S‘(’”
Servey E.
gey E [J»{s‘f‘;cw‘/@i

Engineering and Scientific
Computations Using MATLAB®

This Page Intentionally Left Blank

Engineering and Scientific
Computations Using MATLAB®

This Page Intentionally Left Blank

Engineering and Scientific
Computations Using MATLAB®

Sergey E. Lyshevski

Rochester Institute of Technology

Wl LEY-
INTERSCIENCE

A JOHN WILEY & SONS, INC., PUBLICATION

Copyright © 2003 by John Wiley & Sons, Inc. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.
Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a retrieval system or transmitted in any form or by any
means, electronic, mechanical, photocopying, recording, scanning or otherwise, except as permitted under
Section 107 or 108 of the 1976 United States Copyright Act, without either the prior written permission of the
Publisher, or authorization through payment of the appropriate per-copy fec to the Copyright Clearance Center,
Inc., 222 Rosewood Drive, Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at
www.copyright.com. Requests to the Publisher for permission should be addressed to the Permissions
Department, John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, (201) 748-6011, fax (201) 748-
6008, e-mail: permreq@wiley.com.

Limit of Liability/Disclaimer of Warranty: While the publisher and author have used their best efforts in
preparing this book, they make no representation or warranties with respect to the accuracy or completeness of
the contents of this book and specifically disclaim any implied warranties of merchantability or fitness for a
particular purpose. No warranty may be created or extended by sales representatives or written sales materials.
The advice and strategies contained herein may not be suitable for your situation. You should consult with a
professional where appropriate. Neither the publisher nor author shall be liable for any loss of profit or any
other commercial damages, including but not limited to special, incidental, consequential, or other damages.

For general information on our other products and services please contact our Customer Care Department
within the U.S. at 877-762-2974, outside the U.S. at 317-572-3993 or fax 317-572-4002.

Wiley also publishes its books in a variety of electronic formats. Some content that appears in print, however,
may not be available in electronic format.

Library of Congress Cataloging-in-Publication Data is available.
ISBN 0-471-46200-4
Printed in the United States of America.

1098765432

CONTENTS

Preface vii

About the Author X

MaTLAB Basics 1
1.1. Introduction 1
1.2. MartLAB Start 5
1.3. MarraB Help and Demo 9
References 26
MartLAB Functions, Operators, and Commands 27
2.1. Mathematical Functions 27
2.2. MartLaB Characters and Operators 31
2.3. MarLaB Commands 32
References 41
MartLAB and Problem Solving 42
3.1. Starting MATLAB 42
3.2. Basic Arithmetic 42
3.3. How to Use Some Basic MatLAB Features 49

3.3.1. Scalars and Basic Operations with Scalars 50

3.3.2. Arrays, Vectors, and Basic Operations 51
3.4. Matrices and Basic Operations with Matrices 53
3.5. Conditions and Loops 73
3.6. Illustrative Examples 80
References 98
MarLAB Graphics 99
4.1. Plotting 99
42. Two- and Three-Dimensional Graphics 113
4.3. Tlustrative Examples 125
References 132

MartLAB Applications: Numerical Simulations of Differential

Equations and Introduction to Dynamic Systems 133
5.1. Solution of Differential Equations and Dynamic
Systems Fundamentals 133

5.2. Mathematical Model Developments and MATLAB
Applications 141

vi

5.3. Modeling and Computing Using MATLAB
References

6. SIMULINK
6.1. Introduction to SIMULINK
6.2. Engineering and Scientific Computations Using SIMULINK
with Examples
References

APPENDIX: MartiLaB Functions, Operators, Characters,
Commands, and Solvers
References

Index

Contents

152
171

172
172

185
206
207
225

226

PREFACE

I would like to welcome the reader to this MaTLAB® book, which is the companion to the
high-performance MaTLAB environment and outstanding MathWorks users manuals. I sincerely feel
that I have written a very practical problem-solving type of book that provides a synergetic, informa-
tive, and entertaining learning experience. Having used MATLAB for almost 20 years, I have been
challenged to write a coherent book that assist readers in discovering MaTLAB from its power and ef-
ficiency to its advantages and superiority. Many books and outstanding MATLAB reference manuals
are available. The MathWorks user manuals provide an excellent collection of the MATLAB features
for professional users [1], while textbooks [2 - 9] have been used to introduce the MATLAB environ-
ment for students. Having used the referenced manuals and books with different levels of user and
student satisfaction, accomplishment, and success, the critical need to write a focused (companion)
book became evident. This is the reason that 1 have embarked upon project.

This book, in addition to being an excellent companion and self-study textbook, can be used
in science and engineering courses in MATLAB as well as a complementary book. In addition to cov-
ering MATLAB, the author has strived to build and develop engineering and scientific competence,
presenting the material visually, numerically, and analytically. Visualization, numerical and analytical
delivery features, fully supported by the MATLAB environment, are documented and emphasized in
this book. Real-world examples and problems introduce, motivate, and illustrate the application of
MATLAB.

MartLAB books and user manuals have been written, published, and distributed. Unfortunate-
ly, the MATLAB environment is usually introduced in the introductory freshman (or sophomore)
course with very limited time allocated to cover MATLAB during the allocated modules. This does not
allow the instructors to comprehensively cover MATLAB, and inclusive books which cover the materi-
al in details and depth cannot be effectively used. Furthermore, there are many engineers and scien-
tists who did not have the chance to study MAaTLAB at colleges, but would like to master it in the
every-day practice MATLAB environment. Therefore, this book covers introductory example-oriented
problems. This book is written with the ultimate goal of offering a far-reaching, high-quality, stand-
alone and companion-type user-friendly educational textbook which can be efficiently used in intro-
ductory MATLAB courses in undergraduate/graduate courses or course modules, and as a self-study or
supplementary book.

There are increasing demands for further development in high-performance computing envi-
ronments, and hundreds of high-level languages exist including C, FORTRAN, PASCAL, etc. This
book covers the MATLAB environment, which is uniquely suited to perform heterogeneous simula-
tions, data-intensive analysis, optimization, modeling, code generation, visualization, etc. These fea-
tures are extremely important in engineering, science, and technology. To avoid possible obstacles,
the material is presented in sufficient detail. MATLAB basics are covered to help the reader to fully un-
derstand, appreciate, apply, and develop the skills and confidence to work in the MATLAB environ-
ment. A wide range of worked-out examples and qualitative illustrations, which are treated in depth,
bridge the gap between theoretical knowledge and practice. Step-by-step, Engineering and Scientific
Computations Using MATLAB guides the reader through the most important aspects and basics in

vii

viil Preface

MarLAB programming and problem-solving: form fundamentals to applications. In this book, many
practical real-world problems and examples are solved in MAtLAB, which promotes enormous gains
in productivity and creativity.

Analysis (analytical and numerical) and simulation are critical and urgently important as-
pects in design, optimization, development and prototyping of different systems, e.g., from living or-
ganisms and systems to man-made devices and systems. This book illustrates that MATLAB can be ef-
ficiently used to speed up analysis and design, facilitate enormous gains in productivity and
creativity, generate real-time C code, and visualize the results. MATLAB is a computational environ-
ment that integrates a great number of toolboxes (e.g., SIMULINK®, Real-Time Workshop, Optimiza-
tion, Signal Processing, Symbolic Math, etc.). A flexible high-performance simulation, analysis, and
design environment, MATLAB has become a standard cost-effective tool within the engineering, sci-
ence, and technology communities. The book demonstrates the MATLAB capabilities and helps one to
master this user-friendly environment in order to attack and solve distinct problems of different com-
plexity. The application of MATLAB increases designer productivity and shows how to use the ad-
vanced software. The MaTLAB environment offers a rich set of capabilities to efficiently solve a vari-
ety of complex analysis, simulation, and optimization problems that require high-level language,
robust numeric computations, interactive graphical user interface (GUI), interoperability, data visual-
ization capabilities, etc. The MaTLAB files, scripts, statements, and SiMULINK models that are docu-
mented in the book can be easily modified to study application-specific problems encountered in
practice. A wide spectrum of practical real-world problems are simulated and analyzed in this book.
A variety of complex systems described by nonlinear differential equations are thoroughly studied,
and SiMULINK diagrams to simulate dynamic systems and numerical results are reported. Users can
easily apply these results as well as develop new MartLaB files and SimuLINk block diagrams using
the enterprise-wide practical examples. The developed scripts and models are easily assessed, and
can be straightforwardly modified.

The major objectives of this readable and user-friendly book are to establish in students, en-
gineers, and scientists confidence in their ability to apply advanced concepts, enhance learning, im-
prove problem-solving abilities, as well as to provide a gradual progression from versatile theoretical
to practical topics in order to effectively apply MarLaB accomplishing the desired objectives and
milestones. This book is written for engineers, scientists and students interested in the application of
the MATLAB environment to solve real-world problems. Students and engineers are not primarily in-
terested in theoretical encyclopedic studies, and engineering and scientific results need to be covered
and demonstrated. This book presents well-defined MATLAB basics with step-by-step instructions on
how to apply the results by thoroughly studying and solving a great number of practical real-world
problems and examples. These worked-out examples prepare one to effectively use the MATLAB envi-
ronment in practice.

Wiley FTP Web Site
For more information on this book and for the MarLaB files and SiMuLINk diagrams please
visit the following site ftp://ftp.wiley.com/public/sci_tech_med/matlab/.

Acknowledgments

Many people contributed to this book. First thanks go to my beloved family - my father Ed-
ward, mother Adel, wife Marina, daughter Lydia, and son Alexander. I would like to express my sin-
cere acknowledgments to many colleagues and students. It gives me great pleasure to acknowledge
the help I received from many people in the preparation of this book. The outstanding John Wiley &
Sons team assisted me by providing valuable and deeply treasured feedback. Many thanks to Math-
Works, Inc. for supplying the MATLAB environment and encouraging this project.

Preface ix

MathWorks, Inc., 24 Prime Park Way, Natick, MA 01760-15000 http://www.mathworks.
com.

Sergey Edward Lyshevski
Department of Electrical Engineering
Rochester Institute of Technology
Rochester, New York 14623

E-mail: seleee@rit.edu

Web: www.rit.edu/~seleee

REFERENCES

1. MarLas 6.5 Release 13, CD-ROM, MathWorks Inc., 2002.
. Biran, A. and Breiner, M., MurL4B For Engineers, Addison-Wesley, Reading, MA, 1995.

3. Dabney, J. B. and Harman, T. L., Mastering SimuLINk 2, Prentice Hall, Upper Saddle River, NJ,
1998.

4. Etter, D. M., Engineering Problem Solving with MarL48, Prentice Hall, Upper Saddle River, NJ,
1993.

5. Hanselman, D. and Littlefield, B., The Student Edition of MatL48, Prentice Hall, Upper Saddle
River, NJ, 1997.

6. Hanselman, D. and Littlefield, B., Mastering MarL48 5, Prentice Hall, Upper Saddle River, NJ,
1998.

7. Palm, W. 1., Introduction to MatLAB for Engineers, McGraw-Hill, Boston, MA, 2001.

8. Recktenwald, G., Numerical Methods with MatL4B: Implementations and Applications, Prentice
Hall, Upper Saddle River, NJ, 2000.

9. User's Guide. The Student Edition of MarL4B: The Ultimate Computing Environment for Techni-
cal Education, MathWorks, Prentice Hall, NJ, 1995.

ABOUT THE AUTHOR

gl

\wt'

- -
* J

Sergey Edward Lyshevski was born in Kiev, Ukraine. He received M.S. (1980) and Ph.D. (1987) de-
grees from Kiev Polytechnic Institute, both in Electrical Engineering. From 1980 to 1993 Dr. Ly-
shevski held faculty positions at the Department of Electrical Engineering at Kiev Polytechnic Insti-
tute and the Academy of Sciences of Ukraine. From 1989 to 1993 he was the Microelectronic and
Electromechanical Systems Division Head at the Academy of Sciences of Ukraine. From 1993 to
2002 he was with Purdue School of Engineering as an Associate Professor of Electrical and Comput-
er Engineering. In 2002, Dr. Lyshevski joined Rochester Institute of Technology as a professor of
Electrical Engineering, professor of Microsystems Engineering, and Gleason Chair.

Dr. Lyshevski serves as the Senior Faculty Fellow at the US Surface and Undersea Naval
Warfare Centers. He is the author of 8 books (including Nano- and Micro-Electromechanical Sys-
tems: Fundamentals of Micro- and Nanoengineering, CRC Press, 2000; MEMS and NEMS: Systems,
Devices, and Structures, CRC Press, 2002), and author and co-author of more than 250 journal arti-
cles, handbook chapters, and regular conference papers. His current teaching and research activities
are in the areas of MEMS and NEMS (CAD, design, high-fidelity modeling, data-intensive analysis,
heterogeneous simulation, fabrication), micro- and nanoengineering, intelligent large-scale mi-
crosystems, learning configurations, novel architectures, self-organization, micro- and nanoscale de-
vices (actuators, sensors, logics, switches, memories, etc.), nanocomputers and their components, re-
configureable (adaptive) defect-tolerant computer architectures, systems informatics, etc. Dr.
Lyshevski has made significant contribution in design, application, verification, and implementation
of advanced aerospace, automotive, electromechanical, and naval systems.

Dr. Lyshevski made 29 invited presentations (nationally and internationally). He serves as
the CRC Books Series Editor in Nano- and Microscience, Engineering, Technology, and Medicine.
Dr. Lyshevski has taught undergraduate and graduate courses in NEMS, MEMS, microsystems,
computer architecture, microelectromechanical motion devices, integrated circuits, signals and sys-
tems, etc.

Chapter 1: MATLAB Basics 1

Chapter 1

MATLAB Basics

1.1. Introduction

I (and probably many engineers and researchers) remember the difficulties that we had solving
even simple engineering and scientific problems in the 1970s and 1980s. These problems have been
solved through viable mathematical methods and algorithms to simplify and reduce the complexity of
problems enhancing the robustness and stability. However, many problems can be approached and solved
only through high-fidelity modeling, heterogeneous simulation, parallel computing, and data-intensive
analysis. Even in those days, many used to apply Basic, C, FORTRAN, PL, and Pascal in numerical
analysis and simulations. Though 1 cannot regret the great experience I had exploring many high-
performance languages, revolutionary improvements were made in the middle 1980s with the
development of the meaningful high-performance application-specific software environments (e.g.,
MATEMATICA, MATLAB®, MATRIXy, etc.). These developments, which date back at least to the mid
1960s when FORTRAN and other languages were used to develop the application-specific toolboxes, were
partially unsuccessful due to limited software capabilities, flexibility, and straightforwardness. MATLAB,
introduced in the middle 1980s, is one of the most important and profound advances in computational and
applied engineering and science.

MATLAB (MATrix LABoratory) is a high-performance interacting data-intensive software
environment for high-efficiency engineering and scientific numerical calculations [1]. Applications
include: heterogeneous simulations and data-intensive analysis of very complex systems and signals,
comprehensive matrix and arrays manipulations in numerical analysis, finding roots of polynomials, two-
and three-dimensional plotting and graphics for different coordinate systems, integration and
differentiation, signal processing, control, identification, symbolic calculus, optimization, etc. The goal of
MATLAB is to enable the users to solve a wide spectrum of analytical and numerical problems using
matrix-based methods, attain excellent interfacing and interactive capabilities, compile with high-level
programming languages, ensure robustness in data-intensive analysis and heterogeneous simulations,
provide easy access to and straightforward implementation of state-of-the-art numerical algorithms,
guarantee powerful graphical features, etc. Due to high flexibility and versatility, the MATLAB
environment has been significantly enhanced and developed during recent years. This provides users with
advanced cutting-edge algorithms, enormous data-handling abilities, and powerful programming tools.
MATLAB is based on a high-level matrix/array language with control flow statements, functions, data
structures, input/output, and object-oriented programming features.

MATLAB was originally developed to provide easy access to matrix software developed by the
LINPACK and EISPACK matrix computation software. MATLAB has evolved over the last 20 years and
become the standard instructionai tool for introductory and advanced courses in science, engineering, and
technology. The MATLAB environment allows one to integrate user-friendly tools with superior
computational capabilities. As a result, MATLAB is one of the most useful tools for scientific and engineering
calculations and computing. Users practice and appreciate the MATLAB environment interactively, enjoy
the flexibility and completeness, analyze and verify the results by applying the range of build-in
commands and functions, expand MATLAB by developing their own application-specific files, etc. Users
quickly access data files, programs, and graphics using MATLAB help. A family of application-specific
toolboxes, with a specialized collection of m-files for solving problems commonly encountered in practice,
ensures comprehensiveness and effectiveness. SIMULINK is a companion graphical mouse-driven
interactive environment enhancing MATLAB. SIMULINK® is used for simulating linear and nonlinear
continuous- and discrete-time dynamic systems. The MATLAB features are illustrated in Figure 1.1.

Chapter 1: MATLAB Basics 2

LANGUAGH "OMPUTATION

GRAPHICS

Figure 1.1. The MATLAB features

A great number of books and MathWorks user manuals in MATLAB, SIMULINK and different
MATLAB toolboxes are available. In addition to demonstrations (demos) and viable help available, the
MathWorks Inc. educational web site can be used as references (e.g., http://education.mathworks.com and
http://www.mathworks.com). This book is intended to help students and engineers to use MATLAB
efficiently and professionally, showing and demonstrating how MATLAB and SIMULINK can be applied. The
MATLAB environment (MATLAB 6.5, release 13) is covered in this book, and the website
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml can assist users to master the MATLAB
features. It should be emphasized that all MATLAB documentation and user manuals are available in the
Portable Document Format (PDF) using the Help Desk. For example, the MATLAB help folder includes
all user manuals (CA\MATLABG6p5\help\pdf doc). The subfolders are illustrated in Figure 1.2.

o L/ LJ L LJ -, LJ L/ LJ L/
dagq

serobls ceshnk cdma combuider comm commblks compier control
2 & 0O & U B v B B U
database datafeed ks dspblks ecoder exdnk fikerdesign finarce finderiv fopoint
N = A o S = E = B B >~ B o S = B
frseries buzzy garch ident mages Instrument map matiab matiabod mbe
S o S o A < B B B B N o S
mpc mpcSSSdk mutools ned nnet ophim otherdocs pde physmod pOwwersys

C
L
&
L
U]
L
5
AW AU

stateflow stats symbokc 000 wr wavelet webserver
Figure 1.2. Subfolders in the MATLAB help folder

Chapter 1: MATLAB Basics 3

The mat1ab subfolders have 18 MATLAB user manuals as reported in Figure 1.3.

‘@““M e @WM
Adobe Acrobar Docurment Adobe Aot Dorurent Radobe Acrobat [ocursent
| (X gl e vk

Qotstart. pf waphg.pf s _perme. pdf

Adobe Acrchat Docurment Adobe Acsobat Doo et Adobe Acrchat |

¥ b 13,2450

e _unie pof mac malm book. pdf matfle format pf

Adobe Acrobat [Froerl ,';J-,'\-{ " ol Adobe Acrcbat Do

(o : MDaE :
@mﬂ‘ed;llu’ @mﬂw;um.w l@awm,rmw

Adoloe AT OU Lo urmme d Addobm Acrobeat DoCurment At A o L Pl 4
[@ 'dwz cd @ T “’ @ 'dw“’

Adobve Acrobat Do et Adube Actobat Docureent Adobw ACrobiat Do e
[RA'MH“’ @mu’ l@m““’

L rmvent fdobe Acrobat Documenit hdobwe Acrobat Docws

Figure 1.3. MATLAB user manuals in the mat1ab subfolder

These user manuals can be accessed and printed using the Adobe Acrobat Reader.
Correspondingly, this book does not attempt to rewrite these available thousand-page MATLAB user
manuals. For example, the outstanding MATLAB The Language of Technical Computing manual, available
as the ml.pdf file, consists of 1188 pages. The front page of the MATLAB The Language of Technical
Computing user manual is shown in Figure 1.4.

MATLAB

1
The Language of Technical Computing

Computation
—
Visualization
—_

Programening
-

Using MATLAB @\ The MathWorks

Version 6

Figure 1.4. Front page of the MATLAB The Language of Technical Computing user manual

Chapter 1: MATLAB Basics 4

This book focuses on MATLAB applications and educates the reader on how to solve practical
problems using step-by-step instructions.

The MATLAB environment consists of the following five major ingredients: (1) MATLAB
Language, (2) MATLAB Working Environment, (3) Handle Graphics®, (4) MATLAB Mathematical
Function Library, and (5) MATLAB Application Program Interface.

The MATLAB Language is a high-level matrix/array language with control flow statements,
functions, data structures, input/output, and object-oriented programming features. It allows the user to
program in the small (creating throw-away programs) and program in the large (creating complete large
and complex application-specific programs).

The MATLAB Working Environment is a set of tools and facilities. It includes facilities for
managing the variables in workspace, manipulation of variables and data, importing and exporting data,
etc. Tools for developing, managing, debugging, and profiling m-files for different applications are
available.

Handle Graphics is the MATLAB graphics system. It includes high-level commands for two- and
three-dimensional data visualization, image processing, animation, and presentation. It also includes low-
level commands that allow the user to fully customize the appearance of graphics and build complete
graphical user interfaces (GUISs).

The MATLAB Mathematical Function Library is a collection of computationally efficient and
robust algorithms and functions ranging from elementary functions (sine, cosine, tangent, cotangent, etc.)
to specialized functions (eigenvalues, Bessel functions, Fourier and Laplace transforms, etc.) commonly
used in scientific and engineering practice.

The MATLAB Application Program Interface (API) is a library that allows the user to write C and
FORTRAN programs that interact within the MATLAB environment. It includes facilities for calling
routines from MATLAB (dynamic linking), calling MATLAB for computing and processing, reading and
writing m-files, etc. Real-Time Workshop® allows the user to generate C code from block diagrams and
to run it for real-time systems.

MATLAB 6.5 is supported by the following platforms: Microsoft Windows, Windows Millennium,
Windows NT, Compaq Alpha, Linux, SGI, and Sun Solaris.

In this introduction, before giving in the MATLAB description, the application of MATLAB should
be justified through familiar examples. This will provide the reasoning for MATLAB applications. This
book is intended as an introductory MATLAB textbook though advanced application-specific problems are
solved to illustrate the applicability and versatility of the MATLAB environment. Therefore familiar
examples will be covered. In multivariable calculus, students study parametric and polar equations,
vectors, coordinate systems (Cartesian, cylindrical, and spherical), vector-valued functions, derivatives,
partial derivatives, directional derivatives, gradient, optimization problems, multiple integration,
integration in vector fields, and other topics. In contrast, linear algebra emphasizes matrix techniques for
solving systems of linear and nonlinear equations covering matrices and operations with matrices,
determinants, vector spaces, independent and dependent sets of vectors, bases for vector spaces, linear
transformations, eigenvalues and eigenvectors, orthogonal sets, least squares approximation,
interpolation, etc. The MATLAB environment is uniquely suitable to solving a variety of problems in
engineering and science. Using the calculus and physics background, a variety of real-world engineering
problems can be attacked and resolved. This book illustrates the application of MATLAB in order to solve
of this class of problems.

MATLAB integrates computation, visualization, and programming in an easy-to-use systematic,
robust and computationally efficient environment where problems and solutions are expressed in familiar
(commonly used) mathematical notation. The user can perform mathematic computation, algorithm
development, simulation, prototyping, data analysis, visualization, interactive graphics, and application-
specific developments including graphical user interface features. In MATLAB, the data is manipulated in
the array form, allowing the user to solve complex problems. It was emphasized that the MATLAB
environment was originally developed using data-intensive matrix computation methods.

Chapter 1: MATLAB Basics 5

MATLAB is a high-performance environment for engineering, scientific and technical computing,
visualization, and programming. It will be illustrated that in MATLAB, the user straightforwardly performs
numerical computations, analytical and numerical analysis, algorithm developments, heterogeneous
simulations, data-intensive analysis, visualization, graphics, etc. Compared with other computational
environments, in MATLAB, the data analysis, manipulation, processing, and computing do not require arrays
dimensioning, allowing one to very efficiently perform matrix computations. The MATLAB environment
features a family of application-specific toolboxes which integrate specialized m-files that extend MATLAB in
order to approach and solve particular application-specific problems. It was mentioned that the MATLAB
system environment consists of five main parts: the MATLAB language (high-level matrix-array language
with control flow statements, functions, data structures, input/output, and object-oriented programming
features), the MATLAB Working Environment (set of tools to manage the variables in the workspace,
import and export the data, as well as tools for developing, managing, debugging, and profiling m-files),
the Handle Graphics (high-performance graphic system that includes high-level commands for two- and
three-dimensional data visualization, image processing, animation, graphics presentation, and low-level
commands allowing the user to customize the appearance of graphics and build graphical user interfaces),
the MATLAB Mathematical Function Library (collection of computational algorithms ranging from
elementary to complex and specialized functions as well as transforms), and the MATLAB application
program interface (library that allows one to write C and FORTRAN programs that interact with MATLAB).

1.2. MATLAB Start

MATLAB is a high-performance language for technical computing. It integrates computation,
visualization and programming within an easy-to-use environment where problems and solutions are
represented in familiar notation. Mathematics, computation, algorithm development, simulation, data
analysis, visualization, graphics and graphical user interface building can be performed. One of the most
important features, compared with Basic, C, FORTRAN, PL, Pascal, and other high-performance
languages, is that MATLAB does not require dimensioning. MATLAB features application-specific

toolboxes which utilize specific and well-defined methods. To start MATLAB, double-click the MATLAB
icon (illustrated below),

’
MATLAB 6.5.Ink

and the MATLAB Command and Workspace windows appear on the screen - see Figure 1.5.

Chapter 1: MATLAB Basics 6

B Ve Web Widew el

D & g ' T Curverd Doechory © A T AfNg Aoy v U
. -~
BATLAMG S | woul - U =2
- - - - Te oot slagted, select “RATLAR Belp”™ from the Weilp aema
All Files File Type Lart Bodified Description

Command Window Workspace Window

) Command wedew

He [Yow Web pindow bl

e GE Yom Wp Wik o
D@ 8o | W] 7 cnetoay

o

@ | @ wa o]

" = [T 13 |

Figure 1.5. MATLAB 6.5 Command and Workspace windows

For all MATLAB versions, the line
>>
is the MATLAB prompt.
For the UNIX platform, to start MATLAB, type MATLAB at the operating system prompt.
To end MATLAB, select Exit MATLAB (Ctrl+Q) from the File menu, or type
>> quit
in the Command Window.

After each MATLAB command, the Enter (Return) key must be pressed. One interacts with
MATLAB using the Command Window. The MATLAB prompt >> is displayed in the Command Window,
and a blinking cursor appears to the right of the prompt when the Command Window is active. Typing ver,
we have the information regarding the MATLAB version and the MATLAB toolboxes that are available (see
Figure 1.6 for MATLAB versions 6.5, 6.1, and 6.0).

Chapter 1: MATLAB Basics 7

e G e e e I—

D IR I S e — .U
€ TLAMG Y seh - U R A e e L
Al Piee file Tige Last Beuting Pearsipaten BATLAR Fersiem 6. 0.0 iedRide (RIY)
TATLAR License Bamdes MW
Tprrating Trrten: Bioissslt Wisdews XF Veasies 10 (Bwiid Jeee)
Bees TR Teaviems fevs 130 00 wioh Rem Bioresyeiens Dae. Sevs Betlpet (TR Cliemd
LA Teasiem 0.3 i
Tl e Vervim 4.0 e
Arraapars Bismemt Weaniem §.8. 0 (L3]
AL Befermmce Bieimrey Teasiem 1.0 (LR
RE RS TR T Terniam 1.0 mn
Comman el ms T LB Weiniem i.0 iy
Comtiel Freies Tosidem Tereiem 1.0 L IEH
Curve Fitving T ides Weiviem |4 min
P Biembeet Teaniem L8 (LIt
Bada Bogel iVien Tew e Werwion 1.0 my
Ietabase Tedibew Wersiem 504 (L1
Batalerd Tos b Vearies 100 mn
Blain o Gmsprs Bioonset Wersiem 0.2 miy
Esiwl Lisk Vrisiem 1.0 i
Fiiwen Design Tes bae Weaviem 5.8 [
Fiane 10 Besivativns Tonidem Priviam 1.0 miy
Fisass in: Time Swdies Tooidem Teasiem .0 iy
L Teawiam 100 min
Pised Frina Biedn et Teisiem 40 iy
Petdy Logha Tosibaw 2 man
CARCE Tosibam min
faage Fiscessing Ten duma may
Iasrisament (omtoni Todidam min
RAE Camtieh Tosidas [LTE
MATLAS Comgiien iy
BATLAR Baguit Lemarater iy
Lo LI IR ;i
Bl Prodiinive Comtre: Tosiben i
Bt | Based Coiibintiom Tosidem min
B bnalgrin and Pymakesss Tesibes Trasiem 300 iy
Wevtal Beteern Yo ises Teasiem 4.8.7 "y
Wi haaar Cemtini Design Bischmet Tersiem 108 [TE]
prisiration Tasibon Weaniem [3 (LR
Furtind Jiffeaentiod Douetiim Tos i Feiniom 1. 0.4 mn
Beai Tiee oo siey Weusiom 3.8 i
—— e — — LTI Feaviem 300 (L3
AP et Dy I (owmewiie Pretenbelid te Bume. Prisiem 5.4 (LR N
- Vignal Fosrsat iy Tos e Feaniem 6.0 (L]
TIPSO R T SR TR o e e weosiom 1.1 i
v BRARURE LIS AR et =1 Vit ppeiens Veisiam 5.3 [LTE]
— Fimai il Posfoomamie Teain Feasiem 1.0 iy
R Fimal inh Bopaat Lonsiotay Teiviem 1.3 L L]
Tpiune Teaibes Teiviem 300 i
iy Saration e 1.8 iy
- TLALIFLICE Taibee Teisim 40 o -
. A « »

To gt maated, seiert “RATLAS Beip” foem e Bely srem.
v
BATLAD Verwiem 4. 0.0 @M (Bi2.) wm MW
BATLAD Liiense Bumbes DAL R
S e ermien 6.1 (2.1 [Wsia 60 Man 5-Sev-2000
Tl el Weusiem A0 ML) . age - Jwy ¥ e al Vewiem 4.0 D i e e
Beal Ties Bead g L ——TE TR b By hra. Tiae Bl ey Tersiem 40 (D - -
(ot Tos b Venwiem 180 (M2.0) 6 Bay s fammicotine Twibm Peuniem 1.0 @ud 8- Bay- 2000
[maiel tysiom Tesitas Vensiem 0.0 (B3.0) [[fomties Pyriem Teaiten Yersiem 1.0 @uh 8 Sop- 2000
Buta biguasitiom Tooibee Weasiem 3.0 ML) e et biguiritim Tem e Fersim 10 D 50 - i
Lol I T T Veawiam 3.0.0 I b Bey 0d; i Paary Logic Tee e Wersiem 1.3 @D [1]
Preien Dhemdificetiom Toeldee erwiem L0 0 2. 1) LR q [Proten demtificetion e e Terriem 4.0 oUDh b
Tatege Frisoasiog Tomibum Vessuam L3 W) (LR laage Frementisg Tes dum Vereiem 130 uh A0 e
Bruial Briwnad T ibas Verniem 400 (RAL.1) - Pew- 03y (B a. Betmiad T b Veisiem A0 BuDn ER
Tyt bet Lam o i Teariem D00 ME 0D e By B3, [yt aientim tos it Weinem 10 Mah o D
WL (rsmmri e PyrionBos i e Tums Wessiem .0 ML) 15 age - T, [(rewwwrns Syrienienid te Biew. .. Persiem 10 MD e Do
Vignad Fromewoing Tus b Wersiem 3 ML 1D o g - 00 [Tigmes Prodessiog "o idem Veisian L0 U LR
P rlii e Tosibeee Feariem L3 LD - bey- Sy [Pratimtice Tem e Teisiam 00 gD 5ty e
Prabelis Mok Yo Liw Teariam D00 ML D 11- Yoy S A v Bk Tesibem T I0.0 B Sy J
»» - P>
pr— T
Ed NS A L AR T

Figure 1.6. MATLAB 6.5, 6.1, and 6.0 Command Window (MATLAB toolboxes are listed)

MATLAB Command Window. The MATLAB Command Window is where the user interacts with
MATLAB. We illustrate the MATLAB application through a simple example. To find the sum 1+2 type
>> 143 - '
and press the Enter key. The result displayed is
4 J e

Chapter 1: MATLAB Basics 8

Typing

and ii the Enter (Return) ki, we have the value !or a.ln pnmcullar,

1008 double arcey
1008 | double arcay

Figure 1.7. Command and Workspace windows for a=ones (3)

As soon the prompt line appears, the user is in the MATLAB environment. Online help is available.
Thus, MATLAB has Command, Workspace, File (edit) and Figure windows. To illustrate these
features, Figures 1.8 and 1.9 show the above-mentioned windows with the data dlsplayed

Command Window

> lu-:'m:ll.nz'pu x=10"sin(t); y=10%cos(t); plot(x,y) ..|
>

1008 double arcey
1008 | double arcay

Figure 1.8. Command and Workspace windows

Chapter 1: MATLAB Basics 9

File Window Figure Window
®) ¢ms_world\ book$\ ch101.m oo =100 xi m =loix
fe O Yew Jext Debug Oreshpoits Web Window LHeb Bl [R Yew Juot Jook
DSE& rbvRrwoc AH| DD 49 o =
I-,I te-2"pi:0.1:2%1; =] ,D@ﬂé kA A2/
&=| x=10"sin(t): y=10"cos(t):
3=l plotix,y) | e
|
| 5
| /
0
= -3
| 4] { =I5 -
Ready -10 0 10

Figure 1.9. File (edit) and Figure windows

1.3. MATLAB Help and Demo

MathWorks offers an extensive set of online and printed documentation. The online MATLAB
Function Reference is a compendium of all MATLAB commands, functions, solvers, operators, and
characters. You may access this documentation from the MATLAB Help Desk. Microsoft Windows and
Macintosh users can also access the Help Desk with the Help menu or the ? icon on the Command
Window toolbar. From the Help Desk main menu, one chooses “MATLAB Functions™ to display the
Function Reference. The online resources are augmented with printed documentation that includes
Getting Started with MATLAB (covers basic fundamentals) getstart.pdf, Using MATLAB (describes
how to use MATLAB as both a programming language and a command-line application)
using ml.pdf, Using MATLAB Graphics (how to use graphics and visualization tools), Building GUIs
with MATLAB (covers the construction of graphical user interfaces and introduces the Guide GUI building
tool), MATLAB Application Programmer’s Interface Guide (describes how to write C or FORTRAN
programs that interact with MATLAB), MATLAB New Features Guide (covers recent and previous MATLAB
releases), MATLAB Release Notes (explicitly describes features of specific releases), and others as
illustrated in Figure 1.3.

MATLAB includes the Command Window, Command History, Launch Pad, Workspace Browser,
Array Editor, and other tools to assist the user. The Launch Pad tool displays a list of all the products
installed. From the Launch Pad, we view demos, access help, find examples, and obtain interactive tools.
For example, the user can get the MATLAB Demos screen to see the MATLAB features. MATLAB 6.5 (as
well as earlier MATLAB versions) contains documentation for all the products that are installed.

We can type
>> helpwin
>> helpdesk
or
>> demo
and press the Enter key. For example, typing
>> helpwin
and pressing the Enter key, we have the MatLaB widow shown in Figure 1.10.

Chapter 1: MATLAB Basics 10

T e e e e T = — == — ——— e

(Wi oo ___.__,._._.___-._.___.._-_*____.-_._.h_ TR v e |

GBS
e

iemestary wairioes A melris meaipelet lon.

¥ -

-

= BetEis Pesctions - seserlesl |iseer slgebes.
< ele aARLYELE sad Fowl leT LTeAsToTme .
< helle BN
- on -
= Femetios fesctions asd 061 soivers.
Tpasse mateioen.
Teo dimsssional guephs.
Thaee dismasissnl guashs.
Speciniiied graphs.
Bastis Crephics.
Ceaphionl wher imerfere tesis.
Characier BLELAGY .
= File ispe/evipw .
- Tume asd Setes.
Bate Lypes sad surstwen.
Veisies cestiel.
Fimtows Operating Tysiem Interface Files (3O0/COM
(s tabie of costests file)
-
Fuelerenies.
LI
el ink Bioch libiary.
Dimnei 1B comgeamet s,
= e vakie of sestenie file)
= Fised-Foist Blochset Bemns
- (essiete Fises-Feist Biscaser

. iens and

e | -
- t
oLiees end
- -
Lo — hons and

“ BIfferestisl Dawstion E4iler
< s wabie of sestesis Tile)
= Ssaefiow

R I]

i

et
e Larie of cestesis [ile)
L
Beai-Tume Wortshop Dewes
e tabie of cemtesis file) -

DRI

i

|

Figure 1.10. MATLAB helpwin window

The complete list of the HELP topics is available by typing help. In particular, we have

Chapter 1: MATLAB Basics

Chapter 1: MATLAB Basics 12

Chapter 1: MATLAB Basics 13

By clicking MATLAB\general, we have the Help Window illustrated in Figure 1.11 and a
complete description is given as well.
—

oI i

S —

e TTIIITTD = =T - S = e

'hﬂl-—u‘.

CAMEINL Pt JOBE COMMMLS .
RATLAD Versiom €.5 (B13) ID-Jwm- iO05

anmial Lnformet Los
belpbscowesy - Ming wp Lhe help Divwses .

oy - Compiers on-iise Meip, yod s 1he heip
bein = B=file Meip, displayed st Lhe commmsd |l
[T = Befiie heip, displeyed in Che Wiy Broeser.
Aepatey = Sesseh sl B-files for Beyword.
rwies © Bmip ee BATLAR commmad syeies.

H exdaeil © Cpes BetRBoche Techaionl Tuppert Bem Page .
- T B S (B L
ot - BATLAN, SINTLINE, ead

i TRLRIEN < MATLAR wwrsios iaformetiss.

| et seey © hecess B lease Netes.

' Basaging the weraspere.

it "o - LA CerTest vesiebies.
Ly © RASL Ewirest ved lables, loag foum.
sesiagane - « % SEI for mesaging the woukepace.

I Lheag = Clens wed babies and et lons from sessdy.

| -y - Caads L IBETE wOT ERpAce mEwe Y

t e © haad wod epacs vas b ies Foom dish,

! e - Bawe workepece verishles te disk.
[1Y - Cuit RATLAS sessios.

. aad Pum |

b et = List RAYLAB-specific files in direciery.

i e = kiss B=file.
etis - Raix Rfile.

i g « Opan Files by svienaisa.

¢ hich © Locete fesctions asd files.

| P © Creste pre-parsed peewic-code Cile (P-file).
Lamen = LIS Demetions I8 wemery.
- - Comgile BEZ-femtion,

Basagiteg 10 seasih pail

v Cmt /et seareh paih.

= MM SIIEELANY L SEOR pMN,

o Basmrre direciary foem seasch gead.

- By seaseh peil

- Befresh Pemetios ssd Tile sysiem caches.

< IPRTL Jeve PACRAGES LALG ThE CWrTERL BEARE.

mamrTr
\

'

.

A

Figure 1.11. Help Window

Chapter 1: MATLAB Basics 14

Chapter 1: MATLAB Basics 15

Whenweﬁ

the MATLAB Help Window is displayed for all MATLAB versions. For example, for MATLAB 6.1, see
Figure 1.12.

Chapter 1: MATLAB Basics 16

MATLAB Release 12

i

B What's New

| Q Real-Time Workshop

- Communications Toolbox | ® Release Notes describe new fealures, new products, and
5« Control System Toolbox important bug fixes. The Release Notes are available as
-« Data Acquisition Toolbox i printable version in PDF format
5~ Excel Link 1l ® The MATLAB deskiop is MATLAB's new development
- Fuzzy Logic Toolbox : ¢ ment
| | |24 Image Processing Toolbox
s @ Neural Network Toolbox | ¥ Product Documentation and Demos

IO Dl Y ® MATLAB Documentation provides complet

The complete MATLAB documentation is available for users. In general, the use of the help and
demo commands is the simplest way to find the needed information. Typing

The Help System will be also covered in the next section.
If the user has never used MATLAB, the demo command provides very useful tutorial features.
and pressing the Enter key guides us into the MATLAB Demos Window as illustrated in Figure 1.13 for
MATLAB 6.5 and 6.1.

Chapter 1: MATLAB Basics 17

L

1Bl

et W et ===

B 0 [— (st
[R) H Getting Slarted with Demos.
L % Line e Cipcs Apiaen o B il Dot 5 gl e o MATLAD Th s of Tt S st Gk B sy of Bus g
- g Cwvenng § e e - e
SR Lot : + B et
- - ! * Lt i il B g
- L eaghe | * iew P siate Sofie by e S
® (3 Longrape ; o Compy v o B W S B g e M8 Yy
Lg*] o T Run Ox
» @ Sy 1 it e e e o Vaong e 8 i) e i e ie WATLA
» S ven Comas I WA Bt gt e wegaed e ot S 8 et s et © ey B eraegie VA TUAN Tragtu s
o o et T St g T e e T A e e <l g Tt
4 mEn R e L = I]

B Y e
B
o o S g
R _Fryere—,
B _J—
o i g
E T
R I
o A g P e
B e
w o
B LU
= o W oo s
o ol s el S
A i
B R
= et et § g
O e
= A g g
» & twine
LR L
* @ e mem
- Ty
o e
o

O T

N T

— ————— P,

e

Funcson ARemative
Wit e i e o T Dol Wi S g e Vel Srmene S B Danan L8 e g fer<ly b T e i s tgendf grosllct o abegiey f o
v g
.t el graphiee
e e ey e AT AR Cemgtu b
MNotes

o o Saael e wl o Gl el el e
o Thi P Fotar s oot igully M Mimas
o Dt grs fhrms B il pine st alind grilate mee @ g @i et sl e e S et de e Sl genflire

Siee Alao
vt Cataaiy jiea 1o8 T oamgins danegg e s gridict B Cartar et S S T e sl A laficd o e S e anen groedicg cwies Cib Samgen
P e e A e Y

“MATILAB Denw

Figure 1.13. MATLAB 6.5 and 6.1 Demos Windows

» Window

Chapter 1: MATLAB Basics 18

A list of topics which have demonstrations appears in the left-hand window, while the
information on these topics appears in the upper right-hand window. In order to expand a topic in the left
window, double-click on it and subtopics will appear below. When the user clicks on one of these, a list
of possible demonstrations to run in the lower right-hand window appears. The button below this window
changes to run demonstration. Choosing the subtopics (Matrices, Numerics, Visualization,
Language/Graphics, Gallery, Games, Miscellaneous and To learn more), different topics will be explained
and thoroughly covered. For example, clicking the subtopic Matrices, we have the Matrices MATLAB
Demos (demonstrations) Window, as documented in Figure 1.14.

) MATLAB Demo Window

j
Numencs matices. A scalar is really just a 1-by-1
Graphics malrix, and a vector is nothing more than a
Language long, thin matix given as either a row of a
Galery column. In this serse, everything that
More E xamples MATLAB operales on is a matree :l
+T oolboxes
oc)l'l’l.""‘
+Real Tme Workshop -
+Stateflow Inverses of matnces
Graphs and matnces
Sparte matnces
Matroe marspudahon
& Eig & smgular value show
st o B Commeron o =

Close] ' Run Basic matrix ... |

Figure 1.14. Matrices MATLAB 6.1 Demos Window

By double clicking Basic matrix operations, Inverse of matrices, Graphs and matrices, Sparse
matrices, Matrix multiplication, Eigenvalues and singular value show, and Command line demos,
illustrative example are available to demonstrate, examine, and explore different problems.

Newest MATLAB releases provide the user with the full capabilities of the MATLAB environment.
As illustrated, MATLAB 6.5 integrates Communication, Control System, Curve Fitting, Data Acquisition,
Database, Filter Design, Financial, Fuzzy Logic, Image Processing, Instrument Control, LM}, Mapping,
Model Predictive Control, Mu-Analysis and Synthesis, Neural Network, Optimization, Partial Differential
Equations, Robust Control, Signal Processing, Spline, Statistics, Symbolic Math, System Identification,
Virtual Reality, and Wavelet Toolboxes, as well as SIMULINK and Blocksets environments and libraries.
The demonstration capabilities of MATLAB 6.5 were significantly enhanced, and Figures 1.15 and 1.16
illustrate the application of the MATLAB environment and SIMULINK to perform simulations for the F-14
and three-degrees-of-freedom guided missile models.

Chapter 1: MATLAB Basics 19

.

e e @

- - 0 T el
- P c e C]
Brirn Dema N4 -
Cwtwsn Dem Fousten
[P e e L Siad Oner B meda!
» g F .14 Faght Control Simulstion
L R
B Soeman Trn Seemspentptior. sty 8 WPt Costeulee e e peghoabes soton o 8 Do Aessigae |1
31 emen Ty sspermantog et Be vy o e e]
L L ¥ - . = 1D IR . |l
s -
o ah oAP ABE DL . |sm opre AGER R

Qe ot i}

W S BT (et g

WM e o Tae s Sl e

W W et e Y e e ey e s e

W E R T

R R I

o e e e

o e e el S

WL el Dt w Mgt

o TR Bepeet of Veedtes e d i i i

D e Wanr ‘wed -
st 1 e SR
A DSES Lan L Y T B
R e L e — —
o PN e T S Aateg TS - . =
B YT — &9 .(-i} 1 J 1 r -L i i
o B e e - . M -—--:T-f |
B L e LA) r‘__“n) | 1" B gt i'":-:;_‘
o I S Dot Conarams ' | ~y—— | ¢ | | —— La®)
BN R PN FUSPP S ——— N = | '-u--u_....] |1 - Pag
o B e o | (O el | s 0 Ty
1 4 v = P | | | f
| = -;mu-—n.-q._‘ | | [-E 1
| ! | 1 |1 —
-~
i| ‘..g..l ™ | "-'-00_---|Tl |
| =t 4 o’-/ Sl) iy - v oy 1 v |;.,"._:
1 l -l it L] ! | wwreren
1 J] = —
il T [o
1 e wabe 1-1 - . 1
|! ’] |
i
PR —r—
Fontin el on Ba " e ey sy i . l s —
| it
Fi B snk g By Bemuiine s B e gl [N,
TN i dcan v B T e gk be— e
— v i

Figure 1.15. MATLAB 6.5 Demos Window running F-14 flight control simulation

Chapter 1: MATLAB Basics 20

=2 8 e [oe
N
P T e A e G et T e A T el LA S ST
—)
B Uzea Tt Bwdul

[vugreng sod somalating s metvde padimce syvtem armg MATIAH sod Somadend
MATLAR Semdek and Ttsrow are sheal tools for 8 raged devebogeret mnd by of fght Sy
i wmaret Shaiy e

* Pl twg o omline deggrey of Segdom p-dal of 2 e ag® ave

* Dongperg » Clates o sdogded b & o meormal g ¢ ooy ppon

* Babdeg s Semdek m-del of » ooyt padanc e boog

.

lunirmsetun e § demees of bvedum cqsanens 5f et far 2 nnd bed

DFEES YA rs PPT

Fia Deflection

Lol

DS « PO e - L UL
b-.‘.-lu--.-lu ! Prebim = bay =
Sl e Man g pm—y | gt e e w .
mane wobes —_ v —
A - -

Figure 1.16. MATLAB 6.5 Demos Window running three-degrees-of-freedom guided missile
simulation with animation in SIMULINK

The M-file Editor/Debugger enables one to view, develop, edit, and debug MATLAB programs,
Using the menu, the user can select a code segment for evaluation in the Command Window. Many
MATLAB routines are developed and supplied as readable m-files, allowing one to examine the source
code, learn from it, and modify it for specific applications and problems. New functions can be written
and added, and links to external software and data sources can be created.

Access to History is performed through the Command History tool in order to maintain a running
record of all commands that the user has executed in the MATLAB Command Window. The user can refer
back to these commands and execute code directly from the Command History menu.

Access to Files is performed through the Current Directory window and allows one to select a
directory to work in. The user can browse, run, and modify files in the directory.

Access to Data is performed through the Workspace Browser, allowing one to view the variables
in the MATLAB workspace as well as access the Array Editor to view and edit data.

The commonly used toolboxes are Statistics, Symbolic Math, Partial Differential Equations, etc. An
incomplete list of toolboxes, including the application-specific toolboxes, is as follows (see
http://www.mathworks.com/access/helpdesk/help/helpdesk.shtml for details):

Chapter 1: MATLAB Basics 21

1. Communication Toolbox 14. Model Predictive Control Toolbox
2. Control System Toolbox 15. Mu-Analysis and Synthesis Toolbox
3. Data Acquisition Toolbox 16. Neural Network Toolbox

4. Database Toolbox 17. Optimization Toolbox

5. Datafeed Toolbox 18. Partial Differential Equations Toolbox
6. Filter Design Toolbox 19. Robust Control Toolbox

7. Financial Toolbox 20. Signal Processing Toolbox

8. Financial Derivatives Toolbox 21. Spline Toolbox

9. Fuzzy Logic Toolbox 22. Statistics Toolbox

10. GARCH Toolbox 23. Symbolic Math Toolbox

11. Image Processing Toolbox 24. System Identification Toolbox

12. Instrument Control Toolbox 25. Wavelet Toolbox

13. Mapping Toolbox

However, the user must purchase and install the toolboxes needed, and different MATLAB versions
and configurations might have different toolboxes available, see Figure 1.17. The user can practice examples
to quickly learn how to efficiently use MATLAB to solve a wide variety of scientific and engineering
problems. Toolboxes are comprehensive collections of MATLAB functions, commands and solvers that
expand the MATLAB environment to solve particular classes of problems.

- .- - -
- @ e -]
v ¢ »
— T _ i[sn.:e:_]
e e - p—
e e o e
s doas — e 20 — .
- s B il T S
N —— LI Fotn e gy wd iy
& s mme
8 @ o fng Ce e gt R e kg b g 8 b
B o — LR e e R
B t Y
- o
gt | - B
* dreane [S— M b et bt b w s p——
= dramnp *ulie g Cme e d e A b e
ey t i .
g P donmy Fattus g o sy wiy n e g ——
o L
> Grmiane e o 0 e e o4 e 0 wsemewnas e | §
[¢ - N — B e Rl S £
P e - L L e R L s ad 5
R e] e potsnen
e ——
B e — (e e e e e e e e
LR L § — s g A e g ae = P a—
v - —
b B b Pmerany S By o | - CHeg e bt b | —— |
o -y |
& - ———— ® P ——)
Pye——— = i e e——l
o —— | M e e et e e e e
- Fora el o . by -
“"— e g e e i —
e ' .
. B T ey R I L '
fewe T el i i e s & by
i — e e e e b ———
P] R Lkt LI SRy
! e - o
- — e
e b eme el s nige eiee el e b e A A
s bnn
—— R a e e Bete e W s
— s »

Figure 1.17. MATLAB 6.5. and 6.1 Demos Window with Toolboxes

All MATLAB toolboxes have demonstration features. Figure 1.18 illustrates the MATLAB Demos
Window for the Optimization Toolbox.

Chapter 1: MATLAB Basics 22

gy - = 3+ -
s ey el 8 e a-]
ot s T
R -
| t—— . — ! .
[TP — Optimization Demos
O T
‘ p— Thg Oyt anoe Tonilbpe a8 (i i of Lo vt Bl o 0tavel B ¢ agatiny of Do MAT AN trmy | semgubog se ¢ Die
Pl re ey cplrat Y segsy Tpges of cgfre] o rw Lalle
8 o i L ¥ +
K T o LRl B SR e L

» Camab Syt g e e o e - o - e o
® d Coma finny A g Siisnibitg g i | Bt e Ll et ST gt B woas gy gl L oAb e o

il
» Ot & partiae

L e L]

= @ Ouraie o g WO Loarn) e g W

e Dege o s Lpttee o eyosbes Lakerg

. ‘<.‘,.. - . T e S T Sy

» ¥y Lo o e el A S e 1 e e g
ol g P ey

I L

5 d L Comani

o wrg

I Py —

* B s e T eia

G o et | s

o A e | st

o it e

s g ey
R T
T

T Ry
ol Tt et e
. e e ety
o @ Pupmiat
» I v
o B mnnem

Figure 1.18. MATLAB Demos Window with Optimization Toolbox demo

The use of the toolboxes allows the user to quickly and efficiently learn the MATLAB capabilities
for general and application-specific problems. Click on the Communication, Control Systems, Curve
Fitting or other toolboxes for meaningful demonstrations (see Figure 1.18). Hence, the MATLAB
environment provides access to different toolboxes and supplies help and demonstrations needed to
efficiently use the MATLAB environment.

It is evident to the reader by now that MATLAB has demonstration programs. One should use

» help demos

to gain more information, and the number of demos will depend on the version of MATLAB installed.
MATLAB Exit. To exit MATLAB, type at the MATLAB prompt

>> quit

or

>> exit

Close MATLAB using the Exit MATLAB (Ctri+Q) command in the MATLAB Command Window (File

menu).

MATLAB Menu Bar and Toolbar. Figure 1.19 illustrates the MATLAB menu bar and toolbar in
the Command and Workspace windows.

Chapter 1: MATLAB Basics 23

P U8 Vow Wb Whdow tob O (R fom Web Wrow teb

d DS i AE s w

AR O e
size | wpresis

| S |
Reed - : Iy O lain”

Figure 1.19. MATLAB menu bar and toolbar

The menu bar has File, Edit, View, Window, and Help options. The File Window allows the user
to open and close files, create new files (m-files, figures, and model), load and save workspace, print,
view recently used files, exit MATLAB, etc. Window allows the user to switch between demo windows.
The Help Window offers a set of help features, such as Help Desk, Examples and Demos, About
MATLAB, etc. The buttons and the corresponding functions are given in Table 1.1.

Table 1.1. MATLAB buttons
Icon Description
EDW New file and open file

g

[t .'.'-" N -‘-': CU‘I. CO » and te
TS py, and pas

’.‘3‘ Undo last action

:& Workspace browser (used for graphically edit variables)

E Path browser (used to edit the paths that MATLAB will look in for functions)
E SIMULINK library browser

E Open help window

MATLAB Help System. The user has easy access to the MathWorks “help desk”
http://www.mathworks.com/access/helpdesk, which opens the MATLAB web page. It appears that the
MATLAB environment features a most powerful built-in help system. If the name of a MATLAB command,
function or solver is known, type
>> help [command, function, or solver name]
for example
>> help sin
and press the Enter key.

As shown, the search can be effectively performed using the helpwin command. We can

receive the needed information using the following help topics:

° help datafun (data analysis);
. help demo (demonstration);
. help funfun (differential equations solvers);

Chapter 1: MATLAB Basics 24

. help general (general-purpose command);
. help graph2d and help graph3d (two- and three-dimensional graphics);
. help elmat and help matfun (matrices and linear algebra);
. help elfun and help specfun (mathematical functions);
. help lang (programming language);
. help ops (operators and special characters);
) help polyfun (polynomials).
Saving. You can save the files and information needed. Making use of the help command, we
have

Thus, you can save values in a file by typing save [filename]. This creates a file
[filename) .mat that contains the values of the variables from your session. If you do not want to save
all variables there are two options. First is to clear unneeded variables using the command clear. For

”
and e. The second option is to use the save

which will save only variables x and y in the file [filename] .mat. e saved variables can be

reloaded by typing 1load [filename].

Chapter 1: MATLAB Basics 25

MATLAB variables can be numerical (real and complex) and string values. Strings (matrices with
character elements) are used for labeling, referring to the names of the user-defined functions, etc. An
example of a string is given below:

»>> class="MATLAB'; section='Introduction'; students='25'; data=(class,' ',section,' °‘,students)

data =
MATLAB Introduction 25

We defined three string variables, and then created a new string variable data using other

strings. Substrings can be extracted using the index and colon notations. In particular, we have

>> class="MATLAB'; section='Introduction'; students='25'; data=(class,' °',section,' ', students])

data =
MATLAB Introduction 25
>> course=data(l:6), number=data(22:24)
course =
MATLAB
number =
25

and the string variables are documented in the Workspace Window as illustrated in Figure 1.20.

Sula o L

ilm Size Bytes Class

,[g}us 1x6 lZEchat array
i E course 1x6 12| char array
E Eduu 1x24 48| char array
gnmbe: 1x3 6| char array
|| 5 section 1x12 24| char array
:stdents . Ix2 4'.¢:hn: array

Workspace Current Directory

Figure 1.20. Workspace Window with string variables used

The various toolboxes provide valuable capabilities. For example, the application of the Image
Processing Toolbox will be briefly covered [2]. The user can perform different image processing tasks
(e.g., image transformations, filtering, transforms, image analysis and enhancement, etc.). Different image
formats (bmp, hdf, jpeg, pcx, png, tiff, and xwd) are supported. For example, let us restore the image
UUV. jpg. To solve this problem, using the imread and imadd functions (to read and to add the
contrast to the image), we type in the Command Window
>> IMAGE=imread('UUV.jpg'); IMAGE_contrast=imadd (IMAGE,25);
>> imshow (IMAGE) ;
>> imshow (IMAGE_contrast):
and the resulting images are documented in Figure 1.21.

Figure 1.21. Original and updated images of the underwater vehicle with the animation resuits

Chapter 1. MATLAB Basics 26

The size of the images can be displayed. In particular,

Another example illustrates the application of the Image Processing Toolbox. In the Com
Window, we

and the original image is shown in Figure 1.22.

Figure 1.22. Original and updated parrot images

The size of the images is found using the whos command that lists the current variables, e.g.,

REFERENCES

[y

MATLAB 6.5 Release 13, CD-ROM, MathWorks, Inc., Naick, MA, 2002,
2. Image Processing Toolbox for Use with MATLAB, User’s Guide Version 3, MathWorks, Inc., Natick,
MA, 2001.

Chapter 2: MATLAB Functions, Operators, and Commands 27

Chapter 2

MATLAB Functions, Operators, and Commands

2.1. Mathematical Functions
Many mathematical functions, operators, special characters, and commands are available in the
MATLAB standard libraries that enable us to performm mathematical calculations, string and character
manipulations, input/output, and other needed functional operations and capabilities [1 - 4].
Let us start with simple examples. For example, one would like to find the values of the function
y =sin(x) if x = 0 and x = 1. To find the values, the built-in sin function can be straightforwardly used.
In particular, to solve the problem, we type the following statements in the Command Window, and the

corresponding results are documented:
>> y=sin(0)

y:
0

>> y=sin{l)

y=
0.8415

>> x0=0; x1=1; yO=sin(x0), yl=sin(xl)

y0 =

yl =
0.8415
To plot the function y = sin(¢+1) if # varies from 1 to 30 with increment 0.01, we should use the
built-in sin function, + operator, and plot function. In particular we have
>> £=1:0.01:30; y=sin(t+l}); plot(t,y)
and the resulting plot is illustrated in Figure 2.1.

Ty Ay —T7T .
o8| | i i a .

o6} | ‘
04»? oo P ; 1) 1
ozr E j ‘ ; | !) }]
ol : 1
CEI | ; ; L L C

o8l ! L L \ U

Yo 17 A 19 v
-4 SSE] L T VA — z L L)

¢l 5 10 15 20 25 30

Figure 2.1. Plot of the function y = sin(¢+1) if ¢ varies from 1 to 30

Chapter 2: MATLAB Functions, Operators, and Commands 28

These simple examples illustrate the need to use the MATLAB functions and operators. Elementary math
functions supported in the MATLAB environment are listed below.

Trigonometric Functions:

sin - sine

sinh - hyperbolic sine

asin - inverse sine

asinh - inverse hyperbolic sine
cos - cosine

cosh - hyperbolic cosine

acos - inverse cosine

acosh - inverse hyperbolic cosine
tan - tangent

tanh - hyperbolic tangent

atan - inverse tangent

atan?2 - four quadrant inverse tangent
atanh - inverse hyperbolic tangent
sec - secant

sech - hyperbolic secant

asec - inverse secant

asech - inverse hyperbolic secant
csc - cosecant

csch - hyperbolic cosecant

acsc - inverse cosecant

acsch - inverse hyperbolic cosecant
cot - cotangent

coth - hyperbolic cotangent
acot - inverse cotangent.

acoth - inverse hyperbolic cotangent.
Exponential Functions:

exp - exponential

log - natural logarithm

loglo0 ~ common logarithm
sgrt — square root

Complex Functions:

abs - absolute value

angle - phase angle

conj - complex conjugate
imag - complex imaginary part
real - complex real part

Various mathematical library functions allow one to perform needed mathematical
calculations. The elementary mathematical functions supported by MATLAB are summarized in
Table 2.1.

Chapter 2: MATLAB Functions, Operators, and Commands

Table 2.1. Mathematics: Elementary Mathematical Functions

abs Absolute value and complex magnitude

acos, acosh | Inverse cosine and inverse hyperbolic cosine
acot, acoth | Inverse cotangent and inverse hyperbolic cotangent
acsc, acsch [Inverse cosecant and inverse hyperbolic cosecant
angle Phase angle

asec, asech [Inverse secant and inverse hyperbolic secant
asin, asinh [Inverse sine and inverse hyperbolic sine

atan, atanh | Inverse tangent and inverse hyperbolic tangent
atan2 Four-quadrant inverse tangent

ceil Round toward infinity

complex Construct complex data from real and imaginary components
conj Complex conjugate

cos, cosh Cosine and hyperbolic cosine

cot, coth Cotangent and hyperbolic cotangent

csc, csch Cosecant and hyperbolic cosecant

exp Exponential function

fix Round toward zero

floor Round toward minus infinity

ged Greatest common divisor

imag Imaginary part of a complex number

lcm Least common multiple

log Natural logarithm

log2 Base 2 logarithm and dissect floating-point numbers into exponent and mantissa
logl0 Common (base 10) logarithm

mod Modulus (signed remainder after division)
nchoosek Binomial coefficient or all combinations

real Real part of complex number

rem Remainder after division

round Round to nearest integer

sec, sech Secant and hyperbolic secant

sign Signum function

sin, sinh Sine and hyperbolic sine

sqgrt Square root

tan, tanh Tangent and hyperbolic tangent

29

Function arguments can be constants, variables, or expressions. Some mathematical library
functions with simple examples are documented in Table 2.2.

Chapter 2: MATLAB Functions, Operators, and Commands

Table 2.2. Elementary Mathematical Functions with Illustrative Examples

30

Function

Description

Example

MATLAB Statement and Results in
the Command Window

cos

Cosine

cos (0)

c=cos([0, 1, pi, 2*pi))

>> cos(0)
ans =
1

>> c=cos ([0,
c -
1.0000 0.5403 -1.0000

1, pi, 2*pi))

1.0000

exp

Exponential
function

exp(l)

e=exp((0, 1, 2, 3)])

>> exp(l)
ans =
2.7183

>> e=exp((0, 1, 2, 3))
e-
1.0000
20.0855

2.7183 7.3891

log

Natural
logarithm

1og (10)

1'109([1. 20 so 10])

>> log(10)
ans =
2.3026

>> l=log([1, 2, 5, 10])
l =

0 0.6931 1.6094 2,3026

real

Real part of
complex
number

real (10+10*1)

r=real ([-1+i,-5-5*1,10))

>> real (10+10*1)
ans =
10

>> r=real ([-1+i,
r.

-5=5*1, 10))

=1 -5 10

sin

Sine

sin(0)

s=sin((0, 1, pi, 2*pi])

>> sin(0)
ans =
0

>> s=3in(|[0,
8-
0 0.8415

1, pi, 2*pi))

0.0000 -0.0000

sqrt

sqrt(2)

sqe=sqrt([-9, 0, 3, 25))

>> sqrt(2)
ans =
1.4142

>> sq=sqrt([-9, 0, 3, 25))
sq =
0+3.00001i O

1.7321 5.0000

The user can either type the commands, functions or solvers in the MATLAB prompt (Command
Window) or create m-files integrating the commands and functions needed.

Chapter 2: MATLAB Functions, Operators, and Commands 31

2.2. MATLAB Characters and Operators

The commonly used MATLAB operators and special characters used to solve many engineering
and science problems are given below.

Operators and Special Characters:
+ plus
- minus
matrix multiplication
S* array multiplication
matrix power
array power
kron Kronecker tensor product
\ backslash (left division)
/ slash (right division)
./ and .\ right and left array division
: colon
() parentheses
] brackets
{} curly braces
decimal point
continuation
comma
semicolon
comment
exclamation point
transpose and quote
nonconjugated transpose
assignment
= equality
> relational operators
logical AND
logical OR
logical NOT
xor logical exclusive OR

~e o~

- = OO

I

¢ — & Al

The MATLAB operators, functions, and commands can be represented as tables. For example, the
scalar and array arithmetic operators and characters are reported in Table 2.3.

Table 2.3. Scalar and Array Arithmetic with Operators and Characters

Symbol MATLAB Statement Arithmetic Operation
+ at+b+c addition
- a-b-c subtraction
* and .* a*b*c anda.*b.*c multiplication
/ and ./ a/b anda./b right division
\ and .\ b\a (equivalentto a/b)and b.\a left division
~ and .7 a*b anda.”b exponentiation

Chapter 2: MATLAB Functions, Operators, and Commands 32

2.3. MATLAB Commands

In order to introduce MATLAB through examples and illustrations, let us document and implement
several commonly used commands listed in Table 2.4.

Table 2.4. MATLAB Commands

Command | MATLAB Help Description

clear help clear | Clear variables and functions from memory (removes all variables from
the workspace)

clc help clc Clear Command Window

help Help On-line help, display text at command line

quit help quit Quits MATLAB session (terminates MATLAB after running the script

finish.m, if it exists. The workspace information will not be saved
unless finish.mcalls save)

who help who Lists current variables (lists the variables in the current workspace)

whos help whos Lists current variables in the expanded form (lists all the variables in the
current workspace, together with information about their size, bytes,
class, etc.)

Bellow are some examples to illustrate the scalar and array arithmetic operators as well as
commands:
>> clear all
>> a=10; b=2; c=a+b, d=a/b, e=b\a, i=a"b

c:
12
d =
5
e:
5
i =
100
>> a=[10 5]; b=[(2 4]1; c=a+b, d=a./b, e=b.\a, i=a.”b
c:
12 9
d =
5.0000 1.2500
e:
5.0000 1.2500
i =
100 625
>> whos
Name Size Bytes Class
a 1x2 16 double array
b 1x2 16 double array
c 1x2 16 double array
d 1x2 16 double array
e 1x2 16 double array
i 1x2 16 double array

Grand total is 12 elements using 96 bytes

The MATLAB environment contains documentation for all the products that are installed. In
particular, typing

Chapter 2: MATLAB Functions, Operators, and Commands 33

>> helpwin
and pressing the Enter key, we have the Window shown in Figure 2.2. The user has access to the general-
purpose commands, operators, special characters, elementary, specialized mathematical functions, etc.

oy B C T .l-—___'__“ s @ A
u-t_-._u!hp = | I
g WELF tepine -
L3 - Geastel el phee oemmasls F
s

C PSR A LAAage COMILEI WS .

© Riemmad ey sl d L0es et et ie mesdpeien ion

c Rlesestady meth functioes.

c Bewciaiieed mmi b Teasd jone

S AR RN Tt hons - Rt bEal Laeer aigehee.

c Pete asaiyeis aad Fosrier Loasslorme .

< hele Bwgperi.

- ten sl

< Feaetios Pusrtions sad 080 ssivers.

< Bpanee melliees,

= Tes disessioeal g aphs .

© Thaee dimsasiossl grephe

- Specialieed gresks .

- Wmabie Caaghice.
Canphical wher (a1edface tesis,

© Ot arter ST iage.

= File ingwi/ewipe .

= Tiem ssd deles.

- BeAa Lypes sl St e

© Versiss sesieel.

- Windews Cpeteiing Syeies lstedfece Files (BOL/COE)
s table of costesas File)

C Femmpies sl demeastded jees

IR

LECY" S TANECL Y - Pefeiesaws .
SR lisLeimiiss - Sieiisa
Shamel LSNP ivTae « Biesiisk bieen |ibrery.
SiMul ISR\ COmpeaadl - Fiewiiak cosgeassie.
Risseliamifisesanglicat - (Mo tabie of comtests file)
firednaadljege) frpfepne Fised-Feint Blesnset Demme
Lorrdmadf |- obrer ere - ’ b
L AN P e - Bussiisk 4 hoas
PANMEGE) MELRRERE Fimed LAR I AR eapace ekt | demnastial ons asd sampies.
T T B T T] - ees aad
simdemes) tinfeales - Siemiinn) Testwe T ieas aad ey
PAMIEIE PSRt RL - TUeniIAR) Contral mede | SMOstiel et st seegies,
ista s s ety C BimmiiaR) Mew Featwres mede | Bswast i el Loas sl ey ies.
Simnl 1o dee © Bifferestini Egeetion Baiter
LI TR e T = e table of costesis File)
matelisvigamatisy - Susteflee
nsslisvistoeens - Mseties]
Patel lewicuder = e vable of costesis fiie)
[RTTRT) = Bewl-Tiee BerEmbap

. LAYLLL shemng Beai Time Bequship Peess

'8 usesnItimkEns - O takle of ssstsms Tiie)

Figure 2.2. MATLAB helpwin Window

The complete list of the help topics is available by typing help:

Chapter 2: MATLAB Functions, Operators, and Commands 34

Chapter 2: MATLAB Functions, Operators, and Commands

Chapter 2: MATLAB Functions, Operators, and Commands 36

By clicking MATLAB\general, we have the Help Window illustrated in Figure 2.3, and a
complete description of the general-purpose commands can be easily accessed.

Grasial purpate TimmmaAs .
WATLAR Versies &0 (NI 20 Jee P00

c femgieie en-line Maip, Aiepiered in ke Meip baveser.
c Befile heip, dlepiered ot 1he commmad §iae.

= B-Fiie Meilp, Siepioved In 1he Meip Beweees.

- Besieh sil B-filew fex Boywd.

© Weip e BATLAR commmed wyudas

© Opes BeidBeris Teshaical Bageedt Ses Page

< B Semnast i el beas

- RATLAD, FINVLINE, sad tasibas wwirien infermen ses

© RATLAR wedsien dafermet bes .

v eeess Belease Metes,

[
i

R L

©REST wrresa e iabies.

©RAML PWEEM vl labies, leeg Tere.

o Wiepley - oF fen -
= Cimer wed labies aad fened boas Trom sy,

o Caas ARLE et EEpe ——

- Ll SR RRpaIe vad labies Tiee ALew .

- Bawe swabapace vad iebies s disk.

oGeit BATLAR seewies.

I I TR
- Riea EATLAS Tiies i v
= Lisa B-file,
= Bl B=file.
- Oges f1ies by svieasies.
et Foserd loas aad T4ies.
- Cweste pre. paseed paewte coade File P File) .
© RN DR S Y
- fempiie BIL-Petrt bon.

RITHER RN

e pesiah Pl

- G een sesden peAl.

= e ALY s sk pe b

o Bmmmew Aiieatedy Fiom sams ok pai b

- Bedily ek paA k.

< Beleeh Demetion sl ibe syeiom onles.

o IR Jeve PAIEAgRS M8 (RE TETER Sege

THIL

»

-
R e

Chapter 2: MaTLAB Functions, Operators, and Commands

In particular, we have

Chapter 2: MATLAB Functions, Operators, and Commands 38

In addition to the general-purpose commands, specialized commands and functions are used. As
illustrated in Figure 2.4, the MATLAB environment integrates the toolboxes. In particular, Communication
Toolbox, Control System Toolbox, Data Acquisition Toolbox, Database Toolbox, Datafeed Toolbox, Filter
Design Toolbox, Financial Toolbox, Financial Derivatives Toolbox, Fuzzy Logic Toolbox, GARCH
Toolbox, Image Processing Toolbox, Instrument Control Toolbox, Mapping Toolbox, Model Predictive
Control Toolbox, Mu-Analysis and Synthesis Toolbox, Neural Network Toolbox, Optimization Toolbox,
Partial Differential Equations Toolbox, Robust Control Toolbox, Signal Processing Toolbox, Spline Toolbox,
Statistics Toolbox, Symbolic Math Toolbox, System Identification Toolbox, Wavelet Toolbox, etc.

Chapter 2: MATLAB Functions, Operators, and Commands 39

e N s e e e

R e 40 8 e o
LT TR - __-I'MQJ
Ceem Temm Feestes - —_—
omstis 04 dw Vg ik oo il Eeirt o A Bk A TLASY S proingr it} St gt e sy Mor w41 s o g -

B> Gomng g wem Dumae Ui bl et T oty o L o e s Mg el bt @ i G e e e L Byl e s el e

R L
‘- Thu Mslicmereg Tocller pes S Baemid B0 Beomnd et 1oy e S B 1es bt LB e rl SefPe e mpGrigeine Ue T meet g e e o e
A e e A o il s T ger g sl eoud ot of WA sy prifia T el 18Ry e lafe sndy Lo of B e perfie Ty |
T
" e e i = = = — e "
" Lol g i'lm .Mw B
o o Do g | € e atatons D wnd e ay 1o e b by S i
K] ' |
8 @ 1o Desge i&ﬂ«- Ly [Dwr ot e et comtml Syitemy 4
K Y ;}fg—!-n‘ Py sinfied Wty sl ata'p et -
o A Lo | s A gusban Al e wed e e Bae Ve gy o Sele b pualor bewfy f
T r‘ " v
s @ raw Contel -l.lm 'lu-ﬁpua-ﬂ-ﬂlﬂﬂm .1
K 1Lt {1 it Dwrpe Dwtge et waly e sbents of Roabeg poet et bord poet ey ['
: '
R LT | [r——— D e e R e T e
o e Pt e et 1 i
8 € B dotvess oo e Pty Lage _W!fﬂmhul‘ﬁ Ty r
L llhvw (RS | Parflms gl ros 410 b gt del et Sessing s 4 3:
4 —— -
» b Oy Wategt speal Ll o R L e o R ey |
EIE LTS ET TR - t |
» B et Came L0 C gt .Lﬁn-r-uw-m-um P LR TR L EE PERTL
T 1!‘!“‘.)8;«&!-1&(«-‘-0-‘..&‘. Ui AT ALY gt HTITE galined Tos o Ienteumwnts Maple o g saiin :
- ! ' [
. : — | gy R e e R LR T R k
» el t $
v o et . _"‘""'“"""“ i | Comeest lange mufuaratle poocetint A By pariende W et ey
L Rt i L vy, My Araigres ol Gpeatarn Dt wnibapnabie ber s b ¢ ontoaliors bis 4y ilemd o™ =odl o #2erfy B
¢ Vel Raety Vs ol Vet [t et e s et y
K L ! ']
T | gt e it et e e 1o W el gt pesieey g
.] | 4 1
* P S riam [F e et | gt i TN T e T S e
3 .
g 11 gmtnd Dot ot el mafParar i i b (bl 4y iteey
| '
gl Pvim g uneey Fams pagrasl grot 1 ot artaly s ated et Spepiiigeee
1'_.4-. Comate arel = wiguiiahe 1gare sgyet o v am sty of dals
b .
| Shotmtua s L R T e W N R T Y
1‘.,%“ Pyt | st afibe 3 e by =Sk St ead epeadi e e e St
| Gpstes stemnit pnam Lmare hew e Byramw =iy b sapi el ol sl dee
‘\"a’ﬂnﬂt Tomale e =t e W ey e B e WA TLAD el T iiea
Wt Ar Wy CEEEETL B0 SELAS Lnen e PRERET L) et b bt -

Figure 2.4. MATLAB demo window with toolboxes available

Having accessed the general-purpose commands, the user should consult the MATLAB user
manuals or specialized books for specific toolboxes. Throughout this book, we will apply and emphasize
other commonly used commands needed in engineering and scientific computations. As was shown, the
search can be effectively performed using the helpwin command. One can obtain the information
needed using the following help topics:
help datafun (dataanalysis);
help demo (demonstration);
help funfun (differential equations solvers);
help general (general purpose command);
help graph2d and help graph3d two- and three-dimensional graphics);
help elmat and help matfun (matrices and linear algebra);
help elfun and help specfun (mathematical functions);
help lang (programming language);
help ops (operators and special characters);
help polyfun (polynomials).

In this book, we will concentrate on numerical solutions of equations. The list of MATLAB specialized

functions and commands involved is given below.
>> help funfun

Chapter 2: MATLAB Functions, Operators, and Commands

Function functions and ODE solvers.

Optimization and root finding.
fminbnd - Scalar bounded nonlinear function minimization.
fminsearch - Multidimensional unconstrained nonlinear minimization,
by Nelder-Mead direct search method.
fzero - Scalar nonlinear zero finding.

Optimization Option handling
optimset - Create or alter optimization OPTIONS structure.

optimget - Get optimization parameters from OPTIONS structure.

Numerical integration (quadrature).

quad - Numerically evaluate integral, low order method.
quadl - Numerically evaluate integral, higher order method.
dblquad - Numerically evaluate double integral.

triplequad - Numerically evaluate triple integral.

Plotting.
ezplot - Easy to use function plotter.
ezplot3 - Easy to use 3-D parametric curve plotter.
ezpolar -~ Easy to use polar coordinate plotter.
ezcontour - Easy to use contour plotter.
ezcontourf - Easy to use filled contour plotter.
ezmesh - Easy to use 3-D mesh plotter.
ezmeshc - Basy to use combination mesh/contour plotter.
ezsurf - Easy to use 3-D colored surface plotter.
ezsurfc - Easy to use combination surf/contour plotter.
fplot - Plot function.

Inline function object.

inline - Construct INLINE function object.
argnames ~ Argument names.

formula - Function formula.

char - Convert INLINE object to character array.

Differential equation solvers.
Initial value problem solvers for ODEs. (If unsure about stiffness, try ODE45
first, then ODE15S.)

ode4b - Solve non-stiff differential equations, medium order method.
ode23 - Solve non-stiff differential equations, low order method.
odell3 - Solve non-stiff differential equations, variable order method.
ode23t - Solve moderately stiff ODEs and DAEs Index 1, trapezoidal rule.
odel5s - Solve stiff ODEs and DAEs Index 1, variable order method.
ode?23s - Solve stiff differential equations, low order method.

ode23tb - Solve stiff differential equations, low order method.

Initial value problem solvers for delay differential equations (DDEs).
dde23 - Solve delay differential equations (DDEs) with constant delays.

Boundary value problem solver for ODEs.
bvp4c - Solve two-point boundary value problems for ODEs by collocation.

1D Partial differential equation solver.
pdepe - Solve initial-boundary value problems for parabolic-elliptic PDEs.

Option handling.

odeset - Create/alter ODE OPTIONS structure.
odeget - Get ODE OPTIONS parameters.
ddeset - Create/alter DDE OPTIONS structure.
ddeget - Get DDE OPTIONS parameters.

bvpset - Create/alter BVP OPTIONS structure.

40

Chapter 2: MaTLAB Functions, Operators, and Commands 41

bvpget - Get BVP OPTIONS parameters.
Input and Output functions.
deval - BEvaluates the solution of a differential equation problem.
odeplot - Time series ODE output function.
odephas2 - 2-D phase plane ODE output function.
odephas3 - 3-D phase plane ODE output function.
odeprint - Command window printing ODE output function.
bvpinit - Forms the initial guess for BVP4C.
pdeval - Evaluates by interpolation the solution computed by PDEPE.
odefile - MATLAB v5 ODE file syntax (obsolete).

Distinct functions that can be straightforwardly used in optimization, plotting, numerical
integration, as well as in ordinary and partial differential equations solvers, are reported in [1 - 4]. The
application of many of these functions and solvers will be thoroughly illustrated in this book.

REFERENCES
1. MATILAB 6.5 Release 13, CD-ROM, MathWorks, Inc., 2002.
2. Dabney, J. B. and Harman, T. L., Mastering SIMULINK 2, Prentice Hall, Upper Saddle River, NJ,
1998.
3. Hanselman, D. and Littlefield, B., Mastering MATLAB 5, Prentice Hall, Upper Saddle River, NJ, 1998.
4. User’s Guide. The Student Edition of MATLAB: The Ultimate Computing Environment for Technical

Fducation, MathWorks, Inc., Prentice Hall, Upper Saddle River, NJ, 1995,

Chapter 3: MATLAB and Problem Solving 42

Chapter 3
MAaTtLAB and Problem Solving

3.1. Starting MATLAB

As we saw in Chapter 1, we start MATLAB by double-clicking the MATLAB icon:

MATLAB 6.5.Ink

The MATLAB Command and Workspace windows appear as shown in Figure 3.1.

Command Window

The line

is the MATLAB prompt in the Command Window.

3.2. Basic Arithmetic

MATLAB uses conventional notations for basic scalar arithmetic to be applied [1 - 5). The simplest
MATLAB notations (arithmetic operators) for real and complex numbers, vectors, and matrices are:

+ addition

- subtraction

* multiplication
/ division

exponentiation

Let us illustrate the addition. Using the number a=1, we find aa=a+1 as

Thus, aa=2, and Figure 3.2 illustrates the answer displayed.

Chapter 3: MATLAB and Problem Solving
Command Window

Ble CR Yew Webh Window i

>> a=l; aasa+l

J |

I»

Ready

1

43

Workspace Window

[Jwamas
e [Yew Webh Wrdow Lwb

D@ o] B ¢ |cmdommy]c] |

GH @ 9w] H
Neae Isiee | wyees|ciass

a .111 1 8 double array
i aa ™ 8! double array

4] » | LaunchPad L]

Ready

Figure 3.2. Solution of aa=a+1 if a=1: Command and Workspace windows

For the vector a={1 2 31, to find aa=a+1, we have

>> a=[1 2 3); aa=a+l
aa =

3

4

Variables, arrays, and matrices occupy the memory. For the example considered, we have the
MATLAB statement a=[1 2 3]; aa=a+1 (typed in the Command Window). Executing this statement,
the data displayed in the Workspace Window is documented in Figure 3.3.

Command Window

[orvwnand Window - :-‘.ml
Ho Gt Wow Wel Wirdow M
»> a=[1 2 1) sa=a+l ¥ -
3 4
i Irf".
Ready ke

Workspace Window

alalx
Be LR Yow Wep Wirdow teb
D@ v @ oo W 2| cumenomany o] |

wﬂln;nur—":lm
2 |size |

[] Ix3 | 24 double arzay
ﬁn 1x3 24 double array

Figure 3.3. Solution of aa=a+1 ifa=[1 2 3]:Command and Workspace windows

For a three-by-three matrix a (assigning all entries to be equal to 1 using the ones function, e.g.,
a=ones (3)), adding 1 to all entries, the following statement must be typed in the Command Window to

obtain the resulting matrix aa:
>> a=ones(3); aa=a+l

aa =
2 2
2 2
2 2

Specifically, as shown in Figure 3.4, we have

NN

NN

NN
NN

Chapter 3: MATLAB and Problem Solving 44

Command Window

Figure 3.4. Solution of aa=a+1 if a=ones (3) : Command and Workspace windows

Here, the once function was used. It is obvious that this function was called by reference from
the MATLAB functions library. Call commands, functions, operators, and variables by reference should be
used whenever necessary.

The element-wise operations allow us to perform operations on each element of a vector. For
example, let us add, multiply, and divide two vectors by adding, multiplying, and dividing the
corresponding elements. We have:

performed. 'Ihesymbol * mmﬂnmuluplmofmm(manbemuluplledlfme
number of rows is equal to the number of columns). In contrast, the symbol . * specifies the element-wise
multiplication. We cannot use / to divide two matrices element-wise, since / and \ are used for left and
right matrix division. Therefore, . / and . \ were illustrated.

Typing A. * 3, we cube each element of the vector. In

The abs operator returns the magnitude of its argument. If applied to a vector, it returns a vector
of the magnitudes of the elements. For ifA=[1+1i 2-2i 3+3i 4-4i), we have

The angle operator returns the phase angle (argument) of its operand in radians. As an
illustration, we have

Chapter 3: MATLAB and Problem Solving 45

MATLAB has operators for taking the real part, imaginary part, or complex conjugate of a
complex number. These operators are real, imag and conj. They are defined to work element-wise on
any matrix or vector. For example,

MATLAB has operators that round fractional numbers to integers. The round operator rounds its
elements to the nearest integer, the £fix rounds its elements to the nearest integer toward zero (rounds
down for positive numbers and up for negative numbers), the £1oor rounds its elements to the nearest
integer towards negative infinity, and the ceil rounds its elements to the nearest integer towards positive
infinity.

The standard trigonometric operators are all defined as element-wise operators. For example,
sin and cos calculate the sine and cosine of their arguments. The arguments to these functions are
angles given in radians.

Let us calculate the vector x and plot the function x(r) = sin(2/) if 7 varies from 0 to 10n sec. We

in the Command Window the following statement

using the sin and plot functions. The corresponding Command and Workspace windows are
documented in Figure 3.5.

Command Window Workspace Window

>> t=0:0.1:10%p4; x=sin(2°t); plot(t,x)
»>

——)

Figure 3.5. Solution of x = sin(2¢) if t = [0 10x]: Command and Workspace windows

It is obvious that the size of vectors x and ¢ is 315 (see the Workspace Window in Figure 3.5).
The plot of x(f) = sin(27) if =[0 10x] sec is illustrated in Figure 3.6.

Chapter 3: MATLAB and Problem Solving 46

Figure 3.6. Plot of x = sin(2¢) if =[0 10x] sec

MATLAB does not require any type declarations or dimension statements for variables (as was
shown in the previous example). When MATLAB encounters a new variable name, it automatically creates
the variable and allocates the appropriate memory. For example,

>> Grade A=4.0
creates a one-by-one matrix (variable) named Grade_A and stores the value 4.0 in its single element. We
have

The Command and Workspace windows are illustrated in Figure 3.7.

Command Window Workspace Window

>> t=0:0,1:10%4; x=sin(2*t); plot(t,x)
»»

zm:mu array
2520 | double srtay

Figure 3.7. Command and Workspace windows

Variable names can have letters, digits, or underscores (only the first 31 characters of a variable
name are used). One must distinguish uppercase and lowercase letters because A and a are not the same
variable.

Conventional decimal notation is used (e.g., — 1,0, 1, 1.11, 1.11el1, etc.). All numbers are stored
internally using the long format specified by the IEEE floating-point standard. Floating-point numbers
have a finite precision of 16 significant decimal digits and a finite range of 10°°% to 10"%,

Chapter 3: MATLAB and Problem Solving

As was illustrated, MATLAB provides a large number of standard elementary mathematical
functions (e.g., abs, sqrt, exp, log, sin, cos, etc.). Many advanced and specialized mathematical
functions (e.g., Bessel and gamma functions) are available. Most of these functions accept complex
arguments. For a list of the elementary mathematical functions, use help elfun (the MATLAB
functions are listed in the Appendix):

Chapter 3: MATLAB and Problem Solving 48

For a list of advanced mathematical and matrix functions

Some of the functions, like sqrt and cos, are built-in. Other functions, like gamma and cosh, are

Chapter 3: MATLAB and Problem Solving 49

3.3. How to Use Some Basic MATLAB Features

MATLAB works by executing the statements you enter (type) in the Command Window, and the
MATLAB syntax must be followed. By default, any output is immediately printed to the window.
To illustrate the basic arithmetic operations (addition, subtraction, multiplication, division, and
1+2-¢7 +sin5

exponentiation), we calculate o6t In the MATLAB Command Window we type the following
cos6 —

statement:

To display the value of variables used, we should enter the variable name at the prompt and press the
Enter key. For

A list of the variables used are obtained

The clear is the command that clears the .

Chapter 3: MATLAB and Problem Solving 50

The whos command allows us to know the variables (that we have in the workspace), their size,
and memory used. As an example, we have

3.3.1. Scalars and Basic Operations with Scalars

Mastering MATLAB mainly involves learning and practicing how to handle scalars,
vectors, matrices, and equations using numerous functions, commands, and computationally
efficient algorithms. In MATLAB, a matrix is a rectangular array of numbers. The one-by-one
matrices are scalars, and matrices with only one row or column are vectors.

A scalar is a variable with one row and one column (e.g., 1, 20, or 300). Scalars are the
simple variables that we use and manipulate in simple algebraic equations. To create a scalar, the
user simply introduces it on the left-hand side of a prompt sign. That is,

The Command and Workspace windows are illustrated in Figure 3.8 (scalars a, b, and ¢ were
downloaded in the Command Window, and the size of a, b, and c is given in the Workspace Window).
Command Window Workspace Window

Chapter 3: MATLAB and Problem Solving 51

Figure 3.8. Command and Workspace windows

MATLAB fully supports the standard scalar operations using an obvious notation. The following
statements demonstrate scalar addition, subtraction, multiplication, and division.
>> x=at+btc; y=a-b-c; z=a*b*c; v=a/b/c;

3.3.2. Arrays, Vectors, and Basic Operations
To introduce the vector, let us first define the array. The array is a group of memory locations
related by the fact that they have the same name and same type. The array can contain » elements
(entries). Any one of these number (entry) has the “array number” specified the particular element (entry)
number in the array. The simple array example and the corresponding result are given below:
. array is (MATLAB statement):

The arrays are used to create (generate) vectors and matrices. For example, to create row and
column vectors, we can:

. lwodnuﬁnmmriﬂ dwmbusiaﬂumexﬂicﬁliuofelmmtsornmbmi

- Use the built-in functions (ones, zeros, linspace, logspace and other functions allow
the user to explicitly create vectors of a specific size and with a prescribed spacing between the

elanqueI

Load using external data files, etc.
Individual elements of a vector can be addressed as

Chapter 3: MATLAB and Problem Solving 52

MATLAB allocates memory for all variables used (see the Workspace Window). This allows the
user to increase the size of a vector by assigning a value to an element that has not been previously used.
For example,

Colon Notation. MATLAB colon notation is a compact way to refer to ranges of vector and matrix
elements. It is often used in copy operations and in the creation of vectors and matrices. The colon
notation can be used to create a vector as illustrated by the following example

a=anria1tdaaginal,
where a;..,; and ag,,,; are the range of the values covered by elements of the a vector. It should be
W“a“““l, dﬂ,.ﬂlnm are not necessari For

If da (increment) is omitted, a value of | (unit increment) is used by default.
Tomhmmmudnmmﬂnmwnﬂwmdofﬂn
. ssion is used. In pal

The application of the colon notation to create a vector requires us to specify the increment,
whereas using the 1linspace function requires the user to specify the total number of elements. The

ﬂﬁﬁMMbmummeﬁ

The results are

Mathematical operations involving vectors follow the rules of linear algebra. Addition and
subtraction, operations with scalars, transpose, multiplication, element-wise vector operations, and other
operations can be performed.

Chapter 3: MATLAB and Problem Solving 53

3.4. Matrices and Basic Operations with Matrices

Matrices are created in the similar manner as vectors. For example, the statement

2
creates the three-by-three matrix A = 5
8

~N A -
v oW

Matrix elements are addressed by notation A(i,3). If A is a matrix, then A(3,2) is the
element (entry) in the third row and second column. In parti

Thus, the element in row i and column j of A is denoted by A (i, j). For example, A(1,2) is
the number in the first row and second column. Therefore, it is possible to compute the sum of the
elements. As an example, for the first row, we have

The matrix can be modified. For A(3,2) to be 1000. We have

and the sparsity pattern of the matrix A is illustrated in Figure 3.9.

Chapter 3: MATLAB and Problem Solving 54

0.5 1

1.5} 1

2.5 1

3.5

2.5 3 3.5 4

4 , . "
0 0.5 1 1.5

0w

nz=7

Figure 3.9. Sparsity pattern of the matrix A

Generating Matrices and Working with Matrices. Linear and nonlinear algebraic, differential,
and difference equations can be expressed in matrix form. For example, the linear algebraic equations are
given as

a, X, +a,X, +.ta, X, tayx, =b,

Ay X, + Ay X, ot Ay, X, +ay,X, = by,

A, X +a, pX, Fta, X, +a, X, =b,

n-ln-1""n-} n-in""n
a,x +a,x, +.+a, x, +a,x, =b,,

nn-1""n

which in matrix form are expressed by

ay Qo Qg ay, X b,
ay Ay oy QG || X b,
: D : : : [=| i |ordx=B,
Aoy Guz " Qpainy G || X b,
| D a, 0 Gy A | X | L b,
x |
Xy
where x is the vector of variables, xeR", x=| : |;AeR"*"and BeR""™ I are the matrices of constant
Xp-1
L x" -
coefficients.

To solve linear and nonlinear equations, the matrices are used. These matrices must be
downloaded. The most straightforward way to download the matrix is to create it by typing
matrix = [valuey; value;, .. valuej,.; valuejy;
value;; value,, .. value;,; valuey,],
where each value can be a real or complex number. The square brackets are used to form vectors and
matrices, and a semicolon is used to end a row. For example,

Chapter 3: MATLAB and Problem Solving 55

that MATLAB indexes matrices in the (1,1, (1 |
(1,4), 2.1, (2,2), (2,3) and (2.4). That is, for the matrix following manner: (1,1), (1,2), (1,3),

operator : is one of MATLAB's most important and commonly used operators. It
occurs in several different forms. The

give vectors A and B as

we two row vectors containing the integers from - 5 to 5.

The matrix AB is found as

Thnﬂhn\lckin I

Subscript expressions involving colons refer to portions of a matrix. For example,
A (1:k, j)represents the first k elements of the jth column of A.

The colon refers to all row and column elements of a matrix, and the keyword end refers to the
last row or column. Therefore, sum (A (:, end)) computes the sum of the elements in the last column
of A.

Chapter 3: MATLAB and Problem Solving 56

As mentioned, MATLAB has a variety of built-in functions, operators, and commands to generate
the matrices without having to enumerate all elements. It is easy to illustrate how to use the functions
ones, zeros, magic, etc. As an example, we have

Hence, the ones function allows the user to generate a typing
ones (n,m), the user creates an n row by m column matrix of ones. The zeros function allows the user
to generate a matrix whose elements are zero. By typing zeros (n, m), the user creates an n row by m
column matrix of zeros. The eye function allows us to generate an identity matrix whose diagonal
elements are ones and all other are zeros. Typing eye (n, n), the user creates an n row by n column
i matrix. For

The blocked matrices can be generated, and the syntax is straightforward.
For example, let us generate the matrix

1 00

0
1
1
1
1

kN
Il
O e = OO

O ek e e O

0

Then, we have

Chapter 3: MATLAB and Problem Solving 57

Summarizing the matrix building functions, we list some of them [1, 4):

eye(n) identity matrix with size n by n
zeros(n,m) matrix of zeros with size n by m
ones(n,m) matrix of ones with size n by m

diag(A) returns diagonal as vector

triu(A) upper triangular part of a matrix

tril (A) lower triangular part of a matrix

rand (n,m) randomly generated matrix with size n by m
hilb(n) Hilbert matrix with size n by n

magic(n) magic square with size n by n

toeplitz(n,m) and toeplitz(n) non-symmetric and symmetric Toeplitz matrices

hankel (n,m) and hankel (n) non-symmetric and symmetric Hankel matrices

If a is a vector, then diag (a) uﬂndhguﬂmmbcwithﬂnvmabwomhgﬂndw If
A is a square matrix, then diag (A) is a vector consisting of the di of A . For exal

MATLAB has built-in variables (e.g., pi and ans), and the active variables can be viewed using

the command who. For example, we just generated the matrix AA. Thus, typing AA and pressing the Enter
we have

Chapter 3: MATLAB and Problem Solving 58

because the ARA is an active variable. To remove AA from active variables, we type

To create other matrices that have the same size as an existing matrix, we can use the size
tor. For exampl

16 2 3 13

That is, £=: l,: l: Isz.mmmlmahﬁlt-hﬁawﬁmmmﬂnmﬁcm

4 14 15 1
(matrices) of any size.

The sum is the sum of all the elements of the vector or sums the columns for matrices, while

rod is the of all the elements of the vector or the down the columns. That

A magic square is a square matrix which has equal sums along all its rows and columns. The
matrix can be the magic function. For

The maximum and minimum entries can be found using the max and min functions. For five
rows of the magic matrix a, we have

Chapter 3: MATLAB and Problem Solving 59

If we do not specify a variable, MATLAB uses the variable ans (answer) to store the results of a
calculation. The sums and of the columns of the matrix can be found. We have

The user can summate the rows. To do this, use the transpose operator. In particular, to find the
sum of rows, we transpose the matrix E, compute the column sums of the transpose, and then transpose
the result. The transpose operation is denoted by an apostrophe or single quote * . It flips a matrix about
its main diagonal. The transpose operation turns a row vector into a column vector. Let us illustrate the
results. In

16 2 3 13 16 5 9 4

S 1110 8 2 o7 e
Tekdming 5 ¢ ppwi=l, o ¢ &l
4 1415 1 138 12 1

The sum of the elements on the main diagonal is easily obtained using the diag function, and we

The size and length functions return the size and length of a vector or matrix. For example,
>> E=magic(4); SE=size(E), LE=length(E)
SE =

4 4
1E =

4

Chapter 3: MATLAB and Problem Solving 60

Selective Indexing. The user may need to perform operations with certain elements of vectors
and matrices. For example, let us change all negative elements of the vector or matrix to be positive. To
perform this, we have

user can perform operations on a vector or matrix on ue
corresponding element of another vector or matrix. For example, to divide two vectors element-wise, one
mnyfwedaﬂicultm lfmedumamvmhumﬁwemnethapmblem.selecun indexing is

Solving the linear algebraic equation Ax = B, we find that the solution is givenas x=A"'B.
Let us illustrate the application of MATLAB. Consider the system of two algebraic equations
y+2z=35,

3y+4z=6.
This system is represented in the matrix form Ax = B, where

ooy (]

We obtain the solution x as

Thus,

y=-4andz =4.5.
The system of equations
following MATLAB statement:

+2z=5
v can be solved graphically. In particular, we have the
3y+4z=6

Figure 3.10 illustrates that the solutions are y = — 4 and z = 4.5. Chapter 4 covers two- and three-
dimensional plotting and graphics. The graphical solution is given just to illustrate and verify the results.

9r
8 [

7 , T . 1\\ :

y+2z=35

Figure 3.10. Graphical solution of the system of linear equations
3y+4z=6

Chapter 3: MATLAB and Problem Solving 61

As another example, using MATLAB, let us solve the system of the third-order linear algebraic
equations given by

1 2 3 10
Ax=B,where 4=|4 5 0|and B=|20].
6 7 8 30

Our goal is to find x(x), x, and x3). We have

-1.67
That is, the following solution is obtained x = 5.33]

The multi of A and x should gi themnrixB.Wehlw

Thus, the solution is correct.

In addition to solving linear algebraic equations, MATLAB performs a great number of other
matrix computations. Among the most useful is the computation of eigenvalues and eigenvectors using
the eig function. If A is a square matrix, then eig (A) returns the eigenvalues of A in a vector, while
[V,D)=eig (A) retumns the spectral decomposition of A (here, V is a matrix whose columns are
eigenvectors of A, while D is a diagonal matrix whose diagonal entries are eigenvalues: thus the equation
::’-VDholds).lfA is diagonalizable, then V is invertible, while if A is symmetric, then V is orthogonal

V=

1 23
Let us study the following example. For the matrix ‘.[7,, find the eigenvalues and
4 56

We start with the MATLAB In »

Chapter 3: MATLAB and Problem Solving 62

Thus, the ei. and ei are found the [V, D] =eig (A) statement. We have

that AV - VD=0.In

Many numerical problems involve the application of inverse matrices. Finding inverse matrices in
MATLAB is straightforward using the inv function.
1 23

For matrix A=|0 4 O0f, find the inverse matrix, calculate the eigenvalues, derive
5 6 17

B=104%4"", and find the determinant of B. Using the inv, eig, and det functions, we have
>> A=[12 3;0 4 0;5 6 7); B=10*(A™3)*(A)"(-1); inv(A), B, eig(B), det(B)
ans =
-8.7500e-001-1.2500e-001 3.7500e-001
0 2.5000e-001 0

6.2500e-001 -1.2500e-001 -1.2500e-001
B =

1.6000e+002 2.8000e+002 2.4000e+002

0 1.6000e+002 0

4.0000e+002 7.6000e+002 6.4000e+002
ans =

8.0816e+000

7.9192e+002

1.6000e+002
ans =

1.0240e+006

Chapter 3: MATLAB and Problem Solving 63

-0.875 -0.125 0375 160 280 240"
Thatis, 4™ = 0 0.25 0 ,B=| 0 160 0 |, the eigenvalues of the matrix B are
0.625 -0.125 -0.125 400 760 640

8.1, 791.9, 160, and the determinant is 1024000.

We performed the matrix multiplications. The entry-by-entry multiplication, instead of the usual
matrix multiplication, can be performed using a dot before the multiplication operator; for example,
a.*Db . As an illustration, let us perform the entry-by-entry multiplication of two three-by-three matrices

1 2 3 10 10 10
A=14 5 6land B=(100 1 100{. Wehave
7 8 9 1 1 1
>> A=[1 2 3;4 5 6;7 8 9); B=[10 10 10;100 1 100;1 1 1); C=A.*B
C=
10 20 30
400 5 600
7 8 9

MATLAB allows us to generate the random matrices. For example, a five-by-five matrix can be
randomly generated using the rand function. We have
>> R=rand(5)
R =

9.5013e-001 7.6210e~001 6.1543e-001 4.0571e-001 5.7891e-002
2.3114e-001 4.5647e-001 7.9194e-001 9.3547e-001 3.5287e-001
6.0684e-001 1.8504e-002 9.2181e-001 9.1690e-001 8.1317e-001
4.8598e-001 8.2141e-001 7.3821e-001 4.1027e-001 9.8613e-003
8.9130e~-001 4.4470e-001 1.7627e-001 B8.9365e-001 1.3889e-001

The random matrices, arrays, and number generation are accomplished using rand. Different
sequences of random matrices, arrays, and numbers are produced for each execution. The complete
description of the rand function is available as follows:
>> help rand

RAND Uniformly distributed random numbers.
RAND (N} is an-N-by-N matrix with random entries, chosen from
a uniform distribution on the interval (0.0,1.0).
RAND(M,N) and RAND{([M,N])} are M-by~-N matrices with random entries.
RAND{M,N,P, ..} or RAND([M,N,P,...]) generate random arrays.
RAND with no arguments is a scalar whose value changes each time it
is referenced. ~RAND(SIZE(A)) is the same size as A.

RAND produces pseudo~random numbers. ' The sequence of numbers
generated is determined by the state of the generator. Since MATLAB
resets the state at start-up, the sequence of numbers generated will
be the same unless the state is changed.

S = RAND('state') is a 35-element vector containing the current state
of the uniform generator. RAND('state',S) resets the state to S.
RAND('state',0) resets the generator to its initial state.
RAND('state',J), for integer J, resets the generator to its J-th state.
RAND('state',sum(100*clock)) resets it to a different state each time.

This generator can generate all the floating point .numbers in the
closed interval [27(-53), 1-27(-53)]. Theoretically, it can generate
over 271492 values before repeating itself.

MATLAB Version 4.x used random number generators with a single seed.

Chapter 3: MATLAB and Problem Solving 64

RAND('seed',0) and RAND('seed',J) cause the MATLAB 4 generator to be
used.
RAND('seed') returns the current seed of the MATLAB 4 uniform generator.
RAND('state',J) and RAND('state',S) cause the MATLAB 5 generator to be
used.

See also RANDN, SPRAND, SPRANDN, RANDPERM.

The range of values generated by the rand function can be different from what is needed.
Therefore, scaling is necessary. The general expression for scaling and shifting is

R = Shifting + Scaling*rand (),
and the following example illustrates the application of the above formula:
>> R=ones (5)+0.1*rand (5)

R =
1.0583 1.0226 1.0209 1.0568 1.0415
1.0423 1.0580 1.0380 1.0794 1.0305
1.0516 1.0760 1.0783 1.0059 1.0874
1.0334 1.0530 1.0681 1.0603 1.0015
1.0433 1.0641 1.0461 1.0050 1.0768

The average (mean) value can be found using the mean function. For vectors, mean(x) is the
mean value of the elements in x. For matrices, mean(X) is a row vector containing the mean value of
each column. In contrast, for arrays, mean(x) is the mean value of the elements along the first non-
singleton dimension of x.

The median value is found by making use of the median function. For vectors, median(x) is
the median value of the elements in x. For matrices, median(X) is a row vector containing the median
value of each column. For arrays, median(x) is the median value of the elements along the first
nonsingleton dimension of x.

To illustrate the mean and median functions, the following example is introduced:
>> R=rand(5), Rmean=mean(R), Rmedian=median(R),

R =
0.6756 0.1210 0.2548 0.2319 0.1909
0.6992 0.4508 0.8656 0.2393 0.8439
0.7275 0.7159 0.2324 0.0498 0.1739
0.4784 0.8928 0.8049 0.0784 0.1708
0.5548 0.2731 0.9084 0.6408 0.9943
Rmean =
0.6271 0.4907 0.6132 0.2480 0.4747
Rmedian =

0.6756 0.4508 0.8049 0.2319 0.1909
Thus, using rand, we generated the random 5 x 5 matrix R. Then, applying the mean and median
functions, we found the mean and median values of each column of R.
MATLAB has functions to round floating point numbers to integers. These functions are round,
fix, ceil, and floor. The following illustrates the application of these functions:
;> f=(-0.1 -0.5 0.1 .5 1 1.9),R=round(f), FP=fix(f),C=ceil (f), FL=floor (f),S=sum(f)

-1.0000e-001 ~-5.0000e-001 1.0000e-001 5.0000e-001 1.0000e+000 1.9000e+000
R=

0 -1 0 1 1 2
Fm=

0 0 0 0 1 1
C=

0 0 1 1 1 2
FL =

=1 -1 0 0 1 1
S

2.9000e+000

Chapter 3: MATLAB and Problem Solving 65

Symbols and Punctuation. The standard notations are used in MATLAB. To practice, type the
examples given. The answers and comments are given in Table 3.1.

Table 3.1. MATLAB Problems

Problems with MATLAB syntaxes Answers Comments
>> a=2+3 a=>5 MATLAB arithmetic
>> 2+3 ans = 5
>> a=2*3 a==o
>> 2*3 ans = 6
>> a=sqgrt(5*5) a=>5
>> sqrt(5*5) ans = 5
>> a=1+27j; b=3+4j; c=a*b |c = -5.0000 +10.00001 Complex variables
>> a=[0 2 4 6 8 10] a= 0 2 4 6 8 10 Vectors
>> a=[0:2:10] a= o0 2 4 6 8 10
>> a=0:2:10 a= 0 2 4 6 8 10
>> a(:)! a= 0 2 4 6 8 10
>> a={0:2:101; c =
>> b=a(:)*a(:)"' 0 0 0 0 0 0 Forming matrix b
0 4 8 12 16 20
0 8 16 24 32 40
0 12 24 36 48 60
0 16 32 48 64 80
0 20 40 60 80 100
>> b(3,4) ans = 24 Element (3,4)
>> b(3,) ans = 0 8 16 24 32 40 | Third row
>> c=b(:,4:5) c = . .
0 0 Forming a new matrix
12 16
24 32
36 48
48 64
60 80
>> a{:)Y'*al(:) ans = 220

MATLAB Operators, Characters, Relations, and Logics. It was demonstrated how to use
summation, subtractions, multiplications, etc. We can use the relational and logical operators. In
particular, we can apply 1 to symbolize "true" and 0 to symbolize "false.” The MATLAB operators and
special characters are listed below.

Arithmetic operators

plus - Plus +
uplus - Unary plus +
minus - Minus -
uminus = Unary minus -
mtimes - Matrix multiply "
times - Array multiply ar
mpower - Matrix power "
power - Array power .
mldivide - Backslash or left matrix divide \
mrdivide = Slash or right matrix divide /
ldivide - Left array divide «\
rdivide - Right array divide o
kron - Kronecker tensor product kron

Relational operators

Chapter 3: MATLAB and Problem Solving 66

For example, the MATLAB operators &, |, ~ stand for "logical AND", "logical OR", and "logical
NOT".

Chapter 3: MATLAB and Problem Solving 67

The operators == and ~= check for equality. Let us illustrate the application of == using two
1 11 1 1 1

matrices A=/0 0 0} and B={10 10 10|. We have
1 1 1 0 0 O

One concludes that MATLAB performs Boolean operations on vectors element-wise. For this
purpose, based on Boolean algebra, MATLAB regards any nonzero real element as true, and zero as false.
MATLAB uses & for the Boolean AND operator, | for OR, and ~ for NOT. In addition, the user can run a
cumulative Boolean OR or Boolean AND across all the elements of a matrix or vector. If A is a vector or
matrix, any (A) returns true if any element of A is non-zero; all (A) returns true if all the elements of A
are nonzero.

Other MATLAB operators can be straightforwardly applied in a similar manner.

1u computes the LU factorization of a matrix,
chol computes the Cholesky factorization of a symmetric positive definite matrix,
qr computes the QR factorization of a matrix,

svd computes the singular values or singular value decomposition of a matrix,
cond, condest, rcond compute or estimate various condition numbers,
norm computes various matrix or vector norms.

Different norms be found. In ! the hel

we have

Chapter 3: MATLAB and Problem Solving 68

Strings and Basic Operations with Strings. Arrays can be used to hold data of any type. To
illustrate this, we consider storing strings in character arrays. Strings variables are mainly used for
labeling output and passing the names of m-files as arguments to other functions. Therefore, they are not
usually important in numerical analysis, but strings guarantee flexibility in programming. Strings are
matrices with character elements. The normal rules of assignment and variable creation are applied. String
constants (letters) are enclosed in single quotes, and the following example shows how to create (declare)
string variables:

us, two string were defined (declared), and a new string variable was created.
The size of string variables is determined by the length of the strings. In particular,
>> whos

Name Size Bytes Class

First 1x4 8 char array
Last 1x7 14 char array
Name 1x15 30 char array

Grand total is 26 elements using 52 bytes
The commonly used string operations are comparison, concatenation, reading strings from files, element-
wise string operations, passing strings, etc.

Display Formats. In the MATLAB environment, five digits are displayed by default. However,
MATLAB maintains and computes in a double precision 16 decimal places, and it just rounds the numbers.
For example, format long will display all 16 digits, format short will retum to the shorter
display. It is possible to use the commands format short eand format long e.Using the help

ion, we have

Chapter 3: MATLAB and Problem Solving 69

Polynomial Analysis. Polynomial analysis, curve fitting, and interpolation are easily performed.
We consider a polynomial
p(x) =10x" +9x° +8x® + 7x” + 6x* +5x° +4x* +3x* +2x* +1x+0.5.

To find the roots, we use the root s function:
>> p=[10 9 8 76 543 21 0.5]; roots(p)

ans =
0.6192 0.5138i1
0.6192 - 0.5138i
-0.7159 + 0.21661
-0.7159 - 0.2166i1
-0.4689 + 0.5597i
-0.4689 - 0.5597i
0.2298 + 0.68901
0.2298 - 0.68901
-0.1142 + 0.69131
-0.1142 - 0.69131

As illustrated, different formats are supported by MATLAB. The numerical values are displayed in
15-digit fixed and 15-digit floating-point formats if format long and format long e are used,
respectively. Five digits are displayed if format short and format short e are assigned to be used.
For example, in format short e, wehave
>> format short e; p=[(10 9 8 7 6 5 4 3 2 1 0.5]}; roots(p)
ans =

6.1922e-001 +5.1377e-0011i
6.1922e-001 -5.1377e-0011
-7.1587e-001 +2.1656e-0011
-7.1587e-001 -2.1656e-0011i
-4.6895e-001 +5.5966e-0011
-4 .6895e-001 -5.5966e-0011
2.2983e-001 +6.8904e-0011
2.2983e-001 -6.8904e-0011
-1.1423e-001 +6.9125e-0011i
-1.1423e-001 -6.9125e-0011

In general, the polynomial is expressed as
p(x)=ax"+a,_x""+.. . +ax +ax+a,.
The functions conv and deconv perform convolution and deconvolution (polynomial
multiplication and division). Consider two polynomials
p(x)=x*+2x* +3x* +4x+5 and p,(x) = 6x° +7x+8
To find ps(x) = pi(x) pa(x) we use the conv function. In particular,
>> pl=[1 2 3 4 5]; p2=[6 7 8]; p3=conv(pl,p2)
P2 6 19 40 61 82 67 40
Thus, we find

Ps(x) = 6x° +19x° +40x* +61x” +82x* +67x +40.

It is easy to see that p, (x) = py(x) 6x° +19x° +40x* + 61x° +82x* + 67x +40
Pa () x*+2x° +3x7 +4x+5

This can be verified using the deconv function. In particular, we have

>> p4=deconv (p3,pl)

p4 =

=6x" +7x+8=p,(x)

6 7 8
Comprehensive analysis can be performed using the MATLAB polynomial algebra and numerics.
For example, let us evaluate the polynomial

Ps(x) =6x° +19x° +40x* +61x” +82x* +67x +40

Chapter 3: MATLAB and Problem Solving 70

at the points 0, 3, 6, 9, and 12. This problem has a straightforward solution using the polyval function. We
have

>> x=[0:3:12]; y=polyval(p3,x)

Y 40 14857 496090 4624771 23591212

Thus, the values of ps(x) at x =0, 3, 9, and 12 are 40, 14857, 496090, 4624771, and 23591212.

As illustrated, MATLAB enables different operations with polynomials (e.g., calculations of roots,
convolution, etc.). In addition, advanced commands and functions are available, such as curve fitting,
differentiation, interpolation, etc. We download polynomials as row vectors containing coefficients
ordered by descending powers. For example, we download the polynomial p(x) = x> + 2x + 3 as
>> p=[1 0 2 3]

The following functions are commonly used: conv (multiply polynomials), deconv (divide
polynomials), poly (polynomial with specified roots), polyder (polynomial derivative), polyfit
(polynomial curve fitting), polyval (polynomial evaluation), polyvalm (matrix polynomial
evaluation), residue (partial-fraction expansion), roots (find polynomial roots), etc.

The roots function calculates the roots of a polynomial.
>> p=[1 0 2 3]; r=roots(p)

r =
0.5000 + 1.65831
0.5000 - 1.6583i
-1.0000

The function poly returns to the polynomial coefficients, and
>> p=poly(r)

1.0000 -0.0000 2.0000 3.0000
The poly function computes the coefficients of the characteristic polynomial of a matrix. For example,
>> A=[1 2 3; 04 5; 0 6 7]; c=poly(Rn)
Cc =
1.0000 -12.0000 9.0000 2.0000
The roots of this polynomial, computed using the roots function, are the characteristic roots
(eigenvalues) of the matrix A. In particular,
>> r=roots(c)
r =
11.1789
1.0000
-0.1789
The polyval function evaluates a polynomial at a specified value. For example, to evaluate
Px) =x’ +2x+ 3 at s=10, we have
>> p=[1 0 2 3]; plO=polyval(p,10)
pl0 =
1023
The polyder function computes the derivative of any polynomial. To obtain the derivative of
the polynomial p(x) = x* + 2x + 3, the MATLAB statement is
>> p=[1 0 2 3]; der=polyder (p)
der =
3 0 2
The polyder function can be straightforwardly applied to compute the derivative of the product or
quotient of polynomials. For example, for two polynomials p(x) =x* + 2x + 3 and py(x) = x* + 4x + 5, we
have
>> pl={1 0 2 3]; p2=[(1 0 0 4 5]; p=conv(pl,p2), der=polyder (pil,p2)
p =
1 0 2 7 5 8 22 15
der =
7 0 10 28 15 16 22

Chapter 3: MATLAB and Problem Solving 71

The data fitting can be easily performed. The polyfit function finds the coefficients of a
polynomial that fits a set of data in a least-squares sense. Assume we have the data (x and y) as given by
x=[01234567809andy=[1252333252521].

Then, to fit the data by the polynomial of the order three, we have
>> x=[0 123456 78289); y=[12.523332.52.521); p=polyfit(x,y,3)

0.0010 -0.1040 0.8478 1.2028
Thus, one obtains p(x) = 0.001x> ~ 0.104x> + 0.8478x + 1.2028.
The resulting plots, plotted using the following MATLAB statement,
>> plot(x,y,'-',x,polyval{p,x),':")
of the data and its approximation by the polynomial are illustrated in Figure 3.11.

3

;T X
28} .- N -
| AN
26}) .“/’ AN .
. . | WS —
DY AN / o
PN N
i A
22t N A
H / \ \
of .
18f y |
16F ¢
14 \
12} W]
1 ‘ 1 i L 1 1 L 1 1 v\
0 1 2 3 4 5 6 7 8 9

Figure 3.11. Plots of thexy data(x=[0 1 23 4 56 7 8 9)andy=[1 2523 33 252521)
and its approximation by p(x) = 0.001x> - 0.104x>+ 0.8478x + 1.2028

Interpolation (estimation of values that lie between known data points) is important in signal and
image processing. MATLAB implements a number of interpolation methods that balance the smoothness of
the data fit with the execution speed and memory usage. The one-, two- and three-dimensional
interpolations are performed by using the interpl, interp2, and interp3 functions. The
interpolation methods should be specified, and we have interpl (x, y, xi, method).

The nearest neighbor interpolation method is designated by nearest, while the linear, cubic
spline, and cubic interpolation methods are specified by the 1inear, spline and cubic functions.
Choosing an interpolation method, one must analyze the smoothness, memory, and computation time
requirements.

Example 3.4.1.

Consider the nonlinear magnetic circuit. Ampere’s law states that the line integral of B around the
closed path is proportional to the net current through the enclosed area. However, the value of permeability
of the ferromagnetic material depends on the external field, and u is not constant. This effect is observed due

to the saturation magnetization phenomena. In general, one should use the nonlinear magnetization curves.

That is, the equation L = N—(D =Y = const is valid only if the magnetic system is linear.

1 1
Consider a set of data for the flux linkage — current relation for an electromagnetic motion device.
Weuse i=[002 04 06 081121416 1.8 2]

and @ =[0 0.022 0.044 0.065 0.084 0.1 0.113 0.123 0.131 0.136 0.138].

Chapter 3: MATLAB and Problem Solving 72

Using MATLAB, curve fitting, interpolation, and approximation can be performed (see the script and
the results).

MATLAB Script

Chapter 3: MATLAB and Problem Solving

73

Figure 3.12 plots the data, and the variations of the inductance are evident. Approximating ® = £ (i)

by the third-order polynomial is found to be

@ =-0.0048i° — 0.016i* + 0.12i — 0.00075.

The plot of the Current - Flux data

o

o
o
o
01 o J
[
]
=
[o
0.05f ° 1
o
0] 2
Current

Smoothing of the Current - Flux curve using cubic spline interpolation

01

Flux

0.05 |

a '

1
Current

Interpolation of the Current - Flux curve by N-order polynomials

(5

01

Flux

005+

L

1
Current

2

dFlux / dCurrent

dFlux / dCurrent

dFlux / dCurrent

o
-

0.05

0.1

0.05

0.1

0.05

Derivative dFlux / dCurrent as a function of Current

T

1
Current

Derivative dFlux / dCurrent as a function of Current

(8]

0

1
Current

Derivative dFlux / dCurrent as a function of Current

1
Current

2

Figure 3.12. Application of numerical analysis in curve fitting, interpolation, and approximation

3.5. Conditions and Loops

The logical operators in MATLAB are <, >, <=,
are binary operators which return the values 0 and 1 (for scalar arguments). To illustrate them, we have

>> a=20>5
a:

1
>> a=20<5
a=

0
>> a=2(0==5
a-

0

(logical equals), and ~= (not equal). These

Chapter 3: MATLAB and Problem Solving 74

These logical operators have limited features, and therefore, loops, conditions, control statements, and
control structures (sequence, selection, and repetition structures) are embedded in all programming
languages. In particular, MATLAB has standard if-elseif-else, switch, and while structures.
The general form of the pseodocode for the i £ conditional statement is

As an example, running the following MATLAB statements for two different grades C — and C + (with 1.7
and 2.3 GPA),

—

the following two results are displayed in the Command Window:

- | DASSINg al were
passes the course, while if the condition is not
: ing the following MATLAB statement

Control Structures. The if selection structure (conditional statement) allows us to design
programs that make decisions about what commands to execute. This decision-making is performed
choosing among alternative actions based upon the particular (specific) conditions. The basic statement,
to illustrate the basic features, is
if a>0
x=a"3;
end

Chapter 3: MATLAB and Problem Solving 75

Thus, we assign x be the equal to @ if a is positive. We have an end statement to terminate the
program. We define an else clause which is executed if the condition given (i f statement) is not true.
For example,
if a>0
x=a"3;

else

x=-a"4;
end
Hence, ifa=5,x =125, and if a = -5, x = — 625. Here, we need one end.

Using the MATLAB help, we have:

1. if structure:
>> help if
IF IF statement condition.
The general form of the IF statement is

IF expression
statements
ELSEIF expression
statements
ELSE
statements
END
The statements are executed if the real part of the expression
has all non-zero elements. The ELSE and ELSEIF parts are optional.
Zero or more ELSEIF parts can be used as well as nested IF's.
The expression is usually of the form expr rop expr where

rop is ==, <, >, <=, >=, Or ~=,
Example
if I ==
A(I,d) = 2;
elseif abs(I-J) == 1
A(I,J) = -1;
else
A(I,J) = 0;
end

See also RELOP, ELSE, ELSEIF, END, FOR, WHILE, SWITCH.

2. else structure:

>> help else

ELSE Used with IF.
ELSE is used with IF. The statements after the ELSE are executed
1f all the preceding IF and ELSEIF expressions are false.

The general form of the IF statement is
IF expression
statements
ELSEIF expression
statements
ELSE
statements
END
See also IF, ELSEIF, END.

Chapter 3: MATLAB and Problem Solving 76

3. elseif structure:
>> help elseif

ELSEIF IF statement condition.
ELSEIF is used with IF. The statements after the ELSEIF are
executed if the expression is true and all the preceding IF and
ELSEIF expressions are false. An expression is considered true if
the real part has all non-zero elements.

ELSEIF does not need a matching END, while ELSE IF does.

The general form of the IF statement is
IF expression
statements
ELSEIF expression
statements
ELSE
statements
END
See also IF, ELSE, END.

4. switch structure:
>> help switch
SWITCH Switch among several cases based on expression.
The general form of the SWITCH statement is:

SWITCH switch_expr
CASE case_expr,

statement, ..., statement

CASE {case_exprl, case_exprz, case_expr3, ...}
statement, ..., statement

OTHERWISE,
statement, ..., statement

END
The statements following the first CASE where the switch expr matches
the case expr are executed. When the case expression is a cell array
(as in the second case above), the case_expr matches if any of the
elements of the cell array match the switch expression. If none of
the case expressions match the switch expression then the OTHERWISE
case is executed (if it exists). Only one CASE is executed and
execution resumes with the statement after the END.

The switch expr can be a scalar or a string. A scalar switch_expr
matches a case expr if switch expr==case expr. A string

switch expr matches a case expr if strcmp(switch expr,case_expr)
returns 1 (true).

Only the statements between the matching CASE and the next CASE,
OTHERWISE, or END are executed. Unlike C, the SWITCH statement
does not fall through (so BREAKs are unnecessary).

Example:
To execute a certain block of code based on what the string, METHOD,
is set to,

Chapter 3: MATLAB and Problem Solving

method = 'Bilinear';
switch lower (METHOD)

case {'linear', 'bilinear’'}
disp('Method is linear')

case 'cubic'

disp('Method is cubic')

case 'nearest'

disp('Method is nearest')

otherwise

disp('Unknown method.')

end

Method is linear
See also CASE, OTHERWISE,

IF, WHILE, FOR, END.

The following conclusions can be made.

77

1. The 1if selection structure performs an action if a condition is true or skips the action if the

condition is false.

2. The if - else selection structure performs an action if a condition is true and performs a
different action if the condition is false.
3. The switch selection structure performs one of many different actions depending on the value

of an expression.

Therefore, the if structure is called a single-selection structure because it performs (selects) or skips
(ignores) a single action. The 1f - else structure is called a double-selection structure because it
performs (selects) between two different actions. The switch structure is called a multiple-selection
structure because it selects among many different actions.

Using the results given it is obvious that we can expand the if conditional statement (single-
selection structure) using other possible conditional structures. If the first condition is not satisfied, it

looks for the next condition, and so on, until it either finds an el se, or finds the end. For example,

if a>0
x=a"3;
elseif a==0,
x=7;
else
x=—-a’4;
end

This script verifies whether a is positive (and, if a>0, x=a3), and if a is not positive, it checks whether a is
zero (if this is true, x = j =+/—1). Then, if a is not zero, it does the else clause, and if a<0, x= — a'. In

particular,
a=2;
if a>0
x=a"3;
elseif a==0,
x=J;
else
x=-a"4;
end; x
gives
X =

Chapter 3: MATLAB and Problem Solving 78

while
a=0;
if a>0
%x=a"3;
elseif a==0,
X=73;
else
x=—a™4;
end; Xx
results in
X =
0 + 1.00001

In addition to the selection structures (conditional statements), the repetition structures while
and for are used to optimize and control the program. The whi le structure is described below:
>> help while
WHILE Repeat statements an indefinite number of times.
The general form of a WHILE statement is:

WHILE expression
statements
END

The statements are executed while the real part of the expression
has all non-zero elements. The expression is usunally the result of
expr rop expr where rop is ==, <, >, <=, >=, or ~=.
The BREAK statement can be used to terminate the loop prematurely.
For example (assuming A already defined):

E = 0*A; F = E + eye(size(E)); N = 1;

while norm(E+4+F-E, 1) > 0,

E=E + F;

F = A*F/N;

N =N+ 1;
end

See also FOR, IF, SWITCH, BREAK, END.
Thus, the while structure repeats as long as the given expression is true (nonzero):

and the answer is

The MATLAB for structure is comparable to a FORTRAN do loop and the C for structure.
The for structure repeats the statements in the loop as the loop index takes on the values in a given row
vector. For

7
‘»

Chapter 3: MATLAB and Problem Solving 79

36
49
64
81
100

The built-in function disp displays the argument. The loop is terminated by the end.

The for structure allows you to make a loop or series of loops to be executed several times. It is
functionally very similar to the for structure in C. We may choose not to use the variable i as an index,
because you may redefine the complex variable i = «/:—1 . Typing
for z = 1:4
k
end

causes the program to make the variable z count from 1 to 4, and print its value for each step. For the
above statement, we have

7z =

1
7z =

2
7z =

3
7z =

4

In general, the loop can be constructed in the form
for i=l:n, <program>, end
Here we will repeat program for each index value i.
The complete description of the for repetition structure is given below:
>> help for
FOR Repeat statements a specific number of times.
The general form of a FOR statement is:
FOR variable = expr, statement, ..., statement END
The columns of the expression are stored one at a time in
the variable and then the following statements, up to the
END, are executed. The expression is often of the form X:Y,
in which case its columns are simply scalars. Some examples
{(assume N has already been assigned a value).
FOR I = 1:N,
FOR J = 1:N,

A(I,J) = 1/(I+J-1);
END
END
FOR S = 1.0: -0.1: 0.0, END steps S with increments of -0.1
FOR E = EYE(N), ... END sets E to the unit N-vectors.

Long loops are more memory efficient when the colon expression appears
in the FOR statement since the index vector is never created.
The BREAK statement can be used to terminate the loop prematurely.
See also IF, WHILE, SWITCH, BREAK, END.
The loop must have a matching end statement to indicate which commands should be executed
several times. You can have nested for structures. For example,

for m=1:3
for n=1:3
X (m, n)=m+n*1i;
end

end; x

Chapter 3: MATLAB and Problem Solving 80

generates (creates) the x matrix as
X =
9 17 25
10 18 26
11 19 27

To terminate for and while, the break statement is used.

3.6. Illustrative Examples

Example 3.6.1.
Find the values of @, b, and ¢ as given by the following expressions

2 3)"2 1 -
a=5"—-6y+7z, b= T and c=| 1+—
4x -5z x
ifx=10,y=-20and z=30.
Solution.

In the MATLAB Command Window, to find a, we type the statements

ing the Enter we have the result. In parti

That is, a = 830.
To find b, we type

and the value for b is found. In parti

Thus, b =-0.0089

Finally, to find the value of ¢, we have

and ing the Enter key, the ¢ value is

we conclude that ¢ = 0.9901.

Example 3.6.2.
Use MATLARB to calculate the value of """,

is solved as follows:

Example 3.6.3.
Given the complex number N = 13 — 7i. Using MATLAB, perform the following numerical
calculations:
a. Find the magnitude of V.
b. Find the phase angle of N.
c. Determine the complex conjugate of N.

Chapter 3: MATLAB and Problem Solving 81

Solution.
The complex number is downloaded as

We can use either i or j for the imaginary number. The three problems can be straightforwardly solved. In
particular,

i &
(m]

Example 3.6.4.
For a shell with an external diameter r, = 10 and internal diameter r; = 2, find the volume which is

given by the following formula:
v=ixls-7).
Solution.
To solve this the MATLAB statement in the Command Window) is

Here, we use the pi which is the constant x. Then, the numerical result

we conclude that V= 4155.

Example 3.6.5.
For a shell with an external diameter r, = 3, 4, 5, 6, 7, 8, 9, and 10 and intemnal diameter r; = 2, find

the values for volume ¥ = +{r’ -). Calculate and plot a nonlinear function ¥'= fir,) for the r, given.

Solution.
In the MATLAB Command Window we

and the plot is illustrated in Figure 3.13.

Chapter 3: MATLAB and Problem Solving 82

10 T T T T T T =

3 SO I 1 1 L i i 1
0 500 1000 1500 2000 2500 3000 3500 4000 4500

Figure 3.13. Nonlinear function: volume versus the external radius V=f£(r,) O

Example 3.6.6.
Use the 1inspace function and increment method to create a vector A with 15 equally spaced
values, beginning with 7.0 and ending with 47.5.

Solution.

Using linspace, in the Command Window, we type
>> A=linspace(7.0, 47.5, 1%
where 7.0 is the first (initial) value, 47.5 is the final value, and 15 is the number of values to be displayed.
Pressing the Enter key, the following is displayed in the Command Window:

The first value is 7.0, the final value is 47.5, and 15 numbers are displayed.
The increment method can be used. The increment value is found using the equation
I _Fuuanlm—lmtiaanlne.

Number of Increments -1

ﬂmmmﬂnw' statement,
and

the Enter key. We have

Because a value of 2.8929 is now assi to be the we can enter

The result is

A=

Columns 1 through 9

7.0000 9.8929 12.7857 15.6786 18.5714 21.4643 24.3571 27.2500 30.1429
Columns 10 through 15

33.0357 35.9286 38.8214 41.7143 44.6071 47.5000

O

Chapter 3: MATLAB and Problem Solving 83

Example 3.6.7.

Use 1linspace and apply the increment method to create vector B with starting (initial) value of 7
and final (ending) value of 23 with increment of 0.16 between values. Display only the 18th value in each
case.

Solution.
Increment method. We enter

Here, the first line is the vector, and the second line indicates the value we wish to display. Pressing the
Enter we have

Using the 1inspace function, we must first find the number of values that will be found using the
following equation:

Number of Val _ Final Value - Initial Value

+1.

means | 101 values v ; g heen disp] der 1l given cond S M'm

linspace anddisplay, we

()
368
6 9 51 4 8
: 8723 37
Forﬂnmﬂlembac-l 34 4 antll)-2 s.hmmmﬂnfolbwirc
5 282 51

a Create matrix E1 with the two middle columns of C using the colon operator.
b. Create matrix E2 with rows 1 and 2 and columns 2 and 3 of C using the colon operator.
c. Create matrix E3 by placing E1 and D side by side.
d. Find the product of C and Dy,.
Solution.

iimWﬂnmﬂhaClﬂDn

a. The matrix E1 is created as

Chapter 3: MATLAB and Problem Solving 84

b. The matrix E2 is generated as

d. The product of the value in row 2 and column 4 of matrix C and the value in row 1 and column 2 in
matrix D is found as

We use the numbers for row and column location in matrices C and D. the Enter we have

In fact, the product of 8 and 3 is 24.

Example 3.6.9.
We have the following arrays F=[3 21 6 17},G=[4 27 9 3}, andH =[] 2 9 15).

Combine F, G and H into a matrix K1 such that F is in the first row of K1, G is in the second row of
K1, and H is the third row of K1.

Combine F, G and H into a matrix K2 such that F is in the first column of K2, G is in the second
column of K2, and H is the third column of K2.

4

Solution.
Fiﬁ.wedowﬂodﬂnmmu

mwxluw-ﬂwmum&gm

Chapter 3: Ma714B and Problem Solving 85

Example 3.6.10.
. . 7 2 2 3 .
Given matrices Aand Bas 4= 31 and B= 4 5| calculate the following:

A+B

A-B

2*B

A/4

A*B

B.*A

A*B

B*A

A2

AN2

A B

. A/B

using pencil and paper. Verify the results using MATLAB.
Solution.

First, we download matrices A and B as

BgrrFR™moAL o

If one wants to display these matrices, the first semicolon outside the brackets must be replaced by a
and remove the second semicolon. In

Chapter 3: MATLAB and Problem Solving 86

o

A4
To find the resulting matrix, we have

—

7

A"B
We type

B

Chapter 3: MATLAB and Problem Solving 87

Example 3.6.11.

1211 -79 923
Giventhe matrix A =| 5.06 6.35 21.7 |, using MATLAB do the following:
-334 267 1438

Find the natural logarithm of the absolute value of each element of A.
Find the base 10 logarithm of the absolute value of each element of A.
Find the square root of each element in 4.

Calculate the hyperbolic cosine of each entry of A.
Round each element in A to the nearest integer.

Round each element in A to the next higher integer.

Truncate each element of 4 to the next lower integer toward zero.
Find the sum of the elements in each column of A.

Find the product of the elements in each row of A.

Find the maximum value in each row of A.

Find the minimum value in each row of A.

Sort the elements in each column of A in ascending order.

Sort the elements in each row of A in ascending order.

Find the mean of the values in each column of 4.

Find the size of A.

Solution.

First, we download matrix A as

ePeRITrFFE ORN TP

To solve the problems and find the numerical values, we type in the Command Window using the
corresponding statements listed below. To find the answers, the Enter key must be pressed. We have
Part a

Part b

Chapter 3: MATLAB and Problem Solving 88

Part ¢
Part d

It is evident that another format should be used. For the format short e we find

Part k

_

Chapter 3: MATLAB and Problem Solving 89

Partm

Example 3.6.12.

Given polynomials /= 15x* - 7. + 2x + 4 and g = 9’ — 17x + 3, do the following problems:
find the product of fand g,

find the quotient and remainder of f divided by g,

find the roots of g.

Mk

coe

We download two
The of fand g is found the conv function. In

Chapter 3: MATLAB and Problem Solving 90

Example 3.6.13.

Write an m-file which will generate a table of conversions from inches to centimeters using the
conversion factor 1 inch = 2.54 cm. Prompt the user to enter the starting number of inches. Increment the inch
value by 3 on each line. Display a total of 10 lines. Include a title and column heading in the table.

Solution.

The m-file should be written. Fiurthermore, to execute an m-file, MATLAB must be able to find it.
This means that a directory in MATLAB's path must be found. The current working directory is always on
the path. To display or change the path, we use the path function. To display or change the working
directory, the user must use cd. As usual, help will provide more information.

To solve the problem, the following m-file is written. Comments are identified by the $ symbol.

Chapter 3. MATLAB and Problem Solving

Example 3.6.14.

Write an m-file that will calculate the area of circles (4 = n/%) with radii ranging from 3 to 8 meters
at an increment between values entered by the user in the Command Window. Generate the results in a table
using disp and fprintf, with radii in the first column and areas in the second column. When fprintf

is used, print the radii with two digits after the decimal point and the areas with four digits after the decimal
point.

Solution.
To solve the problem, the MATLAB script is developed and listed below.

Chapter 3: MATLAB and Problem Solving 92

Example 3.6.15.

Write an m-file which allows the user to enter (download) the temperatures in degrees Fahrenheit
and return the temperature in degrees Kelvin. Use the formulas C°= 5(F°— 32)/9 and K = C°+ 273.15. The
output should include both the Fahrenheit and Kelvin temperatures. Make three variations of the output as:

a. Output temperatures as decimals with 5 digits following the decimal point,
b. Output temperatures in exponential format with 7 significant digits,
c. Output temperatures with 4 significant digits.

Solution

The following MATLAB script allows us to solve the problem:

O

Example 3.6.16.

A spring's potential energy is found as E = kx’/2, where k is the spring constant; x is the spring
displacement. The spring force is F = kx.

Using the data for five different springs as given in Table 3.2, write an m-file to find the
displacement and potential energy stored in each spring. Output the results in a table that displays the spring
number, displacement in meters, and potential energy in joules. The calculated values should have three digits

Table 3.2. Spring Data
[Spring 1 2 3 a 5
Force (N) 23 123 5 79 8
| Spring constant, k 145 3 12 17 34
Solution.
The

Chapter 3: MATLAB and Problem Solving 93

Example 3.6.17.

w_ x R
The formula for the volume of a truncated cone is V' = -=(R- W)
W g 3% ’mar(mo ’)

Here, y is the height; R is the radius of the base; 0 is the angle in radians formed by the centerline
and the side of the cone at the ape.

Find the volume for radii R = 1, 2 and 3 meters if y = 5 meters and 6 = 20°. Calculate three
volumes.

Solution.

The m-file is written. In 2

The results displayed in the Command Window are documented below:
Enter the height of the cone in meters:

3
y =
3
Enter the three radii in meters:
[1 2 3]
R =
1 2 3
Enter the angle in degrees:
20
t =
20

2.8794 20.8627 57.6956
The three volumes are found to be 2.8794, 20.8627, and 57.6956. O

Chapter 3: MATLAB and Problem Solving 94

Example 3.6.18.

Write a MATLAB script which accepts the radius and height as inputs and returns the volume of the
cone with those dimensions.

Solution.

The script (ch3618 .m) is given below.

The numerical results for r = 5 and h = 10 are

Thus, ¥ = 261.7994. 0

Example 3.6.19.
Write an m-file that computes the time at which an object thrown vertically upward with the initial
velocity v will reach a height h. There are two solutions for 7 in the height equation h(l)=vt--}gt’ because

the equation is quadratic. Test the file if &= 100 m, v = 50 m/sec, and g = 9.81 m/sec’.
The MATLAB script ch3619.m s

I§I§

Chapter 3: MATLAB and Problem Solving 95

Example 3.6.20.

Write the MATLAB file to solve linear algebraic equations. Develop an m-file in order to solve the
following sets of linear algebraic equations:

a. 6x —3y +4z=41
12x+5y-7z=-26
~-5x+2y+6z=14

b. 12x-5y =11
-3x+4y+72=-3
6x+2y +3z=22

c. 2.5%4 + 5%3+ X3 - 2%,=—4
25%, —6.2x3+ 18x4 + 10x;,=2.9
28x4 + 25%; — 30%x, — 15x3=—5.2
—3.2X] +]2X3—8X4=—4.

Solution.
The following m-file is written:

Thus, the solutions of the algebratc equations are found.

Chapter 3: MATLAB and Problem Solving 96

Example 3.6.21.

Electric circuits are described (modeled) using Kirchhoff's voltage and current laws. The electric
circuit under consideration is described by the following set of five algebraic equations:

R]i] + Rziz—- V1= 0

- Rziz + R3i3 + R5i5 =0

vyt R4i4— R3i3 =0

—i]+i2+i3+i4:0

- i4-— i3 +i 5= 0

a. Calculate the five unknown currents (i), i, i3, 14, and is) using the following resistances and voltages
as: Ry = 470 ohm, R, = 300 ohm, R; = 560 ohm, R4 = 100 ohm, Rs = 1000 ohm, v,= 5V, and v, =
10V. Label the answers with current number and units. .

b. Using the resistances given above and v, = 5V, find the range of positive voltages v, for which none
of the currents exceeds 50 mA. The currents may be positive or negative. None of the currents may
be less than — 50 mA or greater than 50 mA.

Solution.
The MATLAB script is documented below.

Chapter 3: MATLAB and Problem Solving 97

The results are

a

Example 3.6.22.

The height, horizontal distance, and speed of a projectile launched with a speed v at an angle 4 to the
horizontal line are given by the following formulas:

h(t)=vtsin A—1 gt*, x(t) = vtcos A and v(f) = \ﬁz —2vgtsin A+ g’t* .

The projectile will strike the ground when A(f) = 0, and the time of the hitis #,, = 2Ysin4.
g

Suppose that 4 = 30°, v = 40 m/s, and g = 9.81 m/s”. Use logical operators to find the times (with
the accuracy to the nearest hundredth of a second) when

a. The height is no less than 15 meters,
b. The height is no less than 15 meters and the speed is no greater than 36 m/sec.
Solution.

The following MATLAB script is developed to solve the problem.

e

Chapter 3: MATLAB and Problem Solving 98

In the Comand Window, we have the results

The height is at least 15 m when the time is between 1.01 seconds and 3.09 seconds.
The height is at least 15 m and the velocity is no less than 36 m/s

when the time is between 101.000000 seconds and 309.000000 seconds.

REFERENCES

MATLAB 6.5 Release 13, CD-ROM, MathWorks, Inc., 2002.

Hanselman, D. and Littlefield, B., Mastering MATLAB 5, Prentice Hall, Upper Saddle River, NJ, 1998.
Palm, W. J., Introduction to MATLAB for Engineers, McGraw-Hill, Boston, MA, 2001.

Recktenwald G., Numerical Methods with MATLAB: Implementations and Applications. Prentice Hall,
Upper Saddle River, NJ, 2000.

User’s Guide. The Student Edition of MATLAB: The Ultimate Computing Environment for Technical
Education, MathWorks, Inc., Prentice Hall, Upper Saddle River, NJ, 1995.

Chapter 4: MATLAB Graphics 99

Chapter 4

MATLAB GRAPHICS

MATLAB has outstanding graphical, visualization and illustrative capabilities [1 - 4]. A
graph is a collection of points, in two, three, or more dimensions, that may or may not be
connected by lines or polygons. It was emphasized that MATLAB is designed to work with vectors
and matrices rather than functions. Matrices are a convenient way to store numerical numbers.

4.1. Plotting

In MATLAB, the user can plot numerical data stored as vectors and matrices. This data can
be obtained performing numerical calculations, evaluating functions, or reading the stored data
from files. Single and multiple curves can be created.

The dependent variable can be easily evaluated as a function of the independent variable.
For example, consider

Yx) =fx), €., y(x) =x'°, y(x) =&, y(x) = €7, ylx) = sin(x), etc.
To create a line plot of y versus x, the MATLAB statement is
>> x=[. . . .] ¥ cretae x data
>> y=[. . . .] % cretae y data
>> plot(x,y) % plotting statement

Hlustrative Example 4.1.1.

Plot the following data in MATLAB:
>> x=[0 123456789 10 20 30 40 50 60 70 80 90 100]; % cretae x data
>> y=(2 3456777771011 12 10 10 10 14 15 15 14); % cretae y data
>> plot(x,y) % plot

Solution.

The resulting plot is illustrated in Figure 4.1.a. By using the following statement
> x={0 1234567891020 30 40 50 60 70 80 90 100); % cretae x data
>> y=[2 3456777771011 12 10 10 10 14 15 15 14); % cretae y data
>> plot(x,y,’'0o’) % plot
we obtain the plot as documented in Figure 4.1.b.

16 : ; . - 16 " . . ~
,,,,,,,,,,,, - o ©
14} /// ™ 14t o
/!i!
12t / 4 12 o 1
7 \‘\\ /_,." o
10} / A / : 10 e o 0 1
8 E b 8
,,,,,, T
6 6F <
ar alo
/)
2t i 24 L s L L
0 20 40 60 80 100) 20 40 80 80 100
a b
Figure 4.1. Data plots O

By default, the plot function connects the data with a solid line. Using
plot(x,y,’o’),the data is connected by symbol o.

Chapter 4: MATLAB Graphics 100

As has been shown, plot is the simplest way of graphing and visualizing the data. If x is
a vector, plot (x) will plot the elements of x against their indices. For example, let us plot the
vector. We type

>> x=(12345678910); plotix)
and lhe resulting plots are given in Flgule 4.2

L]
——
.
.
T S W S T NN S

‘ F|gure4.2 Plotsoftheveclorx T

Hlustrative Example 4.1.2.
Plot sin(x) if x varies from 1 to 10 letting the increment to be 0,1.
Solution.

We can use the folﬂ' statement

and the resulting plot is given in Fi 4.3.a. In contrast, making use of the following statemen
we have the plot illustrated in Figure 4.3.b.

Ll - r

osl \\\ / ‘\\

o8 \ / \

04 /

02 '
L]

|
€N ;
!

o8 /
o8 \ /
N cror s
" b
Figure 4.3. Plot of sin(x) O

Thus, we can plot two vectors as arguments, and the plot function creates a graph with
the first argument as the abscissa values, and the second vector as ordinate values. The simple
graph was created in the xy cartesian plane: see sin (x). Another example is given here:

The resulting graph is displayed in Figure 4.4.

Chapter 4: MATLAB Graphics 101

10— e }
. J
8 L
7r i
6r
5+ A
4 L 4
3 L \\ -

\
2; B
1" .
0 l:/ L L : L L L L L
1 2 3 4 5 6 7 8 9 10

Figure 4.4. Plot of two vectors x and y

Let us illustrate how to calculate the function x(f) = ¢ 'sin(2¢) if ¢ varies from 0 to 8 sec,
and then plot the resulting function. We will use the colon notation (: is the special character) to
create the time array. For example, typing t=0:1:8, we have

Thus, we assign the time interval t=0:0.1:8, then calculates x() = ¢ 'sin(2/), and plot the
function. In particular,

ighty-one values of the entries of the vector

The resulting plot is illustrated in the Figure 4.5.

Chapter 4: MATLAB Graphics 102

0.2 1 L L (! L 1
1

Figure 4.5. Plot of the function x(f) = e 'sin(2¢)

The function plot (t,x) uses the built-in plot function and gives a very basic plot.
The first variable is on the horizontal axis and the second variable is on the vertical axis. There
are many ways to use plot. For example, you can change the style and color of the line. Using
plot(t,y, ':") gives the dotted line. To have the green dashdot line, type plot (t,x, 'g-
1
).
The following options are available:

solid - red r
dashed -- green g
dotted : blue b
dashdot -. white o

We can use the help plot for detail information. That is, using
> helpplet

the user has

Chapter 4: MATLAB Graphics

The results are integrated in Table 4.1.

Table 4.1. Colors, Symbols, and Line Types Used in P1ot

103

Line Color Symbol
- solid y yellow . _point
: dotted m_magenta o circle
-. dash dotted ¢ cyan x x-mark
-- dashed r red + plus
g green * star
b blue S square
w__ white d diamond
k black v _triangle (down)
~ triangle (up)
< triangle (left)
> triangle (right)
p pentagram
h hexagram

Chapter 4: MATLAB Graphics 104

To illustrate the plot function and options we have, using the MATLAB statements

>> t=0:0.25:10; y=sin(t); plot(t,y,'rd:")

and

>> t=0:0.25:10; y=sin(t); plot(t,y,'k<-")

you calculate the function x = sin and plot the results, as documented in Figures 4.6.a and b.

1 dogr |E. ﬁ; = = = ““
o8 4 osp S 5 hd 5
08! ' . il T \ ¢ \
|
04 3 d 04} "‘ "‘ f 5
Ii ‘
02 4 0:" X) 5
o} 1 X f 1 ‘
02} d 02 y ‘.
04 04} \ ' \
| , ¢ 3
o8 § 08} | / 3
5 d
on; 1 — N A
. ey AL " g - -)
o 2 ‘. . - 10 o 2 4 e ' ©
a b

Figure 4.6. Plot of sin(r)

The discrete values of ¢ are connected by lines to have continuous function. The discrete
and piecewise continuous functions can be plotted. For example, the stem function can be used.
Figure 4.7 illustrates the plot for sin(s) at instances 1, 2, 3,4, 5, 6, 7, 8,9, and 10. In particular,

We use
>> n=1:10; stem(n,sin(n))

1 :
0.8+

06- o 1
04- e
02- : :

or
04 3 - .
06 ‘

4

-0.8

-
L

N
L L +

2 3 4 5 6 7 8 9 10

Figure 4.7. Plot of sin(»n)

Thus, two- and three-dimensional (as will be illustrated latter) plots and coordinate
transformations are supported by MATLAB. The basic commands and functions are reported in
Tables 4.2 to 4.5.

Chapter 4: MATLAB Graphics

Table 4.2. Basic Plots and Graphs Functions and Commands

Bar Vertical bar chart
Barh Horizontal bar chart
Hist Plot histograms
Histc Histogram count
Hold Hold current graph
loglog Plot using log-log scales
Pie Pie plot
Plot Plot vectors or matrices.
Polar Polar coordinate plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions

Table 4.3. Three-Dimensional Plotting
Bar3 Vertical 3D bar chart
Bar3h Horizontal 3D bar chart
Comet3 3D comet plot
cylinder Generate cylinder
£i113 Draw filled 3D polygons in three-dimensional space
plot3 Plot lines and 3D points (in three-dimensional space)
quiver3 3D quiver (or velocity) plot
Slice Volumetric slice plot
sphere Generate sphere
stem3 Plot discrete surface data
waterfall Waterfall plot

Table 4.4. Plot Annotation and Grids
clabel Add contour labels to a contour plot
datetick Date formatted tick labels
grid Grid lines for 2D and 3D plots
gtext Place text on a 2D graph using a mouse
legend Graph legend for lines and patches
plotyy Plot graphs with Y tick labels on the left and right
title Titles for 2D and 3D plots
xlabel X-axis labels for 2D and 3D plots
ylabel Y -axis labels for 2D and 3D plots
zlabel Z-axis labels for 3D plots

Table 4.5. Surface, Mesh, and Contour Plots

Chapter 4: MATLAB Graphics 106

contour Contour (level curves) plot
contourc Contour computation
contourf Filled contour plot

hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3D mesh with reference plane
peaks A sample function of two variables
surf 3D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3D shaded surface with lighting
trimesh Triangular mesh plot

trisurf Triangular surface plot

Let us illustrate the MATLAB application within an example.

Hlustrative Example 4.1.3.

Calculate and plot the function f(r) =sin(100r)e™ +sin(100r)cos(100¢ + 1)e™, 0<r<0.1 sec.

Solution.

To calculate and plot the function f(f)=sin(100f)e™ +sin(100f)cos(100¢ +1)e™ for
0<t<0.1 sec, we assign the time interval of interest (0<7<0.1 sec), calculate f{r) with the desired

smoothness assigning increment (for example, 101 values), and plot this function. We have the

following statement:
» t=linspace(0,.1,100);f=8in(100%t).%exp(-2*t)+8in(100*t).*cos(100%t+1) .*exp(-5°t);
» plot(t,f)

The resulting plot for f¢) is given in Figure 4.8.

T
050 /7 N 8
SN /A
or / A
\\ /:
\\ /
05+ \\ /
\ /
kb it 7 4
\ /
-1.5¢ -
20 0.02 0.04 0.06 0.08 0.1
Figure 4.8. Plot of the function f(f) =sin(100¢)e™>" +sin(100¢) cos(100¢ +1)e ™" O

One can change the type of line used to connect the points by including a third argument
specifying line type. The syntax is plot (x,y,’ -"). The line types available are: ' -’ solid
line (default), * —-' dashed line, ’ : ’ dotted line, and ’ —.’ dashdot line. The default line type

Chapter 4: MATLAB Graphics 107

is solid. However, a graph is a discrete-time array. One can use a mark to indicate each discrete
value. This can be done by using a different set of characters to specify the line-type argument. If
we use a ’ . ', each sample is marked by a point. Using a + marks each sample with a + sign, *
uses stars, o uses circles, and x uses x's. For example, assigning the time interval t=0:1:12, let
us calculate x = sin#, and plot the function. We have

>> t=0:.25:12; x=sin(t); plot(t,x,"+")
The resulting plot is illustrated in the Figure 4.9.

1 T T v T i.;. N
08} + +
06; . 1

04 i i t B

Figure 4.9. The plot of x = sin¢

We can also plot several graphs on the same axis. For example, let us calculate and plot

two functions x = sinf and x = sin(0.5¢). We type
>> £=0:.25:12; xl=sin(t); x2=sin(0.5*t); ploti{t,x1,t,x1,"+',t,x2,t,x2,'0c")
and the resulting plots are illustrated in Figure 4.10.

1 P - : o T
/}?’ ‘;‘:’r,/ . "‘;\._" l—l,a N
o8 [A P 1
/N * / N
/o ; 4

0.6
04
0‘2 ¥ ',‘,

\ . \
/ Y N) 7
14 \ N/ b
. \

Y y f 1
0! i # \ b
\

3 / X ‘\
-0.2 ‘\‘ / \ B
y o ¥ .
-0.4 / \ =
| ¥ R \ ol
-0.6 A 5 A
L

-0.8

N,
?(

-1

0 2 4 6 8 10 12

Figure 4.10. Plots of x = sinz and x = sin(0.5¢)

The user can change the axes scale, and the logarithmic scale functions are the following:
. loglog (logarithmic x- and y-axis scale),
. semilogy (linear x-axis and logarithmic y-axis scale),
. semilogx (linear y-axis and logarithmic x-axis scale).

Chapter 4: MATLAB Graphics 108

We can have the text labels on the graphs and axes. The following labeling statements are
used for title, x- and y-axis:

It was explicitly illustrated that two-dimensional plots are created using the plot

W' andintheshnilmﬂilotnkestwow

where xdata and ydata are vectors containing the data.

It is important to emphasize that xdata and ydata vectors must be the same length and
both must be the same type (both must be either row or column vectors). Additional arguments
to plot provide other options, including the ability to plot multiple data sets, and use different
colors, symbols, and line types.

Hlustrative Example 4.1.4.

Plot the function x(r)=——3_,-00% o</ <30.
2-cosit

Solution.
To calculate x(¢) and the function, the following MATALB script is deve

The plot is illustrated in Figure 4.11.

Function x(t)
3 T —_— e
|
25},
2 .
&
815
e
3
1 b
05}
o . ‘ , L .
0 5 10 15 20 25 30
t (time)
. . 2+sint _
Figure 4.11. Plot of the function x(z) = ool 005 0<r<30 O
—cos+t
1

The commonly used annotation functions are listed in Table 4.6.

Chapter 4: MATLAB Graphics

Table 4.6. MATLAB Annotation Functions

109

Function Description Help
Axis Set the minimum and maximum values of axis help axis
Grid Draw grid line corresponding to the thickness of x and y axes help grid
Gtext Add text to a location indicated iteratively with mouth input help gtext
Legend Set symbols and line types for multiple curves on the same plot | help legend
Text Add text at the specified location on the plot help text
Title Add a title string (text) above the plot help title
Xlabel, ylabel Label the x and y axes with a text string (text) help xlabel

help ylabel

The plot function allows us to generate multiple curves on the same figure using the
following syntax

plot(xl,yl,sl,x2,y2,...)
where the first data set represented by the vector pair (x1,y1l) is plotted with the symbol
definition s1, the second data set (x2, y2) is plotted with symbol definition s2, etc. It should
be emphasized that the vectors must have the same length (size). Thus, the length of x1 and y1
must be the same. The length (size) of x2 and y2 must be the same, but in general, can be
different from the length of x1 and y 1. The separate curves can be labeled using 1egend.

Hlustrative Example 4.1.5.
Calculate and plot two functions

2+sint _ 24sint

x, (1) = 005 0 <1 <30 and x,(f) =—— ¥ 0<1<30.
2—-cos}t 2-costt

Solution.

The following MATLAB script is developed:
t=0:0.05*pi:30; % t vector, t varies from 0 to 30, increment is 0.05*pi
x1=exp (-0.05*t).*(2.+sin(t))./(2.-cos(0.25*t)); %calculate x1 vector values
x2=exp(-0.2*t).*(2.+sin(t))./(2.-c0s8(0.25*t)); %calculate x2 vector values

plot(t,x1,':",¢t,x2,"-=") % create the plots for x1 and x2
xlabel ('t (time)'); % label the x-axis
ylabel ('functions x1(t) and x2(t)"'); % label the y-axis
title('Functions x1(t) and x2(t)'); % plot title
The resulting plots are shown in Figure 4.12.
s Functions x1(t) and »x2(t)
2507 |
5 2f\l B
%1.5—
0 5 10 15 20 25 30

t (time)

Figure 4.12. Plots of functions (=]

Chapter 4: MATLAB Graphics 110

The axis command is used to control the limits and scaling of the current graph. Typing

axis([miny maxy min, maxy]
we assign a four-element vector to set the minimum and maximum ranges for the axes. The first
element is the minimum x-value, while the second is the maximum x-value. The third and fourth
elements are the minimum and maximum y-values, respectively.

Let us calculate (for 0<#<30 sec) and plot (in 0<r<20 sec) functions

2+sint _ 2+sint _ . .
x, () =———e""" and x,(t)=—————e"*". The plots should be plotted using the x-axis
2—cosit 2—costt
from —1 to 3. The following MATLAB script is used:
t=0:0.05*pi:30; % t vector, t varies from 0 to 30, increment is 0.05*pi

xl=exp(-0.05*t).* (2.+sin(t))./(2.-cos(0.25*t)); %calculate xl1 vector values
x2=exp(-0.2*t).*(2.+4s8in(t))./(2.-cos(0.25%t)); %calculate x2 vector values

plot(t,x1,":',t,x2,"-=") % create the plots for x1 and x2
axis([0 20 -1 3)) % axis assignment
xlabel ('t (time)'); % label the x-axis
ylabel ('functions x1(t) and x2(t)*'); % label the y-axis
title('Functions x1(t) and x2(t)"); % plot title
The plots are documented in Figure 4.13.
Functions x1(t) and x2(t)
3 T
2k \‘y 4
° N .
© T . -
S0 :
g1 :
-2F g
-3 i 1 il —d
] 5 10 15 20
1 (time)
. 2+sint 2+sint
Figure 4.13. Plots of x,(f) =—————¢ ™" and x,()=——-—¢™""
2—cosyt 2—cos4t

It was illustrated that MATLAB provides the vectorized arithmetic capabilities.

Hllustrative Example 4.1.6.

¥ and f,(x)=———— if -5<x<5.
1+sinx+x

Calculate functions f,(x)= ;
I1+x

Solution.

We have the folowing statement:
>> x=-5:0.25:5; fl=x./{1+x.%4); £2=x./(1l+sin(x) +x."4);plot (x,£fl,'+',x,£2,'0")
The graphs of these two functions are illustrated in Figure 4.14.

Chapter 4: MATLAB Graphics 111

-04} J
-0.6 B B
08 < 1
s J

-1.2 L
-5 0 5

and f,(x)=—————,-5<x<5 [
l+sinx+x

x
1+x*

Figure 4.14. Plots of the functions f,(x)=

The hold command will keep the current plot and axes even if you plot another graph.
The new graph will just be put on the current axes.
sin50¢
t

and plot them if —107 <t <10x . Then, holding the plot, calculate the function 10¢°, for z = —
0.01 + 0.5ito z=—1 + 50i (z is the complex variable, and let the size of the z array be 991). Plot
the function 10é°.
The MATLAB script is given below, and the resulting plots are given in Figure 4.15.
t=[-10*pi:.0001:10*pi);
xy=abs (sin(50*t)./t);
X=xy.*cos(t+pi);
y=xy.*sin(t+pi);
plot(x,y,"'b'); hold on;
z=(-0.01+3*0.5)*(1:.1:100]);
y=10*exp(z);
plot(real (y),imag(y),'g"');

sin 50¢

Let us calculate the nonlinear functions x(r) =l

cos(t +7), y(t)=

sin(t +)

10
8l]
6L i
4l B
2l]
0K .
2k J
4L i
.1 B
-8} .
Y E— ‘ L s x
50 -40 -30 20 -10 0 10

Figure 4.15. Functions plots

Chapter 4: MATLAB Graphics 112

Plotting Multiple Graphs. The subplot command allows the user to display multiple
plots in the same window and print them together. In particular, subplot (m, n,p) partitions
the figure window into an m-by-n matrix of subplots and selects the pth subplot for the current
plot. The plots are numbered along first the top row of the figure window, then the second row,
and so on. The order for p is as follows: {%} Thus, subplot partitions the window into
multiple windows, and one or many of the subwindows can be selected for the specified graphs.
In general, subplot divides the graphics window into the specified number of quadrants. As
mentioned, m is the number of vertical divisions, n is the number of horizontal divisions, and p is
the selected window for the current plot (p must be less than or equal to m times n). For
example, subplot (1,2, 1) will create two full-height, half-width windows for graphs, and
select the first (left window) as active for the first graph.

To plot the data, the basic steps must be followed. To illustrate the MATLAB capabilities,
we study the modified previous example with the sequential steps as documented in Table 4.7.

Table 4.7. Sequential Steps to Calculate, Plot, and Visualize the Data

Step MATLAB Statements and Results

1. Perform calculations and prepare the data. t=[=10*pi:.0001:10*pi];
xy=abs (sin(50*t)./t);
x=xy.*cos(t+pi);
y=xy.*sin(t+pi);

and
z=(=0,01+3*0.5)*(1:.1:100);
y=10*exp(z);

2. Select a window and-[;is'ilpiua_a [:I—ol ;_ri:i;m within the | subplot(2,2,1):

specified window. and
| - subplot(2,2,2);
3. Use plotting function assigning the line styles, marker | plot{x; ¥, 'B*);
characteristics, axis limits, marks, text, grid, hold, etc. | and

plot(real(y),imag(y),"'g");

“4. Annotate the pi:\ts with axis labels, legend, and text. xlabel('x');ylabel ('y');title("x-y');
and

xlabel ('Re(y)'):ylabel ('Im(y)"'):
title('Re(y)=Im(y)');

5. Save, export, print, and use data and plots in data- & . - Re(y)-¥m(y)
intensive analysis.
05' -]
MATLAB script -~ 0 £ °
t=[-10*pi:.0001:10%pi]; os) ' 5
xy=abs (sin(50*t) ./t); AN N i
X=xy.*cos(t+pi); y=xy.*sin(t+pi); % 0 % 10 0 10

subplot (2,2,1); plot(x,y,'b');
xlabel('x");ylabel('y"');title("'x-y"');
z=(~-0.01+3*0.5)*(1:.1:100);
y=10*exp(z};

subplot (2,2,2);
plot(real(y),imag(y),'qg"');

xlabel (*Rely) ');ylabel ('Im(y)"*);
title('Re(y)-Im(y)');

Chapter 4: MATLAB Graphics 113

To plot the functions, the ezplot plotter is also frequently used. Let us plot the function
y =sin* xcosx+e *cos* x using ezplot. To plot this function, we type

The resulting plot is documented in Figure 4.16.

sin(x)* cos()+exp(-abs(x) cos(x*
o8} ’ T .
oe} I\
| .
[
04 [
B
02t /' { \ A
i\ / 1 { \
/ |) i \ - foA
op S\ | b ™% & N
i] 1 / 1 '
i1 ‘ i lll) :
02 i ,. { '-_‘] L-, r'
lt“‘f nu" j LV
4 @ @« =® =T =@ =
x
Figure 4.16. Plot of a nonlinear function y =sin* xcosx+e " cos* x 0

4.2. Two- and Three-Dimensional Graphics

Two- and three-dimensional graphics is supported by MATLAB. If x, y and z are vectors
with the same size (length), they can be plotted using plot3. In particular, plot3(x,y, z)
generates a line in three dimensions through the points whose coordinates are the elements of x,
y, and z and then produces a 2-dimensional projection of that line on the screen. In particular, we
have the foll MATLAB help:

Chapter 4: MATLAB Graphics 114

As given in the MATLAB help, to create a helix, we type in the Command Window

and the three-dimensional plot is illustrated in Figure 4.17.

/

0.

“I.'a

'
/'J/
N -~

—

W W '(-l:"‘
e 4 ALY
\C\\-\‘

-..1\:‘._'
[]
f
21
}
s

3 8
"
SRS
i1l
|
i
||.p.

|
AL
'.‘:‘.‘ \')AK .

o

W\
-

Figure 4.17. Three-dimensional plot

Consider a scalar function of two variables z = flx,y). This function defines a surface in
the three-dimensional space. In MATLAB, the surface can be graphically represented using mesh,
meshc, surf, surfc, surfl, and other commands and functions. In general, the function z =
Axy) is calculated and stored as the Z matrix, and a grid is defined, e.g., Z(i)) = fx()))). To
evaluate the functions, meshgrid is used. In particular, the (x,y) data is generated to evaluate z

creates matrices X and Y as given by
xg, xg, - X8, g, g -)%
X< L famays R R TR
4\'8. -"3: ek 1'8. m’ mn = }g-
where xg; and yg; are the vectors defining the grid lines perpendicular to the x- and y-axis.
Thus, the matrix data can be plotted and visualized. The arguments to plot3 are
matrices of the same size, and the plot lines are obtained from the columns of X, Y, and Z. To
display a function of two variables z = f{x,y), one forms matrices X and Y consisting of repeated
rows and columns over the domain of the function. These matrices are used to evaluate and
graph the function of two variables. The meshgrid function transforms the domain specified
by vectors x and y into matrices X and Y (rows of X map vector x and columns of ¥ map vector
. In particular,

Chapter 4: MATLAB Graphics 115

We can calculate the nonlinear functions z(x,y)=x’ye""" if ~4<x<4 and
~4<y<4.Thex, y, and z can be plotted using a three-dimensional plot applying meshgrid.

In ﬁk"m' the statement is

The three-dimensional plot is documented in Figure 4.18.

0.4

Figure 4.18. Three-dimensional plot, z(x, y) = x* ye“"z" "if—4<x<4 and -4< y<4.

Illustrative Example 4.2.1.

sinyx’ +y + ¢ fo1x1070 if

Calculate and plot the sinc-like function z(x,y)= \/ — ,
x“+y +e

—-10<x<10 and -10< y<10.
Solution.
We apply meshgrid, plot3 and mesh. In particular, making use of
>> [x,y)l=meshgrid([-10:0.2:10});xy=sqrt(x.”2+y."2)+1le-10;z=sin(xy) ./xy:;plot3(x,y,z)
2>lr>1d[x, yl=meshgrid({-10:0.2:10]);xy=sgrt(x."2+y."2)+1le-10;z=sin(xy)./xy;mesh(z)
the three-dimensional plots are illustrated in Figure 4.19.

Chapter 4: MATLAB Graphics 116

sin,/x2 +y +¢&

Figure 4.19. Three-dimensional plots of z(x,y) = O

Jx2+y2+g

Using the subplot commands, let us plot four mesh-plots. We have the following MATLAB

statements
»>>[x, yl*meshgrid((=10:0.5:10)) ;xy=sqrt(x.*2+y.*2) +1le-10;z=sin(xy)./xy;
>>subplot (2,2,1) ;mesh(x) ;subplot (2,2,2) ;mesh(y) ;subplot (2,2,3) ;mesh(z) ;subplot(2,2,4) ;mesh(x,y, z)

and the resulting plots are illustrated in Figure 4.20.

10 10,)
%ﬁ-p‘: 0‘ Q,w\'

0 ot

10 4 p 10l & .

50 50 50 50
00 00

00 10 -10
Figure 4.20. Mesh-plots of x, y, z, and xyz

Hlustrative Example 4.2.2.

Study and plot the quadratic function z(x,y)=1-%x*-1»* in the region ~10<x<10
and -10< y<10.

Solution.

The following MATLAB statements are used to attain our objective
>> x=linspace(-10,10,25); y=linspace(-10,10,25); [X,Y)*meshgrid(x,y); Z=1-(X."2+Y."2)/4;
>> subploti(2,2,1);mesh(x,y,2);title(‘mesh plot’); subploti2,2,2);surf(x,y,2);title(surf plot’);
»> subplot(2,2,3);surfc(x,y,Z) title(surfc plot’);subplot(2,2,4) ;surfl(x,y,2);title(surfl plot’);
and the corresponding three-dimensional plots are documented in Figure 4.21.

Chapter 4: MATLAB Graphics 117

mesh plot surf plot

s
o
%5 % %4950 7v Y

)

-0 -10

Figure 4.21. Plot of z(x,y)=1-1x"~13? if -10<x <10 and -10< y <10 m|
4 4

MATLAB creates a surface by calculating the z-points (data) above a rectangular grid in
the xy plane. Plots are formed by joining adjacent points with straight lines. MATLAB generates
different forms of surface plots. In particular, mesh-plots are wire-frame surfaces that color only
the lines connecting the defining points, while surface plots display both the connecting lines and
the faces of the surface in color. Functions mesh and surf create surface plots, meshc and
sur fc generate surface plots with contour under-plot, meshz creates surface plots with curtain
plot (as the reference plane), pcolor makes flat surface plots (value is proportional only to
color), surfl creates surface plots illuminated from a specified direction, and surface
generates low-level functions (on which high-level functions are based) for creating surface
graphics objects.

The mesh and surf functions create three-dimensional surface plots of matrix data.
Specifically, if Z is a matrix for which the elements Z(i,j) define the height of a surface over an
underlying (i) grid, then mesh (Z) generates and displaces a colored, wire-frame three-
dimensional view of the surface. Similarly, surf (Z) generates and displaces a colored,
faceted three-dimensional view of the surface.

The functions that generate surfaces can use two additional vector or matrix arguments to
describe surfaces. Let Z be an m-by-n matrix, x be an n-vector, and y be an m-vector. Then,
mesh(x,y,Z,C) gives a mesh surface with vertices having color C(ij) and located at the
points (x(f), ¥(i), Z(i,j)), where x and y are the columns rows of Z.

If X, Y, Z, and C are matrices of the same dimensions, then mesh (X, Y, Z, C) is a mesh
surface with vertices having color C(i,j) located at the points (X(i,), Y(i,), Z(i,))).

Using the spherical coordinates, a sphere can be generated and plotted applying the
Hadamard matrix (orthogonal matrix commonly used in signal processing coding theory). We
have the MATLAB statement as given below,
k=6; n=2~k; theta=pi*(=-n:2:n)/n; phi=(pi/2)*(-n:2:n)'/n;

X=cos(phi) *cos(theta); Y=cos(phi)*sin(theta); Z=sin(phi)“ones(size(theta)):
colormap((1 1 1;1 1 1)); C=hadamard(2°k); surf(X,Y,Z,C);

and Figure 4.22 illustrates the resulting sphere.

Chapter 4: MATLAB Graphics 118

Figure 4.22. Three-dimensional sphere

Finally we illustrate two- and three-dimensional graphics through examples as given in
Table 4.8.

Table 4.8. MATLAB Two- and Three-Dimensional Graphics

Problems with MATLAB Syntax Plot

>> x=-10:0.1:10; y=x.73; plot(x,y)

1000
800 /4
600 ya
400 VA

200} 7 E

-200 L 1

_400} 7 4

-800}]

-1000£ . . -
-10 5 0 5 10

>> £=-10:0.1:10;

>> x=t.”2;y=t."3;z=t."4; plot3(x,y,z);
10000
8000 /

6000 o

4000 / P

Chapter 4: MATLAB Graphics 119

>> t=-2*pi:0.1:2*pi;
>> x=sin(t); y=cos(t); plot(x,y) - =
08 //// \\\\

y'/’
g
/

a4t / \

Q

>> t=-2%*pi:0.1:2*pi;
>> x=sin(t).*cos(t); y=cos(t): T ! e
>> plot (x,y) 08~ ~N

>> t£=-10*pi:0.1:10*pi;
>> x=sin(t); y=cos(t); z=t:
>> plot3(x,vy,z)

>> t=-5*pi:0.1:5%pi;
>> x=sin{t).*cos(t);
>> y=cos(t);z=t; e
>> plot3(x,y,z) -

Chapter 4: MATLAB Graphics 120

>> t=-10*pi:0.1:10%*pi;
>> x=sin(t); y=cos(t).*cos(t);
>> z=sin(t).*cos(t);

>> plot3(x,y,z) 03
a
05
i
1
0s 05
o
05
[
>> t=-10*pi:0.1:10%pi;
>> x=sin{t).*sin(t);
>> y=cos (t) .*cos (t);
>> z=sin(t) .*cos (t); 0%
>> *plot3(x,y,2z)
0
08
1
o5 o 08
\/ 02 0.4
0 0 ’
>> t=0*pi:0.1:5*pi;
>> x=sin(t).*sin(t);
>> y=cos (t).*cos(t);
03.

(
>> z=exp(-t).*sin(t).*cos(t);
>> plot3(x,y,z)

>> t=linspace({-2,3,50);
>> [x,y]l=meshgrid(t,t):
>> z=-1./{1+x.74+y."4) ;contour3(z);

Chapter 4: MATLAB Graphics 121

MATLAB has animation capabilities. Advanced animation functions, commands and examples are
reported in the specialized books and user manuals. Let us illustrate the simple examples.

As illustrated in Table 4.8, the circle was calculated and plotted using the MATLAB statement
>> t==2%pi:0.1:2*pi; x=sin(t); y=cos(t); plot(x,y)

Let us animate the bead going around a circular path. We will calculate the bead positions and
draw (plot) the bead path using the come t comand. In particular, the statement is
>> t=-4*pi:0.01:4*pi; x=sin(t); y=cos(t); comet(x,y)
The bead and the circular path at = 4% and 1 = — = are illustrated in Figure 4.23.

1
08

as N1 " 08 1
/ N \
/ 1 ;

04 / \‘. o4 A

02y | 2l .

0 o

0z, A 02k §
\ /) /

a4y /1 04 /

08| \ o 06l /

e e

08;

N c

1

08

-1
-1

05

1
-1

e

=

-

1 -1

Figure 4.23. Bead location and circular path

Using movie, moviein, and getframe, the movies can be made. In particular, the
animated sequence of plots are used to create movies. Each figure is stored as the movie frame,
and frames (stored as column vectors using getframe) can be played on the screen. The

generalized and specific MATLAB scripts are given below

Nframes=3;
Mframe=moviein (Nframes) ;
for i=1:Nframes
x=[1; y=I 1;
plot3(x,y,2z)
Mframes(:,1i)=getframe;
end

N=2;

movie (Mframe, N)

and

t=-2*pi:0.1:2*pi;
Nframes=3;
Mframe=moviein(Nframes) ;
for i=1:Nframes
x=sin(t); y=cos{t):
plot(x,y);
Mframes(:,1)=getframe;
end

for j=1:Nframes
x=gsin{t);
plot(x,vy);
Mframes (:,j)=getframe;
end

N=2;

movie (Mframe, N)

z=|

%

>3
]

1:
or plot(xX,y);

Q
°
%
]

y=sin(t).*cos(t}:

assign the number of frames

frame matrix

oo

oe

o

number of frames

frame matrix

% data

% data

9,

create the data
other 3D and 2D plotting can be used

The resulting frames are documented in Figure 4.24.

play the movie frames N times

% play the movie frames N times

08 /;/ | ”'»\\\
06

04 /

(]

02
4f
08 N,

08 N\ -

. e

14 ‘ ~ . o N

-1 a5 0 a5

Figure 4.24. Movie frames

0.5
04

03

0.2

0.1

-0.1
0.2
03
04f

-0.5

Chapter 4: MATLAB Graphics 122

It is obvious that for loops can be used. A simple example is given below to clculate the
quadratic function x* in the region from — 8 to 8 and increment 2. We have the following

MATLAB statement,
for i=-8:2:8

x=i"2; i, x
end

and the numerical values are given below:

i =
-8

X =
64

i =
-6

X =
36

i =
-4

% =
16

i =
-2

X =
4

i =
0

X =
0

i =
2

X =
4

i =
4

Chapter 4: MATLAB Graphics

16
i =
6
X =
36
i =
8
X =
64

123

As an illustrative example, the reader is advised to use the following MATLAB script to

create a “movie”,
t=-2*%pi:0.1:2%pi;

Nframes=50; % number of frames

Mframe=moviein (Nframes); % matrix frame

i=0; j=0;
for i=1:Nframes
i=i+1;
x=sin{10*i*t); y=cos (10*i*t);
plot(x,y);
Mframes(:,1i)=getframe;
end
for j=1:Nframes
J=3+1;

x=sin(2*j*t); y=sin(4*j*t).*cos(6*j*t);

plot(x,y);:
Mframes{:,j)=getframe;
end

N=2;

movie (Mframe, N) % play the movie frames N times

% data

% data

Four of the resulting frames are given in Figure 4.25.

I | DN il — |
- -as o a5 1

Figure 4.25. Four movie frames

Another example which can be used is based on the MATLAB script given below

t=-2*pi:0.1:2*%pi;
Nframes=5;

i=0; 3=0;
for i=1:Nframes
i=i+l;
for j=1l:Nframes
j=j+1;

x=sin(i*j*t); y=cos(i*j*t); % data

% number of frames
Mframe=moviein{(Nframes); % matrix frame

Chapter 4: MATLAB Graphics 124

plot(x,y);
Mframes{(:,i)=getframe;

end
end
N=2;
movie (Mframe, N) % play the movie frames N times

The MATLAB script which makes the three-dimensional “movie” is documented below:

£=-3:0.05:3;
Nframes=6; number of frames
Mframe=moviein (Nframes); % matrix frame
i=0; 3j=0;
for i=0:2:Nframes

i=i+2;
{x,y]=meshgrid(([t]):;
xy=sqrt (x.M(i72)+y."(i72)) +1le-5; z=sin(xy)./xy;
plot3(x,y,z);
Mframes(:,1i)=getframe;
end
for j=0:2:Nframes

3=3+2;
{x,yl=meshgrid{[t]);
xy=sqrt(x.”(2*j)+y." (4*3))} +1le=-5; z=cos(xy).*sin(xy)./xy;
plot3(x,v,z):
Mframes(:,j)=getframe;
end
N=2;
movie (Mframe, N) % play the movie frames N times

To create a graph of a surface in three-dimensional space (or a contour plot of a surface),

it was shown that MATLAB evaluates the function on a regular rectangular grid. This was done by
using meshgrid. For example, one creates one-dimensional vectors describing the grids in the
x- and y-directions. Then, these grids are spead into two dimensions using meshgrid. In

particular,

oe

>> %x=0:0.2*pi:10%pi; y=0:0.2*pi:10*pi; [(X,Y]=meshgrid(x,y); whos

Name Size Bytes Class

X 51x51 20808 double array
Y 51x51 20808 double array
X 1x51 408 double array
Y 1x51 408 double array

Grand total is 5304 elements using 42432 bytes

Using the meshgrid comand, we created a vector X with the x-grid along each row, and
a vector Y with the y-grid along each column. Then, using vectorized functions and/or operators,

it is easy to evaluate a function z = f{x,y) of two variables (x and y) on the rectangular grid. As an
example,

in(X).*cos(Y) .*exp(~0.001+*X.72

: n(x). . 5 ’
Having created the matrix containing the samples of the function, the surface can be graphed
using either mesh or the surf,

» mesh(x,y,z
t(x,v,2

and the resuiting plots are given in Figures 4.26.a and b, respectively. The difference is that
sur f shades the surface, while mesh does not.

Chapter 4: MATLAB Graphics 125

Figures 4.26. Three-dimensional plots

In addition, a contour plot can be created using the contour function, as in Figure 4.27.
>> contour(x,y,z)

- - — —

w0l

2
m.
15
10
s.
% s 0 1 2 25 0

Figure 4.27. Three-dimensional plot

We can use the help command to learn the additional options to effectively use mesh,
surf, and contour.

4.3. Nustrative Examples
Example 4.3.1.

Calculate (for —=5<1<5 sec) and plot the function x(¢) =2+ 3sin(at +10)e """ . The plo

should be made using the x- and y-axis from — 20 to 20 and - 6 to 6, respectively.
Solution.

The following MATLAB script is developed:
$Sinusoidal function
t=-5:.01:5;
x=2*ones(size(t))+3*sin(pi*t+10).*exp(-0.35%t);
plot(t,x),title('Sinusoidal function');
axis([(-6,6,-20,20)):
xlabel('time, t [second]'); ylabel('x(t)'); grid;
text(0,5.5,"'x(t)=2+3*sin(pi*t+10) *exp(-0.35¢t)");

The resulting plot is shown in Figure 4.28.

Sinusoidal function

ool

07 7 1 e f
R | I ; I
I | 1 | t !
15****)‘*?*"~~'f—477—77~4 R - -
/ i 1)) i
[\ v y [
IOl I
I A | ‘ I
slo__. - 3,‘:, B A S 7\ At)¢t)=2t&"sir:1(pi§tt10)'e%p(—0_35t)
: ; Ll / \ N .
- LN N N
§oor L A kit A
S N = O S B
b) i i |
[1 | 1 t
A0F--~---- - - = - == - - - - 4 - - ———- Fmmmmm— - — —
i I | ; |
I I I i I
_15 7777777 o _ | ,___A,AJA;,__,I, ______ L
l I ! | |
|] | 1 1
L 1 t 1
- -4 -2 0 2 4

time, t [second]

Figure 4.28. Plots of functions x(t) =2+ 3sin(m +10)e

Example 4.3.2.

Chapter 4: MATLAB Graphics 126

Calculate and plot the discrete function x(#n) = 25cos(zm+5)e™ " if 0<n<40.

Solution.

The following MATLAB script is developed using the stem function:

tDiscrete sinusoidal sequence

n=0:1:40;

x=25*cos(pi*n+5) .*exp(-0.1%*n);

stem(n, x) ;

axis([0 40 -10 10)); grid;

text (10,5, "'x(n)=25cos(pi*n+5)exp(-0.1n)");

The resulting plot is documented in Figure 4.29.

7 :x(n)=2sdos(pi’n+‘5)exp(-04'1n)

Figure 4.29. Plots of functions x(n) = 25cos(zm +5)e™*"

Chapter 4: MATLAB Graphics 127

Example 4.3.3.

The experimental data of tension in a steel bar is given by Table 4.9. Plot the two sets of
experimental data with elongation as the independent variable and the tension as the independent
variable. Connect the data points point-to-point with line segments. Label the curves with either
text orgtext.

Table 4.9. Experimental Data to be Plotted

Elongation (inches x10~%) | Increasing Tension Force (Ibs) | Decreasing Tension Force (Ibs)
0 0 0
1 1,000 0
2 1,700 1,500
3 3,300 2,200
4 4,500 3,600
5 7,000 5,900
6 10,400 8,700
7 12,100 11,400
8 13,300 12,900
9 14,100 13,300
10 14,700 14,700
Solution.

The MATLAB file written to solve the problem is documented below,
iThis program creates the graph based upon the tension test for a steel bar
iThe plot includes two lines: for increasing and decreasing tension forces
tVectors for elongation (E), tension force increasing (Ti), tension
E=[0:10];
Ti=[0 1000 1700 3300 4500 7000 10400 12100 13300 14100 14700);
Td=(0 0 1500 2200 3600 5900 8700 11400 12900 13300 14700);
VPlot E versus Ti with a line -*-*- and plot E versus Ti with a line -o-o-
plot (E,Ti,'-*',E,Td, '-0")
iLabel the plot line
gtext ('Increasing tension force')
gtext ('Decreasing tension force')
tIncrement x- and y-axis
x=[0:10);
y=[0:1000:15000] ;
flLabel x- and y-axis
xlabel ('Tension Force (lbs)"')
ylabel ('Elongation (inches*10°3)"')
iTitle the graph
title('Tension of Steel Bars')
tAdd a grid to the graph
grid on

The resulting plot is illustrated in Figure 4.30.

15000 — =T

Tension of Steel Bars

10000 | -

50001 - - - - - -

Elongation (inches'103)

A

~

T T
| t
|

T
7z

; T
i
|
|
|

s Lt .
& Decreasing.tension force
i

[

i

|

| |

| |
L

4 6 8
Tension Force {lbs)

Figure 4.30. Tension in the steel bar

Example 4.3.4.

Chapter 4: MATLAB Graphics 128

a

The height A(f) and horizontal distance x(f) traveled by a ball thrown at an angle 4 with a
speed v are given by the following equations: A(f)=visin A~Lgr’ and x(¢)=vtcosAd. The
acceleration due to gravity is g = 9.81 m/sec’. Solve the following problems.

a. Suppose the ball is thrown with the velocity v = 10 m/sec at an angle 35°. Compute how
height of the ball will change and how long it will take the ball to hit the ground. This
problem can be solved using graphical and analytical methods.

b. Use the values for v and 4 to numerically calculate and plot the ball's trajectory (plot A
versus x for positive values 4). Use axis to restrict the height to positive values.
c. Plot the trajectories for v=10 m/sec corresponding to any three values of the angle 4. Use

axi s to restrict the height to positive values. Use different line types for the three curves.

Solution.

Here is the MATLAB script to be used:

¥This program uses two equations to find the value of height and distance

SPart a: calculate ball height, horizontal distance and time

g=9.81; v=10; A=35; T=(0:.1:2);
#Find maximum height (h) and horizontal distance (x)
h=v*T.*sin (A*pi/180)~-0.5%g*T."2;

x=v*T.*cos (A*pi/180);
%Use the MATALB max function
maxh=max (h) ;

%At maximum height, v=0, manipulating the equation time=1/2 of the trip is found

iTotal time is the value*2
t=2* (maxh/(.5*g9))*.5;
iFind the distance
maxx=v*t*cos (A*pi/180);

tDisplay the results to the user
fprintf ("'maximum height: %f meters\n', maxh)

fprintf (*maximum horizantal distace: %f meters\n', maxx)

fprintf(‘time: Af seconds\n',t)

fPart b

Chapter 4: MATLAB Graphics 129

1 he resulting plots are aocumented n kigure 4.31.
Ball Trajectory (Horizontal and Verticat Distances) as a Function of Time
3

—_~
e

1 1 |
3] I i i 1 | | | | |
[0} ! i ' t i | | 1 1
E2L---- U PG S | T
e i ! i | » i ' i I
— I 1 | [[T ' 1 |
= -
= | | - | | 1) ~1 t |
_C1 i - i ' i i [1 _
-— Tt [et T A e e (A S
N - 1 [1 | 1 1 []
Ko ' | | | 1 1 .t
[i | ' | 1 | 1 [
Io/ t L ! 1 ! L 1

’,‘,;4 T T T ! T
o ; ! ! ! 20 degrees
g3w~~~1 ffffff TomTemooroo oo - 30 degrees
£ ! et | 45 degrees
32 ________ U i PP
= o : | ; I J
EAL-- e Voo S — . I
e ST 0.) | \
[e | 1 1 [) ‘
IO.// | t 1, | N I

0 2 4 6 8 10 12

Horizontal Distance Traveled x(t) (meters)

Figure 4.31. Ball trajectory

Chapter 4: MaTLAB Graphics 130

The results displayed in the Command Window are
(W]

Example 4.3.5.
Create four subplots for vectors x and y. Use the subplots to plot the data as linear.

semilogx, semilogy, and loglog plots. Use data markers, titles to identify the plots, and the grid.
Connect points with line segments. Recall the following equations:

1. Straight line on linear plot: y=mx+b
2. Straight line on loglog plot: y=bx"
3 Straight line on semilogx plot: y = be™
4. Straight line on semilogy plot: y = be™
Solution.

The following m-file is written:

Four plots are documented in Figure 4.32.

Chapter 4: MATLAB Graphics 131

Linear Plot of x versus y Loglog Plot of x versus y

4
1500 S 7 L e e e B
l
1000
>
500
|
0
Gl
10’
X
Figure 4.32. Plots 0

Example 4.3.6.

The bulk modulus of SiC versus temperature is given as [5]:

B =[2031=0, 20071=250, 1971=500, 1941=750, 1911=1000, 1881=1200, 18671=1400, 1847=1500].
The temperature is given in °C. Perform the data fitting.

Solution.

The interpolation is performed using the sp1 ine solver (spline fit). The MATLAB file is:
T={20 250 500 750 1000 1200 1400 15001; % Temperature Data Array
B=[203 200 197 194 191 188 186 184}]; Bulk Modulus Data Array
Tinterpol=20:10:1500;
Binterpol=spline(T,B,Tinterpol);
plot(T,B, 'o", Tinterpol,Binterpol, '~");
xlabel ('Temperature, deg C'}):
ylabel ("Bulk Modulus, GPa');
title('Temperature-Bulk Modulus Data and Spline Interpolation'):;

The resulting temperature — bulk modulus plot of the interpolated spline data (solid line) and the
data values used are given in Figure 4.33.

oe

o°

Spline Interpolation
Plotting Statement

oe

[R—

W

Chapter 4: MATLAB Graphics 132

Temperature-Bulk Modulus Data and Spline Interpolation

204 - e e et oo e -
202}
200+ 4
o 198}]
a8 e
O 196}
3
2
S 1904} 3 i
s
~ 192+
3
@ 190 i
188 T j
186} ‘
184 S e s L B L ‘\;
0 500 1000 1500
Temperature, deg C
Figure 4.33. Temperature — bulk modulus data and its spline interpolation. O
REFERENCES

MAaTLAB 6.5 Release 13, CD-ROM, MathWorks, Inc., 2002,

Hanselman, D. and Littlefield, B., Mastering Ma11.48 5, Prentice Hall, Upper Saddle River, NJ,
1998.

Palm, W. J., Introduction to MATLAB for Engineers, McGraw-Hill, Boston, MA, 2001.

User’s Guide. The Student Edition of MatiaB: The Ultimate Computing Environment for
Technical Education, MathWorks, Inc., Prentice Hall, Upper Saddle River, NJ, 1995.
Lyshevski, S. E., MEMS and NEMS: Systems, Devices, and Structures, CRC Press, Boca Raton,
FL, 2002.

Chapter 5 MATLAB Applications 133

Chapter 5

MATLAB APPLICATIONS: NUMERICAL SIMULATIONS OF
DIFFERENTIAL EQUATIONS AND INTRODUCTION TO
DYNAMIC SYSTEMS

5.1. Solution of Differential Equations and Dynamic Systems Fundamentals

To study real-world systems, one can use the MATLAB environment [1]. In particular, the
dynamic systems are modeled using lumped-parameters and high-fidelity mathematical models
given in the form of nonlinear differential (ordinary and partial) and difference equations [2 - 5].
These equations must be numerically or analytically solved, and the MATLAB environment offers
the needed features. Then, the data-intensive analysis can be accomplished in MATLAB. The
commonly used solvers to numerically solve ordinary nonlinear and linear differential equations
are the ode23, odel13, odel5S, ode23S, ode23T, ode23TB, and oded5 solvers. Below

is the description of the ode 45 solver.

>> help oded5

ODE45 Solve non-stiff differential equations, medium order method.
[T,Y] = ODE45(ODEFUN,TSPAN,Y0) with TSPAN = [TO TFINAL] integrates the
system of differential equations y' = f(t,y) from time TO to TFINAL with
initial conditions YO0. Function ODEFUN(T,Y) must return a column vector
corresponding to f(t,y). Each row in the solution array Y corresponds to
a time returned in the column vector T. To obtain solutions at specific

times TO,T1,...,TFINAL (all increasing or all decreasing), use
TSPAN = [TO T1 ... TFINAL].
{T,Y] = ODE45(ODEFUN,TSPAN, Y0,OPTIONS) solves as above with default

integration properties replaced by values in OPTIONS, an argument created
with the ODESET function. See ODESET for details. Commonly used options
are scalar relative error tolerance 'RelTol' (le-3 by default) and vector
of absolute error tolerances 'AbsTol' (all components le-6 by default).

[T,Y] = ODE45(ODEFUN,TSPAN,YO0,OPTIONS,P1,P2...) passes the additional
parameters P1,P2,... to the ODE function as ODEFUN(T,Y,P1,P2...), and to
all functions specified in OPTIONS. Use OPTIONS = [] as a place holder if

no options are set.

ODE45 can solve problems M(t,y)*y' = f(t,y) with mass matrix M that is
nonsingular. Use ODESET to set the 'Mass' property to a function MASS if
MASS(T,Y) returns the value of the mass matrix. If the mass matrix is
constant, the matrix can be used as the value of the 'Mass' option. If
the mass matrix does not depend on the state variable Y and the function
MASS 1is to be called with one input argument T, set 'MStateDependence' to
'none'. ODE15S and ODE23T can solve problems with singular mass matrices.

[T,Y,TE,YE,IE] = ODE45(ODEFUN,TSPAN,Y0,OPTIONS...) with the 'Events'
property in OPTIONS set to a function EVENTS, solves as above while also
finding where functions of (T,Y), called event functions, are zero. For
each function you specify whether the integration is to terminate at a
zero and whether the direction of the zero crossing matters. These are
the three vectors returned by EVENTS: [VALUE, ISTERMINAL,DIRECTION] =
EVENTS(T,Y). For the I-th event function: VALUE(I) is the value of the
function, ISTERMINAL(I)=1 if the integration is to terminate at a zero of
this event function and 0 otherwise. DIRECTION{(I)=0 if all zeros are to
be computed (the default), +1 if only zeros where the event function is
increasing, and -1 if only zeros where the event function is

decreasing. Output TE is a column vector of times at which events

Chapter 5 MATLAB Applications 134

‘occur. Rows of YE are the corresponding solutions, and indices in vector
IE specify which event occurred.

SOL = ODE45(ODEFUN, [TO TFINAL],YO...) returns a structure that can be
used with DEVAL to evaluate the soclution at any point between T0 and
TFINAL. The steps chosen by ODE45 are returned in a row vector SOL.X.

For each I, the column SOL.y(:,I) contains the solution at SOL.x(I).

If events were detected, SOL.xe 1is a row vector of points at which events
occurred. Columns of SOL.ye are the corresponding solutions, and indices
in vector SOL.ie specify which event occurred. If a terminal event has
been detected, SOL.x(end) contains the end of the step at which the event
occurred. The exact point of the event is reported in SOL.xe{end) .

Example
[t,y]=oded5 (@vdpl, [0 201, ({2 0]);
plot(t,y(:,1));
solves the system y' = vdpl(t,y), using the default relative error
tolerance le~3 and the default absolute tolerance of le-6 for each
component, and plots the first component of the solution.

See also
other ODE solvers: ODE23, ODE113, ODE1l5S, ODE23S, ODE23T, ODE23TB
options handling: ODESET, ODEGET
output functions: ODEPLOT, ODEPHASZ2, ODEPHAS3, ODEPRINT
evaluating solution: DEVAL
ODE examples: RIGIDODE, BALLODE, ORBITODE

NOTE:

The interpretation of the first input argument of the ODE solvers and
some properties available through ODESET have changed in this version
of MATLAB. Although we still support the v5 syntax, any new
functionality is available only with the new syntax. To see the v5
help, type in the command line

more on, type oded5, more off

The following examples illustrate the application of the MATLAB ode 45 solver.
MATLAB Hllustrative Example.

The following set of two nonlinear differential equations, called the van der Pol
equations,

dx, (1)

—j;—:xpxﬂ%)zxma

dx, (¢
—jglzl*J_xhxf_%lxx%):xm’

has been used as an illustrative example to solve ordinary differential equations using different
solvers over the last 18 years (the author integrated this MATLAB example into the engineering
curriculum in 1985). Two m-files [1] to solve these differential equations are given below:

. MATLAB script with ode15s solver and plotting statements (file name: vdpode .m):
function vdpode (MU)

$VDPODE Parameterizable van der Pol equation (stiff for large MU).

For the default value of MU = 1000 the equation is in relaxation

oscillation, and the problem becomes very stiff. The limit cycle has
portions where the solution components change slowly and the problem is
quite stiff, alternating with regions of very sharp change where it is

not stiff (quasi-discontinuities). The initial conditions are close to an
area of slow change so as to test schemes for the selection of the

initial step size.

A GO OO gO o OO o0 o a®

The subfunction J(T,Y,MU) returns the Jacobian matrix dF/dY evaluated

Chapter 5 MATLAB Applications 135

analytically at (T,Y). By default, the stiff solvers of the ODE Suite
approximate Jacobian matrices numerically. However, if the ODE Solver
property Jacobian is set to @J with ODESET, a solver calls the function
to obtain dF/dY. Providing the solvers with an analytic Jacobian is not
necessary, but it can improve the reliability and efficiency of
integration.

o0 o o0 o°

o0 o® 90 o

L. F. Shampine, Evaluation of a test set for stiff ODE solvers, ACM
Trans. Math. Soft., 7 (1981) pp. 409-420.

o

o o

See also ODE15S, ODE23S, ODE23T, ODE23TB, ODESET, @.

Mark W. Reichelt and Lawrence F. Shampine, 3-23-94, 4-19-94
Copyright 1984-2002 The MathWorks, Inc.
SRevision: 1.18 $ S$Date: 2002/04/08 20:04:56 $

e o oP

if nargin < 1

MU = 1000; % default
end
tspan = [0; max(20,3*MU)]; % several periods
y0 = {2; 0];

options = odeset ('Jacobian',@J);
[t,y] = odelSs(Qf,tspan,y0,options,MU);

figure;

plot(t,y(:,1));

title(['Solution of van der Pol Equation, \mu = ' num2str(MU)]);
xlabel('time t');

ylabel ('solution y 1’);

axis([tspan(l) tspan(end) -2.5 2.5]):

function dydt = f(t,y,mu)
dydt = | y(2)
mu* (1-y (1) "2y *y(2)-y (1) 1;

function dfdy = J(t,y,mu)
dfdy = [0
-2*mu*y (1) *y(2)-1 mu* (1-y(1)~2)];

° MATLAB script with a set of differential equations to be solved (file name: vdp1000 . m):
function dydt = vdpl000(t,y)
$VDP1000 Evaluate the van der Pol ODEs for mu = 1000.

oe

o0

See also ODE15S, ODE23S, ODE23T, ODE23TB.

Jacek Kierzenka and Lawrence F. Shampine
Copyright 1984-2002 The MathWorks, Inc.
$Revision: 1.5 § $Date: 2002/04/08 20:04:56 §

o0 P oe

dydt = [y(2); 1000* (1-y(1)"2)*y(2)-y(1)};

Both files vdpode.m and vdpl1000.m are in the particular MATLAB directory. Let
these files be in the directory cd c:\MATLAB6p5\toolbox\matlab\demos. Then, to run

these programs, we type in the Command Window
>> cd c:\MATLAB6p5\toolbox\matlab\demos

To perform numerical simulations, run the file vdpode .m by typing in the Command

Window
>> vdpode

Chapter 5 MATLAB Applications 136

and pressing the Enter key. The resulting plot for the evolution of the state variable x;(¢) is

x 2
documented in Figure 5.1 (note that the initial conditions were assigned to be x, =[m} = {0}
X20

and 1 =1000). Please note that in the MathWorks vdpode .m file to solve ordinary differential
equations, the solver ode 15s is used, and the plotting statement is plot (t,y(:,1)).

Solution of van der Pol Equation, p = 1000

2.5 W
2
—
1.5 - T 1
.,
1L)
0.5+
>
=4
o 0 B
3
5 0.5
) i
-1h -
| P
15 7 A
e -
-2t T T i
25‘ 1 — L 1 I 1 J
0 500 1000 1500 2000 2500 3000
time t

Figure 5.1. Dynamics of the state x;(¢)

The user can modify the file vdpode .m. For example, if we need to plot x;(¢) and x,(¢),
as well as visualize the results plotting x(), x2(f) and ¢ in three-dimensional plot (x;, xa,), the
following lines can be added to vdpode . m (the variable x, was divided by 100):

o3

% Two-dimensional plot
plot(t,y(:,1),"'=",t,y(:,2)/100,':");

xlabel ("Time (seconds)');

title('Scolution of van der Pol equation: x1 and x2/100');
pause

% 3-D plot w{yl,y2,t)

plot3(y(:,1),y(:,2)/100,t)

xlabel ('x1'), ylabel('x2/100'), zlabel('time')
text(0,0,0,'0 Origin')

The resulting plots are illustrated in Figure 5.2.

Chapter 5 MATL4B Applications 137

Solution of van der Pol equation: x1 and x2/100

3000

2500 Y

2000 / PR B
J

1500

=]
i
time

1000 f/

.
500 1000 1500 2000 2500 3000 x2/100 20 3 "
Time (seconds)

Figure 5.2. Evolution of the state variables using two- and tree-dimensional plots O

Example 5.1.1.

Numerically solve a system of highly nonlinear differential equations using the MATLAB
ode45 solver

% =—15x, +10|x2!+10x,x2x3, x,(t,) =x,9,
!
t .
—d%t(—)- =—5x,x, —sinx, +x, —x;, X,({)) = x5,
% =-5xx, +10x, cosx; —=15x;, x,(t)) = x5,

Two m-files (¢5 1 1a.m and ¢5 1 1b.m) are developed in order to numerically
simulate this set of nonlinear differential equations. The initial conditions must be assigned, and let

X 15
X, =| X, | =| —15|. The evolution of the state variables x;(f), x2(f), and x3(f) must be plotted. To
X3 10

illustrate the transient responses of x(f), x2(f), and x3(¢), the plot command is used. Three-
dimensional graphics is also available and integrated in the first m-file. A three-dimensional plot is
obtained using x,, x,, and x; as the variables by making use of plot3. Comments, which are not

executed, appear after the % symbol. These comments explain particular steps in MATLAB scripts.
MATLAB script with ode45 solver and plotting (two- and three-dimensional) statements

using plot and plot3(c5_1 la.m):

echo on; clear all

tspan={0 3]: % initial and final time

y0={15 -15 10]"'; % initial conditions

[t,y]l=oded45('c5 1 1b’', tspan,y0); %$oded5 MATLAB solver

% Plot of the time history found by solving

% three differential equations assigned in the file ¢5 1 lb.m

plOt(tly(:ll)r"’—'ltIY(:lz)r '_'ltly(:l3)l ':');

xlabel ('Time (seconds)');

title('Solution of Differential Equations: x1, x2 and x3');

pause

% 3-D plot w(yl,y2,vy3)

Chapter 5 MaTLAB Applications 138

plot3(y(:,1),y(:,2),y(:,3))
xlabel ('x1'), ylabel('x2'), zlabel('x3"')
text (15,-15,10, 'x0 Initial')
text(0,0,0,'0 Origin')
v=axis
pause; disp('END')

MATLAB script with a set of differential equations to be solved (c5 1 1b.m):
function yprime = difer(t,y);
all=-15; al2=10; al3=10; a2l=-5; a22=-2; a31=-5; a32=10; a33=-15;
yprime=[{all*y (1, :)+al2*abs(y(2,:))+al3*y (1, :)*y(2,:)*y(3,:);..
a2l*y(1l,:)*y(2,:)+a22*sin(y(1,:))-y{(2,:)+y(3,:) ;...
a3l*y(1l,:)*y(2,:)+a32*cos{y(1l,:))*y(2,:)+a33*y(3,:)];

To calculate the transient dynamics and plot the transient dynamics, type in the Command
window » c¢5 1 la and press the Enter key. The resulting transient behavior and three-
dimensional plot are documented in Figures 5.3 and 5.4.

Solution of Differential Equations: x1, x2 and x3
15 - ey s T ; —

BTN i

-15' { 1 L 1 1
0 0.5 1 1.5 2 2.5 3

Time (seconds)

X0 15
Figure 5.3. Evolution of the state variables, x, =| x,, -15
X3 10

Chapter 5 MATLAB Applications 139

15

%0 Initial

x3
[5)]

Figure 5.4. Three-dimensional plot |

A set of differential equations was assigned. However, to apply MATLAB, first
mathematical models for real-word systems must be developed. Thus, numerical and analytical
simulation and analysis of systems is a two-step process. Mathematical models depict the time-
dependent mathematical relationships among the system's inputs, states, events, and outputs.

The Lagrange equations of motion, as well as Kirchhoff’s and Newton’s laws, can be
used to develop mathematical models described by differential or difference equations. The real-
world systems integrate many components, subsystems, and devices. Multivariable dynamic
systems are studied with different levels of comprehensiveness. Consider the aircraft in Figure
5.5. In aircraft as well as in other flight vehicles (missiles, projectiles, rockets, spacecraft, etc.)
and surface/undersea vehicles (ships, submarines, torpedoes, etc.), control surfaces are actuated
by electromechanical actuators. Therefore, the actuator must be studied. These actuators are
controlled by power amplifiers, and therefore the circuitry must be examined as well.
Mechanical systems (rigid-body aircraft and actuators’ torsional-mechanical dynamics) are
modeled using Newtonian mechanics, the electromagnetics of electromechanical actuators are
studied using Maxwell’s equations, and the circuitry dynamics is usually modeled using
Kirchhoff’s laws [3, 4].

Figure 5.5. Aircraft

Chapter 5 MATLAB Applications 140

The aircraft outputs are the Euler angles 0, ¢, and y . The reference inputs are the desired
(assigned by the pilot or flight computer) Euler angles, which are denoted as r,, r, and r, . For

rigid-body aircraft, the longitudinal and lateral dynamics are modeled using the following state
variables: the forward velocity v; the angle of attack « ; the pitch rate g; the pitch angle 0; the
sideslip angle f£; the roll rate p; the yaw rate r; the roll angle ¢; the yaw angle . As was

emphasized, the aircraft is controlled by displacing the control surfaces (right and left horizontal
stabilizers, right and left leading- and trailing-edge flaps, right and left rudders). That is, a multi-
input/multi-output dynamic system (e.g., aircraft, submarines, cars, etc.) must be simulated and
analyzed in the MATLAB environment.

Having introduced the basics in flight control, the MATLAB demo offers a great number of
illustrative examples which should be used. For example, the numerical simulations for the F-14
fighter are performed as illustrated in Figure 5.6.

[= [oo |
e 8B e (o)
Tans (= 70 St L
oty Do Paeien
[-t Virm wda b M Ssdens Far on dema
T F .14 cigtal Might conlrol simuisthon
e —
» o -
Cate
) O
oL
L
v

&l PAL AGGE O

Flgure 5.6. Simulations of the F-14 fighter using MATLAB demo

It was emphasized that the aircraft is controlled by changing the angular displacement of the
flight control surfaces, and servo-systems are used to actuate ailerons, elevators, canards, flaps,
rudders, stabilizers, tips, and other control surfaces. To deflect ailerons, canards, fins, flaps,
rudders, and stabilizers, hydraulic and electric motors have been applied. A direct-drive control

Chapter 5 MA4TLAB Applications 141

surface servo driven by an electric motor is shown in Figure 5.7. Using the reference signal (the
command angular displacement of the control surface), measured current in the phase windings i,
mechanical angular velocity ,,,, and actual mechanical angular displacement 6,,, the controller
develops signal-level signals which drive high-frequency switches of the power amplifier. The

magnitude and frequency of the applied voltage to the phase winding is controlled by the PWM
power amplifier (see Figure 5.7).

Hige torque

Rl'fc'h nce -

I“JI‘!'I’IN emenl i
Controller Power -

implifier

Measwred I, w,, and 6,
Q Casury l‘; i jj
{ =

colromagnelic lorgue

Figure 5.7. Fly-by-wire flight servo with electric motor and PWM power amplifier

The electromechanical flight servo-system integrates electromechanical motion devices
(actuator and resolver) and power amplifier. These components must be modeled and then
simulated and analyzed in the MATLAB environment. In fact, the analysis performed illustrates
that the designer must develop accurate mathematical models integrating all components of
complex multivariable real-world dynamic systems. The state and control variables must be
defined, and differential equations (mathematical models) must be found with a minimum level
of simplifications and assumptions. As the mathematical model is developed, the dynamic
systems can be simulated and analyzed using MATLAB.

5.2. Mathematical Model Developments and
MATLAB Applications

The equations to model the dynamics of mechanical systems can be straightforwardly
found using Newton’s second law of motion

Y FE.n=ma,
where F(%,1) is the vector sum of all forces applied to the body; a is the vector of acceleration
of the body with respect to an inertial reference frame; m is the mass.

Hence, in the Cartesian system, or any other coordinate systems, the forces, acceleration,

velocity, and displacement in one, two, or three dimensions (x, y, and z axes in the three-
dimensional Cartesian system) are examined. One obtains
T
2 ar
s - ax &’
FiX,t})=ma=m—=m| == |.
z (%) dr’ dr?
&
| dtz .

Chapter 5 MAaTLAB Applications 142

Example 5.2.1.
Consider a body of mass m in the xy plane (two-dimensional systems). Derive the

equations of motion assuming that the external force F, is applied in the x direction
~ dx . -y . .
(F,(t,x)=10vcos100¢ =10—d7005100t) and the viscous friction force is F, = B‘,?; B, is the
t

viscous friction coefficient.

Solution.
The free-body diagram is illustrated in Figure 5.8.

)

Figure 5.8. Free-body diagram

The net force acting in the x direction is found using the time-varying applied force F,

and the friction force F, . In particular,

S E=F, - F,.
Hence, the second-order differential equation of motion in the x direction is
= = d’x
E -F_=ma, =m—s-.
a Ir x dtz
We obtain the following second-order differential equation to model the body dynamics
2
in the x direction d—f = l(Fa - B, ﬂ) . Using the velocity in the x direction v= ilx— a set of two
= m dt dt
first-order differential equations results, and
dx
—=V,
dt
1 dx 1
& =—(Fa -B, ~—) =—(10vcos100t — B,v).
d m dt) m
The sum of the forces acting in the y direction is
ZFY =F, - Fg

where ﬁg =mg is the gravitational force; F) is the normal force (equal and opposite to the
gravitational force, e.g., Fy =~F,).
The equation of motion in the y direction is
I:“N—Fg=0:may=md—zg}. 1
dt

Chapter 5 MATLAB Applications 143

Newton’s second law of rotational motion is
d’e
Y M=Ja=J—,
dt
where ZM is the sum of all moments about the center of mass of a body; J is the moment of

.. . . d? .
inertia about the center of mass; « is the angular acceleration, a=?; 0 is the angular
t

displacement.
In the next example we illustrate the application of the rotational Newtonian mechanics

in the model developments.

Example 5.2.2.

Figure 5.9 illustrates a simple pendulum (point mass m) suspended by a massless
unstretchable string of length . Derive the equations of motion (mathematical model in the form
of differential equations) assuming that the friction force is a linear function of the angular
velocity (e.g., T, = B,»); B,, is the viscous friction coefficient.

X

Figure 5.9. Simple pendulum

Solution.
The restoring force is F,

Ly =—mgsing.
Thus, the net moment about the pivot point O is
S>M=T, +T,-T,=-mglsn6+T,-B,w,
where T, is the applied torque.

We have the following second-order differential equation to model the pendulum motion
d‘e de 1

Ja=J—=-mglsin6+T, - B,w,or —-=—|-mglsinf+T,-B o
— =mg 2~ By — =5 me)

where J is the moment of inertial of the mass about the point O.

Taking note of %71_9_ = w , one obtains a set of two first-order differential equations
t

do 1
—=—\~-mglsinf+T, - B_w),
= -mg . — B,)
do

— =

dt

Chapter 5 MATLAB Applications 144

The moment of inertia is J = ml” . Thus, we have two linear differential equations
dw B g

—:——”’2w~—sin9+%Ta,
dt ml m
deg
pu— % a)
dt
This set of differential equations can be numerically simulated in MATLAB using two m-
files as illustrated in the examples. The pendulum parameters (B, m, and /) should be assigned.
The simulation of a simple pendulum is performed in Chapter 6 (see Example 6.1.2).

g

Example 5.2.3.

A body is suspended from a spring with coefficient £, and the viscous friction coefficient
is B, (see Figure 5.10). Derive the mathematical model in the form of differential equations.

Figure 5.10.

Solution.

Using Newton’s second law, one finds the resulting second-order differential equation
2

ﬂ + Bv Q

dr’ dt

which models the body dynamics and, therefore, represents the mathematical model. O

m +ky=F,,

The circuitry mathematical models to simulate and analyze the circuitry dynamics are

found using Kirchhoff’s voltage and current laws. The following examples illustrate the
application of Kirchhoff’s laws.

Example 5.2.4.

An electric circuit is documented in Figure 5.11. Find the mathematical model in the
form of integro-differential equations.

Chapter 5 MATLAB Applications 145

L L

_ YYY L, (YYY

@ ")

Figure 5.11. Two-mesh circuit

N
J

[+
Jl
e

&

Solution.
Using Kirchhoff’s law, we find

dii 1 di, 1 1
L—L+— \i,—i,)dt =V and L,—2—— i, —i, Jdt +— |i,dt =0.
Va C, _’-(1 2)d 27 C, .[(11 lz)d c, L
Thus, the integro-differential equations tc model the circuit are found. O
Example 5.2.5.

A buck (step-down) switching converter is documented in Figure 5.12 [3, 4]. In this
converter, switch S, inductor L, and capacitor C have resistances. These resistances are denoted
as r,, r,, and r.. The resistive—inductive load with the back emf E, is formed by the resistor r,

and inductor L,. Derive the mathematical model and study the converter dynamics through
numerical simulations.

r L " LU a d

e

Figure 5.12. Switching converter

Solution.

The voltage is regulated by opening and closing the switch S. Thus, this switch, which is
a high-frequency transistor, open and closed. Correspondingly, differential equations must be
found for these two switch “states.” One concludes that the voltage at the load is regulated by
using a pulse-width-modulation (PWM) switching. For lossless switch (if r, =0), the voltage

Chapter 5 MATLAB Applications 146

across the diode D is equal to the supplied voltage ¥, when the switch is closed, and the voltage
is zero if the switch is open. The voltage applied to the load u, is regulated by controlling the

switching on and off durations (r,, and 1,). The switching frequency is . These on and

+1
on off
off durations are controlled by u, . If u_ = 0, the switch is closed, while if , >0, the switch is open.
. . f 0ift,=0)
Making use of the duty ratio d, =—>—, =< . , dp e[O 1], using the
t0"+t0ff] lft[)ff:()
averaging concept, if r, =0 we have u,, = ’“"t V,=dV,.
on off

Using Kirchhoff’s laws the following sets of differential equations are derived.

) Switch is closed:
When the switch is closed, the diode is reverse biased. For 7, =0, d,, =1, we have

du 1, .
Tl

di 1 . . .
—;;;L—:Z(— e —(ry, +r)i, +ri, —ri; +Vd),
di, 1 ; .
o =L—a(u(~ +ri; —(ra +rc)la - Ea).

. Switch is open:

1f the switch is open, the diode is forward biased. For d,, =0 (¢,,=0), we find
él_li = —1_(iL —i) ,

a C

di i ;]
b= e ni i),
di,

o =-I:1—(uc +ri, —(r‘J +rc)ia —Ea).

a

When the switch is closed, the duty ratio is 1. In contrast, if the switch is open, the duty ratio is

0. Therefore, d {0 i1, =0
. Therefore, d,, =1 .)
1ift, =0

Assuming that the switching frequency is high, one uses the duty ratio to find the
following augmented set of differential equations to model the converter transients. In particular,

du,. | .

o el

di, 1 ; i i

_dlti = .Z(— U — (rL + rc)lL +rd, —ridy+ VddD)’
di, 1

" _L—(u(. +ri, —(ra +rc)ia - Ea) .

Thus, the buck converter dynamics is modeled by a set of derived nonlinear differential
equations. Our next step is to numerically solve these differential equations using MATLAB. By

Chapter 5 MAaTLAB Applications 147

making use of a set of differential equations, two m-files are written to perform simulations and
visualize the converter dynamics. The following parameters are used:

r, =0.025 ohm, r, =0.05 ohm, . =0.05 ohm, r, =2.5 ohm, C=0.05F, L=0.005H, L, =0.05
H,V,=40V, E,=5Vanddp=0.5.

Ucg 10
The initial conditions are assigned tobe | i,, |={ 5
iy -5

MATLAB script (c5_2 5a.m):
echo on; clear all
t0=0; tfinal=0.4; tspan=[t0 tfinal]l; % initial and final time
y0=[10 5 -5]1"'; initial conditions
[t,yl=0ded5('c5 2 5b’',tspan,yl); ode45 MATLAB solver
Plot of the time history found by solving
three differential eguations assigned in the file ¢5 2 5b.m
3-D plot using x1, x2 and x3 as the variables
plot3{y(:,1),y(:,2),y{(:,3))
xlabel ('x1'), ylabel({'x2'), zlabel({'x3')
text (10,5,-5,'x0 Initial')
v=axis
pause
% 3-D plot using x1, x3 and time as the variables
plot3{y(:,1),y(:,3),t)
xlabel ('x1'), ylabel('x3'), zlabel{'time')
text (10,-5,0, 'x0 Initial')
v=axis
pause
% 2-D plots
subplot(2,2,1); plot(t,y):
xlabel ('Time (seconds)');
title{'Dynamics of the state variables');

@ oe

oe d° e

subplot(2,2,2); plot(t,y(:,1),"="});

xlabel ('Time (seconds)'); title('Voltage uc (x1), [V]');
subplot (2,2,3); plot(t,y(+,2),'-=");

xlabel ('Time (seconds)'); title('Current iL (x2), [A1");
subplot (2,2,4); plot(t,y(:,3),':");

xlabel ('Time (seconds)'); title(‘'Current ia (x3), [A]'):

disp('END');

MATLAB script (c5_2 S5b.m):

furiction yprime=difer(t,y);

% converter parameters

rs=0.025; rl1l=0.05; rc=0.05; ra=2.5; C=0.05; L=0.005; La=0.05;
% voltage applied, back emf and duty ratio

Vd=50; Ea=5; D=0.5;

% three differential equations to model a buck converter
yprime=[(y(2,:)-y(3,:))/C;i...

{(=y {1, :)-(xrl+re) *y(2, :)+rc*y (3, :) -rs*y (2, :) *D+Vad*D) /L; ...
(y({1,:)+rc*y (2, :)-{rc+ra) *y(3,:)-Ea) /Lal;

Three-dimensional plots using x(f), x2(¢), and x3(¢) as well as x;(¢), x3(f), and ¢ as the
variables are shown in Figure 5.13. Figure 5.13 also illustrates two-dimensional plots reporting
the transient dynamics for three state variables u(1), i1(¢), and iy(f) which are x;(¢), xx(f), and
x3(f). We conclude that we performed numerical simulations and visualized the results using

plotting statements.

x3

0

x2

Y ™
Initial

20 10

01 02 03

Time (seconds)
Current' iL (x2), [A])

0.4

/

L

-10
0

01 02 03
Time (seconds)

0.4

time

04

03 .

0.2

0.1

Chapter 5 MATLAB Applications 148

01 02
Time (seconds
Current(?a (x3), [)A]

0.3

0.4

01 02 03
Time (seconds)

0.4

Figure 5.13. Evolution of the variables (in three dimensions) and transient dynamics

Making note of the output equation u, = u. +r.i,

can be plotted. We type in the Command Window

»rc=0.05;plot{t,y{:,1)+rc*y(:,2)-rc*y{:,3), '~ ") ;xlabel {'Time {seconds)*);title('Voltage ua,
The resulting plot for u,(¢) is shown in Figure 5.14.

-r.i,, the voltage at the load terminal u,

vi);

Chapter 5 MATLAB Applications 149

Voltage ua, [V]

S S R e e]

-
|
k (‘ \\\
/A
T \ .
20¢ |
15& j
i
P+ 3 S U S — S E Y WY R
[¢]

005 01 015 02 025 03 035 04
Time (seconds)

Figure 5.14. Transient dynamics for u,, u, =uc +7i, -1, O

Example 5.2.6.
A one-quadrant boost (step-up) switching converter is documented in Figure 5.15 [3, 4}.
The converter parameters are: r, = 0.025 ohm, r, = 0.05 ohm, r, = 0.05 ohm, 7, =2.5 ohm, C =

0.05F,L=0.005H, L, =0.05H, V, =40V, E, =5V and dp=0.25.

Load

Figure 5.15. High-frequency switching converter

Solution.

When the switch is closed, the diode is reverse biased. Correspondingly, the following set
of differential equations results:

du. 1. dij 1 _ di, 1 _

—dT: —E‘_la . —Et—:—L—(——(rL +rs)1L +Vd)’ ’?d—l;——'L—(uC —(ra +rc)la - Eu) .

a

If the switch is open, the diode is forward biased due to the fact that the direction of the
inductor current i, does not change instantly. Hence, we have the differential equations

. . di,
o i _d‘t‘:z('“c"(rl,+rc)’L+rc’a+Vd)a ot

Using the duty ratio dp (which can vary from 0 to 1), we find the resulting model, and

iu_Q_zl('L_-)’ diy 1

zfl‘(“c +r,i, —(ra +rc)ia - Ea).

Chapter 5 MATLAB Applications 150

du- 1, .
—C=—\i, i, —i,d,),
b i)
di, 1 o . .
L=~y —(r, +r)i, +ri, vudp+(r,—r)i, d,~rid,+V;),
t L(C (L)L c%p ()L D D d)
di 1
4= —\up+ri,—(r,+r.)i,—-rid,—E,)}.
Lo o Lot~ =iy £,
Our goal is to simulate the boost converter, and initial conditions and parameters must be
Uc, 10
assigned. Let the initial conditions be i, =5
io| |-5

Taking note of the differential equations, the following m-files are written to solve
differential equations with the assigned initial conditions, converter parameters, and duty ratio.

MATLAB script (c5 2 6a.m):
echo on; clear all
t0=0; tfinal=0.4; tspan=[{t0 tfinall; % initial and final time
y0=[{10 5 -51"; % initial conditions
[t,yl=oded5('c5 2 6b', tspan,y0); % oded45 MATLAB solver
Plot of the time history found by solving
three differential equations assigned in the file ¢5_2 5b.m
3-D plot using k1, x2 and x3 as the variables
plot3(yf:,1),y{:,2),y(:,3))
xlabel ('x1'), ylabel{'x2'), zlabel('x3')
text(10,5,-5,'x0 Initial’")
v=axis
pause
% 3-D plot using x1, x3 and time as the variables
plot3(y(:,1),y(:,3),t)
xlabel('x1'), ylabel('x3'), zlabel('time')
text (10,-5,0,'x0 Initial')
v=axis
pause
% 2-D.plots
subplot(2,2,1); plotit,y);
xlabel ('Time (seconds)');
title('Dynamics of the state variables');
subplot(2,2,2); plot{(t,y(:,1},"
xlabel ('Time (seconds)'): tltle(Voltage uc (x1), [V]');

e

o0 o @

subplot(2,2,3); plot(t,y(:,2);'--");

xlabel ('Time (seconds)'), tltle('Current il (x2), [A1")
subplot(2,2,4); plotit,y(: i)

xlabel ('Time (seconds)'); 1tle(Current ia (x3), [(A]l")
disp('END');

MATLAB script (c5_2 6b.m):
function yprime=difer(t,y);
% converter parameters
rs=0.025; ri=0.05; rc=0.05; ra=2.5; C=0.05; L=0.005; La=0.05;
% voltage applied, back emf and duty ratio
vd=50; Ea=5; D=0.25;

% three differential equations to model a boost converter
yprime=[(y (2, :)-y(3,:)-y(2,:)}*D)/C; ...

(-y (1, :)-(rl+rc) *y (2, :)+rc*y {3, :) +y (1, :) *D+ (rc-rs) *y (2, :) *D-
rc*y (3, :)*D+Vd) /L; ...
(y (1, :)+rc*y(2,:) -{ra+rc) *y (3, :)-rc*y (2, :)*D-Ea) /La}l;

Chapter 5 MATLAB Applications

151

Two three-dimensional plots [x:(£), x2(f), x3(£)] and [xi(?), x3(?), 7] are illustrated in Figure
5.16. The converter transient dynamics for x;(), x2(#), x3(¢) are reported in Figure 5.16.

150

100/

150

100 | |

50|

50|

0 Initial 100

x1

./.\‘,
‘,‘}‘./‘\
N [

o -

0 01 02 03 04
Time (seconds
Current(?L (x2), [2‘\]

3
0 01 02 03 04

Time (seconds)

time

0.4

0.3

0.2

100

80
60

40

30

20

10

20/

0
0

0.1 0.2 0.3
Time (seconds)

Current ia (x3), [A]

0.4

01 02 03
Time (seconds)

0 0.4

Figure 5.16. State variables evolution and dynamics of the converter

We conclude that numerical simulations and visualization were performed. In particular,
the evolution of three state variables uc(¢), ir(f), and i,(f) is documented, and the analysis can be

performed.

a

Chapter 5 MATLAB Applications 152

5.3. Modeling and Computing Using MATLAB

It was illustrated that differential equations result as one applies the fundamental laws to
electrical and mechanical systems. It has been shown that the transient dynamics of electrical
and mechanical systems are described by linear and nonlinear differential equations. To illustrate
the similarity of results, and to visualize the results, the equations of motion for some
electromechanical system elements are shown in Table 5.1 [3].

Table 5.1. Basic Elements of Electromechanical Systems

Electromechanical System Variables Used Equation

+

u, (1) i(r)l

Applied voltage u,(t) [V] u,(t)=Ri(t)

Current i(r) [A]

i) = %ua(r)

u,(t)= LM

Applied voltage u,(¢) [V] dt
1]
Current i(r) [A] i(1) = fuo(0)dz
Inductance, L [H]
1 1
+ + Applied voltage u,(t) [V] u, (1) e i(7)dr
u,(1) i(t)l —_C 10
T - Current i(¢) [A] i(1) = Cﬂlg(_t)_
at
Capacitange, C [F}
© F (1) = B,v(1)
v(t)i lx(t) Applied force F,(r) [N] 1
" W0 == F,(0)
Fa_(t) UB m Linear velocity v(¢) [m/sec] and "
N Linear position x(¢) [m] F,(1)=B,»(1)=B, idxg(tﬂ

Translational damper, B, [N-sec]

x(t) = %I F,(t)dr

Chapter 5 MATLAB Applications

153

Applied force F,(r) [N]

Linear velocity v(¢) [m/sec]

F, (1) = kx(1)

x(1) = kiF,,m

5

and
de(t) 1 dF,(f)
. .. = -
Linear position x(z) [m] (1) I PR
F,()=k, j w(r)dr
v(t) l lx(t) Applied force F,(¢) [N] dv d*x(t)
+ F,()=m—=m——sy
F.(t) dt dt
al iz. m Linear velocity v(t) [m/sec] x
= w(t) = — j F,(2)dr
Linear position x(¢) [m] "
Mass {grounded), m [kg]
o T.(1) = B, (1)
o(r) | o(t) Applied torque T,(t) [N-m) 1
n (T o(t) = Z T.(1)
7:{’) E*EB"' Angular velocity w(¢) [rad/sec] and "
do(:
Angular displacement 8(¢) [rad] | T,(t) = B,»(1) =B, ‘-c;'(t—)
Rotational damper, B, [N-m-sec/rad] oty = BL j];(r)dr

m,o

- o(t) | (1)

Applied torque 7,(¢) [N-m]

T,(1) = k,0(1)

o) = kiTa(o

¥ (ly
Taft) @ ks Angular velocity w(¢) [rad/sec] and ’
: o) _ 1 dT,(1)
Angular displacement 8(f) [rad] | @(f)= =
L o dt ks dt
Rotational spring, &, [N-m-sec/rad] !
T.(1)=k, jw(r)dr
Applied torque T,(z) [N-m] 2
pp q Ta(t):J%Z_)szdfgt)

Rotational mass (grounded), J [kg-m’]

Angular velocity o(t) [rad/sec]

Angular displacement £(¢) [rad]

l t
w(t)=—jIJ‘Ta(T)dr

Chapter 5 MATLAB Applications 154

The similarity of equations of motion is evident as one compares the derived dynamics,
which is given by the corresponding differential equations. Consider the translational and

rotational (torsional) mechanical systems shown in Figure 5.17.

Elastic shaft

Spring. k,
Rotational spring, k,

I " | I Friction, B, [] [}

Position, x(t} External force, F,(1)

Dashport, B, a(1r)
J e

External torque, T (1)

Figure 5.17. Translational and torsional mechanical systems

From Newton’s second law, the second-order differential equations of translational and
torsional dynamics are found to be

d*x dx

1. Translational dynamics: m——+B,—+kx=F,(t),
dt dt
2
2. Torsional dynamics: J%+ Bm?+ kO=T/1),
t t

where F,(t) and T,(¢) are the time-varying applied force and torque; B, and B, are the viscous
friction coefficients; k, is the translational and rotational (elasticity) spring coefficient.
Consider two RLC circuits illustrated in Figure 5.18.

+
=~ C (%)

=
~

~
~—

+[
I\
@

(1) D R

P e F
h
I‘\l+

N
Figure 5.18. Parallel and series RLC circuits

Chapter 5 MATLAB Applications 155

The energy is stored in the inductor and the capacitor. The integro-differential equation
(an integral as well as a derivative of the dependent variables appears) for the parallel circuit is
obtained by summing the currents away from the top node

u 1 du
— 4 — |u()dr—i,(t)+C—=i (1),
- L(j() L)+ C= =i, (1)

while the integro-differential equation for the series circuit is found by summing the voltages
around the closed path. In particular,

1] di
Ri+ = li(n)dr—v . (t,))+ L—=u,(t).
. ,I (Ddr =velto) + L— =1, (1)

By differentiating these equations with respect to time and using the fact that i, (¢,) and
vo(t,) are constants, we have

cdu Vdu 1 _di, duw 1du 1 _1d

a7 Rar L @ ke a1t T Ca

B *

and

a

2 . 2. -
L—d——l+Rd1 1. du d1+_lgﬂ+ 1 . ldy,

— =—2 0or — —i= .
a> dt C dr ar® Ldt LC L di

Parallel and series RLC circuits lead to the second-order differential equations. It is
evident that these linear differential equations can be numerically modeled in MATLAB using the
ode solvers that were illustrated.

It was shown that the mechanical systems and the RLC circuits considered are modeled
by the second-order differential equations. The analytical solution of linear differential equations
with constant coefficients can be easily derived. The general solution of the second-order linear
differential equations is found by using the roots of the characteristic equation. The damping
coefficient ¢ and the resonant frequency w, are given by
1 1

NLC JLC
for the parallel and series RLC circuits (for mechanical systems, & = B, and o, = \/E).
m

2\Jkm

, @y = and §=%,a)0:

1
5= 2RC

We write the differential equation as
d’x dx
+25—+x=f(1
p S i S
to find three possible solutions examining the characteristic equation
s*+2&+ 0] =(s——s1)(s—s2)=0.

. . e . . d
This characteristic equation was found by making use the Laplace operator s = e Furthermore,
t
2
st = prl The characteristic roots (eigenvalues) are given as
t

$12 =_§i\/§2 —a)g .

Chapter 5 MATLAB Applications 156

Case 1.1f £ > w{ , the real distinct characteristic roots s, and s, result.

The general solution is x(f) = ae" +be™ +c, , where coefficients a and b are obtained
using the initial conditions, ¢, is the solution due to the forcing function f (for the RLC circuits f
is i, (#) and u,(1)).

Case 2. For & = w{, the characteristic roots are real and identical, e.g.,

sy=8=-¢.
The solution of the second-order differential equation is given as

x(t)=(a+b)e ¥ +c,.

Case 3.If £ < w! , the complex distinct characteristic roots are found as

Si,2 :—fij\/a)g _52 .

Hence, the general solution is

x(t) 29_51[0005(\/0)3 ‘fzt] +bsin(\/a)§ —fztﬂ+cf =e 9o’ + b cos[(ng —521) +tan"(—7b)}+c/,

Example 5.3.1.

For the series RLC circuit, find the analytical solutions. Derive and plot the transient
response due to the unit step input with initial conditions. Assign the following parameters: R =
0.40hm,L=05H,C=2F,a=2and b=-2.

Solution.

For the series RLC circuit, the following differential equation was obtained:

d’i Rdi 1 . 1du,

— et ——i =

at* Ldi LC L dt

The characteristic equation is s + —I—Q—s + -1— = 0. Therefore, the characteristic roots are

=—— -— and s, =
2L LC

If (212) >— 7k , then the characteristic roots are real and distinct.

2
if (%) = —L]E, then the characteristic roots are real and identical.

2
If R < 1 , then the characteristic roots are complex.
2L LC

Making use of the assigned values for R, L, and C, one concludes that the underdamped
series dynamics are given by

x(t)=e* lacos(,/a)g —fzt)+bsin(\/a)§ —§zt)j+ ¢/
1
——\/—7 =1.

In the Command Window we type the following statements:
>> £=0:.01:15; a=2; b=-2; cf=1; e=0.4; w0=1;
>> x=exp(-e*t).*(a*cos(sqgrt (w0™2-2"2) *t) +b*sin(sqrt (w0 2-e”2) *t)) +cf;plot (t,x)

where & R 0.4 and @, =
2L

Chapter 5 MATLAB Applications 157

The resulting circuitry dynamics are documented in Figure 5.19.

3

2.5 j B
1
2 4
1.5 -
1 L ; N 1
05F]
i N
;
_Osl i 1
0 5 10 15
Figure 5.19. Circuitry dynamics due to the unit step input and initial conditions O

We have used Newton’s and Kichhoff’s laws to find the differential equations to perform
the analysis of mechanical systems and electric circuits. Mathematical models of
electromechanical systems can be derived integrating differential equations found for electrical
and mechanical subsystems. Furthermore, the application of MATLAB was illustrated to perform
numerical simulations. It must be emphasized that the MATLAB environment can be used to
derive the analytical solution as demonstrated by the following example.

Example 5.3.2.
Analytically solve the third-order differential equation
d’x _ dx
—+2—+3x=4
ar’ dt 4

using the Symbolic Math Toolbox.

Solution.
Using the dsolve solver, we type in the Command Window
>> x=dsolve ('D3x+2*Dx+3*x=4*f")
The resulting solution is
X =
4/3*F+C1*exp (-t) +C2*exp (1/2*t) *cos (1/2*117(1/2) *£) +C3*exp (1/2%t) *sin(1/2%117 (1/2) *t)
Using the pretty function, we find
>> pretty(x)
1/2
4/3 £ + Cl exp(-t) + C2 exp(1/2 t) cos(1/2 11 t)

1/2
+ C3 exp(l/2 t) sin(1/2 11 t)

Thus, the solution is

x(t) = %f +ee + c2e°‘5'co(% \/l_lt)+ c,e” sin (%\/l_lt)

Chapter 5 MATLAB Applications 158

Using the initial conditions, the unknown constants are found. As an example, let us assign

2

2
the following initial conditions [?J =5, (—d—j) =0and x, =—5. We have
0 0

>> x=dsolve('D3x+2*Dx+3*x=4*f', 'D2x(0)}=5"', 'Dx(0)=0", 'x(0)=-5"'); pretty(x)

1/2
4/3 £ + (- 4/5 £ - 2) exp(-t) + (- 8/15 f - 3) exp(1l/2 t) cos(1/2 11 t)
1/2 1/2
~ 1/165 (16 £ +°'15) 11 exp{1/2 t) sin(1/2 11 t)
4 8 1
Hence, ¢, =—3 f -2, ¢,=— f=3,and ¢; =— (16 f +15)V11.
If the forcing function is time-varying, the analytical solution of
d’x dx
——;+2——+3x:4f0)
dt dt
is found as
>> x=dsolve('D3x+2*Dx+3*x=4*f (t)'); pretty(x)
/ /
4/55 }11 exp(t) £(t) dt exp{(- 3/2 t)
A
/
1/2
+ -3 exp(- 1/2 t) £(t) 11 %1 - 11 exp(- 1/2 t) £(t) %2 dt %2
/
/ \
1/2 |
+ 3 exp(- 1/2 t) £(t) 11 $2 --11 exp(- 1/2 t) £(t) %1 dt %1}
/

/
exp{1/2 t) + Cl exp(-t) + C2 exp(1/2 t) %2 + C3 exp(1/2 t) %1
1/2
sin(1/2 11 t)

0.
=
]

1/2

$2 1= cos(1/2 11 t)

1l

2 dt

>> xX=dsolve ('D3x+2*Dx+3*x=4*sin(t) ', 'D2x(0)=5"', 'Dx(0)=0"','x(0)=-5"'); pretty(x)

2
Letting f{f) = sin(f) and assuming (‘2 x) =5, (ﬁj =0and x, = -5, we have
0 0

1/2
2/5 %2 sin(%4) - 2/5 %2 sin(%3) - 2/5 %1 cos(%4) - 2/55 %1 sin(%$3) 11

1/2 1/2
+ 2/55 %1 sin(%4) 11 + 2/55 %2 cos(%4) 11

1/2 1/2
4/55 %2 sin(%3) 11 - 4/55 %2 sin{(%4) 11

1/2 1/2
4/55 %1 cos(%4) 11 + 4/55 %1 cos(%3) 11 + 2/5 %1 cos(%3)

+

1/2
- 2/5 cos{t) + 2/5 sin(t) - 2/55 %2 cos(%3) 11 - 8/5 exp{-t)

13 1/2
3 exp(1/2 t) %2 - -- 11 exp(1/2 t) %1
55

1/2
%1 := sin(1/2 11 £)

Chapter 5 MATLAB Applications 159

1/2
cos(1/2 11 t)

o
N
]

1/2
1/2 (-2 + 11)t

o0
w
It

1/2
1/2 (2 + 11)t

Thus, the Symbolic Math Toolbox allows us to find the analytical solutions for differential
equations.

o°
o>
0]

O

Example 5.3.3.

Consider the series RLC circuit given in Figure 5.20. Find the analytical solution using
MATLAB. Plot the circuitry dynamics assigning circuitry parameters and setting initial
conditions.

R
—
i(f)
+ —
u, () Ei C

Figure 5.20. Series RLC circuit

Solution.

The state and control (forcing function) variables are used in the development of the
mathematical model. Using the voltage across the capacitor and the current through the inductor
as the state variables, and the supplied voltage u,(¢) as the control, we have the following set of

first-order differential equations:

du, di
—=j, L—=-u,—Ri+ t).
dt da C 4, (1)

Hence, we have
du. 1. di 1
i, Lo (—u - Ri+u, ().
R A S ARAC)
The analytical solution is found using the Symbolic Math Toolbox. In particular, for
time-varying u,(f), we obtain

»>> [V,I)=dsolve('DV=1/C', 'DI=(~-V-R*I+Va(t)) /L")

v -

-(-C*int (Aiff (Va(t),t)*exp(1/2/L*t*R) *exp(-1/2/C/Lot* (R*"2¢C*"2-4°C*L) " (1/2)),t) *exp(-
1/2/L*t*R+1/2/C/L*t* (R"2°C"2-

4°*C*L) " (1/2)) +C*int (diff (Va(t),t) *exp(1/2/L*ct*R) *exp(1/2/C/L*t* (R"2*C"2-
4°C*L)*(1/2)),t) *exp(-1/2/L*t*R-1/2/C/L*t* (R*2*C"2-4*C*L) " (1/2)) -Clvexp(-

Chapter 5 MATLAB Applications 160

Assigning the values of the resistance, inductance, and capacitance to be R = 50 ohm, L =
0.25 H, and C = 0.01 F, for u,(¢) = 10 V, we obtain

where the constants C'1 and C2 must be found by using the initial conditions.
The initial conditions can be easily incorporated. Assigning the initial conditions to be
25, - 5]", we obtain

Chapter 5 MATLAB Applications 161

The derived expressions can be simplified using the simplify function. In particular,
simplify (V) and simplify (I) are used as demonstrated here:

The derived expression for uc(r) is
u 1) = _%e-nmvfir + _:_;J&m-sozﬁi _% JGe e 2dox _ -sz-e""’"‘ﬁ")

Figure 5.21 documents the plots for uc(r) and i(r) which are found using the following
statement:

25 T ———r

20+ 4
10k R e)
50]
[0 o—
5 05 S I T S Y S
Figure 5.21. Dynamics for uc(f) and i(¢) O

The state-space modeling concept is widely used in simulation and analysis. The state,
control (forcing function), and output variables are used. The state-space techniques are commonly
applied in simulation and analysis of dynamic systems in the MATLAB environment. Mathematical
models of dynamic systems are found in the form of linear and nonlinear differential equations.
In general, a set of n first-order linear ordinary differential equations with » states xeR" and m
controls (forcing functions) ueR™ is written as [4]

Chapter 5 MATLAB Applications 162

dx, i
dr an G G Qin | X by by v by by | ou
;. a 4 - a a b b. .. b b
& dt 21 22 2n-1 2n X5 2 22 2 m-1 2 m U,
7: Col=| : : : P N : : : ' |= Ax+ Bu,
t
d—”—l gy Gpg2 0 Ouyng Gpoan X, bn—l 1 bn—] 2 " bn—l m-1 bn—] m || Uma
t
dx Ay 2 Tt Gy Ayn | Xn bnl an ot bnm-! bnm L U
- L N 4 L i i
i

where AeR"*™ and BeR" ™ are the matrices of coefficients.

The output equation is expressed as

y= Hx + Du,
where HeR"* " and DeR"*™ are the matrices of coefficients.

Nonlinear multivariable dynamic systems are modeled by a set of » first-order nonlinear
differential equations

& F(toxa, x(tg) =5,

where 1 is the time; F(¢,x,u) is the nonlinear function.

In the first section of this chapter we considered the aircraft. The aircraft outputs are the
Euler angles, and the fighter is controlled by deflecting the control surfaces. The multi-input
(eight control surfaces) - multi-output (three Euler angles ¢, ¢, and y to be controlled) nature is

obvious. The pilot assigns the desired Euler angles r,, r,, and r, (pedal and stick reference

rrg 7
commands). Using the errors between the reference vector » =| r, | and output vector y=| ¢ |, as
r, 173
7y g
defined by e=r-y=|r, |-| ¢ |, the controller u=II(e,x) calculates the control inputs (control
Ty v

surface deflections). The aircraft outputs (6, ¢ and w) can be obtained by using the state
variables (v, a, q, 6, f, p,r, ¢ and).

Figure 5.22 shows the block diagram representation of the multivariable aircraft with
nine states xeR’ (v,a,q,0, B, p,r, ¢, w), eight control surfaces ueR® (right and left
horizontal stabilizers, right and left leading- and trailing-edge flaps, right and left rudders), three
outputs yeR’ (6, ¢, v), and three reference inputs reR’ (195 75, 1,) [4].

Chapter 5 MATLAB Applications

Input

Referemoes b

[N

Oy Oy, ~ e, =1, -y

Arrcraft

Model: &
dt P

F(t,x,u)

W onmtrol Surfocex

163

States

Av.a.q.0. 0. p.r.d.v

. i e Controller U . 3 . X y
Pilot % v =Tie.x) . ‘;:"< \/ v = Hx
S e, apry PP e .
SN §r Z Outputs
Outputs States m 0.6.v
States and owtpuwis v.a,. q. 0. . p.r.d.v
Figure 5.22. Block diagram representation of a multi-input/multi-output aircraft
The functional block diagram of nonlinear multivariable dynamic systems (» states, m
controls, b reference inputs, and b outputs), which are described by
state-space equation % = F(t,x,u), x(t,) = x,
t
output equation y=Hx,
is illustrated in Figure 5.23.
Control .
a‘n:.r"’ = w”.'” ‘w.l‘:lll Ouiput
e, (1) I AL 01 v, (N
)=)= 5 0 : L. ¥,
- o ,ml u (1) v, (1) v (0
a0 | ol “N Dynamic System L(0) nin |
0 : U ; . 3 5
e Controller = ’ -
] N I"_l'. x) ". !{“

Model: ﬁ F(t,x,u)

ALY

di

~

\

Figure 5.23. Functional block diagram of multi-input/multi-output dynamic systems

Example 5.3.4.

Consider the aircraft described by the sate-space differential equations
x=Ax+Bu,y = Hx + Du,

Chapter 5 MATLAB Applications 164

—= =Ax+Bu=A4 +Bu,y=Hx+Du=H +Du

where
0 —150 —1000 —5000 —12500 —15000] ’1

0 0 0 0 0
1 0 0 0

-2
1
0
,H=[0 0 0 0 0 1]and D=[0]
0 0 1 0 0
0
0

(=R e T

0 0 1 0
0 0 0 0 K

Perform numerical simulations using the 1 sim MATLAB solver.

Solution.

The description of the 1sim solver is given below.

>> help lsim
LSIM Simulate time response of LTI models to arbitrary inputs.

—_ 0 o O

LSIM(SYS,U,T) plots the time response of the LTI model SYS to the
input signal described by U and T. The time vector T consists of
regularly spaced time samples and U is a matrix with as many columns
as inputs and whose i-th row specifies the input value at time T(i).
For example,

t = 0:0.01:5; u = sin(t}; lsim(sys,u,t)
simulates the response of a single-input model SYS to the input
u(t)=sin(t) during 5 seconds.

For discrete-time models, U should be sampled at the same rate as SYS
(T is then redundant and can be omitted or set to the empty matrix).
For continuous-time models, choose the sampling period T({2)-T{(1): small
enough to accurately describe the input U. LSIM issues a warning when
U is undersampled and hidden oscillations may occur.

LSIM(SYS,U,T,X0) specifies the initial state vector X0 at time T (1)

(for state-space models only). X0 is set to zero when omitted.
LSIM(SYS1,8YS2,...,U,T,X0) simulates the response of multiple LTI
models SYS1,8YS2,... on a single plot. The initial condition X0

is optional. You can also specify a color, line style, and marker
for each system, as in
isim(sysl, 'r',sys2,'y--',sys3, ‘'gx',u,t).

Y = LSIM{SYS,U,T) returns the output history Y. No plot is drawn on
the screen. The matrix Y has LENGTH(T) rows and as many columns as
outputs in SYS. For state-space models,

[¥Y,T,X] = LSIM(SYS,U,T,6X0)
also returns the state trajectory X, a matrix with LENGTH(T) rows
and as many columns as states.

For continuous-time models,
LSIM(SYS,U,T,X0,'zoh') or LSIM(SYS,U,T,X0,'foh')
explicitly specifies how the input values should be interpolated

Chapter 5 MATLAB Applications 165

between samples (zero-order hold or linear interpolacion). By
default, LSIM selects the interpolation method automatically based
on the smoothness of the signal U.

See also GENSIG, STEP, IMPULSE, INITIAL, LTIMODELS.

Using this description, we download four matrices, e.g.,
A=[-15 -150 -1100 -4500 -12500 -15000;

1 0 0 0 0 0;
0 1 0 0 0 0;
0 0 1 0 0 0;
0 0 0 1 0 0;
0 0 0 0 1 0];

B=f1 000 0 0]';

H=[0 0 0 0 0 1];

D=[0};

enter the simulation duration as 5 seconds, assign the step input (command), and letting the
initial conditions for six variables be [1 50-5-10-20]"

t=0:.01:5; u=ones(size(t)); x0=[0 10 50 100 -50 -10];

Typing in the Command Window

>> [y,x]=1sim(A,B,H,D,u,t,x0); plot(t,x)

and pressing the Enter key, the transient dynamics of the aircraft result. Figure 5.24 represents
the aircraft’s state variable behavior. If one needs to plot the output transient, it can be done
using the following statement:

>> plot(t,y)

The resulting plot is illustrated in Figure 5.24.

,10L /.5 1

200 &/ -

Asp) \ .

S R R R e
o] 0.5 1 1.5 2 25 3 35 4 45 5 o} 05 1 1.5 2 25 3 3.5 4 4.5 5

Figure 5.24. State variables and output evolutions due to step input and initial conditions

The “system” methodology is illustrated for the example under consideration. In
particular, we use the help 1lsim. The user can define the “system” with six state variables,
one control, and one output. Then, using the 1sim solver, we numerically simulate the
“systems” and find the output responses due to the initial conditions and unit step input.

States={'x1' 'x2' 'x3' 'x4' 'X5' 'x6')}

Control={'u'}

Output={‘y'}

A=[-15 -150 -1100 -4500 -12500 -15000;
1 0 0 0 0 0;

Chapter 5 MaTLAB Applications 166

0 1 0 0 0 0;
0 0 1 0 0 0;
0 0 0 1 0 0;
¢ 0 0 0 1 0] ;

B={1 0 0 0 0 0]";

H=[{0 0 0 0 0 1};

D=[0];

System=ss(A,B,H,D, 'statename’, States, 'inputname',Control, 'outputname’,Output) ;
System

t=0:.01:5; u=ones(size(t)); x0={0 10 50 100 -50 -10];

lsim(System,u,t) ;plot(t,y); pause

step (System) ; % step response with zero initial conditions

The following system description results in the Command Window

States =
'x1!? 'x2! x3! 'x4" 'x5! 'x6"
Control =
lul
Output =
Iyl
a =
x1 x2 X3 x4 x5 X6
x1 -15 -150 -1100 -4500 -1.25e+004 -1.5e+004
x2 1 0 0 0 0 0
x3 0 1 0 0 0 0
x4 0 0 1 0 0 0
x5 0 0 0 1 0 0
X6 0 0 0 0 i 0
b =
u
x1l 1
x2 0
x3 0
x4 O
x5 0
X6 0
C =

X1 x2 X3 x4 X5 x6
Y 0 0 0 0 0 1

Continuous-time model.
The resulting dynamics are documented in Figure 5.25.

Chapter 5 MATLAB Applications 167

Step Response

107 Fromu Yoy
7
55— — . k
b e L ___. e L e o =
P [
op 7 S —— - - SN -
[7
; ! 5 /
i J
5t / /
i /
| s /
| 3 /
-10‘; E ;
/
i £ /
i j
BER ; 4
! ; /
Ly i /
oA
20 % d
A 1
?
251 L L It L L L L L I o _......me«»/,’,,, o e R . .
0.5 1 1.5 2 25 3 35 4 45 5 g 05 i 3 15 Pt 25
Time (sec)

Figure 5.25. Output dynamics due to initial conditions and unit step input
O

Example 5.3.5.

Using the state-space concept, develop the state-space model of the series RLC circuit
illustrated in Figure 5.26. The voltage across the capacitor is the circuit output. Find matrices 4,
B, H, and D of the state-space model and the output equation. Perform numerical simulations in
MATLAB assigning the following parameters: R=1 ohm, L=0.1 H, and C=0.5F.

R

¥
@(1) i(t) == c

+ |/

Figure 5.26. RLC circuit

Solution.
Using Kirchhoff’s law, which gives the following equations
C~d—uc—:i and Lﬂ:—uc —Ri+u,(1),

dt dt

a set of two first-order differential equations to model the circuitry dynamics is found to be

due _1,
da c’
di 1

- z(_ U — Ri+u,(1)).

Chapter 5 MATLAB Applications 168

The state and control variables are denoted as
x () =up(t), x,(1)=i(t) and u(t) =u,(1).
Thus, we have

o]) fo LT |
& _|at || dt |- C -
o di 1 ? + u,=Ax+ Bu.

dt dt L L L

1
0 — 0
The matrices of coefficients are found to be 4= C | and B= [i}

The voltage across the capacitor is the output. Hence, y(7) = u-(r) . The output equation is
U
y=[t 0] ¢ {=[0lu, = Hx+ Du,
1

where H=[1 0] and D=[0].

The simulation is performed assigning R = 1 ohm, L = 0.1 H, and C = 0.5 F.
Correspondingly, we find the numerical values for matrices to be b

1
0 = 0 2 01 To
A=| “r {_10 _10},3 {_} []O}H I 0],and D = [0].

L L
To perform numerical simulations, we download these four matrices:
>> A=[0 2; -10 -10], B=[0 10]', H=[1 0], D=[0]

These matrices are stored in the memory, and the following matrices are displayed:
A =

L

0 2
-10 -10
B =
0
10
H:
1 0
D:
0

Assigning the simulation duration to be 2 seconds, assigning the step input (command)
with the magnitude 10, and letting the initial conditions be [-5 —10 17, we type
>> t£=0:.001:2; u=10*ones(size(t)); x0=[-5-10];
Typing in the Command Window
>> [y,x]=1lsim(A,B,H,D,u,t,x0); plot(t,x)
and pressing the Enter key, the transient dynamics of the circuit result. Figure 5.27 represents the
states variable behavior. If we need to plot the output transient (y) and the input command (u),
the user types the following statements:
>> plot(t,y), hold, plot(t,u,'+')
or
>> plot(t,y,t,u, '+')
The plots are shown in Figure 5.27.

Chapter 5 MATLAB Applications 169

n L . L L n
02 04 0.6 0.8 1 1.2 1.4 16 1.8 2

Figure 5.27. State variables and output behavior due to input function and initial conditions
O

Example 5.3.6. Mathematical model of permanent-magnet direct-current motors

Develop a mathematical model and build an s-domain block diagram for permanent-
magnet DC motors. A schematic diagram of a permanent-magnet DC machine (motor and
generator operation) is illustrated in Figure 5.28 [3]. Perform numerical simulations for a
permanent-magnet DC motor in MATLAB assigning the following motor parameters: »;= 1 ohm,
k,= 0.1, L,=0.01 H, B,,=0.005 and J = 0.001 kg-m".

J—/\/\/\”— o

Motor

! . —

Load

+. HJ
!'u 'ku(ur
\PMW

C——— —— 0

Figure 5.28. Schematic diagram of a permanent-magnet DC motor

Solution.

The flux, established by the permanent magnets, is constant. Applying Kirchhoff’s
voltage and Newton’s second laws, the differential equations for permanent-magnet DC motors
are derived using the motor representation documented in Figure 5.28. Denoting the back emf

Chapter 5 MATLAB Applications 170

and torque constants as k,, we have the following differential equations describing the armature
winding and torsional-mechanical dynamics [3, 4]:

iy _ —L’—ia ~ 5"—@, + —1—ua , (motor circuitry dynamics)
dt L, L, Y
d k B . . .
D _ 2 -, - 1 T, . (torsional-mechanical dynamics)
dt J J J
Augmenting these two first-order differential equations, in the state-space form we have
di, | |_r _ki7 |- 0
dt = La La La —
do, |~ k. B + u, { T,.
dt J a1 o J

An s-domain block diagram of permanent-magnet DC motors is developed and shown in
Figure 5.29 (this block-diagram is of particular importance if we use SIMULINK).

Motor Circuitry LTombm.’ — Mechanical
U,] I . P | @,
' L,s+r, e Js+B, '
k, L

Figure 5.29. Block diagram of permanent-magnet DC motors

As assigned, the simulation is performed assuming the following parameters: r,= 1, k,=
0.1, L, = 0.01, B, = 0.005 and J = 0.001. Taking note that the motor output is the angular
velocity, we use the following matrices:

-100 -10 100
A= -7, B= , H=[0 1] and D =[0].
100 -5 0

To perform numerical simulations, we download these matrices:
>> A=[-100 -10; 100 5], B=[100 0]', H=[0 1], D=[0]

Assigning the simulation duration to be 1 second, letting the applied voltage be 10 V (u,
= 10 V), and setting the initial conditions for two variables to be [0 0]T (iz=0Aand @ =0
rad/sec), we type in the Command Window
>> £=0:.001:1; u=10*cnes(size(t)); x0=[0 0];

>> [y,x)=1sim(A,B,H,D,u,t,x0);
>> plot(t,x); xlabel('Time {(seconds)'); title('Angular velocity and current’');

The motor state variables are plotted in Figure 5.30, e.g., two states i,(f) and o, (f) are
documented. The simulation results illustrate that the motor reaches the angular velocity 200
rad/sec within 1 sec.

Chapter 5 MATLAB Applications 171

Angular velocity and cument
200 --- - : : -

e A

150} N

50

sob—v]
G 0.1 0.2 03 0.4 0.5 0.6 07 0.8 0.9 1

Time (seconds)

Figure 5.30. Motor state variables dynamics: behavior of i,(f) and w, () states

The simulation of permanent-magnet DC motors is also reported in Examples 6.2.2 and

6.2.6 using SIMULINK. O
REFERENCES

1. MATLAB 6.5 Release 13, CD-ROM, MathWorks, Inc., 2002.

2 Kuo, B. C., Automatic Control Systems, Prentice Hall, Englewood Cliffs, NJ, 1995.

3. Lyshevski, S. E., Electromechanical Systems, Electric Machines, and Applied Mechatronics,
CRC Press, Boca Raton, FL, 2000.

4. Lyshevski, S. E., Control Systems Theory with Engineering Applications, Birchauser,
Boston, MA, 2002.

5. Ogata, K., Modern Control Engineering, Prentice-Hall, Upper Saddle River, NJ, 2001.

Chapter 6: SIMULINK 172

Chapter 6

SIMULINK

6.1. Introduction to SIMULINK

SIMULINK (interactive computing package for simulating and analyzing differential
equations, mathematical models, and dynamic systems) is a part of the MATLAB environment [1].
SIMILINK is a graphical mouse-driven program that allows one to numerically simulate and
analyze systems by developing and manipulating blocks and diagrams. It is applied to linear,
nonlinear, continuous-time, discrete-time, multivariable, multirate, and hybrid equations and
systems. Blocksets are built-in blocks in SIMULINK that provide a full comprehensive block
library for different system components, and C-code from block diagrams is generated using the
Real-time Workshop Toolbox. SIMULINK is widely used for nonlinear simulations and data-
intensive analysis of continuous-time (analog), discrete-time (discrete), and hybrid systems.
Using a mouse-driven block-diagram interface, the SIMULINK diagrams (models) are created and
edited. These block diagrams (md1 models) represent systems modeled in the form of linear and
nonlinear differential and difference equations which describe the system dynamics [1 - 5].
Hybrid and discrete-even systems are straightforwardly simulated, analyzed, and visualized. The
distinct advantage is that SIMULINK provides a graphical user interface (GUI) for building models
(block diagrams) using “click-and-drag” mouse-based operations.

A comprehensive and complete block library of sinks, sources, linear and nonlinear
components (elements), connectors, as well as customized blocks (S-functions) provide great
flexibility, immense interactability, superior efficiency, robustness, and excellent prototyping
features making use of both top-down and bottom-up approaches. For example, complex system
can be built using high- and low-level blocks (double-clicking on blocks provides access to the
low-level blocks). It was illustrated in the previous chapter that systems can be numerically
simulated (solving differential equations) using a wide choice of methods applying the ode
solvers. Different methods and algorithms can be used in SIMULINK as well. However, one
interacts using the SIMULINK menus rather than entering the commands and functions in MATLAB
Command Window. The easy-to-use SIMULINK menus are particularly convenient for interactive
design, simulations, analysis, and visualization.

To run SIMULINK, we type in the Command Window
>> simulink

and presses the Enter key.

Alternatively, click on the SIMULINK icon | A
The window shown in Figure 6.1 appears.

Chapter 6: SIMULINK

= U =
D]

| omtgmma ol " wteiane

E_.

o W e
o Wi g
o [T e et
o W ey gt
| L
| T ST
L T
o W ree em e
W et e
o Wl ravier mn
o W e
o W -
| T
Y AbPers (e
R
L
5w s
S reseman
LR]
R
o W v 0 Sy
B R

pandy TN RSN T . 1 Lt

Figure 6.1. SIMULINK window

To run SIMULINK demonstration programs, type
>> demo simulink
The SIMULINK demo window is documented in Figure 6.2.

173

Chapter 6: SIMULINK 174

e B e O S e

. a [
- B e e &
masrmw B 40 \amwi tee | _.'___'E_'_._ g __L...-.\-.---.. - i T S
_ : || s Cmmn W i)
s —r + Simulink Demos B
[P R e S d .:

1 b:'llul 1;': Sk w8 bool fae svadalog aady g ed s Lasant o W ouprtee o lafiee Boie e s dree
1 .. 1 ety el hane T e sne o Combrint sl B sete e
B L a }
¢ S L A erterae of MATUARD Tamuien sbis = ary lestory ige i s Sy Lpitess shils st ol of e s opine

d

J Gate Ty | e | sapiie
TN s A S
W et gaegiy il L e T e Vet
] o W Dt gy g e T sadeg”™
g) Searw
») Aifmalien
R d]

L

@1 St Mgpt et 4 e

B R o

e R e e e e o

W R b gt Y s

R ST

¥ e e e

A e g

o e Bl Sghe st

o TR s of et fuetent o e st

- e

TS e St S

» I Fow Tema wamasap

| ety of MATLAD
| Wer feean @ e bilownsg (degiewd 2 see Loernied £ oscben

Fawans | Terniiod gromdes sy babars Ue pumertl el of b sodeieg e s e ws Mobated ¢ Pae
| St abe Sl
.

T ‘s—nmnamnm-w-wmm o wary ey b eatepie Bty (degiee The
R e R s R TR g AR S
‘M:*onmu-ﬂmwﬁwliﬂﬁnhm Py bert o B et of pigheehs ias el

[y o @ gt

Amatwe Sarnien Siabehie wnd 1 Gie e T WIn MGG EerLent e e duitny 1 e Soan et @ e Bl ieanes el
T it T e il e 5 T s Vi 018 B s of MR AL i i b
o i
]

A 0 |m “latathom wd P Ha e T W ihog sger el Ve o Bty A tendiel g et @ T seringace bed
T ey, e g wil L T e P e T o MWL R e S R

Other Simuink Products
i farvisy or e Lowanh praf ty ey S catebed Ty B Beeein 1 s bl 8 T ilen el P Sttt
et e B wied i S0 Yobe D Bun 8 owgraturian bl of Lemalind eidaiti ¥ine et i ool ilaban o
M L it il Bk ely ov lafie Sedy L of Piais ety
r — - - e ————————————
-LMM Thew s gt

1
| 1§ ot Tomput Vi Aotiirsiia W SAA | Tty gomalion Boten. ¢ dsfip ety P Whstiomai MET SAF,
1
| B Srrmulird gt Taradiom mantein oo 8 0 o eal e

r-ﬂta Tre Windive T

G T Wt | Terarate O ¢t Hiem Sumlion Sty
b .

lM“I Wil pd prmiale e S 8) ey
s

¢

| S e, y v prmy

Tamdinn Eagud (aeae o

Whidhe il Lrahe $Y B e Ly U e
't

Aty iy preas st S amanton b Lamdic® el U2 stefom ey
.

I e Costaats jore lir emd Sumiied prodiar! 1ee S ermert sboe | oamglies 1y swm maes Logile ey (o0 e e 1oy

o P v sy R g et e et B g it

I St i |39 Tampe e ek ol e e s L e
] 3 P Vs Pt s T -
1 o BB renen ©egeet O ois See Also

Bl

| SO

CARANLEW

Figure 6.2. SIMULINK demo window

To analyze, model, and simulate continuous- and discrete-time dynamic systems
(described by nonlinear differential and difference equations) block diagrams are used, and
SIMULINK notably extends the MATLAB environment. SIMULINK offers a large variety of ready-
to-use building blocks to build mathematical models. One can learn and explore SIMULINK using
the SIMULINK and MATLAB Demos. Users who do not have enough experience within SIMULINK
will find a great deal of help using these MATLAB and SIMULINK Demos. After double-clicking
Simulink in the MATLAB Demos, the subtopics become available as shown in Figure 6.2. It must
be emphasized that different MATLAB and SIMULINK releases are available and accessible to
users. Figures 6.1 and 6.2 represent SIMULINK windows for MATLAB 6.5, while Figure 6.3
represents the MATLAB 6.1 release. Though there are some differences, the similarity and
coherence should be appreciated.

Chapter 6: SIMULINK 175

Figure 6.3. MATLAB 6.1 demos: SIMULINK package

The SIMULINK documentation and user manuals are available in the Portable Document
Format (pdf). The the help folder C:\MATLAB6pS\help\pdf doc\simulink includes the user
manuals. The pdf files (SIMULINK manuals) in the simul ink subfolder are shown in Figure 6.4.

Y 2 2@ @ U

m.pdf sfunctions.pdf sl_using.pdf sipt_m.pdf shref . pdf

Figure 6.4. SIMULINK user manuals in the simulink subfolder

These user-friendly manuals can be accessed and printed, and this chapter does not
attempt to rewrite the excellent SIMULINK user manuals. For example, a SIMULINK: Model-Based
and System-Based Design user manual consists of 476 pages. The front page of the manual is
documented in Figure 6.5 [1].

Chapter 6: SIMULINK 176

SIMULINK

Model-Based and System-Based Design

Modeling
1

Simulation
-

Implementation
- 1

Using Simulink A The MathWorks

Versiorn 5

Figure 6.5. Front page of the SIMULINK: Model-Based and System-Based Design user manual

With the ultimate goal of providing supplementary coverage and educating the reader in
how to solve practical problems, our introduction to SIMULINK has step-by-step instructions as
well as practical examples. A good starting point is simple models (see Figure 6.1). Simple
pendulum and spring-mass system simulations, tracking a bouncing ball, van der Pol equations
simulations (covered in Chapter 5 using the MATLAB ode solvers), as well as other examples are
available. Many examples have been already examined in this book. Therefore, let us start with a
familiar example, in particular, van der Pol equations.

Example 6.1.1. Van der Pol differential equations simulations in SIMULINK

In SIMULINK simulate the van der Pol oscillator which is described by the second-order
nonlinear differential equation

d2x 2 dx

?—k(l—x)Z+x—d(t),
where d(f) is the forcing function.

Chapter 6: SIMULINK 177

-2
Let k=10, d(¢) =10rect(2¢), and x, = Iixm:l = I:])
X20
Solution.
The second-order van der Pol differential equation is rewritten as a system of coupled first-
order differential equations

dx, (1)
=X, X {ly)=Xg5
dt 2 1(0) 10
dx, (t
—————;t():—x]+kx2—kx,zx2+d(t),x2(t0)=x20.

It should be emphasized that differential equations for the van der Pol oscillator used in

Chapter 5
t

dx:l:) Xy %, (fy) = X5 dx;t(t) =
correspond to this example.

The SIMULINK block diagram (mdl model) is built using the following blocks: Signal
Generator, Gain, Integrator, Sum, and Scope (Figure 6.6).

Simulation of the transient dynamics was performed assigning k= 10 and d(f) =10rect(2¢).
The coefficient, forcing function, and initial conditions must be downloaded.

The coefficient £ can be assigned by double-clicking the Gain block and entering the value
needed, or typing k in the Gain block as illustrated in Figure 6.6.

By double-clicking the Signal Generator block we select the square function and assign the
corresponding magnitude 10 and frequency 2 Hz (Figure 6.6).

,u[(l—x,z)xz ——x,l X, (ty) = Xy,

e . -2 . -

The initial conditions x, = [x“’:l =|:) :I are assigned by double-clicking the Integrator
X20

blocks and typing x10 and x20 (the specified values for x10 and x20 are convenient to download

in the Command Window). Hence, in the Command Window we type
>> k=10; x10=-2; x20=2;

Specifying the simulation time to be 15 seconds (see Figure 6.6 where the simulation
parameters window is illustrated), the SIMULINK md1 model is run by clicking the ... icon.

The simulation results are illustrated in Figure 6.6 (behaviors of two variables are
displayed by two Scopes).

The plotting statements can be used, and in the Scopes we use the Data history and Scope
properties assigning the variable names. We use the following variables: x1 and x2. Then, the

designer types
>> plot(x(:,1),x(:,2))
>> plot(x1(:,1),x1(:,2))

The resulting plots are illustrated in Figure 6.7.

Chapter 6: SIMULINK 178

M-IN’ h-liso
ok opaore
"o"o‘"’ Topw [Voratiesiep =] [odedS Dommand Perce) -]
Sunat Map e [sto Relatve iemarce | 103
Gerensmn
il shop sam | Mo
1 dgad cgtora
| Fotrm cuspue = Fledre tacter |1
o | Cocut| b | o |
<
ety

Urdte :.-m -

—

¢ Irtegeel vechor paameters s 1 D

x| s | e | J

' Scope: xi = [OX

&h oPRP ABE B

Figure 6.6. SIMULINK block diagram (c6_1 1.mdl)

Transient behavior for x;

pJ— . e

b wd 0. X

SRLLL AGE ©

Transient behavior for x;

Figure 6.7. Dynamics of the state variables

Chapter 6: SIMULINK 179

Many illustrative and valuable examples are given in the MATLAB and SIMULINK demos,
and the van der Pol equations simulations are covered. By double-clicking the van der Pol
equations simulation, the SIMULINK block diagram appears as shown in Figure 6.8. In particular,
we simulate the following differential equations:

() _ o de()
=X, =
dr

2
=X+ Xy X[Xy

dt
e ® —
- " e &'_,
e [-y - -
I aatad Lmm— Ml
[—- oy g pen Bn matal
. :—ru. Van der Pol Equations Semulation
. ¥ rsiilioina 1
W s e T
L L To saw o dema of Bhn_ pent tyge “wliptema” o B (emmand e afes e el sedee o g
o Cprs B medal
G i e e e e (O]
W B i b
7 uctes . e > . e “ 2
| ErTTr— DSUS “@: s s BELS
b - —
L BT van aee Pos Equanen
W e Se— A = |
T -

(o) :1] o+ ¥ Jo=e ::-} o)

e e] r

. -
o D g by e i :u| + 1
J
R s P T
[
L Pt e o ptine — —
» 0 he o e l ';'._
o P Eew Tea mnaatag | =
» R e i i e ’

N o

e e T e] -

o P e e
B R e T LRy -
w I e egat Cataeeme

»
o

Figure 6.8. SIMULINK demo window, block diagram to simulate the van der Pol
equations, and scope with the simulation results O

Example 6.1.2. Simple pendulum

Simulate a simple pendulum, studied in Example 5.2.2, using the SIMULINK demo.

Solution.

Double clicking the simple pendulum simulation in the SIMULINK demo library, the
SiMULINK block diagram (model window that contains this system) appears. This md1l model
(block diagram) is documented in Figure 6.9.

Chapter 6: SIMULINK 180

e g e =
e & revn [oe
. .
R] -
wemes DS Ppesten
L Cootirng Saart mem Do —ppend od Lrte P madel
o warias Sirple Pendutum Seroiston
= Tt
Y - THA L PV St 8 b peS e T el W A § e s usmand Tl sara s et aly
L Ll Agio el et e ferw a0 st aton Lo tae Tl el et et il iges) e emnfioe g S0 giay b f
) S— Toy wagaremetag ot eyt ol et st At Lo g br S sggiad = W

W T e o Bt g

st enovom oyt
 E— o e B

o e e P e el p
1
B DFsESs L b o - =] &> Y | .
a .
R T - v r
PR S et foooe B
7 et YR . L P g
raaies o
o e gty wene e | | r— 1 L i ~1
Fu b @ e e { . = LIS [! o/
- L : - e 1 { | |
. FE e el e g |) L LU T ———
. e | B [P,
PR e o - | r= |
¢ T s |
N e s I LR e - "
B L LI | |
B) A e |
|
= _JAwpme |
{ wrews o i
o P e e muninag
MY Ta— Pr—
bamgis P doiin e [
» » » l [RSre
.- LAl R] Mot Bl vn Do * P by s why TS
o P e Feteges o Voo | voncion may
. L e e 4 |
o P tinen et g e ———— R ek - L
o I Pt
R Y—
P B e e e e
—
i

=

Figure 6.9. SIMULINK demo window and block diagram to simulate a simple pendulum as
well as perform animation

The equations of motion for a simple pendulum were derived in Example 5.2.2 using
Newton’s second law of rotational motion. In particular, we found that the following two first-
order differential equations describe the pendulum dynamics:

do

dt

The moment of inertia is given by J = ml* . Hence, we have

i@:—gsineﬂh%];,

dr

dé

—=w

dt
These equations are clearly used in the SIMULINK block diagram documented in Figure

=l(—mglsin9+Ta - B, o), 49 _ .
J dr

the SIMULINK toolbar) or clicking the . icon. As the simulation runs, the animation that
visualizes the pendulum swing becomes available (Figure 6.9).

Chapter 6: SIMULINK 181

All demo SIMULINK models can be modified. For example, since we use the differential
equations, which simulate the pendulum dynamics, the state variables (angular velocity @ and
displacement @) can be plotted. We use two Scopes and XY Graph blocks (Sinks SIMULINK
blocks), and the resulting modified SIMULINK block diagram is documented in Figure 6.10. As
illustrated in Figure 6.10, we set the “Stop time” to be 60 seconds.

l_" sunppend *

B [t Yew Sdstion Fomet Jook Heb : S | whsh e 10 | Onmgpentin | Advrc| A e ok e |
el
DNSES rTBR2 REYL ®|» » [l 5 | |- s
B R b
[()IU‘..UU] —y '-l"“"' .y :j [.-r L vl Frgu o :I
Prwel pont - ’_'—. -

Apphied for pandulum

Momert M
>
LF Y Se—

1Nan

7] | S

-I.ﬂi.-lt.l Animation
‘ st ere

. D Funchon In.q-. e ;] e [‘_
| Su;- hets ’IO] “J c"“I “.I J

dot

f/’
< 08
oy
Am'len™D) =
:]] XY Graph
— - 0 Fundv)
Scope w
¢ un(thets)
Sunple Pendulum System - Deuble clich
(Double chick on the ™7 for more info) hoos for
Semulirk Help
To start and slop the umulsbon. use the *Slat/Slep™ - -
relection i the *Simulaton™ pull dewn meny ;I
P ——
Geady [ioo% f f odeds #

Figure 6.10. SIMULINK block diagram to simulate the simple pendulum

The resulting dynamics and the xy plot are illustrated by the two Scopes and XY Graph
blocks. In particular, the simulation results are shown in Figure 6.11.

Scope: theta (@) Scope: w (@) XY Graph

an PP ABEB BE% | @R 2L ABB DL %

TR IS, el B ST

Figure 6.11. Simulation results for the simple pendulum

Chapter 6: SIMULINK 182

To start, stop or pause the simulation, the Start, Stop, and Pause buttons are available in
the Simulation menu (Start, Stop, and Pause buttons can be clicked on the toolbar as well).

One can open SIMULINK, Aerospace, CDMA, Communication, DSP, other Blocksets, as
well as the Control System Toolbox, Fuzzy Logic Toolbox, Real-Time Workshop, SIMULINK
Extra, System ID (identification) Blocks, etc. Figure 6.12 documents the SIMULINK Library
Browser accessible by clicking the Continuous, Math Operation, and Sinks SIMULINK libraries.

L B L B L
D um| D wuw| D@ umw~
D alewn " s 5 B s b A A e b Doy v Wahm | riad e
"‘" ..M‘ 2 — ._.. I
- c [Y[——
‘=, =} > oanns - o =
5. e wtnten ¥ tmcweam =) - i
8 (i I -y 5wy LT 5 e Thawy aw
b ST RN 5 Lo o Vi " - 5 L o e
- - o ¥ - .
5 e s l"‘:r'll-!“' 5 e gy ” s N gt e e i i
(AP P i R T (Y- 2 Mk vl s
R TR I L M e R T] B R i
B s b el L= e) ~ " L
d 1 B g b Ll Cotwama . -
R T T :‘.d . Dok - L)) - - e " proe a eaeee
5 epa oy J 5 ‘wps basry b
B wes [oa] - 2 1wbe P [r— > 28 :
B e i“g Ve | Ly 5 s — B ngues . -
LTy T — “_‘ S e (wteed | parven ':.‘ ; np— N Carwed Fogy e
. = - S . [Ty T R . [——) pettat o) ol
| B -
z - L o T s Bt — o W OO s Mt
B e W —
o W v s o W e wes S | * | Serae o M s gy Babos P ke
| TR | R o o W e e e i
» . . "S> & . o »
W P e W P | - W o B A o
| R o I e b aags : ' "
| BRI TE . :-»ﬂm.--- = Lo g » :.,_..”.,...._,
B ey o e o I Py L Somlbn . o [Pary g tenlhes
T L el | s A vy | dade
o I L e o D e J o W D
o W e s et B b o W —) [[ET— o W e S
o W e e e + [be0 tow mwidug) o W s e i
| R | L .':'.'." W imr seaa
o W e e o Ve - i N g o W e
e —— . et . 4 . W et
B R e, W e |) e - W e i
o e . T = T
FRI B e o | e | K
B o W e £ ke o W e
o W) vt s B T e [. o W bl il
amyey | e
f 1
Pt
f=.] -
Lot | Pesbinag e Compien
]
s Cmmra -
(|
W |
[1
[*~ Fasdry | avwr
= 3] -
—
| ¥ | S
o amt] (e

Figure 6.12. Continuous, Math Operation, and Sinks SIMULINK libraries

The SIMULINK libraries to simulate simple mechanical and power systems (applicable for
educational purposes) are available: see SimMechanics (Sensors & Actuators) and
SimPowerSystems (Elements) illustrated in Figure 6.13.

Chapter 6: SIMULINK

183

.
.

L3

-
*
-

*

.

| Sl e R P TN

Fie IR Vew e

Do
Body Actualon Actusie: s oy s geres shoedd rce Noogue ugral Veckr component:

W ik

W Aeroigace Mockset

B (DMA Refererce Bocksee
B Commurmstons Bockset
W Conerdl Systees Tookos

W 0 ks

B 0w B Gauges Bockaet

W o o thochet

B sy Loge Tookox

W 9 ks

B D Bochset

W oo o Netrcrh Poxhset

B fedl Toe worstop

W fepont Gererater

B 5 hurcton demos

- Il Setecharscs

B Bodes
B Corstrants & Dewvers
= B s
B Onsssenbind Jorts
5 Marsdens Corvmton
5 Sermors & Actustors
B uniees
W bt
5 Corvectons
5 Oectrucal Sources
5 Oeverts
i b itreltray
5 Mactees
2 Mesnsements
5| Power Dectroracs
| BT
W oo
B System 1D Bocks
B vrtul Resity Toobox

SR]

IC

e

Boxdy Sorman

Comtart L Dever Sermor

Jowrt Actuston
Jowt bkl Cordibon

Jowrt Sereos

Fie IR Vew e

DoF |

& W Sewiek
+ W Aerospace Bockset
o I COMA Refererce Bockset
+ I Comeureston Mockset
W Cortrol System Tookon
o W 09 Bockeet
+ I Ousls & Gauges Bockset
o [Fred Port Bocset
s .’\lﬂlnﬂlﬁ-
B tocks
+ .“:Dm
+ I Mol Network Blockset
. -Mfﬂm
B Fevort Gererstor
+ I Stucton demos
+« W ety
= W SeFoemr yitemn
& Correton
5 Dectreal Sources
> el
- B e ltray
5 Addtonal Mactres
5 Control Bocks
5 Dmcrete Mesuremerts
5 Omcrete Contrpl Bocks
B Mesurerenty
B Phusor Ltrary
5 Mheeeitune Lirary
5 Mactarms
B Mesusemernts
5 Powser Dectrorscs
« W Sewiek Dtres
W 2atefion
+ W Srstem 1D Blocks
+ I vrtusl Reslty Tookos

3 Phate Dynamec L oad ingimerts s Sree chate Pree sae Ao oot Actve poves P and ea o

.
. 3P ase Dyremec | omd
@
o TCe| 3 Phase Mutsd inhuctance 21 20
-~
3 -
IPhane Paaled FLC Buarch
e €
—@_ 3Prase Paaliel ALC Losd
LY A
‘“l-l IPhane Seven ALC Branch
e €
3Prane Serms RLC Load
- -
sp | IPhase Bresker

siar | 3Phase Fauk

Ifhave P Secton

IPhase Tranddommer 12 teemwnals

Beme

Datrtnded P wamaten: | re

Lrwas Tiarmbcrme
Mutugl Induactarce
Pacadel RLC Bearch
Pasadel RLC Load
LT
g G s abie 11 arbommes

MW} Sevms ALC Branch
MW} Semes ALL Load

—W— Suoe Avene

Theee Phate Tianstomes (Theee Windng:)

Thoee ghase Tiaralormes |Two Wirdeg:|

Figure 6.13. SIMULINK Library Browser: SimMechanics (Sensors & Actuators) and
SimPowerSystems (Elements)

Chapter 6: SIMULINK 184

It was emphasized that the SIMULINK windows are different for distinct MATLAB releases.
Figure 6.14 illustrates MATLAB 6.1. By clicking on Simulink and Simulink extra, and then
opening the Continuous, one has SIMULINK Library Browsers as documented in Figures 6.14.

! Simulink Library Browser

=N
=3 3 Continuous
@ 3 Discrete @ Denvative
@ 3 Functions & Tables Q@ Integator
& »] Math @ Memory
@ 3 Noninea @ StateSpace
% 3 Signals & Systems Q@ Tiansier Fen
5 » Sinks @ Tiansport Delay
&] Souces @ Vasiable Transport Delay
@ B Communications Blockset Q@ ZewoPole
@ [Control System Toobox @ 3 Discrete
@ W Fuzzy Logic Tookbox % 3 Functions & Tables
@ W Newal Network Blockset & 3 Math
@ W Stateflow 5 3 Nonknea
5 B Simulink Extras @ 3 Signals & Systems
@ » Additional Discrete 4 5] Sinks
@1 3 Addtional Linear & 3 Souces
& 3 Additional Sinks @& B Communications Blockset
%) 3 Fip Flops @ [l Control System Toobox
@ 3 Linearization & I Fuzzy Logic Toobbox
&1 3 Transformations & B Newal Network Blockset
@ [System 1D Blocks & W Stateflow
& B Simulink Extras
@ Il System ID Blocks
This is the ‘simulink 3’ Rbrary ; This s the ‘simulinkd’ Rorary

Figures 6.14. SIMULINK Library Browsers for MATLAB 6.1

In addition to Continuous, the designer can open the Discrete, Function & Tables, Math,
Nonlinear, Signal & Systems, Sinks, Sources, and other block libraries by double-clicking the
corresponding icon. Ready-to-use building blocks commonly applied in analysis and design of
dynamic systems become available.

Chapter 6: SIMULINK 185

6.2. Engineering and Scientific Computations Using SIMULINK with Examples

To demonstrate how to effectively use SIMULINK, this section covers examples in numerical
simulations of dynamic systems. We start with the illustrative examples in aerospace and
automotive applications available in the SIMULINK demos illustrated in Figures 6.15 (MATLAB
6.5) and 6.16 (MATLAB 6.1), which can be accessed by typing demo simulink in the

Command Window and pressing the Enter key.

—— L] L . s sach e .
o S €] . e NS
— —_——— -
- — L ——— »
. —— -— ——— - ——— —— ———
e i — 3 e —
. 8 —
| . e —— e ——
" a— -

i (o8 s psanas Jas rrase s

Figure 6.15. SIMULINK demo with automotive and aerospace app]icati_(');l-é-e;{amplé-s':
MATLAB 6.5

AT A [Wi

Hire ' rww T T T ———
o e - e ey el] g wEed

T h g i m Segrees o Veedm sueme (hafoe

R et R T Mt wame v et e e s vy #
At iomn Do e L e q
L Apecoagamn biat Bowy
ol i v boadel

et e L
Cawwcy | haw [mewcior [

FpBmb yihe oaden

PGl oy corti ey | ergees L og be e el snte Seeer
N L . | L Soatin S gt
[rrme dmgmms of vaayen Jated s e
=5 = B T L e)|
F T AES = .
4! s g - ‘____:‘:\24__‘:'_%_‘_‘_
. ; ’ ’ -
Ce [g ey I O JR P T 14 e cormed
o 5 a A

Figure 6.16. SIMULINK demo with automotive and aerospace applications examples:
MATLAB 6.1

Chapter 6: SIMULINK 186

By double-clicking on the F14 flight control simulation, the SIMULINK
block diagram (mdl model) illustrated in Figure 6.15 is displayed. The simulation results are
documented in Figure 6.15. This SIMULINK block diagram was developed using the differential
equations which describe the aircraft dynamics. Having emphasized the importance of the
demonstration features, let us master SIMULINK through illustrative examples.

Hllustrative Example: Simple problem

In SIMULINK simulate the system modeled by the following two linear differential equations:

dx, (1)
dt

dx, (1)

=—kx, () +ut), x,(t,) = x4,

=KX, — X5, X, (1) = x50 =0.

The input u(f) is a sinusoidal signal with magnitude 50 and frequency 2 Hz. The coefficients and an
initial condition are k, =5, k, =10, x,, =20,and x,, = 0.

Solution.

We use the Signal Generator, Sum, Gain, Integrator, Transfer Function, and Scope
blocks. These blocks are dragged from the SiMULINK block libraries to the untitled mdl window

model, positioned (placed), and connected using the signal lines shown in Figure 6.17. That is, by
connecting the blocks, the SIMULINK block diagram to be used for simulations results.

Y untitled * Lol [® (s 3

Fle Edt View Semdation Fomal Tooks fle Edt View Simuation Fomat Tgols SddnEar

ND@EHE *T"H 22z » s|RB| |DSEE| YD Q] b u K
oooo| . K2 _— e
H?{} {>| ER = KR N =

Generator Integratos Transter Fon S00pe

<

k1

Tiansfer Fon Scope

o0 | : [ode45 7| o | C
Figure 6.17. SIMULINK block diagram to model ixc‘if—t) =—kx, (1) +u(t), dx;t(t) =k,x, — X,

The differential equations parameters and initial conditions must be downloaded. In the
Command window we type
>> k1=5; k2=10; x10=20; x20=0;
to download (input) two coefficients and initial condition. The Signal Generator block is used to

generate the sinusoidal input, and we specify the amplitude and frequency as illustrated in Figure
6.18.

Chapter 6: SIMULINK 187

Figure 6.18. Block Parameters: Signal Generator

Initial conditions are set in the Integrator block. Specifying the simulation time to be 10
seconds, the transient behavior of the state x»(¢) is plotted in the Scope (Figure 6.19).

d Sc ope

Figure 6.19. Simulation results displayed in the Scope 0

Example 6.2.1. Simulation of permanent-magnet DC motors

Numerically simulate permanent-magnet DC motors [4] in SIMULINK. The motor
parameters (coefficient of differential equations) are: r, =1 ohm, L, = 0.02 H, k, = 0.3 V-
sec/rad, J = 0.0001 kg-mz, and B,=0.000005 N-m-sec/rad. The applied armature voltage is
u,=40rect(¢) V and the load torque is 7, =0.2rect(2¢) N-m. Initial conditions must be used.

Solution.

Two linear differential equations must be used to model and then simulate the motor

dynamics. Model developments were reported in Example 5.3.6. The following differential
equations were found:

Chapter 6: SIMULINK 188

di, . Y
-4, -—*w +—u,

d L, ° I, L,

do, =i, —E’"—a)r ——I—TL.

dt J J J
The next problem is to develop the SIMULINK block diagram. An s-domain block diagram

for permanent-magnet DC motors was developed in Example 5.3.6. This block diagram is

T Torsional — Mechanical

L

. | @,

U, i : I al _
-] —— |
N Ls+r, . Js+ B,

documented in Figure 6.20.
Motor Circuitry

=

Figure 6.20. Block diagram of permanent-magnet DC motors

Making use of the s-domain block diagram of permanent-magnet DC motors, the
corresponding SIMULINK block diagram (mdl model) is built and represented in Figure 6.21.

-1
[} are downloaded (see “Initial conditions” in the

. . %10
The initial conditions x, ={ }
X2
Integrator 1and Integrator 2 blocks asshown in Figure 6.21).
The Signal Generator block is used to set the applied voltage to be u, = 40rect(?) V.
As was emphasized, the motor parameters should be assigned symbolically using
equations rather than using numerical values (this allows us to attain the greatest level of
flexibility and adaptability). Two Gain blocks used are illustrated in Figure 6.21.

Chapter 6: SIMULINK

Ml G Ves Smiton femd Took e

DFES L0E 22 » = o Ju@s nEmT e
‘ — St ﬂ
i = J= B
[‘::J' l;lﬁjl-o: j
oooo| g, [' ‘1
'cn l {‘.‘-l"_) 1' ‘1'{ 0 } B 3
b anad 5 gty ‘-.-w‘ baaindad

Basacste wub [

—
lam

Cartrsana tome reoganr o Po rpud wyre

t»I

189

o bram s cowersy Oeme ter

o | o |

Mo

|

LY [T——r - |
[P - Vo [Y SV pa—
[B (e i [ra
it coretir wasc |y =] il condien sousce [roeedt =) e | Coent l [I____“___J
e = P
T MRS AN . o
I Ui igs T Ustest Clamart wine gun Iy + K. "l s mati g p » K .+ 400
P —=ill -
P i I* ‘F:- [[=——p—— =]
[e s g, ot [7 Srom usmasson post
[Shone sate gt I Shew saw pot [T T
s [X | Coes | W | !

J

Figure 6.21. SIMULINK block diagram to simulate permanent-magnet DC motors
(c6_2 1.mdl)

To perform simulations, the motor parameters are downloaded (we input the coefficients
of the differential equations). We download the motor parameters in the Command window by

typing

>> ra=1; La=0.02; ka=0.3; J=0.0001; Bm=0.000005;
The transient responses for the state variables (armature current x, =i, and angular
velocity x, =w,) are illustrated in Figure 6.22. It should be emphasized that plot was used. In

particular, to plot the motor dynamics we use
>> plot(x(:,1),x(:,2)); xlabel('Time (seconds)'); title('Armature current ia, [A]');
>> plot{x1(:,1),x1(:,2)); xlabel('Time (seconds)'); title('Velocity wr, [rad/secl');

Chapter 6: SIMULINK 190

Armature cument ia, {A] Velocity wr, {rad/sec}
20 v T T 4 T T 400 y
|
15 ; B 300 |
10 200 4

- !
10+]
| |
sl B T
0 o1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 05 1
Time (seconds) Time (seconds)
Figure 6.22. Permanent-magnet motor dynamics
This example illustrates the application of the SIMULINK package to simulate dynamic
systems and visualize the results. O
Example 6.2.2.
In SIMULINK, numerically simulate the second-order dynamic system [5]
dx, (1)
-;;t =Xy, % (1g) = Xy9,
dx, (1) _

—x, + ko, — ke x] Xy, Xy (1) = Xpq -
assigning the following coefficients:
. Case 1: k=5 and k=1;

. Case 2: k=100 and k; = 1;
. Case 3: k=100 and £, = 0.

Chapter 6: SIMULINK 191

X0 -1

x 1
The initial conditions are x, = [10} = [} .
Solution

The SIMULINK block diagram (which allow us to perform numerical simulations for three
cases) is developed and illustrated in Figure 6.23.

fle [View Suistion Pomst Took Melp

D FEHSG LXam 2 - » = |hees @ pmTe®
an
ooooD Scope =1 (ia)
oo w -
i Signal o
oooo
oo s . = jOonerste: (T0g] vats . . —J
Slgnal Sains - Integratont Caina Integrate @ Soepe: i o)
Ganerator(ua) -
Sum Gand
Sumi Predd
G awnd
@—
oty 1 e

Figure 6.23. SIMULINK block diagram (c6_ 2 2.md1l)

The transient dynamic waveforms, which are displayed by double-clicking the Scope
blocks, if k=S5 and k; = 1 are shown in Figure 6.24.

Chapter 6: SIMULINK 192

J Scope: x1 (ia) = (0 X!) Scope: x2 (wr)

8B PLP ABBRB: ¢ |lem 0PL ABE O -

--

Teme offset
Transient behavior for x, Transient behavior for x, Two-dimensional plot
Transient behavior for x, Transient behavior for x, Two-dimensional plot

4 L 25 25
o 1t =2 3 4 5 6 7 8 8 o 1+ 2 3 4 S§ & 7 8 8 1« 4 08 06 04 02 O 02 04 06 08 1

Figure 6.24. System dynamics, k=5and k1= 1

Assigning £ = 100 and k, = 1, the simulated responses are plotted in Figure 6.25.

Transient behavior for x, Transient behavior for x, Two-dimensional plot
. ,
os : 2
“ T 1
04 0 J } 3
02 . 4
RIS
Dl o o5 1 15 2 25 3 35 4 45 5 B4 7 6 o2 o+ o8 o8

Figure 6.25. System dynamics, k=100 and k; =1

Chapter 6: SIMULINK 193

For k = 100 and k; = 0, we simulate dxc;t(t) =Xx,, x(t,) =1, dx, (1) =-x, +100x,, x,(t,)=-1.
The system behavior is plotted in Figure 6.26.
Transient behavior for x, Transient behavior for x, Two-dimensional plot

50
10 \j 50

45/ 4 P
o 05 t 15 2 25 3 35 4 45 5 0 65 t 15 2 25 3 35 4 45 5

Figure 6.26. System dynamics, k=100 and k; =0

This example illustrates that dynamic systems can be efficiently simulated and analyzed
using SIMULINK (system can be stable and unstable if k=100 and k; = 0). O

Example 6.2.3. Simulation of single-phase reluctance motors
The nonlinear differential equations to model synchronous reluctance motors are [4, 5]

di 7,) 2L, S
—= = = i, = i, sin26, + = U,
a L+L,-L,cos20 © L.+ —L, cos20 L,+L, —L, cos26,
do, _ —1~(LM ? sin26, - B, o, T,),
dt)
do,
=w,.
dt

Simulate the motor in the SIMULINK assigning parameters as: r, =2 ohm, L,, = 0.5H, L, =
0.02 H, L, = 0.004 H, J=0.00001 kg-m?, and B, =0.000004 N-m-sec/rad.

The voltage applied to the stator winding is u,, = 20sin(26, —0.62). The load torque is
7, =0 N-m.

Solution.

The motor parameters are downloaded by using the data m-file.
synchronous reluctance moter
; rs=2; Lmd=0.5; Lmg=0.02; Lls=0.004; J=0.00001; Bm=0.000004;
= (Lmg+Lmd) /3; Ldm=(Lmd-Lmg)/3;
xrms value of the wvoltage

We must run this data m-file or just type the parameter values in the Command Window
before running the SIMULINK md1 model. The SIMULINK block diagram is documented in Figure
6.27.

Chapter 6: SIMULINK 194

Fle ER View Seulstion Format Took Melp

DEEHS J@ 2= » =|Nemd Jo@ RE @

- O ain
TLemtan(2"v) x .
g > O
LT Il A L Integeater § t-.:._ .

MATLAD
Funchan

o - rm—— »1-

Seepe —_— P

— .F‘r;‘?.'m.w} — x p— . ! — ® — 4"5“ ..[-]

o l“_n_ - ~ "EI%JN Gan l-u_;do- Secope v
Preduct - r . .

Ready

Figure 6.27. SIMULINK block diagram for simulation elementary reluctance motors
(c6_ 2 3.mdl)
The transient responses for the angular velocity @, () and the phase current i, (f) are

plotted in Figures 6.28.
.) I Scope: las N =] ¢
&R LLL AEBAE B - S0 P22 ABEA B

PRI

il
|

Figures 6.28. Transient responses for the motor variables (w, and i)

We conclude that SIMULINK was applied to model a single-phase reluctance motor.

Changing the motor parameters, the user can examine electromechanical motion device

dynamics in the time domain. O

Chapter 6: SIMULINK 195

Example 6.2.4. Simulation of three-phase squirrel-cage induction motors
In SIMULINK simulate induction motors. The mathematical model of three-phase
induction motors is governed by a set of the following nonlinear differential equations [4, 5]:

i’ ;' V4 K T
iy =1 Ly + L) St g 1y ey d(iy co56) oL d('b' oo +2_3')) L d(lc, cos 6, —%))’
dt 2 dt dt dt dt di
; : dieoda-2) dfiess) i, cofg+Z))
”bs:rsibs_%LmCh_m*“(LzﬁLm)i;’;s—%Lm‘_ia';i+Lm i cos(3) +L, (lbrcos ,)+Lm i cos(3) ,
t at ar
27T . 27T o
PRSP X T)
™t 2 dt dr dr dr =
. d('sc @_EE) (0 427) .‘
u;r=r,'i;,+Lmd(l“’cosa’)+Lm s sl L cos(7 (L, + L) Do 1y Ay 1y dig
dt dt dt 2 & 2 &
- 27T) . _ | |
by =iy + Ly o2+ 7)) 1, At) e COS(Q' 9, B (1, 1, e 1, e
dt dt dt 2 dt d 2 dr
. 2T . 2T R ., . .
qu = rr'l;‘r + Lms d(l‘” CO*Q’ _ T)) + Lms d(lbs co*er ! T)) + Lms d(lcs cosar) - les _‘_Jl_ar_ - iLms dlbr + (L[r + Lms)&a
d dt d 7hms T T2y o

dw P?
r o - . l - 1 . . . _l- . _-l—. _L. -
dt - 4] Lms {[las (lar —flbr - 7lcr)+ Lps (lbr 2 o 7 cr)+ lcs(cr 2 I 2 Lo)]Sln 6,_

e L=Vl i)+ 1 i Jeos0, -2, - Lo,
ae,
at
The induction motor to be numerically simulated has the following parameters: », = 0.3
ohm, r. = 0.2 ohm, L, = 0.035 H, L, = 0.001 H, L, = 0.001 H, J = 0.025 kg-m?, and B, =
0.004 N-m-sec/rad.

Chapter 6: SIMULINK 196

Solution.

Using the differential equations, one must build the SIMULINK block diagram. From the
differential equations given above, we obtain the following set of equations to be used in the
SIMULINK md1 model:

di, 1 [_” +iL iy Ny, @L—L a’(i;,cosér)_L d(i;rcos(€,+3§{))_L d(f;rCOS(H,—?))Jrum}

dt L+L, Ty T T " dt " dt
Is ms | . J
di, 1 F_rl L y di di. +,;.Lms diy, L d(i:" co*é?r +?))_Lms d(i},, 005(0, —2—;{))_1‘7”5 d!i;, cosé, !+ ucs_’
dt L+L,| dt dt dt dt dt |
b, {_ i Auest) dhcods, %) | dicodp +4))+% o1y s H,;”}
d L +L, dt dt dt dt
diy, _ 1 r—f’l;,, (z cos(@ +2 » L. d(i,, cos6,) L. d(ics COS(@‘?)) WL, dliy, il di,, N u'br_,
di L, +L,| dt dt dr a7
i, _ . L (1 co<¢9)) L d(i,,s cos(é?, +?))“Lms d(i cosd,) NS di,, ' di, +u-cr_’
dt L,+L,| dt dt di |

do P? : , : : . .
_ . . ‘ - ‘ - . .] . .
dtr - _'ELms {[las(lar —7lhr _?lcr)+ lbs(lbr —?lar __z_lcr)+ I (lcr - lbr)]Sll’le

+§{im(igr "i;,J*‘fbs(i;r -)+lcs(ar il;r)]coser }_B—;w’ ——Z_I;TL’
do

r

@, .
dt i
To guarantee the balanced operating condition, the following phase voltages should be
applied to the induction motor windings:

u, ()= ﬁuM cos(a)ft) R
u, ()= \/EuM cos(a)ft - %7[),
u, (1) =~2u,, cos(a)ft + %ﬂ')

The SIMULINK block diagram to simulate three-phase squirrel-cage induction motors is
developed and illustrated in Figure 6.29. The Derivative blocks are used.

Chapter 6: SIMULINK 197

!

var

h 4

&

Tbr

ibs, Subsysem for Torque Qr

{diasiat

drar/al

F VY YYYYYYY

Subsystem for far

dias/dt l

a
=3

dics/dl fep—
drar/dt

dibridt
dicriot M

diberdt

]
;V_V_V_VVV rvy

Subsystern for ibs Subsystem for i'br

e
ot e pg—

dctidt

£
YYYYVYYYVYYY

o

Subsysten for ics

Figure 6.29. SIMULINK block diagram to simulate squirrel-cage induction motors

Subsyem for fer

(c6_2_4.mdl)

Chapter 6: SIMULINK 198

The induction motor parameters », = 0.3 ohm, r, =0.2 ohm, L, =0.035 H, Z, = 0.001
H, L, =0.001 H, J = 0.025 kg-m?, and B, = 0.004 N-m-sec/rad are downloaded. In particular,

in the Command Window, the designer inputs the motor parameters as
» P=2; Rs=0.3; Rr=0.2; Lms=0.035; L1s=0.001; L1lr=0.001; Bm=0.004; J=0.025;

Nonlinear simulations were performed, and transient dynamics of the stator and rotor
currents in the as, bs, cs, ar, br, and cr windings i, (t), i, (£),i (), i, (£),i, (£),andi (f) as well
as the rotor angular velocity w,,(¢), are documented in Figures 6.30 and 6.31. The statement to
plot the evolution of w,,, (1) is

>> plot{wr(:,1),wr(:,2)); xlabel('Time (seconds)'); title('Angular velocity wr, [rad/secl]');

p— Angular welocity wr, [rad/sec}

400

) we LB

SR LLHO AEBE O - 0}

300
250
200+

150 -

1

o] 0.05 0.1 0.15 0.2 0.25 0.3 0.35
Time (seconds)

Figure 6.30. Transient dynamic for the angular velocity ,,,(¢)

0.4

Chapter 6: SIMULINK

Stator current ias, {A]

0 0.05 0.1

0.15 0.2 0.25 0.3 035 0.4

Time (seconds)

Stator current ibs, [A]

0 0.0 0.1

0.15 0.2 0.25 03
Time (seconds)

Stator current ics, [A]

P . e . ,
4] 0.05 0.1 0.15 0.2 0.26 0.3 0.35 04
Time (seconds)

199
Rotor current iar, [A]
200 T
B
i n\‘
H : v
H / \.
B { A
; { ,
[
o
i
200 L . i L s \ L
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04
Tima (=eronds)
Rotor cumrent ibr, [A]
200 — v T T e
-~
;':
zm sz_—_.x 1 1 1L L — n
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 04
Time (seconds)
Rotor cument icr, [A}
N
it
j
D
,;]
S
H N
lJT
-150}
200 \ L
0 0.05 0.1 0.15 0.2 025 03 0.35 04
Time {seconds)

Figure 6.31. Transient dynamic of the currents in the stator and rotor windings

Chapter 6: SIMULINK 200

Example 6.2.5. Simulation of permanent-magnet synchronous moftors
In SIMULINK simulate three-phase permanent-magnet synchronous motors described by five

nonlinear differential equations [4]:

di r (2 Lss - Zm)
Has __ - i . m
d 200 -LL -L2° 20-L,L,-L:" 20-L,L, —-L*

ssTm m 55

+ L, u, + L u, +— 2L ~L,
2L§‘S~Lsszm_fj1 “ 2L2 -L Z— _ZZ b 2L2 -L Z _Z2

do, Py, (. . 2 N 2 B,
e —47(105 cosl, +i,, cos(9, - Eﬂ) +i, cos(&, + E”)) - —J-a), -—T,
dé,
=0
dt

The following phase voltages are applied to guarantee the balance motor operation:

u, ()= «/EuM cosf,, u,(t)= \/EuM cos(H, - %7[) and u (1) = \/EuM cos<t9, + %72') .

The motor parameters are:

u, =40V, r, = 1 ohm, Ly = 0.002 H, L;; = 0.0002 H, L, =0.0012 H, y,, =0.08 V-sec/rad,
v, =0.08 N-m/A, B, =0.000008 N-m-sec/rad, and J = 0.00004 kg-m’.

Solution.
As the differential equations are known, one can develop the SIMULINK block diagram

(md1 model) to simulate permanent-magnet synchronous motors. The resulting SIMULINK block
diagram is illustrated in Figure 6.32.

Chapter 6: SIMULINK 201

L R — e bmwe T Lk el
- Ao [O - & BE O ®
-
L .
ol -
L - - » L .1_
{2 e LS LT LR e |
- [p——p—
| boye tanf
" I)
- L - wine b - ™™ ™ .
J : . D
} o Ll { e R Aapuins Valeally
- " L3 ‘.-"'I‘- :‘-‘-(; a T h - : - : >
il | | r———
o i e ——
| {
1 .
. ' - - - ol
)
| —
..... spe o]
- .-
"1 s 1 T-.. ‘.' - a’l":#.‘d : = |
L ol | e sk . v - |
r | r P—
"l ‘
A e {38 o |
l—ble—1111
* - R - - ‘
1]
- L]
l - + | e i Ty
l- . |
ol - +] . g
i »
- Bt

Figure 6.32. SIMULINK block diagram to simulate permanent-magnet synchronous motors
(c6 2 5.mdl)

The transient dynamics are studied as the motor accelerates and the rated voltage is
supplied to the stator windings. In particular,

u, (t)= V240cos 0.,u, ()= V240 cos(é?, —;7[) and u ()= V240 cos(@r +§7r).

The motor parameters are downloaded using the following statement typed in the

Command Window:

4 Parameters of the permanant-magnet synchronous motor

P=4; um=40; rs=1; Lss=0.002; L1s=0.0002; fm=0.08; Bm=0.000008; J=0.00004;
Lmb=2* (Lss-Ll1s)/3;

The motor accelerates from stall, and the load torque 0.5 N-m is applied at 0 sec.
Figure 6.33 illustrates the evolution of four states for the three-phase permanent-magnet
synchronous motor.

Chapter 6: SIMULINK 202

) Scope: las = (O X) Scope: Ibs - (0iX

SRPAL ABRBIEEF JleB|OPLPL ABE L -

- XK ' Scope: Mech, Angular Yelocity

SBILLL ABE B - < @R oPLPL AEBE| O

J Scope: Ics

Figure 6.33. Transient dynamics of the permanent-magnet synchronous motor variables

These state variables can be plotted using plot. In particular, the following m-file can

be used to plot the transient data:

* Plots of the transient dynamics of the permanent-magnet synchronous motor
plot(las(:,1),Ias(:,2)); xlabel('Time (seconds)'); title('Current Ias, [A])'); pause
plot(Ibs(:,1),Ibs(:,2)); xlabel('Time (seconds)'); title('Current Ibs, [A]'); pause
plot(Ics(:,1),Ics(:,2)); xlabel('Time (seconds)'); title('Current Ics, [A]'); pause
plot(wrm(:,1),wrm(:,2)); xlabel ("Time (seconds)');title('Angular velocity wrm, ([rad/sec]'); pause

U

Chapter 6: SIMULINK 203

Example 6.2.6. Simulation of permanent-magnet DC motors using the state-space model
Simulate permanent-magnet DC motors in SIMULINK using the state-space form. The

linear differential equations to model permanent-magnet DC motors are (see Examples 5.3.6 and

6.2.1)
di, r,. k, 1
Lty -2y +—u,
dt L, L, L,
do, k—”i —&w,—iTL.

a g T
The motor parameters to be used in numerical simulations are: », =1 ohm, L, = 0.02 H,

k, = 0.3 V-sec/rad, J = 0.0001 kg-m?, and B, = 0.000005 N-m-sec/rad. The applied voltage is

x 1
u, = 25rect(f) V. The initial conditions to be used are | “° [=| " |= .
@,, Xy 10

Solution.
Using the differential equations which model permanent-magnet DC motors we obtain

the model in the state-space form as

di, | |_ra _ki|r; 1
dt = La La ’ + La ju
d((), ka Bm o
L e
dt J Lo
Denoting the state and control variables to be x, =i,, x, =@, andu =u,, we find
dx o _ka |, 1
7 | R B e oy e e . i x
+| La |u with initial conditions [0]:['0].
@y %20

@x,
& _|a || L L,

dxz ka Bm

2 Yo _Lmily 0

dt
dt J J
&
dt %
In general, we have — =| : |=4| : |+ Bu
da | dx
S X,
dt
_r _k 1
x —
For our example, x = 'L A= L, L, and B=| L,
X k., _B,
J 0

The output equation is y=w, .
Hence, we have the following state-space model for permanent-magnet DC motors:

y=w, =Cx+Du=[0 1{;1}[0},":[0 1{2}[0]14,0:[0 1]and D=[0].

Chapter 6: SIMULINK 204

Using the State-Space block, the simulation can be performed. To attain flexibility,
symbolic notations are used. The State-Space block is illustrated in Figure 6.34.

Figure 6.34. State-Space block with parameters of permanent-magnet DC motors

The developed SIMULINK md 1 model is documented in Figure 6.35.

Fle Edt View Simulstion Format Tools Help

DEHS S B 2 » = |Noma v

oooo ® = AxctBu 3
%0 ’ y= CxtDu >
Signal Scope: X2 (wr)
Generator (va) State-Space

Figure 6.35. SIMULINK block diagram to simulate the motor dynamics (c6_2 6.mdl)

The simulations are performed assigning the motor parameters and initial conditions. In
particular, the motor parameters (r, = 1 ohm, L, = 0.02 H, k, = 0.3 V-sec/rad, J = 0.0001 kg-

m?, and B, =0.000005 N-m-sec/rad), applied voltage u, = 25rect(¢) V, and the initial conditions

[1 10] are downloaded. We input the followmg in the Command Window:

i La=0.02; ka=0.3; J=0.0001; Bm«0.000005; Xx10=1; X20=10;
Runnmg the simulation and using the followmg p]ottmg statement

>> plot(x(:,1),x(:,2)); xlabel('Time (seconds)'); title('Angular velocity wr, [rad/secl')
the dynamics of the motor angular velocity result (Figures 6.36).

Chapter 6: SIMULINK 205

pAPL AGG B

Angular velocity wr, [rad/sec]

200 -

100 -

-300 ']
400 1 L I ! lE ORI E | | 1
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time (seconds)
Figure 6.36. Angular velocity dynamics if u, = 40rect(s) V O

Again it should be emphasized that different illustrative educational examples in
aerospace and automotive applications are readily available. These examples with the

corresponding SIMULINK block diagrams can be easily accessed and used to master the MATLAB
environment.

[\ I

Chapter 6: SIMULINK 206

REFERENCES

MuT14B 6.5 Release 13, CD-ROM, MathWorks, Inc., 2002.

. Dabney, J. B. and Harman, T. L., Mastering SIMULINK 2, Prentice Hall, Upper Saddle River, NJ,

1998.
User’s Guide. The Student Edition of MATLAB: The Ultimate Computing Environment for
Technical Education, MathWorks, Inc., Prentice Hall, Upper Saddle River, NJ, 1995.

Lyshevski, S. E., Electromechanical Systems, Electric Machines, and Applied Mechatronics,
CRC Press, Boca Raton, FL, 2000.

Lyshevski, S. E., Control Systems Theory with Engineering Applications, Birkhauser, Boston,
MA, 2002.

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers

MATLAB Functions, Operators, Characters, Commands, and Solvers !

APPENDIX

Table A.1. Operators and Special Characters

Plus (addition operator)

Minus (subtraction operator)

Scalar and matrix multiplication (multiplication operator)

Array multiplication (multiplication operator)

Scalar and matrix exponentiation operator (power)

Array exponentiation operator (power)

Kronecker tensor product

Left division operator

Right division operator

Array division (right and left operators)

Colon (generates equally spaced arrays - rows and columns)

Parentheses

Brackets (encloses array and matrix elements and entries)

Curly braces

Decimal point

Continuation (line continuation operator)

Comma (separates statements and elements)

Semicolon

Percent sign (comment)

Exclamation point

Transpose operator and quote sign

Nonconjugated transpose operator

Assignment (replacement) operator

Equality (equal to) operator

Relational operators (less than)

Relational operators (less than or equal to)

Relational operators (greater than)

Relational operators (greater than or equal to)

Relational operators (not equal to)

AND (logical operator)

OR (logical operator)

NOT (logical operator)

XOor

EXECUTIVE OR (logical operator)

Table A.2. Lo

ical Functions

all

Test to determine if all elements are nonzero

any

Test for any nonzeros

exist

Check if a variable or file exists

find

Find indices and values of nonzero elements

is*

Detect state

isa

Detect an object of a given class

iskeyword

Test if string is a MATLAB keyword

isvarname

Test if string is a valid variable name

207

Appendix: MaTLAB Functions, Operators, Characters, Commands, and Solvers 208

logical

Convert numeric values to logical

mislocked

True if M-file cannot be cleared

Table A.3. Language Constructs and Debugging
Table A.3.1. MATLAB as a Programming Language

builtin Execute built-in function from overloaded method
eval Interpret strings containing MaTLAB expressions
evalc Evaluate MATLAB expression with capture
evalin Evaluate expression in workspace

feval Function evaluation

function Function m-files

global Define global variables

nargchk Check number of input arguments

persistent Define persistent variable

script Script m-files

Table A.3.2. Control Flow

break Terminate execution of “for” or “while” loop

case Case switch

catch Begin catch block

continue Pass control to the next iteration of “for” or “while” loop

else Conditionally execute statements

elseif Conditionally execute statements

end Terminate for, while, switch, try, and if statements or indicate
last index

error Display error messages

for Repeat statements a specific number of times

if Conditionally execute statements

otherwise Default part of switch statement

return Return to the invoking function

switch Switch among several cases based on expression

try Begin try block

warning Display warning message

while Repeat statements an indefinite number of times

Table A.3.3. Interactive Input

input Request user input

keyboard Invoke the keyboard in an m-file

menu Generate a menu of choices for user input

pause Halt execution temporarily (until any key will be pressed)

Table A.3.4. Object-Oriented Programming

class Create object or return class of object
double Convert to double precision
inferiorto Inferior class relationship

inline Construct an inline object

int8, intlé,

int32 Convert to signed integer

isa

Detect an object of a given class

loadobj

Extends the load function for user objects

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers

saveobj Save filter for objects
single Convert to single precision
superiorto Superior class relationship

uint8, uintlse,
uint32

Convert to unsigned integer

Table A.3.5. Debugging

dbclear Clear breakpoints

dbcont Resume execution

dbdown Change local workspace context
dbmex Enable MEX-file debugging
dbguit Quit debug mode

dbstack Display function call stack
dbstatus List all breakpoints

dbstep Execute one or more lines from a breakpoint
dbstop Set breakpoints in an m-file function
dbtype List m-file with line numbers

dbup Change local workspace context

Table A.3.6. Function Handles

function handle

MATLAB data type that is a handle to a function

functions Return information about a function handle
func2str Constructs a function name string from a function handle
str2func Constructs a function handle from a function name string

Table A.4. Character String Functions
Table A.4.1. General

Abs Absolute value and complex magnitude

Eval Interpret strings containing MATLAB expressions

Real Real part of complex number

Strings MATLAB string handling
Table A.4.2. String to Function Handle Conversion

func2str Constructs a function name string from a function handle

str2func Constructs a function handle from a function name string
Table A.4.3. String Manipulation

Deblank Strip trailing blanks from the end of a string

Findstr Find one string within another

Lower Convert string to lowercase

Strcat String concatenation

Strcmp Compare strings

Strcmpi Compare strings, ignoring case

strijust Justify a character array

strmatch Find possible matches for a string

strncmp Compare the first n characters of strings

strncmpi Compare the first n characters of strings, ignoring case

strrep String search and replace

strtok First token in string

209

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 210

strvcat Vertical concatenation of strings

symvar Determine symbolic variables in an expression
texlabel Produce the TeX format from a character string
upper Convert string to uppercase

Table A.4.4. String to Number Conversion

char Create character array (string)
int2str Integer to string conversion
mat2str Convert a matrix into a string
num2str Number to string conversion
Sprintf Write formatted data to a string
Sscanf Read string under format control
str2double Convert string to double-precision value
str2mat String to matrix conversion
str2num String to number conversion
Table A.4.5. Radix Conversion
bin2dec Binary to decimal number conversion
dec2bin Decimal to binary number conversion
dec2hex Decimal to hexadecimal number conversion
hex2dec Hexadecimal to decimal number conversion
hex2num Hexadecimal to double number conversion
Table A.5. Bit-Wise Functions
bitand Bit-wise and
bitcmp Complement bits
bitor Bit-wise or
bitmax Maximum floating-point integer
bitset Set bit
bitshift Bit-wise shift
bitget Get bit
bitxor Bit-wise xor
Table A.6. Structure Functions
fieldnames Field names of a structure
getfield Get field of structure array
rmfield Remove structure fields
setfield Set field of structure array
struct Create structure array
struct2cell Structure to cell array conversion
Table A.7. MATLAB Object Functions
class Create object or return class of object
isa Detect an object of a given class
methods Display method names
methodsview Displays information on all methods implemented by a class
subsasgn Overloaded method for A(D=B, A{1}=B, and A.field=B
subsindex Overloaded method for X(A)
subsref Overloaded method for A(l), A{l}, and A field

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers

Table A.8. Cell Array Functions

cell Create cell array
cellfun Apply a function to each element in a cell array
cellstr Create cell array of strings from character array
cell2struct Cell array to structure array conversion
celldisp Display cell array contents
cellplot Graphically display the structure of cell arrays
num2cell Convert a numeric array into a cell array

Table A.9. Multidimensional Array Functions
cat Concatenate arrays
flipdim Flip array along a specified dimension
ind2sub Subscripts from linear index
ipermute Inverse permute the dimensions of a multidimensional array
ndgrid Generate arrays for multidimensional functions and interpolation
ndims Number of array dimensions
permute Rearrange the dimensions of a multidimensional array
reshape Reshape array
shiftdim Shift dimensions
squeeze Remove singleton dimensions
sub2ind Single index from subscripts

Table A.10. MATLAB Functions

Table A.10.1. Mathematics: Elementary Mathematical Functions
abs Absolute value and complex magnitude

acos, acosh

Inverse cosine and inverse hyperbolic cosine

acot, acoth

Inverse cotangent and inverse hyperbolic cotangent

acsc, acsch

Inverse cosecant and inverse hyperbolic cosecant

angle

Phase angle

asec, asech

Inverse secant and inverse hyperbolic secant

asin, asinh

Inverse sine and inverse hyperbolic sine

atan, atanh

Inverse tangent and inverse hyperbolic tangent

atan2

Four-quadrant inverse tangent

ceil Round toward infinity
complex Construct complex data from real and imaginary components
conj Complex conjugate

cos, cosh

Cosine and hyperbolic cosine

cot, coth

Cotangent and hyperbolic cotangent

csc, csch

Cosecant and hyperbolic cosecant

exp Exponential

fix Round toward zero

floor Round toward minus infinity

gcd Greatest common divisor

imag Imaginary part of a complex number

lcm Least common multiple

log Natural logarithm

log2 Base 2 logarithm and dissect floating-point numbers into exponent and
mantissa

loglo Common (base 10) logarithm

211

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 212

mod Modulus (signed remainder after division)
nchoosek Binomial coefficient or all combinations
real Real part of complex number

rem Remainder after division

round Round to nearest integer

sec, sech Secant and hyperbolic secant

sign Signum function

sin, sinh Sine and hyperbolic sine

sqgrt Square root

tan, tanh

Tangent and hyperbolic tangent

Table A.10.2. Plotting and Data Visualization
Table A.10.2.1. Basic Plots and Graphs

bar Vertical bar chart
barh Horizontal bar chart
hist Plot histograms
histc Histogram count
hold Hold current graph
loglog Plot using loglog scales
pie Pie plot
plot Plot vectors or matrices.
polar Polar coordinate plot
semilogx Semi-log scale plot
semilogy Semi-log scale plot
subplot Create axes in tiled positions
Table A.10.2.2. Three-Dimensional Plotting
bar3 Vertical 3D bar chart
bar3h Horizontal 3D bar chart
comet3 3D comet plot
cylinder Generate cylinder
£1113 Draw filled 3D polygons in three-space
plot3 Plot lines and 3D points (in three-dimensional space)
quiver3 3D quiver (or velocity) plot
slice Volumetric slice plot
sphere Generate sphere
stem3 Plot discrete surface data
waterfall Waterfall plot
Table A.10.2.3. Plot Annotation and Grids
clabel Add contour labels to a contour plot
datetick Date formatted tick labels
grid Grid lines for 2D and 3D plots
gtext Place text on a 2D graph using a mouse
legend Graph legend for lines and patches
plotyy Plot graphs with Y tick labels on the left and right
title Titles for 2D and 3D plots
xlabel X-axis labels for 2D and 3D plots

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers

ylabel

Y-axis labels for 2D and 3D plots

zlabel

Z-axis labels for 3D plots

Table A.10.2.4. Surface, Mesh, and Contour Plots

contour Contour (level curves) plot
contourc Contour computation
contourf Filled contour plot

hidden Mesh hidden line removal mode
meshc Combination mesh/contourplot
mesh 3D mesh with reference plane
peaks A sample function of two variables
surf 3D shaded surface graph
surface Create surface low-level objects
surfc Combination surf/contourplot
surfl 3D shaded surface with lighting
trimesh Triangular mesh plot
trisurf Triangular surface plot

Table A.10.3. Volume Visualization

coneplot Plot velocity vectors as cones in 3D vector field
contourslice Draw contours in volume slice plane

curl Compute the curl and angular velocity of a vector field
divergence Compute the divergence of a vector field

flow Generate scalar volume data

interpstreamspeed | Interpolate streamline vertices from vector-field magnitudes
isocaps Compute isosurface end-cap geometry

isocolors Compute the colors of isosurface vertices

isonormals Compute normals of isosurface vertices

isosurface Extract isosurface data from volume data

reducepatch Reduce the number of patch faces

reducevolume Reduce number of elements in volume data set
shrinkfaces Reduce the size of patch faces

slice Draw slice planes in volume

smooth3 Smooth 3D data

stream? Compute 2D streamline data

stream3 Compute 3D streamline data

streamline Draw streamlines from two- or three-dimensional vector data
streamparticles Draws stream particles from vector volume data
streamribbon Draws stream ribbons from vector volume data
streamslice Draws well-spaced streamlines from vector volume data
streamtube Draws stream tubes from vector volume data
surf2patch Convert surface data to patch data

subvolume Extract subset of volume data set

volumebounds Return coordinate and color limits for volume (scalar and vector)

Table A.10.4. Domain Generation

griddata

Data gridding and surface fitting

meshgrid

Generation of X and Y arrays for 3D plots

213

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 214

Table A.10.5. Specialized Plotting

area Area plot
box Axis box for 2D and 3D plots
comet Comet plot
compass Compass plot
errorbar Plot graph with error bars
ezcontour Easy-to-use contour plotter
ezcontourf Easy-to-use filled contour plotter
ezmesh Easy-to-use 3D mesh plotter
ezmeshc Easy-to-use combination mesh/contour plotter
ezplot Easy-to-use function plotter
ezplot3 Easy-to-use 3D parametric curve plotter
ezpolar Easy-to-use polar coordinate plotter
ezsurf Easy-to-use 3D colored surface plotter
ezsurfc Easy-to-use combination surface/contour plotter
feather Feather plot
fill Draw filled 2D polygons
fplot Plot a function
pareto Pareto char
pie3 3D pie plot
plotmatrix Scatter plot matrix
pcolor Pseudocolor (checkerboard) plot
rose Plot rose or angle histogram
gquiver Quiver (or velocity) plot
ribbon Ribbon plot
stairs Stairstep graph
scatter Scatter plot
scatter3 3D scatter plot
stem Plot discrete sequence data
convhull Convex hull
delaunay Delaunay triangulation
dsearch Search Delaunay triangulation for nearest point
inpolygon True for points inside a polygonal region
polyarea Area of polygon
tsearch Search for enclosing Delaunay triangle
voronoi Voronoi diagram
Table A.10.6. View Control
camdolly Move camera position and target
camlookat View specific objects
camorbit Orbit about camera target
campan Rotate camera target about camera position
campos Set or get camera position
camproj Set or get projection type
camroll Rotate camera about viewing axis
camtarget Set or get camera target
camup Set or get camera up-vector
camva Set or get camera view angle
camzoom Zoom camera in or out

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers

daspect Set or get data aspect ratio
pbaspect Set or get plot box aspect ratio
view 3-D graph viewpoint specification.
viewmtx Generate view transformation matrices
xlim Set or get the current x-axis limits
ylim Set or get the current y-axis limits
zlim Set or get the current z-axis limits
Table A.10.7. Lighting
camlight Cerate or position Light
light Light object creation function
lighting Lighting mode
lightangle Position light in spherical coordinates
material Material reflectance mode
Table A.10.8. Transparency
Alpha Set or query transparency properties for objects in current axes
Alphamap Specify the figure alphamap
Alim Set or query the axes alpha limits
Table A.10.9. Color Operations
Brighten Brighten or darken colormap
Caxis Pseudocolor axis scaling
Colorbar Display color bar (color scale)
Colordef Set up color defaults
Colormap Set the color look-up table (list of colormaps)
Graymon Graphics figure defaults set for grayscale monitor
hsv2rgb Hue-saturation-value to red-green-blue conversion
rgb2hsv RGB to HSV conversion
Rgbplot Plot colormap
Shading Color shading mode
Spinmap Spin the colormap
Surfnorm 3D surface normals
Whitebg Change axes background color for plots

Table A.10.10. Colormaps

Autumn Shades of red and yellow colormap

bone Gray-scale with a tinge of blue colormap
contrast Gray colormap to enhance image contrast
cool Shades of cyan and magenta colormap
copper Linear copper-tone colormap

flag Alternating red, white, blue, and black colormap
gray Linear gray-scale colormap

hot Black-red-yellow-white colormap

hsv Hue-saturation-value (HSV) colormap
Jjet Variant of HSV

lines Line color colormap

prism Colormap of prism colors

spring Shades of magenta and yellow colormap

215

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 216

summex

Shades of green and yellow colormap

winter

Shades of blue and green colormap

Table A.10.11. Printing
orient Hardcopy paper orientation
pagesetupdlg Page position dialog box
print Print graph or save graph to file
printdlg Print dialog box
printopt Configure local printer defaults
saveas Save figure to graphic file

Table A.10.12.

Handle Graphics, General

allchild Find all children of specified objects

copyobj Make a copy of a graphics object and its children
findall Find all graphics objects (including hidden handles)
findobj Find objects with specified property values

gcbo Return object whose callback is currently executing
gco Return handle of current object

get Get object properties

rotate Rotate objects about specified origin and direction
ishandle True for graphics objects

set Set object properties

Table A.10.13.

Working with Application Data

getappdata Get value of application data
isappdata True if application data exists
rmappdata Remove application data
setappdata Specify application data

Table A.10.14.

Handle Graphics and Object Creation

axes Create Axes object

figure Create Figure (graph) windows

image Create Image (2D matrix)

light Create Light object (illuminates Patch and Surface)

line Create Line object (3D polylines)

patch Create Patch object (polygons)

rectangle Create Rectangie object (2D rectangle)

surface Create Surface (quadrilaterals)

text Create Text object (character strings)

uicontextmenu | Create context menu (popup associated with object)
Table A.10.15. Handle Graphics, Figure Windows

capture Screen capture of the current figure

clc Clear figure window

clf Clear figure

close Close specified window

closereq Default close request function

gcf Get current figure handle

newplot Graphics M-file preamble for NextPlot property

Appendix. MATLAB Functions, Operators, Characters, Commands, and Solvers

refresh

Refresh figure

saveas

Save figure or model to desired output format

Table A.10.16. Handle Graphics, Axes

axis Plot axis scaling and appearance
cla Clear Axes
gca Get current Axes handle
Table A.10.17. Object Manipulation
Reset Reset axis or figure
rotate3d Interactively rotate the view of a 3D plot

Selectmoveresize | Interactively select, move, or resize objects

Table A.10.18. Interactive User Input

ginput

Graphical input from a mouse or cursor

zoom

Zoom in and out on a 2D plot

Table A.10.19. Region of Interest

Dragrect Drag XOR rectangles with mouse
Drawnow Complete any pending drawing
Rbbox Rubberband box

Table A.11. Polynomial and Interpolation Functions

Table A.11.1. Polynomials
conv Convolution and polynomial multiplication
deconv Deconvolution and polynomial division
poly Polynomial with specified roots
polyder Polynomial derivative
polyeig Polynomial eigenvalue problem
polyfit Polynomial curve fitting
polyint Analytic polynomial integration
polyval Polynomial evaluation
polyvalm Matrix polynomial evaluation
residue Convert partial fraction expansion and polynomial coefficients
roots Polynomial roots
Table A.11.2. Data Interpolation
convhull Convex hull
convhulln Multidimensional convex hull
delaunay Delaunay triangulation
delaunay3 Three-dimensional Delaunay tessellation
delaunayn Multidimensional Delaunay tessellation
dsearch Search for nearest point
dsearchn Multidimensional closest point search
griddata Data gridding
griddata3 Data gridding and hypersurface fitting for three-dimensional data
griddatan Data gridding and hypersurface fitting (dimension > 2)
interpl One-dimensional data interpolation (table lookup)
interp2 Two-dimensional data interpolation (table lookup)

217

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 218

interp3 Three-dimensional data interpolation (table lookup)
interpft One-dimensional interpolation using the fast Fourier transform
interpn Multidimensional data interpolation (table lookup)
meshgrid Generate X and Y matrices for three-dimensional plots
ndgrid Generate arrays for multidimensional functions and interpolation
pchip Piecewise Cubic Hermite Interpolating Polynomial (PCHIP)
ppval Piecewise polynomial evaluation

spline Cubic spline data interpolation

tsearch Search for enclosing Delaunay triangle

tsearchn Multidimensional closest simplex search

voronoi Voronoi diagram

voronoin Multidimensional Voronoi diagrams

Table A.12. Functions: Nonlinear Numerical Methods

bvp4c Solve two-point boundry value problems (BVPs) for ordinary differential
equations (ODEs)

Bvpget Extract parameters from BVP options structure

Bvpinit Form the initial guess for the bvp4c solver

bvpset Create/alter BVP options structure

bvpval Evaluate the solution computed by the bvp4c solver

dblquad Numerical evaluation of double integrals

fminbnd Minimize a function of one variable

fminsearch Minimize a function of several variables

fzero Find zero of a function of one variable

oded5, ode23, Solution of ordinary linear and nonlinear differential equations

odell3,

odelbs,

ode23s,

ode23t,

ode23tb

odeget Extract parameters from ODE options structure

odeset Create/alter ODE options structure

optimget Get optimization options structure parameter values

optimset Create or edit optimization options parameter structure

pdepe Solve initial-boundary value problems for parabolic-elliptic partial
differential equations

pdeval Evaluate the solution computed by the pdepe solver

quad Numerical evaluation of integrals, adaptive Simpson quadrature

quadl Numerical evaluation of integrals, adaptive Lobatto quadrature

vectorize Vectorize expression

Table A.13. Matrices and Matrix Manipulation
Table A.13.1. Elementary Matrices and Arrays

blkdiag Construct a block diagonal matrix from input arguments
eye Create an identity matrix

linspace Generate linearly spaced vectors

logspace Generate logarithmically spaced vectors

numel Number of elements in a matrix or cell array

ones Create an array of all ones

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers

219

rand Uniformly distributed random numbers and arrays
randn Normally distributed random numbers and arrays
ZEeros Create an array of all zeros
: (colon) Regularly spaced vector
Table A.13.2. Special Variables and Constants
ans Recent answer
computer Identify the computer on which MATLAB is running
eps Floating-point relative accuracy
1 Imaginary number v— 1
inf Infinity
inputname Input argument name
J Imaginary number J=1
NaN Not-a-Number
nargin, Number of function arguments
nargout
nargoutchk Validate number of output arguments
pi Ratio of a circle's circumference to its diameter (n constant)
realmax Largest positive floating-point number
realmin Smallest positive floating-point number
varargin, Pass or return variable numbers of arguments
varargout
Table A.13.3. Time and Dates
calendar Calendar
clock Current time as a date vector
cputime Elapsed CPU time
date Current date string
datenum Serial date number
datestr Date string format
datevec Date components
eomday End of month
etime Elapsed time
now Current date and time
tic, toc Stopwatch timer
weekday Day of the week
Table A.13.4. Matrix Manipulation
cat Concatenate arrays
diag Create diagonal matrices and diagonals of a matrix
fliplr Flip matrices left - right
flipud Flip matrices up - down
repmat Replicate and tile an array
reshape Reshape array
rot90 Rotate matrix by 90 degrees
tril Lower triangular part of a matrix
triu Upper triangular part of a matrix
: (colon) Index into array, rearrange array

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 220

Table A.13.5. Vector Functions
Cross Vector cross product
dot Vector dot product
intersect Set intersection of two vectors
i smember Detect members of a set
setdiff Return the set difference of two vectors
setxor Set exclusive or of two vectors
union Set union of two vectors
unique Unique elements of a vector
Table A.13.6. Specialized Matrices
company Companion matrix
gallery Test matrices
hadamard Hadamard matrix
hankel Hankel matrix
hilb Hilbert matrix
invhilb Inverse of the Hilbert matrix
magic Magic square
pascal Pascal matrix
toeplitz Toeplitz matrix
wilkinson Wilkinson's eigenvalue test matrix
Table A.14. Matrix Functions and Linear Algebra
Table A.14.1. Matrix Analysis
cond Condition number with respect to inversion
condeig Condition number with respect to eigenvalues
det Matrix determinant
norm Vector and matrix norms
null Null space of a matrix
orth Range space of a matrix
rank Rank of a matrix
rcond Matrix reciprocal condition number estimate
rref, Reduced row echelon form
rrefmovie
subspace Angle between two subspaces
trace Sum of diagonal elements
Table A.14.2. Linear Equations
chol Cholesky factorization
inv Matrix inverse
lscov Least squares solution in the presence of known covariance
lu LU matrix factorization
lsgnonneg Nonnegative least squares
minres Minimum residual method
pinv Moore-Penrose pseudoinverse of a matrix
qr Orthogonal-triangular decomposition
symmlg Symmetric L.Q method

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers

221

Table A.14.3. Eigenvalues and Singular Values
balance Improve accuracy of computed eigenvalues
cdf2rdf Convert complex diagonal form to real block diagonal form
eig Eigenvalues and eigenvectors
gsvd Generalized singular value decomposition
hess Hessenberg form of a matrix
poly Polynomial with specified roots
gz QZ factorization for generalized eigenvalues
rsf2cst Convert real Schur form to complex Schur form
schur Schur decomposition
svd Singular value decomposition
Table A.14.4. Matrix Functions
expm Matrix exponential
funm Evaluate general matrix function
logm Matrix logarithm
sgrtm Matrix square root
Table A.14.5. Low Level Functions
grdelete Delete column from QR factorization
grinsert Insert column in QR factorization
Table A.14.6. Sparse Matrix Functions (Elementary Sparse Matrices)
spdiags Extract and create sparse band and diagonal matrices
speye Sparse identity matrix
sprand Sparse uniformly distributed random matrix
sprandn Sparse normally distributed random matrix
sprandsym Sparse symmetric random matrix
Table A.14.7. Full-to-Sparse Conversion
find Find indices and values of nonzero elements
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spconvert Import matrix from sparse matrix external format
Table A.14.8. Sparse Matrices with Nonzero Entries
nnz Number of nonzero matrix elements
NONzeros Nonzero matrix elements
nzmax Amount of storage allocated for nonzero matrix elements
spalloc Allocate space for sparse matrix
spfun Apply function to nonzero sparse matrix elements
spones Replace nonzero sparse matrix elements with ones
Table A.14.9. Visualizing Sparse Matrices
spy 4[Visualize sparsity pattern —l
Table A.14.10. Reordering Algorithms
colamd Column approximate minimum degree permutation
colmmd

Sparse column minimum degree permutation

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 222

colperm Sparse column permutation based on nonzero count
dmperm Dulmage-Mendelsohn decomposition

randperm Random permutation

symamd Symmetric approximate minimum degree permutation
s ymmmd Sparse symmetric minimum degree ordering

symrcm Sparse reverse Cuthill-McKee ordering

Table A.14.11.

Norm, Condition Number, and Rank

condest

Estimate the matrix first-norm

normest

Estimates the matrix second-norm

Table A.14.12.

Sparse Systems of Linear Equations

bicg BiConjugate Gradients method
bicgstab BiConjugate Gradients Stabilized method
cgs Conjugate Gradients Squared method
cholinc Sparse Incomplete Cholesky and Cholesky-Infinity factorizations
cholupdate Rank 1 update to Cholesky factorization
gmres Generalized Minimum Residual method (with restarts)
lsqgr LSQR implementation of Conjugate Gradients on the normal equations
luinc Incomplete LU matrix factorizations
pcg Preconditioned Conjugate Gradients method
gmr Quasi-Minimal Residual method
qgr Orthogonal-triangular decomposition
grdelete Delete column from QR factorization
grinsert Insert column in QR factorization
grupdate Rank 1 update to QR factorization
Table A.14.13. Sparse Eigenvalues and Singular Values
eigs Find eigenvalues and eigenvectors
svds Find singular values
Table A.14.14. Miscellaneous
[spparms | Set parameters for sparse matrix routines
Table A.15. Coordinate System Conversion
cart2pol Transform Cartesian coordinates to polar or cylindrical
cart2sph Transform Cartesian coordinates to spherical
polZcart Transform polar or cylindrical coordinates to Cartesian
sph2cart Transform spherical coordinates to Cartesian
Table A.16. Data Analysis and Fourier Transform Functions
Table A.16.1. Basic Operations
cumprod Cumulative product
cumsum Cumulative sum
cumtrapz Cumulative trapezoidal numerical integration
factor Prime factors
inpolygon Detect points inside a polygonal region
max Maximum elements of an array
mean Average or mean value of arrays

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers

223

median Median value of arrays
min Minimum elements of an array
perms Al possible permutations
polyarea Area of polygon
primes Generate list of prime numbers
prod Product of array elements
rectint Rectangle intersection area
sort Sort elements in ascending order
sortrows Sort rows in ascending order
std Standard deviation
sum Sum of array elements
trapz Trapezoidal numerical integration
var Variance
Table A.16.2. Finite Differences
del?2 Discrete Laplacian
diff Differences and approximate derivatives
gradient Numerical gradient
Table A.16.3. Correlation
corrcoef Correlation coefficients
cov Covariance matrix
Table A.16.4. Filtering and Convolution
conv Convolution and polynomial multiplication
conv2 Two-dimensional convolution
deconv Deconvolution and polynomial division
filter Filter data with an infinite impulse response or finite impulse response filter
filter? Two-dimensional digital filtering
Table A.16.5. Fourier Transforms
abs Absolute value and complex magnitude
angle Phase angle
cplxpair Sort complex numbers into complex conjugate pairs
fft One-dimensional fast Fourier transform
ffe2 Two-dimensional fast Fourier transform
fftshift Shift dc component of fast Fourier transform to center of spectrum
ifft Inverse one-dimensional fast Fourier transform
iffr2 Inverse two-dimensional fast Fourier transform
ifftn Inverse multidimensional fast Fourier transform
ifftshift Inverse fast Fourier transform shift
nextpow?2 Next power of two
unwrap Correct phase angles

Table A.17. Graphical User Interface

Table A.17.1. Dialog Boxes
dialog Create a dialog box
errordlg Create error dialog box
helpdlg Display help dialog box

Appendix: MATLAB Functions, Operators, Characters, Commands, and Solvers 224

inputdlg Create input dialog box
listdlg Create list selection dialog box
msgbox Create message dialog box
pagedlg Display page layout dialog box
printdlg Display print dialog box
questdlg Create question dialog box
uigetfile Display dialog box to retrieve name of file for reading
uiputfile Display dialog box to retrieve name of file for writing
uisetcolor Interactively set a ColorSpec using a dialog box
uisetfont Interactively set a font using a dialog box
warndlg Create warning dialog box
Table A.17.2. User Interface Deployment
guidata Store or retrieve application data
guihandles Create a structure of handles
movegui Move GUI figure onscreen
openfig Open or raise GUI figure
Table A.17.3. User Interface Development
guide Open the GUI Layout Editor
inspect Display Property Inspector
Table A.18. External Interfaces: MATLAB Interface to Java
class Create object or return class of object
import Add a package or class to the current Java import list
isa Detect an object of a given class
isjava Test whether an object is a Java object
javaArray Constructs a Java array
javaMethod Invokes a Java method
javaObject Constructs a Java object
methods Display method names
methodsview Displays information on all methods implemented by a class

Table A.19. Serial Port Input-Output

Table A.19.1.

Creating a Serial Port Object

| serial

| Create a serial port object

Table A.19.2.

Writing and Reading Data

fgetl Read one line of text from the device and discard the terminator
fgets Read one line of text from the device and include the terminator
fprintf Write formatted data to file

fread Read binary data from file

fscanf Read data from file and format as text (read formatted data from file)
fwrite Write binary data to file

readasync Read data asynchronously from file

stopasync Stop asynchronous read and write operations

Appendix. MATLAB Functions, Operators, Characters, Commands, and Solvers

Table A.19.3. Configuring and Returning Properties

225

get Return serial port object properties
set Configure or display serial port object properties
Table A.19.4. State Change
fclose Disconnect a serial port object from the device (close file)
fopen Connect a serial port object to the device (open file)
record Record data and event information to a file
Table A.19.5. General Purpose
clear Remove a serial port object from the MATLAB workspace
delete Remove a serial port object from memory
disp Display serial port object summary information
instraction Display event information when an event occurs
instrfind Return serial port objects from memory to the MATLAB workspace
isvalid Determine if serial port objects are valid
length Length of serial port object array
load Load serial port objects and variables into the MATLAB workspace
save Save serial port objects and variables to an m-file
serialbreak Send a break to the device connected to the serial port
size Size of serial port object array

REFERENCES

1. MaTL4B 6.5 Release 13, CD-ROM, MathWorks, Inc., 2002.

Index 226

Index
Aircraft, 139-141, 162-167 Image, 25, 26
Algebraic equation, 95-97 Induction motor, 195-199
Arithmetic, 42-48 Interactive input, 208
Arithmetic operators, 65 Interpolation, 72, 73, 217

Array, 51, 52,211,218, 218
Kirchhoff law, 145
Basic arithmetic, 42

Block diagram, 170, 179-189, 194, 197, 201 Linear equation, 220
Buttons, 23 Logic, 66
Logic functions, 207
Characters, 31 Loops, 73-79
Circuit, 144, 145, 154-157, 159-161, 167-165
Clear, 24 Mathematical function, 29, 30, 47, 48,211-212
Color operation, 103, 215 Mathematical model, 141-151
Command window, 5, 8, 43-46 MATLAB General, 13
Commands, 32-41 MATLAB Icon, 5
Conditions, 73-79 Matrix, 8, 43, 53-64, 67, 83-89, 218-221
Control flow, 208 Menu bar, 22, 23
Converter, 145-151 Missile, 20
Modeling, 141, 152
Debugging, 209 Movie, 121-124
Demo, 9, 16
Demo window, 17-20, 39 Newton law, 141-144
Differential equations, 133-139, 146-170, 218 Norm, 67

Dynamic system, 133-151, 163, 190-193
Object-oriented programming, 208

Eigenvalue, 61, 62, 221, 222 Ones, 8
Exit, 22 Operators, 31, 65-67, 207
Figure window, 8, 9 Pendulum, 143, 179-181
File window, 8, 9 Permanent-magnet DC motor, 169-171,
Flight servo, 141 187-190, 203-205
Format, 68 Permanent-magnet synchronous motor, 200-202
Fourier transform, 222, 223 Plot, 27, 45, 46, 60, 99-120, 125-132, 212-214
Functions, 27-30 Polynomial, 69-73, 89, 90, 217
Print, 216
General purpose commands, 14, 15, 37, 38
Graphics, 99-120, 216, 217 Quit, 22
Help, 9, 10, 33-36, 39 Save, 24
Helpdesk, 9, 15 Saving, 24
Helpwin, 9, 10, 33 Scalar, 50-51
Help system, 23, 24 SIMULINK, 1, 2, 172-206
Help topics, 10-13 SIMULINK demo window, 174, 175, 185
Help window, 13, 36, 43 SIMULINK libraries, 182
Helpdesk window, 16 SIMULINK librarary browser, 183-185

Helpwin window, 33 SIMULINK window, 173

Index

Single-phase reluctance motor, 193, 194
Special characters, 207

Start, 5

String, 25, 42, 68, 209, 210

Symbolic Math Toolbox, 157-161
Symbols, 31, 65

Toolboxes, 7, 18, 20-22
Tool bar, 22, 23

227
Three-dimensional graphics, 113-120, 124, 125
Trigonometric functions, 28
Variable, 49
Vector, 51, 52
Van der Pol equation, 134-137, 176-179

Workspace window, 5, 8, 25, 43-46

	cover.pdf
	page_c1.pdf
	page_c2.pdf
	page_r01.pdf
	page_r02.pdf
	page_r03.pdf
	page_r04.pdf
	page_r05.pdf
	page_r06.pdf
	page_r07.pdf
	page_r08.pdf
	page_r09.pdf
	page_r10.pdf
	page_1.pdf
	page_2.pdf
	page_3.pdf
	page_4.pdf
	page_5.pdf
	page_6.pdf
	page_7.pdf
	page_8.pdf
	page_9.pdf
	page_10.pdf
	page_11.pdf
	page_12.pdf
	page_13.pdf
	page_14.pdf
	page_15.pdf
	page_16.pdf
	page_17.pdf
	page_18.pdf
	page_19.pdf
	page_20.pdf
	page_21.pdf
	page_22.pdf
	page_23.pdf
	page_24.pdf
	page_25.pdf
	page_26.pdf
	page_27.pdf
	page_28.pdf
	page_29.pdf
	page_30.pdf
	page_31.pdf
	page_32.pdf
	page_33.pdf
	page_34.pdf
	page_35.pdf
	page_36.pdf
	page_37.pdf
	page_38.pdf
	page_39.pdf
	page_40.pdf
	page_41.pdf
	page_42.pdf
	page_43.pdf
	page_44.pdf
	page_45.pdf
	page_46.pdf
	page_47.pdf
	page_48.pdf
	page_49.pdf
	page_50.pdf
	page_51.pdf
	page_52.pdf
	page_53.pdf
	page_54.pdf
	page_55.pdf
	page_56.pdf
	page_57.pdf
	page_58.pdf
	page_59.pdf
	page_60.pdf
	page_61.pdf
	page_62.pdf
	page_63.pdf
	page_64.pdf
	page_65.pdf
	page_66.pdf
	page_67.pdf
	page_68.pdf
	page_69.pdf
	page_70.pdf
	page_71.pdf
	page_72.pdf
	page_73.pdf
	page_74.pdf
	page_75.pdf
	page_76.pdf
	page_77.pdf
	page_78.pdf
	page_79.pdf
	page_80.pdf
	page_81.pdf
	page_82.pdf
	page_83.pdf
	page_84.pdf
	page_85.pdf
	page_86.pdf
	page_87.pdf
	page_88.pdf
	page_89.pdf
	page_90.pdf
	page_91.pdf
	page_92.pdf
	page_93.pdf
	page_94.pdf
	page_95.pdf
	page_96.pdf
	page_97.pdf
	page_98.pdf
	page_99.pdf
	page_100.pdf
	page_101.pdf
	page_102.pdf
	page_103.pdf
	page_104.pdf
	page_105.pdf
	page_106.pdf
	page_107.pdf
	page_108.pdf
	page_109.pdf
	page_110.pdf
	page_111.pdf
	page_112.pdf
	page_113.pdf
	page_114.pdf
	page_115.pdf
	page_116.pdf
	page_117.pdf
	page_118.pdf
	page_119.pdf
	page_120.pdf
	page_121.pdf
	page_122.pdf
	page_123.pdf
	page_124.pdf
	page_125.pdf
	page_126.pdf
	page_127.pdf
	page_128.pdf
	page_129.pdf
	page_130.pdf
	page_131.pdf
	page_132.pdf
	page_133.pdf
	page_134.pdf
	page_135.pdf
	page_136.pdf
	page_137.pdf
	page_138.pdf
	page_139.pdf
	page_140.pdf
	page_141.pdf
	page_142.pdf
	page_143.pdf
	page_144.pdf
	page_145.pdf
	page_146.pdf
	page_147.pdf
	page_148.pdf
	page_149.pdf
	page_150.pdf
	page_151.pdf
	page_152.pdf
	page_153.pdf
	page_154.pdf
	page_155.pdf
	page_156.pdf
	page_157.pdf
	page_158.pdf
	page_159.pdf
	page_160.pdf
	page_161.pdf
	page_162.pdf
	page_163.pdf
	page_164.pdf
	page_165.pdf
	page_166.pdf
	page_167.pdf
	page_168.pdf
	page_169.pdf
	page_170.pdf
	page_171.pdf
	page_172.pdf
	page_173.pdf
	page_174.pdf
	page_175.pdf
	page_176.pdf
	page_177.pdf
	page_178.pdf
	page_179.pdf
	page_180.pdf
	page_181.pdf
	page_182.pdf
	page_183.pdf
	page_184.pdf
	page_185.pdf
	page_186.pdf
	page_187.pdf
	page_188.pdf
	page_189.pdf
	page_190.pdf
	page_191.pdf
	page_192.pdf
	page_193.pdf
	page_194.pdf
	page_195.pdf
	page_196.pdf
	page_197.pdf
	page_198.pdf
	page_199.pdf
	page_200.pdf
	page_201.pdf
	page_202.pdf
	page_203.pdf
	page_204.pdf
	page_205.pdf
	page_206.pdf
	page_207.pdf
	page_208.pdf
	page_209.pdf
	page_210.pdf
	page_211.pdf
	page_212.pdf
	page_213.pdf
	page_214.pdf
	page_215.pdf
	page_216.pdf
	page_217.pdf
	page_218.pdf
	page_219.pdf
	page_220.pdf
	page_221.pdf
	page_222.pdf
	page_223.pdf
	page_224.pdf
	page_225.pdf
	page_226.pdf
	page_227.pdf

