

Engineering and Scientific
Computations Using MATLAB@

Sergey E. Lyshevski
Rochester Institute of Technology

@KE:icIENCE
A JOHN WILEY & SONS, INC., PUBLICATION

This Page Intentionally Left Blank

Engineering and Scientific
Computations Using MATLAB@

This Page Intentionally Left Blank

Engineering and Scientific
Computations Using MATLAB@

Sergey E. Lyshevski
Rochester Institute of Technology

@KE:icIENCE
A JOHN WILEY & SONS, INC., PUBLICATION

Copyright 0 2003 by John Wiley & Sons, Inc. All rights reserved

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fee to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 11 1 River Street, Hoboken, NJ 07030, (201) 748-601 I , fax (201) 748-
6008, e-mail: permreq@wiley.com.

Limit ofLiability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable foi- your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss ofprofit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 3 17-572-3993 or fax 3 17-572-4002.

Wiley also publishes its hooks in a variety of electronic formats. Some content that appears in print, however,
may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is availablr.

lSBN 0-47 1-46200-4

Printed in the United States of America

10 9 8 7 6 5 4 3 2

CONTENTS

Preface vii

About the Author X

1.

2.

3.

4.

5.

MATLAB Basics
1.1. Introduction
1.2. MATLAB Start
1.3. MATLAB Help and Demo
References

MATLAB Functions, Operators, and Commands
2.1. Mathematical Functions
2.2. MATLAB Characters and Operators
2.3. MATLAB Commands
References

MATLAB and Problem Solving
3.1. Starting MATLAB
3.2. Basic Arithmetic
3.3. How to Use Some Basic MATLAB Features

3.3.1.
3.3.2.
Matrices and Basic Operations with Matrices

Scalars and Basic Operations with Scalars
Arrays, Vectors, and Basic Operations

3.4.
3.5. Conditions and Loops
3.6. Illustrative Examples
References

MATLAB Graphics
4.1. Plotting
4.2. Two- and Three-Dimensional Graphics
4.3. Illustrative Examples
References

MATLAB Applications: Numerical Simulations of Differential
Equations and Introduction to Dynamic Systems
5.1.

5.2.

Solution of Differential Equations and Dynamic
Systems Fundamentals
Mathematical Model Developments and MATLAB
Amlications

1
1
5
9

26

27
27
31
32
41

42
42
42
49
50
51
53
13
80
98

99
99

113
125
132

133

133

141

V

vi Contents

5.3.
References

Modeling and Computing Using MATLAB

6. SIMULINK
6.1. Introduction to SIMULINK
6.2.

References

Engineering and Scientific Computations Using SIMULINK
with Examples

APPENDIX. MATLAB Functions, Operators, Characters,
Commands, and Solvers
References

152
171

172
172

185
206

207
225

Index 226

PREFACE

I would like to welcome the reader to this MATLAB@ book, which is the companion to the
high-performance MATLAB environment and outstanding Mathworks users manuals. I sincerely feel
that I have written a very practical problem-solving type of book that provides a synergetic, informa-
tive, and entertaining learning experience. Having used MATLAB for almost 20 years, I have been
challenged to write a coherent book that assist readers in discovering MATLAB from its power and ef-
ficiency to its advantages and superiority. Many books and outstanding MATLAB reference manuals
are available. The Mathworks user manuals provide an excellent collection of the MATLAB features
for professional users [11, while textbooks [2 - 91 have been used to introduce the MATLAB environ-
ment for students. Having used the referenced manuals and books with different levels of user and
student satisfaction, accomplishment, and success, the critical need to write a focused (companion)
book became evident. This is the reason that 1 have embarked upon project.

This book, in addition to being an excellent companion and self-study textbook, can be used
in science and engineering courses in MATLAB as well as a complementary book. In addition to cov-
ering MATLAB, the author has strived to build and develop engineering and scientific competence,
presenting the material visually, numerically, and analytically. Visualization, numerical and analytical
delivery features, fully supported by the MATLAB environment, are documented and emphasized in
this book. Real-world examples and problems introduce, motivate, and illustrate the application of
MATLAB.

MATLAB books and user manuals have been written, published, and distributed. Unfortunate-
ly, the MATLAB environment is usually introduced in the introductory freshman (or sophomore)
course with very limited time allocated to cover MATLAB during the allocated modules. This does not
allow the instructors to comprehensively cover MATLAB, and inclusive books which cover the materi-
al in details and depth cannot be effectively used. Furthermore, there are many engineers and scien-
tists who did not have the chance to study MATLAB at colleges, but would like to master it in the
every-day practice MATLAB environment. Therefore, this book covers introductory example-oriented
problems. This book is written with the ultimate goal of offering a far-reaching, high-quality, stand-
alone and companion-type user-friendly educational textbook which can be efficiently used in intro-
ductory MATLAB courses in undergraduate/graduate courses or course modules, and as a self-study or
supplementary book.

There are increasing demands for further development in high-performance computing envi-
ronments, and hundreds of high-level languages exist including C, FORTRAN, PASCAL, etc. This
book covers the MATLAB environment, which is uniquely suited to perform heterogeneous simula-
tions, data-intensive analysis, optimization, modeling, code generation, visualization, etc. These fea-
tures are extremely important in engineering, science, and technology. To avoid possible obstacles,
the material is presented in sufficient detail. MATLAB basics are covered to help the reader to fully un-
derstand, appreciate, apply, and develop the skills and confidence to work in the MATLAB environ-
ment. A wide range of worked-out examples and qualitative illustrations, which are treated in depth,
bridge the gap between theoretical knowledge and practice. Step-by-step, Engineering and Scientijk
Computations Using MATLAB guides the reader through the most important aspects and basics in

vii

...
V l l l Preface

MATLAB programming and problem-solving: form fundamentals to applications. In this book, many
practical real-world problems and examples are solved in MATLAB, which promotes enormous gains
in productivity and creativity.

Analysis (analytical and numerical) and simulation are critical and urgently important as-
pects in design, optimization, development and prototyping of different systems, e.g., from living or-
ganisms and systems to man-made devices and systems. This book illustrates that MATLAB can be ef-
ficiently used to speed up analysis and design, facilitate enormous gains in productivity and
creativity, generate real-time C code, and visualize the results. MATLAB is a computational environ-
ment that integrates a great number of toolboxes (e.g., SIMULINK~, Real-Time Workshop, Optimiza-
tion, Signal Processing, Symbolic Math, etc.). A flexible high-performance simulation, analysis, and
design environment, MATLAB has become a standard cost-effective tool within the engineering, sci-
ence, and technology communities. The book demonstrates the MATLAB capabilities and helps one to
master this user-friendly environment in order to attack and solve distinct problems of different com-
plexity. The application of MATLAB increases designer productivity and shows how to use the ad-
vanced software. The MATLAB environment offers a rich set of capabilities to efficiently solve a vari-
ety of complex analysis, simulation, and optimization problems that require high-level language,
robust numeric computations, interactive graphical user interface (GUI), interoperability, data visual-
ization capabilities, etc. The MATLAB files, scripts, statements, and SIMULINK models that are docu-
mented in the book can be easily modified to study application-specific problems encountered in
practice. A wide spectrum of practical real-world problems are simulated and analyzed in this book.
A variety of complex systems described by nonlinear differential equations are thoroughly studied,
and SIMULINK diagrams to simulate dynamic systems and numerical results are reported. Users can
easily apply these results as well as develop new MATLAB files and SIMULINK block diagrams using
the enterprise-wide practical examples. The developed scripts and models are easily assessed, and
can be straightforwardly modified.

The major objectives of this readable and user-friendly book are to establish in students, en-
gineers, and scientists confidence in their ability to apply advanced concepts, enhance learning, im-
prove problem-solving abilities, as well as to provide a gradual progression from versatile theoretical
to practical topics in order to effectively apply MATLAB accomplishing the desired objectives and
milestones. This book is written for engineers, scientists and students interested in the application of
the MATLAB environment to solve real-world problems. Students and engineers are not primarily in-
terested in theoretical encyclopedic studies, and engineering and scientific results need to be covered
and demonstrated. This book presents well-defined MATLAB basics with step-by-step instructions on
how to apply the results by thoroughly studying and solving a great number of practical real-world
problems and examples. These worked-out examples prepare one to effectively use the MATLAB envi-
ronment in practice.

Wiley FTP Web Site
For more information on this book and for the MATLAB files and SIMULINK diagrams please

visit the following site ftp://ftp.wiley.com/public/sci-tech-med/matlab/.

Acknowledgments
Many people contributed to this book. First thanks go to my beloved family - my father Ed-

ward, mother Adel, wife Marina, daughter Lydia, and son Alexander. I would like to express my sin-
cere acknowledgments to many colleagues and students. It gives me great pleasure to acknowledge
the help I received from many people in the preparation of this book. The outstanding John Wiley &
Sons team assisted me by providing valuable and deeply treasured feedback. Many thanks to Math-
Works, Inc. for supplying the MATLAB environment and encouraging this project.

Preface ix

Mathworks, Inc., 24 Prime Park Way, Natick, MA 01760- 15000 http://www.mathworks.
com.

Sergey Edward Lyshevski
Department of Electrical Engineering
Rochester Institute of Technology
Rochester, New York 14623
E-mail: seleeearit. edu
Web www. rit. edu/-seleee

REFERENCES

1.
2.
3.

4.

5.

6.

7.
8.

9.

MATLAB 6.5 Release 13, CD-ROM, MathWorks Inc., 2002.
Biran, A. and Breiner, M., MATLAB For Engineers, Addison-Wesley, Reading, MA, 1995.
Dabney, J. B. and Harman, T. L., Mastering SIMULINK 2, Prentice Hall, Upper Saddle River, NJ,
1998.
Etter, D. M., Engineering Problem Solving with MATLAB, Prentice Hall, Upper Saddle River, NJ,
1993.
Hanselman, D. and Littlefield, B., The Student Edition of MATLAB, Prentice Hall, Upper Saddle
River, NJ, 1997.
Hanselman, D. and Littlefield, B., Mastering MATLAB 5, Prentice Hall, Upper Saddle River, NJ,
1998.
Palm, W. J., Introduction to M A T L A B f O r Engineers, McGraw-Hill, Boston, MA, 200 1.
Recktenwald, G., Numerical Methods with MATLAB: Implementations and Applications, Prentice
Hall, Upper Saddle River, NJ, 2000.
User's Guide. The Student Edition of MATLAB: The Ultimate Computing Environment for Techni-
cal Education, Mathworks, Prentice Hall, NJ, 1995.

ABOUT THE AUTHOR

Sergey Edward Lyshevski was born in Kiev, Ukraine. He received M.S. (1980) and Ph.D. (1987) de-
grees from Kiev Polytechnic Institute, both in Electrical Engineering. From 1980 to 1993 Dr. Ly-
shevski held faculty positions at the Department of Electrical Engineering at Kiev Polytechnic Insti-
tute and the Academy of Sciences of Ukraine. From 1989 to 1993 he was the Microelectronic and
Electromechanical Systems Division Head at the Academy of Sciences of Ukraine. From 1993 to
2002 he was with Purdue School of Engineering as an Associate Professor of Electrical and Comput-
er Engineering. In 2002, Dr. Lyshevski joined Rochester Institute of Technology as a professor of
Electrical Engineering, professor of Microsystems Engineering, and Gleason Chair.

Dr. Lyshevski serves as the Senior Faculty Fellow at the US Surface and Undersea Naval
Warfare Centers. He is the author of 8 books (including Nano- and Micro-Electromechanical Sys-
tems: Fundamentals of Micro- and Nanoengineering, CRC Press, 2000; MEMS and NEMS: Systems,
Devices, and Structures, CRC Press, 2002), and author and co-author of more than 250 journal arti-
cles, handbook chapters, and regular conference papers. His current teaching and research activities
are in the areas of MEMS and NEMS (CAD, design, high-fidelity modeling, data-intensive analysis,
heterogeneous simulation, fabrication), micro- and nanoengineering, intelligent large-scale mi-
crosystems, learning configurations, novel architectures, self-organization, micro- and nanoscale de-
vices (actuators, sensors, logics, switches, memories, etc.), nanocomputers and their components, re-
configureable (adaptive) defect-tolerant computer architectures, systems informatics, etc. Dr.
Lyshevski has made significant contribution in design, application, verification, and implementation
of advanced aerospace, automotive, electromechanical, and naval systems.

Dr. Lyshevski made 29 invited presentations (nationally and internationally). He serves as
the CRC Books Series Editor in Nano- and Microscience, Engineering, Technology, and Medicine.
Dr. Lyshevski has taught undergraduate and graduate courses in NEMS, MEMS, microsystems,
computer architecture, microelectromechanical motion devices, integrated circuits, signals and sys-
tems, etc.

X

Chapter I: MATLAB Basics

Chapter 1

MATLAB Basics

1.1. Introduction

1

I (and probably many engineers and researchers) remember the difficulties that we had solving
even simple engineering and scientific problems in the 1970s and 1980s. These problems have been
solved through viable mathematical methods and algorithms to simplify and reduce the complexity of
problems enhancing the robustness and stability. However, many problems can be approached and sdved
only through high-fidelity modeling, heterogeneous simulation, parallel computing, and data-intensive
analysis. Even in those days, many used to apply Basic, C , FORTRAN, PL, and Pascal in numerical
analysis and simulations. Though I cannot regret the great experience I had exploring many high-
performance languages, revolutionary improvements were made in the middle 1980s with the
development of the meaningful high-performance application-specific software environments (e.g.,
MATEMATICA, MATLAB@: MATRIX^, etc.). These developments, which date back at least to the mid
1960s when FORTRAN and other languages were used to develop the application-specific toolboxes, were
partially unsuccessful due to limited software capabilities, flexibility, and straightforwardness. MATLAB,
introduced in the middle 198Os, is one of the most important and profound advances in computational and
applied engineering and science.

MATLAB (MATrix LABoratory) is a high-performance interacting data-intensive software
environment for high-efficiency engineering and scientific numerical calculations [11. Applications
include: heterogeneous simulations and data-intensive analysis of very complex systems and signals,
comprehensive matrix and arrays manipulations in numerical analysis, finding roots of polynomials, two-
and three-dimensional plotting and graphics for different coordinate systems, integration and
differentiation, signal processing, control, identification, symbolic calculus, optimization, etc. The goal of
MATLAB is to enable the users to solve a wide spectrum of analytical and numerical problems using
matrix-based methods, attain excellent interfacing and interactive capabilities, compile with high-level
programming languages, ensure robustness in data-intensive analysis and heterogeneous simulations,
provide easy access to and straightforward implementation of state-of-the-art numerical algorithms,
guarantee powerful graphical features, etc. Due to high flexibility and versatility, the MATLAB
environment has been significantly enhanced and developed during recent years. This provides users with
advanced cutting-edge algorithms, enormous data-handling abilities, and powerful programming tools.
MATLAB is based on a high-level matridarray language with control flow statements, functions, data
structures, input/output, and object-oriented programming features.

MATLAB was originally developed to provide easy access to matrix software developed by the
LINPACK and EISPACK matrix computation software. MATLAB has evolved over the last 20 years and
become the standard instructional tool for introductory and advanced courses in science, engineering, and
technology. The MATLAB environment allows one to integrate user-friendly tools with superior
computational capabilities. As a result, MATLAB is one of the most useful tools for scientific and engineering
calculations and computing. Users practice and appreciate the MATLAB environment interactively, enjoy
the flexibility and completeness, analyze and verify the results by applying the range of build-in
commands and functions, expand MATLAB by developing their own application-specific files, etc. Users
quickly access data files, programs, and graphics using MATLAB help. A family of application-specific
toolboxes, with a specialized collection of m-files for solving problems commonly encountered in practice,
ensures comprehensiveness and effectiveness. SIMULINK is a companion graphical mouse-driven
interactive environment enhancing MATLAB. SIMULINK@ is used for simulating linear and nonlinear
continuous- and discrete-time dynamic systems. The MATLAB features are illustrated in Figure 1.1.

Chapter I : MATLAB Basics 2

Figure I . I . The MATLAB features

A great number of books and MathWorks user manuals in MATLAB, SIMULINK and different
MATLAB toolboxes are available. In addition to demonstrations (demos) and viable help available, the
MathWorks Inc. educational web site can be used as references (e.g., htt~:/’education.mathworks.com and
http://www.mathworks.com) . This book is intended to help students and engineers to use MATLAB
efficiently and professionally, showing and demonstrating how MATLAB and SIMULINK can be applied. The
MATLAB environment (MATLAB 6.5, release 13) is covered in this book, and the website
httu:,’/\~~~~.matliworks.com/access/helpdesk/help/belpdesk.shtml can assist users to master the MATLAB
features. It should be emphasized that all MATLAB documentation and user manuals are available in the
Portable Document Format (PDF) using the Help Desk. For example, the MATLAB h e l p folder includes
all user manuals (C:\MATLAB6pS\help\pdf-doc). The subfolders are illustrated in Figure 1.2.

Figure 1.2. Subfolders in the MATLAB h e l p folder

Chapter I : MATLAB Basics

The mat 1 ab subfolders have 18 MATLAB user manuals as reported in Figure 1.3.

3

Figure 1.3. MATLAB user manuals in the mat 1 a b subfolder

These user manuals can be accessed and printed using the Adobe Acrobat Reader.
Correspondingly, this book does not attempt to rewrite these available thousand-page MATLAB user
manuals. For example, the outstanding MATLAB The Language of Technical Computing manual, available
as the ml.pdf file, consists of 1 188 pages. The front page of the MATLAB The Language of Technical
Computing user manual is shown in Figure 1.4.

MATLAEJ
The Language of Technical Cornputin;

Compubtm
1

Using M . A W NathWrks

Figure 1.4. Front page of the MATLAB The Language of Technical Computing user manual
I’ersion 6

Chapter I: MATLAB Basics 4

This book focuses on MATLAB applications and educates the reader on how to solve practical
problems using step-by-step instructions.

The MATLAB environment consists of the following five major ingredients: (1) MATLAB
Language, (2) MATLAB Working Environment, (3) Handle Graphics@, (4) MATLAB Mathematical
Function Library, and (5) MATLAB Application Program Interface.

The MATLAB Language is a high-level matridarray language with control flow statements,
functions, data structures, input/output, and object-oriented programming features. It allows the user to
program in the small (creating throw-away programs) and program in the large (creating complete large
and complex application-specific programs).

The MATLAB Working Environment is a set of tools and facilities. It includes facilities for
managing the variables in workspace, manipulation of variables and data, importing and exporting data,
etc. Tools for developing, managing, debugging, and profiling m-files for different applications are
available.

Handle Graphics is the MATLAB graphics system. It includes high-level commands for two- and
three-dimensional data visualization, image processing, animation, and presentation. It also includes low-
level commands that allow the user to fully customize the appearance of graphics and build complete
graphical user interfaces (GUIs).

The MATLAB Mathematical Function Library is a collection of computationally efficient and
robust algorithms and functions ranging from elementary functions (sine, cosine, tangent, cotangent, etc.)
to specialized functions (eigenvalues, Bessel functions, Fourier and Laplace transforms, etc.) commonly
used in scientific and engineering practice.

The MATLAB Application Program Interface (API) is a library that allows the user to write C and
FORTRAN programs that interact within the MATLAB environment. It includes facilities for calling
routines from MATLAB (dynamic linking), calling MATLAB for computing and processing, reading and
writing m-files, etc. Real-Time Workshop@ allows the user to generate C code from block diagrams and
to run it for real-time systems.

MATLAB 6.5 is supported by the following platforms: Microsoft Windows, Windows Millennium,
Windows NT, Compaq Alpha, Linux, SGI, and Sun Solaris.

In this introduction, before giving in the MATLAB description, the application of MATLAB should
be justified through familiar examples. This will provide the reasoning for MATLAB applications. This
book is intended as an introductory MATLAB textbook though advanced application-specific problems are
solved to illustrate the applicability and versatility of the MATLAB environment. Therefore familiar
examples will be covered. In multivariable calculus, students study parametric and polar equations,
vectors, coordinate systems (Cartesian, cylindrical, and spherical), vector-valued functions, derivatives,
partial derivatives, directional derivatives, gradient, optimization problems, multiple integration,
integration in vector fields, and other topics. In contrast, linear algebra emphasizes matrix techniques for
solving systems of linear and nonlinear equations covering matrices and operations with matrices,
determinants, vector spaces, independent and dependent sets of vectors, bases for vector spaces, linear
transformations, eigenvalues and eigenvectors, orthogonal sets, least squares approximation,
interpolation, etc. The MATLAB environment is uniquely suitable to solving a variety of problems in
engineering and science. Using the calculus and physics background, a variety of real-world engineering
problems can be attacked and resolved. This book illustrates the application of MATLAB in order to solve
of this class of problems.

MATLAB integrates computation, visualization, and programming in an easy-to-use systematic,
robust and computationally efficient environment where problems and solutions are expressed in familiar
(commonly used) mathematical notation. The user can perform mathematic computation, algorithm
development, simulation, prototyping, data analysis, visualization, interactive graphics, and application-
specific developments including graphical user interface features. In MATLAB, the data is manipulated in
the array form, allowing the user to solve complex problems. It was emphasized that the MATLAB
environment was originally developed using data-intensive matrix computation methods.

Chapter I: MATLAB Basics 5

MATLAB is a high-performance environment for engineering, scientific and technical computing,
visualization, and programming. It will be illustrated that in MATLAB, the user straightforwardly performs
numerical computations, analytical and numerical analysis, algorithm developments, heterogeneous
simulations, data-intensive analysis, visualization, graphics, etc. Compared with other computational
environments, in MATLAB, the data analysis, manipulation, processing, and computing do not require arrays
dimensioning, allowing one to very efficiently perform matrix computations. The MATLAB environment
features a family of application-specific toolboxes which integrate specialized m-files that extend MATLAB in
order to approach and solve particular application-specific problems. It was mentioned that the MATLAB
system environment consists of five main parts: the MATLAB language (high-level matrix-array language
with control flow statements, functions, data structures, inputloutput, and object-oriented programming
features), the MATLAB Working Environment (set of tools to manage the variables in the workspace,
import and export the data, as well as tools for developing, managing, debugging, and profiling m-files),
the Handle Graphics (high-performance graphic system that includes high-level commands for two- and
three-dimensional data visualization, image processing, animation, graphics presentation, and low-level
commands allowing the user to customize the appearance of graphics and build graphical user interfaces),
the MATLAB Mathematical Function Library (collection of computational algorithms ranging from
elementary to complex and specialized functions as well as transforms), and the MATLAB application
program interface (library that allows one to write C and FORTRAN programs that interact with MATLAB).

1.2. MATLAB Start

MATLAB is a high-performance language for technical computing. It integrates computation,
visualization and programming within an easy-to-use environment where problems and solutions are
represented in familiar notation. Mathematics, computation, algorithm development, simulation, data
analysis, visualization, graphics and graphical user interface building can be performed. One of the most
important features, compared with Basic, C, FORTRAN, PL, Pascal, and other high-performance
languages, is that MATLAB does not require dimensioning. MATLAB features application-specific
toolboxes which utilize specific and well-defined methods. To start MATLAB, double-click the MATLAB
icon (illustrated below),

MATLAB 6.5.lnk
and the MATLAB Command and Workspace windows appear on the screen - see Figure 1.5.

Chapter I : MATLAB Basics 6

Figure 1.5. MATLAB 6.5 Command and Workspace windows

For all MATLAB versions, the line

in the Command Window.
After each MATLAB command, the Enter (Return) key must be pressed. One interacts with

MATLAB using the Command Window. The MATLAB prompt >> is displayed in the Command Window,
and a blinking cursor appears to the right of the prompt when the Command Window is active. Typing ver,
we have the information regarding the MATLAB version and the MATLAB toolboxes that are available (see
Figure 1.6 for MATLAB versions 6.5,6.1, and 6.0).

Chapter I: MTUB Basics 7

Figure 1.6. MATLAB 6.5,6.1, and 6.0 Command Window (MATLAB toolboxes are listed)

MATLAB Command Window. The MATLAB Command Window is where the user interacts with
MATLAB. We illustrate the MATLAB application through a simple example. To find the sum l t 2 type

Chapter 1: MATLAB Basics 8

This represents a three-by-three matrix of ones, e.g., a =

The Command and Workspace windows are documented in Figure 1.7.

Figure 1.7. Command and Workspace windows for a=ones (3)

As soon the prompt line appears, the user is in the MATLAB environment. Online help is available.
Thus, MATLAB has Command, Workspace, File (edit) and Figure windows. To illustrate these

features, Figures I .8 and 1.9 show the above-mentioned windows with the data displayed.

Figure 1.8. Command and Workspace windows

Chapter I: MATLAB Basics 9

Figure 1.9. File (edit) and Figure windows

1.3. MATLAB Help and Demo

MathWorks offers an extensive set of online and printed documentation. The online MATLAB
Function Reference is a compendium of all MATLAB commands, functions, solvers, operators, and
characters. You may access this documentation from the MATLAB Help Desk. Microsoft Windows and
Macintosh users can also access the Help Desk with the Help menu or the ? icon on the Command
Window toolbar. From the Help Desk main menu, one chooses “MATLAB Functions” to display the
Function Reference. The online resources are augmented with printed documentation that includes
Getting Started with WTLAB (covers basic fundamentals) g e t s tart. pdf, Using MATLAB (describes
how to use MATLAB as both a programming language and a command-line application)
u s i n g ml . p d f , Using MTLAB Graphics (how to use graphics and visualization tools), Building GUIs
with MATLAB (covers the construction of graphical user interfaces and introduces the Guide GUI building
tool), W T ’ B Application Programmer’s Interface Guide (describes how to write C or FORTRAN
programs that interact with MATLAB), MATLAB New Features Guide (covers recent and previous MATLAB
releases), MA TLAB Release Notes (explicitly describes features of specific releases), and others as
illustrated in Figure 1.3.

MATLAB includes the Command Window, Command History, Launch Pad, Workspace Browser,
Array Editor, and other tools to assist the user. The Launch Pad tool displays a list of all the products
installed. From the Launch Pad, we view demos, access help, find examples, and obtain interactive tools.
For example, the user can get the MATLAB Demos screen to see the MATLAB features. MATLAB 6.5 (as
well as earlier MATLAB versions) contains documentation for all the products that are installed.

We can type

and pressing the Enter key, we have the MATLAB widow shown in Figure 1.10.

Chapter I: MATLAB Basics 10

Figure 1.10. MATLAB helpwin window

The complete list of the HELP topics is available by typing help. In particular, we have

Chapter 1: MATLAB Basics 1 1

Chapter I: MATLAB Basics 12

Chapter 1: MATLAB Basics 13

By clicking MATLAB\general, we have the Help Window illustrated in Figure 1 . 1 1 and a
complete description is given as well.

Figure I . 1 1 . Help Window

Chapter I: MATLAB Basics 14

Chapter 1: MATLAB Basics 15

the MATLAB Help Window is displayed for all MATLAB versions. For example, for MATLAB 6.1, see
Figure 1.12.

Chapter 1: MATLAB Basics 16

Figure 1.12. MATLAB 6.1 helpde s k window

The complete MATLAB documentation is available for users. In general, the use of the help and
demo commands is the simplest way to find the needed information. Typing

and pressing the Enter key guides us into the MATLAB Demos Window as illustrated in Figure 1.13 for
MATLAB 6.5 and 6.1.

Chapter 1: MATLAB Basics

Figure 1.13. MATLAB 6.5 and 6.1 Demos Windows

17

Chapter I: MATLAB Basics 18

A list of topics which have demonstrations appears in the left-hand window, while the
information on these topics appears in the upper right-hand window. In order to expand a topic in the left
window, double-click on it and subtopics will appear below. When the user clicks on one of these, a list
of possible demonstrations to run in the lower right-hand window appears. The button below this window
changes to run demonstration. Choosing the subtopics (Matrices, Numerics, Visualization,
Language/Graphics, Gallery, Games, Miscellaneous and To learn more), different topics will be explained
and thoroughly covered. For example, clicking the subtopic Matrices, we have the Matrices MATLAB
Demos (demonstrations) Window, as documented in Figure 1.14.

Figure 1.14. Matrices MATLAB 6.1 Demos Window

By double clicking Basic matrix operations, Inverse of matrices, Graphs and matrices, Sparse
matrices, Matrix multiplication, Eigenvalues and singular value show, and Command line demos,
illustrative example are available to demonstrate, examine, and explore different problems.

Newest MATLAB releases provide the user with the full capabilities of the MATLAB environment.
As illustrated, MATLAB 6.5 integrates Communication, Control System, Curve Fitting, Data Acquisition,
Database, Filter Design, Financial, Fuzzy Logic, Image Processing, Instrument Control, LMI, Mapping,
Model Predictive Control, Mu- Analysis and Synthesis, Neural Network, Optimization, Partial Differential
Equations, Robust Control, Signal Processing, Spline, Statistics, Symbolic Math, System Identification,
Virtual Reality, and Wavelet Toolboxes, as well as SIMULINK and Blocksets environments and libraries.
The demonstration capabilities of MATLAB 6.5 were significantly enhanced, and Figures 1.15 and 1.16
illustrate the application of the MATLAB environment and SIMULINK to perform simulations for the F-14
and three-degrees-of-freedom guided missile models.

Chapter 1: MATLAB Basics

Figure 1.15. MAT LA^ 6.5 Demos Window running F-14 flight control simulation

19

Chapter I: MATLAB Basics 20

Figure 1.16. MATLAB 6.5 Demos Window running three-degrees-of-freedom guided missile
simulation with animation in SIMULINK

The M-file EditodDebugger enables one to view, develop, edit, and debug MATLAB programs.
Using the menu, the user can select a code segment for evaluation in the Command Window. Many
MATLAB routines are developed and supplied as readable m-files, allowing one to examine the source
code, learn from it, and modify it for specific applications and problems. New functions can be written
and added, and links to external software and data sources can be created.

Access to History is performed through the Command History tool in order to maintain a running
record of all commands that the user has executed in the MATLAB Command Window. The user can refer
back to these commands and execute code directly from the Command History menu.

Access to Files is performed through the Current Directory window and allows one to select a
directory to work in. The user can browse, run, and modify files in the directory.

Access to Data is performed through the Workspace Browser, allowing one to view the variables
in the MATLAB workspace as well as access the Array Editor to view and edit data.

The commonly used toolboxes are Statistics, Symbolic Math, Partial Differential Equations, etc. An
incomplete list of toolboxes, including the application-specific toolboxes, is as follows (see
htte://w~~~~.matl~worlis.coin~ac~css~ielpdesk~help Itelpdesk.shtm1 for details):

Chapter I : MATLAB Basics 21

1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.

Communication Toolbox
Control System Toolbox
Data Acquisition Toolbox
Database Toolbox
Datafeed Toolbox
Filter Design Toolbox
Financial Toolbox
Financial Derivatives Toolbox
Fuzzy Logic Toolbox
GARCH Toolbox
Image Processing Toolbox
Instrument Control Toolbox
Mapping Toolbox

14.
15.
16.
17.
18.
19.
20.
21.
22.
23.
24.
25.

Model Predictive Control Toolbox
Mu-Analysis and Synthesis Toolbox
Neural Network Toolbox
Optimization Toolbox
Partial Differential Equations Toolbox
Robust Control Toolbox
Signal Processing Toolbox
Spline Toolbox
Statistics Toolbox
Symbolic Math Toolbox
System Identification Toolbox
Wavelet Toolbox

However, the user must purchase and install the toolboxes needed, and different MATLAB versions
and configurations might have different toolboxes available, see Figure 1.17. The user can practice examples
to quickly learn how to efficiently use MATLAB to solve a wide variety of scientific and engineering
problems. Toolboxes are comprehensive collections of MATLAB functions, commands and solvers that
expand the MATLAB environment to solve particular classes of problems.

Figure 1.17. MATLAB 6.5. and 6.1 Demos Window with Toolboxes

All MATLAB toolboxes have demonstration features. Figure 1.18 illustrates the MATLAB Demos
Window for the Optimization Toolbox.

Chapter I: MATLAB Basics 22

Figure 1.18. MATLAB Demos Window with Optimization Toolbox demo

The use of the toolboxes allows the user to quickly and efficiently learn the MATLAB capabilities
for general and application-specific problems. Click on the Communication, Control Systems, Curve
Fitting or other toolboxes for meaningful demonstrations (see Figure 1.18). Hence, the MATLAB
environment provides access to different toolboxes and supplies help and demonstrations needed to
eficiently use the MATLAB environment.

It is evident to the reader by now that MATLAB has demonstration programs. One should use

Close MATLAB using the Exit MATLAB (Ctrl+Q) command in the MATLAB Command Window (File
menu).

MATLAB Menu Bar and Toolbar. Figure 1.19 illustrates the MATLAB menu bar and toolbar in
the Command and Workspace windows.

Chapter I: MATLAB Basics 23

Figure 1.19. MATLAB menu bar and toolbar

The menu bar has File, Edit, View, Window, and Help options. The File Window allows the user
to open and close files, create new files (m-files, figures, and model), load and save workspace, print,
view recently used files, exit MATLAB, etc. Window allows the user to switch between demo windows.
The Help Window offers a set of help features, such as Help Desk, Examples and Demos, About
MATLAB, etc. The buttons and the corresponding functions are given in Table 1 . l .

MATLAB Help System. The user has easy access to the Mathworks “help desk”
httr,://www.mathworks.com/access/helpdesk, which opens the MATLAB web page. It appears that the
MATLAB environment features a most powerful built-in help system. If the name of a MATLAB command,
function or solver is known, type

and press the Enter key.

receive the needed information using the following help topics:
As shown, the search can be effectively performed using the helpwin command. We can

help datafun (data analysis);
0 help demo (demonstration);

help f unf un (differential equations solvers);

Chapter I: MATLAB Basics 24

help general (general-purpose command);
help graphad and help graph3d (two- and three-dimensional graphics);
help elmat and help mat fun (matrices and linear algebra);
help el fun and help specfun (mathematical functions);
help lang (programming language);
help ops (operators and special characters);
help polyfun (polynomials).

Saving. You can save the files and information needed. Making use of the help command, we
have

which will save only variables x and y in the file [filename] .mat. The saved variables can be
reloaded by typing load [filename].

Chapter I: hrl.1 T U B Basics 25

MATLAB variables can be numerical (real and complex) and string values. Strings (matrices with
character elements) are used for labeling, referring to the names of the user-defined functions, etc. An
example of a string is given below:

and the string variables are documented in the Workspace Window as illustrated in Figure 1.20.

Figure 1.20. Workspace Window with string variables used

The various toolboxes provide valuable capabilities. For example, the application of the Image
Processing Toolbox will be briefly covered [2]. The user can perform different image processing tasks
(e.g., image transformations, filtering, transforms, image analysis and enhancement, etc.). Different image
formats (bmp, hdf, jpeg, pcx, png, tiff, and xwd) are supported. For example, let us restore the image
UUV. jpg. To solve this problem, using the imread and imadd functions (to read and to add the
contrast to the image), we type in the Command Window

and the resulting images are documented in Figure 1.2 1

Figure 1.21. Original and updated images of the underwater vehicle with the animation results

Chapter I : MATLAB Basics 26

The size of the images can be displayed. In particular,

and the original image is shown in Figure 1.22.

Figure 1.22. Original and updated parrot images

The size of the images is found using the whos command that lists the current variables, e.g.,

REFERENCES

1.
2.

hrt47ZAB 6.5 Release 13, CD-ROM, Mathworks, Inc., Naick, MA, 2002.
Image Processing Toolbox for Use with MTLAB, User’s Guide Version 3, Mathworks, Inc., Natick,
MA, 200 1.

Chapter 2: MA TLAB Functions, operators, and Commands 27

Chapter 2

MATLAB Functions, Operators, and Commands

2.1. Mathematical Functions
Many mathematical functions, operators, special characters, and commands are available in the

MATLAB standard libraries that enable us to perform mathematical calculations, string and character
manipulations, input/output, and other needed functional operations and capabilities [1 - 41.

Let us start with simple examples. For example, one would like to find the values of the function
y = sin(x) if x = 0 and x = 1. To find the values, the built-in s i n function can be straightforwardly used.
In particular, to solve the problem, we type the following statements in the Command Window, and the
corresponding results are documented:
>> y=sin(O)

Y =
0

>> y=sin(l)

Y =
0.8415

>> xO=O; xl=l; yO=sin (x0) , yl=sin (xl)

yo =
0

yl =
0 .8415

To plot the function y = sin(t+l) if t varies from 1 to 30 with increment 0.01, we should use the
built-in s i n function, + operator, and p l o t function. In particular we have
>> t=1:0.01:30; y=sin(t+l); plot(t,y)
and the resulting plot is illustrated in Figure 2.1.

Figure 2.1. Plot of the function y = sin(t+l) if t varies from 1 to 30

Chapter 2: MATLAB Functions, Operators, and Cornman& 28

These simple examples illustrate the need to use the MATLAB functions and operators. Elementary math
functions supported in the MATLAB environment are listed below.

Trigonometric Functions:
sin - sine
sinh - hyperbolic sine
asin - inverse sine
asinh - inverse hyperbolic sine
cos - cosine
cosh - hyperbolic cosine
acos - inverse cosine
acosh - inverse hyperbolic cosine
tan - tangent
tanh - hyperbolic tangent
atan - inverse tangent
atan2
atanh - inverse hyperbolic tangent
sec - secant
sech - hyperbolic secant
asec - inverse secant
asech - inverse hyperbolic secant
csc - cosecant
csch - hyperbolic cosecant
acsc - inverse cosecant
acsch - inverse hyperbolic cosecant
cot - cotangent
coth - hyperbolic cotangent
acot - inverse cotangent.
acoth - inverse hyperbolic cotangent.
Exponential Functions:
exP - exponential
log - natural logarithm
log10 - common logarithm
sqrt - square root
Complex Functions:
abs - absolute value
angle - phaseangle
con j - complex conjugate
imag - complex imaginary part
real - complex real part

- four quadrant inverse tangent

Various mathematical library functions allow one to perform needed mathematical
calculations. The elementary mathematical functions supported by MATLAB are summarized in
Table 2. I .

Chapter 2: MATLAB Functions, Operators, and Commands 29

Table 2.1. Mathematics:.Elementary Mathematical Functions - acos . acosh

I a s i n , a s i n h

Absolute value and complex magnitude
Inverse cosine and inverse hyperbolic cosine
Inverse cotangent and inverse hyperbolic cotangent
Inverse cosecant and inverse hyperbolic cosecant
Phase angle
Inverse secant and inverse hyperbolic secant
Inverse sine and inverse hv~erbolic sine

a t a n , a t a n h I T Inverse tangent and inverse hyperbolic tangent
Four-auadrant inverse tangent

c e i l
corn13 1 ex
con j
cos . cosh
c o t , c o t h
csc. c s c h
exp

Round toward infinity
Construct complex data from real and imaginary components
Complex conjugate
Cosine and hyperbolic cosine
Cotangent and hyperbolic cotangent
Cosecant and hyperbolic cosecant
ExDonential function

Function arguments can be constants, variables, or expressions. Some mathematical library
functions with simple examples are documented in Table 2.2.

Chapter 2: MATLAB Functions, Operators, and Commands 30

Table 2.2. Elementary Mathematical Functions with Illustrative Examples

The user can either type the commands, functions or solvers in the MATLAB prompt (Command
Window) or create m-files integrating the commands and functions needed.

Chapter 2: MA T U B Functions, Operators, and Commands

Symbol MATLAB Statement
+ a t b t c
- a-b-c

* and .* a * b * c and a . *b . *c
/ and . / a / b a n d a . / b
\ a n d . \ b\a (equivalent to a / b) and b . \ a

A and . A a A b a n d a . ” b

3 1

Arithmetic Operation
addition
subtraction
multiplication
right division
left division
exponentiation

2.2. MATLAB Characters and Operators

The commonly used MATLAB operators and special characters used to solve many engineering
and science problems are given below.

Operators and Special Characters:
+ plus
- minus
* matrix multiplication
* array multiplication

A matrix power
array power A

k r o n Kronecker tensor product
\ backslash (left division)
/ slash (right division)
. / and . \ right and left array division

0 parentheses
[I brackets
I 1 curly braces

... continuation
I comma

, comment

colon

decimal point

semicolon

I exclamation point
1 transpose and quote

I nonconjugated transpose

_ _ assignment
_ _ _ _ equality
< > relational operators
& logical AND
I logical OR

xor logical exclusive OR
... logical NOT

The MATLAB operators, functions, and commands can be represented as tables. For example, the
scalar and array arithmetic operators and characters are reported in Table 2.3.

Table 2.3. Scalar and Array Arithmetic with Operators and Characters

Chapter 2: MA TLAB Functions, Operators, and Commands 32

Command MATLAB Help
c l e a r h e l p c l e a r

c l c h e l p c l c
h e l p Help
quit h e l p quit

2.3. MATLAB Commands

Description
Clear variables and functions from memory (removes all variables from
the workspace)
Clear Command Window
On-line help, display text at command line
Quits MATLAB session (terminates MATLAB after running the script
f i n i s h . m, if it exists. The workspace information will not be saved

In order to introduce MATLAB through examples and illustrations, let us document and implement
several commonly used commands listed in Table 2.4.

who
whos

Table 2.4. MATLAB Commands

h e l p who
h e l p whos

Lists current variables (lists the variables in the current workspace)
Lists current variables in the expanded form (lists all the variables in the

I I unless f i n i s h . m c a l l s save)

I 1 current workspace, together 4 t h information about their size, bytes,

Bellow are some examples to illustrate the scalar and array arithmetic operators as well as
commands:
>> clear all
>> a=10; b=2; c=a+b, d=a/b, e=b\a, i=aAb
c =

1 2

5

5

100

d =

e =

i =

>> a=[10 51; b=[2 41; c=a+b, d=a./b, e=b.\a, i=a."b
c =

1 2 9

5.0000 1.2500

5.0000 1.2500

d =

e =

i =

>> whos
100 625

Name Size Bytes Class
a 1 x2 16 double array
b 1 x2 16 double array
C 1x2 16 double array
d 1x2 16 double array
e 1 x2 16 double array
i 1 x2 16 double array

Grand total is 1 2 elements using 96 bytes

The MATLA13 environment contains documentation for all the products that are installed. In
particular, typing

Chapter 2: MTLAB Functions, Operators, and Commands 33

>> helpwin
and pressing the Enter key, we have the Window shown in Figure 2.2. The user has access to the general-
purpose commands, operators, special characters, elementary, specialized mathematical functions, etc.

Figure 2.2. MATLAB helpwin Window

The complete list of the help topics is available by typing help:

Chapter 2: MA TLAB Functions, Operators, and Commands 34

Chapter 2: MATLAB Functions, Operators, and Commands 35

Chapter 2: MATLAB Functions, Operators, and Commands 36

By clicking MATLAB\general, we have the Help Window illustrated in Figure 2.3, and a
complete description of the general-purpose commands can be easily accessed.

Figure 2.3. Help Window

Chapter 2: MATLAB Functions, Operators, and Commands

In particular, we have

37

Chapter 2: IMA TUB Functions, Operators, and Commands 3 8

In addition to the general-purpose commands, specialized commands and functions are used. As
illustrated in Figure 2.4, the MAT LA^ environment integrates the toolboxes. In particular, Communication
Toolbox, Control System Toolbox, Data Acquisition Toolbox, Database Toolbox, Datafeed Toolbox, Filter
Design Toolbox, Financial Toolbox, Financial Derivatives Toolbox, Fuzzy Logic Toolbox, GARCH
Toolbox, Image Processing Toolbox, Instrument Control Toolbox, Mapping Toolbox, Model Predictive
Control Toolbox, Mu-Analysis and Synthesis Toolbox, Neural Network Toolbox, Optimization Toolbox,
Partial Differential Equations Toolbox, Robust Control Toolbox, Signal Processing Toolbox, Spline Toolbox,
Statistics Toolbox, Symbolic Math Toolbox, System Identification Toolbox, Wavelet Toolbox, etc.

Chapter 2: MATLAB Functions, Operators, and Commands 39

Figure 2.4. MATLAB demo window with toolboxes available

Having accessed the general-purpose commands, the user should consult the MATLAB user
manuals or specialized books for specific toolboxes. Throughout this book, we will apply and emphasize
other commonly used commands needed in engineering and scientific computations. As was shown, the
search can be effectively performed using the helpwin command. One can obtain the information
needed using the following help topics:
a he lp da ta fun (data analysis);
a help demo (demonstration);
a

a he lp genera l (general purpose command);
a

a

he lp f unf un (differential equations solvers);

he lp graph2d and he lp graph3d two- and three-dimensional graphics);
he lp elmat and he lp matfun (matrices and linear algebra);

0 help e l f u n and he lp specfun (mathematical functions);
0 he lp lang (programming language);
a

a he lp polyfun (polynomials).
he lp ops (operators and special characters);

In this book, we will concentrate on numerical solutions of equations. The list of MATLAB specialized
functions and commands involved is given below.

Chapter 2: MATLAB Functions, Operators, and Commands 40

Function functions and ODE solvers.

Optimization and root finding.
fminbnd - Scalar bounded nonlinear function minimization.
fminsearch - Multidimensional unconstrained nonlinear minimization,

by Nelder-Mead direct search method.
f zero - Scalar nonlinear zero finding.

Optimization Option handling
optimset - Create or alter optimization OPTIONS structure.
optimget - Get optimization parameters from OPTIONS structure.

Numerical integration (quadrature).
quad - Numerically evaluate integral, low order method.
quad1 - Numerically evaluate integral, higher order method.
dblquad - Numerically evaluate double integral.
triplequad - Numerically evaluate triple integral.

Plotting.
ezplot -
ezplot3 -
ezpolar -
ezcontour -
ezcontourf -
ezmesh -
ezmeshc -
ezsurf -
ezsurfc -

fplot -

Easy to use function plotter.
Easy to use 3-D parametric curve plotter.
Easy to use polar coordinate plotter.
Easy to use contour plotter.
Easy to use filled contour plotter.
Easy to use 3-D mesh plotter.
Easy to use combination mesh/contour plotter.
Easy to use 3-D colored surface plotter.
Easy to use combination surf/contour plotter.
Plot function.

Inline function object.
inline - Construct INLINE function object.
argnames - Argument names.
formula - Function formula.
char - Convert INLINE object to character array

Differential equation solvers.
Initial value problem solvers for ODEs. (If unsure about stiffness, try ODE45
first, then ODE15S.)
ode 4 5 - Solve non-stiff differential equations, medium order method.
ode23 - Solve non-stiff differential equations, low order method.
ode113 - Solve non-stiff differential equations, variable order method.
ode23t - Solve moderately stiff ODES and DAEs Index 1, trapezoidal rule.
odel5s - Solve stiff ODES and DAEs Index 1, variable order method.
ode23s - Solve stiff differential equations, low order method.
ode23tb - Solve stiff differential equations, low order method.

Initial value problem solvers for delay differential equations (DDEs).
dde23 - Solve delay differential equations (DDEs) with constant delays.

Boundary value problem solver for ODEs.
bvp4c - Solve two-point boundary value problems for ODEs by collocation.

1D Partial differential equation solver.
PdePe - Solve initial-boundary value problems for parabolic-elliptic PDEs.

Option handling.
odeset - Create/alter ODE OPTIONS structure.
odeget - Get ODE OPTIONS parameters.
ddeset - Create/alter DDE OPTIONS structure.
ddeget - Get DDE OPTIONS parameters.
bvpset - Create/alter BVP OPTIONS structure.

Chapter 2: MATLAB Functions, Operators, and Commands 41

bvpget - Get BVP OPTIONS parameters.

Input and Output functions.
deval - Evaluates the solution of a differential equation problem.
odeplot - Time series ODE output function.
odephas2 - 2-D phase plane ODE output function.
odephas3 - 3-D phase plane ODE output function.
odeprint
bvpinit - Forms the initial guess for BVP4C.
pdeval - Evaluates by interpolation the solution computed by PDEPE.
odefile - MATLAB v5 ODE file syntax (obsolete).

- Command window printing ODE output function.

Distinct functions that can be straightforwardly used in optimization, plotti.ng, numerical
integration, as well as in ordinary and partial differential equations solvers, are reported in [I - 41. The
application of many of these functions and solvers will be thoroughly illustrated in this book.

REFERENCES

1.
2.

3 .
4.

MTUB 6.5 Release 13, CD-ROM, Mathworks, Inc., 2002.
Dabney, J. B. and Harman, T. L., Mastering SIMULINK 2, Prentice Hall, Upper Saddle River, NJ,
1998.
Hanselman, D. and Littlefield, B., Mastering MATLAB 5, Prentice Hall, Upper Saddle River, NJ, 1998.
User’s Guide. The Student Edition of I’VI~TLAB: The Ultimate Computing Environment for Technical
Education, Mathworks, Inc., Prentice Hall, Upper Saddle River, NJ, 1995.

Chapter 3: MATLAB and Problem Solving 42

Chapter 3

MATLAB and Problem Solving

3.1. Starting MATLAB

As we saw in Chapter 1, we start MATLAB by double-clicking the MATLAB icon:

MATLAB 6.5.lnk
The MATLAB Command and Workspace windows appear as shown in Figure 3.1.

Figure 3.1. MATLAB Command and Workspace windows

The line

Thus, aa=2, and Figure 3.2 illustrates the answer displayed.

Chapter 3: MATLAB and Problem Solving 43

Figure 3.2. Solution of aa=a+l if a=l: Command and Workspace windows

For the vector a= [1 2 3 1, to find aa=a+l, we have

Variables, arrays, and matrices occupy the memory. For the example considered, we have the
MATLAB statement a= [1 2 31 ; aa=a+l (typed in the Command Window). Executing this statement,
the data displayed in the Workspace Window is documented in Figure 3.3.

Figure 3.3. Solution of aa=a+l if a= [1 2 31 : Command and Workspace windows

For a three-by-three matrix a (assigning all entries to be equal to 1 using the ones function, e.g.,
a=ones (3)), adding 1 to all entries, the following statement must be typed in the Command Window to
obtain the resulting matrix aa:

Specifically, as shown in Figure 3.4, we have aa = I: : :1

Chapter 3: MATLAB and Problem Solving 44

Figure 3.4. Solution of aa=a+l if a=ones (3) : Command and Workspace windows

Here, the once function was used. It is obvious that this function was called by reference from
the MATLAB functions library. Call commands, functions, operators, and variables by reference should be
used whenever necessary.

The element-wise operations allow us to perform operations on each element of a vector. For
example, let us add, multiply, and divide two vectors by adding, multiplying, and dividing the
corresponding elements. We have:

Chapter 3: MATLAB and Problem Solving 45

MATLAB has operators for taking the real part, imaginary part, or complex conjugate of a
complex number. These operators are r e a l , imag and con j . They are defined to work element-wise on
any matrix or vector. For example,

using the s i n and p l o t functions. The corresponding Command and Workspace windows are
documented in Figure 3.5.

Figure 3.5. Solution of x = sin(2r) if t = [0 107~1: Command and Workspace windows

It is obvious that the size of vectors x and t is 315 (see the Workspace Window in Figure 3.5).
The plot of x(t) = sin(2t) if r-[0 1 On] sec is illustrated in Figure 3.6.

Chapter 3: MTLAB and Problem Solving 46

Figure 3.6. Plot o fx = sin(2t) if t=[O IOx] sec

MATLAB does not require any type declarations or dimension statements for variables (as was
shown in the previous example). When MATLAB encounters a new variable name, it automatically creates
the variable and allocates the appropriate memory. For example,

The Command and Workspace windows are illustrated in Figure 3.7.

Figilre 3.7. Command and Workspace windows

Variable names can have letters, digits, or underscores (only the first 31 characters of a variable
name are used). One must distinguish uppercase and lowercase letters because A and a are not the same
variable.

Conventional decimal notation is used (e.g., - 1, 0, 1, 1.1 1, 1 . 1 1 e 1 1, etc.). All numbers are stored
internally using the long format specified by the IEEE floating-point standard. Floating-point numbers
have a finite precision of 16 significant decimal digits and a finite range of 1 0-308 to 1 O+308.

Chapter 3: M T L A B and Problem solving 47

As was illustrated, MATLAB provides a large number of standard elementary mathematical
functions (e.g., abs, sqrt, exp, log , s i n , cos, etc.). Many advanced and specialized mathematical
functions (e.g., Bessel and gamma functions) are available. Most of these functions accept complex
arguments. For a list of the elementary mathematical functions, use h e l p e l f u n (the MATLAB
functions are listed in the Appendix):

Chapter 3: h.ta TLAB and Problem Solving 48

Chapter 3: MATLAB and Problem Solving 49

3.3. How to Use Some Basic MATLAB Features

MATLAB works by executing the statements you enter (type) in the Command Window, and the

To illustrate the basic arithmetic operations (addition, subtraction, multiplication, division, and

. In the MATLAB Command Window we type the following

MATLAB syntax must be followed. By default, any output is immediately printed to the window.

1 + 2 - e - ~ + s i n 5
cos 6 - 7-*

exponentiation), we calculate

statement:

Chapter 3: MA TLAB and Problem Solving 50

3.3.1. Scalars and Basic Operations with Scalars

Mastering MATLAB mainly involves learning and practicing how to handle scalars,
vectors, matrices, and equations using numerous functions, commands, and computationally
efficient algorithms. In MATLAB, a matrix is a rectangular array of numbers. The one-by-one
matrices are scalars, and matrices with only one row or column are vectors.

A scalar is a variable with one row and one column (e.g., 1, 20, or 300). Scalars are the
simple variables that we use and manipulate in simple algebraic equations. To create a scalar, the
user simply introduces it on the left-hand side of a prompt sign. That is,

The Command and Workspace windows are illustrated in Figure 3.8 (scalars a, b, and c were
downloaded in the Command Window, and the size of a, b, and c is given in the Workspace Window).

Command Window Workspace Window

Chapter 3: MATLAB and Problem Solving 51

Figure 3.8. Command and Workspace windows

MATLAB fully supports the standard scalar operations using an obvious notation. The following
statements demonstrate scalar addition, subtraction, multiplication, and division.

-b-c; z r

3.3.2. Arrays, Vectors, and Basic Operations
To introduce the vector, let us first define the array. The array is a group of memory locations

related by the fact that they have the same name and same type. The array can contain n elements
(entries). Any one of these number (entry) has the “array number” specified the particular element (entry)
number in the array. The simple array example and the corresponding result are given below:
0 array is (MATLAB statement):

Chapter 3: MATLAB and Problem Solving 52

MATLAB allocates memory for all variables used (see the Workspace Window). This allows the
user to increase the size of a vector by assigning a value to an element that has not been previously used.
For example,

Mathematical operations involving vectors follow the rules of linear algebra. Addition and
subtraction, operations with scalars, transpose, multiplication, element-wise vector operations, and other
operations can be performed.

Chapter 3: MATLAB and Problem Solving

3.4. Matrices and Basic Operations with Matrices

Matrices are created in the similar manner as vectors. For example, the statement

53

and the sparsity pattern of the matrix A is illustrated in Figure 3.9.

Chapter 3: MATLAB and Problem Solving 54

4--
0 0.5 1 1.5 2 2.5 3 3.5

nz = 7
I

Figure 3.9. Sparsity pattern of the matrix A

Generating Matrices and Working with Matrices. Linear and nonlinear algebraic, differential,
and difference equations can be expressed in matrix form. For example, the linear algebraic equations are
given as

qlx1 + q 2 x 2 +...+ aln-lxfl-l +a,,x,, = bll ,

a2p1 + aZ2x2 +...+ a2n-1~n-l + a,x, =

a, - l l~ l + an-12~2 +...+ an-ln-I~n-l + an+pn = bfl-,, ,

anlxl + an2x2 +...+ anfl-lxn-l + a,xn = b,,,
which in matrix form are expressed by

a21 a22 - . * a2n-I a 2 n . .

XI

x2

where x is the vector of variables, XER", x =

or Ax=B,

; A ER" " and BER" I are the matrices of constant

coefficients.

downloaded. The most straightforward way to download the matrix is to create it by typing
matrix = [valuell valuel2 . . valueln-l valueln;

where each value can be a real or complex number. The square brackets are used to form vectors and
matrices, and a semicolon is used to end a row. For example,

To solve linear and nonlinear equations, the matrices are used. These matrices must be

value21 valuezz . . v a l ~ e ~ ~ - ~ va luepnJ ,

Chapter 3: M A T U B and Problem solving 5 5

Subscript expressions involving colons refer to portions of a matrix. For example,
A (1 : k, j) represents the first k elements of the j th column of A.

The colon refers to all row and column elements of a matrix, and the keyword end refers to the
last row or column. Therefore, sum (A (: , end)) computes the sum of the elements in the last column
of A.

Chapter 3: MATLAB and Problem Solving 56

- -
1 0 0

0 1 0

0 0 1

A = 1 1 1 .

1 1 1

1 1 1

0 0 0 -

As mentioned, MATLAB has a variety of built-in functions, operators, and commands to generate
the matrices without having to enumerate all elements. It is easy to illustrate how to use the functions
ones, zeros , magic, etc. As an example, we have

Chapter 3: MATLAB and Problem Solving 57

Chapter 3: MATLAB and Problem Solving 58

because the AA is an active variable. To remove AA from active variables, we type

Chapter 3: MATLAB and Problem Solving 59

The s i z e and length functions return the size and length of a vector or matrix. For example,
>> E=magic(4); SE=size(E), LE=length(E)
SE =

LE =
4 4

4

Chapter 3: MTLAB and Problem Solving 60

Selective Indexing. The user may need to perform operations with certain elements of vectors
and matrices. For example, let us change all negative elements of the vector or matrix to be positive. To
perform this, we have

Thus,
y=-4andz=4 .5 .

The system of equations
y + 2 ~ = 5

3 y + 4 ~ = 6
can be solved graphically. In particular, we have the

following MATLAB statement:
>> y=-10: z= (-y+5) /2 ; plot (y ho z= 1-3

Figure 3.10 illustrates that the solutions are y = - 4 and z = 4.5. Chapter 4 covers two- and three-
dimensional plotting and graphics. The graphical solution is given just to illustrate and verifL the results.

y + 2 ~ = 5

3y+ 42 = 6
Figure 3.10. Graphical solution of the system of linear equations

Chapter 3: MATLAB and Problem Solving 61

As another example, using MATLAB, let us solve the system of the third-order linear algebraic
equations given by

Ax=B,whereA=

Our goal is to find x(xl, x2, and x3). We have

Chapter 3: MATLAB and Problem Solving 62

Many numerical problems involve the application of inverse matrices. Finding inverse matrices in
MATLAB is straightforward using the i n v function.

For matrix A = 0 4 0 , find the inverse matrix, calculate the eigenvalues, derive [: 1 :i
B = 10A3A-', and find the determinant of B. Using the inv, eig, and det functions, we have

ans =
>> A=[l 2 3;O 4 0;5 6 71 ; B=lO*(AA *(-l); inv(A1, B, eig(B), det(B)

-8.7500e-001 -1.2500e-001 3.7500
0 2.5000e-001

6.2500e-001 -1.2500e-001 -1.2500e-00

1.6000e+002 2.8000e+002 2.4000e+002
0 1.6000e+002 0

4.0000e+002 7.6000e+002 6.4000e+002

8.0816e+000
7.9192e+002
1.6000e+002

1.0240e+006

B =

ans =

ans =

Chapter 3: MATLAB and Problem Solving 63

-0.875 -0.125 0.375 1, [160 280 2401

0.625 -0.125 -0.125 400 760 640

0.25 B = 0 160 0 , the eigenvalues of the matrix B are

8.1, 791.9, 160, and the determinant is 1024000.
We performed the matrix multiplications. The entry-by-entry multiplication, instead of the usual

matrix multiplication, can be performed using a dot before the multiplication operator; for example,
a . * b . As an illustration, let us perform the entry-by-entry multiplication of two three-by-three matrices

A = 4 5 6 and B= 100 1 100 .Wehave

1 2 3 10 10 10

[7 8 d [ill]

The random matrices, arrays, and number generation are accomplished using rand. Different
sequences of random matrices, arrays, and numbers are produced for each execution. The complete
description of the rand function is available as follows:
>> help rand
RAND Unif

RAND('state',O) resets the generat
RAND('state',J), for integer J, re
RAND ('state', sum(100*clock)) resets it

his generator can generate a l l the floa numbers in the

MATLAB Version 4.x used random number generators with a single seed.

Chapter 3: W T L A B and Problem Solving 64

RAND ('seed' , 0) and RAND ('seed', J) cause the MATLAB 4 generator to be
used.
RAND('seed') returns the current seed of the MATLAB 4 uniform generator.
RAND('state',J) and RAND('state',S) cause the MATLAB 5 generator t o be
used.
See also RANDN, SPRAND, SPRANDN, RANDPERM.

The range of values generated by the r a n d function can be different from what is needed.

R = Shifting + Scaling*rand () ,
Therefore, scaling is necessary. The general expression for scaling and shifting is

and the following example illustrates the application of the above formula:
>> R=ones (5) +O. l*rand ('5)
R =

1.0583 1.0226 1.0209 1.0568 1.0415
1.0423 1.0580 1.0380 1.0794 1.0305
1.0516 1.0760 1.0783 1.0059 1.0874
1.0334 1.0530 1.0681 1.0603 1.0015
1.0433 1.0641 1.0461 1.0050 1.0768

The average (mean) value can be found using the mean function. For vectors, mean(x) is the
mean value of the elements in x. For matrices, mean()() is a row vector containing the mean value of
each column. In contrast, for arrays, mean(x) is the mean value of the elements along the first non-
singleton dimension of x.

The median value is found by making use of the m e d i a n function. For vectors, median(x) is
the median value of the elements in x. For matrices, median()() is a row vector containing the median
value of each column. For arrays, median(x) is the median value of the elements along the first
nonsingleton dimension of x.

>> R=rand (5), Rmean=mean (R) , Rmedian=median (R) ,
R =

To illustrate the mean and m e d i a n functions, the following example is introduced:

0.6756 0.1210 0.2548 0.2319 0.1909
0.6992 0.4508 0.8656 0.2393 0.8439
0.7275 0.7159 0.2324 0.0498 0.1739
0.4784 0.8928 0.8049 0.0784 0.1708
0.5548 0.2731 0.9084 0.6408 0.9943

0.6271 0.4907 0.6132 0.2480 0.4747

0.6756 0.4508 0.8049 0.2319 0.1909

mean =

Rmedian =

Thus, using r a n d , we generated the random 5 x 5 matrix R. Then, applying the mean and med ian
functions, we found the mean and median values of each column of R.

MATLAB has functions to round floating point numbers to integers. These functions are round ,
f i x , c e i l , and f l o o r . The following illustrates the application of these functions:

Chapter 3: A& T U B and Problem Solving 65

Symbols and Punctuation. The standard notations are used in MATLAB. To practice, type the
examples given. The answers and comments are given in Table 3.1.

Table 3.1. MATLAB Problems

Problems with MATLAB syntaxes
>> a=2+3
>> 2+3
>> a=2*3
>> 2*3
>> a=sqrt (5*5)
>> sqrt(5*5)
>> a=1+2j; b=3+4j; c=a*b
>> a=[O 2 4 6 8 101
>> a=[0:2:10]
>> a=0:2:10
>> a (:) '
>> a=[0:2:10];
>> b=a(:)*a(:)'

>> b(3,4)

>> b (3 , :)

>> c=b(:,4:5)

Answers
a = 5
a n s = 5
a = 6
a n s = 6
a = 5
ans = 5
c = -5.0000 +lO.OOOOi
a = O 2 4 6 8 10
a = O 2 4 6 8 10
a = O 2 4 6 8 10
a = O 2 4 6 8 10
c =

0 0 0 0 0 0
0 4 8 12 1 6 20
0 8 1 6 24 32 40
0 12 24 3 6 48 60
0 16 32 48 64 80
0 20 40 60 80 100

ans = 24

ans = 0 8 1 6 24 32 40

c =
0 0
12 1 6
24 32
36 48
48 64
60 80

ans = 220

Comments
MATLAB arithmetic

Complex variables
Vectors

Forming matrix b

Element (3,4)

Third row

Forming a new matrix

MATLAB Operators, Characters, Relations, and Logics. It was demonstrated how to use
summation, subtractions, multiplications, etc. We can use the relational and logical operators. In
particular, we can apply 1 to symbolize "true" and 0 to symbolize "false." The MATLAB operators and
special characters are listed below.

Chapter 3: MATLAB and Problem Solving 66

For example, the MATLAB operators &, 1, - stand for "logical AND", "logical OR", and "logical
NOT".

Chapter 3: MTLAB and Problem Solving 67

The operators == and -= check for equality. Let us illustrate the application of == using two

Chapter 3: MATLAB and Problem Solving 68

Chapter 3: MATLAB and Problem Solving 69

Polynomial Analysis. Polynomial analysis, curve fitting, and interpolation are easily performed.

p (x) = 1 OX" + 9x9 + 8x8 + 7x7 + 6x4 + 5x5 + 4x4 + 3x3 + 2x2 + IX + 0.5.
We consider a polynomial

To find the roots, we use the roots function:
>> p=[10 9 8 7 6 5 4 3 2 1 0.51; roots(p)
ans =

0.6192 + 0.51383.
0.6192 - 0.5138i
-0.7159 + 0.2166i
-0.7159 - 0.2166i
-0.4689 + 0.55973.
-0.4689 - 0.5597i
0.2298 + 0.689Oi
0.2298 - 0.68903.
-0.1142 + 0.6913i
-0.1142 - 0.6913i

As illustrated, different formats are supported by MATLAB. The numerical values are displayed in
15-digit fixed and 15-digit floating-point formats if format long and format long e are used,
respectively. Five digits are displayed if format short and format short e are assigned to be used.
For example, in format short e, we have
>> format short e; p= [lo 9 8 7 6 5 4 3 2 1 0.51 ; roots(p1
ans =
6.1922e-001 +5.1377e-0011
6.1922e-001 -5.1377e-001i
-7.1587e-001 +2.1656e-O01i
-7.1587e-001 -2.1656e-001i
-4.6895e-001 +5.5966e-O01i
-4.6895e-001 -5.5966e-001i
2.2983e-001 +6.8904e-O01i
2.2983e-001 -6.8904e-001i
-1.1423e-001 +6.9125e-O01i
-1.1423e-001 -6.9125e-0013.

In general, the polynomial is expressed as

The functions conv and deconv perform convolution and deconvolution (polynomial

p , (x) = x 4 + 2 x 3 + 3 x 2 + 4 ~ + 5 and p 2 (x) = 6 x 2 + 7 ~ + 8

2 p (x) = u,x" + u,_,xn-l + . . . + u2x + a ,x + a,.

multiplication and division). Consider two polynomials

To findp3(x) = pl(x)p2(x) we use the conv function. In particular,
>> pl=[l 2 3 4 51 ; p2=[6 7 81; p3=conv(pl,p2)
p3 =

Thus, we find
6 19 40 61 82 67 40

p , (x) = 6 ~ ~ + 1 9 ~ ~ + 4 0 ~ ~ + 6 1 x 3 + 8 2 x 2 + 6 7 ~ + 4 0 .

= 6x2 +7x+8 = p,(x) p (x) It is easy to see that p4(x) = 3 =
6x6 + 1 9x5 + 40x4 + 61x3 + 82x2 + 67x + 40

PI x4 +2x3+3x2 +4x+5

This can be verified using the deconv function. In particular, we have
>> p4=deconv (p3, pl)
p4 =

6 7 8
Comprehensive analysis can be performed using the MATLAB polynomial algebra and numerics.

P , (X) = 6 x 6 +19x5 +40x4 +61x3 +82x2 + 6 7 ~ + 4 0
For example, let us evaluate the polynomial

Chapter 3: MATLAB and Problem Solving 70

at the points 0, 3,6,9, and 12. This problem has a straightforward solution using the polyval function. We
have
>> x= [O : 3 : 121 ; y=polyval (p3, x)
Y =

Thus, the values of p3(x) at x = 0,3,9, and 12 are 40,14857,496090,462477 1 , and 2359 12 12.
As illustrated, MATLAB enables different operations with polynomials (e.g., calculations of roots,

convolution, etc.). In addition, advanced commands and functions are available, such as curve fitting,
differentiation, interpolation, etc. We download polynomials as row vectors containing coefficients
ordered by descending powers. For example, we download the polynomial p(x) = x3 + 2x + 3 as

40 14857 496090 4624771 23591212

>> p=[l 0 2 31
The following functions are commonly used: conv (multiply polynomials), deconv (divide

polynomials), poly (polynomial with specified roots), pol yder (polynomial derivative), pol yf it
(polynomial curve fitting), pol yval (polynomial evaluation), pol yva 1m (matrix polynomial
evaluation), residue (partial-fraction expansion), roots (find polynomial roots), etc.

The roots function calculates the roots of a polynomial.
>> p= [l 0 2 31 ; r=roots(p)
r =

0.5000 + 1.6583i
0.5000 - 1.65833.
-1.0000

>> p=poly(r)
P =

The poly function computes the coefficients of the characteristic polynomial of a matrix. For example,

The function poly returns to the polynomial coefficients, and

1.0000 -0.0000 2.0000 3.0000

>> A=[l 2 3; 0 4 5; 0 6 71; c=poly(A)
c =

1.0000 -12.0000 9.0000 2.0000
The roots of this polynomial, computed using the r o o t s function, are the characteristic roots
(eigenvalues) of the matrix A. In particular,
>> r=roots (c)
r =

11.1789
1.0000
-0.1789

The polyval function evaluates a polynomial at a specified value. For example, to evaluate
p(x)=x3+2x+3 ats=lO,wehave
>> p= [l 0 2 31 ; plO=polyval(p,lO)
p10 =

the polynomial p(x) = x3 + 2x + 3, the MATLAB statement is
>> p= [l 0 2 31 ; der=polyder(p)
der =

The polyder function can be straightforwardly applied to compute the derivative of the product or
quotient of polynomials. For example, for two polynomials p, (x) = x3 + 2x + 3 andp2(x) = x4 + 4x + 5 , we
have
>> pl=[l 0 2 31; p2=[1 0 0 4 51; p=conv(pl,p2), der=polyder(pl,p2)
P =

der =

1023
The polyder function computes the derivative of any polynomial. To obtain the derivative of

3 0 2

1 0 2 7 5 8 22 15

7 0 10 28 15 16 22

Chapter 3: MATLAB and Problem Solving 71

The data fitting can be easily performed. The po ly f i t function finds the coefficients of a

x=[O 1 2 3 4 5 6 7 8 9]andy=[1 2.5 2 3 3 3 2.5 2.5 211.
polynomial that fits a set of data in a least-squares sense. Assume we have the data (x and y) as given by

Then, to fit the data by the polynomial of the order three, we have
>> x=[O 1 2 3 4 5 6 7 8 91; y=[l 2.5 2 3 3 3 2 . 5 2 . 5 2 11; p=polyfit(x,y,3)
P =

Thus, one obtains p(x) = 0.001x3- 0. 104x2 + 0.8478~ + 1.2028.

>> plot(x,y, ' - i , x , p o l y v a l (p , x) , ' : I)

of the data and its approximation by the polynomial are illustrated in Figure 3.1 1.

0.0010 -0.1040 0.8478 1.2028

The resulting plots, plotted using the following MATLAB statement,

1 6 -

1 4 ~

1 2 -

1
0 1 2 3 4 5 6 7 6 9

Figure3.1l.Plotsofthexydata(x=[O 1 2 3 4 5 6 7 8 9]andy=[1 2.5 2 3 3 3 2.5 2.5 211)
and its approximation by p(x) = 0 . 0 0 1 ~ ~ - 0. 104x2 + 0.8478~ + 1.2028

Interpolation (estimation of values that lie between known data points) is important in signal and
image processing. MATLAB implements a number of interpolation methods that balance the smoothness of
the data fit with the execution speed and memory usage. The one-, two- and three-dimensional
interpolations are performed by using the i n t e r p l , i n t e r p 2 , and i n t e r p 3 functions. The
interpolation methods should be specified, and we have i n t e r p l (x , y, x i ,me thod) .

The nearest neighbor interpolation method is designated by n e a r e s t , while the linear, cubic
spline, and cubic interpolation methods are specified by the l i n e a r , s p l i n e and c u b i c functions.
Choosing an interpolation method, one must analyze the smoothness, memory, and computation time
requirements.

Example 3.4. I .
Consider the nonlinear magnetic circuit. Ampere's law states that the line integral of around the

closed path is proportional to the net current through the enclosed area. However, the value of permeability
of the ferromagnetic material depends on the external field, and p is not constant. This effect is observed due
to the saturation magnetization phenomena. In general, one should use the nonlinear magnetization curves.

That is, the equation L = - N@ = - v/ = const is valid only if the magnetic system is linear.
i i

Weuse i = [O 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 21
and

Consider a set of data for the flux linkage - current relation for an electromagnetic motion device.

0 =[0 0.022 0.044 0.065 0.084 0.1 0.113 0.123 0.131 0.136 0.1381.

Chapter 3: MATLAB and Problem Solving 72

Using MATLAB, curve fitting, interpolation, and approximation can be performed (see the script and
the results).

MATLAS ScriDt

Chapter 3: MATLAB and Problem Solving 73

Figure 3.12 plots the data, and the variations of the inductance are evident. Approximating CD = f (i)

CD = -0.0048i3 - 0.016i2 + 0.12i - 0.00075 ,
by the third-order polynomial is found to be

0.1

X

G;
0.05

0

The plot of the Current - Flux data
0 0

0
0

0

0

0

0

0

I
Current

Interpolation of the Current - Flux curve by N-order polynom Is

X

0 1 2
Current

Derivative dFlux / dCurrent as a function of Current

Derivative dFlux / dCurrent as a function of Current
I I

I
1 2

Current

Derivative dFlux / dCurrent as a function of Current

Figure 3.12. Application of numerical analysis in curve fitting, interpolation, and approximation

3.5. Conditions and Loops

The logical operators in MATLAB are <, >, <=, >=, == (logical equals), and -= (not equal). These
are binary operators which return the values 0 and 1 (for scalar arguments). To illustrate them, we have

Chapter 3: MATLAB and Problem Solving 74

These logical operators have limited features, and therefore, loops, conditions, control statements, and
control structures (sequence, selection, and repetition structures) are embedded in all programming
languages. In particular, MATLAB has standard if-elseif-else, switch, and while structures.
The general form of the pseodocode for the i f conditional statement is

Control Structures. The if selection structure (conditional statement) allows us to design
programs that make decisions about what commands to execute. This decision-making is performed
choosing among alternative actions based upon the particular (specific) conditions. The basic statement,
to illustrate the basic features, is
if a>O
x=aA3;
end

Chapter 3: MATLAB and Problem Solving 75

Thus, we assign x be the equal to a3 if a is positive. We have an end statement to terminate the
program. We define an else clause which is executed if the condition given (if statement) is not true.
For example,
if a>O
x=a"3;

else
x=-aA4;

end
Hence, if a = 5, x = 125, and if a = - 5, x = - 625. Here, we need one end.

Using the MATLAB help, we have:

1. if structure:
>> help if
IF IF statement condition.

The general form of the IF statement is

IF expression
statements

ELSEIF expression
statements

ELSE
statements

END
The statements are executed if the real part of the expression
has all non-zero elements. The ELSE and ELSEIF parts are optional.
Zero or more ELSEIF parts can be used as well as nested IF'S.
The expression i s usually of the form expr rop expr where
rop is ==, <, >, <=, >=, or -=.
Ex amp 1 e

if I == J

elseif abs(1-J) == 1

else

end

A(1,J) = 2 ;

A(1,J) = -1;

A(1,J) = 0;

See also RELOP, ELSE, ELSEIF, END, FOR, WHILE, SWITCH

2. e 1 se structure:
>> help else
ELSE Used with IF.

ELSE is used with IF. The statements after the ELSE are executed
if all the preceding IF and ELSEIF expressions are false.

The general form of the IF statement is
IF expression
statements

ELSEIF expression
statements

ELSE
statements

END
See also IF, ELSEIF, END.

Chapter 3: MATLAB and Problem Solving 76

3 .
>> help elseif

e 1 s e i f structure:

ELSEIF IF statement condition.
ELSEIF is used with IF. The statements after the ELSEIF are
executed if the expression is true and all the preceding IF and
ELSEIF expressions are false. An expression is considered true if
the real part has all non-zero elements.

ELSEIF does not need a matching END, while ELSE IF does.

The general form of the IF statement is
IF expression
statements

ELSEIF expression
statements

ELSE
statements

END
See also IF, ELSE, END.

4. switch structure:
>> help switch
SWITCH Switch among several cases based on expression.

The general form of the SWITCH statement is:

SWITCH switch-expr
CASE case-expr,

CASE {case-exprl, case-expr2, case-expr3, . . .)
statement, . . . , statement

statement, ..., statement
...
OTHERWISE,

statement, ..., statement
END

The statements following the first CASE where the switch-expr matches
the case-expr are executed. When the case expression is a cell array
(as in the second case above), the case-expr matches if any of the
elements of the cell array match the switch expression. If none of
the case expressions match the switch expression then the OTHERWISE
case is executed (if it exists). Only one CASE is executed and
execution resumes with the statement after the END.

The switch-expr can be a scalar or a string.
matches a case-expr if switch-expr==case-expr. A string
switch-expr matches a case-expr if strcmp(switch-expr,case - expr)
returns 1 (true).

A scalar switch-expr

Only the statements between the matching CASE and the next CASE,
OTHERWISE, or END are executed. Unlike C, the SWITCH statement
does not fall through (so BREAKS are unnecessary).

Example :
To execute a certain block of code based on what the string, METHOD,
is set to,

Chapter 3: MATLAB and Problem Solving 77

method = 'Bilinear';
switch lower (METHOD)
case {'linear', 'bilinear')
disp('Method is linear')

case 'cubic'
disp('Method is cubic')

case 'nearest'
disp('Method is nearest')

otherwise
disp('Unknown method.')

end
Method is linear
See also CASE, OTHERWISE, IF, WHILE, FOR, END.

The following conclusions can be made.

1 .

2.

3 .

The if selection structure performs an action if a condition is true or skips the action if the
condition is false.
The if - e l se selection structure performs an action if a condition is true and performs a
different action if the condition is false.
The switch selection structure performs one of many different actions depending on the value
of an expression.

Therefore, the if structure is called a single-selection structure because it performs (selects) or skips
(ignores) a single action. The if - e l se structure is called a double-selection structure because it
performs (selects) between two different actions. The switch structure is called a multiple-selection
structure because it selects among many different actions.

Using the results given it is obvious that we can expand the if conditional statement (single-
selection structure) using other possible conditional structures. If the first condition is not satisfied, it
looks for the next condition, and so on, until it either finds an e 1 se, or finds the end. For example,
i f a>O
x=a"3;

e l s e i f a==O,

e l s e
x=j;

x=-aA4;
end
This script verifies whether a is positive (and, if a>O, x=a3), and if a is not positive, it checks whether a is

zero (if this is true, x = j = f i). Then, if a is not zero, it does the else clause, and if a<O, x= - a4. In
particular,
a=2;
if a>O
x=a" 3 :

e l s e i f a==O ,

e l s e

end: x
gives

x=j:

x=-a"4 :

x =
8

Chapter 3: MATLAB and Problem Solving 78

while
a=O;
i f a>O
x=a"3;

e l s e i f a==O,

e l se

end; x
results in

x = j ;

x=-a"4;

x =
0 t 1.OOOOi

In addition to the selection structures (conditional statements), the repetition structures while
and for are used to optimize and control the program. The while structure is described below:
>> help while
WHILE Repeat statements an indefinite number of times.

The general form of a WHILE statement is:

WHILE expression

END
statements

The statements are executed while the real part of the expression
has all non-zero elements. The expression is usually the result of
expr rop expr where rop is ==, <, >, <=, >=, or -=.
The BREAK statement can be used to terminate the loop prematurely.
For example (assuming A already defined):

E = O*A; F = E + eye(size(E)); N = 1;
while norm(E+F-El 1) > 0,

E = E + F ;
F = A*F/N;
N = N + 1 ;

end
See also FOR, IF, SWITCH, BREAK, END.

Thus, the while structure repeats as long as the given expression is true (nonzero):

Chapter 3: MATLAB and Problem Solving 79

The built-in function disp displays the argument. The loop is terminated by the end.
The f o r structure allows you to make a loop or series of loops to be executed several times. It is

functionally very similar to the f o r structure in C . We may choose not to use the variable i as an index,

because you may redefine the complex variable i = f i . Typing
f o r z = 1:4
k
end
causes the program to make the variable z count from 1 to 4, and print its value for each step. For the
above statement, we have
z =

1

2

3

4

z =

z =

z =

In general, the loop can be constructed in the form
for i=l:n, <program>, end
Here we will repeat program for each index value i.

>> help for
The complete description of the f o r repetition structure is given below:

FOR Repeat statements a specific number of times.
The general form of a FOR statement is:

FOR variable = expr, statement, . . ., statement END
The columns of the expression are stored one at a time in

the variable and then the following statements, up to the
END, are executed. The expression is often of the form X:Y,
in which case its columns are simply scalars. Some examples
(assume N has already been assigned a value).

FOR I = l:N,
FOR J = l:N,

END
A (1 , J) = l/(I+J-I);

END
FOR S = 1.0: -0.1: 0.0, END steps S with increments of -0.1
FOR E = EYE(N), ... END sets E to the unit N-vectors.
Long loops are more memory efficient when the colon expression appears
in the FOR statement since the index vector is never created.
The BREAK statement can be used to terminate the loop prematurely.
See also IF, WHILE, SWITCH, BREAK, END.

several times. You can have nested for structures. For example,
f o r m=1:3

The loop must have a matching end statement to indicate which commands should be executed

for n=1:3
x (m, n) =mtn*i;
end

end; x

Chapter 3: MATLAB and Problem Solving 80

generates (creates) the x matrix as
x =

9 17 2 5
10 18 26
11 19 27

To terminate f o r and while, the break statement is used.

3.6. Illustrative Examples

Example 3.6.1.
Find the values of a, b, and c as given by the following expressions

-1

a = 5x2 - 6y + 72, b = 3Y2 mdc=(l+-$)
4x - 52

i fx= 10,y=-20 andz=30.
Solution.
In the MATLAB Command Window, to find a , we type the statements

0
Example 3.6.3.
Given the complex number N = 13 - 7i. Using MATLAB, perform the following numerical

Find the magnitude of N.
Find the phase angle of N.
Determine the complex conjugate of N.

calculations:
a.
b.
c.

Chapter 3: M.4 TUB and Problem Solving

Solution.
The complex number is downloaded as

81

and the plot is illustrated in Figure 3.13.

Chapter 3: MATLAB and Problem Solving 82

10 I~ 0 I , ' ,,,,,, : - ~ - ~ ~ , , ' ' ~ ~

7

6

5

4

1 ipIp- L p - L pp i 3 -
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 3.13. Nonlinear function: volume versus the external radius V=JTrl) 0

Example 3.6.6.
Use the linspace function and increment method to create a vector A with 15 equally spaced

Solution.
Using linspace, in the Command Window, we type

values, beginning with 7.0 and ending with 47.5.

The result is
A =

Columns 1 through 9
7.0000 9.8929 12.7857 15.6786 18.5714 21.4643 24.3571 27.2500 30.1429
Columns 10 through 15
33.0357 35.9286 38.8214 41.7143 44.6071 47.5000

0

Chapter 3: MATLAB and Problem Solving 83

Example 3.6.7.
Use linspace and apply the increment method to create vector B with starting (initial) value of 7

and final (ending) value of 23 with increment of 0.16 between values. Display only the 18th value in each
case.

Solution.
Increment method. We enter

Chapter 3: MATLAB and Problem Solving 84

b. The matrix E2 is generated as

Here, the transpose symbol ' transforms a horizontal array into a vertical one.

Chapter 3: hrt4T'~ and Problem Solving 85

Example 3.6.10.

Given matrices A and B as A =
- 4

a. A + B
b. A - B
C. 2*B
d. A/4
e. A.*B
f. B.*A
g. A*B
h. B*A
k. A."2
1. A"2
m. A."B
n. A./B
using pencil and paper. Verify the results using MATLAB.

Solution.
First, we download matrices A and B as

, calculate the following:
-5 3 1

Chapter 3: MATLAB and Problem Solving 86

Chapter 3: MATLAB and Problem Solving 87

Chapter 3: MATLAB and Problem Solving 88

Chapter 3: MATLAB and Problem Solving 89

Chapter 3: MATLAB and Problem Solving 90

Example 3.6.13.
Write an m-file which will generate a table of conversions from inches to centimeters using the

conversion factor 1 inch = 2.54 em. Prompt the user to enter the starting number of inches. Increment the inch
value by 3 on each line. Display a total of 10 lines. Include a title and column heading in the table.

Solution.
The m-file should be written. Fiurthermore, to execute an m-file, MATLAB must be able to find it.

This means that a directory in MATLAB'S path must be found. The current working directory is always on
the path. To display or change the path, we use the p a t h function. To display or change the working
directory, the user must use cd. As usual, h e l p will provide more information.

To solve the problem, the following m-file is written. Comments are identified by the % symbol.

Chapter 3: MATLAB and Problem Solving 91

Example 3.6.14.
Write an m-file that will calculate the area of circles (A = x?) with radii ranging from 3 to 8 meters

at an increment between values entered by the user in the Command Window. Generate the results in a table
using d i s p and f p r i n t f , with radii in the first column and areas in the second column. When f p r i n t f
is used, print the radii with two digits after the decimal point and the areas with four digits after the decimal
point.

Solution.
To solve the problem, the MATLAB script is developed and listed below.

Chapter 3: MATLAE and Problem Solving 92

Example 3.6.15.
Write an m-file which allows the user to enter (download) the temperatures in degrees Fahrenheit

and return the temperature in degrees Kelvin. Use the formulas C" = 5(F"- 32)/9 and K = C" + 273.15. The
output should include both the Fahrenheit and Kelvin temperatures. Make three variations of the output as:
a.
b.
C.

Output temperatures as decimals with 5 digits following the decimal point,
Output temperatures in exponential format with 7 significant digits,
Output temperatures with 4 significant digits.
Solution
The following MATLAB script allows us to solve the problem:

Chapter 3: MATLAB and Problem Solving

The results displayed in the Command Window are documented below:
the height of

Y =
3
J

Enter the three radii in meters:
2 31

R =

93

t =
20
2.8794 20.8627 57.6956

The three volumes are found to be 2.8794,20.8627, and 57.6956.

Chapter 3: MTLAB and Problem Solving 94

Example 3.6.18.

cone with those dimensions.
Write a MATLAB script which accepts the radius and height as inputs and returns the volume of the

Solution.
The script (ch3618 .m) is given below.

Chapter 3: MATLAB and Problem Solving 95

Example 3.6.20.
Write the MATLAB file to solve linear algebraic equations. Develop an m-file in order to solve the

following sets of linear algebraic equations:

a. 6 ~ - 3y + 42= 41
1 2 ~ + 5y - 72 = - 26
- 5x + 2y + 6z= 14

b. 12x-5y= 1 1
- 3x +4y + 7z= - 3

2.5% + 5x3 + XI - 2x2=,4
6x+2y+3z=22

25x2 - 6 . 2 ~ ~ + 18% + 1 Oxl = 2.9
C.

28% + 25x1 - 30x2 - 15x3 = - 5.2
- 3 . 2 ~ 1 + 1 2 ~ , - 8 ~ q = - 4 .

Solution.
The following m-file is written:

Thus, the solutions of the algebraic equations are found.

Chapter 3: MATLAB and Problem Solving 96

Example 3.6.21.
Electric circuits are described (modeled) using Kirchhoffs voltage and current laws. The electric

Rlil + R2i2- v, = 0
- R2i2 + R3i3 + R5i5 = 0
v2 + R&- R3i3= 0
- i , + i2+ i3+ i4= 0
- i4- i3 + i5 = 0
Calculate the five unknown currents (il, i2, i3, i4, and is) using the following resistances and voltages
as: Rl = 470 ohm, R2 = 300 ohm, R3 = 560 ohm, R4 = 100 ohm, R5 = 1000 ohm, v1 = 5V, and v2 =

I OV. Label the answers with current number and units. .

Using the resistances given above and vI = 5V, find the range of positive voltages v2 for which none
of the currents exceeds 50 mA. The currents may be positive or negative. None of the currents may
be less than - 50 mA or greater than 50 mA.
Solution.
The MATLAB script is documented below.

circuit under consideration is described by the following set of five algebraic equations:

a.

b.

Chapter 3: MTLAB and Problem Solving

The results are

97

Example 3.6.22.
The height, horizontal distance, and speed of a projectile launched with a speed v at an angle A to the

h (t) = v t s i n A - i g t 2 , x (t)=v tcosA and v (t) = , / v 2 -2vgts inA+g2t2 .

The projectile will strike the ground when h(t) = 0, and the time of the hit is t,,,, = 2-sin A .

horizontal line are given by the following formulas:

V

g
Suppose that A = 30°, v = 40 m/s, and g = 9.81 m/s2. Use logical operators to find the times (with

The height is no less than 15 meters,
The height is no less than 15 meters and the speed is no greater than 36 m/sec.
Solution.
The following MATLAB script is developed to solve the problem.

the accuracy to the nearest hundredth of a second) when
a.
b.

Chapter 3: MATLAB and Problem Solving 98

REFERENCES

1.
2.
3.
4.

5.

MTUB 6.5 Release 13, CD-ROM, Mathworks, Inc., 2002.
Hanselman, D. and Littlefield, B., Mastering MATLAB 5, Prentice Hall, Upper Saddle River, NJ, 1998.
Palm, W. J., Introduction to hi4TLABfor Engineers, McGraw-Hill, Boston, MA, 2001.
Recktenwald G., Numerical Methods with MATLAB: Implementations and Applications. Prentice Hall,
Upper Saddle River, NJ, 2000.
User’s Guide. The Student Edition of MATLAB: The Ultimate Computing Environment for Technical
Education, Mathworks, Inc., Prentice Hall, Upper Saddle River, NJ, 1995.

Chapter 4: MATLAB Graphics

12

10-

8 -

6 -

Chapter 4

/", -

'

MATLAB GRAPHICS

99

MATLAB has outstanding graphical, visualization and illustrative capabilities [1 - 41. A
graph is a collection of points, in two, three, or more dimensions, that may or may not be
connected by lines or polygons. It was emphasized that MATLAB is designed to work with vectors
and matrices rather than functions. Matrices are a convenient way to store numerical numbers.

4.1. Plotting
In MATLAB, the user can plot numerical data stored as vectors and matrices. This data can

be obtained performing numerical calculations, evaluating functions, or reading the stored data
fi-om files. Single and multiple curves can be created.

The dependent variable can be easily evaluated as a function of the independent variable.
For example, consider

y(x) =AX), e.g., y(x) = x"~, y(x) = x2, y(x) = e-x, y(x) = sin(x), etc.
To create a line plot ofy versus x, the MATLAB statement is

we obtain the plot as documented in Figure 4.1 .b.

141

'\

,/ -- '- \I
1

i

a
Figure 4.1. Data plots

b
0

By default, the plot function connects the data with a solid line. Using
plot (x, y, ' or) , the data is connected by symbol 0.

Chapter 4: MATLAB Graphics 100

As has been shown, p l o t is the simplest way of graphing and visualizing the data. If x is
a vector, p l o t (x) will plot the elements ofx against their indices. For example, let us plot the
vector. We type

The resulting graph is displayed in Figure 4.4.

Chapter 4: MATLAB Graphics 101

Figure 4.4. Plot of two vectors x and y

Let us illustrate how to calculate the function x(t) = L'sin(2t) if t varies from 0 to 8 sec,
and then plot the resulting function. We will use the colon notation (: is the special character) to
create the time array. For example, typing t = O : 1 : 8, we have

The resulting plot is illustrated in the Figure 4.5.

Chapter 4: MATLAB Graphics 102

0 5 - ',
0 4 -

0 3 -

0 2 -

0 1 -

l
0 1 2 3 4 5 6 7 a -0.2- '

Figure 4.5. Plot of the function x(t) = e-'sin(2t)

The function plot (t, x) uses the built-in plot function and gives a very basic plot.
The first variable is on the horizontal axis and the second variable is on the vertical axis. There
are many ways to use plot. For example, you can change the style and color of the line. Using
plot (t , y, : I) gives the dotted line. To have the green dashdot line, type plot (t, x, g-
. I) .

The following options are available:
solid - red r
dashed -- green 9
dotted : blue b
dashdot -. white W

We can use the help p l o t for detail information. That is, using

Chapter 4: MATLAB Graphics

Line
- solid

103

Color Symbol
y yellow . point

The results are integrated in Table 4.1.

I : dotted I m magenta I o circle

Chapter 4: MATLAB Graphics 104

To illustrate the p l o t function and options we have, using the MATLAB statements

L ' ' :

1 7
0 8 -

06

0 4

0 2

O r

I - 0 2 1 -0 4

-0 61

I -0 8 b

-11 - L A L - i - -I-&

1 2 3 4 5 6 7 8 9 10

L ' ' :

1 7
0 8 -

06

0 4

0 2

O r

I - 0 2 1 -0 4

-0 61

I -0 8 b

-11 - L A L - i - -I-&

1 2 3 4 5 6 7 8 9 10

Figure 4.7. Plot of sin(n)

Thus, two- and three-dimensional (as will be illustrated latter) plots and coordinate
transformations are supported by MATLAB. The basic commands and fbnctions are reported in
Tables 4.2 to 4.5.

Chapter 4: MATLAB Graphics

Table 4.2. Basic Plots and Graphs Functions and Commands

105

Horizontal bar chart

Table 4.3. Three-Dimensional Plotting

Table 4.4. Plot Annotation and Grids

Chapter 4: MATLAB Graphics 106

contour
contourc
contourf
hidden

Table 4.5. Surface, Mesh, and Contour Plots

Contour (level curves) plot
Contour computation
Filled contour plot
Mesh hidden line removal mode

mesh
peaks
surf
surface
surfc
surf1
trime sh

I meshc 1 Combination mesh/contoumlot I
3D mesh with reference plane
A sample function of two variables
3D shaded surface graph
Create surface low-level objects
Combination surf/contourplot
3D shaded surface with lighting
Trianeular mesh d o t

0 5 -

O !

I trisurf I Triangular surface plot

'

Let us illustrate the MATLAB application within an example.
Illustrative Example 4. I . 3.
Calculate and plot the function f (t) = sin(1 OOt)e-*' + sin(100t)cos(100t + I)e-", 0 I t I 0.1 sec.
Solution.
To calculate and plot the fimction f (t) = sin(1 OOt)e-2' + sin(lOOt)cos(l OOt + l)e-5' for

0 I t I 0.1 sec, we assign the time interval of interest (0 I t I 0.1 sec), calculateJ(t) with the desired
smoothness assigning increment (for example, 101 values), and plot this fbnction. We have the
following statement:

The resulting plot forfit) is given in Figure 4.8.

1, I

-0.5 1
'%, .

I

-2 ~ I
0 0.02 0.04 0.06 0.08 0.1

Figure 4.8. Plot of the hnction f (t) = sin(100t)e-2' + sin(lOOt)cos(lOOt + l)e-5' 0

One can change the type of line used to connect the points by including a third argument
-' solid

dotted line, and - . ' dashdot line. The default line type
specifying line type. The syntax is plot (x, y f ' - ') . The line types available are:
line (default), I - - I dashed line, I :

Chapter 4: hit4 TLAB Graphics 107

is solid. However, a graph is a discrete-time array. One can use a mark to indicate each discrete
value. This can be done by using a different set of characters to specify the line-type argument. If
we use a ' . ' , each sample is marked by a point. Using a + marks each sample with a + sign, *
uses stars, o uses circles, and x uses x's. For example, assigning the time interval t=O : 1 : 1 2 , let
us calculate x = sint, and plot the function. We have

The resulting plot is illustrated in the Figure 4.9.

-021

-0.4 1
i

I I
-061 4

-0 8

-1

/ I
I - ti

- I - - L - S - J
2 4 6 a 10 12 0

Figure 4.9. The plot of x = sint

We can also plot several graphs on the same axis. For example, let us calculate and plot
two functions x = sint and x = sin(0.5t). We type
>> t=0:.25:12; xl=sin(t); x2=sin(0.5*t); plot(t,xl,t,xl, '+',tlx2,t,x2, '0')
and the resulting plots are illustrated in Figure 4.10.

Figure 4.10. Plots of x = sint and x = sin(0.5t)

The user can change the axes scale, and the logarithmic scale functions are the following:
0 l o g l o g (logarithmic x- and y-axis scale),
0 semi 1 ogy (linear x-axis and logarithmic y-axis scale),
0 semilogx (linear y-axis and logarithmic x-axis scale).

Chapter 4: MATLAB Graphics 108

We can have the text labels on the graphs and axes. The following labeling statements are
used for title, x- and y-axis:

The plot is illustrated in Figure 4.1 1 .

Function x(t)
T---- - I , I- 3 ~~~~ r

"Li I

"0 5 10 15 20 25 30
t (time)

2 + sin t 4 . 0 5 , Figure 4.1 1 . Plot of the function x(t) = e , O I t I 3 0
2-cos t t

The commonly used annotation hnctions are listed in Table 4.6.

Chapter 4: MATLAB Graphics 109

Table 4.6. MATLAB Annotation Functions

The p l o t function allows us to generate multiple curves on the same figure using the

plot(xl,yl,sl,x2,y2, . . . I
following syntax

where the first data set represented by the vector pair (XI, yl) is plotted with the symbol
definition sl, the second data set (x2, y2) is plotted with symbol definition s2, etc. It should
be emphasized that the vectors must have the same length (size). Thus, the length of xl and yl
must be the same. The length (size) of x2 and y2 must be the same, but in general, can be
different from the length of xl and yl. The separate curves can be labeled using legend.

Illustrative Example 4.1.5.
Calculate and plot two functions

x, (0 =

Solution.
The following MATLAB script is developed:

2 + sin t -0 05, 2+sint -02,
e ,O<t<30 and x 2 (t) = e , O < t 1 3 0 .

2 - cosit 2 - cosit

The resulting plots are shown in Figure 4.12.
Functions xl(t) and x2(t)

3

I , ‘ I
0 I -A- L. -----A I/
0 5 10 15 20 25 30

1 (time)

Figure 4.12. Plots of functions

Chapter 4: MATLAB Graphics 1 10

The axis command is used to control the limits and scaling of the current graph. Typing

axis ([min, maxx min, max,]
we assign a four-element vector to set the minimum and maximum ranges for the axes. The first
element is the minimum x-value, while the second is the maximum x-value. The third and fourth
elements are the minimum and maximum y-values, respectively.

Let us calculate (for OSt 530 sec) and plot (in O<t 520 sec) functions
2 +sint

e . The plots should be plotted using the x-axis 2 + sin t -0.051
e and x2(t) =

X l W = 2 - cosa t 2 - cosa t

from -1 to 3. The following MATLAB script is used:

The plots are documented in Figure 4.13.

3

2

- .- v

N

u
m

X I

TO

p -1

X

0

m

._

2 u-

-1

-1

. _ I

\

Functions xl(t) and @(t)

0 5 10
t (time)

15 20

2 + sin t -0,05r 2 + sin t Figure 4.13. Plots of xl (t) = e and x 2 (t) = e
2 - cosa t 2 - c o s a t

It was illustrated that MATLAB provides the vectorized arithmetic capabilities.

Illustrative Example 4. I. 6.

X X
Calculate functions f , (x) = - and f,(x) = i f - 5 5 x 5 5 .

1 f X 4 1 +sin x + x

Solution.

We have the folowing statement:
>> x--5:0.25:5; fl-x. =x, / (l+sin (x) +x. ̂ 4) ;plot (x, fl, ' + I , x, f 2 , '0')

The graphs of these two functions are illustrated in Figure 4.14.

Chapter 4: MTLAB Graphics 1 1 1

X X Figure 4.14. Plots of the functions A(X) =- and f2(x)= , - 5 1 x 1 5 0
1+x4 l+sinx+x4

The hold command will keep the current plot and axes even if you plot another graph.

Let us calculate the nonlinear functions x(t) = - cos(t + z) , y(t) = 1 I sin(t + x)

and plot them if - 1On I t I1 On . Then, holding the plot, calculate the function lOe", for z = -
0.01 + 0.5i to z = - 1 + 50i (z is the complex variable, and let the size of the z array be 991). Plot
the function 1 Oe".

The MATLAB script is given below, and the resulting plots are given in Figure 4.15.

The new graph will just be put on the current axes.
sin 50t I sint50t I

-8 ,

-20 -10 0 10 -30
i -10

-40 -50

Figure 4.1 5. Functions plots

Chapter 4: MA T U B Graphics 1 12

Plotting Multiple Graphs. The s u b p l o t command allows the user to display multiple
plots in the same window and print them together. In particular, s u b p l o t (m, n , p) partitions
the figure window into an m-by-n matrix of subplots and selects the pth subplot for the current
plot. The plots are numbered along first the top row of the figure window, then the second row,

and so on. The order for p is as follows: 121. Thus, s u b p l o t partitions the window into
L I J

multiple windows, and one or many of the subwindows can be selected for the specified graphs.
In general, s u b p l o t divides the graphics window into the specified number of quadrants. As
mentioned, m.is the number of vertical divisions, n is the number of horizontal divisions, and p is
the selected window for the current plot (p must be less than or equal to m times n). For
example, s u b p l o t (1, 2 , 1) will create two full-height, half-width windows for graphs, and
select the first (left window) as active for the first graph.

To plot the data, the basic steps must be followed. To illustrate the MATLAB capabilities,
we study the modified previous example with the sequential steps as documented in Table 4.7.

Chapter 4: MATLAB Graphics 113

To plot the functions, the ezplot plotter is also frequently used. Let us plot the function

y = sin4 xcosx+e-l”I c0s4 x using ezplot. To plot this function, we type

Chapter 4: MATLAB Graphics 1 14

As given in the MATLAB help, to create a helix, we type in the Command Window

Chapter 4: MATLAB Graphics 115

The three-dimensional plot is documented in Figure 4.1 8.

Figure 4.18. Three-dimensional plot, i (x , y) = x2ye-xz-y2 if - 4 1 x 1 4 and - 4 1 ~ 1 4 .

Illustrative Example 4.2.1.

Calculate and plot the sinc-like function z(x, y) =
sin x + y + E 7, &=lxlO-'O if 4-

-1O<x<lO and -1O<y110.
Solution.
We apply meshgrid, plot3 and mesh. In particular, making use of

>> [x,y]=meshgrid([-10:0.2:10]) ;xy=~qrt(x.~2+y.~2)+le-10;z=sin(xy) ./xy;plot3(x,y,z)

>> [x, y] =meshgrid([-1O:O. 2: 101) ;xy=sqrt (x. "2+y. "2) +le-10; z=sin (xy) . /xy;mesh (z)
and

the three-dimensional plots are illustrated in Figure 4.19.

Chapter 4: MATLAB Graphics 1 16

sin Jx' + y 2 + E
Figure 4.1 9. Three-dimensional plots of z(x, y) = 0

JXjG

Using the subplot commands, let us plot four mesh-plots. We have the following MATLAB
statements

and the corresponding three-dimensional plots are documented in Figure 4.21.

Chapter 4: MATLAB Graphics 117

mesh plot

surfc plot

surf plot

-10 -10 -10- -10
-

Figure4.21. Plotof z(x,y)=l-+x2-+y2 if - 1 0 1 x 1 1 0 and - 1 O I y I l O

MATLAB creates a surface by calculating the z-points (data) above a rectangular grid in
the xy plane. Plots are formed by joining adjacent points with straight lines. MATLAB generates
different forms of surface plots. In particular, mesh-plots are wire-frame surfaces that color only
the lines connecting the defining points, while surface plots display both the connecting lines and
the faces of the surface in color. Functions mesh and s u r f create surface plots, meshc and
s u r f c generate surface plots with contour under-plot, mesh z creates surface plots with curtain
plot (as the reference plane), pcolor makes flat surface plots (value is proportional only to
color), s u r f 1 creates surface plots illuminated from a specified direction, and s u r f a c e
generates low-level hnctions (on which high-level functions are based) for creating surface
graphics objects.

The mesh and s u r f functions create three-dimensional surface plots of matrix data.
Specifically, if 2 is a matrix for which the elements Z(ij) define the height of a surface over an
underlying (ij) grid, then mesh (Z) generates and displaces a colored, wire-frame three-
dimensional view of the surface. Similarly, s u r f (Z) generates and displaces a colored,
faceted three-dimensional view of the surface.

The functions that generate surfaces can use two additional vector or matrix arguments to
describe surfaces. Let 2 be an rn-by-n matrix, x be an n-vector, and y be an m-vector. Then,
mesh (x, y, Z, C) gives a mesh surface with vertices having color C(ij) and located at the
points (xv), y(i), Z(ij)), where x and y are the columns rows of 2.

If X, K 2, and C are matrices of the same dimensions, then mesh (X , Y, Z , C) is a mesh
surface with vertices having color C(i j) located at the points (X(ij) , Y(i j) , Z(ij)).

Using the spherical coordinates, a sphere can be generated and plotted applying the
Hadamard matrix (orthogonal matrix commonly used in signal processing coding theory). We
have the MATLAB statement as given below,

and Figure 4.22 illustrates the resulting sphere.

Chapter 4: MATLAB Graphics 1 18

-1 -1

Figure 4.22. Three-dimensional sphere

Finally we illustrate two- and three-dimensional graphics through examples as given in
Table 4.8.

Table 4.8. MATLAB Two- and Three-Dimensional Graphics

Problems with MATLAB Syntax
>> x=-10:0.1:10; y=x.^3; plot(x,y)

>> t=-10:0.1:10;
>> x=t .^2;y=t .^3;z=t .-4; plot3 (x, y, z) ;

Plot

loow 1
aooo

4000

I

,

-500
-1000 0

Chapter 4: MATLAB Graphics 119

>> t=-Z*pi:O.l:2*pi;
,> x=sin(t); y=cos(t); plot(x,y)

>> t=-Z*pi:O.l:Z*pi;
>> x=sin(t) .*cos(t); y=cos(t);
’> plot(x,y)

>> t=-lO*pi:O.l:lO*pi;
>> x=sin(t) ; y=cos (t) ; z=t;
>> plot3 (x, y , z)

>> t=-5*pi:O.l:5*pi;
>> x=sin(t) .*cos(t);
>> y=cos (t) ; z=t;
>> plot3 (x, y, 2)

,

,’

- 0 4 ‘ /”
-0 6

.40<

0.5

-1 -1

-
-1 -05

Chapter 4: MA TLAB Graphics 120

>> t=-lO*pi:O.l:lO*pi;
>> x=sin(t) ; y=cos (t) .*cos (t) ;
>> z=sin (t) . *cos (t) ;
>> plot3 (x, y, z)

>> t=-lO*pi:O.l:lO*pi;
>> x=sin (t) .*sin (t) ;

>> z=sin (t) . *cos (t) ;
>> y=cos (t) .*cos (t) ;

>> *plot3 (x, y, z)

>> y=cos (t) .*cos (t) ;
>> z=exp(-t) .*sin(t) .*cos(t);
>> plot3 (x, y, z)

>> t=linspace (-2,3,50) ;
>> [x,yl=meshgrid(t,t);
>> z=-l./(l+x.^4+~.~4) ;contour3(z);

0 5

0

-0 5
1

,
0 3 i

\

\

0 0

Chapter 4: MATLAB Graphics 121

1

- r - j aak

a4 / \ - 04-

Q6-
'\

a6 \~
a2 i- 02,

Or 0
r-

MATLAB has animation capabilities. Advanced animation functions, commands and examples are

As illustrated in Table 4.8, the circle was calculated and plotted using the MATLAB statement
reported in the specialized books and user manuals. Let us illustrate the simple examples.

1 --_ ,

, ,

\
'\!

-\
,--

I

I

Figure 4.23. Bead location and circular path

Using movie, moviein, and getframe, the movies can be made. In particular, the
animated sequence of plots are used to create movies. Each figure is stored as the movie frame,
and frames (stored as column vectors using getframe) can be played on the screen. The
generalized and specific MATLAB scripts are given below
Nframes=3; % assign the number of frames
Mframe=moviein(Nframes); % frame matrix
for i=l:Nframes
x=[I ; y = [1 ; z = [1 ; % create the data
plot3 (x,y, z) or plot (x,y) ; % other 3D and 2D plotting can be used
Mframes (: , i)=getframe;
end
N=2 ;
movie (Mframe, N) % play the movie frames N times
and
t=-2*pi:O.l:2*pi;
Nframes=3; % number of frames
Mframe=moviein(Nframes); % frame matrix
for i=l:Nframes
x=sin (t) ; y=cos (t) ; % data

Mframes (:, i) =getframe;
end
for j=1 :Nframes
x=sin(t); y=sin(t) .*cos(t); % data

Mframes(:,j)=getframe;
end
N=2 ;
movie (Mframe,N) % play the movie frames N times

plot (x, Y) ;

plot (x, Y) ;

The resulting frames are documented in Figure 4.24.

Chapter 4: MATLAB Graphics 122

Figure 4.24. Movie frames

It is obvious that for loops can be used. A simple example is given below to clculate the
quadratic function x2 in the region from - 8 to 8 and increment 2. We have the following
MATLAB statement,
for i=-8:2:8

end

and the numerical values are given below:
i =

x=iA2; i, x

-8

64
x =

i =
-6

36

-4

16

x =

i =

x =

Chapter 4: MATLAB Graphics 123

16

% data

As an illustrative example, the reader is advised to use the following MATLAB script to
create a “movie”.
t=-2*pi:O.l:2*pi;
Nframes=50; % number of frames
Mframe=moviein(Nframes); % matrix frame

for i=l:Nframes

x=sin(lO*i*t) ; y=cos (10*i*t);

Mframes (:, i)=getframe;
end
for j=l:Nframes

x=sin (2* j*t) ; y=sin (4* j*t) . *cos (6* j*t) ; % data

Mframes (:,])=getframe;
end
N=2 ;
movie (Mframe,N) % play the movie frames N times
Four of the resulting frames are given in Figure 4.25.

i=O; j=O;

i=i+l;

plot (x, Y) ;

j=j+l;

plot (x, Y) ;

0

0

0

a

n

Q

n

n

I 0 5 o 05 1 1 n 5 0 0 5 1

Figure 4.25. Four movie frames

Another example which can be used is based on the MATLAB script given below
t=-2*pi:O.l:2*pi;
Nframes=5; % number of frames
Mframe=moviein(Nframes); % matrix frame

for i=l:Nframes
i=i+l ;

i=O; j=O;

for j=l:Nframes
j=j+l;

x=sin(i*j*t); y=cos(i*j*t); % data

Chapter 4: MATLAB Graphics 124

plot (x, y) ;
Mframes(:,i)=getframe;

end
N=2 ;
movie (Mframe,N) % play the movie frames N times

end

The MATLAB script which makes the three-dimensional "movie" is documented below:
t=-3:0.05:3;
Nframes=6; % number of frames
Mframe=moviein(Nframes); % matrix frame

for i=0:2:Nframes

[x,y]=meshgrid([t]) ;
xy=sqrt(x.^(iA2)+y.^ (i^2))+le-5; z=sin(xy) ./xy;
plot3(x,y,z);
Mframes (:, i) =getframe;
end
for j =O : 2 : Nf rame s

j = j + 2 ;
[x, y] =meshgrid ([t]) ;
xy=sqrt(x."(2*j)+y."(4*j))+le-5; z=cos(xy).*sin(xy)./xy;
plot3 (x, y, z) ;
Mframes(:,j)=getframe;
end
N=2 ;
movie (Mframe,N) % play the movie frames N times

i=O; j = O ;

i=i+2;

To create a graph of a surface in three-dimensional space (or a contour plot of a surface),
it was shown that MATLAB evaluates the function on a regular rectangular grid. This was done by
using meshgrid. For example, one creates one-dimensional vectors describing the grids in the
x- and y-directions. Then, these grids are spead into two dimensions using meshgrid. In
parti cu 1 ar,

Using the meshgrid comand, we created a vector X with the x-grid along each row, and
a vector Y with the y-grid along each column. Then, using vectorized functions and/or operators,
it is easy to evaluate a function z =Ax,y) of two variables (x and y) on the rectangular grid. As an
example,
i> z=sin(X) .*cos(Y) .*exp(-O.O01*X."2);
Having created the matrix containing the samples of the function, the surface can be graphed
using either mesh or the surf,
>> mesh (x, y, z)
>> surf (x, y, z)
and the resulting plots are given in Figures 4.26.a and b, respectively. The difference is that
surf shades the surface, while mesh does not.

Chapter 4: WTLAB Graphics 125

_. _ _ - - I - . ,
- _ - - I - _

_ - - I

40 40

0 0 0 0

a

Figures 4.26. Three-dimensional plots
b

In addition, a contour plot can be created using the contour function, as in Figure 4.27.

Chapter 4: MA TLAB Graphics 126

The resulting plot is shown in Figure 4.28.
Sinusoidal function

T- -7- 7 --T - -I

I I I I
I I , I 1

time, t [second]

Figure 4.28. Plots of functions x(t) = 2 + 3 sin(nt + 10)e-0.35'

Example 4.3.2.
Calculate and plot the discrete function x(n) = 25 cos(m + 5)e4.1fl if 0 5 n I 40.

Solution.
The following MATLAB script is developed using the s t e m function:

The resulting plot is documented in Figure 4.29.

0 5 10 15 20 25 30 35 40

Figure 4.29. Plots of functions x (n) = 25cos(m f5)e-O."

Chapter 4: MATLAB Graphics

Elongation (inches x 1 0-3)
0
I

127

Increasing Tension Force (Ibs) Decreasing Tension Force (Ibs)
0 0

1.000 0

Example 4.3.3.
The experimental data of tension in a steel bar is given by Table 4.9. Plot the two sets of

experimental data with elongation as the independent variable and the tension as the independent
variable. Connect the data points point-to-point with line segments. Label the curves with either
t e x t or gtext.

2
3
4
5
6
7
8
9
10

Table 4.9. Experimental Data to be Plotted

1,700 1,500
3,300 2,200
4,500 3,600
7,000 5,900

10,400 8,700
12,100 1 1,400
13,300 12,900
14,100 13,300
14,700 14,700

Solution.
The MATLAB file written to solve the problem is documented below,

The resulting plot is illustrated in Figure 4.30.

Chapter 4: MATLAB Graphics 128

Tenslon of Steel Bars
- 7

,-

/ 1

I I/ Decreasingitension force;

,I/->- I

0 2 4 6 8
Tension Force (Ibs)

Figure 4.30. Tension in the steel bar

0

Example 4.3.4.
The height h(t) and horizontal distance x(t) traveled by a ball thrown at an angle A with a

speed v are given by the following equations: h(t) = vt sin A --+gt2 and x(t) = vtcos A . The
acceleration due to gravity is g = 9.81 dsec2. Solve the following problems.

a. Suppose the ball is thrown with the velocity v = 10 d s e c at an angle 35". Compute how
height of the ball will change and how long it will take the ball to hit the ground. This
problem can be solved using graphical and analytical methods.
Use the values for v and A to numerically calculate and plot the ball's trajectory (plot h
versus x for positive values h). Use a x i s to restrict the height to positive values.
Plot the trajectories for ~ 1 0 d s e c corresponding to any three values of the angle A . Use
a x i s to restrict the height to positive values. Use different line types for the three curves.

b.

c.

Solution.
Here is the MATLAB script to be used:

Chapter 4: MATLAB Graphics

I I I I
I
I 20 degrees
+ i- 30degrees -
I

45 degrees ___
v z 3 t
- 2 1 - _ _ _ _ - _ _ I _ _ _ _ _ _ L _ _ _ _ _ _ - _r__ _ _ 7 T T L

129

I ne resulting plots are aocumentea in r igure 4.3 1 .

Ball Trajectory (Horizontal and Vertical Distances) as a Function of Time

Horizontal Distance Traveled x(t) (meters)

Figure 4.3 1 . Ball trajectory

Chapter 4: MATLAB Graphics 130

Four plots are documented in Figure 4.32.

Chapter 4: MATLAB Graphics 131

Linear Plot of x versus y Loglog Plot of x versus y
1 1500 r-*--.-- I. ,. ~ . . _ _ _ ~ ~ .

, I I I l l

Semilogy PI& of x versus y Semilogx Plokof x versus y
I , , I l l

A

I I , ' , , I

X X

Figure 4.32. Plots 0

Example 4.3.6.
The bulk modulus of Sic versus temperature is given as [5] :
B = [203~=20, 200~=250, 1 ~ ~ T = S O O , 1 9 4 ~ = 7 5 0 , 191~=1000, 1 8 8 ~ = 1 2 0 0 , 1 8 6 ~ = 1 4 0 0 , 1 ~ ~ T = I S O O] .

The temperature is given in "C. Perform the data fitting.

Solution.
The interpolation is performed using the s p l i n e solver (spline fit). The MATLAB file is:

T=[20 250 500 750 1000 1200 1400 15001; % Temperature Data Array
B=[203 200 197 194 191 188 186 1841; % Bulk Modulus Data Array
Tinterpol=20:10:1500;
Binterpol=spline(T,B,Tinterpol); % Spline Interpolation
plot (T, B, ' 0' , Tinterpol, Binterpol, ' - ') ;
xlabel ('Temperature, deg C ') ;
ylabel('Bulk Modulus, GPa') ;
title('Temperature-Bulk Modulus Data and Spline Interpolation');
The resulting temperature - bulk modulus plot of the interpolated spline data (solid line) and the
data values used are given in Figure 4.33.

% Plotting Statement

Chapter 4: MATLAB Graphics 132

Temperature-Bulk Modulus Data and Spline Interpolation
204 7- --- - - ~ - I

200

___ -L 184'
0 500 1000 1

Temperature, deg C
30

Figure 4.33. Temperature -bulk modulus data and its spline interpolation. 0

REFERENCES

1 .
2.

3.
4.

5.

MTLAB 6.5 Release 13, CD-ROM, Mathworks, Inc., 2002.
Hanselman, D. and Littlefield, B., Mastering MTLAB 5, Prentice Hall, Upper Saddle River, NJ,
1998.
Palm, W. J., Introduction to M T U B for Engineers, McGraw-Hill, Boston, MA, 2001.
UserS Guide. The Student Edition of WTLAB: The Ultimate Computing Environment for
Technical Education, Mathworks, Inc., Prentice Hall, Upper Saddle River, NJ, 1995.
Lyshevski, S. E., MEMS and NEMS: Systems, Devices, and Structures, CRC Press, Boca Raton,
FL, 2002.

Chapter 5 MATLAB Applications

Chapter 5

133

MATLAB APPLICATIONS: NUMERICAL SIMULATIONS OF
DIFFERENTIAL EQUATIONS AND INTRODUCTION TO

DYNAMIC SYSTEMS

5.1. Solution of Differential Equations and Dynamic Systems Fundamentals

To study real-world systems, one can use the MATLAB environment [11. In particular, the
dynamic systems are modeled using lumped-parameters and high-fidelity mathematical models
given in the form of nonlinear differential (ordinary and partial) and difference equations [2 - 51.
These equations must be numerically or analytically solved, and the MATLAB environment offers
the needed features. Then, the data-intensive analysis can be accomplished in MATLAB. The
commonly used solvers to numerically solve ordinary nonlinear and linear differential equations
are the ode23, ode113, odel5S, ode23S, ode23T, ode23TB, and ode45 solvers. Below
is the description of the ode 4 5 solver.
>> help ode45
ODE45 Solve non-stiff differential equations, medium order method.

[T,Y] = ODE45(ODELWN,TSPAN,YO) with TSPAN = [TO TFINAL] integrates the
system of differential equations y' = f(t,y) from time TO to TFINAL with
initial conditions YO. Function ODEFUN(T,Y) must return a column vector
corresponding to f(t,y). Each row in the solution array Y corresponds to
a time returned in the column vector T. To obtain solutions at specific
times TO,Tl, ..., TFINAL (all increasing or all decreasing), use
TSPAN = [TO T1 ... TFINAL].
[T,Y] = ODE45(0DEFUN,TSPAN,YO,OPTIONS) solves as above with default
integration properties replaced by values in OPTIONS, an argument created
with the ODESET function. See ODESET for details. Commonly used options
are scalar relative error tolerance 'RelTol' (le-3 by default) and vector
of absolute error tolerances 'AbsTol' (all components le-6 by default).

[T,Y] = ODE45(0DEFUN,TSPAN,YO,OPTIONS,Pl,P2.. .) passes the additional
parameters P1, P2,. . . to the ODE function as ODEFUN(T,Y,Pl, P2.. .) , and to
all functions specified in OPTIONS. Use OPTIONS = [I as a place holder if
no options are set.

ODE45 can solve problems M(t,y)*y' = f(t,y) with mass matrix M that is
nonsingular. Use ODESET to set the 'Mass' property to a function MASS if
MASS(T,Y) returns the value of the mass matrix. If the mass matrix is
constant, the matrix can be used as the value of the 'Mass' option. If
the mass matrix does not depend on the state variable Y and the function
MASS is to be called with one input argument T, set 'MStateDependence' to
'none'. ODE15S and ODE23T can solve problems with singular mass matrices.

[T,Y,TE,YE,IE] = ODE45(ODEFUN,TSPAN,YO,OPTIONS.. .) with the 'Events'
property in OPTIONS set to a function EVENTS, solves as above while also
finding where functions of (T,Y), called event functions, are zero. For
each function you specify whether the integration is to terminate at a
zero and whether the direction of the zero crossing matters. These are
the three vectors returned by EVENTS: [VALUE,ISTERMINAL,DIRECTION] =
EVENTS(T,Y). For the I-th event function: VALUE(1) is the value of the
function, ISTERMINAL(I)=l if the integration is to terminate at a zero of
this event function and 0 otherwise. DIRECTION(I)=O if all zeros are to
be computed (the default), +1 if only zeros where the event function is
increasing, and -1 if only zeros where the event function is
decreasing. Output TE is a column vector of times at which events

Chapter 5 MATLAB Applicutions 134

occur. Rows of YE are the corresponding solutions, and indices in vector
IE specify which event occurred.

SOL = ODE45(0DEFUN,[TO TFINAL],YO ...) returns a structure that can be
used with DEVAL to evaluate the solution at any point between TO and
TFINAL. The steps chosen by ODE45 are returned in a row vector S0L.x.
For each I, the column SOL.y(:,I) contains the solution at SOL.x(I).
If events were detected, SOL.xe is a row vector of points at which events
occurred. Columns of SOL.ye are the corresponding solutions, and indices
in vector SOL.ie specify which event occurred. If a terminal event has
been detected, SOL.x(end) contains the end of the step at which the event
occurred. The exact point of the event is reported in SOL.xe(end).

Example
[t,yl=ode45(@vdpl, [O 201, 12 01);
plot (t, y(: ,I)) ;

solves the system y' = vdpl(t,y), using the default relative error
tolerance le-3 and the default absolute tolerance of le-6 for each
component, and plots the first component of the solution.

See also
other ODE solvers: ODE23, ODE113, ODE15.9, ODE23S, ODE23T, ODE23TB
options handling: ODESET, ODEGET
output functions: ODEPLOT, ODEPHAS2, ODEPHAS3, ODEPRINT
evaluating solution: DEVAL
ODE examples: RIGIDODE, BALLODE, ORBITODE

NOTE :
The interpretation of the first input argument of the ODE solvers and
some properties available through ODESET have changed in this version
of MATLAB. Although we still support the v5 syntax, any new
functionality is available only with the new syntax. To see the v5
help, type in the command line
more on, type ode45, more off

The following examples illustrate the application of the MATLAB ode 4 5 solver.

MATLA B Illustrative Example.
The following set of two nonlinear differential equations, called the van der Pol

equations,

has been used as an illustrative example to solve ordinary differential equations using different
solvers over the last 18 years (the author integrated this MATLAB example into the engineering
curriculum in 1985). Two m-files [l] to solve these differential equations are given below:

0 MATLAB script with odel5s solver and plotting statements (file name: vdpode . m):
function vdpode (MU)
%VDPODE Parameterizable van der Pol equation (stiff for large MU).
% For the default value of MU = 1000 the equation is in relaxation
% oscillation, and the problem becomes very stiff. The limit cycle has
% portions where the solution components change slowly and the problem is
% quite stiff, alternating with regions of very sharp change where it is
% not stiff (quasi-discontinuities). The initial conditions are close to an
% area of slow change so as to test schemes for the selection of the
% initial step size.
%
% The subfunction J(T,Y,MU) returns the Jacobian matrix dF/dY evaluated

Chapter 5 MATLAB Applications 135

d

0
%
%
%
%
%
%
%
%
%

analytically at (T,Y). By default, the stiff solvers of the ODE Suite
approximate Jacobian matrices numerically. However, if the ODE Solver
property Jacobian is set to @J with ODESET, a solver calls the function
to obtain dF/dY. Providing the solvers with an analytic Jacobian is not
necessary, but it can improve the reliability and efficiency of
integration.

L. F. Shampine, Evaluation of a test set for stiff ODE solvers, ACM
Trans. Math. Soft., 7 (1981) pp. 409-420.

See also ODE15S, ODE23S, ODE23T, ODE23TB, ODESET, @.
8i Mark W. Reichelt and Lawrence F. Shampine, 3-23-94, 4-19-94
% Copyright 1984-2002 The Mathworks, Inc.
% $Revision: 1.18 $ $Date: 2002/04/08 20:04:56 $

if nargin < 1

end
MU = 1000; % default

tspan = [O ; max(20,3*MU)]; % several periods

options = odeset (' Jacobian ' , @ J) ;

[t , y1 = odel5s (@ f , tspan, yo, options, MU) ;

figure;
plot (t,Y (:,I)) ;
title(['Solution of van der Pol Equation, \mu = ' num2str(MU)]);
xlabel (time t') ;
ylabel(solution y-1 I) ;

axis([tspan(l) tspan(end) -2.5 2.51);

yo = [2; 01;

function dfdy = J(t,y,mu)
dfdy = [0 1

-2*mu*y(l)*y(2)-1 mu*(l-y(1)^2) I ;

0 MATLAB script with a set of differential equations to be solved (file name: vdpl0 0 0 . m):
function dydt = vdplOOO (t,y)
%VDP1000 Evaluate the van der Pol ODES for mu = 1000.
%
% See also ODElSS, ODE23S, ODE23T, ODE23TB.

% Jacek Kierzenka and Lawrence F. Shampine
% Copyright 1984-2002 The Mathworks, Inc.
% $Revision: 1.5 $ $Date: 2002/04/08 20:04:56 $

dydt = [y(2); 1000*(1-~(1)~2)*~(2)-y(l)l;

Both files vdpode .m and vdplOOO . m are in the particular MATLAB directory. Let
these files be in the directory cd c: \MATLAB6p5\toolbox\matlab\demos. Then, to run
these programs, we type in the Command Window
>> cd c:\MATLAB6p5\toolbox\matlab\demos

Window
>> vdpode

To perform numerical simulations, run the file vdpode . m by typing in the Command

Chapter 5 MATLAB Applications 136

and pressing the Enter key. The resulting plot for the evolution of the state variable xl (t) is

[:::]=[:I documented in Figure 5.1 (note that the initial conditions were assigned to be xo =

and p = 1000). Please note that in the MathWorks vdpode . m file to solve ordinary differential
equations, the solver ode 15s is used, and the plotting statement is p l o t (t , y (: , 1)) .

Solution of \an der Pol Equation, ,I = 1000
2.5 ~ 1

I
21- ,

I . ' ._
1 . 5 k

I

I
-1 i

i
, , , ,

_- -1 '5 -2 t
i

Figure 5.1. Dynamics of the state x l (t)

The user can modify the file vdpode . m. For example, if we need to plot x ~ (t) and x2(t),

as well as visualize the results plotting xl (t) , x2(t) and t in three-dimensional plot (XI, x2, t) , the
following lines can be added to vdpode . m (the variable x2 was divided by 100):

% Two-dimensional plot

xlabel ('Time (seconds) ') ;
title('So1ution of van der Pol equation: xl and x2/100');
pause

plot (try(: / l), ' - 1 , t,y(:,2) / l o o , ' : ') ;

% 3 - D plot w(ylry2,t)
plot3 (Y (: r 1) ,Y(: , 2) / l o o , t)
xlabel('x1') ylabel('x2/100'), zlabel('time')
text(O,O,Or10 Origin')
The resulting plots are illustrated in Figure 5.2.

Chapter 5 MATLAB Applications 137

Solution of van der Pol equation xl and x2/100

I
I i

~~~ ~~ 

7 ~ 

15, ~~ 

10 I 

51  

I 
1 3000, 

2500 

I E 1500 
0' i -  I 

j 

I 
5l 
10 1 
-15 I ---- -- L-  - i ~ J-- 

I 

I 1 
0 500 1000 1500 2000 2500 3000 

l i m e  (seconds) 

, 

;6--.-.-6-..- 
x2/100 

- 1  
0 Ongin 

A 2  
I 

Figure 5.2. Evolution of the state variables using two- and tree-dimensional plots 0 

Example 5. I .  I. 
Numerically solve a system of highly nonlinear differential equations using the MATLAB 

ode4 5 solver 

4 ( t )  =-15x1 +10~x2~+10xlx2x3,~,(t0)=x,, ,  
dt 

d2 (1) - = -5x1x2 - sin xI + x2 - x3 , x2 ( t o )  = x20 , 
dt 

-5X,X,  + l o x 2  C 0 S X I  -15x3, X3(t0) = x30. 

Two m-files (c5 _ _  1 l a .  m and c5 _ _  1 lb . m) are developed in order to numerically 
simulate this set of nonlinear differential equations. The initial conditions must be assigned, and let 

xo - - [z;:] = [ 1 : 5 1 .  The evolution of the state variables xl(t), x2(t), and xg(t) must be plotted. To 

illustrate the transient responses of x,(t), x ~ ( t ) ,  and x3(t), the p l o t  command is used. Three- 
dimensional graphics is also available and integrated in the first m-file. A three-dimensional plot is 
obtained using xI , x2,  and x3 as the variables by making use of p l  o t 3. Comments, which are not 
executed, appear after the YO symbol. These comments explain particular steps in MATLAB scripts. 

MATLAB script with Ode4 5 solver and plotting (two- and three-dimensional) statements 
using p l o t  and p l o t 3  ( c 5  - -  1 la .m): 
echo on; clear all 
tspan=[O 31 ; % initial and final time 
y0=[15 -15 101'; % initial conditions 
[t,y]=ode45( 'c5_1_lb', tspan,yO) ; %ode45 MATLAB solver 
% Plot of the time history found by solving 
% three differential equations assigned in the file c5-1-1b.m 

xlabel( 'Time (seconds) ' )  ; 
title('So1ution of Differential Equations: xl, x2 and x3'); 
pause 

plot (t, y ( : ,1) , '--' ,t,y(:,2),'-',t,y(:,3),':'); 

% 3-D plot W(yl,y2,~3) 



Chapter 5 MATLAB Applications I3 8 

plot3(y(:, 1) ,Y( :,2) ,Y( :,3) ) 
xlabel ( 'x1' ) , ylabel ( 'x2' ) , zlabel ( 'x3' ) 
text (15, -15,10, 'x0 Initial') 
text(0,0,0,'0 Origin') 
v=axis 
pause; disp ( 'END' ) 

f u n c t i o n  yprime = difer (t,y); 
all=-15; a12=10; a13=10; a21=-5; a22=-2; a31=-5; a32=10; a33=-15; 
yprime= [all*y(l, : ) +al2*abs (y(2, : ) ) +a13*y( 1, : )  *y(2, : ) *y( 3, : ) ; . . . 
a21*y(l, : ) *y(2, : ) +a22*sin(y(l, : ) ) -y(2, : ) +y(3, : )  ; . . . 
a31*y (1, : ) *y(2, : ) +a32*cos (y (1, : ) *y(2, : +a33*y (3, : ) ] ; 

To calculate the transient dynamics and plot the transient dynamics, type in the Command 
window >> c5 _ _  1 l a  and press the Enter key. The resulting transient behavior and three- 
dimensional plot are documented in Figures 5.3 and 5.4. 

MATLAB script with a set of differential equations to be solved (c5-1-lb. m): 

Solution of Differential Equations x l ,  x2 and x3 
I-, -~ 

7 -- 15 

10 

5r 

-10 c 
-15 I 

0 0 5  1 1 5  2 2 5  
Time (seconds) 

Figure 5.3. Evolution of the state variables, xo = x2,, = - 15 [:::I [ :: 



Chapter 5 MATLAB Applications 

1 5 1  10 

139 

--x0 Initial 

u 7  -15 0 
xl _- 

Figure 5.4. Three-dimensional plot 0 

A set of differential equations was assigned. However, to apply MATLAB, first 
mathematical models for real-word systems must be developed. Thus, numerical and analytical 
simulation and analysis of systems is a two-step process. Mathematical models depict the time- 
dependent mathematical relationships among the system’s inputs, states, events, and outputs. 

The Lagrange equations of motion, as well as Kirchhoffs and Newton’s laws, can be 
used to develop mathematical models described by differential or difference equations. The real- 
world systems integrate many components, subsystems, and devices. Multivariable dynamic 
systems are studied with different levels of comprehensiveness. Consider the aircraft in Figure 
5.5. In aircraft as well as in other flight vehicles (missiles, projectiles, rockets, spacecraft, etc.) 
and surfacehndersea vehicles (ships, submarines, torpedoes, etc.), control surfaces are actuated 
by electromechanical actuators. Therefore, the actuator must be studied. These actuators are 
controlled by power amplifiers, and therefore the circuitry must be examined as well. 
Mechanical systems (rigid-body aircraft and actuators’ torsional-mechanical dynamics) are 
modeled using Newtonian mechanics, the electromagnetics of electromechanical actuators are 
studied using Maxwell’s equations, and the circuitry dynamics is usually modeled using 
Kirchhoff s laws [3,4]. 

Figure 5.5. Aircraft 



Chapter 5 MATLAB Applications 140 

The aircraft outputs are the Euler angles 0, $, and i,v . The reference inputs are the desired 
(assigned by the pilot or flight computer) Euler angles, which are denoted as rs ,  r4 and rv . For 

rigid-body aircraft, the longitudinal and lateral dynamics are modeled using the following state 
variables: the forward velocity v; the angle of attack a ; the pitch rate q; the pitch angle 0; the 
sideslip angle p ; the roll rate p ;  the yaw rate r; the roll angle 4 ; the yaw angle i,v . As was 
emphasized, the aircraft is controlled by displacing the control surfaces (right and left horizontal 
stabilizers, right and left leading- and trailing-edge flaps, right and left rudders). That is, a multi- 
input/multi-output dynamic system (e.g., aircraft, submarines, cars, etc.) must be simulated and 
analyzed in the MATLAB environment. 

Having introduced the basics in flight control, the MATLAB demo offers a great number of 
illustrative examples which should be used. For example, the numerical simulations for the F-I4 
fighter are performed as illustrated in Figure 5.6. 

Figure 5.6. Simulations of the F-14 fighter using MATLAB demo 

It was emphasized that the aircraft is controlled by changing the angular displacement of the 
flight control surfaces, and servo-systems are used to actuate ailerons, elevators, canards, flaps, 
rudders, stabilizers, tips, and other control surfaces. To deflect ailerons, canards, fins, flaps, 
rudders, and stabilizers, hydraulic and electric motors have been applied. A direct-drive control 



Chapter 5 MATLAB Applications 141 

surface sew0 driven by an electric motor is shown in Figure 5.7. Using the reference signal (the 
command angular displacement of the control surface), measured current in the phase windings i, 
mechanical angular velocity w, , and actual mechanical angular displacement €I,, the controller 
develops signal-level signals which drive high-frequency switches of the power amplifier. The 
magnitude and frequency of the applied voltage to the phase winding is controlled by the PWM 
power amplifier (see Figure 5.7). 

Figure 5.7. Fly-by-wire flight servo with electric motor and PWM power amplifier 

The electromechanical flight servo-system integrates electromechanical motion devices 
(actuator and resolver) and power amplifier. These components must be modeled and then 
simulated and analyzed in the MATLAB environment. In fact, the analysis performed illustrates 
that the designer must develop accurate mathematical models integrating all components of 
complex multivariable real-world dynamic systems. The state and control variables must be 
defined, and differential equations (mathematical models) must be found with a minimum level 
of simplifications and assumptions. As the mathematical model is developed, the dynamic 
systems can be simulated and analyzed using MATLAB. 

5.2. Mathematical Model Developments and 
MATLAB Applications 

The equations to model the dynamics of mechanical systems can be straightforwardly 
found using Newton’s second law of motion 

C F ( 2 , t )  = m a ,  

where g(2, t )  is the vector sum of all forces applied to the body; ?i is the vector of acceleration 
of the body with respect to an inertial reference frame; m is the mass. 

Hence, in the Cartesian system, or any other coordinate systems, the forces, acceleration, 
velocity, and displacement in one, two, or three dimensions (x, y ,  and z axes in the three- 
dimensional Cartesian system) are examined. One obtains 



Chapter 5 MATLAB Applications 142 

Example 5.2.1. 
Consider a body of mass rn in the xy plane (two-dimensional systems). Derive the 

equations of motion assuming that the external force Fn is applied in the x direction 

( Fa(t,x) = 1OvcoslOOt = 10-cos100t ) and the viscous friction force is Ff, = Bv-; B, is the 

viscous friction coefficient. 

& dx 
dt dt 

Solution. 
The free-body diagram is illustrated in Figure 5.8. 

Figure 5.8. Free-body diagram 

The net force acting in the x direction is found using the time-varying applied force Fa 
and the friction force Ffr .  In particular, 

Hence, the second-order differential equation of motion in the x direction is 
- -  d 'x 
F, - F r  =ma, = m7. 

dt 
We obtain the following second-order differential equation to model the body dynamics 

dx 
dt 

d2x 1 
in the x direction - = - 

dt2 m 
. Using the velocity in the x direction v = - , a set of two 

first-order differential equations results, and 

d v 1  
dt rn 

The sum of the forces acting in they direction is 

where Fg =mg is the gravitational force; FN is the normal force (equal and opposite to the 

gravitational force, e.g., FN = - F g ) .  
The equation of motion in they direction is 

d2Y - -  
F,-F,=O=ma,=m-. 

dt2 



Chapter 5 MATLAB Applications 143 

Newton's second law of rotational motion is 
d2B 
dt2 

C M  = JLX = J- , 

where Z M  is the sum of all moments about the center of mass of a body; J is the moment of 

d28 
dt2 

inertia about the center of mass; a is the angular acceleration, a =-; 8 is the angular 

displacement . 

in the model developments. 
In the next example we illustrate the application of the rotational Newtonian mechanics 

Example 5.2.2. 
Figure 5.9 illustrates a simple pendulum (point mass m) suspended by a massless 

unstretchable string of length 1. Derive the equations of motion (mathematical model in the form 
of differential equations) assuming that the friction force is a linear function of the angular 
velocity (e.g., Tr = B,w); B ,  is the viscous fi-iction coefficient. 

Figure 5.9. Simple pendulum 

Solution. 
The restoring force is F,,, = -mg sin 8 .  

Thus, the net moment about the pivot point 0 is 
E M  = qes, +To -Tf = -mgl sin I9+ T, - B,w , 

We have the following second-order differential equation to model the pendulum motion 
where T, is the applied torque. 

d28 d28 1 
J a  = J- = -mgls ine  +To - B,o , or ~ = -(- mgls in6  + T, - B,w) 

dt2 dt2 J 
where J is the moment of inertial of the mass about the point 0. 

de 
dt 

Taking note of - = w , one obtains a set of two first-order differential equations 

do - ' ( - m g l s i n ~  + T, - B,W), 
dt J 
de 
dt 
-=a. 



Chapter 5 M T L A B  Applications 144 

The moment of inertia is J = mI2 . Thus, we have two linear differential equations 

- = w .  d6 
dt 

This set of differential equations can be numerically simulated in MATLAB using two m- 
files as illustrated in the examples. The pendulum parameters (Bm, m, and I> should be assigned. 

The simulation of a simple pendulum is performed in Chapter 6 (see Example 6.1.2). 
0 

Example 5.2.3. 
A body is suspended from a spring with coefficient k, , and the viscous friction coefficient 

is B, (see Figure 5.10). Derive the mathematical model in the form of differential equations. 

Figure 5.10. 

Solution. 
Using Newton's second law, one finds the resulting second-order differential equation 

d 2 Y  dY m-+ B , - + k , y =  Fa,  
dt2 dt 

which models the body dynamics and, therefore, represents the mathematical model. 0 

The circuitry mathematical models to simulate and analyze the circuitry dynamics are 
found using Kirchhoff s voltage and current laws. The following examples illustrate the 
application of Kirchhoff's laws. 

Example 5.2.4. 
An electric circuit is documented in Figure 5.1 1. Find the mathematical model in the 

form of integro-differential equations. 



Chapter 5 MATLAB Applications 145 

Figure 5.1 1 .  Two-mesh circuit 

Solution. 
Using Kirchhoffs law, we find 

di 1 di 1 L, ’+- l(il -i2)dt = V and L, 2-- l ( i l  - i2)dt +-!- li ,dt = 0.  
dt C, dt C,  C2 

Thus, the integro-differential equations to model the circuit are found. 

Example 5.2.5. 
A buck (step-down) switching converter is documented in Figure 5.  2 3, S 

converter, switch S, inductor L,  and capacitor C have resistances. These resistances are denoted 
as yy, rL , and r,. The resistive-inductive load with the buck emf E, is formed by the resistor r, 

and inductor L, . Derive the mathematical model and study the converter dynamics through 
numerical simulations. 

I7 

3.  In th 

Figure 5.12. Switching converter 

Solution. 
The voltage is regulated by opening and closing the switch S. Thus, this switch, which is 

a high-frequency transistor, open and closed. Correspondingly, differential equations must be 
found for these two switch “states.” One concludes that the voltage at the load is regulated by 
using a pulse-width-modulation (PWM) switching. For lossless switch (if rs = 0 ), the voltage 



Chapter 5 MATLAB Applications 146 

across the diode D is equal to the supplied voltage V, when the switch is closed, and the voltage 
is zero if the switch is open. The voltage applied to the load u, is regulated by controlling the 

switching on and offdurations ( t o n  and toff ). The switching frequency is . These on and 
ton + toff 

offdurations are controlled by u s .  If us = 0, the switch is closed, while if us > 0 , the switch is open. 
0 if ton = 0 

1 if to# = 0 
, d, E[O 11, using the , d,= ton 

ton +‘off 

Making use of the duty ratio d, = 

averaging concept, if rs = 0 we have udN = v, = QDVd. 
ton +‘off 

Using Kirchhoff s laws the following sets of differential equations are derived. 

Switch is closed: 
When the switch is closed, the diode is reverse biased. For t,$ =0, dD = 1 ,  we have 

1 a’~ - (i, - ia> , 
dt C 

di, - 1 (- uC - ( r ,  + rC)l., + rcia - rsi, + v,) , 
dt L 

di, - 1 - - -( u,. + rciL - (ra + rc>ia - E,) . 
dt La 

Switch is open: 
If the switch is open, the diode is forward biased. For d ,  = 0 ( ton  =O), we find 

- diL - - -( 1 - uc - (r,> + rc)iL + rcia), 
dt L 

dt La 
di, - 1 - - -( uc + rci, - (ra + rc)ia - E.) . 

When the switch is closed, the duty ratio is 1 .  In contrast, 
0 if to,, = O  

1 if toff = 0’ i 0. Therefore, d ,  = 

Assuming that the switching frequency is high, 
following augmented set of differential equations to model 

diL - (- uc. - (r12 + rc)iL + r,i, - rsi,d, + V,d,) , 
dt L 
di, - 1 - - -(uc. + rciL - (r, + re$, - E.) . 
dt L, 

Thus, the buck converter dynamics is modeled by 

if the switch is open, the duty ratio is 

one uses the duty ratio to find the 
the converter transients. In particular, 

a set of derived nonlinear differential 
equations. Our next step is to numerically solve these differential equations using MATLAB. By 



Chapter 5 MATLAB Applications 147 

making use of a set of differential equations, two m-files are written to perform simulations and 
visualize the converter dynamics. The following parameters are used: 
rs = 0.025 ohm, rL = 0.05 ohm, r, = 0.05 ohm, ro = 2.5 ohm, C =  0.05 F, L = 0.005 H, La = 0.05 
H, y,  =4OV, Ea = 5  V anddo=0.5. 

The initial conditions are assigned to be iLo [1:] =[!:I * 

MATLAB script (c5-2-5a. m): 
echo on; clear all 
tO=O; tfinal=0.4; tspan=[tO tfinal]; % initial and final time 
y0=[10 5 -51'; % initial conditions 
[t, y] =ode45 ( 'c5-2-5br, tspan, yo) ; % ode45 MATLAB solver 
% Plot of the time history found by solving 
% three differential equations assigned in the file c5-2-5b.m 
% 3-D plot using xl, x2 and x3 as the variables 

xlabel( 'xl I ) ,  ylabel('x2' ) , zlabel( 'x3' ) 
text(10,5,-5, 'x0 Initial') 
v=axis 
pause 
% 3-D plot using xl, x3 and time as the variables 
Plot3 (Y ( :  ,I) r Y  ( : , 3 )  ,t) 
xlabel('xl'), ylabel('x3'), zlabel('time') 
text(l0,-5,0, 'x0 Initial') 
v=axis 
pause 

subplot (2,2,1) ; plot (t, y) ; 
xlabel( 'Time (seconds) ' 1  ; 
title('Dynamics of the state variables'); 
subplot (2,2,2) : plot (t, y ( : ,1) , I - '  ) ; 
xlabel( 'Time (seconds) ' )  ; title ('Voltage uc (xl) , [V] ' ) ; 
subplot (2,2,3) ; plot (t,y(:, 2), '--' ) ; 
xlabel( 'Time (seconds) ' ) ; title ('Current iL (XZ), [A] ' ) ; 
subplot (2,2,4) ; plot (t, y ( : ,3), 
xlabel( 'Time (seconds) ' ) ; title ( 'Current ia (x3), [A] ) ; 
disp ( 'END' ) : 

function yprime=difer (t, y) ; 
% converter parameters 
rs=0.025; rl=0.05; rc=0.05; ra=2.5; C=O.O5; L=O.O05; La=0.05; 
% voltage applied, back emf and duty ratio 
Vd=50; Ea=5; D=0.5; 
% three differential equations to model a buck converter 
yprime=[ (y(2, :)-y(3, : )  ) / C ; .  . . 
(-y(l, : ) - (rl+rc) *y(2, : )  +rc*y(3, : )  -rs*y(2, : ) *D+Vd*D) /L; . . . 
( y ( 1 ,  :)+rc*y(2, : )  -(rc+ra)*y(3, :)-Ea)/Lal ; 

Three-dimensional plots using xl( t ) ,  x2(t), and x3(f) as well as nl(t), x3(t), and t as the 
variables are shown in Figure 5.13. Figure 5.13 also illustrates two-dimensional plots reporting 
the transient dynamics for three state variables uc(t), i ~ ( t ) ,  and ia(t) which are xl(r) ,  x2(t), and 
xj(t) .  We conclude that we performed numerical simulations and visualized the results using 
plotting statements. 

Plot3 (Y ( : ,  1) ,Y ( :  ,2) ,Y( : I31 ) 

% 2-D plots 

: ' ) ; 

MATLAB script (c5 _ _  2 5b. m): 



Chapter 5 MTLAB Applications 148 

Dynamics of the state variables 

\ 

\ \ 7 i 

' \  , . ;- 1 

40 I 

I , 

J 
01 j 

-1 0 L' 
0 0.1 0.2 0.3 0.4 

Time (seconds) 
Current IL (x2), [A] 

-~ ~- 40r- - ~ -  1 

I I 

30 

20 

10 

01 
-1 o L- 

0 0.1 0.2 0.3 0.4 
Time (seconds) 

Voltage uc (XI), [V] 
35 I 

15 i 

- 10 ' 
0 0.1 0.2 0.3 0.4 

10 

5 

0 

Time (Seconds) 
Current ia (x3), [A] 

.. 

-5 
0 0.1 0.2 0.3 0.4 

Time (seconds) 

Figure 5.13. Evolution of the variables (in three dimensions) and transient dynamics 

Making note of the output equation u, = uc + rciL - rci,, the voltage at the load terminal u, 

can be plotted. We type in the Command Window 

The resulting plot for u,(t) is shown in Figure 5.14. 
*rc=O .05;plot ( t , y ( : ,  1) +rc*y(: ,  2 )  -rc*y(:, 3 ) ,  * - I )  ;xlabel('Time (seconds) ' 1  ;title( 'Voltage ua, [Vl ' )  ; 



Chapter 5 MATLAB Applications 149 

1 
10 i-- I---L--l----l---l~ -LL 

0 005  0 1  0 1 5  0 2  0 2 5  0 3  0 3 5  0 4  
Time (seconds) 

Figure 5.14. Transient dynamics for u,, u, = u, + rciL - r,ia 

Example 5.2.6. 
A one-quadrant boost (step-up) switching converter is documented in Figure 5.15 [3, 41. 

The converter parameters are: r, = 0.025 ohm, r, = 0.05 ohm, r, = 0.05 ohm, ra = 2.5 ohm, C = 

0.05 F, L = 0.005 H, La = 0.05 H, V, = 40 V, Ea = 5 V and do= 0.25. 

Figure 5.15. High-frequency switching converter 

Solution. 
When the switch is closed, the diode is reverse biased. Correspondingly, the following set 

of differential equations results: 
1 di, - 1 di, - 1 

-_ du, - __ .  --- ( - ( rL+rs) iL  +v,), - - - ( u c - ( r a + r c ) i ~ - ~ a ) .  
dt dt L dt La 

If the switch is open, the diode is forward biased due to the fact that the direction of the 
inductor current i, does not change instantly. Hence, we have the differential equations 

1 ''a - 1 du, - 1 di, - (iL - ia)  , - - -( - uc - (r,, + r, )iL + rcia + v.), - - -( uc + rciL - (ra + rc)ia - E.) . dt C dt L dt La 

Using the duty ratio do (which can vary from 0 to l), we find the resulting model, and 



Chapter 5 MATLAB Applications 150 

di, - 1 - - -(- uc - (r, + rc)iI, + rcia + ucd, + (rc - rx)iLdD - rciad, + V d )  , 
dt L 

(u(: + rCi, - (ra + rc)ia - rCi ,d ,  - E a )  . ''a - 1 

dt La 

Our goal is to simulate the boost converter, and initial conditions and parameters must be - 

assigned. Let the initial conditions be 

- 5  

Taking note of the differential equations, the following m-files are written to solve 

MATLAB script (c5_-2_6a. m): 
differential equations with the assigned initial conditions, converter parameters, and duty ratio. 

echo on; clear all 
tO=O; tfinal=0.4; tspan=[tO tfinal]; % initial and final time 

[t,y]=ode45('c5_2-6b1, tspan,yO); % ode45 MATLAB solver 
% Plot of the time history found by solving 
% three differential equations assigned in the file c5-2-5b.m 
% 3-D plot using xl, x2 and x3 as the variables 

xlabel ( 'xl ' ) , ylabel ( 'x2 ) , zlabel ( 'x3' ) 
text (10,5, -5, 'x0 Initial' ) 
v=axis 
pause 
% 3-D plot using xl, x3 and time as the variables 
plot3 (y ( : I l l ,  Y ( : I31 It) 
xlabel('xl'), ylabel('x3'), zlabel('time') 
text (10, -5,0, 'x0 Initial' 
v=axis 

% initial conditions 

plot3 (y(:, 1) ,Y ( :  1 2 )  ,Y ( :  I3) 1 

xlabel( 'Time (seconds) ' )  ; 
title('Dynamics of the state variables'); 
subplot(2,2,2); plot(t, 
xlabel( 'Time (seconds) ' tage uc (xl) , [Vl ' 1  ; 
subplot(2,2,3); plot(t, 
xlabel ( 'Time (seconds) rtle ('Current iL (x2), [A] ' ) ; 
subplot (2,2,4) ; plot (t, 
xlabel ('Time (seconds) ' )  ; title( 'Current ia (x3), [A] ' ) ; 
disp('END'); 

MATLAB script (c5-2-6b. m): 
function yprime=difer (t,y) ; 
% converter parameters 
rs=0.025; rl=0.05; rcs0.05; ra=2.5; C=O.O5; L=O.O05; La=0.05; 
% voltage applied, back emf and duty ratio 
Vd-50; Ea=5; D=O. 
% three different ations to model a boost converter 
-rime= [ ( y (2, : ) -y (3, : ) -y (2, : ) *D) /C; . . . 

(-y(1, : ) - (rltrc) *y(2, : ) +rc*y{3, : ) +y(l, : ) *D+ (rc-rs) *y(2, : ) *D- 
rc*y(3, :)*D+Vd)/L;. . . 
( y ( 1 ,  :)+rc*y(2, : )  - (ra+rc)*y(3, : )  -rc*y(2, : )  *D-Ea) /La1 ; 



Chapter 5 MATLAB Applications 151 

40 

20 

Two three-dimensional plots [xl(t) ,  x2(t), x3(t)] and [xl(t), x3(t), t ]  are illustrated in Figure 
5.16. The converter transient dynamics for xl( t ) ,  x2(t), x3(t) are reported in Figure 5.1 6.  

' 

Dynamics of the state wriables 
- 

\ 

100 

50 

0 

-50 
0 0.1 0.2 0.3 0.4 

Time (Seconds) 
Current rL (x2), [A] . 

150 I 

. _._. 
/ 

- 

0 0.1 0.2 0.3 0.4 
Time (seconds) 

Voltage uc (XI), [V] 
- ____. .-. 100 r---- . 

01 
0 0.1 0.2 0.3 0.4 

30 

20 

10 

0 

Time (Seconds) 
Current la (x3), [A] 

-1 0 
0 0.1 0.2 0.3 0.4 

Time (seconds) 

Figure 5.16. State variables evolution and dynamics of the converter 

We conclude that numerical simulations and visualization were performed. In particular, 
the evolution of three state variables uc(t), i ~ ( t ) ,  and ia(t) is documented, and the analysis can be 
performed. 



Chapter 5 MATLAB Applications 152 

5.3. Modeling and Computing Using MATLAB 

It was illustrated that differential equations result as one applies the fundamental laws to 
electrical and mechanical systems. It has been shown that the transient dynamics of electrical 
and mechanical systems are described by linear and nonlinear differential equations. To illustrate 
the similarity of results, and to visualize the results, the equations of motion for some 
electromechanical system elements are shown in Table 5.1 [3]. 

Table 5.1. Basic Elements of Electromechanical Svstems 
Electromechanical System 

Resistance, R [ohm] 

n 

I 
Inductance, L [HI 

1,1 

+ 
Translational damper, B, [N-sec] 

Variables Used 

Applied voltage u,(t) [V] 

Current i ( t )  [A] 

Applied voltage u, ( t )  [V] 

Current i( t)  [A] 

Applied voltage u,(t) [V] 

Current i ( t )  [A] 

Applied force F, ( t )  [N] 

Linear velocity v( t )  [dsec]  

Linear position x( t )  [m] 

Equation 

u,(t) = Ri(t) 

1 
i ( t )  = -u,(t) R 

di( t )  

dt 
u,(t) = L- 

and 
d 4 t )  Fa ( t )  = B,v(t) = B, - 

dt 

1 '  

Bv I" 

x ( t )  = - IFa(r)dr 



Chapter 5 MATLAB Applications 153 

Translational spring, ks [N] 

I Rotational damper, Bm [N-m-sec/rad] 

fi " 

@(t)  4 t >  

kS 

Rotational spring, k, [N-m-sec/rad] 

I Rotational mass (grounded), J [kg-m2] 

Applied force F,(t)  [N] 

Linear velocity v ( t )  [dsec ]  

Linear position x ( t )  [m] 

Applied force F, ( t )  [N] 

Linear velocity v( t )  [m/sec] 

Linear position x ( t )  [m] 

Applied torque T, ( t )  [N-m] 

Angular velocity w ( t )  [radhec] 

Angular displacement B(t )  [rad] 

Applied torque T,(t )  [N-m] 

Angular velocity w ( t )  [rad/sec] 

Angular displacement B(t )  [rad] 

Applied torque T, ( t )  [N-m] 

Angular velocity w( t )  [radhec] 

Angular displacement B( t )  [rad] 

ind 

r 

F'(t) = k, I.( r )dz  
In 

dv d 2 X ( t )  
F,(t)  = m- dt = m- dt2 

in d 

T,(t) = ksQ(t) 

and 

dw d 2 0 ( t )  

dt dt 
T , ( t ) =  J-= J- 



Chapter 5 M4 TLAB Applications 154 

The similarity of equations of motion is evident as one compares the derived dynamics, 
which is given by the corresponding differential equations. Consider the translational and 
rotational (torsional) mechanical systems shown in Figure 5.1 7. 

Figure 5.17. Translational and torsional mechanical systems 

From Newton’s second law, the second-order differential equations of translational and 
torsional dynamics are found to be 

1 .  Translational dynamics: 
d2x dx 
dt dt 

d2B dB 
dt2 dt 

mT + B, -+ k,x = F,(t) , 

2. Torsional dynamics: J-+ B , , , - + k k , B = T , ( t ) ,  

where F,(t) and c(t) are the time-varying applied force and torque; B, and B, are the viscous 
friction coefficients; k, is the translational and rotational (elasticity) spring coefficient. 

Consider two RLC circuits illustrated in Figure 5.18. 
R 

N 
Figure 5.1 8. Parallel and series RLC circuits 



Chapter 5 MATLAB Applications 155 

The energy is stored in the inductor and the capacitor. The integro-differential equation 
(an integral as well as a derivative of the dependent variables appears) for the parallel circuit is 
obtained by summing the currents away from the top node 

du 
u(.r)dz-iL(tO) + C- = i,(t) , 

dt 
10 

R L  

while the integro-differential equation for the series circuit is found by summing the voltages 
around the closed path. In particular, 

di 
i(r)dz-v,(t,)+L--u,(t). 

dt 
10 

c 
By differentiating these equations with respect to time and using the fact that i L ( t O )  and 

vc(tO) are constants, we have 

d2u  1 du 1 di, d2u  1 du 1 1 di, 

dt2 R dt L dt ’ dt2 RC dt LC C dt ’ 
C-++-++u=- or -+--++u=-- 

and 
d2i  di 1 du, d2 i  R di 1 1 du, 

dt2 dt C dt ’ dt2 L dt LC L dt 
L-+R-++j=- or-++-++j=--. 

Parallel and series RLC circuits lead to the second-order differential equations. It is 
evident that these linear differential equations can be numerically modeled in MATLAB using the 
ode solvers that were illustrated. 

It was shown that the mechanical systems and the RLC circuits considered are modeled 
by the second-order differential equations. The analytical solution of linear differential equations 
with constant coefficients can be easily derived. The general solution of the second-order linear 
differential equations is found by using the roots of the characteristic equation. The damping 
coefficient < and the resonant frequency w,, are given by 

R 1 
and c=- ,wo =- ,ao=- 

1 1 5=- 
2RC JLC 2L JLC 

for the parallel and series RCC circuits (for mechanical systems, 5 = ~ Bm and wo =El. 
2Jksm 

We write the differential equation as 
d 2 x  dx 
dt2 dt 
- + 25-+x = f ( t )  

to find three possible solutions examining the characteristic equation 
s2 +2&++w,2 =(s-s*)(s-s2)=0. 

d 
This characteristic equation was found by making use the Laplace operator s = - . Furthermore, 

s2 = - . The characteristic roots (eigenvalues) are given as 

dt 
d 2  
dt2 

s1.2 - - - & - d m  + 5 -wo * 



Chapter 5 MTLAB Applications 156 

Case 1. If 5' > cot, the real distinct characteristic roots s, and s2 result. 

The general solution is x ( t )  = ae")' + beS2' + cf , where coefficients a and b are obtained 

using the initial conditions, cs is the solution due to theforcing functionftfor the RLC circuitsf 

is i , ( t )  and u, ( t ) ) .  

Case 2. For 5' = co,' , the characteristic roots are real and identical, e.g., 
s1 = s2 = -5. 

x(t> = (a + b)e-<' + cr . 

Case 3. If 5' < w i  , the complex distinct characteristic roots are found as 

The solution of the second-order differential equation is given as 

s1,2 = -5k j J m t  - t2 . 
Hence, the general solution is 

Example 5.3.1. 
For the series RLC circuit, find the analytical solutions. Derive and plot the transient 

response due to the unit step input with initial conditions. Assign the following parameters: R = 

0.4 ohm, L = 0.5 H, C =  2 F ,  a = 2 and b =-2.  
Solution. 
For the series RLC circuit, the following differential equation was obtained: 
d2 i  R d i  I . 1 duo 

dt2 L dt LC L dt . 
-++-++z=-- 

R 1  
L LC 

The characteristic equation is s2 + -s + - = 0 . Therefore, the characteristic roots are 

s --R- 2 L  JF LC and S 2 = - L + J ~ .  2 L  

1 , then the characteristic roots are real and distinct. 

1 
then the characteristic roots are real and identical. 

If - < - , then the characteristic roots are complex. (by L:: 
Making use of the assigned values for R, L, and C, one concludes that the underdamped 

series dynamics are given by 

R 1 
where 5=-=0.4 and w - - = l .  

2L " r n  
In the Command Window we type the following statements: 

>> t=0:.01:15; a=2; b=-2; cf=l ;  e=0.4; wO=l; 
>> x=exp(-e*t) .*(a*cos(sqrt (wOA2-eA2)*t)+b*sin(sqrt (wOA2-eA2)*t) )+cf;plot(t,x) 



Chapter 5 MATLAB Applications 

25! 

2 -  

157 

I 

The resulting circuitry dynamics are documented in Figure 5.19. 

1 3 
I 

i 

i 

5 . 5  1 1 
0 5 10 15 

Figure 5.19. Circuitry dynamics due to the unit step input and initial conditions 0 

We have used Newton's and Kichhoff s laws to find the differential equations to perform 
the analysis of mechanical systems and electric circuits. Mathematical models of 
electromechanical systems can be derived integrating differential equations found for electrical 
and mechanical subsystems. Furthermore, the application of MATLAB was illustrated to perform 
numerical simulations. It must be emphasized that the MATLAB environment can be used to 
derive the analytical solution as demonstrated by the following example. 

Example 5.3.2. 
Analytically solve the third-order differential equation 
d3x dx -+ 2-+ 3~ = 4f 
dt3 dt 

using the Symbolic Math Toolbox. 

Solution. 
Using the dsolve solver, we type in the Command Window 

>> ~=dsolve(~D3~+2*Dx+3*~=4*f~) 
The resulting solution is 
x =  
4/3*f+Cl*exp(-t)+c2*exp(l/2*t) *cos (1/2*1lA(l/2) *t) +C3*exp(1/2*t) *sin(l/2*llA (1/2) *t) 

>> pretty(x) 
Using the pretty fbnction, we find 

1/2 
4/3 f + C1 exp(-t) + C2 exp(1/2 t) cos(l/% 11 t) 

Thus, the solution is 



Chapter 5 MATLAB Applications 158 

Using the initial conditions, the unknown constants are found. As an example, let us assign 

the following initial conditions [ ~ $1, = 5,  ( $), = 0 and x, = -5. We have 

>> x=dsolve('D3x+2*Dx+3*x=4*f','D2x(0)=5','Dx(O)=O1,'x(O)=-5'~; pretty(x) 

1/2 
4/3 f + ( -  4/5 f - 2) exp(-t) + ( -  8/15 f - 3) exp(l/2 t) cos(l/2 11 t) 

l/2 1/2 
- i/ia (16 f + 15) 11 exp(1/2 t) sin(l/2 11 t) 

Hence, c1 =-f f - 2 ,  c2 =-kf -3 , and  c3 =-=(16f+lS)f i .  1 

If the forcing fiinction is time-varying, the analytical solution of 
d3x dx 
dt3 dt 
-+ 2- + 3~ = 4f(t) 

is found as 
>> x=dsolve('D3~+2*Dx+3*~=4*f(t)'); pretty(x) 

/ / 
I I  
I 1  
\ /  

4/55 111 I exp(t) f(t) dt expl- 3/2 t) 

1/2 
-3 exp(- 1/2 t) f(t) 11 %1 - 11 exp(- 1/2 t) f(t) %2 dt %2 

\ 

+ I 3 exp(- 1/2 t) f(t) 11 %2 - 11 exp(- 1/2 t) f(t) %1 dt %ll 
I 
/ 

I /  
+ I  

I /  1/2 I 
/ 

I 
/ 

exp(1/2 t) + c1 exp(-t) + c2 exp(1/2 t) %2 + C3 exp(1/2 t) %1 
1/2 

1/2 

$1 := sin(l/2 11 t) 

%2 := COS(l/2 11 t) 

LettingAt) = sin(t) and assuming = 5, - = 0 and x, = -5, we have (3, 
>> x=dsolve ( 'D3x+2*Dx+3*x=4*sin (t ) , 'D2x ( 0 )  =5 I , 'Dx ( 0 )  =O ' , 'x ( 0 )  =-5 ' ) i pretty (x) 

1/2 
2/5 %2 sin(%4) - 2/5 $2 sin(%3) - 2/5 Sil cos(%4) - 2/55 %1 sin(%3) 11 

1/2 1/2 

1/2 1/2 

+ 2/55 %1 sin(%4) 11 + 2/55 %2 COS(%4) 11 

- 4/55 %2 sin(k3) 11 - 4/55 %2 sin(b4) 11 

1/2 1/2 
+ 4/55 %1 cOs(%4) 11 + 4/55 %I COs(%3) 11 + 2/5 %1 COS(%3) 



Chapter 5 MATLAB Applications 159 

1/2 
a2 := COS(l/2 11 t) 

1/2 
a3 := 1/2 (-2 + 11 ) t 

%4 := 1/2 (2 + 11 ) t 
1 / 2  

Thus, the Symbolic Math Toolbox allows us to find the analytical solutions for differential 
equations. 

Example 5.3.3. 
Consider the series RLC circuit given in Figure 5.20. Find the analytical solution using 

MATLAB. Plot the circuitry dynamics assigning circuitry parameters and setting initial 
conditions. 

R 

Figure 5.20. Series RLC circuit 

Solution. 
The state and control vorcing function) variables are used in the development of the 

mathematical model. Using the voltage across the capacitor and the current through the inductor 
as the state variables, and the supplied voltage u,(t) as the control, we have the following set of 
first-order differential equations: 

duc - di 
(2- - i , L- = -u, - Ri -t. U, ( t )  . 

dt dt 
Hence, we have 

duc - 1 di 1 - - --i , - = -( - u, - Ri + u, ( t ) )  . 
dt C dt L 

The analytical solution is found using the Symbolic Math Toolbox. In particular, for 
time-varying u,(t) , we obtain 



Chapter 5 h& T U B  Applications 160 



Chapter 5 MATLAB Applications 161 

25 1 

Figure 5.21. Dynamics for uc(t) and i(t) 0 
The state-space modeling concept is widely used in simulation and analysis. The state, 

control (forcing function), and output variables are used. The state-space techniques are commonly 
applied in simulation and analysis of dynamic systems in the MATLAB environment. Mathematical 
models of dynamic systems are found in the form of linear and nonlinear differential equations. 
In general, a set of n first-order linear ordinary differential equations with n states XER" and rn 
controls (forcing functions) UER"' is written as [4] 



Chapter 5 MATLAB Applications 162 

where A € 1 ~ ~  and BER" are the matrices of coefficients. 
The output equation is expressed as 
y= Hx + Du, 

Nonlinear multivariable dynamic systems are modeled by a set of n first-order nonlinear 
where HER' and D E ~  are the matrices of coefficients. 

differential equations 
ak 
dt 
- = F ( t , x , u ) , x ( t , ) = x , ,  

where t is the time; F ( t , x , u )  is the nonlinear function. 
In the first section of this chapter we considered the aircraft. The aircraft outputs are the 

Euler angles, and the fighter is controlled by deflecting the control surfaces. The multi-input 
(eight control surfaces) - multi-output (three Euler angles 8, 4 ,  and ty to be controlled) nature is 
obvious. The pilot assigns the desired Euler angles rs, r4, and rv (pedal and stick reference 

commands). Using the errors between the reference vector r = r4 and output vector y = . as 

defined by e = r - y = r4 - q5 , the controller u = II(e,x) calculates the control inputs (control 

surface deflections). The aircraft outputs (8, 4 and I,V) can be obtained by using the state 
variables (v, a, q, 8, p, p ,  r ,  4 and w ) .  

Figure 5.22 shows the block diagram representation of the multivariable aircraft with 
nine states x€B9 (v, a, q, 8, p, p ,  r ,  4,  w ) ,  eight control surfaces UER* (right and left 
horizontal stabilizers, right and left leading- and trailing-edge flaps, right and left rudders), three 
outputsyER3 (8, 4 ,  ty ), and three reference inputs ~ E R ~  ( rs, r6,  rv ) [4]. 

[:I [:I 



Chapter 5 MATLAB Applications 163 

Figure 5.22. Block diagram representation of a multi-input/muIti-output aircraft 

The functional block diagram of nonlinear multivariable dynamic systems (n  states, m 

state-space equation 

controls, b reference inputs, and b outputs), which are described by 
du 
- = F(t ,x ,u) ,  x( t , )  = x,, 
dt 

output equation y = H x ,  

is illustrated in Figure 5.23. 

Figure 5.23. Functional block diagram of multi-input/multi-output dynamic systems 

Example 5.3.4. 
Consider the aircraft described by the sate-space differential equations 
x = A x +  Bu , y = Hx + Du, 



Chapter 5 Ah TLAB Applications 164 

1 

0 

0 

0 

0 

0 - 

- dx 
dt 
-- 

,H=[O 0 0 0 0 l]andD=[O] 

where 

$4- 

& 

- h 3  

dr, 

3 
d.6 

dt 

dt 

dt 

dt 

dt 

dt 

/:" - b ' O  
A = /  0 1 

0 0 

l o  0 

l o  0 

= A X +  BU = i t Bu, 

000 -5000 - 

0 0 

0 0 

1 0 

0 1 

0 0 

y = HX + Du = 

2500 - 

0 

0 

0 

0 

1 

50001 0 

0 O l,8= 
O /  0 

+ Du 

Perform numerical simulations using the 1 s im MATLAB solver. 
Solution 
The description of the 1 s im solver is given below. 

>> help lsim 
LSIM Simulate time response of LTI models to arbitrary inputs. 

LSIM(SYS,U,T) plots the time response of the LTI model SYS to the 
input signal described by U and T. The time vector T consists of 
regularly spaced time samples and U is a matrix with as many columns 
as inputs and whose i-th row specifies the input value at time T(i). 
For example, 

simulates the response of a single-input model SYS to the input 
u(t)=sin(t) during 5 seconds. 

For discrete-time models, U should be sampled at the same rate as SYS 
(T is then redundant and can be omitted or set to the empty matrix). 
For continuous-time models, choose the sampling period T(2)-T(1 
enough to accurately describe the input U. LSIM issues a warni 
U is undersampled and hidden oscillations may occur. 

t = 0:0.01:5;  u = sin(t); lsim(sys,u,t) 

LSIM(SYS,U,T,XO) specifies the initial state vector XO at time T ( 1 )  
(for state-space models only). XO is set to zero when omitted. 

LSIM(SYSl,SYS2, . . . ,  U,T,XO) simulates the response of multiple LTI 
models SYSl,SYS2, . . .  on a single plot. The initial condition XO 
is optional. YOU can also specify a color, line style, and marker 
for each system, as in 

lsim(sysl,'r',sys2,'y--',sys3,'gx',u,t). 

Y = LSIM(SYS,U,T) returns the output history Y. No plot is drawn on 
the screen. The matrix Y has LENGTH(T) rows and as many columns as 
outputs in SYS. For state-space models, 

also returns the state trajectory X, a matrix with LENGTH(T) rows 
and as many columns as states. 

For continuous-time models, 

explicitly specifies how the input values should be interpolated 

[Y, T, XI = LSIM (SYS, U, T, XO) 

LSIM(SYS,U,T,XO,'zoh') or LSIM(SYS,U,T,XO,'foh') 



Chapter 5 MATLAB Applications 165 

between samples (zero-order hold or linear interpoloLion). By 
default, LSIM selects the interpolation method automatically based 
on the smoothness of the signal U. 

See also GENSIG, STEP, IMPULSE, INITIAL, LTIMODELS. 
Using this description, we download four matrices, e.g., 

1 0 0 0 0 0; 
0 1 0 0 0 0; 
0 0 1 0 0 0; 
0 0 0 1 0 0; 
0 0 0 0 1 01 ; 

A=[-15 -150 -1100 -4500 -12500 -15000; 

B = [ l  0 0 0 0 O ] l ;  

H=[O 0 0 0 0 11; 
D= [ O ]  ; 

enter the simulation duration as 5 seconds, assign the step input (command), and letting the 
initial conditions for six variables be [ 1 5 0 -5 -1 0 -20 IT 
t=0:.01:5; u=ones(size(t)); xO=[O 10 50 100 -50 -101; 
Typing in the Command Window 
>> [ y , x l = l s i m ( A , B , H , D , u , t , x O ) ;  plot(t,x) 
and pressing the Enter key, the transient dynamics of the aircraft result. Figure 5.24 represents 
the aircraft’s state variable behavior. If one needs to plot the output transient, it can be done 
using the following statement: 
>> plot(t,y) 
The resulting plot is illustrated in Figure 5.24. 

0 

-101 

-15 

-20 1 ‘\,,~ I 

1 

Figure 5.24. State variables and output evolutions due to step input and initial conditions 

The “system” methodology is illustrated for the example under consideration. In 
particular, we use the h e l p  1 s im. The user can define the “system” with six state variables, 
one control, and one output. Then, using the lsim solver, we numerically simulate the 
“systems’’ and find the output responses due to the initial conditions and unit step input. 

States={lxll 1x21 1x31 1x41 1x51 1x61) 
Control= { ‘ u  1 } 
Output=(’y’} 
A=[-15 -150 -1100 -4500 -12500 -15000; 

1 0  0 0 0 0; 



Chapter 5 hit4 TUB Applications 166 

0 1  0 0 0 0; 
0 0  1 0 0 0; 
0 0  0 1 0 0; 
0 0  0 0 1 01 ; 

B = [ l  0 0 0 0 0 1 ' ;  
H=[O 0 0 0 0 11; 
D= [ O ]  ; 
System=ss(A,B,H,D,'statename',States,'inputname',Control,'outputname',Output); 
System 
t=0:.01:5; u=ones(size(t)); xO=[O 10 50 100 -50 -101; 
lsim(System,u, t) ;plot (t,y) ; pause 
step(Systern); % step response with zero initial conditions 
The following system description results in the Command Window 
States = 

'x1' 1x2 I 1x3 I 'X4' 1x5' 'x6' 

Control = 
' U '  

output = 

'Y' 

a =  

xl 
x2 
x3 
x4 
x5 
x6 

xl x2 x3 x4 x5 x6 
- 15 -150 -1100 -4500 -1.25e+004 -1.5e+004 
1 0 0 0 0 0 
0 1 0 0 0 0 
0 0 1 0 0 0 
0 0 0 1 0 0 
0 0 0 0 1 0 

b =  
U 

xl 1 
x2 0 
x3 0 
x4 0 
x5 0 
x6 0 

c =  
xl x2 x3 x4 x5 x6 

y 0 0 0 0 0 1  

d =  
U 

Y O  

Continuous-time model. 
The resulting dynamics are documented in Figure 5.25. 



Chapter 5 MATLAB Applications 

- 

+ 

L 

167 

kd c 

-25 - 
0 5  1 1 5  2 2 5  0 0 ' 5  4 1'5 2 2 '5  3 3'5 4 4'5 !5 O C  -- . ' 

lime (sec) 

Solution. 
Using Kirchhoff s law, which gives the following equations 

a set of two first-order differential equations to model the circuitry dynamics is found to be 
du, - 1 . 

- 1  7 
-- 
dt C 
di 1 
- = -(- uc - Ri + u, ( t ) )  . 
dt L 



Chapter 5 MATLAB Applications 168 

The state and control variables are denoted as 
x,(t) = u( - ( t ) ,  x 2 ( f )  = i(t) and u(t)  = u,(t) . 

Thus, we have 

r r 1  

The matrices of coefficients are found to be A = I $ 1  and B=[!].  
LLJ 1-L -11 

The voltage across the capacitor is the output. Hence, y ( t )  = u c ( t ) .  The output equation is 

where H = [1 01 and D = [O]. 

The simulation is performed assigning R = 1 ohm, L = 0.1 H, and C = 0.5 F. 
Correspondingly, we find the numerical values for matrices to be 

To perform numerical simulations, we download these four matrices: 

These matrices are stored in the memory, and the following matrices are displayed: 
>> A=[O 2; -10 -103 I B= [ O  101 ' ,  H = [ l  01, D=[OI 

A =  
0 2 

-10 -10 
B =  

0 
10 

H =  

D =  
1 0 

0 
Assigning the simulation duration to be 2 seconds, assigning the step input (command) 

with the magnitude 10, and letting the initial conditions be [-5 -1 0 IT, we type 
>> t=O: .001:2; u=lO*ones(size(t) ; x0=[-5 -101 ; 
Typing in the Command Window 
>> [y,x] =lsim(A,B,H,D,u, t,xO) ; plot (t,x) 
and pressing the Enter key, the transient dynamics of the circuit result. Figure 5.27 represents the 
states variable behavior. If we need to plot the output transient (y) and the input command (u), 
the user types the following statements: 

or 
>> plot(t,y,t,u, ' + ' I  
The plots are shown in Figure 5.27. 

>> plot(t,y), hold, plot(t,u, ' + I )  



Chapter 5 MATLAB Applications 169 

-:I , 

0 0 2  0 4  0 6  0 8  1 1 2  1 4  1 6  1 8  2 

I L  

0 02 04 06 0 8  1 12 14 16 1 8  2 
10 ' ' 

Figure 5.27. State variables and output behavior due to input function and initial conditions 
0 

Example 5.3.6. Mathematical model of permanent-magnet direct-current motors 
Develop a mathematical model and build an s-domain block diagram for permanent- 

magnet DC motors. A schematic diagram of a permanent-magnet DC machine (motor and 
generator operation) is illustrated in Figure 5.28 [3]. Perform numerical simulations for a 
permanent-magnet DC motor in MATLAB assigning the following motor parameters: r, = 1 ohm, 
ka= 0.1, La= 0.01 H, Bm= 0.005 and J =  0.001 kg-m2. 

Figure 5.28. Schematic diagram of a permanent-magnet DC motor 

Solution. 
The flux, established by the permanent magnets, is constant. Applying Kirchhoff s 

voltage and Newton's second laws, the differential equations for permanent-magnet DC motors 
are derived using the motor representation documented in Figure 5.28. Denoting the back emf 



Chapter 5 MATLAB Applications 170 

and torque constants as k,  , we have the following differential equations describing the armature 
winding and torsional-mechanical dynamics [3, 41: 

di, - r, . k, 1 
- - -_ I ,  - -ur + -u,, (motor circuitry dynamics) 
dt La L a  Lo 

(torsional-mechanical dynamics) 
dwr ' a  Bnl 1 -=-i --a --T 
dt J a  J J L '  

Augmenting these two first-order differential equations, in the state-space form we have 

An s-domain block diagram of permanent-magnet DC motors is developed and shown in 
Figure 5.29 (this block-diagram is of particular importance if we use SIMULINK). 

Figure 5.29. Block diagram of permanent-magnet DC motors 

As assigned, the simulation is performed assuming the following parameters: r, = 1, ka = 

0.1, La = 0.01, B, = 0.005 and J = 0.001. Taking note that the motor output is the angular 
velocity, we use the following matrices: 

A = [  -100 -10 - 5 ] ,  B=[1:], H=[O I] a n d D =  [O]. 

To perform numerical simulations, we download these matrices: 

Assigning the simulation duration to be 1 second, letting the applied voltage be 10 V (ua 

= 10 V), and setting the initial conditions for two variables to be [0 0IT (i,  = 0 A and wr = 0 
radlsec), we type in the Command Window 
>> t = O :  .001:1; u=lO*ones(size(t)); xO=[O 01;  
>> [y,x] =Isim(A, B, H, D, u, t, x0) ; 
>> plot(t,x); xlabel('Time (seconds)'); title('Angu1ar velocity and current'); 

The motor state variables are plotted in Figure 5.30, e.g., two states i,(t) and wr ( t )  are 
documented. The simulation results illustrate that the motor reaches the angular velocity 200 
radlsec within 1 sec. 

>> A=[-100 -10; 100 51 B=[100 01 I ,  H=[O 11 I D=[OI  



Chapter 5 MTLAB Applications 171 

Angular wlocity and current 
200 ,  -7 -- - -T ~~ 7 ----q 

i I 

-50 1 
0 0 1  0 2  0 3  0 4  0 5  06 07 0 8  0 9  1 

Tlme (seconds) 

Figure 5.30. Motor state variables dynamics: behavior of io(t) and w, ( t )  states 

The simulation of permanent-magnet DC motors is also reported in Examples 6.2.2 and 
6.2.6 using SIMULINK. 0 

REFERENCES 

1. 
2. 
3.  

4. 

5. 

MTUB 6.5 Release 13, CD-ROM, Mathworks, Inc., 2002. 
Kuo, B. C., Automatic Control Systems, Prentice Hall, Englewood Cliffs, NJ, 1995. 
Lyshevski, S .  E., Electromechanical Systems, Electric Machines, and Applied Mechatronics, 
CRC Press, Boca Raton, FL, 2000. 
Lyshevski, S. E., Control Systems Theory with Engineering Applications, Birchauser, 
Boston, MA, 2002. 
Ogata, K., Modern Control Engineering, Prentice-Hall, Upper Saddle River, NJ, 2001. 



Chapter 6: SIMULINK I72 

Chapter 6 

SIMULINK 

6.1. Introduction to SIMULINK 

SIMULINK (interactive computing package for simulating and analyzing differential 
equations, mathematical models, and dynamic systems) is a part of the MATLAB environment [ 11. 
SIMILINK is a graphical mouse-driven program that allows one to numerically simulate and 
analyze systems by developing and manipulating blocks and diagrams. It is applied to linear, 
nonlinear, continuous-time, discrete-time, multivariable, multirate, and hybrid equations and 
systems. Blocksets are built-in blocks in SIMULINK that provide a full comprehensive block 
library for different system components, and C-code from block diagrams is generated using the 
Real-time Workshop Toolbox. SIMULINK is widely used for nonlinear simulations and data- 
intensive analysis of continuous-time (analog), discrete-time (discrete), and hybrid systems. 
Using a mouse-driven block-diagram interface, the SIMULINK diagrams (models) are created and 
edited. These block diagrams ( m d l  models) represent systems modeled in the form of linear and 
nonlinear differential and difference equations which describe the system dynamics [ 1 - 51. 
Hybrid and discrete-even systems are straightforwardly simulated, analyzed, and visualized. The 
distinct advantage is that SIMULINK provides a graphical user interface (GUI) for building models 
(block diagrams) using “click-and-drag” mouse-based operations. 

A comprehensive and complete block library of sinks, sources, linear and nonlinear 
components (elements), connectors, as well as customized blocks (S-functions) provide great 
flexibility, immense interactability, superior efficiency, robustness, and excellent prototyping 
features making use of both top-down and bottom-up approaches. For example, complex system 
can be built using high- and low-level blocks (double-clicking on blocks provides access to the 
low-level blocks). It was illustrated in the previous chapter that systems can be numerically 
simulated (solving differential equations) using a wide choice of methods applying the ode 
solvers. Different methods and algorithms can be used in SIMULINK as well. However, one 
interacts using the SIMULINK menus rather than entering the commands and functions in MATLAB 
Command Window. The easy-to-use SIMULINK menus are particularly convenient for interactive 
design, simulations, analysis, and visualization. 

To run SIMULINK, we type in the Command Window 

and presses the Enter key. 
i 

Alternatively, click on the SIMULINK icon I 
The window shown in Figure 6.1 appears. 



Chapter 6: SIMULINK 

Figure 6.1. SIMULINK window 

To run SIMULINK demonstration programs, type 

The SIMULINK demo window is documented in Figure 6.2. 

173 



Chapter 6: SIMULINK 174 

Figure 6.2. SIMULINK demo window 

To analyze, model, and simulate continuous- and discrete-time dynamic systems 
(described by nonlinear differential and difference equations) block diagrams are used, and 
SIMULINK notably extends the MATLAB environment. SIMULINK offers a large variety of ready- 
to-use building blocks to build mathematical models. One can learn and explore SIMIJLMK using 
the SIMULINK and MATLAB Demos. Users who do not have enough experience within SIMULINK 
will find a great deal of help using these MATLAB and SIMULINK Demos. After double-clicking 
Simulink in the MATLAB Demos, the subtopics become available as shown in Figure 6.2. It must 
be emphasized that different MATLAB and SIMULINK releases are available and accessible to 
users. Figures 6.1 and 6.2 represent SIMULINK windows for MATLAB 6.5, while Figure 6.3 
represents the MATLAB 6.1 release. Though there are some differences, the similarity and 
coherence should be appreciated. 



Chapter 6: SIMULINK 175 

Figure 6.3. MATLAB 6.1 demos: SIMULINK package 

The SIMULINK documentation and user manuals are available in the Portable Document 
Format (pdf). The the h e l p  folder C:\MATLAB6p5\help\pdf-doc\simulink includes the user 
manuals. The pdf files (SIMULINK manuals) in the simulink subfolder are shown in Figure 6.4. 

Figure 6.4. SIMULINK user manuals in the simulink subfolder 

These user-friendly manuals can be accessed and printed, and this chapter does not 
attempt to rewrite the excellent SIMULINK user manuals. For example, a SIMULINK: Model-Based 
and System-Based Design user manual consists of 476 pages. The front page of the manual is 
documented in Figure 6.5 [l]. 



Chapter 6: SIMULINK 176 

SIMULIN~ 
Model-Based and System-Based Design' 

Modding 
I 

Simulation 
I 

implementation 
I 

Using Simulink 
rcrs1m 5 

?be Mathworks 

Figure 6.5. Front page of the SIMULINK: Model-Based and System-Based Design user manual 

With the ultimate goal of providing supplementary coverage and educating the reader in 
how to solve practical problems, our introduction to SIMULINK has step-by-step instructions as 
well as practical examples. A good starting point is simple models (see Figure 6.1). Simple 
pendulum and spring-mass system simulations, tracking a bouncing ball, van der Pol equations 
simulations (covered in Chapter 5 using the MATLAB ode solvers), as well as other examples are 
available. Many examples have been already examined in this book. Therefore, let us start with a 
familiar example, in particular, van der Pol equations. 

Example 6. I .  I .  Van der Pol differential equations simulations in SIMULINK 
In SIMULINK simulate the van der Pol oscillator which is described by the second-order 

nonlinear differential equation 
d 2 x  
-- k(1- x')" + x  = d ( t )  , 
dt  dt 

where d(t) is the forcing function. 



Chapter 6: SIMULINK 177 

[::I = [ -27 - Let k = 10, d(t)  = IOrect(2t), and x0 = 

Solution. 
The second-order van der Pol differential equation is rewritten as a system of coupled first- 

order differential equations 

dx ( t )  2 = -xl + h, - h ; x 2  + d(t) ,  X 2 ( t 0 )  = x 2 0 .  
dt 

It 'should be emphasized that differential equations for the van der Pol oscillator used in 
Chapter 5 

correspond to this example. 

Generator, Gain, Integrator, Sum, and Scope (Figure 6.6). 

The coefficient, forcing function, and initial conditions must be downloaded. 

needed, or typing k in the Gain block as illustrated in Figure 6.6. 

corresponding magnitude 10 and frequency 2 Hz (Figure 6.6). 

The SIMULINK block diagram ( m d l  model) is built using the following blocks: Signal 

Simulation of the transient dynamics was performed assigning k =  10 and d(t)  = lOrect(2t). 

The coefficient k can be assigned by double-clicking the Gain block and entering the value 

By double-clicking the Signal Generator block we select the square function and assign the 
- 

The initial conditions xo = [I::] = [ -22] are assigned by double-clicking the Integrator 

blocks and typing xl0 and x2 0 (the specified values for xl0 and x2 0 are convenient to download 
in the Command Window). Hence, in the Command Window we type 
>> k=10; ~10=-2; ~ 2 0 = 2 ;  

Specifying the simulation time to be 15 seconds (see Figure 6.6 where the simulation 

i b  
parameters window is illustrated), the SIMULINK m d l  model is run by clicking the L icon. 

The simulation results are illustrated in Figure 6.6 (behaviors of two variables are 
displayed by two Scopes). 

The plotting statements can be used, and in the Scopes we use the Data history and Scope 
properties assigning the variable names. We use the following variables: xl and x2. Then, the 
designer types 
>> p l o t  (x ( : ,1) , x ( : ,2)  ) 
>> p l o t  (xl( :, 1) ,xl(: , 2 )  ) 

The resulting plots are illustrated in Figure 6.7. 



Chapter 6: SIMULINK 178 

Figure 6.6. SIMULINK block diagram (6-1-1 . m d l )  

Transient behavior for XI Transient behavior for x2 

Figure 6.7. Dynamics of the state variables 



Chapter 6: SIMULINK 179 

Many illustrative and valuable examples are given in the MATLAB and SIMULINK demos, 
and the van der Pol equations simulations are covered. By double-clicking the van der Pol 
equations simulation, the SIMULMK block diagram appears as shown in Figure 6.8. In particular, 
we simulate the following differential equations: 

Figure 6.8. SIMULINK demo window, block diagram to simulate the van der Pol 
equations, and scope with the simulation results 0 

Example 6.1.2. Simple pendulum 
Simulate a simple pendulum, studied in Example 5.2.2, using the SIMULINK demo. 
Solution. 
Double clicking the simple pendulum simulation in the SIMULINK demo library, the 

SIM~JLINK block diagram (model window that contains this system) appears. This m d l  model 
(block diagram) is documented in Figure 6.9. 



Chapter 6: SIMULINK 180 

~ _ _ _ _ .  __ ~ 

Figure 6.9. SIMULINK demo window and block diagram to simulate a simple pendulum as 
well as perform animation 

The equations of motion for a simple pendulum were derived in Example 5.2.2 using 
Newton's second law of rotational motion. In particular, we found that the following two first- 
order differential equations describe the pendulum dynamics: 

dw 1 d6 - = - ( - m g l s i n ~ + ~ ,  -B,w) ,  -=o 
dt J dt 

The moment of inertia is given by J = mZ2 . Hence, we have 
dw 1 
- = -&sin B+ T z ,  
dt I ml 
dB 
dt 

These equations are clearly used in the SIMULINK block diagram documented in Figure 
6.9. We simulate the pendulum by clicking "- - Simulation, and then clicking Start (Start button on 

the SIMULINK toolbar) or clicking the L icon. As the simulation runs, the animation that 
visualizes the pendulum swing becomes available (Figure 6.9). 

-=a. 

b 



Chapter 6: SIMULINK 181 

All demo SIMULMK models can be modified. For example, since we use the differential 
equations, which simulate the pendulum dynamics, the state variables (angular velocity w and 
displacement 6 )  can be plotted. We use two Scopes and XY Graph blocks (Sinks SIMULINK 
blocks), and the resulting modified SIMULINK block diagram is documented in Figure 6.10. As 
illustrated in Figure 6.1 0, we set the “Stop time” to be 60 seconds. 

Figure 6.10. SIMULINK block diagram to simulate the simple pendulum 

The resulting dynamics and the xy plot are illustrated by the two Scopes and XY Graph 
blocks. In particular, the simulation results are shown in Figure 6.1 1 .  

Figure 6.1 1 .  Simulation results for the simple pendulum 



Chapter 6: SMULINK 182 

To start, stop or pause the simulation, the Start, Stop, and Pause buttons are available in 
the Simulation menu (Start, Stop, and Pause buttons can be clicked on the toolbar as well). 

One can open SIMULINK, Aerospace, CDMA, Communication, DSP, other Blocksets, as 
well as the Control System Toolbox, Fuzzy Logic Toolbox, Real-Time Workshop, SIMULINK 
Extra, System 1D (identification) Blocks, etc. Figure 6.12 documents the SIMULINK Library 
Browser accessible by clicking the Continuous, Math Operation, and Sinks SIMULINK libraries. 

Figure 6.12. Continuous, Math Operation, and Sinks SIMULINK libraries 

The SIMULINK libraries to simulate simple mechanical and power systems (applicable for 
educational purposes) are available: see SimMechanics (Sensors & Actuators) and 
SimPowerSystems (Elements) illustrated in Figure 6.13. 



Chapter 6: SIMULINK 

Figure 6.1 3. SIMULINK Library Browser: SimMechanics (Sensors & Actuators) and 
SimPowerSystems (Elements) 

183 



Chapter 6: SIMULINK 184 

It was emphasized that the SIMULINK windows are different for distinct MATLAB releases. 
Figure 6.14 illustrates MATLAB 6.1. By clicking on Simulink and Simulink extra, and then 
opening the Continuous, one has SIMULINK Library Browsers as documented in Figures 6.14. 

Figures 6.14. SIMULINK Library Browsers for MATLAB 6. I 

In addition to Continuous, the designer can open the Discrete, Function & Tables, Math, 
Nonlinear, Signal & Systems, Sinks, Sources, and other block libraries by double-clicking the 
corresponding icon. Ready-to-use building blocks commonly applied in analysis and design of 
dynamic systems become available. 



Chapter 6: SIMULINK 185 

6.2. Engineering and Scientific Computations Using SIMULINK with Examples 

To demonstrate how to effectively use SIMULINK, this section covers examples in numerical 
simulations of dynamic systems. We start with the illustrative examples in aerospace and 
automotive applications available in the SIMULINK demos illustrated in Figures 6.15 (MATLAB 
6.5) and 6.16 (MATLAB 6.1), which can be accessed by typing demo simulink in the 
Command Window and pressing the Enter key. 

Figure 6.1 5. SIMULINK demo with automotive and aerospace applications examples: 
MATLAB 6.5 

Figure 6.16. SIMULINK demo with automotive and aerospace applications examples: 
MATLAB 6.1 



Chapter 6: SIMULINK 186 

By double-clicking on the F14 f l i g h t  control simulation, the SIMULINK 
block diagram (mdl model) illustrated in Figure 6.15 is displayed. The simulation results are 
documented in Figure 6.15. This SIMULINK block diagram was developed using the differential 
equations which describe the aircraft dynamics. Having emphasized the importance of the 
demonstration features, let us master SIMULINK through illustrative examples. 

Illustrative Example: Simple problem 
In SIMULINK simulate the system modeled by the following two linear differential equations: 

= k,x, - x2, x , ( tO)  = Xzo = 0 .  4 (t )  
dt 

The input u(t) is a sinusoidal signal with magnitude 50 and frequency 2 Hz. The coefficients and an 
initial condition are k, = 5, k,  = 10, x , ~  = 20, and x2,, = 0 .  

Solution. 
We use the Signal Generator, Sum, Gain, Integrator, Transfer Function, and Scope 

blocks. These blocks are dragged from the SIMULINK block libraries to the untitled mdl window 
model, positioned (placed), and connected using the signal lines shown in Figure 6.17. That is, by 
connecting the blocks, the SIMULTNK block diagram to be used for simulations results. 

dx, (0 
- -k,x, ( t )  + u(t)  , - = k,x, - x, 4 (t> Figure 6.17. SIMULINK block diagram to model ~ - 

dt dt 

The differential equations parameters and initial conditions must be downloaded. In the 
Command window we type 
>> k l = 5 ;  k2=10; x10=20; x20=0; 
to download (input) two coefficients and initial condition. The Signal Generator block is used to 
generate the sinusoidal input, and we specify the amplitude and frequency as illustrated in Figure 
6.18. 



Chapter 6: SIMULINK 187 

Figure 6.18. Block Parameters: Signal Generator 

Initial conditions are set in the Integrator block. Specifying the simulation time to be 10 
seconds, the transient behavior of the state x2(t) is plotted in the Scope (Figure 6.19). 

Figure 6.19. Simulation results displayed in the Scope 0 

Example 6.2.1. Simulation ofpermanent-magnet DC motors 
Numerically simulate permanent-magnet DC motors [4] in SIMULINK. The motor 

parameters (coefficient of differential equations) are: ra = 1 ohm, Lo = 0.02 H, k, = 0.3 V- 
sechad, J = 0.0001 kg-m2, and B,=0.000005 N-m-sechad. The applied armature voltage is 
u,=.lOrect(t) V and the load torque is T,, =0.2rect(2t) N-m. Initial conditions must be used. 

Solution. 
Two linear differential equations must be used to model and then simulate the motor 

dynamics. Model developments were reported in Example 5.3.6. The following differential 
equations were found: 



Chapter 6: SIMUIJNK I88 

The next problem is to develop the SIMULINK block diagram. An s-domain block diagram 
for permanent-magnet DC motors was developed in Example 5.3.6. This block diagram is 
documented in Figure 6.20. 

Figure 6.20. Block diagram of permanent-magnet DC motors 

Making use of the s-domain block diagram of permanent-magnet DC motors, the 
corresponding SIMULINK block diagram ( m d l  model) is built and represented in Figure 6.21. 

The initial conditions x,, - - = [;‘I are downloaded (see “Initial conditions” in the 

Integrator 1 and Integrator 2 blocks as shown in Figure 6.21). 
The Signal Generator block is used to set the applied voltage to be u, = 40rect(t) V. 
As was emphasized, the motor parameters should be assigned symbolically using 

equations rather than using numerical values (this allows us to attain the greatest level of 
flexibility and adaptability). Two Gain blocks used are illustrated in Figure 6.21. 



Chapter 6: SIMULINK 189 

Figure 6.2 1 .  SIMULINK block diagram to simulate permanent-magnet DC motors 
(c6 _ -  2 l.mdl) 

To perform simulations, the motor parameters are downloaded (we input the coefficients 
of the differential equations). We download the motor parameters in the Command window by 
typing 

The transient responses for the state variables (armature current xl =i, and angular 
velocity x2 = w , )  are illustrated in Figure 6.22. It should be emphasized that p l o t  was used. In 
particular, to plot the motor dynamics we use 
>> plot(x(:,l),x(:,2)); xlabel('Time (seconds) ' 1 ;  title('Armature current ia, [A] I ) ;  

>> plot (xl( : ,1) , xl( : ,2) ) ; xlabel ( 'Time (seconds) ' ) ; title ( 'Velocity wr, trad/secl ) ; 



Chapter 6: SIMULINK 190 

201 --- 
1 5 1  

lot 

, 
0 %  

-51 
-lo! 

Armature current la [A] Velocity wr [rad/sec] 

-1 I 

I 1 

-2001; 
1 . 3 0 0 1 . 1  __ 1 -  2- I i - - - L  --I 

0 0 1  0 2  0 3  0 4  0 5  06 0 7  0 8  0 9  1 
Time (seconds) 

0 1  02 0 3  0 4  0 5  0 6  07 0 8  0 9  1 
Time (seconds) 

Figure 6.22. Permanent-magnet motor dynamics 

This example illustrates the application of the SIMULNK package to simulate dynamic 
systems and visualize the results. 

Example 6.2.2. 
In SIMULINK, numerically simulate the second-order dynamic system [5]  

(0 - = -XI + kx, - kk, x; x2, x2 ( t o )  = x2, 
dt 

assigning the following coefficients: 

0 

0 

0 

Case 1 :  k =  5 and kl=l; 
Case 2: k =  100 and k l=  1 ;  
Case 3: k = 100 and kl= 0. 



Chapter 6: SIMULINK 191 

[;::I = [ -lI] The initial conditions are xo = 

Solution 
The SIMULINK block diagram (which allow us to perform numerical simulations for three 

cases) is developed and illustrated in Figure 6.23. 

Figure 6.23. SIMLnINK block diagram (c 6 _ _  2 2 . mdl) 

The transient dynamic waveforms, which are displayed by double-clicking the Scope 
blocks, if k =  5 and kl = 1 are shown in Figure 6.24. 



Chapter 6: SIMULINK 192 

Transient behavior for x, 
it . . , . , . . , . , 

Transient behavior for x2 
2 5 ,  , , , , , , . , , , 

Two-dimensional plot 
2 5 1 1  , , , , , , , , ' 

Figure 6.24. System dynamics, k =  5 and kl= 1 

Assigning k = 100 and kl = 1 ,  the simulated responses are plotted in Figure 6.25. 

Transient behavior for x, Transient behavior for x2 Two-dimensional plot 

4 a 4  0 2  0 0 2  0 4  06 0 8  t 

06- 

0 4 -  

0 2  

Figure 6.25. System dynamics, k = 100 and kl= 1 



Chapter 6: SIMULINK 193 

dx (0 dx (0 For k = 100 and kl = 0, we simulate 1 = x 2 ,  x ,  ( t o )  = 1, = -x, + ~OOX,, x2(t , )  = -1 . 
dt dt 

The system behavior is plotted in Figure 6.26. 

Transient behavior for x 1  Transient behavior for x2 Two-dimensional plot 

Figure 6.26. System dynamics, k =  100 and kl = 0 

This example illustrates that dynamic systems can be efficiently simulated and analyzed 
using SIMULINK (system can be stable and unstable if k = 100 and kl = 0). 0 

Example 6.2.3. Simulation of single-phase reluctance motors 
The nonlinear differential equations to model synchronous reluctance motors are [4, 51 

1 
dt J 
* = - ( ~ ~ i : ~  sin 20, - ~ , w ,  - T,~ ), 

Simulate the motor in the SIMULINK assigning parameters as: r, = 2 ohm, L,, = 0.5 H, L,, = 

0.02 H, 
The voltage applied to the stator winding is uas = 20sin(26, - 0.62). The load torque is 

TL = 0 N-m. 
Solution. 
The motor parameters are downloaded by using the data m-file. 

= 0.004 H, J = 0.00001 kg-m2, and B, = 0.000004 N-m-sechad. 

P=2; rs=2; L Lls=O.O04; J=O.OOOOl; Bm=0.0000 

P "-dllle 0 

We must run this data m-file or just type the parameter values in the Command Window 
before running the SIMULINK m d l  model. The SIMULINK block diagram is documented in Figure 
6.27. 



Chapter 6: SIMULINK 194 

Figure 6.27. SIMULINK block diagram for simulation elementary reluctance motors 
(c6 2 3.mdl) _ _  

The transient responses for the angular velocity w,(t)  and the phase current ias(t) are 
plotted in Figures 6.28. 

Figures 6.28. Transient responses for the motor variables (0, and ios) 

We conclude that SIMULINK was applied to model a single-phase reluctance motor. 
Changing the motor parameters, the user can examine electromechanical motion device 
dynamics in the time domain. 0 



Chapter 6: SIMLINK 195 

Example 6.2.4. Simulation of three-phase squirrel-cage induction motors 
In SIMULTNK simulate induction motors. The mathematical model of three-phase 

induction motors is governed by a set of the following nonlinear differential equations [4, 51: 

d(ib, ,,sor) d( iir cos(Br + 7 )) 
dt 

d( iLr cos(B, - 7 )) 
dt 

-I- L, + L, 
u,=rsiar+ L,+L,)---L dim I - - L L  dib, -+L diCS 
3 dt 2 m d t  2 m d t  dt 

3 

. dim 1 di, di, d( i:, coS(e, + y)) d( iLr coS(e, - $)) d( iLr msq) 
u,, = r s i , - - ~ , - - ~ ~ m - + ( ~ , s + ~ m ) - + ~ m  dt + L ,  dt +L, dt 

2 d t  dt dt 
9 

I t  d( im COs('r + )) d( ibs cos B, ) d(i, "(Qr - )) --L,-+ I ( L,+L, ' )diir ---L,--, 1 

dt dt dt dt 
+ Lm 

+Lm dt 
ubr = rribr + L, 

dt 

The induction motor to be numerically simulated has the following parameters: r, = 0.3 
ohm, r, = 0.2 ohm, L,, = 0.035 H ,  L, = 0.001 H ,  L,, = 0.001 H ,  J = 0.025 kg-m2, and B, = 

0.004 N-m-sechad. 



Chapter 6: SIMULINK 196 

Solution. 
Using the differential equations, one must build the SIMULINK block diagram. From the 

differential equations given above, we obtain the following set of equations to be used in the 
SIMULINK m d l  model: 

= w, . dB, 
dt 

To guarantee the balanced operating condition, the following phase voltages should be 
applied to the induction motor windings: 

uus(t) = J z u ,  cos (uy t ) ,  

Ubs(t) = J z u ,  COS(W/t - +), 
u, ( t )  = J z u ,  C O S ( U / f  + 4.). 
The SIMULINK block diagram to simulate three-phase squirrel-cage induction motors is 

developed and illustrated in Figure 6.29. The Der iva t ive  blocks are used. 



Chapter 6: SIMULINK 197 

Figure 6.29. SIMULINK block diagram to simulate squirrel-cage 
(c6 _ _  2 4.mdl) 

induction motors 



Chapter 6: SIMULINK 198 

350 ~ 

I 
I 

0 L-L 

0 0 0 5  0 1  0 1 5  0 2  0 2 5  0 3  0 3 5  0 4  
Tme (seconds) 

Figure 6.30. Transient dynamic for the angular velocity w,(t) 



Chapter 6: SIWLINK 

150- 

100.1; 

5 4 -  

0- 

-50- 

-lw 

-150 

I99 

I 

, 

, 

1 

I 

- 

Stator current ias. [A] 
200, 

150- 

100 

50- 

0- 

-50 

-100 

-1%. 

I . '  

, 
i 
j 

- 

- 

+ 

-200 ! I 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 

lime (seconds) 

SIaIa current its, [A] 

150 

1W 

50 

0 i'$ I 

\.: b 

-50 

-100 

-150 

1 
-200L------L ' 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
lime (seconds) 

Stator current ics. [A] 
2w(----- 

I:, 
-2WlY ,--I_ I 1 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 
Time (seconds) 

Rotor current bar. [A] 
200 

-2w -J 8 -  

0 0 0 5  0 1  0 1 5  0 2  0 2 5  0 3  035 0 4  
l i m e  ICrmnnrlSi 

Rotor current ibr, [A] - -~ 1 -  

Rotor current icr. [A] 

I 

-200 1 
0 005  0 1  015 0 2  025  0 3  035 0 4  

lime (seconds) 

Figure 6.3 1 .  Transient dynamic of the currents in the stator and rotor windings 0 



Chapter 6: SIMULINK 200 

Example 6,2.5. Simulation of permanent-magnet synchronous motors 
In SIMULINK simulate three-phase permanent-magnet synchronous motors described by five 

nonlinear differential equations [4]: 

- - 

U C S  7 

L m  

2 L:, - L,,L, - t;5, 'bs + 
2 L,, - Em Lrn + 'as + 

2 L:, - L,,E, - L'5, 2 L:, -- L J ,  - c 

- v m  Ern - w, cosq  -- - w,co 8 --n - v m  Ern - w, COs(0, + 5.) 
2 Lf, - L, L, - L, 4 ) 2L2,,-LssL,-L, 

Yrn(2Lss - Ern) 
2 L:s - L,, L, - L, 

- - 

7 'cs7 
2 L, - z, Lrn 

7 'as + - 7 ' b s  + 2 - 
2 L', - L,  L, - L, 

rs Ern 
2 Lfs - L,  L, - L, 

+ Lrn 

4 s  - 

2 Lf, - L, z, - L, 2 L, - L, L, - L, 

2 Lf, - L, 

- 

7 'as - 7 'bs - - ~ L r n  
At 2 L;, - L,?, Em - L, 

- - 
2 L,, - Ern 

2 Lt, - L,, L, - L, 
+ - 1 'as + - 7 'bs + - 7 U C S 7  Lrn 

2 L;, - L, L, - L, 

Lrn 

2 L', - L,, L, - L, 

wr * 
d'r - -- 
dt 

The following phase voltages are applied to guarantee the balance motor operation: 
ua,(t) = J z u ,  c o s ~ ,  , U h s ( t )  = J z u ,  cos(~, - 5n) and ucs(t> = J z u ,  co 4, B + -n : )  . 

The motor parameters are: 
uM = 40 V, r, = 1 ohm, L, = 0.002 H, L,, = 0.0002 H, Em = 0.0012 H, ty, = 0.08V-sec/rad7 

tym = 0.08 N-&A, B, = 0.000008 N-m-sec/rad, and J =  0.00004 kg-m2. 

Solution. 
As the differential equations are known, one can develop the SIMULINK block diagram 

( m d l  model) to simulate permanent-magnet synchronous motors. The resulting SIMULINK block 
diagram is illustrated in Figure 6.32. 



Chapter 6: SIMULINK 201 

Figure 6.32. SIMULINK block diagram to simulate permanent-magnet synchronous motors 
(c6 - _  2 5.mdl) 

The transient dynamics are studied as the motor accelerates and the rated voltage is 

u, ( t )  = A40 cos 0, , ubS ( t )  = ,h40 cos(0, - f X) and U, ( t )  = A40 C O S ( ~ ,  + f x). 
The motor parameters are downloaded using the following statement typed in the 

supplied to the stator windings. In particular, 

Command Window: 

The motor accelerates from stall, and the load torque 0.5 N-m is applied at 0 sec. 

synchronous motor. 
Figure 6.33 illustrates the evolution of four states for the three-phase permanent-magnet 



Chapter 6: SIMULINK 202 

Figure 6.33. Transient dynamics of the permanent-magnet synchronous motor variables 

These state variables can be plotted using plot. In particular, the following m-file can 
be used to plot the transient data: 



Chapter 6: SIMULINK 203 

Example 6.2.6. Simulation of permanent-magnet DC motors using the state-space model 
Simulate permanent-magnet DC motors in SIMULMK using the state-space form. The 

linear differential equations to model permanent-magnet DC motors are (see Examples 5.3.6 and 
6.2.1) 

dwr -‘a . B m  1 
- I ,  -- 

dt J J J 
-- 

The motor parameters to be used in numerical simulations are: r, = 1 ohm, La = 0.02 H, 
k, = 0.3 V-sechad, J = 0.0001 kg-m2, and B,,, = 0.000005 N-m-sechad. The applied voltage is 

[::o]=[::]=[lb]- 
u, = 25rect(t) V. The initial conditions to be used are 

Solution. 
Using the differential equations which model permanent-magnet DC motors we obtain 

the model in the state-space form as 

Denoting the state and control variables to be x1 = ia, x2 = w, and u = u, , we find 

In general, 
dx 

we have - 
dt 

For our example, x = L:l l ,A=l  2 l a n d B =  
-- 

L J  J J  
The output equation is y = w, . 

1 - L a ] .  - 

0 

Hence, we have the following state-space model for permanent-magnet DC motors: 

y = w , = C x + D u = [ O  1 + [ O b a = [ O  1 +[Oh, C=[O l]andD=[O] E:I E3 



Chapter 6: SIMULINK 204 

Using the State-Space block, the simulation can be performed. To attain flexibility, 
symbolic notations are used. The State-Space block is illustrated in Figure 6.34. 

Figure 6.34. State-Space block with parameters of permanent-magnet DC motors 

The developed SIMULINK m d l  model is documented in Figure 6.35. 

Figure 6.35. SIMULINK block diagram to simulate the motor dynamics (c 6 _ _  2 6 . mdl) 

The simulations are performed assigning the motor parameters and initial conditions. In 
particular, the motor parameters ( r, = 1 ohm, L, = 0.02 H, k, = 0.3 V-sec/rad, J = 0.0001 kg- 
m2, and B, = 0.000005 N-m-sechad), applied voltage u, = 25rect(t) V, and the initial conditions 
[ 1 1 0IT are downloaded. We input the following in the Command Window: 

Running the simulation and using the following plotting statement 
>> plot(x(:,l),x(:,2)); xlabel('Time (seconds)'); title('Angu1ar velocity wr, [rad/sec] ' )  

the dynamics of the motor angular velocity result (Figures 6.36). 



Chapter 6: SIMULINK 205 

400 

300 

200 

100 

0 

-1 00 

Angular velocity wr, [radlsec] 
7 --r----- - --T I -1 

1 

I 

-400 I' - L.. I 

0 0.2 0.4 0.6 0 8 1 1 2  1 4  1.6 
Time (seconds) 

Figure 6.36. Angular velocity dynamics if u, = 40rect(t) V 

... 

1.8 2 

0 

Again it should be emphasized that different illustrative educational examples in 
aerospace and automotive applications are readily available. These examples with the 
corresponding SIMULINK block diagrams can be easily accessed and used to master the MATLAB 
environment. 



Chapter 6: SIMULINK 206 

REFERENCES 

1 .  MATLAB 6.5 Release 13, CD-ROM, Mathworks, Inc., 2002. 
2. Dabney, J. B. and Harman, T. L., Mastering SIMULINK 2, Prentice Hall, Upper Saddle River, NJ, 

1998. 
3 .  User’s Guide. The Student Edition of MATLAB: The Ultimate Computing Environment for 

Technical Education, Mathworks, Inc., Prentice Hall, Upper Saddle River, NJ, 1995. 
4. Lyshevski, S. E., Electromechanical Systems, Electric Machines, and Applied Mechatronics, 

CRC Press, Boca Raton, FL, 2000. 
5. Lyshevski, S. E., Control Systems Theory with Engineering Applications, Birkhauser, Boston, 

MA, 2002. 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 

> 
>= 
-r= 

& 

I 
,., 

X O T  

207 

Relational operators (greater than) 
Relational operators (greater than or equal to) 
Relational operators (not equal to) 
AND (logical operator) 
OR (logical operator) 
NOT (logical operator) 
EXECUTIVE OR (logical oDerator> 

APPENDIX 

a l l  

any 
exist 
f i n d  
is* 
isa 
i s  ke yword 
i sva rname 

MATLAB Functions, Operators, Characters, Commands, and Solvers [ ' I  

Test to determine if all elements are nonzero 
Test for any nonzeros 
Check if a variable or file exists 
Find indices and values of nonzero elements 
Detect state 
Detect an object of a given class 
Test if string is a MATLAB keyword 
Test if string is a valid variable name 

0 I Parentheses I 

Engineering and ScientEfic Computations Using MATLAB@. Sergey E. Lyshevski 
Copyright 0 2003 John Wiley & Sons, Inc. 

ISBN: 0-471-46200-4 



Appendix: MA TUB Functions, Operators, Churucters, Commands, and Solvers 208 

logi ca 1 
mi slocked 

Convert numeric values to logical 
True if M-file cannot be cleared 

Table A.3. Language Constructs and Debugging 

if 
otherwise 
return 
switch 
try 
warning 
while 

script I Script m-files 

Conditionally execute statements 
Default part of switch statement 
Return to the invoking function 
Switch among several cases based on expression 
Begin try block 
Display warning message 
Reneat statements an indefinite number of times 

Table A.3.2. Control Flow 
break 
case I Case switch 

I Terminate execution of “f or” or “while” loop 

input 
keyboard 
menu 
pause 

error I Display error messages 
€or I Repeat statements a specific number of times 

Request user input 
Invoke the keyboard in an m-file 
Generate a menu of choices for user input 
Halt execution temporarily (until any key will be pressed) 

class 
double 
inferiorto 
inline 
int8 , intl6, int32 
isa 
loadob j 

Create object or return class of object 
Convert to double precision 
Inferior class relationship 
Construct an inline object 
Convert to signed integer 
Detect an object of a given class 
Extends the load function for user objects 



Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 209 

saveobj 
single 
superiorto 
uint 8, uint 16, 
uint32 

Save filter for objects 
Convert to single precision 
Superior class relationship 
Convert to unsigned integer 

Table A.3.5. Debugging 
dbclear I Clear breakpoints 
dbcont I Resume execution 

dbquit 
dbstack 
dbs t a tus 
dbstep 
dbstop 
dbtype 
dbup 

dbdown 
dbme x 

1 Change local workspace context 
1 Enable MEX-file debugging 

Quit debug mode 
Display function call stack 
List all breakpoints 
Execute one or more lines from a breakpoint 
Set breakpoints in an m-file function 
List m-file with line numbers 
Change local workspace context 

function handle 
functions 
func2str 
st r2 func 

MATLAB data type that is a handle to a function 
Return information about a function handle 
Constructs a function name string from a function handle 
Constructs a function handle from a function name string 

Ab s 
Eva1 
Real 

1 Strings I MATLAB string handling 

Absolute value and complex magnitude 
Interpret strings containing MATLAB expressions 
Real part of complex number 

Table A.4.2. String to Function Handle Conversion 
I func~str I Constructs a function name string from a function handle 

Deblank 
Findstr 
Lower 

str2iunc I Constructs a function handle from a function name string 1 

Strip trailing blanks from the end of a string 
Find one string within another 
Convert string. to lowercase 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 2 1 0 

strvcat 
symvar 
texlabel 
upper 

Vertical concatenation of strings 
Determine symbolic variables in an expression 
Produce the TeX format from a character string 
Convert string to uppercase 

bin2dec 
dec2bin 
dec2hex 
hex2dec 
hex2num 

Table AS .  Bit-Wise Functions 
I bitand I Bit-wise and 

Binary to decimal number conversion 
Decimal to binary number conversion 
Decimal to hexadecimal number conversion 
Hexadecimal to decimal number conversion 
Hexadecimal to double number conversion 

bitcmp 
bitor 
bitmax 
bitset 
bitshif t 
bitaet 

I bitxor I Bit-wise xor I 

Complement bits 
Bit-wise or 
Maximum floating-point integer 
Set bit 
Bit-wise shift 
Get bit 

fieldnames 
getfield 
rmf ield 
setf ield 
struct 
struct2cell 

Table A.7. MATLAB Object Functions 
class 
isa 

I Create object or return class of object 
1 Detect an obiect of a lriven class 

Field names of a structure 
Get field of structure array 
Remove structure fields 
Set field of structure array 
Create structure array 
Structure to cell array conversion 

met hods 
methodsview 
subsasgn 
subs index 
subsref 

Display method names 
Displays information on all methods implemented by a class 
Overloaded method for A(I)=B, A{I}=B, and A.field=B 
Overloaded method for X(A) 
Overloaded method for A(I), A{I), and A.field 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 

c e l l  
c e l l  fun  
c e l l s t r  
c e l l 2 s t r u c t  
c e l l d i s p  
ce 1 l p l o t  
num2 ce 11 

21 1 

Create cell array 
Apply a function to each element in a cell array 
Create cell array of strings from character array 
Cell array to structure array conversion 
Display cell array contents 
Graphically display the structure of cell arrays 
Convert a numeric arrav into a cell arrav 

c a t  
f l i p d i m  
ind2 sub 
i p e rmu t e 
n d g r i d  
ndims 
permute 

Table A.9. Multidimensional Arrav Functions 
Concatenate arrays 
Flip array along a specified dimension 
Subscripts from linear index 
Inverse permute the dimensions of a multidimensional array 
Generate arrays for multidimensional functions and interpolation 
Number of array dimensions 
Rearranee the dimensions of a multidimensional arrav 

r e shape  
s h i f  t d im 
squeeze  
sub2 i n d  

Reshape array 
Shift dimensions 
Remove singleton dimensions 
Single index from subscripts 

Table A. 10. MATLAB Functions 



Appendix: MATLAB Funclions, Operators, Characters, Commands, and Solvers 2 12 

barh 
h i s t  
histc 
hold 
loglog 
pie 
DlOt 

Table A. 10.2. Plotting and Data Visualization 
Table A. 10.2.1. Basic Plots and Graphs 

1 bar I Vertical bar chart 1 
Horizontal bar chart 
Plot histograms 
Histogram count 
Hold current graph 
Plot using loglog scales 
Pie plot 
Plot vectors or matrices. 

polar 
semilogx 
semilogy 
subplot 

Polar coordinate plot 
Semi-log scale plot 
Semi-log scale plot 
Create axes in tiled positions 

Table A. 10.2.3. Plot Annotation and Grids 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and solvers 213 

ylabel 
zlabel 

Y-axis labels for 2D and 3D plots 
Z-axis labels for 3D plots 

Table A. 10.2.4. Surface, Mesh, and Contour Plots 

divergence 
flow 
interps t reamspeed 

Table A.10.3. Volume Visualization 
I coneplot I Plot velocitv vectors as cones in 3D vector field 

Compute the divergence of a vector field 
Generate scalar volume data 
Intemolate streamline vertices from vector-field magnitudes 

contourslice 
curl 

I Draw contours in volume slice plane 
I Compute the curl and angular velocity of a vector field 

gr idda t a 
me shg r i d 

Data gridding and surface fitting 
Generation of X and Y arrays for 3D plots 

s ubvolume 
volumebounds 

I Extract subset of volume data set 
I Return coordinate and color limits for volume (scalar and vector) 

Table A. 10.4. Domain Generation 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 2 14 

comet 
compass 
errorbar 
ezcontour 
ezcontourf 
ezmesh 
e zme s hc 

Table A. 10.5. SDecialized Plotting 

Comet plot 
Compass plot 
Plot graph with error bars 
Easy-to-use contour plotter 
Easy-to-use filled contour plotter 
Easy-to-use 3D mesh plotter 
Easv-to-use combination meshkontour dotter 

area I Area plot 
box I Axis box for 2D and 3D dots 

rose 
quiver 
ribbon 
stairs 

Plot rose or angle histogram 
Quiver (or velocity) plot 
Ribbon plot 
StairsteD maoh 

camdoll y 
camlookat 
camorb i t 

Move camera position and target 
View specific objects 
Orbit about camera target 

campan 
campos 
campro j 
camroll 

Rotate camera target about camera position 
Set or get camera position 
Set or get projection type 
Rotate camera about viewing axis 

camt a rge t 
camup 
camva 
camzoom 

Set or get camera target 
Set or get camera up-vector 
Set or get camera view angle 
Zoom camera in or out 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 215 

pbaspect 
view 
viewmtx 
xlim 
yl im 
zlim 

I daspect 1 Set or get data aspect ratio 
Set or get plot box aspect ratio 
3-D graph viewpoint specification. 
Generate view transformation matrices 
Set or get the current x-axis limits 
Set or get the current y-axis limits 
Set or get the current z-axis limits 

camlight 
light 
lighting 
lightangle 
mat er ia 1 

Cerate or position Light 
Light object creation function 
Lighting mode 
Position light in spherical coordinates 
Material reflectance mode 

Alpha 
Alphamap 
A1 im 

Table A. 10.9. Color Operations 
I Brighten I Brighten or darken colormap 

Set or query transparency properties for objects in current axes 
Specify the figure alphamap 
Set or query the axes alpha limits 

Caxis 
Co 1 orba r 
Colordef 
Co 1 o rmap 
Graymon 
hsv2rgb 
rqb2hsv 

Pseudocolor axis scaling 
Display color bar (color scale) 
Set up color defaults 
Set the color look-up table (list of colormaps) 
Graphics figure defaults set for gray scale monitor 
Hue-saturation-value to red-green-blue conversion 
RGB to HSV conversion 

Rgbplot 
Shading 

Table A. 10.1 0. Colormaps 
Autumn I Shades of red and yellow colormap 

Plot colormap 
Color shading mode 

Sp i nmap 
Surf norm 
Whitebg 

hsv 1 Hue-saturation-value (HSV) colormap 
iet I Variant of HSV 

Spin the colormap 
3D surface normals 
Change axes background color for plots 

bone 
contrast 
cool 
copper 
flag 
gray 
hot 

Gray-scale with a tinge of blue colormap 
Gray colormap to enhance image contrast 
Shades of cyan and magenta colormap 
Linear copper-tone colormap 
Alternating red, white, blue, and black colormap 
Linear gray-scale colormap 
Black-red-vellow-white colormap 

lines 
prism 
spring 

Line color colormap 
Colormap of prism colors 
Shades of magenta and yellow colormap 



Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 2 16 

getappdata 
is appda ta 
rmappda t a 
setappdata 

summer 
winter 

I Shades of green and yellow colormap 
I Shades of blue and green colonnaD 

Get value of application data 
True if application data exists 
Remove application data 
Specify application data 



Appendix: MA TLAB Functions, Operutors, Churucters, Commands, and Solvers 21 7 

axis 
cla 
gca 

I refresh I Refresh figure 

Plot axis scaling and appearance 
Clear Axes 
Get current Axes handle 

saveas I Save figure or model to desired output format 

ginput 
zoom 

Graphical input from a mouse or cursor 
Zoom in and out on a 2D plot 

Table A. 10.17. Obiect Maninulation 
Reset 
rotate3d 

I Reset axis or figure 
I Interactively rotate the view of a 3D plot I I Selectmoveres ize I Interactively select, move, or resize objects 

Table A. 10.19. Region of Interest 
Dragrect I Drag XOR rectangles with mouse 
Drawnow 
Rbbox I Rubberband box 

I Complete any pending drawing 

Table A. l l .  Polynomial and Interpolation Functions 

Table A. 1 1.2. Data Internolation 
convhull I Convex hull 
convhu 1 In I Multidimensional convex hull 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 2 1 8 

blkdiag 
eye 
linspace 
logspace 
nume 1 
ones 

Table A. 12. F 
bvp 4 c 

Construct a block diagonal matrix from input arguments 
Create an identity matrix 
Generate linearly spaced vectors 
Generate logarithmically spaced vectors 
Number of elements in a matrix or cell array 
Create an array of all ones 

&Duet 
Bvpini t 
bvDset 
bvpval 
db 1 auad 
fminbnd 
fminsearch 
f zero 
ode45, ode23, 
odell3, 
odel5s, 
ode23s, 
ode2 3 t , 
ode23tb 
odecret 
odeset 
optimget 
opt imset 
PdePe 

Ddeval 
uuad 
quadl 
vec t ori ze 

nctions: Nonlinear Numerical Methods 
Solve two-point boundry value problems (BVPs) for ordinary differential 
equations (ODES) 
Extract parameters from BVP options structure 
Form the initial guess for the bvp4c solver 
Create/alter BVP options structure 
Evaluate the solution computed by the bvp4c solver 
Numerical evaluation of double integrals 
Minimize a function of one variable 
Minimize a function of several variables 
Find zero of a function of one variable 
Solution of ordinary linear and nonlinear differential equations 

Extract parameters from ODE options structure 
Create/alter ODE options structure 
Get optimization options structure parameter values 
Create or edit optimization options parameter structure 
Solve initial-boundary value problems for parabolic-elliptic partial 
differential equations 
Evaluate the solution computed by the pdepe solver 
Numerical evaluation of integrals, adaptive Simpson quadrature 
Numerical evaluation of integrals, adaptive Lobatto quadrature 
Vectorize expression 



Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 219 

rand 
randn 
zeros 
: (colon) 

Uniformly distributed random numbers and arrays 
Normally distributed random numbers and arrays 
Create an array of all zeros 
Regularly spaced vector 

ans 
computer 

Recent answer 
Identify the computer on which MATLAB is running 

ePs 
i 

inf 

Floating-point relative accuracy 

Imaginary number f i  
Infinitv 

input name 
j 

NaN 

weekday I Day of the week 

Input argument name 

Imaginary number J-1 
Not-a-Number 

Table A. 13.4. Matrix Manipulation 
I cat I Concatenate arravs I 

nargin, 
nargout 
na rgout chk 
Pi 
realmax 
realmin 
vararg in, 
vararaout 

Number of function arguments 

Validate number of output arguments 
Ratio of a circle's circumference to its diameter (x constant) 
Largest positive floating-point number 
Smallest positive floating-point number 
Pass or return variable numbers of arguments 

calendar 
clock 
cputime 
date 
datenum 
date st r 
datevec 
eomday 
etime 
now 
tic, toc 

Calendar 
Current time as a date vector 
Elapsed CPU time 
Current date string 
Serial date number 
Date string format 
Date components 
End of month 
Elapsed time 
Current date and time 
Stouwatch timer 



Appendix: MATLAB Functions, Operators, Characters, Cornman&, and Solvers 220 

cross 
dot 
intersect 
i smember 

Vector cross product 
Vector dot product 
Set intersection of two vectors 
Detect members of a set 

setdiff 
setxor 
union 
unique 

Return the set difference of two vectors 
Set exclusive or of two vectors 
Set union of two vectors 
Unique elements of a vector 

Table A. 14. Matrix Functions and Linear Algebra 
Table A. 14.1. Matrix Analvsis 

company 
gallery 
hadama r d 
hankel 
hilb 
invhi 1 b 
magic 
pascal 
toepl i t z 
wi 1 kinson 

Companion matrix 
Test matrices 
Hadamard matrix 
Hankel matrix 
Hilbert matrix 
Inverse of the Hilbert matrix 
Magic square 
Pascal matrix 
Toeplitz matrix 
Wilkinson's eigenvalue test matrix 

subspace 
trace 

I Angle between two subspaces 
I Sum of diagonal elements 

cond 
condeig 
det 
norm 
nu1 1 
orth 
rank 
rcond 
rref, 
r re f movie 

Table A. 14.2. Linear Eauations 

Condition number with respect to inversion 
Condition number with respect to eigenvalues 
Matrix determinant 
Vector and matrix norms 
Null space of a matrix 
Range space of a matrix 
Rank of a matrix 
Matrix reciprocal condition number estimate 
Reduced row echelon form 

chol Cholesky factorization 
i nv Matrix inverse 
lscov 
lu LU matrix factorization 
lsqnonneg Nonnegative least squares 
minres Minimum residual method 
pinv 

SYmmlq Symmetric LQ method 

Least squares solution in the presence of known covariance 

Moore-Penrose pseudoinverse of a matrix 
~ 

, qr Orthogonal-triangular decomposition 



Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 

expm 
funm 
logm 
sqrtm 

22 I 

Matrix exponential 
Evaluate general matrix function 
Matrix logarithm 
Matrix square root 

qrde let e 
qrinsert 

Delete column from QR factorization 
Insert column in QR factorization 

spdiags 
sPeYe 
sprand 
sprandn 
s p r a nd s ym 

Table A. 14.7. Full-to-Sparse Conversion 
find I Find indices and values of nonzero elements 

Extract and create sparse band and diagonal matrices 
Sparse identity matrix 
Sparse uniformly distributed random matrix 
Sparse normally distributed random matrix 
Sparse symmetric random matrix 

full 
sparse 
spconvert 

Convert sparse matrix to full matrix 
Create sparse matrix 
Import matrix from sparse matrix external format 

Table A. 14.9. Visualizing Sparse Matrices 
I SPY I Visualize sparsity pattern 

nn z 
nonzeros 
nzmax 
spalloc 
spfun 
spones 

Number of nonzero matrix elements 
Nonzero matrix elements 
Amount of storage allocated for nonzero matrix elements 
Allocate space for sparse matrix 
Apply function to nonzero sparse matrix elements 
Replace nonzero sparse matrix elements with ones 

colamd 
colmmd 

Column approximate minimum degree permutation 
Sparse column minimum degree permutation 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 222 

colperm 
dmperm 
r andpe rm 
s ymamd 
s y m d  
symrcm 

Sparse column permutation based on nonzero count 
Dulmage-Mendelsohn decomposition 
Random permutation 
Symmetric approximate minimum degree permutation 
Sparse symmetric minimum degree ordering 
Sparse reverse Cuthill-McKee ordering 

Table A. 14.1 I .  Norm, Condition Number, and Rank 
condest 
normes t 

I Estimate the matrix first-norm 
I Estimates the matrix second-norm 

cart 2pol 
cart2sph 
pol2cart 
sph2cart 

Table A. 14.13. Sparse Eigenvalues and Singular Values 
eigs 1 Find eigenvalues and eigenvectors 1 

Transform Cartesian coordinates to polar or cylindrical 
Transform Cartesian coordinates to spherical 
Transform polar or cylindrical coordinates to Cartesian 
Transform spherical coordinates to Cartesian 

I svds I Find singular values I 

cumpr od 
cumsum 
cumt rapz 
factor 
inpo l ygon 
ma x 

Table A. 14.14. Miscellaneous 
spparms 1 Set parameters for sparse matrix routines 

Cumulative product 
Cumulative sum 
Cumulative trapezoidal numerical integration 
Prime factors 
Detect points inside a polygonal region 
Maximum elements of an arrav 

mean 1 Average or mean value of arrays I 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 223 

median 
m i  n 
perms 
po 1 y a r e  a 
pr imes 
prod 

Median value of arrays 
Minimum elements of an array 
All possible permutations 
Area of polygon 
Generate list of prime numbers 
Product of arrav elements 

r e c t i n t  
s o r t  
so r t rows  
s t d  
s um 
t r a p z  
va r 

Rectangle intersection area 
Sort elements in ascending order 
Sort rows in ascending order 
Standard deviation 
Sum of array elements 
Trapezoidal numerical integration 
Variance 

de12 
d i f f  
g r a d i e n t  

Discrete Laplacian 
Differences and approximate derivatives 
Numerical gradient 

Table A. 16.5. Fourier Transforms 
a b s  
ancrle I Phaseangle 

] Absolute value and complex magnitude 

c o r r c o e f  
cov 

Correlation coefficients 
Covariance matrix 

unwrap I Correct phase angles 

conv 
conv2 
deconv 
f i l t e r  
f i l t e r 2  

Convolution and polynomial multiplication 
Two-dimensional convolution 
Deconvolution and polynomial division 
Filter data with an infinite impulse response or finite impulse response filter 
Two-dimensional digital filtering 

c p l x p a i  r 
f f t  
f f t 2  
f f t s h i f t  
i f f t  
i f f t 2  
i f f t n  
i f f  t s h i f  t 
nextpow2 

Sort complex numbers into complex conjugate pairs 
One-dimensional fast Fourier transform 
Two-dimensional fast Fourier transform 
Shift dc component of fast Fourier transform to center of spectrum 
Inverse one-dimensional fast Fourier transform 
Inverse two-dimensional fast Fourier transform 
Inverse multidimensional fast Fourier transform 
Inverse fast Fourier transform shift 
Next Dower of two 

d i a l o g  
e r r o r d l g  
h e l p d l g  

Create a dialog box 
Create error dialog box 
Display help dialog box 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 224 

gui da t a 
guihandles 
movegui 
open fig 

Store or retrieve application data 
Create a structure of handles 
Move GUI figure onscreen 
Open or raise GUI figure 

Table A. 17.3. User Interface Development 
guide 
inspect I Disdav ProDertv InsDector 1 I Open the GUI Layout Editor 

class 
import 
isa 
is j ava 
javaArray 
javaMethod 
javaobject 
methods 
methodsview 

Create object or return class of object 
Add a package or class to the current Java import list 
Detect an object of a given class 
Test whether an object is a Java object 
Constructs a Java array 
Invokes a Java method 
Constructs a Java object 
Display method names 
Displays information on all methods implemented by a class 

Table A. 19. Serial Port Input-Output 
Table A. 19.1. Creating a Serial Port Object 

I serial I Create a serial port object 

fgetl 
fgets 
fprintf 
fread 
fscanf 
fwrite 
readasync 
s t opas ync 

Read one line of text from the device and discard the terminator 
Read one line of text from the device and include the terminator 
Write formatted data to file 
Read binary data from file 
Read data from file and format as text (read formatted data from file) 
Write binary data to file 
Read data asynchronously fiom file 
Stop asynchronous read and write operations 



Appendix: MA TLAB Functions, Operators, Characters, Commands, and Solvers 

g e t  
s e t  

225 

Return serial port object properties 
Configure or display serial port object properties 

i o p e n  
r e c o r d  

Table A. 19.4. State Change 
€ c l o s e  I Disconnect a serial port object from the device (close file) 1 

Connect a serial port object to the device (open file) 
Record data and event information to a file 

REFERENCES 

1 .  MTUB 6.5 Release 13, CD-ROM, Mathworks, Inc., 2002. 



Index 226 

Index 

Aircraft, 139-141, 162-167 
Algebraic equation, 95-97 
Arithmetic, 42-48 
Arithmetic operators, 65 
Array, 51,52,211,218,218 

Basic arithmetic, 42 
Block diagram, 170, 179- 1 89, 194, 197,20 1 
Buttons, 23 

Characters, 3 1 
Circuit, 144, 145, 154-157, 159-161, 167-165 
Clear, 24 
Color operation, 103,2 1 5 
Command window, 5,8,43-46 
Commands, 32-4 I 
Conditions, 73-79 
Control flow, 208 
Converter, 1 45- 15 1 

Debugging, 209 
Demo, 9,16 
Demo window, 17-20,39 
Differential equations, 133-139, 146-1 70,218 
Dynamic system, 133-151, 163, 190-193 

Eigenvalue, 6 1,62,22 1, 222 
Exit, 22 

Figure window, 8,9 
File window, 8 , 9  
Flight servo, 14 1 
Format, 68 
Fourier transform, 222,223 
Functions, 27-30 

General purpose commands, 14, 15,37,38 
Graphics, 99- I20,2 1 6 ,2  17 

Help, 9, 10,33-36,39 
Helpdesk, 9, 15 
Helpwin, 9, 10,33 
Help system, 23,24 
Help topics, IO- 13 
Help window, 13,36,43 
Helpdesk window, 16 
Helpwin window, 33 

Image, 25,26 
Induction motor, 195- 199 
Interactive input, 208 
Interpolation, 72,73,2 17 

Kirchhoff law, 145 

Linear equation, 220 
Logic, 66 
Logic functions, 207 
Loops, 73-79 

Mathematical function, 29, 30,47,48,2 1 1-21 2 
Mathematical model, 14 1 - 1 5 1 
MATLAB General, 13 
MATLAB Icon, 5 
Matrix, 8,43, 53-64, 67, 83-89,218-221 
Menu bar, 22,23 
Missile, 20 
Modeling, 141, I52 
Movie, 12 1 - 124 

Newton law, 141-144 
Norm, 67 

Object-oriented programming, 208 
Ones, 8 
Operators, 3 I ,  65-67,207 

Pendulum, 143, 179-181 
Permanent-magnet DC motor, 169- 1 7 1, 

Pennanent-magnet synchronous motor, 200-202 

Polynomial, 69-73, 89,90, 217 
Print, 216 

187- 190,203-205 

Plot, 27,45,46,60, 99- 120, 125- 132,2 12-2 14 

Quit, 22 

Save, 24 
Saving, 24 
Scalar, 50-5 1 
SIMULINK, 1,2, 172-206 
SIMULINK demo window, 174,175, 185 
SIMULINK libraries, 182 
SIMULINK librarary browser, 183-1 85 
SIMULINK window, 173 



Index 227 

Single-phase reluctance motor, 193, 194 
Special characters, 207 
Start, 5 
String, 25,42,68,209, 210 
Symbolic Math Toolbox, 157- 161 
Symbols, 3 1,65 

Toolboxes, 7, 18,20-22 
Tool bar, 22,23 

Three-dimensional graphics, 1 13- 120, 124, 125 
Trigonometric functions, 28 

Variable, 49 
Vector, 5 1 ,  52 
Van der Pol equation, 134- 137, 176- 179 

Workspace window, 5,8,25,43-46 


	cover.pdf
	page_c1.pdf
	page_c2.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf
	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf
	page_145.pdf
	page_146.pdf
	page_147.pdf
	page_148.pdf
	page_149.pdf
	page_150.pdf
	page_151.pdf
	page_152.pdf
	page_153.pdf
	page_154.pdf
	page_155.pdf
	page_156.pdf
	page_157.pdf
	page_158.pdf
	page_159.pdf
	page_160.pdf
	page_161.pdf
	page_162.pdf
	page_163.pdf
	page_164.pdf
	page_165.pdf
	page_166.pdf
	page_167.pdf
	page_168.pdf
	page_169.pdf
	page_170.pdf
	page_171.pdf
	page_172.pdf
	page_173.pdf
	page_174.pdf
	page_175.pdf
	page_176.pdf
	page_177.pdf
	page_178.pdf
	page_179.pdf
	page_180.pdf
	page_181.pdf
	page_182.pdf
	page_183.pdf
	page_184.pdf
	page_185.pdf
	page_186.pdf
	page_187.pdf
	page_188.pdf
	page_189.pdf
	page_190.pdf
	page_191.pdf
	page_192.pdf
	page_193.pdf
	page_194.pdf
	page_195.pdf
	page_196.pdf
	page_197.pdf
	page_198.pdf
	page_199.pdf
	page_200.pdf
	page_201.pdf
	page_202.pdf
	page_203.pdf
	page_204.pdf
	page_205.pdf
	page_206.pdf
	page_207.pdf
	page_208.pdf
	page_209.pdf
	page_210.pdf
	page_211.pdf
	page_212.pdf
	page_213.pdf
	page_214.pdf
	page_215.pdf
	page_216.pdf
	page_217.pdf
	page_218.pdf
	page_219.pdf
	page_220.pdf
	page_221.pdf
	page_222.pdf
	page_223.pdf
	page_224.pdf
	page_225.pdf
	page_226.pdf
	page_227.pdf

