445, 460, 463, 480–481, 599–603,

658–659, 672–674, 690. See also Indiana Indian

Pine test site

Pure mineral signatures, 309, 312

Pure/mixed-sample classifiers, 61, 62

Pure panel pixels, 299, 504–505. See also Pure pixel

panels

superimposed over background pixels, 301

Pure panel signatures, 632

Pure pixel–based 3D image compression techniques,

541

Pure pixel–based class-labeling classifier, 399

Pure pixel panels, 331–332. See also Pure panel

pixels

Pure pixels, 21, 295, 296, 467, 526, 527, 531, 887

Pure pixel vectors, 887

Pure-sample classification, 45

Pure-sample target detection, 35–38

Pure signatures, 257, 531

Purest signatures, 299, 306, 309

Pure/subsample detectors, 61, 62

Pure target VSs, 505. See also Virtual signatures

(VSs)

p values

determining, 484

determination of, 335–336

estimated by SSE, 335–336, 337

estimated by VD, 334, 335–336, 338

estimating, 340–341

p-vertex simplexes, 317, 339

Pyramid example, 904

Pyramid method, 882

QR decomposition, 175

Quantification algorithms, 828

Quantification analysis, for performance evaluation,

463

Quantification errors, 512–513

Quantification least-squares error (QLSE), 939–941

Quantification values, graphical plots of, 429

Quantitative analysis, 403, 404, 409

of classification performance, 445

Quantitative MR imaging, 878. See alsoMagnetic

resonance (MR) entries

Quantization levels, 774, 775, 777

Quantization results, 774
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Quantized values, 742

Quantizers, 774–775

Radial basis function (RBF), 943–944. See also RBF

kernels

Radial basis function (RBF) neural networks, 435

Radiance data, 324–325

real images with, 327–328

Radiance data–based synthetic images, 324

Radiance spectra

of background signatures, 335

of real images, 334

Random algorithms, 287–288

PPI as, 314

Random EEA (REEA), 12. See also Endmember

extraction algorithms (EEAs)

Random endmember extraction algorithms (REEAs),

186, 203–204, 205, 206, 287–315, 316,

318, 968

categorization of, 204

computing time needed by, 299

in extracting endmembers, 305, 315

performance of, 293

Random generators, 313, 320

Random ICA–based EEA (RICA-EEA), 292–293.

See also Endmember extraction algorithms

(EEAs); Independent component analysis (ICA)

entries

Random ICA-DR (RICA-DR, ICA-DR2), 169, 186,

188, 189–190, 192, 292, 596. See also

Dimensionality reduction (DR)

algorithms/MATLAB codes for, 1005,

1008–1009

Random IN-FINDR (RIN-FINDR), 292, 296–297,

315. See also Iterative N-FINDR (IN-FINDR)

computing time and iterations of, 301, 305, 312

results of, 297, 300, 302, 304, 306, 307, 311

using two different thresholds, 309

Random initial condition issues, 268–271

Random initial conditions, 313, 329. See also

Randomly generated initial conditions

Random initial endmembers, 202, 203, 212, 271,

274, 287, 289, 313, 316, 322, 325, 328.

See also Randomly generated initial

endmembers

Random initial projection vectors, 929, 930, 931.

See also Randomly generated projection

vectors; Random projection vectors

Random initial projection unit vectors, use by

FastICA, 186

Randomized decision, 67

Randomized decision rule, 37

Randomized detector, 37, 65

Randomly generated Gaussian vector, 321

Randomly generated initial conditions, 283, 284

Randomly generated initial endmembers, 265

Randomly generated projection vectors, 590.

See also Random projection vectors

Randomly generated skewers, 289

Randomly selected data sample vectors, 265

Random N-FINDR (RN-FINDR), 288, 290–292,

296–297, 314, 966. See also N-finder

(N-FINDR) algorithm

in AVIRIS experiments, 310–313

computing time and iterations of, 299, 301, 303,

305, 313

disadvantage of, 291

in HYDICE experiments, 306–309

Random noise corruption, 867

Random PCs, finding, 593. See also Principal

components (PCs)

Random p initial endmembers, 292

Random PPI (RPPI), 288–290, 313–314. See also

Pixel purity index (PPI) entries; RPPI entries

advantages of, 290

in AVIRIS experiments, 309–310

computing time and iterations of, 296, 310

endmembers extracted by, 294–295, 306, 307, 310

in HYDICE experiments, 306, 307

Random projection index–based projection pursuit

(RPI-PP, R-PIPP), 191, 192–193. See also

Projection index–based projection pursuit

(PIPP)

Random projection vectors, 272, 292–293

Random projector, 254

Random SC N-FINDR (RSC N-FINDR), 292,

296–297, 309, 315. See also SuCcessive

N-FINDR (SC N-FINDR)

computing time and iterations of, 299, 301, 303,

305, 312, 313

results of, 297, 298, 300, 302, 304, 306, 308, 311

Random SGA (RSGA), 288, 292. See also RSGA

entries; Simplex growing algorithms (SGAs)

Random SQ N-FINDR (RSQ N-FINDR), 292.

See also SeQuential N-FINDR (SQ N-FINDR)

Random unit vectors, 210, 211

Random variable concept, 287. See also Gaussian

random variables

Random variables, Gaussian, 322

Random VCA (RVCA), 288, 290. See also Vertex

component analysis (VCA)

Ranked band sets, 803, 804

Rayleigh’s quotient, 46, 360, 391, 393

Fisher’s, 361–362, 391, 393
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RBF kernels, 445, 449–451, 457, 980–981. See also

Radial basis function (RBF) entries

kernel-based LSMA using, 452

KFCLS using, 448, 451

KLSOSP using, 446, 449

KNCLS using, 447, 450

mixed pixel classification and, 451

Real data, generating a 3D ROC curve for, 75–76

Real data–based ROC analysis, 72–78. See also

Three-dimensional receiver operating

characteristics (3D ROC) analysis

Real data experiments, 852–857

Real error (RE), 127, 129–130, 165

Real hyperspectral image experiments, 258–262,

725, 730–739

Real hyperspectral images, virtual dimensionality

estimated for, 155–163, 164, 165

Real image experiments, 281–282, 305–313,

325–329, 398, 402–409, 426–432, 503–517,

534–539, 567–580, 598–608, 764–771,

871–875

guidelines for, 338

Real image hyperspectral experiments, 790–796

Real image pixels, 577–578

Real images

with radiance data, 327–328

radiance spectra of, 334

with reflectance data, 328

reflectance spectra of, 333

Realizations, 288

Real MR brain image experiments, 951–954.

See alsoMagnetic resonance (MR) entries

Real MR images, classification results of, 951, 952,

953, 954

Real-time causal processing, 991

Real-time N-FINDR processing, 966

Real time process algorithms, 977

Real-time processing, 821, 975, 988, 990

Real-to-complex analysis, 4

Real-valued functions, 29

Receiver operating characteristics (ROC), 10.

See also ROC curves; Three-dimensional

receiver operating characteristics (3D ROC)

analysis; Three-dimensional (3D) ROC curves;

Two-dimensional (2D) ROC curves

Receiver operating characteristics (ROC) analysis,

10, 41, 63–100, 925. See also Three-dimen-

sional receiver operating characteristics (3D

ROC) analysis

real data–based, 72–78

traditional, 72

uses for, 63

Reconstructed signature, 865

Reduce-and-expand operations, 583

Redundant spectral information, 801

References, choosing, 872

Reference signatures, 667, 747, 766

selection of, 819

Reference signature vectors, 752–754, 760, 768, 771,

800, 801–802, 808, 810, 814–815

for OSP-BPC, 813

selecting, 758

Reflectance cuprite data, 670–672

Reflectance cuprite data coding methods, DDA

results by, 670–672

Reflectance Cuprite data scene, 688

Reflectance data, 323–324, 327, 336

real images with, 328

Reflectance data–based synthetic images, 324

Reflectance spectra, 104, 367, 528

of background signatures, 333

KFSSE-estimated, 832

of a real image, 333

Relative entropy, 472

Relative spectral discriminatory probabilities

(RSDPB), 544, 665

Relative spectral discriminatory power (RSDPW),

747, 748, 749, 750, 758, 759, 808–809.

See also Discrimination power (DP); RSDPW

entries

Remotely sensed data samples, 719

Remote sensing, 859, 920

applications of, 989

Remote sensing data, early data processing for,

984

Remote sensing image analysis, 821

Kalman filters and, 821

Remote sensing image classification, 225

linear spectral mixture analysis in, 921

Remote sensing image processing, 467

Remote sensing image processing techniques, 974

Remote sensing images, 898

Remote Sensing Signal and Image Processing

Laboratory (RSSIPL), xxiii

algorithms developed in, 2, 997

Remove-before-extract strategy, in AMEE, 533

Repeatable experiments, 10

Repetition time (TR), 930

Replacement rule, 217, 218

Reproducing kernel theory, 58

Rescaled discrimination, 808

RICA-EEA algorithm, 293. See also Random ICA

entries

Right singular vector matrix, 175
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“Right” vectors, 319

Risk, averaged, 97

Risk function, 37

RN-FINDR algorithm, 291–292. See also Random

N-FINDR (RN-FINDR)

ROC curves, 10, 38, 63, 64, 68–69, 70, 71, 936, 937,

938–939, 940, 944, 945, 946, 947, 949.

See also Receiver operating characteristics

(ROC); Three-dimensional (3D) ROC curves;

Two-dimensional (2D) ROC curves

Gaussian-fitted, 73–74

generating from real data, 72–73

R panel pixels

abundance fraction results of, 427–429, 431, 432

identification errors of, 477–478

R-PIPP algorithm, 192–193. See also Projection

index–based projection pursuit (PIPP)

R pixel vectors, 887, 890–891

abundance fractions of, 891

abundance fraction estimates of, 889–890, 891

RPPI, 204. See also Random PPI (RPPI)

RPPI algorithm, 289–290

RPPI experiments, 293–296

RSDPW curves, 811. See also Relative spectral

discriminatory power (RSDPW)

RSDPW values, 750–751, 759–760, 761, 762, 764,

765, 766, 767, 768, 769, 808, 809, 810, 812,

813, 814, 815, 816, 817, 818

comparative graphical plots of, 759, 763, 764,

765, 770

for HD-SDFC and AVD-SDFC, 752

RSGA algorithm, 292, 296–297, 309. See also

Random SGA

computing time and iterations of, 299, 301, 303,

305, 312, 313

results of, 297, 298, 301, 303, 305, 306, 308, 312

RVCA algorithm, 290. See also Random VCA

(RVCA); Vertex component analysis (VCA)

RX algorithm, 358, 528, 531, 535, 536, 538, 539

pixel extraction using, 533, 534

RX-anomaly detection algorithm, 539

RXD-based detectors, 975–977. See also RX

detector (RXD, dRXD)
RXD-based matched filter distance (MFDRX), 475,

476

RXD detection algorithm, 352

anomaly detection by, 122–123

RX detector (RXD, dRXD), 384–385, 386–390, 474,

475, 482, 518, 902, 972, 975–977, 980, 988.

See also RXD entries

RXDF, 976, 977

RX filter, 537

SAM-based spectral similarity values, 539. See also

Spectral angle mapper (SAM)

Sample band correlation matrix, 623

Sample correlation/covariance matrix, 174, 175, 482

Sample correlation information, 482

Sample correlation matrix, 44. See also Sample

correlation spectral matrix (R)

Sample correlation matrix–calculated eigenvalues,

957–958

Sample correlation spectral matrix (R), 414, 415

Sample covariance matrix, 44, 977. See also Sample

covariance spectral matrix (K); Sample data

covariance matrix

ways of calculating, 600

Sample covariance matrix–calculated eigenvalue,

957–958

Sample covariance spectral matrix (K), 414

Sample data covariance matrix, 178

Sample intra-pixel IBSI, 466. See also Interband

spectral information (IBSI)

Sample means, 152, 336

of data sample vectors, 273–274

Sample mean vector (m), 141, 251
Sample pools, 75–76

number of samples in, 76

Sample spectral correlation, 470, 907

FDE by classification using, 907–908

Sample spectral correlation matrix, 29

Sample spectral covariance/correlation matrix, 470

Sample spectral covariance matrix, 29

Sample spectral statistics, 138, 466

Sample vectors, 978, 979

SAM values, 807, 808, 809, 837, 847, 875. See also

Spectral angle mapper (SAM)

for subpixel panel identification, 874

Satellite data communication, 718

Satellite Pour l’Observation de la Terra (SPOT)

system, 909. See also SPOT data

SBKG signatures, 484, 485, 490

Scalar parameter estimate, 363

Scaling constants, 40, 43, 55, 362, 374

Scaling function, 859, 860, 861

Scatter matrices, 46, 47, 360, 361, 908

Schwarz’s inequality, 42, 359

Score function, 53–54

SDFC-based measures, performance of, 754.

See also Spectral derivative feature coding

(SDFC)

Search processes, limiting, 222. See also Exhaustive

searches

Secondary data, background knowledge from, 39

Secondary set of eigenvalues, 129
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Second-order BP criteria, 693. See also Band

prioritization (BP)

Second-order coding methods, 771

Second-order component analysis (CA)-based

criteria, 209. See also Component(s) analysis

(CA) entries

Second-order data statistics, 347–348

Second-order hyperspectral measures, 477

Second-order IBSI, 466, 467. See also Interband

spectral information (IBSI)

Second-order spectral measures, 470

Second-order spectral statistics–based approaches,

developing, 960

Second-order spectral statistics–based HFC methods,

959–961. See also Harsanyi–Farraud–Chang

(HFC) method

Second-order spectral targets, 485

Second-order-statistical spectral band images, 901

Second-order-statistical spectral bands, 899–900

Second-order-statistic BPC, 674. See also BP criteria

(BPCs); Second-order statistics–based BPC

Second-order statistics, 209, 959, 978

compression techniques based on, 547

decorrelating, 185

HFC vs. PCA methods and, 139

Second-order statistics–based BPC, 617–618.

See also BP criteria (BPCs)

Second-order statistics–based component analysis

transforms, dimensionality reduction by,

170–179

Second-order statistics–based criteria, 615

Second-order statistics–based endmember extraction,

229–230, 280

Second-order statistics–based SQ-EEAs, 248.

See also Sequential endmember extraction

algorithms (SQ-EEAs)

Second-order statistics–based transform, 959.

See also Second-order statistics transform

Second-order statistics band prioritization criteria,

662

Second-order statistics methods, 975

Second-order statistics transform, 554. See also

Second-order statistics–based transform

Security, convenience, threshold, and cost

relationship, 98–99

“Seeing-is-believing” concept, 1

Segmentation, 920–921

Segmentation algorithms, 921

Self-classification

mixed-pixel, 871

signature, 870–871

Self-correction, 872, 873

Self-denoising, signature, 869–870

Self-discrimination, signature, 867–868, 870–871

Self-identification

signature, 870–871

subpixel, 871

using WSCA-SSC, 873–875

Self-information, 667–668

Self-tuning, signature, 869–870

Sensitivity, 83

Sensor data, acquiring, 799

Sequential backward processes, PSDR as, 598

Sequential backward selection (SBS), 598, 655

Sequential band dimensionality expansion (SBDE),

656

Sequential band dimensionality reduction (SBDR),

656

Sequential endmember extraction algorithms

(SQ-EEAs), 12, 202, 204, 205, 206, 207–208,

222, 230, 234, 241–264, 255–258, 271,

274–275, 286, 298, 316, 318, 968. See also

Endmember extraction algorithms (EEAs);

Fourth-order statistics–based SQ-EEA; High-

order statistics–based SQ-EEAs; SQ-EEA

entries; Third-order statistics–based SQ-EEA

converting SM-EEAs into, 242

design criteria for, 264

endmember numbers and, 264

linear spectral mixture analysis–based, 248–251

in sequential endmember generation, 258–259

types of, 242–244

Sequential forward processes, PSDE as, 598

Sequential forward selection (SFS), 598, 655

Sequential image processing, 656

SeQuential N-FINDR (SQ N-FINDR), 241, 255, 318,

966, 968. See also Random SQ N-FINDR (RSQ

N-FINDR)

Sequential PCA (SQ-PCA), 591, 593–595. See also

Principal components analysis (PCA)

advantages of, 596

Sequential process, 544

progressive process vs., 655–656

Sequential processing, 990

Sequential searches, 266

Set partition, 722

Set partitioning in hierarchical trees (SPIHT), 558.

See also SPIHT entries; 3D-SPIHT entries

SFBC binary code word, 744. See also Spectral

feature–based binary coding (SFBC); Spectral

feature binary coding (SFBC)

SFBC methods, 725

SFPC encoding algorithm, 756. See also Spectral

feature probabilistic coding (SFPC)
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SFPC measure, 756–757

SGA performance, 336–337. See also Simplex

growing algorithms (SGAs)

Shannon coding, 666, 670, 672–673, 678, 679–681

Shannon coding–based DDA, 667–668. See also

Dynamic dimensionality allocation (DDA)

Shannon–Fano coding, 720, 722

SID-generated spectral similarity values, 817.

See also Spectral information divergence (SID)

SID-measured spectral similarity values, 811–812

SID ratio, 815

SID-SAM mixed measures, 472, 477. See also

Spectral angle mapper (SAM)

SID values, 807, 808, 809, 810, 811–812, 813, 814,

815, 816, 817, 818, 837, 847

Sigma u. See Standard deviation of measurement

noise (su)

Sigmoid function kernel, 980

Sigmoid kernels, 452, 454–460

Signal-background-noise (SBN) model, 39, 77, 81,

82, 83, 84, 89

Signal characterization, 717

Signal class, 127, 131

Signal classification, 70

Signal classification problems, 65

Signal coding, 16–17, 717, 986

hyperspectral, 9, 717–718

types of, 9

Signal-decomposed interference-annihilated (SDIA)

model, 417

Signal-decomposed interference/noise (SDIN)

model, 39, 77, 81, 83, 84, 85, 89

Signal detectability, 356

deterioration of, 380

Signal detected sample pool, 75

Signal detection, 65, 70, 109, 414

in the noise model, 359

primary task in, 362

standard model for, 358

Signal detection approach, 357

Signal detection in noise (SN) model, 77

Signal detection model(s), 964

applying, 38–39

OSP-model as, 365

simulating, 101

Signal detection performance, 971

Signal detection perspective, 361, 412

derived from (d,U)-model and OSP model,

359–360

Signal detection problems, 36, 109

Signal detection techniques, effectiveness of, 111

Signal detection theory, 38, 67

Signal detector in Gaussian noise, in OSP-model,

365–366

Signal estimation, 986–987

Signal function, 864

Signal identification, 797

Signal models, 359

Signal/noise detection model, 503

Signal processing

continuous, 717

discrete, 717

hyperspectral, 7

Signal processing perspectives, 357

Signal processing techniques, xxiii, 128

Signal profile, 70

Signals

3D ROC curves for, 93–99, 100

ticket samples of, 91–92, 93

Signal samples, MPCM-encoded, 782

Signal sensitivity, analysis of, 94

Signal source distinction, 131

Signal sources, 124, 127, 135, 137, 140–141, 929,

964. See also Spectral signal sources

estimating number of, 126–127

Signal source separation, mixing matrix for, 930

Signal sources/signatures, number of, 163–164

Signal source vectors, 185

uncorrelated, 185

Signal subspace, 41–42

Signal subspace estimation (SSE), 142–144, 149,

158–161, 165, 166, 334–335, 335–336, 337.

See also SSE/HySime-estimated values

values estimated by, 336, 340

Signal subspace projector, 56

Signal-to-clutter ratio (SCR), 42

Signal-to-noise ratio (SNR), 43, 107, 176, 177,

178–179, 352, 357, 359–360, 368, 369, 370,

371, 386, 490–491, 542, 547, 624, 625, 637,

650, 651, 652, 657, 675–677, 689, 690, 692,

694–699, 699–702, 703–706, 707–712,

713–714, 786, 971. See also SNR entries

anomaly detection and, 387

endmembers extracted by IN-FINDR corresponding

to, 632, 633, 643, 645, 649, 653–654

in hyperspectral imagery, 365

UFCLS-mixed panel results corresponding to,

638, 647

UFCLS-mixed panel results produced by, 627

used for compression, 570, 580

Signal-to-noise-ratio–based BPC, 618. See also BP

criteria (BPCs)

Signal-to-noise ratio (SNR)-based components

analysis transforms, 176–179
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Signal-to-noise ratio (SNR)-based maximum noise

fraction (MNF), 168. See alsoMaximum noise

fraction (MNF) entries

Signal-to-noise ratio (SNR)-derived orthogonal

subspace projection (OSP), 352

Signature(s), 29. See also Background (BKG)

signatures; Component spectral signatures;

Chemical/infrared data signatures;

Panel signatures; Signal sources/signatures;

Spectrally distinct signatures; Spectral signature

entries; Target signature matrices; Virtual

signatures (VSs)

alunite, 312

calcite, 112, 152

contaminated, 736

developing algorithms to extract, 485

differing thresholds for, 752

finding, 974

finding a set of p, 484

finding categories of, 485

mineral, 112, 113, 114, 144, 146

muscovite, 114

noise-corrupted, 790

pure, 257

pure panel, 632

purest, 299, 306, 309

reference, 747, 766

separating, 511

spectrally distinct, 429, 957, 958, 974

spectra of, 382

undesired, 460

Signature accommodation, 667

Signature analysis, impact of BS on, 810

Signature-based measures, 465

Signature-based spectral similarity measures, 466

Signature characterization, hyperspectral, 9

Signature classification, 746, 748–749, 867–868

Signature classification/identification, 809–811,

814–815

Signature coding, 9, 771

Signature corruption, 111

Signature detail capture, 859–860

Signature detection, five-panel, 79–80

Signature discrimination, 665, 746, 747, 750–751,

804, 805, 806–809, 813–814

between signatures with different band numbers,

816–818

Signature discrimination performance, 815

Signature discriminatory probabilities,

667

Signature finding, 518

Signature identification, 867–868

Signature knowledge

accurate, 973–974

obtaining desired, 483–484

Signature matrix, 427, 432, 492, 524, 983–984

desired, 422–424

undesired target, 356

unwanted, 417

Signature self-correction (SSC), 863

Signature self-discrimination/classification/

identification, 867–868

Signature self-discrimination/self-classification/

self-identification, 870–871

Signature self-tuning (SST), 863

Signature self-tuning/self-denoising, 869–870

Signature subspace projection (SSP), 492

Signature subspace projection (SSP) matrix, 413

Signature subspace projector (SSP, PM), 418

Signature suppression, 378

Signature variance, 138

Signature vector–based hyperspectral measures, 482

classification resulting from, 479

for target discrimination/identification, 470–472

Signature vector–based spectral measures, 470–471,

472, 469

Signature vector–based spectral similarity measures,

469

Signature vector–based techniques, 831

KFSCSP techniques as, 842, 843

Signature vector behavior, 728

Signature vector coding methods, 741

Signature vector estimators, 825

Signature vectors, 16, 29, 719, 729, 730, 741, 758,

783, 822. See alsoMixed signature vectors;

Panel signature vectors

abundance fractions of, 850

auxiliary, 827

averaged, 813, 815

correlation associated with, 819

decomposing hyperspectral, 801, 802

discrimination among, 747, 788

distance measure between, 784

of gas data set, 753

hyperspectral, 9, 799

matching, 827, 833, 858

M-stage thresholds for, 785

multispectral, 9

observable, 827, 829

quantification results of, 850

reference, 752–754, 760, 768, 771, 800, 801–802,

808, 810, 813, 814–815

relative discrimination among, 807–808

selecting reference, 758
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Signature vectors (Continued )

spectral, 29, 721, 742, 760, 806, 985

spectral similarity among, 837

subset of, 752

target, 785, 789, 801, 825–826, 827, 829, 833, 837,

839, 858

true, 841

Signature vector similarity, measuring, 784

Signature verification/identification, 482

Similarity values, 739

obtained by subpixel panel comparison, 855

Simplex-based EEAs, 202. See also Endmember

extraction algorithms (EEAs)

Simplex-based methods, 323

Simplex-based SGA, 968. See also Simplex growing

algorithms (SGAs)

Simplexes

formed by extracted endmembers, 344

growing, 245–247

Simplex growing algorithms (SGAs), 142, 149–151,

152, 157, 162, 163, 164, 165, 201, 202, 204,

207, 241, 243, 244–247, 255, 256, 257, 258,

259, 260, 261, 262, 263, 264, 266, 272–273,

277, 292, 309, 318, 339, 348, 965, 967, 968.

See also Random SGA (RSGA)

algorithms/MATLAB codes for, 1015,

1023–1025

in conjunction with ICA, 338

endmember pixels extracted via, 268–269, 270,

271

panel pixels extracted by, 337

pixels extracted by, 342, 343

results of, 297, 298, 300, 302, 304, 306, 308, 310,

312, 331

SC N-FINDR vs., 245–247

simplex volumes and, 343, 344, 345, 346,

347, 348

VCA vs., 247, 330–338

Simplex inflation process, 215

Simplex volume(s), 208–209, 214, 329, 518

calculating, 342, 343

as EEA design criteria, 330

in endmember extraction, 202

maximal, 215–225, 339–344, 348–349

minimal, 214–215

Simulated abundance fractions, 332–333

Simulated background signature, 333

Simulated panel composition, 578

Simulated panels, 332–334

Simulated pixel vectors, 386

Simulated subpixel target panels,

843, 846

Simulated synthetic scene, endmembers in, 336

Simultaneous endmember extraction algorithms

(SM-EEAs), 12, 202, 204, 205, 206, 230,

207–240, 266, 286, 271, 278, 288, 316,

317–318, 968. See also Endmember extraction

algorithms (EEAs)

converting into SQ-EEAs, 242

design criteria for, 240

drawbacks of, 239–240

EIAs for, 274–275

endmember initialization algorithms for, 274–275

endmember pixels extracted by, 237

implementing, 262–263

performance analysis studies of, 231–239

SQ-EEAs vs., 241–242

Simultaneous N-FINDR (SM-NFINDR), 215, 216,

222, 223,240, 243. See also N-finder

(N-FINDR) algorithm

flow chart of, 217

Simultaneous PCA (SM-PCA), 591–592. See also

Principal components analysis (PCA)

PG-PCA vs., 592

s-IN-FINDR algorithm, 967. See also Iterative

N-finder algorithm (IN-FINDR)

Single-background signature, 427–429

Single background synthetic image experiment,

562–564

Single desired-signal source (d) detection, in the

noise model, 359

Single pixel panels, abundance fractions of, 564

Single-replacement IN-FINDR (1-IN-FINDR),

218–219, 223. See also Iterative N-finder

algorithm (IN-FINDR)

Single signature vector–based spectral measures, 470

Singular (single) value decomposition (SVD), 127,

128–129, 149, 166, 172, 174–176, 255, 320,

337, 338, 345, 346, 347, 436, 908

p values estimated by, 340–341

Singular vector matrices, 175

Sixth moment, 182

Skewer number, impact of, 214

Skewers, 210, 211, 212, 213, 288–289, 306, 314,

317, 319, 320, 321, 488, 964–965

as basis vectors, 316

finding appropriate, 282

Gaussian, 319, 320

randomly generated, 289

Skewness, 11, 179, 180–181, 183, 184, 193, 243,

252, 254, 587, 599, 618, 624, 625, 637, 650,

651, 652, 657, 674, 675–677, 689, 690, 692,

694–699, 699–702, 703–706, 707–712,

713–714, 932
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endmembers extracted by IN-FINDR corresponding

to, 632, 633, 643, 645, 649, 653–654

equations of, 586

third-order statistics–based, 181

UFCLS-mixed panel results corresponding to,

639, 647

UFCLS-mixed panel results produced by, 628

Skewness-EEA, 255, 256, 257, 258, 259, 260, 261,

262, 263, 264. See also Endmember extraction

algorithms (EEAs); Third-order statistics–based

SQ-EEA

Skewness transform, 184

Slack variables, 52–53, 59, 979

SLSMA/CA-ULSMA comparative analysis, 501.

See also Component analysis–based ULSMA

(CA-ULSMA); Linear spectral mixture analysis

(LSMA); Supervised LSMA (SLSMA);

Unsupervised LSMA (ULSMA)

SLSMA using OSP, 352

SNR-based OSP, 391. See also Signal-to-noise

ratio (SNR)

SNR level, 785

SNR values, 564, 565, 566, 567, 812

“Soft” coding, 773

Soft-decision classification, 445

Soft decision–made classifiers, 60

Soft decisions, 33, 45

basis of, 39

classification with, 54–57, 62

detectors with, 35

Soft quantization, 775

Soft quantizers, 775

Soft target detector, 44

Software algorithms, 922

Source alphabet probabilities, 665

Source alphabets, 665–666

dummy, 900–901

Source alphabet set, 722

Source coding, 665–666

Source separation–based OC-ICA, for MR image

analysis, 930–931. See also Independent

component analysis (ICA) entries; Over-

complete ICA (OC-ICA)

Space-based vector parameter estimation methods,

364

SPAM-based binary coding methods, 725. See also

Spectral analysis manager (SPAM)

SPAM binary coding, 717, 719–720, 720–721, 741

extended, 723

Spatial analysis, “class-map/pattern”-based, 503

Spatial-based pattern classification techniques, 8

Spatial compression, 15, 541, 549–557

Spatial compression techniques, 548

Spatial domain analysis, 355

Spatial domain–based data analysis, 984

Spatial domain–based image processing techniques,

484

Spatial domain–based literal analysis, 7

Spatial domain–based methods, 974

Spatial domain–based multispectral imaging

techniques, 355–356

Spatial domain–based techniques, 3–4, 963

Spatial image compression, 542

Spatial information, AMEE-related, 539

Spatial properties, 484

Spatial/spectral correlation, 209

Spatial targets, 466, 484

Specificity, 83

Spectra, steps in producing, 22

Spectral/2D spatial compression techniques, 580

Spectral/3D compression techniques, 563

Spectral analysis, target-based, 503

Spectral analysis manager (SPAM), 717, 719, 725,

726, 727, 728, 729, 730, 731, 732, 733–735,

736–738, 739, 740, 747, 748, 749, 750, 751,

753, 754, 758, 759, 760, 761, 762, 763, 764,

765, 766, 767, 768, 769, 770, 771, 986.

See also SPAM entries

as an encoder, 742

improving performance of, 742

reinterpretation of, 743–744

Spectral angle mapper (SAM), 14, 22, 26, 152, 188,

231, 270, 275, 290, 312, 422, 431, 465, 469,

470–471, 472, 476, 477, 482, 593, 667, 670,

674, 684, 736, 753, 852, 854. See also SAM

values

errors made by, 854–856

extracted pixels measured by, 309

performance of, 875

RSDPW values of, 809

threshold used for, 432

Spectral band, priority score of, 621

Spectral band images, 621, 901, 902

auto-correlated, 902

cross-correlated, 901, 902

second-order-statistical, 901

of SPOT data, 909

Spectral band image vectors, 621, 622

Spectral bands, 5, 6, 624, 651, 683, 688, 877, 957

adding, 655

contiguous, 356

effective use of, 356

highest-prioritized, 625

interpreting, 615
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Spectral bands (Continued )

reducing the number of, 654

signal energies of, 111

Spectral band selection/ranking, 652

Spectral band-to-band correlation, 800

Spectral binary coding methods, 741

Spectral channels, 772, 799–800, 897

Spectral channels/bands, number of, 898

Spectral characteristics, 470

Spectral characterization, 6, 9, 772,

857–858

VNVBS for, 818

Spectral compression, 15, 541, 542–543,

549–557

transform-based, 550–556

Spectral compression criterion, 550

Spectral compression techniques, 548

Spectral correlation, 470

whitened, 374

Spectral correlation matrix, 29

Spectral covariance matrix, 29

Spectral data, applying binary coding to, 719

Spectral de-correlation, 551

Spectral derivative feature coding (SDFC), 717–718,

741, 743–755, 764–766, 986

development of, 742, 744–746

performance of, 764, 766, 771

Spectral deviation, 728

Spectral deviation from EPP (EPPD), 724. See also

Equal probability partition (EPP) binary coding

Spectral dimensionality, 539. See also Spectral

dimensions

of a remotely sensed data set, 125

Spectral dimensionality processing, 589–596

Spectral dimensionality reduction, 552, 547–548,

549, 550

Spectral dimension/bands, 665, 666, 668, 669

Spectral dimensions, 624, 651. See also Spectral

dimensionality

prioritizing, 544

priority scores for, 582

Spectral discriminatory probabilities, 665

Spectral discrimination, 730, 784–785, 790–791

using MPCM-PSSC, 786–788

Spectral discrimination capability, 808

Spectral distance measures, 729

results of,730

Spectral feature–based binary coding (SFBC), 717,

719, 720, 723–725, 726, 727, 728, 729, 730,

731, 732, 733–735, 736–738, 739, 744. See also

Spectral feature binary coding (SFBC)

Spectral feature–based coding, 723–725

Spectral feature binary coding (SFBC), 741, 747,

748, 749, 750, 751, 753, 754, 758, 759, 760,

761, 762, 763, 764, 765, 766, 767, 768, 769,

770, 771, 986. See also Spectral feature–based

binary coding (SFBC)

as an encoder, 742

improving performance of, 742

reinterpretation of, 743–744

Spectral feature characterization, 819

Spectral feature probabilistic coding (SFPC),

717–718, 741, 742–743, 755–764, 765,

766–771, 986

as an arbitrary-bit encoder, 771

development of, 756–758

as a discrimination measure, 757–758

generalization capability of, 759–760

with higher bit rates, 763–764

performance of, 768, 770–771

Spectral features, characterizing, 772

Spectral halfway partition deviation (HPD), 724.

See also Halfway partition deviation (HPD)

Spectral identification, 730, 785–786, 788–790,

791–796

binary coding in, 729, 733–736

for a mixed signature, 789–790

Spectral identification algorithms, 785–786, 791

Spectral identification process, progressive, 789

Spectral information, 138, 484, 547

accomplishments of, 772

advantages of, 4

exploring, 717

pixel-level, 356

redundant, 801

Spectral information divergence (SID), 14, 26, 152,

465, 469, 470–471, 471–472, 477, 667, 670,

671, 674, 684, 720, 736, 753, 814, 815, 852,

854. See also Information divergence entries;

SID entries

as a BD criterion, 691

errors made by, 854–856

infinite-order statistics–based BPCs and, 619

RSDPW values of, 809

spectral similarity values of, 813, 815

Spectral library, 101, 785, 788, 819

Spectral library/database, 469

“Spectrally” distinct hyperspectral data, HFC vs.

PCA methods and, 139

Spectrally distinct signatures, 232, 235, 272, 405,

429, 596, 603, 665, 668, 958, 974

defining, 957

number of, 124

Spectral matched filter, normalized, 374
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Spectral mean deviation (MD), 744

Spectral measure–based band de-correlation,

684–685

Spectral measure–based BD algorithm, 684–685.

See also Band de-correlation (BD)

Spectral measures

discriminatory power of, 807

signature vector–based, 469

single signature vector–based, 470

Spectral processing, 955

Spectral profile information, 15

Spectral profiles, 773, 796, 806, 812. See also

Spectral signature profiles

Spectral properties, 126

Spectral quantification, 825, 828

Spectral redundancy, in 3D cube compression, 550

Spectral resolution, 168, 877

improved, 201, 503

Spectral sample correlation, 617

Spectral signal sources, number of, 142

Spectral signature characterization, 821

Spectral signature coding (SSC), 741, 772

applications of, 772–773

applying MPCM to, 778

arithmetic coding in, 742–743

PSSC and, 773

Spectral signature identification, 826–828

Spectral signature matrix, 358

Spectral signature mean deviation (MD), 723, 725,

726, 727, 728, 729, 730, 731, 732, 733–735,

736–738, 739

Spectral signature median, 721

Spectral signature profiles, 809. See also Spectral

profiles

Spectral signatures, 20, 21, 125, 293, 421, 530

of background signatures, 333, 334

binary coding for, 719–740

of chemical data, 787

of chemical/infrared data signatures, 21

discriminating, 805

five-panel, 28

KFSSE in estimating, 832

of pixels, 26, 527

progressive coding for, 772–796

progressive stage-by-stage decoded, 781

Spectral signature unmixing, 351

Spectral signature vectors, 29, 721, 742, 760, 806,

826, 985

characterizing, 800

discriminated by WSCA-SSC, 873

encoding in multiple stages, 772

progressive decomposition of, 774

Spectral similarity

measuring, 292, 469, 696

among signature vectors, 837

Spectral similarity measures, 470, 804

signature vector–based, 469

Spectral similarity values, 747, 748, 749, 750, 751,

758, 762, 810

comparative plots of, 754, 759, 761, 763, 764, 766,

768, 769

comparative results of, 764, 766–767, 768, 769

SAM-based, 539

of SID, 813, 815, 817

Spectral/spatial compression, 549–557

mixed component analysis for, 570–576

3D-cube compression vs., 549–550

Spectral/spatial compression techniques, 580

Spectral statistics, 466

for designing EEAs, 209

Spectral targets, 466, 484, 485

high-order, 485

second-order, 485

Spectral unmixing, 32, 45, 159, 356, 362, 434–435,

501, 503, 519, 559, 626

FCLS method for, 603–604, 605–607

KLSMA and, 462

LSMA and, 664, 878

PBDP in, 660

Spectral unmixing applications, in hyperspectral

imagery, 356

Spectral unmixing–based EEAs, 339

Spectral unmixing methods, 822

Spectral value, gradient changes in, 744–745

Spectral variability, 470. See also Spectral

variation(s)

Spectral variation(s), 744–745

capturing subtle, 792

gradient changes in, 751–752, 771

progressive changes in, 773

subtle, 743

Spectral-varying system gain parameters, 827

Sphered data, 297, 298, 299, 300–301, 302, 303–305,

307–308, 309, 312, 314, 347, 349. See also Data

sphering

removing first- and second-order statistics in,

348

for RN-FINDR, 291

Sphering, whitening vs., 179–180

Sphering method, 179–181, 252, 253

SPICA-DR algorithm, 187–188. See also

Dimensionality reduction (DR); Prioritized

ICA (PICA); Statistics-prioritized ICA-DR

(SPICA-DR)
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SPIHT (Set Partition in Hierarchical Tree)

algorithms, 541, 550–551, 551–552, 558–559.

See also Set partitioning in hierarchical trees

(SPIHT); 3D-SPIHT entries; 2D-SPIHT entries

Split-SFPC (S-SFPC), 741, 757, 758, 759–760,

761, 762, 763, 764, 765, 766–768, 769, 770.

See also Spectral feature probabilistic coding

(SFPC)

performance of, 770, 771

SPM 5/8 algorithm, 922

SPOT data. See also Satellite Pour l’Observation

de la Terra (SPOT) system

spectral band images of, 909

unmixed results of, 910–918

SPOT multispectral data, 3-band, 6

SQ-EEA–generated endmembers, 274. See also

Sequential endmember extraction algorithms

(SQ-EEAs)

SQ-EEA performance, 261

SQ-PCA algorithm, 595. See also Principal

components analysis (PCA); Sequential

PCA (SQ-PCA)

s-replacement IN-FINDR (s-IN-FINDR), 220, 222.

See also Iterative N-finder algorithm

(IN-FINDR)

SSE estimates, 335–336, 337. See also Signal

subspace estimation (SSE)

SSE/HySime-estimated values, 156–157, 158, 159,

160, 161, 166. See also Hyperspectral signal

subspace identification by minimum error

(HySime)

s-SGA, 967. See also Simplex growing algorithms

(SGAs)

SSP-weighted AC-LSMA, 413, 418. See also

Abundance-constrained LSMA (AC-LSMA)

s-successive replacement IN-FINDR (s-SC

IN-FINDR), 221, 222, 244. See also Iterative

N-finder algorithm (IN-FINDR)

Stage thresholds, 785, 788

for panel signatures, 790

Standard BS techniques, 818. See also Band

selection (BS)

Standard detection theory, decisions in, 67

Standard deviation, of state noise, 826, 827,

835, 843

Standard deviation of measurement noise (su), 837,

843

KFSSQ sensitivity to, 841–842, 850–852

KFSSQ vs. values of, 851–852

LSE relationship to, 847

Standardized data sets, for hyperspectral imaging

algorithms, 123

Standardized PCA–based EEA (SPCA-EEA)

algorithm, 228–230, 240, 252. See also

Endmember extraction algorithms (EEAs);

Principal components analysis (PCA);

Standardized principal components analysis

(SPCA)-EEA

nine endmembers extracted by, 229–230

Standardized principal components analysis (SPCA),

172–173, 183, 228

Standardized principal components analysis (SPCA)-

EEA, 201, 204, 205, 209

Starget signatures, 484, 485. See also Target signature

entries

State equation, 821, 822, 823, 825, 826, 828, 858

KFSSI use of, 854

modified, 825

remodeling, 826–827

State noise, 858

standard deviation of, 826, 827, 835, 843

Static dimensionality allocation (SDA), 666

Hamming coding for, 669

Statistical decision theory, 67

Statistical signal processing algorithms, designing,

919

Statistics

categorization of, 203

in endmember extraction, 202

high-order, 182–183

Statistics-based component transforms, 198–199

Statistics-based criteria, 187, 189

for endmember extraction, 202

Statistics-based EEAs, 201. See also Endmember

extraction algorithms (EEAs)

Statistics-based techniques, 45

Statistics prioritized ICA-DR (SPICA-DR, ICA-

DR1), 169, 186, 187–188, 189–190, 596.

See also Dimensionality reduction (DR);

Independent component analysis (ICA);

Prioritized ICA (PICA)

algorithms/MATLAB codes for, 1005, 1007–1008

Stopping criterion (criteria), 184, 253, 266

Stopping rule, 227, 249, 251, 291, 615, 654, 655, 661

ATGP, 960–961

Structuring element (SE), 231

Subpanel pixels, 441

Subpixel analyses, 33, 580

Subpixel detection, 567, 879–880

Subpixel discrimination/identification, 736

Subpixel effects, on endmember extraction, 332

Subpixel identification, APDP values for, 736

Subpixel panel comparison, similarity values

obtained by, 855
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Subpixel panel detection, 567–569

Subpixel panel identification, 732, 873, 874

Subpixel panels, 105, 331–332, 399, 427, 429, 576

abundance fractions for, 566

estimating, 856

identification of, 791, 834, 835, 836, 837–838

references for, 872

Subpixel quantification, of subtle targets, 562

Subpixels, 33

Subpixel self-identification, 871

using WSCA-SSC, 873–875

Subpixel size estimation, new approaches for, 879,

880

Subpixel target detection, 17–18, 114–122, 559–560

methods used for, 883–884

Subpixel target identification, 837

by KFSSI, 832–838, 843–848

by KFSSQ, 849

Subpixel target panels, 839

identifying unknown, 852

identifying unknown, 846

simulated, 843, 846

Subpixel target quantification, by KFSSQ, 839–840

Subpixel targets

quantifying, 849

sizes of, 837

Subpixel target signature, 836

Subpixel targets issue, 541

Subpixel target size estimation, 879, 880–881, 883

applications of, 877

ATGP-FCLS algorithm in, 881

Subpixel vectors, 14

Subsample analyses, 10, 31, 33–62

major focus of, 39

mixed sample analysis vs., 34–35

subsample detection via, 35–44

Subsample detection, 60

via subsample analysis, 35–44

Subsample identification, 34–35

Subsample quantification, 35

Subsamples, mixed samples vs., 60

Subsample target classification, 35

Subsample target detection, 34, 38–43,

43–44

algorithms developed for, 54

Subsample target detection model, 54–55

Subsample target detector, 39

Subsample target discrimination/identification, 470

Subsample target forms, 33

Subsample targets

mixed samples vs., 34

simulation of, 103

Subsample target signal, 38

Subsample vectors, 525

Subsample verification, 35

Subspace projection, oblique, 362

Subspace projection approach, 41

Subtle material substances, 201

Subtle spectral variations, 743

capturing, 792

Subtle substance targets, 974

Subtle targets, subpixel quantification of, 562

SuCcessive IN-FINDR (SC IN-FINDR), 218,

220–222, 243. See also Iterative N-finder

algorithm (IN-FINDR)

SuCcessive N-FINDR (SC N-FINDR), 244, 255,

256, 257, 258, 259, 260, 261, 262, 263, 264,

277, 309, 314–315, 966, 968. See also Random

SC N-FINDR (RSC N-FINDR)

simplex growing algorithms vs., 245–247

results of, 300, 302, 304, 306, 308, 310, 311

simplex volumes and, 344, 345, 346, 347, 348

Sum of squared errors, 512, 513

Sum-to-one abundance constraint, 499, 503

Sum-to-one constrained least-squares (SCLS)

analysis, 927

Sum-to-one constrained least-squares (SCLS)

approach, 392, 397, 410, 412, 882, 883, 884,

886, 887, 888–889, 890, 891, 896

Super-Gaussian independent components, 186

Supervised classification, 980

Supervised classification-based BP criteria, 619

Supervised knowledge, image background

characterized by, 402–403

Supervised LSMA (SLSMA), 8, 13, 351, 486, 499,

503, 524–525, 970–973. See also Linear

spectral mixture analysis (LSMA)

algorithms/MATLAB codes for, 1025–1040

effectiveness of, 516

extending, 973

qualitative and quantitative analyses of, 511–517

ULSMA vs., 483

Support vector machines (SVMs), 45–46, 48–54, 62,

353, 977–981. See also Kernel support vector

machine (K-SVM)

alternative linear separability problem for, 51–54

design/performance of, 978

kernelization and, 440

Support vectors, 48, 50, 51, 60, 62, 978–979

Surveillance applications, for anomaly detection,

560–561

SVD-DR transforms, 346. See also Dimensionality

reduction (DR); Singular (single) value

decomposition (SVD)
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SVM-generated classifier, 46. See also Support

vector machines (SVMs)

SW
�1-weighted abundance fully constrained LSE

problem, 417

SW
�1-weighted abundance nonnegativity-

constrained LSE problem, 416

SW
�1-weighted abundance sum-to-one constrained

LSE problem, 416

SW
�1-weighted AC-LSMA, 422, 424, 425, 427,

431, 432. See also Abundance-constrained

LSMA (AC-LSMA); Linear spectral mixture

analysis (LSMA)

types of, 416–417

SW
�1-weighted FCLS, 417. See also Fully

constrained least-squares (FCLS) method

SW
�1-weighted NCLS, 417. See also Nonnegativity

constraint least-squares (NCLS) method

SW
�1-weighted SCLS, 417. See also Sum-to-one

constrained least-squares (SCLS) entries

Synthetic aperture radar (SAR)-ATR systems,

65

Synthetic image-based computer simulations,

419–426, 868–871

Synthetic image–based experiments, 1

importance of, 501–503

Synthetic image-based scenarios, 297–305

Synthetic image experiments, 31, 144–155, 231–237,

255–258, 278–281, 293–305, 323–325,

398–402, 441–444, 490–503, 562–567,

881–886

design of, 10, 101–123

goal of, 441

Synthetic images, 1, 102

benefits of using, 152–154

pixel information analysis via, 528–534

radiance data–based, 324

reflectance data–based, 324

simulated by radiance data, 324

standardized, 101

Synthetic image scenarios, 104–112

value of, 503

Synthetic linear image experiments, LSMA and

KLSMA resulting images of, 442

Synthetic mixed-sample targets, simulation of,

104

Synthetic MR brain image experiments, 933–951.

See alsoMagnetic resonance entries

Synthetic MR images, of brain, 934

Synthetic subsample targets, simulation of, 103

System gain parameters, spectral-varying, 827s

System gain vectors, 825

Systolic arrays, 989

Target abundance–constrained classifiers, 401

Target abundance–constrained mixed pixel

classification (TACMPC), 391, 392

Target analysis, 465–467

Target-based detection, 4

Target-based spectral analysis, 503

Target capture, 102

Target class–based image analysis, 5

Target classes, 506–508

Target classification, pattern classification vs., 8

Target-constrained interference-minimized filter

(TCIMF, dTCIMF), 45, 54, 56–57, 61, 62, 357,

377–379, 380–383, 396. See also TCIMF

entries

relationship between FVC-FLSMA and, 395–396,

400–401, 403–405, 406, 407–409

Target detection, 43–44, 110, 355

applications of, 17–18, 879–896

automatic, 18

CEM and, 118–122

hyperspectral, 79–80

subpixel, 114–122

unsupervised, 527, 796

Target detection applications, 114–122

Target detection/classification, 13

Target discrimination, 465, 975

signature vector–based hyperspectral measures

for, 470–472

Target discrimination/identification, correlation-

weighted hyperspectral measures for, 472–477.

See also Target identification

Target embeddedness (TE), 101, 102–103, 106,

255–258, 441

Target embeddedness (TE) scenarios, 108–112,

146–149, 231–232, 280–281, 301–303,

303–305, 441–444, 490–491, 492, 495–496,

498, 499, 501, 502

target panel pixels in, 499

Target estimation error, 896

Target identification, 469. See also Target

discrimination/identification

signature vector–based hyperspectral measures

for, 470–472

Target implantation (TI), 101, 105, 441

Target implantation (TI) scenarios, 106–108, 145–146,

255–258, 278–280, 297–299, 299–301, 441–444,

490, 491, 493–494, 497, 499, 500, 501

Target information, in OSP, 358

Target insertion, 101, 102–103

into image background, 101

Target knowledge, 35, 45, 356, 499, 902

Target mean, 47
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Target panel pixels, 499

Target panels

subpixel, 839, 852

visible, 111

Target pixels, 321–322, 506–508, 791

ATGP-generated, 407, 422, 431

finding, 248

Target pixel vectors, 29, 792–796, 832–833

excluding, 375

Targets, 29

spectral characteristics of, 3–4

spectrally distinct, 5–6

subtle substance, 974

Target sample vectors, 273, 489

Target signal sources, 484, 957–958

features of, 975

Target signature(s), 363, 364, 380, 485, 505, 525

abundance fractions of, 894

complete knowledge about, 372, 379

constraining, 372

desired, 356

number of, 466

partial knowledge about, 384

Target signature–constrained classifiers, 400

Target signature–constrained mixed pixel

classification (TSCMPC), 391, 392

Target signature discrimination, 482

Target signature matrices, desired and undesired,

56, 377

Target signature substance estimates, 653

Target signature vectors, 785, 789, 825–826, 827,

829, 833, 837, 858

desired and undesired, 801

identifying, 839

known, 839–840, 840–841, 849, 850

unknown, 840, 841, 849

Target signature vector separation, 473

Targets of interest

complete knowledge of, 380

simulation of, 103–104

Target spectral signature matrix, 358

Target substances, complete prior knowledge of, 35

Target verification, 469

Target VS extraction, 491, 492. See also Virtual

signatures (VSs)

Target VSs, 491, 492, 503–505, 519

extracting, 485–486

high-order, 505

pure, 505

TCIMF performance, 407. See also Target-

constrained interference-minimized filter

(TCIMF, dTCIMF)

TCIMF scenarios, 382–383

Terminologies, 29–30

Ternary Huffman coding, 900

Texture feature coding method (TFCM),

742, 744

Third central moment, 179

Third-order statistics, 932

Third-order statistics–based skewness, 181

Third-order statistics–based SQ-EEA, 252. See also

Sequential endmember extraction algorithms

(SQ-EEAs); Skewness-EEA

3-band SPOT multispectral data, 6

3-bit coders, 764

3-bit SFBC, 2-bit SPAM vs., 758. See also Spectral

feature–based binary coding (SFBC); Spectral

feature binary coding (SFBC)

3D compression, 547, 548–549

3D combinational curves, 98–99

3D combinational performance cost curve, 99

3D combinational performance ROC curve, 99.

See also Three-dimensional (3D) ROC curves

3D compression, 552, 553–554, 557–559

3D compression techniques, 15. See also 3D-cube

compression techniques; Three-dimensional

(3D) image compression techniques

3D cost curve, 98

3D-cube compression, 549

spectral redundancy in, 550

spectral/spatial compression vs., 549–550

3D-cube compression techniques, 550, 557

3D de-compression, 552, 557

Three-dimensional (3D) image compression

techniques, pure pixel–based, 541

Three-dimensional receiver operating characteristics

(3D ROC), 10

developing, 64–65

Three-dimensional receiver operating characteristics

(3D ROC) analysis, 31, 63–100, 91, 443, 445,

460, 463, 608, 920, 925, 936, 937, 938–939,

940, 944, 945, 946, 947, 949, 970

applications of, 78–83, 84, 85

in chemical/biological agent detection, 91–95

issues arising in, 69–72

in magnetic resonance breast imaging, 83–87

for performance evaluation, 89, 878

Three-dimensional (3D) ROC curves, 63, 65, 70, 71,

79, 86, 87, 445, 449, 450, 451, 452, 453, 454,

455, 456, 457, 458, 459, 460, 461, 462, 463,

608, 936, 937, 938, 939, 940, 944, 945, 946,

947, 949

Gaussian fitted, 76

generating, 75–77
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Three-dimensional (3D) ROC curves (Continued )

generating for multiple signal detection/

classification, 77–78

for mean classification rates, 940

for performance evaluation, 94

for signals, 93–99, 100

3D lossy compression, 569

3D lossy compression techniques, 580

3D mean-ROC curve, 78. See also Three-

dimensional (3D) ROC curves

3D Multicomponent JPEG, 557–558, 563, 564.

See also JPEG2000 algorithms

3D-SPIHT (Set Partition in Hierarchical Tree)

algorithm, 541, 550–551. 552. See also Set

partitioning in hierarchical trees (SPIHT);

SPIHT entries

3D-SPIHT compression, 558–559, 580

performance of, 563, 564, 566, 567, 568, 570

3D-SPIHT spatial compression, 561–562

3D techniques, 955

Three-source model, 357

Three-stage hyperspectral information compression,

545, 548

Three-stage spectral/spatial hyperspectral

compression, 560, 561

Threshold (t), 64, 65, 67, 69–72, 299, 309. See also

Concentration threshold

adjusting, 74

choosing, 72

fixed and same, 78

optimal, 74

as a parameter, 98–99, 100

role of costs in, 95–96

varying, 75

Thresholded binary images, 894, 895

Thresholding difference, between normalized

correlation eigenvalues and normalized

covariance eigenvalues, 128

Thresholding difference Gershgorin radii, 134–135

Thresholding energy percentage, 127–128

Thresholding Gershgorin radii, 134

Threshold values, 290, 299, 309, 399, 432

Ticket samples, of signals, 91–92, 93

Tiles, dividing images into, 558

Tissue classes, 933, 934

Tissue classification, 920–921, 923, 933–935,

935–936, 936–951

Tissue quantification, 955

Tissue signatures, prior knowledge of, 942

Tissues training sample regions, 934

tmix mixed pixel vector, 810, 811, 812, 814, 815,

838–839, 840–841, 848, 849–850

Total error, 512, 513

Total scatter matrix, 397

Training data, 409

Training sample covariance matrix, 600

Training samples, 420, 431–432

for target classification, 466

Training sample vectors, 46

Transformations, kernelizing, 440

Transform-based spectral compression,

dimensionality reduction by, 550–556

Transform coding methods, 550

Transforms

component analysis–based, 11

feature extraction–based, 11

Transform techniques, 168

Trial-and-error approach, to a posteriori knowledge,

841

Trial-and-error estimation, 6

“True” decision, 64

True endmembers, 288, 289

True mineral signatures, 259

“True negative” (TN) decision, 64, 68

True-negative rate/probability, 73

True pixels, total number of, 78

“True positive” (TP) decision, 64, 68

True signature vector, 826, 841

2-bit coders, 764

2-bit SPAM, 3-bit SFBC vs., 758. See also Spectral

analysis manager (SPAM)

Two-class classification problem, 48

2D compression technique, 551–553

2D de-compression, 553, 554, 556

2D discrete wavelet transform (DWT), 551

Two-dimensional (2D) degenerated simplex, 317

Two-dimensional (2D) image compression

algorithms, 541

Two-dimensional (2D) image processing, 526

Two-dimensional receiver operating characteristics

(2D ROC) analysis, 31, 936, 937, 938, 939, 940,

944, 945, 946, 947, 949

issues arising in, 70–72

traditional, 72

Two-dimensional (2D) ROC curves, 10, 31, 63, 65,

70, 75, 79–80, 82, 83, 86, 87, 91, 94, 443, 444,

445, 449, 450, 451, 452, 453, 454, 455, 456,

457, 458, 459, 460, 461, 462, 463, 608, 936,

937, 938, 939, 940, 944, 945, 946, 947, 949

plots of areas under, 612, 706, 713–714

2D spatial compression, 549

2D spectral images, 85

2D-SPIHT (Set Partition in Hierarchical Tree)

algorithm, 541, 552
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2D-SPIHT compression, 558, 559

Two-pixel panels, 27–28

Two-replacement IN-FINDR (2-IN-FINDR),

219–220, 224. See also Iterative N-finder

algorithm (IN-FINDR)

Two signal-source (d,U)-model, 359. See also

(d,U)-model

Two-stage compression process, 15

Two-stage spectral/spatial hyperspectral

compression, 560, 561

U, 380, 383. See also (d,U)-model; Undesired

signature matrix (U); Undesired target signature

matrix (U)

CEM implementation and, 375

d as orthogonal to, 374

undesired target signatures in, 372

UFCLS estimated abundance fractions, 579. See also

Fully constrained least-squares (FCLS) method;

Unsupervised fully constrained least-squares

(UFCLS) method

UFCLS-extracted pixels, 536

UFCLS-generated BKG/target VSs, 504. See also

Background (BKG) entries; Virtual signatures

(VSs)

UFCLS-generated target pixels, 508

UFCLS-mixed panel abundance fractional maps,

636

UFCLS-mixed panel results, 627–631, 638–642,

647–648

UFCLS-mixed pixel classification, 575, 626

UFCLS-unmixed abundance fractions, 569

UFCLS-UVSFA, 512, 513. See also Unsupervised

virtual signature finding algorithms (UVSFAs)

target VSs extracted by, 491, 492, 494, 496

ULSMA performance, 511. See also Linear spectral

mixture analysis (LSMA); Unsupervised LSMA

(ULSMA)

UNCLS-generated BKG/target VSs, 504. See also

Nonnegativity constraint least-squares (NCLS)

method

UNCLS-generated target pixels, 507

Unconstrained-abundance least-squares algorithm,

248

Unconstrained LSMA, 926–927. See also Linear

spectral mixture analysis (LSMA)

Unconstrained LSMA methods, 955

Unconstrained LSOSP, 420, 422, 424, 425,

427, 428, 431, 432. See also Least-squares-

based orthogonal subspace projection

(LSOSP)

Unconstrained spectral unmixing method, 114

Uncorrelated noise, 364

Uncorrelated signal source vector, 185

Under-complete ICA (UC-ICA), 18, 898–899, 929,

930, 931, 957. See also Independent component

analysis (ICA) entries

Under-complete linear spectral mixture analysis

(UC-LSMA), 898, 899

Under-complete LSMA, 957. See also Linear

spectral mixture analysis (LSMA)

Undesired signal matrix, 55

Undesired signal source annihilator, 972

Undesired signature annihilation, 378

Undesired signature annihilator, 384, 475

Undesired signature matrix (U), 473. See also U

Undesired signature projector, CEM implementation

and, 375–376, 376–377

Undesired signature rejection matrix, 412–413

Undesired signatures, 460. See also Undesired target

signatures

performance and, 379

Undesired target signature matrix (U), 56, 356, 377,

378. See also U

Undesired target signatures, 372, 384

Undesired target signature vectors, 801

eliminating, 801

Unified kernel theory, 436

Uniformly most powerful (UMP) detector, 41

Uniform random variables, 272

Uniform target detector (UTD, dUTD), 384
Unitary matrices, 174

Unit (unity) vectors, 225

random, 210, 211

Unknown concealed targets, detecting, 18

Unknown interferers, 56

Unmixed abundance fractions, 420, 445, 512–517,

520

of HYDICE data panel pixels, 679–681, 703–706

Unmixed error, 225

Unstructured noise, 43

Unsupervised algorithms, 357

Unsupervised background knowledge, 429–432

Unsupervised classification, 980

Unsupervised FLSMA (UFLSMA), 410. See also

Fisher’s LSMA (FLSMA); Linear spectral

mixture analysis (LSMA)

Unsupervised fully constrained least-squares EEA

(UFCLS-EEA), 243, 248, 250 , 255, 256, 257,

258, 259, 260, 261, 262, 263, 264, 272, 278.

See also Endmember extraction algorithms

(EEAs)

algorithm for, 250

IEA-EEA vs., 251
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Unsupervised fully constrained least-squares

(UFCLS) method, 142, 149–151, 152, 154, 157,

160, 161, 162, 163, 164, 165, 201, 204, 225,

339, 467, 487, 527, 528, 538, 539, 563, 565,

626, 791, 880, 967, 969

abundance quantification by, 576

algorithms/MATLAB codes for, 1040, 1044–1046

classification by, 572–575

endmember pixels generated by, 531

maximal volume simplexes and, 342–343

pixel extraction using, 532–533, 534

pixels extracted by, 342, 343

quantitative unmixed results obtained by, 578

simplex volumes and, 343, 344

in unmixing abundance fractions, 566

in unmixing panels, 571

Unsupervised hyperspectral analysis, 13–14

Unsupervised hyperspectral image analysis, 465–467

Unsupervised hyperspectral target detection,

algorithms/MATLAB codes for, 1040–1046

Unsupervised image classification, 31

Unsupervised knowledge, image background

characterized by, 405–409

Unsupervised LSMA (ULSMA), 8, 351, 483–525,

626–631, 636–637, 646, 964, 970, 973–974.

See also Linear spectral mixture analysis

(LSMA)

endmember extraction vs., 517–524

qualitative and quantitative analyses of, 511–517

Unsupervised LSOSP (ULSOSP) algorithm, 967.

See also Least-squares-based orthogonal

subspace projection (LSOSP)

Unsupervised nonnegativity constrained least-

squares (UNCLS) method, 142, 149–151,

152, 157, 162, 163, 164, 165, 248, 272, 467,

487, 967

Unsupervised nonnegativity constrained least-

squares (UNCLS) method. See also Non-

negativity abundance-constrained least-squares

(NCLS) method

algorithms/MATLAB codes for, 1040, 1042–1044

Unsupervised nonnegativity least-squares EEA

(UNCLS-EEA), 243, 248, 249–250, 255, 256,

257, 258, 259, 260, 261, 262, 263, 264, 278.

See also Endmember extraction algorithm

(EEAs); Linear spectral mixture analysis

(LSMA); Non-negativity abundance-constrained

least-squares (NCLS) method; Nonnegativity

constraint least-squares (NCLS) method

algorithm for, 250

Unsupervised OSP (UOSP), 248, 928. See also

Orthogonal subspace projection (OSP)

Unsupervised target classification, 465

Unsupervised target detection, 31, 465, 467, 527, 796

Unsupervised target detection algorithms (UTDAs),

323, 527. See also UTDA-extracted pixels

automatic target generation process algorithm as,

888–889

pixel extraction using, 532–533, 534

Unsupervised target-generation algorithms, 466

Unsupervised target sample–finding algorithm

(UTSFA), 467

Unsupervised virtual signature finding algorithms

(UVSFAs), 669, 970. See also ATGP-UVSFA;

CA-based unsupervised virtual signature finding

algorithm (CA-UVSFA); Least-squares

(LS)-based unsupervised virtual signature

finding algorithm (LS-UVSFA); LS-UVSFA/

CA-UVSFA; UFCLS-UVSFA

Unwanted signature matrix, 417

Unweighted AC-LSMA, 433. See also Abundance-

constrained LSMA (AC-LSMA); Linear

spectral mixture analysis (LSMA)

U.S. Army Joint Service Agent Water Monitor

(JSAWM) program, 91. See also USGS entries

Used image processing techniques, 355

User-synthetic aperture radar (SAR)-ATR systems,

65

USGS ground-truth mineral spectra, 19, 20,

746, 749

USGS quadrangle map, 25

UTDA-extracted pixels, 535, 536, 538. See also

Unsupervised target detection algorithms

(UTDAs)

Variable dimensionality band selection (VDBS), 983,

984

Variable dimensionality reduction (VDR), 983, 984.

See also Dimensionality reduction (DR)

Variable-length code words, 667

Variable-length coding, 666, 682, 798

Variable-length optimal codes, 664–665

Variable-number variable-band selection (VNVBS),

17, 666, 803–806. See also VNVBS entries

effectiveness of, 808

as a feature selection method, 800–801

for hyperspectral signals, 799–819

image-based BS techniques vs., 805

noise effect on, 811–812

performance of, 815

performed on hyperspectral signature vectors, 806

RSDPW vs., 814, 815

as a signature classifier, 805

signatures with different band numbers and,

816–818

for spectral characterization, 818
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Variance, 599, 624, 625, 637, 650, 651, 652, 657,

675–677, 689, 690, 692, 694–699, 699–702,

703–706, 707–712, 713–714

endmembers extracted by IN-FINDR corresponding

to, 632, 633, 643, 645, 649, 653–654

UFCLS-mixed panel results corresponding to,

638, 647

UFCLS-mixed panel results produced by, 627

Variance-based BPC, 617–618. See also BP criteria

(BPCs)

VCA-found maximal volume, 329. See also Vertex

component analysis (VCA)

VCA performance, 336–337

VCA/PPI relationship, 320–321. See also Pixel

purity index (PPI) entries

VCA uncertainty, 322–323

VD applications, 126. See also Virtual dimensionality

(VD)

VD determination problem, 136

VD-determined spectral compression, 561

VD-estimated PCs, 488. See also Principal

components (PCs)

VD-estimated values, 322, 491, 543, 563, 565.

See also VD value estimators

VD estimates, 335–336, 338, 460, 503, 535, 538, 632

VD estimation, 131, 648, 658

algorithms for, 997–1000

VD estimation techniques, 143–144, 149–151, 157,

159, 167

VDHySime techniques, 143–144

VDOSP techniques, 143–144, 167

VD spectral dimensions, 137

VDSSE techniques, 143–144. See also Signal

subspace estimation (SSE)

VD value estimators, 147–149

VD values, determining, 165

Vector coding, 9, 17, 717, 986

for hyperspectral signatures, 741–771

Vector coding techniques, 771

Vector parameter estimate, 363

Vector quantization, 266

Vectors, 29

Vertex component analysis (VCA), 142, 149–151,

152, 157, 162, 163, 164, 165, 201, 202, 203,

204, 207, 241, 242–243, 247–248, 255, 256,

257, 258, 259, 260, 261, 262, 263, 264, 272,

317, 318, 319, 339, 348, 967, 968. See also

Random VCA (RVCA); VCA entries

endmember extraction by, 323, 324, 325, 326, 327,

328

endmember pixels extracted via, 268–269, 270, 271

improvement of, 337–338

panel pixels extracted by, 336

pixels extracted by, 342, 343

relationships with PPI and ATGP, 319–323

results produced by, 331

SGAs vs., 330–338

simplex volumes and, 343, 344

as a variant of ATGP, 323

Vertices

insufficient number of, 328

selecting, 244–245

Very high spectral resolution, 526

Very large scale integration (VLSI) technology, 989

VE selection, 518. See also Virtue (virtual)

endmembers (VEs)

Virtual dimensionality (VD), 6, 31–32, 81, 199, 242,

267, 286, 291, 293, 318, 324, 328, 334, 420,

466–467, 485, 489–490, 525, 533, 543, 551,

557, 577, 580, 581, 957–963, 974, 983, 997

defined, 124, 125

detectors determining, 963

determined by data characterization-driven

criteria, 126–140

determined by data representation–driven criteria,

140–144

as an estimate, 613, 614, 682

estimated by HFC and NWHFC, 532

estimated for real hyperspectral images, 155–163,

164, 165

for estimating number of dimensions, 340

as an estimation method, 511

estimation of, 423

for HYDICE data, 305

HFC method-produced, 534

HFC vs. PCA methods and, 140

of hyperspectral data, 11, 124–167

misinterpretation of, 958

p values estimated by, 338

q value estimated by, 596

reinterpretation of, 126

reliability of, 336

in target pixel number estimation, 885

values estimated by, 341

Virtual dimensionality (VD) concept, xxiv, 163–166

Virtual signatures (VSs), 14, 485, 487–488, 488–489,

490, 499–503, 518–519, 524–525, 974. See also

CA-based unsupervised virtual signature finding

algorithm (CA-UVSFA); Least-squares (LS)-

based unsupervised virtual signature finding

algorithm (LS-UVSFA); VS entries

BKG, 485–486

extracting target, 485–486

Virtue (virtual) endmembers (VEs), 125, 142, 159,

162–163, 517, 974

least-squares errors for, 165
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Visible panel pixels, 111

Visible target panels, 111

Visual assessment, 111

Visualization tools, 314

VNVBS-based hyperspectral signature discrimina-

tion (VNVBS-HSD), 804, 805. See also

Variable-number variable-band selection

(VNVBS)

VNVBS experiments, 806–818

Voxels, 921

classifying MR image, 923

VS extraction, 501. See also Virtual signatures (VSs)

VS matrix, 499, 501

WAC-LSMA performance, evaluating, 419. See also

Abundance-constrained LSMA (AC-LSMA);

Linear spectral mixture analysis (LSMA);

Weighted abundance–constrained LSMA

(WAC-LSMA)

Water absorption bands, 25

Water vapor absorption bands, 27

Wavelet analysis, 860–863

application of, 859, 860

multiscale approximation of, 860

Wavelet-based compression technique, 557–558

Wavelet-based signature characterization algorithm

(WSCA), 798, 859, 863–868, 869, 870, 871.

See alsoWSCA entries

applications of, 875

discrimination power of, 871

Kalman filtering and, 860

Wavelet-based techniques, 17

Wavelet decomposition, 864

of error signature, 865

Wavelet function, 859, 862–963

Wavelet reconstruction, 864

Wavelet representation, 140

for hyperspectral signals, 859–875

Wavelet transform, 860

Weighted abundance–constrained LSMA (WAC-

LSMA), 8, 13, 353, 411–433, 435, 469, 973,

981. See also Abundance-constrained LSMA

(AC-LSMA); Linear spectral mixture analysis

(LSMA); Weighted AC-LSMA methods

LSE problems derived from, 413–418

types of, 411

Weighted AC-LSMA methods, 420, 421, 422–426,

425–429, 429–433

Weighted LSE, 13. See also Least-squares error

entries, 13

Weighted LSE approach, 412

Weighting correlation matrix, 469

Weighting matrices, 396, 432–433. See also

Weighting matrix (A)

Weighting matrix (A), 412, 413

approaches to selecting, 414

derived from Fisher’s linear discriminant analysis

perspective, 416–417

derived from orthogonal subspace projection

perspective, 417–418

derived from parameter estimation perspective,

414–416

Weighting (weight) vectors, 42, 48, 49, 50, 59, 623

L-dimensional, 373

optimal, 374

White Gaussian noise (WGN), 135, 236, 365,

367, 386

white uniform noise vs., 367–368

Whitened spectral correlation, 374

Whitened vectors, 42

Whitening

according to OSP-model, 369

effect of, 371–373

sphering vs., 179–180

Whitening matrix, 40–41, 55, 171, 185, 906

Whitening process, 40

White noise, 138. See alsoWhite Gaussian noise

(WGN); White uniform noise (WUN)

CEM implementation and, 376–377

White noise vectors, 825

White uniform noise (WUN), white Gaussian noise

vs., 367–368

Window-based adaptive anomaly detectors, 975

Winner-Take-All (WTA) rule, 894

Winter N-FINDR, 965–966. See also N-finder

(N-FINDR) algorithm

Within-class scatter matrices, 46, 47, 58, 360, 361,

362, 393, 396, 397, 409, 412, 908

WSCA for signature self-correction (WSCA-SSC),

860, 863, 866–867. See also Signature self-

correction (SSC); Wavelet-based signature

characterization algorithm (WSCA);

WSCA-SSC entries

evaluating performance of, 875

subpixel self-identification using, 873–875

WSCA signature self-tuning (WSCA-SST), 860,

863–866, 868

WSCA-SSC procedure, 867–868. See alsoWSCA

for signature self-correction (WSCA-SSC)

WSCA-SSC real image experiment, 872–873

WSCA-SST flowchart, 866. See alsoWSCA

signature self-tuning (WSCA-SST)

WSCA-SST implementation procedure,

865–866
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Y pixel vectors, 887, 890, 891

abundance fractions of, 891

Zero-holder interpolator, 858

Zero-mean data sample matrix, 180

Zero-mean de-correlated random process, 364

Zero-mean Gaussian distribution, 73

Zero-mean Gaussian noise, 111, 365

Zero-mean noise, 366

Zero-mean white noise, 364,

365, 368

Zero-padding, 816
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