
CONCEPTS OF

DATABASE
MANAGEMENT
SYSTEM __ _
______ SHEFALI NAIK

ALWAYS LEARN I NG PEARSON

Concepts of Database
Management System

Shefali Naik

FM_Final.indd 1 3/18/2014 5:02:47 PM

Dedicated to

My husband Trushit, daughter Jisha, and son Harsheev

FM_Final.indd 2 3/18/2014 5:02:47 PM

Copyright © 2014 Dorling Kindersley (India) Pvt. Ltd.

No part of this eBook may be used or reproduced in any manner whatsoever without the
publisher’s prior written consent.

This eBook may or may not include all assets that were part of the print version. The
publisher reserves the right to remove any material in this eBook at any time.

10 9 8 7 6 5 4 3 2 1

Head Office: 7th Floor, Knowledge Boulevard, A-8(A) Sector 62, Noida 201 309, India.
Registered Office: 11 Community Centre, Panchsheel Park, New Delhi 110 017, India.

ISBN: 9789332526280
e-ISBN: 9789332537231

Contents

Foreword  vii
Preface  ix
Acknowledgements  xi
About the Author  xiii

Chapter 1	 Basics of Database� 1
1.1	 Introduction  1
1.2	 Data and Information  1

1.2.1	 Data  1
1.2.2	 Information  2

1.3	 Database  5
1.3.1	 Components of Database System  6

1.4	 Database Management  11
1.5	 Database Management System  11
1.6	 Need for a Database  12
1.7	 File-based Data Management System  12
1.8	 Characteristics, or Features, or Advantages

of Database Systems  14
1.9	 Limitations of Database  15

	 Summary  16

Chapter 2	 Data Models and Architecture of DBMS� 19
2.1	 Evolution of Data Models  19
2.2	 Hierarchical Data Model  21
2.3	 Network Data Model  26
2.4	 Relational Data Model  27
2.5	 Object-oriented Data Model  30
2.6	 Object-relational Data Model  32
2.7	 Three Level Architecture of Database  33
2.8	 Database Languages  35
2.9	 Data and Structural Independence  36

	 Summary  36

Chapter 3	 Relational Database Management System� 41
3.1	 Introduction  41
3.2	 RDBMS Terminology  41
3.3	 Various Types of Keys  44
3.4	 Integrity Rules  48

FM_Final.indd 3 3/18/2014 5:02:47 PM

iv  |  Contents

3.5	 Relational Set Operators  50
3.6	 Retrieval Operators  52
3.7	 CODD’s Twelve Rules of Relational Database  53
3.8	 Database Life Cycle  54
3.9	 Data Dictionary  54

	 Summary  55

Chapter 4	 Developing Entity-Relationship Diagram� 59
 4.1	 Introduction  59
 4.2	 Identifying Entities  60
 4.3	 Identifying Relationships  63
 4.4	 Types of Relationships  63
 4.5	 Relationship Participation  66
 4.6	 Strong and Weak Relationship  68
 4.7	 Managing Many-to-many Relationship  68
 4.8	 Example of E-R Model  68
 4.9	 Extended E-R Model  72
4.10	 Converting E-R Model into Relational Model  73
4.11	 Object Modelling  75

4.11.1	 Subclass and Superclass  75
4.11.2	 Specialization and Generalization  76
4.11.3	 Class Diagram  76

	 Summary  76

Chapter 5	 Normalization� 82
 5.1	 Introduction  82
 5.2	 Need for Normalization  82
 5.3	 Types of Dependencies  83
 5.4	 First Normal Form  88
 5.5	 Second Normal Form  88
 5.6	 Third Normal Form  94
 5.7	 Boyce-Codd Normal Form  96
 5.8	 Multi-valued Dependency  98
 5.9	 Join Dependency  100
5.10	 Lossless and Lossy Decompositions  101
5.11	 Normalizing Tables  102
5.12	 Examples  103

	 Summary  108

Chapter 6	 Managing Data Using Structured Query Language (SQL)� 111
 6.1	 Introduction  111
 6.2	 Data Definition Commands  112
 6.3	 Data Manipulation Commands  114
 6.4	 SELECT Statement and Its Clauses  115

FM_Final.indd 4 3/18/2014 5:02:47 PM

Contents  |  v

 6.5	 Aggregate Functions  118
 6.6	 Date and Time Functions  119
 6.7	 String Functions  121
 6.8	 Conversion Functions  122
 6.9	 Mathematical Functions  122
6.10	 Special Operators  123
6.11	 Types of Constraints  125
6.12	 Types of Join and Set Operators  127
6.13	 Sub-query  128
6.14	 Advances SQL Roll-up, Cube, Crosstab  129

	 Summary  132

Chapter 7	 Introduction to PL/SQL� 138
7.1	 Introduction  138
7.2	 Block of PL/SQL in Oracle  138
7.3	 Cursors in Oracle  139
7.4	 Procedures in Oracle  142
7.5	 Functions in Oracle  143
7.6	 Triggers in Oracle  144
7.7	 Overview of Packages in Oracle  145

	 Summary  146

Chapter 8	 Transaction Management in Database� 148
8.1	 Introduction  148
8.2	 Definition of Transaction  148
8.3	 Properties of Transaction  152
8.4	 States of Transaction  155
8.5	 Concurrency Control Using Locks  155
8.6	 Deadlocks  158
8.7	 Database Backup and Recovery  159
8.8	 Security, Integrity and Authorization  161

	 Summary  161

Chapter 9	 �Centralized and Distributed Database�
Management System� 165

9.1	 Introduction  165
9.2	 Types of Databases  165
9.3	 Centralized Database Management System
	 vs. Distributed Database Management System  166
9.4	 DDBMS Components  169
9.5	 Distributed Processing  169
9.6	 DDBMS Advantages and Disadvantages  170

	 Summary  170

FM_Final.indd 5 3/18/2014 5:02:47 PM

vi  |  Contents

Chapter 10	 Advancement in Databases� 172
10.1	 Multidimensional Database  172
10.2	 Mobile Databases  172
10.3	 Multimedia Databases  174
10.4	 Data Warehousing and Data Mining  174
10.5	 Open Source Database  175
10.6	 Spatial Databases  175
10.7	 Moving Object Databases  176
10.8	 NoSQL Database  176

	 Summary  177

Chapter 11	 Overview of MS-Access 2007� 180
11.1	 MS-Access as an RDBMS  180
11.2	 Elements of MS-Access  180
11.3	 Creating Database and Tables  181
11.4	 Data Types of MS-Access  183
11.5	 Sorting and Filtering Records in MS-Access  187
11.6	 Creating Queries in MS-Access  188
11.7	 Creating Forms in MS-Access  196
11.8	 Creating Reports in MS-Access  201
11.9	 Creating Macros and Switchboard  205

	 Summary  211

Chapter 12	 Overview of Oracle� 221
12.1	 Oracle as an RDBMS  221
12.2	 Logging into Oracle  221
12.3	 Command Summary of Oracle Database 10g XE  222
12.4	 Database Administration  228

12.4.1	 Managing Users  228
12.4.2	 Managing Roles  229
12.4.3	 Managing Privileges  231

	 Summary  233

References and Bibliography  235
Index  243

FM_Final.indd 6 3/18/2014 5:02:47 PM

Foreword

Database Management System is one of the most important subjects of the computer and IT
field. It is used in almost all the applications like management information systems, expert
systems, business information systems, mobile applications, and many more. Over the years, the
world has witnessed many inventions in database technologies. The most important invention
is relational database management system. Application developers, in the IT industry, are using
relational model-based databases for more than thirty years.

Students of IT, computer science and applications, are required to learn databases in one or more
courses. Databases are used to store and retrieve data. There are certain rules used to manage data
within a database. Database provides many features related to data, such as sharing and integration
of data, consistent transaction execution, security and recovery of data through authorization and
algorithms. The relational models use a common language, named as Structured Query Language
(SQL) to process data. With the rise of the Internet and mobile technologies, databases are also
evolving. To store huge amount of data which are spreading worldwide on the Internet and mobile
devices, relational database management systems are not enough. Special types of databases, such
as NoSQL (Not only SQL) are required for managing such data. Apart from NoSQL databases, the
databases which are able to store information related to moving objects, multimedia data, historical
data from multiple dimensions, spatial data, etc., are also needed. Automation of processes also
require maintenance of the existing applications and analysis of historical data. Analysis of histori-
cal data helps in improving business functions by taking important decisions.

In this book, the concepts of databases has been clearly explained giving examples in a lucid
language. All chapters are well-organized and comprehensively covering the syllabus of the
course on Database Management Systems. At the end of each chapter, summary is given to
quickly recap the concepts. The exercises include theory questions, multiple-choice questions,
and questions for student’s practice. The overview of emerging trends in databases is thoroughly
explained. This book addresses the need of B.Tech, M.C.A., and IT programme students, faculty
members, and professional developers. I am sure that they will be benefited from this book.

Shefali Naik, the author of this book, is working as senior faculty member, since past thirteen
years, at the School of Computer Studies of the Ahmedabad University. She teaches courses
on database management systems at graduate and post-graduate levels. To her credit, she has
written a good number of articles and technical papers in the area of databases. I wish her good
luck for authoring this book and her academic career.

—Bipin V. Mehta
Director

School of Computer Studies,
Ahmedabad University

FM_Final.indd 7 3/18/2014 5:02:47 PM

Preface

This is the first edition of this book. I have tried to cover all the concepts of database manage-
ment system. This book is useful for the students of computer science, IT, and the courses in
which database is offered as an interdisciplinary subject.

The readers who are new to this subject, can start this book reading from the first chapter.
Those who are already familiar with databases, can read any chapter to know more about it.
Readers, who are willing to learn about any Relational Database Management System, may read
Chapters 11 and 12 which gives brief details on MS-Access and Oracle RDBMS, respectively.
Readers, who are interested in advancement in database, may read Chapters 8, 9 and 10 which
describe advanced topics in database, such as Transactions, Distributed Database, and emerging
trends in Database. Those who wish to learn programming language used in database, may read
Chapters 6 and 7 in which SQL and PL/SQL is discussed.

The details covered in each chapter of this book are as follows:

●● Chapter 1 gives an overview of database by explaining the basic concepts of database,
such as data, information; database management system’s advantages on other record-
keeping system and limitations, its components, etc.

●● Chapter 2 describes the evolution of database management system from different sys-
tems, such as hierarchical model and network model. It also describes the architecture of
DBMS.

●● Chapter 3 explains Relational Database Management System.
●● Chapter 4 explains Entity-Relationship Model, and Chapter 5 describes Normalization
Process.

●● Chapters 6 and 7 explains the common languages SQL and PL/SQL, which is used in
relational database systems to create and manage database objects; add, remove, change
and retrieve data to/from tables and write small programs.

●● In Chapter 8, Transaction is discussed; Chapter 9 explains Centralized and Distributed
database, and Chapter 10 describes advancement in databases.

●● Chapters 11 and 12 cover two well-known relational database management systems MS-
Access and Oracle.

Any suggestions to improve the content of the book are welcome.

—Shefali Naik

FM_Final.indd 9 3/18/2014 5:02:47 PM

Acknowledgements

I am indebted to many people who were directly or indirectly involved with the creation of
this book.

I would like to thank Bipin V. Mehta, Director at the School of Computer Studies of the
Ahmedabad University, for his inspiration and contribution with the Foreword of this book.
I am grateful to my colleague and friend, Pratik Thanawala, for his technical suggestions
which helped me to improve the contents of this book. I am thankful to my friends from other
universities, Sonal Jain, Shivani Trivedi and Tripti Dodiya, for their guidance.

I would like to acknowledge the assistance provided by the editorial team of Pearson
Education, Noida; especially, Neha Goomer and Nikhil Rakshit, for their continuous assistance
in solving various queries related to the publishing of this book. I am also thankful to Uma
Tamang and Naresh Sharma. A big thanks to Pearson Education for publishing this book.

I thank my parents, Girish and Bharati Naik, and children, Jisha and Harsheev along with
rest of the family, for their love and patience. Finally, I owe it to my husband Trushit, for his
constant support and encouragement.

—Shefali Naik

FM_Final.indd 11 3/18/2014 5:02:47 PM

About the Author

Mrs Shefali Naik, the author of this book, is working as a senior faculty member for past 13 years
at School of Computer Studies, Ahmedabad University, Ahmedabad. She teaches subjects related
to Databases, Programming, Systems Analysis and Design, and Software Project Management
at undergraduate and post-graduate levels. She has obtained her Master’s degree in Computer
Applications (M.C.A.) and Bachelor’s degree in science with mathematics as a special subject
(B.Sc., Mathematics) from Ahmedabad, Gujarat.

The author has written few technical papers and articles in the area of databases.
Presently, she is pursuing her Ph.D. from S.P. University, Vallabh Vidyanagar, Anand, Gujarat,

in the subject of Distributed Databases.

FM_Final.indd 13 3/18/2014 5:02:48 PM

CHAPTER

1.1  |  Introduction
In the current era, people of all ages use database in one way or the other. Everyone uses
database in different ways. For example, school children use database of e-mail programs and
mobile phones, youngsters use online movie and railway ticket booking database to book tick-
ets, housewives use database of books to order books online or access various community site’s
database, businessmen use database of airlines to book their trips, academicians use online
journals database to do research work and many more. Nowadays, computers are used every-
where. We may reform the proverb ‘Where there is a will, there is a way!’ as ‘Where there
is a computer, there is a database.’ Computerized Databases have made our life very easy and
comfortable. We can search any place, product, area, thing, etc., with the help of stored data in
a fraction of a second. Stored data processed with the help of database management systems
extracts the desired information, every time. Let us understand the database in some more detail.

1.2  | D ata and Information

1.2.1  | D ata

Data is a plural of word ‘datum’. In our daily life, we use the word data to describe facts about
any person, event, place or thing. Data are raw facts which may be numbers, values, names,

1

Basics of Database

•	 Understanding the meaning of data and information.
•	 Knowing how database and database management systems are useful in organizations to keep

records.
•	 Examples of database management system.
•	 Components of database system.
•	 Characteristics of data and DBMS.
•	 Differences between file-based management systems.
•	 Limitations of DBMS.

Chapter Objectives

CH_1_Basics of Database_Final.indd 1 2/26/2014 3:36:03 PM

2  |  Chapter 1

dates, etc. When we combine related data, they describe any real-world entity. Related data
means data which belong to the same entity (person, place, event or thing). For example, If
we consider the entity ‘Doctor’ (person type of entity), then doctor’s name, doctor’s address,
doctor’s birth date, doctor’s qualification, doctor’s specialization, etc., are data related to
doctor. We cannot say that supplier’s name and doctor’s qualification are related data;
because both describe two different entities named supplier and doctor. Thus, when we want
to describe any real-world entity, we use data values. Data values alone do not have any
meaning because they are not processed yet.

1.2.2  |  Information

When we process related data it gives some information. Information is useful to take deci-
sions, it can be stored for future use, it has some meaning. To obtain information, we need data.
For example, when we process students’ attendance data, we can get a list of students with low
attendance, students who are attending lectures regularly, students who come to college to at-
tend particular lectures, pattern of class bunking for each student, etc.

On the basis of this information, the college may decide the attendance policy, reschedule
the time-table to improve attendance, decide whether to inform parents or not, determine which
students should be allowed to sit for an examination, etc. This information could also be stored
for future use. In case, when students need a transcript, this information can be used to fill up
lecture-wise attendance details of each student or to generate attendance certificates which may
be required along with migration certificates when students change universities.

Data can be stored manually or electronically. Similarly, stored data may be processed manu-
ally or electronically. Table 1.1 shows some examples of data and information.

We can show the relationship between data and information as given in Figure 1.1.
Figure 1.2 shows an example of data and information.
Table 1.1 shows some examples of data, processes which should be applied on stored data

and information which could be obtained after processing certain data.
Table 1.2 shows a student’s examination result data which can be processed as per the follow-

ing condition to obtain grade-wise Result analysis.

Table 1.1  |  Examples of Data and Information

Data Process Description Information

Census data Sort records based on area and count
total no. of persons gender-wise and
age group-wise

Area-wise male and female
ratio for different age groups

Board Exam Data Count subject-wise, no. of students
who passed or failed in an exam

Subject-wise total no. of passed
or failed students

Climate Data Maximum temperature and minimum
temperature during the year

Hottest and coldest day of the
year

CH_1_Basics of Database_Final.indd 2 2/26/2014 3:36:03 PM

Basics of Database  |  3

 If percentage < 40 then, Grade = ‘F’
If percentage ≥ 40 and < 50 then, Grade = ‘D’

 If percentage ≥ 50 and < 60 then, Grade = ‘C’
 If percentage ≥ 60 and < 70 then, Grade = ‘B’
 If percentage ≥ 70 then, Grade = ‘A’

The following sample information may be obtained after processing the data given in Table 1.2:

Class-wise Result Analysis

Table 1.2  |  Students’ Examination Result Data

Std No. Class Code Std Name Percentage Gender

1 FY Mitali Gupta 89 Female

2 FY Nirav Valera 91 Male

3 FY Jainam Vora 79 Male

4 FY Rajani Vyas 57 Female

5 FY Nidhi Jain 64 Female

1 SY Kartik Bhatt 82 Male

2 SY Kanika Yadav 84 Female

3 SY Karishma Yadav 70 Female

4 SY Siddharth Soni 39 Male

5 SY Akash Patel 69 Male

1 TY Paras Sanghvi 84 Male

2 TY Pankti Bindal 94 Female

3 TY Richa Singh 75 Female

4 TY Neel Shah 59 Male

5 TY Payal Shah 60 Female

Process
Data Information

Figure 1.1  |  Relationship between data and information.

Students’ Attendance Data

Percentage of lectures attended by student

Total no. of lectures attended × 100

Total no. of lectures conducted

Data

Process

Information

Figure 1.2  |  Example of data and information.

CH_1_Basics of Database_Final.indd 3 2/26/2014 3:36:04 PM

4  |  Chapter 1

Class code: FY

No. of students who got ‘A’ Grade: 3
No. of students who got ‘B’ Grade: 1
No. of students who got ‘C’ Grade: 1
No. of students who got ‘D’ Grade: 0
No. of students who got ‘F’ Grade: 0

Class code: SY

No. of students who got ‘A’ Grade: 3
No. of students who got ‘B’ Grade: 1
No. of students who got ‘C’ Grade: 0
No. of students who got ‘D’ Grade: 0
No. of students who got ‘F’ Grade: 1

Class code: TY

No. of students who got ‘A’ Grade: 3
No. of students who got ‘B’ Grade: 1
No. of students who got ‘C’ Grade: 1
No. of students who got ‘D’ Grade: 0
No. of students who got ‘F’ Grade: 0

Overall total no. of students who passed in the exam:14

 Overall total no. of students who failed in the exam:1

The above information may be stored and processed further to represent the result analysis
graphically or pictorially using bar charts as represented in Figure 1.3. X-axis will contains
class code and grades, and Y-axis contains total number of students.

1 1 1 11 1

0 0 0 0 0 0

FY

3

2.5

1.5

0.5

0

1

2

SY TY

333

A
B

C

D
E

Figure 1.3  |  Bar chart represents class-wise grade-wise total number of students.

CH_1_Basics of Database_Final.indd 4 2/26/2014 3:36:04 PM

Basics of Database | 5

1.3 | database
As the name suggests, database is a collection of data, i.e., database is a storage area where we
can store all related data and process them. To understand the concept of database, let us take
some real-time examples of database (storage). One logical database which we carry with us
all the time is our brain. The brain stores all thoughts, ideas and things which we learn, view,
etc. and it relates them. We can retrieve, change or remove these stored ideas and thoughts any
time. The example of real-time physical database is a grain warehouse. When it is the season
for some grain/pulses, we store them and use them later as per the process requirements. When
we process the grains/pulses we obtain the information in the form of fl oor, sprouts, etc., which
could be used in further processing to cook food. The pulses/grains which we fi nd useless could
be removed from the warehouse and could be replaced (updated) with fresh stock. In real-life,
we use the concepts of data, information and database everywhere.

Figure 1.4 shows an example of real-life database of children’s’ schoolbag. It is a stationery
database which contains entities such as notebook, textbook, compass box, geometry case, etc.
Entity Notebook has distinguished notebooks of various subjects; Entity Textbook has distin-
guished textbooks of various subjects; Entity Compass box has pencils, erasers, sharpeners,
ruler, etc., and Entity Geometry box has common mathematical tools.

A database is like an electronic storage, which contains computerized data fi les (entities).
It can contain one or many data
fi les. Data fi les contain various
related data within it. Database
should contain accurate, con-
sistent and non-redundant data
which could be shared by differ-
ent application programs. Data
can be related by defi ning rela-
tionships between proper data.
Also, conditions (constraints)
may be applied on data. Different
users may access different data
sets from the same database by
writing application program. We
may put security and authentica-
tion procedures to provide autho-
rised access of data. There may be
more than one database within a
database management system. All
related entities are kept together
in the same database. Data within database can be retrieved, updated or deleted directly by
database administrator or by authorized users or application programs written by users. To
describe data, other details are stored along with the data such as data type, size, constraints,
description, format, etc. Using this information, the database management software generates
data dictionary which contains ‘data about data’ or ‘metadata’.

Schoolbag: A database
of stationery items

Notebook: An entity
within a database

Geometry box: An
entity within a database

Compass box: An
entity within a database

Textbook: An
entity within a
database

Geometry box: An

fIGure 1.4 | Real-life example of a database.

CH_1_Basics of Database_Final.indd 5 2/26/2014 3:36:04 PM

6  |  Chapter 1

Database contains data stored in computer. To process the stored data, we need application
programs. The processed data could be again stored into database for future use. The data, on
which we can do some processing, is known as operational data. Any organization contains
operational data. Table 1.3 contains some examples of organizations and operational data of a
particular organization.

A database stores data of various entities. These entities can be related using relationships.
Data also contains description, which is known as metadata. Along with the data, one can keep
constraints on its data types.

A cylindrical shape, as shown in Figure 1.5, is used to represent physical database. Physical
database is useful for the computer (i.e., how a machine sees data), while logical database is
useful for the user (i.e., how a human being sees data). It is a database of a university, which
contains various related entities, such as course, college, student, class, attendance, exam, etc.
There are many colleges in a university; each college contains many students in different courses
and classes. Students attend lectures, appear in exams and get results.

The ‘University’ database contains interrelated data which could be shared by different ap-
plication programs to obtain meaningful information.

1.3.1  |  Components of Database System

Figure 1.6 shows components of any conventional database system.

	 1.	 User: User is any person who uses a database or any other object of the database. User
may be of different types and at different levels in an organization. Say for example, the
‘University’ database may be useful for different persons who are directly or indirectly as-
sociated with the university. Following are some categories of users who may use database.

Figure 1.5  |  Example of ‘University’ database.

College

Attendance Class

Exam

Student

Course

Table 1.3  |  List of Some Organizations and Related Operational Data

Organization Operational Data

Public Library Member data, Books data, Publisher data, etc.

Restaurant Customer data, Employee data, Food Items data, etc.

Super Mall Product data, Customer data, Supplier data, etc.

University Student data, Faculty data, Exam data, etc.

Hospital Patient data, Doctor data, etc.

CH_1_Basics of Database_Final.indd 6 2/26/2014 3:36:05 PM

Basics of Database  |  7

	 a.	 Naive User, or End-user, or Layman: The clerk of the university uses the ‘university’
database to enter the data of applicants who have applied for various courses and the
same data are retrieved to generate a merit list. The clerk does not know anything about
the technical features of the database or the language, using which data is entered or
retrieved. He is completely unaware about the technology. Therefore, he/she is known as
an end-user or Layman or Naive user. Table 1.4 shows some examples of databases and
end-users of that database.

	 b.	 Software Programmer, or Application Programmer, or Application Developer: A soft-
ware programmer is a person who writes application programs or logic in some specific
language to insert, delete, update or fetch data to/from database. An application program-
mer has brief knowledge about database and Query Language which is used for writing
programs. Query Language is a generalized language which is available with all data-
bases. A programmer may or may not have deep understanding about database concepts,
but he/she is able to operate on data stored in the database.

Table 1.4  |  Examples of End-users

Database End-user
Online University Database Applicants, Parents, University Staff, etc.
Hotel database Customer, hotel Employees, etc.
Online Railway Reservation
Database

Citizens of the country, Agents, Railway
officials, etc.

Figure 1.6  |  Components of database system.

Datafile 1 Datafile 2

Data 1

Data 1

Data 2

Data 2

Data 2

D
a
t
a
f
i
l
e
1

D
a
t
a
f
i
l
e
2

 Data2

D
a
t
a
2

D
a
t
a
f
i
l
e
2

D
a
t
a
1

D
a
t
a
2

D
a
t
a
1

User(Software
programmer)
writes programs
to view data

User(DBA) writes
validation programs
and manages
security on

Hardware on which
database is stored

Programs

programs
programs

Programs
programs
programs

Programs

Programs

Datafile 2

CH_1_Basics of Database_Final.indd 7 2/26/2014 3:36:05 PM

8  |  Chapter 1

	 c.	 Database Designer: A database designer decides about entities (data files) which should
be stored within database, constraints to be applied on data, data types, format and
other specifications regarding data. The database designer is responsible for designing
of data files.

	 d.	 Database Administrator: A database administrator (DBA) is the person who is the over-
all in-charge of a database. He/she assigns authorization to users, writes validation proce-
dures, decides backup and recovery policies, and manages users and privileges. In short,
DBA keeps control on database.

	 2.	 Hardware: Hardware is a permanent storage where the database is stored. It may be a
hard-disc, or any other secondary memory. One single database may be stored on more
than one storage devices depending on the volume of data stored within the database. For
security purpose, a copy of database could be kept on some other storage device. Besides
storage device, other hardware, such as computer, peripherals, etc., are also required to
perform database-oriented operations.

	 3.	 Software (data dictionary management, database schema management, SQL):
Software are programs or applications which are used to access data from database.
These applications reside in DBMS or there may be some applications which could be
interfaced with DBMS to manage data. For example, programming languages are used
to display data on monitor. There are some software programs, which are part of DBMS,
that manage data dictionary or metadata, define schema for the database objects, and are
used to write query on database. The common language available with all the databases
is known as Structured Query Language; if which is popularly known as SQL and
sometimes pronounced as ‘Sequel’.

	 4.	 Data: Data is the most important component of a database system. Data is discussed in
detail in Section 1.1. When data is stored in database, it should be stored along with its
definition, data type and size, constraints, such as duplicate values are allowed or not,
possible range of values, formula if it is derived from some other data, etc., display format,
format in which it should be entered, validation rules, etc. Some examples of data
files/entities (tables) and data stored within the entity are given in Tables 1.5, 1.6 and 1.7.
These data files are inter-related data files which are part of the playschool’s database.

Table 1.5  |  Example of Data within Data File ‘Kindergarten’

Data Name Data Type (Size) Constraint Input Format Display Format

Data File Name: Kindergarten

KG id Integer Unique number which
Should be generated
automatically.

— —

KG name Character(30) Must be entered. Should be entered
in upper case.

Should be dis-
played in title
case.

Address Character(100) — — —
No. of branches Integer ≥0 — —
Contact no. Integer — — —

Contact person Character (20) — — —

CH_1_Basics of Database_Final.indd 8 2/26/2014 3:36:05 PM

Basics of Database  |  9

Table 1.6  |  Example of Data within Data File ‘Class’

Data Name Data Type (Size) Constraint Input Format Display Format

Data File Name: Class

Class code Character (3) Must be entered Should be entered
in upper case.

Should be displayed
in upper case.

Class desc. Character (30) — — —

Class capacity Integer >0 and ≤30 — —

No. of divisions Integer >0 and ≤4 — —

Age criteria Float ≥2 — —

Table 1.7  |  Example of Data within Data File ‘Class’

Data Name Data Type (Size) Constraint Input Format Display Format

Data File Name: Kindergarten Detail

Class code Character(3) Must be entered Should be entered
in upper case.

Should be displayed
in upper case.

KG id Integer Must be entered — —

Division Character(1) Upper case — —

No. of students Integer >0 and ≤30 — —

Table 1.8  |  Example of Data Values within Data File ‘Kindergarten’

KG ID KG Name Address No. of Branches Contact No. Contact Person

Data File Name: Kindergarten

1 Innocent
Flower

Naranpura,
Ahmedabad

1 27417411 Mr S. T. Pandya

2 Smart Kids Navrangpura,
Ahmedabad

3 27477471 Ms K. P. Verma

3 Kids Zone Satellite,
Ahmedabad

4 26306301 Mr A. R. Nair

4 Teacher’s Pet Naranpura,
Ahmedabad

2 27567561 Mr T. R. Khanna

5 Little Star Ambawadi,
Ahmedabad

1 26466461 Ms N. J. Gupta

When data are entered into tables, Kindergarten, Class and Kindergarten Details (Tables 1.5,
1.6 and 1.7 respectively); the correctness of data are checked. Invalid data cannot be entered
into data files.

Tables 1.8, 1.9 and 1.10 contain some valid data values for the tables Kindergarten, Class and
Kindergarten Details, respectively.

CH_1_Basics of Database_Final.indd 9 2/26/2014 3:36:05 PM

10  |  Chapter 1

Table 1.9  |  Example of Data Values within Data File ‘Class’

The data in a database must have the following characteristics:

●● Same data should be shared between different applications. For example, if there are two
departments , namely ‘accounts’ and ‘examination’, in a university, then data related to
student should be shared by these two departments. There should be no need to create a
copy of the same data.

●● When data are shared, there is a question of integration. Integration means, changes in
one data file should also be reflected in the related data file. For example, if a clerk in the
accounts department deletes a record of any student, then it should also be deleted from
‘member data file’ used by the ‘library’ department of that university.

●● When data are properly integrated, there are minimum chances of inconsistent data.
Data will be consistent if they are integrated properly.

●● Data should be non-redundant: If possible to avoid duplication of data in different files,
data should be stored in one file, and whenever required, it should be referenced from the
original file. It is not possible to remove redundancy at all, but we should try to avoid redun-
dancy. Redundant data causes inconsistency within a database. For example, if a student’s
address is stored in the ‘enrolment’ file as well as in the ‘alumni’ file, then ‘address’ entry
for the same student would be redundant. Now, when the student’s address is changed,
the clerk changes the ‘address value’ in the ‘student’ file. He forgets to change address in

Class Code KG ID Division No. of Students Class Code KG ID Division No. of Students

Data File Name: Kindergarten Detail Data File Name: Kindergarten Detail

PG 1 1 15 JRKG 2 1 30
PG 1 2 13 JRKG 2 2 30

NUR 1 1 25 JRKG 2 3 30

NUR 1 2 25 JRKG 2 4 30

NUR 1 3 25 SRKG 2 1 30

NUR 1 4 25 SRKG 2 2 30

JRKG 1 1 30 PG 3 1 14

JRKG 1 2 30 PG 3 2 14

JRKG 1 3 30 NUR 3 1 20

JRKG 1 4 30 NUR 3 2 20

SRKG 1 1 30 NUR 3 3 20

SRKG 1 2 30 NUR 3 4 20

PG 2 1 15 JRKG 3 1 30

PG 2 2 10 JRKG 3 2 30

NUR 2 1 25 JRKG 3 3 30

NUR 2 2 25 JRKG 3 4 30

NUR 2 3 25 SRKG 3 1 20

NUR 2 4 25 SRKG 3 2 20

CH_1_Basics of Database_Final.indd 10 2/26/2014 3:36:05 PM

Basics of Database  |  11

Table 1.10  |  Example of Data Values within Data File ‘Class’

Class Code Class Describe Class Capacity No. of Divisions Age Criteria

Data File Name: Class

PG Play Group 20 2 2

NUR Nursery 25 4 2.5

JRK Junior KG 30 4 3.5

SRK Senior KG 30 4 4.5

the ‘alumni’ file. So, now database will show different addresses for the same table which
is conflicting. This is called ‘data inconsistency’, which occurs due to redundant data.

●● Data should represent complete details. For example, only customer’s first name entered
in the name field represents incomplete detail. It should contain at least first name of the
customer along with the surname.

1.4  | D atabase Management
The process of managing data within database is called database management. To manage
database, a database management software/system is required. Database management includes
the following activities:

●● Writing schema for creating new data files, updating structure of existing data file, delet-
ing a data file.

●● Setting relationship among data files.
●● Inserting, deleting and updating data values within data files.
●● Maintaining data dictionary.
●● Creating, updating and deleting database objects other than data files, such as views,
synonyms, procedures, functions, triggers, indexes, etc.

1.5  | D atabase Management System
Database management system is a collection of application programs which is used to man-
age database objects. Database Management System is a generalised software which is used to
manage database and database objects, such as tables, users, procedures, functions, etc., and
to connect database with any front-end (language) with the help of some hardware. Many types
of database management systems are available in the market nowadays. One can purchase
license of any database from its vendor and start using it. Also, there are some open source
database management systems for which there is no license required to use it. It is available
on the Internet. One can download it and use it. The source code is also available for free which
could be modified by any user and redistributed. MySQL is one of the most popular open source
database management system. Table 1.11 contains some examples of database management
system and the vendor company who provides it.

CH_1_Basics of Database_Final.indd 11 2/26/2014 3:36:05 PM

12  |  Chapter 1

1.6  | N eed for A Database
Following are some reasons for the need of a database:

●● Database is required for efficient and easy storage, retrieval, updation and deletion of data
records.

●● Interrelated data should be grouped in one named storage area for easy access. This storage
area may be physical or logical which resides in computer.

●● For avoiding unnecessary repetition of data values, checking correctness of data by applying
some validation rule, and searching the required information faster thus saving time and ef-
fort, etc.

●● Database is required for flexibility, i.e., as and when required we can connect the database
with different front-ends.

●● Once a database is created, it can be shared by many users. Hence, to share data with many
applications a database is required.

●● Database is needed for storing high volume and complex data, such as documents files, pho-
tographs or images, multimedia data, mobile user’s data, audio and video files.

●● For managing multi-dimensional data.
●● Database is required for proper transaction management or transaction handling.

1.7  | Fi le-based Data Management System
File-based data management system is used by programmers to manage data. Languages, such as
C or COBOL contain file management system within it. Figure 1.7 shows a file-based system for
any ‘Playgroup’ in which different data files are used to manage admissions in (a) Nursery, (b)
Junior KG and (c) Senior KG—for which different application programs should be written to
handle different procedures. In file-based systems, data are managed using data files and these
files are created and manipulated by writing application programs. Each application program
contains its own data files.

File-based management system has the following disadvantages:

●● File-based management system is not appropriate when volume of data is very high.
For example, it will be difficult to handle when daily transactions are in thousands
or more numbers.

●● When number of data files increase, it becomes very complicated to manage data files,
i.e., if number of data files increase, number of application programs are also increased;
because to insert, update, delete or view data to/from data files, an independent applica-
tion program is to be written.

 Table 1.11  |  Examples of DBMS and Its Vendors

Database Management System Vendor (Supplier)

Oracle Oracle
SQL Server Microsoft
Access Microsoft
DB2 IBM

CH_1_Basics of Database_Final.indd 12 2/26/2014 3:36:05 PM

Basics of Database  |  13

●● Complex data structures, such as pointers, cannot be handled easily by a file-based
system.

●● When the same data file is required by different programs at the same time, data sharing
is not possible. To use same files at the same time, copy of that data file must be created
and used. When these are two or more copies of same data file, it may result in inconsis-
tent and redundant data, because changes made in one file may not be carried out in the
other files.

●● In a file-based system, the programs should only be written in a structured manner.
●● It is not possible to set relationships between data files. Programs should be written to
relate them.

●● Security settings cannot be applied on data files.
●● Set of data files created in a specific file-based system cannot be used with other file-
based systems as storage formats of different file-based systems vary.

Database system is required to overcome the limitations of file-based management system. The
traditional database system contains data files which could be used to store data. The examples
of simple database management system are dBASE and FoxPro. These DBMS contains CUI
(Character-based User Interface) which provides faster access of data using commands. There
is no need to create data files manually. In simple DBMS, data files with data field names and its
data type can be created. However, a simple DBMS does not provide the facility to define keys.

Student
datafile

Applicant
datafile

Enrolment
 process

 Class
datafile

  

Attendance
datafile

Class
datafile

Student
 datafile

Attendance
 process

 Result
process

Result
datafile

Exam
datafile

Student
datafile

Class
datafile

Figure 1.7  |  File-based management system to manage data of ‘Playgroup’.

CH_1_Basics of Database_Final.indd 13 2/26/2014 3:36:06 PM

14  |  Chapter 1

As keys cannot be defined, it is not possible to define relationship between data files either. If
user wants to relate data files, then he/she has to write programs to relate two or more file. An
example of such a program is given below in Figure 1.8.

But the advantage of simple DBMS, over file-based system, is that we can share data files be-
tween applications. Simple commands can be used to search, insert, update, delete and view data.

1.8  | �C haracteristics, or Features, or Advantages
of Database systems

●● It provides facility to use same data file with different applications, i.e., data can be shared.
As shown in Figure 1.8, ‘Employee’ data file can be used by ‘Accounts’ department to
generate salary slip and by ‘Human-Resource’ department to evaluate the performance
of the employee.

●● Duplication of data can be minimized. There is no need to enter same data again and
again as data can be shared between different applications.

●● Proper transaction management is provided by DBMS. When data are shared between
applications, there is a problem of updation when two users try to change same data at
the same time. Data can be changed by only one user at a time. DBMS itself decides the
priority to allow only one user to change the data at a time. The priority is decided by the
DBMS software on the basis of some algorithms. In this way, DBMS handles transac-
tions more efficiently than the file-based management system.

●● There is no need to write long programs to manage data. It can be done by writing a
simple single line command using structured query language, which is the generalized
language provided with DBMS software.

●● It is easy to maintain data file structures in DBMS using structured query language.
●● Data can be integrated easily, i.e., change in one data is reflected automatically in the
related data file’s data. For example, if we delete any record from ‘Customer’ table, the
related child records from ‘Purchase Order’ data file will be deleted.

●● Data inconsistency can be avoided. As data are integrated, user is not bothered about up-
dation of same data in different data files. It is handled by the database software. In this
way, data will be consistent.

●● User management becomes easier. There may be many users of the same database who
may access the database from local or remote machines. By providing user rights and
authorization checks, the DBMS can control and restrict users.

Accounts
department

Human-resource
department

Employee

data file

Figure 1.8  |  Example of data file of DBMS which is shared by various departments in an
Organization.

CH_1_Basics of Database_Final.indd 14 2/26/2014 3:36:06 PM

Basics of Database  |  15

Table 1.12  |  File-based Management System vs. Database Management System

File-based Management System Database Management System

Needs individual application program to per-
form any operation on data file.

Any operation on data file is done using
single-line commands.

Programming is done using 3GL (Third Genera-
tion Languages, such as COBOL, C, PASCAL).

Programming is done using 4GL (Fourth
Generation Languages such, as SQL-
Structured Query Language).

Transaction management is very difficult. Transaction management is easy.

Same data file cannot be used simultaneously. Same data file can be used simultaneously.

Security features cannot be enforced. Security features can be enforced.

Backup and recovery facility is not available. Backup and recovery facility is available.

Duplication of data cannot be minimized. Duplication of data can be minimized.

Examples: C, COBOL, PASCAL languages’ file
management system.

Example: dBASE, FoxPro, MS Access, Oracle.

●● Validation rules can be applied on data before data is entered in the database. It will pre-
vent wrong data inputs.

●● Change in data file structure becomes very easy.
●● Security can be enforced on data by assigning privileges for different users.
●● Appropriate backup procedure is available to avoid loss of data in any adverse circum-
stances, such as power failure, server failure, hardware crash. In case of failure, the data
can be recovered using recovery procedures.

●● DBMS provides Import and Export facility using which data files can be imported from
one DBMS and exported to another.

Table 1.12 shows the difference between file-based management system and database manage-
ment system.

1.9  | Li mitations of Database
Nothing is 100% perfect. Advantages also bring along limitations with them. Database manage-
ment system also has some limitations. They can be described as:

●● Cost of database management system is very high. As the number of users increase, we
need to pay more.

●● To install database in a network, high-end hardware and skilled personnel to manage the
network and database is required.

●● As data can be shared through DBMS, it is difficult to control and keep track of data ac-
cessed by users. Proper encryption and decryption techniques are required to secure data
over a network.

●● Efficient employees are required to handle users and decide policies about data access,
which requires considerable and constant training.

CH_1_Basics of Database_Final.indd 15 2/26/2014 3:36:06 PM

16  |  Chapter 1

●● If data volume is very high, performance will be poor. Also, when too many users are
using database at the same time, it may generate traffic on network and slow down the
response time.

●● It will be more complex when DBMS contains many databases within it. It may reduce
the speed of data access.

Summary
●● Data means raw facts. It may be any values, such as integer numbers, float numbers,
characters, dates, images, Boolean.

●● Examples of integer type of data are roll numbers form number, order number; float type
of data are salary, balance amount, fees, product price; character type of data are person’s
name, address, qualification, product name; date type of data are birth date, admission
date; retirement date, order date; image type of data are person’s photo, image of property
location, image of property; Boolean type of data are customer status, payment status,
gender.

●● Interrelated data represent any entity, i.e., data are characteristics of entity. For example,
student name, student birth date and student gender are data (characteristics) related to
student entity. An entity is a distinguishable object of real-world.

●● Data related to an entity are kept together in a data file, i.e., data file is a collection of
related data.

●● Data may be stored manually or electronically. When we apply any process on stored
data, it gives some valuable information. The process on data stored electronically can be
applied by writing application programs.

●● The data on which we do some operation, is known as operational data. Operational
data belongs to any organization. For example, student’s data is an operational data for
the ‘University’ organization. By processing student’s data, we can generate information
like a student’s mark sheet, list of college-wise total number of students, etc.

●● Database is a collection of data files or tables which contain data within it. Relationship
can be set to access data from different files.

●● The process of managing data within database is called database management.
●● Database system contains the components data, user, hardware and software.
●● Using database we can share and integrate data between applications.
●● Database management system is a collection of software programs through which
database can be managed.

●● File-based management system requires manual creation of data files which are very dif-
ficult to handle. Within file-based management system, independent programs should be
written to do operations such as insert, delete, update and view data.

●● Database management system provides structured query language to store and access data
from database. There is no need to write long programs to access data. Data redundancy
and data inconsistency problems can be avoided using database management system.

CH_1_Basics of Database_Final.indd 16 2/26/2014 3:36:06 PM

Basics of Database  |  17

●● Database management system provides automatic transaction management, backup and
recovery facility, export and import facility, user management and other functionalities.

●● The limitations of database management systems are: they are complex, expensive,
requires knowledge to use them, data control is difficult, performance may suffer because
of high data volume, etc.

Exercises

	 1.	 Define Data and Information. Show relationship between these two.
	 2.	 Give any two examples of data. Write any two types of information which could be ob-

tained by processing these data.
	 3.	 Define the terms:
	 a.	 Database
	 b.	 Database management
	 c.	 Database management system
	 d.	 Operational data
	 e.	 Metadata

	 4.	 For any restaurant system, which data are operational data? Write two examples of infor-
mation related to that.

	 5.	 Draw a diagram of components of database system and explain.
	 6.	 List down different types of users of database system with their roles.
	 7.	 Name any four DBMS along with their supplier company.
	 8.	 What is an open source database? Give an example.
	 9.	 Which are the characteristics or features of data in a database?
	 10.	 Write a short note on file-based management system.
	 11.	 Give an example of file-based management system. Mention the disadvantages of this

system.
	 12.	 List down and explain advantages of database management system over file-based man-

agement system.
	 13.	 What are the limitations of database management system?
	 14.	 Discuss data redundancy and data inconsistency with relevant example.
	 15.	 Write/Tick the correct answer.

	 i.	 Data means:
		 a.  Unprocessed facts			 b.  Processed facts
		 c.  Unprocessed information		 d.  Processed information
	 ii.	 The operational data related with ‘Hostel’ are:
		 a.  Mess data				 b.  Customer data
		 c.  Patient data				 d.  Doctor data
	 iii.	 DBMS is an abbreviation of ______________.
		 a.  Database Management System	 b.  Distributed Management System
		 c.  Data Management System		 d.  Database Modification System

CH_1_Basics of Database_Final.indd 17 2/26/2014 3:36:06 PM

18  |  Chapter 1

	 iv.	 Database contains data files or tables.
		 a.  True				 b.  False
	 v.	 Data represents ______________ of an entity.
		 a.  Relationship			 b.  Definition
		 c.  Type				 d.  Characteristics
	 vi.	 DBMS supports structured query language (SQL) which is _________.
		 a.  1GL				 b.  2GL
		 c.  3GL				 d.  4GL
	 vii.	 The user who does not know working of a database is called _____________.
		 a.  End-user				 b.  Database Designer
		 c.  DBA				 d.  System Analyst

	 viii.	 _____________ is responsible for overall control of database.
		 a.  Data Analyst			 b.  Database Administrator
		 c.  Programmer			 d.  End-user

	 ix.	 Among the following, which one is not a component of database system?
		 a.  Hardware				 b.  Data
		 c.  Software				 d.  None

	 x.	 Data redundancy causes ________________ data in database.
		 a.  Accurate				 b.  Complete
		 c.  Meaningful				 d.  Duplicate

CH_1_Basics of Database_Final.indd 18 2/26/2014 3:36:06 PM

CHAPTER
2

Data Models and Architecture
of DBMS

•	 Evolution of data models.
•	 Knowing the traditional data models.
•	 Advantages and disadvantages of various types of data models.
•	 Three-level architecture of database management system.
•	 Understanding languages used to define objects, manage and control data and transaction.

Chapter Objectives

2.1  | E volution of Data Models
●● Data are the primary requirement of any application. It is important to store data appropri-
ately for easy access. During the 1940s and 1950s, use of computer to write applications
in programming language for automation increased. The file-based management system
was not sufficient to manage data. Hence, evolution of data models took place. Figure 2.1
shows the block diagram of evolution of data models from manual record keeping system
to file-based management system, and from file-based management system to database
management system.

●● COBOL (Common Business-oriented Language) and FORTRAN (Formula Translation)
were two primary programming languages used to create enterprise applications during
the 1950s. The file systems of these languages were not able to handle data which are
required by the applications developed in these languages.

●● Therefore, in the 1960s, IBM and Rockwell International developed a hierarchical data-
base system named IMS (Information Management System). Later, C.W. Bachman pro-
posed Network Data Model and, on the basis of this model, General Electric developed
a network database model named IDS (Integrated Data Store). Both IMS and IDS were
accessible from the programming languages using an interface. Using these database
systems, application development and data management within application had become
easy, but a complex task.

CH_2_Data Models and Architecture of DBMS_Final.indd 19 2/26/2014 3:37:02 PM

20  |  Chapter 2

Manual record keeping

Manual record keeping

Manual record keeping

Manual record keeping
Manual record keeping

Data kept manually

...

 Data stored in computerized
file using file-based management

 system

Data stored in database using
database management system

Figure 2.1  |  Evolution from manual record keeping system to file-based management	
system and, from file-based management system to database management system.

●● In 1970, Edgar F. Codd proposed a different data model, in which he had suggested that
data in a database could be represented as a two-dimensional table structure, which is
known as relation, and could be accessed without writing lengthy programs to access
data. This model is known as relational data model. Nowadays, many vendors provide
relational database management systems. Some well-known RDBMS are MS-Access and
MS-SQL Server provided by Microsoft; Oracle provided by Oracle; DB2 provided by	
IBM, and many more.

●● Along with RDBMS, the object-oriented concept evolved. The use of object-oriented
programming languages increased in the 1980s, and along with it increased the need
of a database system which would be able to handle classes and objects. Thus, evolved
the object-oriented data model. Many vendors had developed OODBMSs namely Gem-
Stone, ObjectDesign, Versant, O2, Objectivity, etc.
●● Extensive use of object-oriented languages resulted in an object-relational DBMS
which is a combination of object-oriented and relational DBMS. Many vendors, such as
Oracle, IBM, provided functionalities of object-oriented concepts in their RDBMS (see
Figure 2.2).

CH_2_Data Models and Architecture of DBMS_Final.indd 20 2/26/2014 3:37:03 PM

Data Models and Architecture of DBMS  |  21

Data Models

Hierarchical

Example: IMS,
Mark IV

Network

Example: IDS, DMS
1100

Relational

Example: QBE,
MAGNUM,
Oracle

Object-oriented Object-relational

Example: OPAL Example: Oracle

Figure 2.2  |  Data models.

2.2  | H ierarchical Data Model
●● The data model describes data and its definition. In case of an object-oriented data model,
it describes the object and its behaviour. A data model is a logic which is based on con-
cepts, while its implementation is called, ‘database management system’, i.e., database
management system is a physical implementation of data model. Entity-relationship
model is a conceptual model which shows entities and relationships between entities.
●● The hierarchical data model was the very first data model developed in the 1960s. The
hierarchical data model named IMS (Information Management System) was developed
by IBM and Rockwell Company and widely used during the 1960s and1970s. The enti-
ties and relationships between entities were managed with the help of a tree-like structure
in the hierarchical model. In this tree, there exists a root and it is related with its child. A
root is known as a parent. One parent may have many children in hierarchical structure,
but one child cannot have more than one parent, i.e., if there is a child entity which is
related with more than one parent entities, then two independent parent nodes should be
created which contains redundant child records. The redundant child records should be
linked with both the parents. On root, there will be entity occurrences from the parent
entity. One entity occurrence means one segment. If this segment is on the root, it is
called root segment. The entity occurrence, which falls under the root segment (parent),
is known as dependent segment (child), i.e., collection of entity occurrences are called,
‘segments’. Root segment and dependent segments are connected through link. In a	
hierarchical structure, one root segment may have many dependent segments, but a de-
pendent segment will have only one root segment. To explain this, many-to-many rela-
tionship between root and dependent segments is not possible in a hierarchical structure.

●● Entity occurrence from parent entity is shown as a root segment, and its related entity	
occurrences are shown as its dependent segments. The entity occurrences of same entities
are shown at the same level in a tree. The related entity occurrences, which fall under it,
are its branch.

●● To give an example, consider the entities given in Figures 2.3 and 2.4. Figure 2.3 contains
entities Zone, Region, Item and Area; while Figure 2.4 contains entities as Salesman and
Sales. All the entities are related with the following relationships with each other.

CH_2_Data Models and Architecture of DBMS_Final.indd 21 2/26/2014 3:37:03 PM

22  |  Chapter 2

●● Figures 2.3 and 2.4 represents the following entities:
○○ Zone
○○ Region
○○ Area

○○ Item
○○ Salesman
○○ Sales

Region
Region ID Region Name Zone ID

1 Punjab 1
2 Himachal Pradesh 1
3 Gujarat 4
4 Maharashtra 4
5 West Bengal 2
6 Kerala 3
7 Karnataka 3
8 Andhra Pradesh 3
9 Rajasthan 4
10 Bihar 2
11 Assam 2
13 Jammu and Kashmir 1

Zone
Zone ID Zone Name

1 North
2 East
3 South
4 West

Item
Item No Item Desc. Price (in `)

1 Bulldozer 200000
2 Soil Stabilizer 300000
3 Scraper 350000
4 Excavator 200000
5 Dump Truck 150000

Area
Area Code Area Name Region ID

1 Ludhiana 1
2 Amritsar 1
3 Bilaspur 2
4 Shimla 2
5 Hamirpur 2
11 Calicut 6
12 Cochin 6
13 Munnar 6
14 Patiala 1
31 Anantnag 13
32 Srinagar 13
33 Ahmedabad 3
34 Udhampur 13
44 Surat 3
55 Baroda 3
61 Kolkata 5
62 Darjeeling 5
63 Baranagar 5
71 Patna 10
72 Nalanda 10
73 Vaishali 10
81 Guwahati 11
82 Digboi 11
83 Sibsagar 11

111 Bangalore 7
112 Mysore 7
113 Coorg 7
121 Hyderabad 8
122 Vishakhapatnam 8
123 Vijaywada 8
131 Pune 4
132 Mumbai 4
133 Nashik 4
141 Jaisalmer 9
142 Jodhpur 9
143 Bikaner 9

Figure 2.3  |  Entities Zone, Region, Area, and Item.

CH_2_Data Models and Architecture of DBMS_Final.indd 22 2/26/2014 3:37:03 PM

Data Models and Architecture of DBMS  |  23

Salesman
Salesman ID Salesman Name Area Code

1 A. P. Singh 1
2 K. N. Kapoor 1
3 R. K. Chopra 2
4 P. G. Singh 2
5 S. N. Pathan 3
6 R. K. Khan 3
11 S. R. Trivedi 4
12 P. K. Jain 4
21 T. P. Khan 5
22 A. R. Khan 5
29 D. C. Khanna 31
30 P. T. Mehra 31
51 A. K. Garoo 34
52 D. N. Brave 34
61 T. N. Khan 32
62 A. P. Mishra 32

101 P. K. Damani 141
102 A. R. Agrawal 141
109 P. F. Karnik 131
110 A. M. Panzade 131
111 S. R. Sukhadiya 143
112 V. R. Jain 143
123 S. D. Sharma 142
124 K. K. Jain 142
145 S. E. Tendulkar 132
146 V. V. Manjrekar 132
147 P. N. Khedekar 132
165 A. R. Narayan 112
175 R. Benerjee 61
176 S. Tagore 61
178 L. M. Srinivasan 113
183 T. Ray 62
184 M. Ghosh 62
187 F. Srivastava 63
188 V. Jain 71
189 T. Chaterjee 71
190 S. B. Pillai 12
191 A. R. Nair 11
221 K. Yadav 81
222 G. F. Mishra 133
223 J. J. Raina 133
231 T. R. Naik 44
232 S. V. Joshi 44
261 A. F. Ghoshal 13
271 M. N. Shah 33
272 T. N. Sanghvi 33
273 A. A. Pathak 33
281 S. G. Gupta 55
282 K. D. Mistry 55
331 S. Chattopadhyay 82
81 D. Mathur 83

991 S. Mudaliar 111

Salesman No. Item No. Total_Qty_Sold

1 1 2
1 2 1
1 3 2
2 1 2
2 2 2
3 1 2
3 3 2
4 1 4
4 3 5
5 1 4
5 2 3
6 4 2
6 5 3

11 1 2
11 5 7
12 2 3
12 3 4
29 3 2
29 4 4
30 1 4
30 2 3
51 4 3
51 5 2
52 1 10
52 2 3
52 3 1
52 4 7
52 5 3
61 1 1
62 3 2
62 5 2

101 1 2
102 2 3
109 4 3
110 5 2
111 1 3
112 1 3
123 3 2
124 4 1
145 1 1
146 1 2
147 4 3
165 2 3
175 1 3
176 1 5
178 1 2
183 1 1
184 2 2
187 2 2
188 2 2
189 1 1

Figure 2.4  |  Entities, Salesman, and Sales.

CH_2_Data Models and Architecture of DBMS_Final.indd 23 2/26/2014 3:37:04 PM

24  |  Chapter 2

●● The entities as shown in Tables 2.3 and 2.4 are related with the following relationships:
○○ Each Zone contains many Regions (1 Zone–Many Regions)
○○ Each Region contains many Areas (1 Region–Many Areas)
○○ Each Area contains many Salesman (1 Area–Many Salesman)
○○ Each Salesman sells many Items, and each Item is sold by many Salesman. (1 Salesman–	
Many Items and Many Salesman–1 Item, i.e., many-to-many relationship between
Salesman and Item).

●● Figure 2.5 shows the hierarchical model which represents the entities of Figures 2.3	
and 2.4.

●● Hierarchical data model can represent one-to-many relationships very effectively, but it
is not possible to represent many-to-many relationship because a child can have only one
parent in hierarchical model.
●● To solve this problem, many-to-many relationship should be represented as two indepen-
dent trees. For example, to represent the relationship, ‘Each Salesman sells many Items
and each Item is sold by many Salesmen.’; the first tree will have Salesman as parent and
Item as child, and the second tree will have Item as parent and Salesman as Child. These
two different scenarios are shown in Figures 2.6(a) and 2.6(b).

●● The hierarchical data model has the following advantages and disadvantages.

Advantages:
	 1.	 It is easy to understand.
	 2.	 The one-to-many relationship can be handled quite effectively.

Disadvantages:
	 1.	 It is not possible to insert a dependent record without inserting a parent record. For ex-

ample, as shown in Figure 2.6(b), it is not possible to insert the details of any item until
it is been sold by any Salesman. Similarly, as shown in Figure 2.6(a), it is not possible to
insert the details of any Salesman until he supplies any item.

Figure 2.5  |  The hierarchical model.

1

2

Level 0 - Root Segment: ZONE

Level 1: Child
Segment: Region Himachal Pradesh Jammu & Kashmir

Ludhiana Amritsar Patiala Level 2: Child
Segment: Area

Level 3: Child
Segment: Salesman

Level 4: Child
Segment: Items Sold

A. P. Singh K. N. Kapoor R. K. Chopra P. G. Singh

Bulldozer Soil Stabilizer Stomper

Quantity
 sold

North

1

1

1

1 2 2 1

2 3 4

2 14

3 Punjab

3 2

CH_2_Data Models and Architecture of DBMS_Final.indd 24 2/26/2014 3:37:04 PM

Data Models and Architecture of DBMS  |  25

A. P. Singh
K. N. Kapoor

R. K. Chopra

P. G. Singh
S. N. Pathan

S. R. Trivedi
D. N. Brave

T. N. Khan

P. T. Mehra
S. E. Tendulkar

V. V. Manjrekar
P. K. Damani

S. R. Sukhadiya
V. R. Jain

G. F. Mishra
J. J. Raina

A. A. Pathak

T. N. Sanghvi

T. R. Naik
A. F. Ghoshal

R. Benerjee

S. Tagore

T. Ray
T. Chaterjee
K. Yadav

S. Chattopadhyay

1

2
2

2

4

4

2

10

1

4

1

2

2

3

3

1

2

1

1

2

3

2

3

5

1

1

3

4

Bulldozer

L. M. Srinivasan

A. P. Singh

K. N. Kapoor

R. K. Chopra

P. G. Singh

S. N. Pathan

D. N. Brave

A. P. Mishra
D. C. Khanna

S. D. Sharma
S. G. Gupta

A. R. Nair
S. B. Pillai

3

2
2

5

5

3

4

1

2

2

2

2

4

1

A. P. Singh
K. N. Kapoor

S. N. Pathan

S. R. Trivedi

D. N. Brave

P. T. Mehra

P. K. Jain
P. K. Jain

2

1
2

3

6

3

3

3

3

2

3

3

3

2

2

2

4

Soil Stabilizer Stomper

Excavator Dump Truck

A. P. Mishra

A. M. Panzade

S. Mudaliar

Quantity

A. R. Agrawal

M. N. Shah
S. V. Joshi

K. D. Mistry

A. R. Narayan
M. Ghosh
F. Srivastava

V. Jain

D. Mathur

R. K. Khan
A. K. Garoo

A. K. GarooD. N. Brave

D. C. Khanna

P. F. Karnik

P. N. Khedekar

K. K. Jain

4

2
3

7

4

1

3

3

R. K. Khan
S. R. Trivedi

D. N. Brave

4

3
7

2

3

2

2

1

(a)

Bulldozer

A. P. Singh

Soil Stabilizer

Stomper

1

2
1

2

Bulldozer

K. N. Kapoor

Soil Stabilizer

Stomper

2

2
2

5

Quantity

(b)

Figure 2.6  |  (a) A tree representing item supplied by various salesman; (b) A tree representing
salesman supplies various items.

CH_2_Data Models and Architecture of DBMS_Final.indd 25 2/26/2014 3:37:04 PM

26  |  Chapter 2

	 2.	 If we delete any root segment, then the dependent segments which falls under it, are also
deleted. For example, refer to Figure 2.6(a), if we delete root segment of the item Bulldozer,	
then all the Salesmen, who have supplied Bulldozer, will also be deleted. As a result, the
Salesman who has sold only Bulldozer will be permanently deleted from the hierarchy
model. His record will be inserted again, only when he will supply some other item.

	 3.	 It is difficult to update any Child segment. As the number of segment increases, the tree
becomes extremely complex. At that time, it is very cumbersome to search for any segment
and update it, i.e., to search the last dependent segment of the last root segment of a tree,
one has to traverse all the dependent segments of all the root segments.

	 4.	 The hierarchical model can represent only the one-to-many (1: M) relationship. Here, the
many-to-many relationship causes redundant data.

2.3  | N etwork Data Model
●● The Network data model represents data using link between records. The parent record
is called Owner Record, and the child record is called Member Record. If the Owner
and Member records are related with the many-to-many relationship, then they are con-
nected through connector record which is known as Set. The entities, given in Figures 2.4
and 2.5, are represented as a network model as shown in Figure 2.7.
●● Figure 2.7 shows part of a network model, where:

○○ Zone records are Owner records of Region records and Region records are Member
records.
○○ Region records are Owner records of Area records, and Area records are Member re-
cords of Region.
○○ Area records are Owner records of Salesman records, and Salesman records are	
Member records of Area.
○○ Salesman records are Owner records of Item records, and Item records are Member	
records of Salesman which are connected through the ‘Set’ Sales. Sales record is a con-
nector record between Salesman and Item.

Bulldozer 200000 Soil Stabilizer Stomper 350000

North1

Punjab HP J & K1

Ludhiana1

2 3

Amritsar2 Patiala14

A. P. Singh1 K. N. Kapoor2 R. K. Chopra3

1 1 2 1 2 1 1 3 2

1 2 3

P. G. Singh4

300000

Figure 2.7  |  The network model.

CH_2_Data Models and Architecture of DBMS_Final.indd 26 2/26/2014 3:37:04 PM

Data Models and Architecture of DBMS  |  27

●● The Owner record is linked with the first Member record, the first member record is
linked with the second Member record, and the second Member record is linked with the
third Member record, and so on up to the last Member record. The last Member record is
again linked with the Owner record. Management of the many-to-many relationship in a
network model is quite simple.
●● Following are the advantages and disadvantages of a network model.

Advantages:
	 1.	 The many-to-many relationships can be represented more easily in a network data model

than that of a hierarchical data model.
	 2.	 The network data model supports Data Definition Language and Data Manipulation

Language.
	 3.	 To insert data of a new Item, say item no. 6, we would need to create a new Item record.

There will be no connector record for the new Item until it is sold by any Salesman. Item
no. ‘6’ will contain a single link from Item no. ‘6’ to Item no. ‘6’ itself, initially.

Disadvantages:
	 1.	 Searching is more complicated than hierarchical model in network model because of its

complex data structure.
	 2.	 The DML is also very complex as there are many constructs, such as records and links.

2.4  | R elational Data Model
The concept of relational model was given by E. F. Codd, in 1970, in his landmark paper on
relational data model. In the relational model, data are represented in a tabular form which is
called, relation (table), and they are associated with relationships. Therefore, the name of this
model is relational data model. Each entity is converted into relation and association is handled
through primary and foreign keys. The detailed explanation of relational model is given in
Chapter 3. Each entity occurrence is known as tuple (record) and characteristic of an entity
is called an attribute (column). It is very easy to represent many-to-many relationship using
relational data model. The relational model is widely used worldwide, nowadays, to store data.
Figures 2.8 and 2.9 show the relational model of data as shown in Figures 2.3 and 2.4. All the
relations are associated, with each other as listed here:

●● Relation Zone is related with Region through ‘zone id’.
●● Relation Region is related with Area through ‘region id’.
●● Relation Area is related with Salesman through ‘area code’.
●● Relation Salesman is related with Sales through ‘salesman id’.
●● Relation Item is related with Sales through ‘item id’.

For relations:

●● Zone—‘zone id’ is a primary key which is referred in Region relation.
●● Region—‘region id’ is a primary key which is referred in Area relation, and ‘zone id’ is
referenced from Zone relation in Region relation.

●● Area—‘area code’ is a primary key which is referred in Salesman relation and ‘region id’
is referenced from Region relation in Area relation.

CH_2_Data Models and Architecture of DBMS_Final.indd 27 2/26/2014 3:37:04 PM

28  |  Chapter 2

●● Salesman—‘salesman id’ is a primary key which is referred in Sales relation and ‘area
code’ is referenced from Area relation in Salesman relation.
●● Sales—Combination of ‘salesman id’ and ‘item id’ is a primary key. ‘Salesman id’
is referenced from Salesman and ‘item id’ is referenced from Item relation in Sales	
relation.

Region
Region ID Region Name Zone ID

1 Punjab 1
2 Himachal Pradesh 1
3 Gujarat 4
4 Maharashtra 4
5 West Bengal 2
6 Kerala 3
7 Karnataka 3
8 Andhra Pradesh 3
9 Rajasthan 4

10 Bihar 2
11 Assam 2
13 Jammu and Kashmir 1

Zone
Zone ID Zone Name

1 North
2 East
3 South
4 West

Item
Item No. Item Desc. Price (in `)

1 Bulldozer 200000
2 Soil Stabilizer 300000
3 Scraper 350000
4 Excavator 200000
5 Dump Truck 150000

Area
Area Code Area Name Region ID

1 Ludhiana 1
2 Amritsar 1
3 Bilaspur 2
4 Shimla 2
5 Hamirpur 2

11 Calicut 6
12 Cochin 6
13 Munnar 6
14 Patiala 1
31 Anantnag 13
32 Srinagar 13
33 Ahmedabad 3
34 Udhampur 13
44 Surat 3
55 Baroda 3
61 Kolkata 5
62 Darjiling 5
63 Baranagar 5
71 Patna 10
72 Nalanda 10
73 Vaishali 10
81 Guwahati 11
82 Digboi 11
83 Sibsagar 11
111 Bangalore 7
112 Mysore 7
113 Coorg 7
121 Hyderabad 8
122 Vishakhapatnam 8
123 Vijaywada 8
131 Pune 4
132 Mumbai 4
133 Nashik 4
141 Jaisalmer 9
142 Jodhpur 9
143 Bikaner 9

Figure 2.8  |  Relations Zone, Region, Area and Item.

CH_2_Data Models and Architecture of DBMS_Final.indd 28 2/26/2014 3:37:04 PM

Data Models and Architecture of DBMS  |  29

Sales
Salesman ID Item ID Total_qty_Sold

1 1 2
1 2 1
1 3 2
2 1 2
2 2 2
3 1 2
3 3 2
4 1 4
4 3 5
5 1 4
5 2 3
6 4 2
6 5 3
11 1 2
11 5 7
12 2 3
12 3 4
29 3 2
29 4 4
30 1 4
30 2 3
51 4 3
51 5 2
52 1 10
52 2 3
52 3 1
52 4 7
52 5 3
61 1 1
62 3 2
62 5 2
101 1 2
102 2 3
109 4 3
110 5 2
111 1 3
112 1 3
123 3 2
124 4 1
145 1 1
146 1 2
147 4 3
165 2 3
175 1 3
176 1 5
178 1 2
183 1 1
184 2 2
187 2 2
188 2 2
189 1 1

Salesman
Salesman ID Salesman Name Area Code

1 A. P. Singh 1
2 K. N. Kapoor 1
3 R. K. Chopra 2
4 P. G. Singh 2
5 S. N. Pathan 3
6 R. K. Khan 3

11 S. R. Trivedi 4
12 P. K. Jain 4
21 T. P. Khan 5
22 A. R. Khan 5
29 D. C. Khanna 31
30 P. T. Mehra 31
51 A. K. Garoo 34
52 D. N. Brave 34
61 T. N. Khan 32
62 A. P. Mishra 32

101 P. K. Damani 141
102 A. R. Agrawal 141
109 P. F. Karnik 131
110 A. M. Panzade 131
111 S. R. Sukhadiya 143
112 V. R. Jain 143
123 S. D. Sharma 142
124 K. K. Jain 142
145 S. E. Tendulkar 132
146 V. V. Manjrekar 132
147 P. N. Khedekar 132
165 A. R. Narayan 112
175 R. Benerjee 61
176 S. Tagore 61
178 L. M Srinivasan 113
183 T. Ray 62
184 M. Ghosh 62
187 F. Srivastava 63
188 V. Jain 71
189 T. Chaterjee 71
190 S. B. Pillai 12
191 A. R. Nair 11
221 K. Yadav 81
222 G. F. Mishra 133
223 J. J. Raina 133
231 T. R. Naik 44
232 S. V. Joshi 44
261 A. F. Ghoshal 13
271 M. N. Shah 33
272 T. N. Sanghvi 33
273 A. A. Pathak 33
281 S. G. Gupta 55
282 K. D. Mistry 55
331 S. Chattopadhyay 82
81 D. Mathur 83

991 S. Mudaliar 111

Figure 2.9  |  Relations salesman and sales.

CH_2_Data Models and Architecture of DBMS_Final.indd 29 2/26/2014 3:37:05 PM

30  |  Chapter 2

●● Item—‘item id’ is a primary key which is referred in Sales relation.
●● The advantages and disadvantages of a relational model are as follows:

Advantages:
	 1.	 Relational model is easy to understand.
	 2.	 Data can be managed properly in it.
	 3.	 It provides structured query language to manage data, which is very easy to learn. DDL

and DML are simpler in respect to the other models.
	 4.	 Transactions can be managed properly.
	 5.	Many-to-many relationships can be represented through primary and foreign key and

without any complexity.
	 6.	 Insert, delete, and update operations can be performed without any loss of data.
	 7.	 Data dictionary management is provided.

Disadvantage:
	 1.	 It is difficult to handle due to complex data types.

2.5  |  Object-Oriented Data Model
●● In object-oriented data models entity is represented as a class. A class within it contains
data and methods. Data are attributes of object and methods are behaviour. For example,
class Zone contains the attribute ‘zone id’ and ‘zone name’. It contains methods to man-
age these attribute values. However, it is not required to define both attributes and meth-
ods in the same class. Methods can be defined separately.

●● Each record of a zone is known as an object, which is a class member. For example, with
respect to Zone class, there are four objects. Each object has different values for attributes
‘zone id’ and ‘zone name’. But these four objects will share the same methods. Meth-
ods are procedures which are the programs to manage attribute values. For zone class,
methods are—add zone details, change zone details, remove zone details and search zone
details. Methods are invoked by messages. There are many built-in classes and methods	
are available within object-oriented system. For example, class Integer and methods
available for this class are <, >, ≥, ≤, =, <>, etc.
●● Figure 2.10 shows the class ZONE and its four objects. Each object has unique identi-
fication number which is known as object identifier (OID). OID is not visible to the
users because they are addresses. It is similar to the pointer. The comparison between	
object-oriented terminology and traditional terminologies is given in Table 2.1

Table 2.1  |  Comparison between Object-Oriented and Traditional Terminologies

Object-oriented Terminology Traditional Terminology

Class Type (it may be built-in, or user-defined)
Object (Class Instance)
  1.  Immutable object
  2.  Mutable object (which holds an object ID)

  1.  Value (field value)
  2.  Variable (field name)

Method Operator

Message Operator invocation

CH_2_Data Models and Architecture of DBMS_Final.indd 30 2/26/2014 3:37:05 PM

Data Models and Architecture of DBMS  |  31

Object 1

1
North

Attributes:

Methods:
Add zone details
Change zone details

Remove zone details

Search zone details

Object 2

Attributes:

Methods:
Add zone details

Change zone details
Remove zone details
Search zone details

2
East

Object 3

Attributes:

Methods:
Add zone details
Change zone details
Remove zone details
Search zone details

3
South

Object 4

Attributes:

Methods:
Add zone details
Change zone details
Remove zone details
Search zone details

4
West

Class: ZONE

Attributes:

Methods:
Add zone details
Change zone details
Remove zone details
Search zone details

Zone id
Zone name

Figure 2.10  |  Class and Objects.

Table 2.2  |  Example of Object-oriented Terminology

Object-oriented Terminology Example

Class Integer, Character (Built-in classes)
Zone, Region (User-defined classes)

Object 980, ‘Ahmedabad’ (immutable object = value)
Zone id, zone name (mutable object = variable)

Method Add_zone

Message Add_zone (z1)

●● To understand the object-oriented terminology, an example is given in Table 2.2.
●● Object-oriented supports abstract data types, i.e., one class may contain another class as
its attribute. For example, Zone contains Regions within it. This approach is ‘container-
ship’ approach, which is shown in Figure 2.11. Actually, Zone object does not contain
the Region object, but Region object is referenced by using its OID. Object-oriented data
model is ideal for complex data types, such as video, audio, image.

CH_2_Data Models and Architecture of DBMS_Final.indd 31 2/26/2014 3:37:05 PM

32  |  Chapter 2

Zone:

Region:
Region #: 1

Region name: Punjab

Zone #: 1

Zone name: North

Figure 2.11  |  Example of containment hierarchy—zone contains different regions.

●● Object-oriented databases support all the features of object-oriented methodology, such
as message passing (methods can pass messages to other objects), class inheritance,
method overriding, encapsulation, polymorphism, and operator overloading.
●● Following are the advantage and disadvantages of an object-oriented data model:

Advantage:
	 1.	 It is easy to handle complex data types.

Disadvantages:
	 1.	 It is difficult to understand and use compared to relational model.
	 2.	 It does not have ad hoc query capability.
	 3.	 Integrity issues are involved. On updation or deletion of parent object, child object is not

updated or deleted automatically. Procedural code should be written for that.
	 4.	 Object-oriented systems are procedural, which are 3GL languages. It does not support

SQL which is 4GL. Therefore, it is a step back from 4GL to 3GL.
	 5.	 Data dictionary is not managed automatically. Staff is required to do so.

2.6  |  Object-Relational Data Model
●● To overcome the issues of OODBMS, the object-relational model emerged, which is a
combination of object-oriented and relational data model. It means that the model should
be able to implement SQL for complex data types, such as geographical data types, geo-
metrical data types (polygons, hexagons, etc.), and space data.
●● For any relational database, it is not possible to include all object-oriented concepts.
And for any object-oriented database, it is not possible to include all relational database
concepts. However, some vendors, such as Oracle, IBM, Informix and others provide	
additional packages to handle complex data types which are sold separately and installed	
as plug-ins. These packages have different names, like ‘data cartridge’ is the name of
Oracle’s type package which is bought separately and plugged into the Oracle RDBMS.
Other examples are ‘Datablades’ of Informix, ‘Relational Extenders’ of IBM. By using
these packages, an user can define his/her own data types and operators.

●● Following are the advantages and disadvantages of Object-Relational Data Model.

Advantage:
	 1.	 It allows to define user-defined data types and operators and, to access them using Struc-

tured Query Language (SQL).

CH_2_Data Models and Architecture of DBMS_Final.indd 32 2/26/2014 3:37:05 PM

Data Models and Architecture of DBMS  |  33

Disadvantages:
	 1.	 The information related to user-defined types and operators should be kept in system

catalog (data dictionary) which requires redesigning of the system catalog. Also, com-
piler should be updated to access this catalog information.

	 2.	 Storage structures and access methods become quite complex.
	 3.	 Issues related to indexing on user-defined types are experienced.
	 4.	 Besides these drawbacks, several other optimization problems may arise while handling

the user-defined types and operators.

2.7  | T hree-level Architecture of Database
The ANSI/SPARC architecture of database has three levels—Internal, Conceptual and Ex-	
ternal—which are shown in Figure 2.12.

●● There are three levels of database architecture:

	 1.	 Internal level—This is a storage where data are actually stored. It is also known as
physical level, i.e., this level is useful for computers to understand the data.

	 2.	 Conceptual level—With the help of this level, the internal and external levels
communicate. Database schema is defined at this level using Data Definition
Language (DDL).

	 3.	 External level—This level is concerned with the users. At this level, multiple users
access stored data from the database. There may be more than one external view for
different users.

●● The detailed architecture of database is shown in Figure 2.13. The internal level contains
the actual stored objects and data. It is useful only for the computers. The internal view
or physical view means, how computer sees the data or objects.

●● The external level is the view of users. There may be many users who are working
on different platforms or languages, and they are accessing the data and data structures
stored in a database. The users are working in different languages which have different
syntaxes to access the data. Users will access only the required part of the database, not
the entire database. In Figure 2.13, there are three different users who are using the same
table ‘t’, but different fields of that table. Two users are accessing table ‘t’ and its different	
fields through Visual Basic language and one user is accessing the same table, but	

Figure 2.12  |  Three levels of database architecture.

Internal
 Level

Conceptual
 Level

External
 Level

CH_2_Data Models and Architecture of DBMS_Final.indd 33 2/26/2014 3:37:05 PM

34  |  Chapter 2

different fields, through structured language ‘C’. Data types, to define variables in both
the languages, have different syntax and may have different variable names to store fields.	
The users use a common language for databases, i.e., Structured Query Language, to
retrieve data from database. Thus, user’s view is a combination of any programming lan-
guage and Structured Query Language.
●● Conceptual level works as a ‘translator’ between internal and external levels. External
level is concerned with individual user views, while the conceptual view level, also called
logical view, is meant for a group of users which is common for the group. From this
common view, each user can access a part of the database relevant to them through some
mappings.
●● There is only one internal and conceptual view, but there may be multiple external views.
●● The users who are accessing the database may be any type of user, such as programmer,
end-user, system analyst. Data are retrieved at external view through Data Definition
Language (DDL) and Data Manipulation Language (DML) which are part of SQL. The
combination of DDL and DML is known as Data Sub Language (DSL).

Figure 2.13  |  Database architecture.

External
View 1

External
View 2

Create table

 t(a int, b int, c float, d date);

User 1 writes a
code to access stored
data in any language
with help of SQL

User 2 writes a
code to access stored
data in any language
with help of SQL

User 3 writes a
code to access stored
data in any language
with help of SQL

dim b int
dim a int Int b

Float c

Conceptual View

Internal
View Table

dim d datetime
dim b int

External-Conceptual
Mapping

External-Conceptual
Mapping

Conceptual-Internal
Mapping

CH_2_Data Models and Architecture of DBMS_Final.indd 34 2/26/2014 3:37:05 PM

Data Models and Architecture of DBMS  |  35

●● The internal view is defined using internal schema which is written using internal
DDL. Similarly, conceptual view is defined using conceptual schema, and conceptual
schema is written using conceptual DDL. External view is defined using external schema,
and external schema is written using external DDL.

●● There are mappings between these levels. The Conceptual–Internal mapping defines
the correspondence between the conceptual view and the stored database. It specifies,
how conceptual records and fields map into their relative stored fields.

●● An External–conceptual mapping defines the correspondence between a particular ex-
ternal view and the conceptual view.

●● A DBMS (Database Management System) is the software that handles all access to the
database. A user issues an access request using some DML (select, insert, delete, or up-
date) command; the DBMS accepts and converts the request; and then performs the nec-
essary operations on the stored database.

●● The Database Administrator is the person or a group of people responsible for overall
control of the database system.

2.8  |  Database Languages
●● The generalized database language, which is common in all databases, is Structured Query	
Language (SQL). It is divided into the following four parts:

	 1.	 Data Definition Language (DDL): The database language which is used to define
database objects; to drop database objects; to alter (change) database objects, such
as tables, views, users, is known as Data Definition Language (DDL). For example:
○○ DDL to create a ZONE table.
Create table zone (zoneid integer, zonename char(20));
○○ DDL to alter a ZONE table which changes the data type of a zoneid from integer
to char(1).
Alter table zone modify column zoneid char(1);
○○ DDL to drop (delete) a ZONE table.
Drop table zone;

	 2.	 Data Manipulation Language (DML): The database language, which is used to insert
data, manipulate data; delete data or retrieve data in tables or views, is known as Data
Manipulation Language (DML). For example:
○○ DML to insert data in a ZONE table.
Insert into zone values(1, ‘North’);
○○ DML to change the value of zonename from ‘North’ to ‘East’ for zoneid = 1.
Update zone set zonename = ‘East’ where zoneid = 1;
○○ DML to delete a record of zoneid 1 from ZONE table.
Delete from zone where zoneid = 1;
○○ DML to retrieve a record of zoneid 1 from ZONE table.
Select * from zone where zoneid = 1;

	 3.	 Data Control Language (DCL): The database language which is used to control data
access is known as Data Control Language (DCL). For example, the Grant and

CH_2_Data Models and Architecture of DBMS_Final.indd 35 2/26/2014 3:37:05 PM

36  |  Chapter 2

Revoke commands are used to assign insert/delete/update/select privileges or access
of specific data. For example:
○○ DCL to assign insert privilege on table ZONE table to user ‘shefali’. To grant or
revoke privileges the user himself should have privileges or rights to assign privi-
leges to other users.
Grant Insert on zone to ‘shefali’.

	 4.	 Transaction Control Language (TCL): The database language which is used to con-
trol transactions is known as transaction control language (TCL). For example, the
checkpoint and savepoint commands are used to control transactions.

	 5.	 Data Sub Language (DSL): The combination of Data Definition Language and Data
Manipulation Language is known as Data Sub Language (DSL).

2.9  |  Data and Structural Independence
●● When we can change the data type or size of any field without changing the application
program, data independence is said to be exist.

●● When we can change the structure of any table without changing the application pro-
gram, structural independence is said to be exist.
●● Data and structural independence is provided by database systems, but 100% data or
structural independence is not possible.

●● Conversely, when we cannot change the data type or size of any field without changing
the application program, data dependence is said to be exist.

●● When we cannot change the structure of any table without changing the application pro-
gram, structural dependence is said to be exist.

Summary
●● A data model is a representation of data and relationships between data.
●● Various data models are available. The very first data model was proposed in the 1960s
which was a hierarchical data model. It was based on the tree structure that represents the re-
lationship between parent and child records. It was efficient in relating parent and child with
the one-to-many relationship. By that time, IMS used to be the popular hierarchical model.

●● The main disadvantage of hierarchical model was: it did not support the many-to-many
relationship. To overcome this disadvantage, the network model emerged. It provided the
functionality to relate parent and child record with the many-to-many relationship. But
handling of this relationship was highly complex. IDS is an example of the network model.

●● After network model, in the 1970s, the relational model was proposed by E. F. Codd
who is admired as the father of relational database systems. He proposed tabular form to
represent the data and relationships. It is quite easy to handle relationships in this model
by defining primary and foreign keys. Using the general-purpose language of relational
databases—Structured Query Language—it is easy to handle data within a database. Re-
lational database systems are the widely used systems in the current era.
●● With the evolution of object-oriented languages, the object-oriented data model also
emerged which supports all the concepts of object-oriented system. But it does not have

CH_2_Data Models and Architecture of DBMS_Final.indd 36 2/26/2014 3:37:05 PM

Data Models and Architecture of DBMS  |  37

Structured Query Language. It is mainly based on the concept of containment hierarchy.
Using object-oriented data model, complex data types, such as images, videos, audios,
can be handled properly. But because of the absence of SQL, it is highly difficult to
handle the data. This data model is suitable for multimedia databases.

●● To provide facility of SQL with object-oriented concepts, the object-relational database
came in the picture. But, co-existence of these two is very complex. To handle complex
data types, Structured Query Language needs additional ‘type package’ with RDBMS.
Also, there are issues related to storage structure, data dictionary management, access
method, and many more with this data model.

●● In the architecture of any database, there are three levels—internal, conceptual and ex-
ternal. Internal level is the level where the database is actually stored. It describes how
database is physically stored into memory, i.e., through this level, the computer sees the
data. The external level describes individual user’s view. User accesses stored database by
writing programs in various languages at this level, i.e., through this level, the user sees
the data. Conceptual view is an indirection between internal and external level. It is the
view of a group of users. Internal and conceptual levels are defined using Data Definition
Language (DDL), while external level is defined using combination of Data Definition
Language (DDL) and Data Manipulation Language (DML) which is known as Data Sub
Language (DSL). There is only one internal and conceptual view, but many external
views for any database.
●● The language which is used to define database objects is known as Data Definition Lan-
guage (DDL). Create, Alter, Drop are Data definition commands.
●● The language which is used to manipulate (change) data is known as Data Manipulation
Language (DML). Insert, Delete, Update and Select are Data manipulation commands.

●● The language which is used to control data access is known as Data Control Language
(DCL). Grant and Revoke are Data control commands.
●● The language which is used to manage transactions is known as Transaction Control Lan-
guage (TCL). Savepoint and Checkpoint are Transaction control commands.
●● The combination of DDL and DML is known as Data Sub Language (DSL).
●● When there is no need to change application program if we change data type and size of
any field, it is called data independence.

●● When there is no need to change application program if we change table structure, it is
called structural independence.

Exercises

	 1.	What is a data model? Draw chart of various data models and write an example of each
type of data model.

	 2.	Which data model does not support the many-to-many relationship between entities?	
Explain that model with advantages and disadvantages.

	 3.	 Discuss Network Data Model with its advantages and disadvantages.
	 4.	 Describe Relational Model with its advantages. Which is the biggest drawback of this

model?
	 5.	 Explain object-oriented and object-relational data models with their advantages and dis-

advantages.

CH_2_Data Models and Architecture of DBMS_Final.indd 37 2/26/2014 3:37:06 PM

38  |  Chapter 2

	 6.	Which are the three level of database architecture? Explain each in detail with diagram.
	 7.	Write a brief note on database languages.
	 8.	 Differentiate between data independence and structural independence.
	 9.	 Tick the correct answer:
	 i.	 IMS is an example of which data model?
	 	 a.  network	 	 	 b.  hierarchical
	 	 c.  relational	 	 	 d.  object-relational
	 ii.	 IDS is an example of which data model?
	 	 a.  network	 	 	 b.  hierarchical
	 	 c.  relational	 	 	 d.  object-relational
	 iii.	 OPAL is an example of which data model?
	 	 a.  network	 	 	 b.  hierarchical
	 	 c.  object-oriented	 	 d.  object-relational
	 iv.	 Oracle is an example of which data model?
	 	 a.  network	 	 	 b.  hierarchical
	 	 c.  relational	 	 	 d.  object-oriented
	 v.	 The vendor of IMS is ____________.
	 	 a.  IBM	 	 	 b.  Oracle
	 	 c.  Microsoft	 	 	 d.  Informix
	 vi.	Which model does not support many-to-many relationship?
	 	 a.  network	 	 	 b.  hierarchical
	 	 c.  relational	 	 	 d.  object-relational
	 vii.	 SQL is a general-purpose language of which model?
	 	 a.  network	 	 	 b.  hierarchical
	 	 c.  relational	 	 	 d.  object-oriented
	 viii.	 SQL is a ____________ generation language.
	 	 a.  first	 	 	 b.  second
	 	 c.  third	 	 	 d.  fourth
	 ix.	Which model requires installing extra package to handle types?
	 	 a.  network	 	 	 b.  hierarchical
	 	 c.  relational	 	 	 d.  object-relational
	 x.	 In hierarchical model, the parent segment is known as ________ segement.
	 	 a.  branch	 	 	 b.  dependent
	 	 c.  root	 	 	 d.  leaf
	 xi.	 In hierarchical model, the child segment is known as ________ segment.
	 	 a.  fruit	 	 	 b.  dependent
	 	 c.  root	 	 	 d.  leaf
	 xii.	 In network model, the parent is known as ________.
	 	 a.  owner	 	 	 b.  dependent
	 	 c.  root	 	 	 d.  member
	 xiii.	 In network model, the child is known as ________.
	 	 a.  owner	 	 	 b.  dependent
	 	 c.  root	 	 	 d.  member

CH_2_Data Models and Architecture of DBMS_Final.indd 38 2/26/2014 3:37:06 PM

Data Models and Architecture of DBMS  |  39

	 xiv.	 In network model, the member which relates two owners with many-to-many rela-
tionship is known as.

	 	 a.  set		 	 	 b.  reset
	 	 c.  combiner	 	 	 d.  joiner
	 xv.	 In architecture of database there is (are) _________ internal view (s).
	 	 a.  only one	 	 	 b.  zero
	 	 c.  many	 	 	 d.  none of the above
	 xvi.	 In architecture of database there is (are) _________ conceptual view (s).
	 	 a.  only one	 	 	 b.  zero
	 	 c.  many	 	 	 d.  none of the above
	 xvii.	 In architecture of database there is (are) _________ external view (s).
	 	 a.  only one	 	 	 b.  zero
	 	 c.  many	 	 	 d.  none of the above
	 xviii.	 Internal view means how computer sees the data.
	 	 a.  true	 	 	 b.  false
	 xix.	 External view means how user sees the data.
	 	 a.  true	 	 	 b.  false
	 xx.	 The language which defines database object is known as __________.
	 	 a.  DDL	 	 	 b.  DML
	 	 c.  DCL	 	 	 d.  TCL
	 xxi.	 The language which manipulates data is known as __________.
	 	 a.  DDL	 	 	 b.  DML
	 	 c.  DCL	 	 	 d.  TCL
	 xxii.	 The language which controls data is known as __________.
	 	 a.  DDL	 	 	 b.  DML
	 	 c.  DCL	 	 	 d.  TCL

	 10.	 Consider the entities given below and answer the following questions.
	 (a)	 Draw hierarchical and network models for the entities given below.
	 (b)	 Identify the relationships between entities.
	 (c)	 Define primary and foreign keys for each entity. (After you study the chapter on ‘The

Relational Model’)

Batch
Batch Year

1 1999-2002
2 2000-2003
3 2001-2004
4 2002-2005
5 2003-2006
6 2004-2007
7 2005-2008
8 2006-2009
9 2007-2010
10 2008-2011
11 2009-2012

Class
Class Code Class Describe Total Students Batch

Fy-1 fy div-1 60 1
Fy-2 fy div-2 60 1
Sy-1 sy div-1 60 1
Fy-1 fy div-1 60 2
Sy-2 sy div-2 60 2
Fy-1 fy div-1 90 3
Fy-2 fy div-2 90 3

CH_2_Data Models and Architecture of DBMS_Final.indd 39 2/26/2014 3:37:06 PM

40  |  Chapter 2

Faculty

Facid Faculty Name

1 Shefali Naik

2 Hemal Desai

3 Heena Timani

4 Kunjal Gajjar

5 Trushali Jambudi

6 Aniruddh Parmar

7 Pratik Thanawala

Student

Std No. Class Code Batch No. Std Name Gender

1 fy-1 1 Hetal Agrawal Female

2 fy-1 1 Hemal Bavishi Male

82 fy-2 1 Malav Shah Male

84 fy-2 1 Megha Mehta Female

1 fy-1 2 Avani Kapadia Female

82 sy-2 2 Jenish Shah Male

63 sy-2 2 Richa Pathak Female

Teach

Facid Subject No. Class Code Batch

1 102 fy-1 1

1 201 sy-1 1

1 102 fy-2 1

2 104 fy-1 1

2 104 fy-2 1

3 202 sy-1 1

3 202 sy-2 2

Subject

Subject No. Subject Name

101 Communicative English

102 Internet and HTML

103 C Programming

104 Business Data Processing

105 PC Software

201 Computer System Architecure

202 Mathematical Foundation of
Computer Science

203 Operating System

204 Database Management
System

205 Windows Programming

CH_2_Data Models and Architecture of DBMS_Final.indd 40 2/26/2014 3:37:06 PM

CHAPTER
3

Relational Database Management
System

•	 Understanding the RDBMS terminologies.
•	 Knowing the various types of keys.
•	 Managing data with integrity rules.
•	 Using set operators to retrieve data.

Chapter Objectives

3.1  | I ntroduction
As we have discussed in Chapter 2, relational model was proposed by E. F. Codd in the 1970s.
In his paper on relational data model, Codd explained the concept of relational database based
on relational theory of mathematics.

The data models, such as hierarchical and network did not provide data and structural inde-
pendence, i.e., when data type or data characteristics were changed, the application program had
to be changed too. Similarly, when data structures in these models were changed, the applica-
tion program had to be changed too. There were problems of ordering, indexing and access path
dependence. E. F. Codd defined the twelve rules of relational database.

3.2  | RDB MS Terminology
Relation: Relational data model is based on relations and relationships between these relations.
Relation is a combination of related entity occurrences. Relation represents the real world
entity. Entity is a collection of related entity occurrences. The relation has the following char-
acteristics:

	 1.	 Each row represents one tuple of a relation (table).
	 2.	 The ordering of rows is not important in a relation.

CH_3_Relational Database Management System_Final.indd 41 2/26/2014 3:38:11 PM

42  |  Chapter 3

	 3.	 All tuples should be distinct (unique). This can be achieved by defining a unique identi-
fier for each tuple.

	 4.	 The ordering of columns is significant because it corresponds to the ordering of the do-
mains on which the Relation is defined.

	 5.	 The significance of each column is partially conveyed by labeling it with the name of the
corresponding domain. For example, the label of a column which contains valid values
of student’s roll numbers could be ‘stdno’ or ‘student_no’ or ‘student_ID’ or ‘stdid’ or
anything else.)

	 6.	 Relation is a two-dimensional structure which is made up of tuples and attributes.
	 7.	 The intersection of a tuple and an attribute should contain a single value.

Tuple and Cardinality: Each entity occurrence represents one object. An entity occurrence is
represented as a tuple in relation. Total number of tuples in a relation is known as cardinality
of that relation.

Attribute and Degree: Each entity occurrence has some attributes. Attributes describe the ob-
ject, i.e., an attribute is a characteristic of the object. All attributes together tells about the object.
Total number of attributes in a relation is known as degree of the relation.

Domain: The values of attributes are derived from some valid set of predefined values, which
is known as the Domain of an attribute. Two attributes may have the same domain within	
the relation.

Figure 3.1 shows the relation STUDENT, which represents various STUDENTS instances.
STUDENT relation is a collection of only students, i.e., the relation STUDENT can contain
details of students, not suppliers or patients or doctors or customers or any other person.

There are 10 tuples in the relation STUDENT. Therefore, cardinality of this relation is 10.
There are total of seven attributes in the relation STUDENT. So, degree of this relation is seven,
i.e., it is a seven-ary relation.

The relation which has only one attribute is known as unary relation, relation with two attri-
butes is known as binary relation, relation with three attributes is known as ternary relation…
and relation with n attributes is known as n-ary relation.

In Figure 3.1, STUDENT relation has seven attributes student_ID, student_name, date_of_
birth, city, admission_date, gender and email_address. The attributes have their values from
some valid set of values which are their domains.

The domain of student_ID field is an integer. But student_ID cannot be any integer, there
is a fixed range for student_ID and it has to be derived from within that range. In a relational
database management system we can restrict this value by defining a constraint on student_ID.
Thus, when student_id is stored into the relational database management system as a field of a
table, its data type, size and constraint together will define its domain.

The domain of the student_name field is a set of characters. But student_name can con-
tain only alphabets. Therefore, it must be restricted only to accept alphabets. Thus, when
student_name is stored into a relational database management system as a field of a table, its
data type, size[char(50)] and constraint (accept only characters from a–z or A–Z) together
will define its domain. The same is applicable for the city attribute. (Note: If we consider

CH_3_Relational Database Management System_Final.indd 42 2/26/2014 3:38:11 PM

Relational Database Management System  |  43

the mathematical domain of student_id then it is a set of natural values (N) which contains
numbers 1, 2, 3, 4, ..., n)

The date_of_birth and admission_date have date/time data type as its domain. Additional
restriction such as difference between current year and birth year should not be less than 18
at the time when student is admitted.

The gender attribute has domain char(6), but it must have only two values—‘Male’ or	
‘Female’.

The email_address attribute has the domain char(50) with restriction it should contain only
alphabets, numbers and three special characters ‘@’ , ‘.’ and ‘_’.

Thus, in real life, the domain is a set of valid values from where value of attribute is derived.
When it is implemented through RDBMS, it could be implemented using data types and con-
straints put on the attribute.

A comparison between RDBMS terminology and traditional terminology is given in	
Table 3.1.

Figure 3.1  |  Relation STUDENT.

Student
Student
 _ID Student_Name

Date_of
 _Birth City

Admission_
Date Gender Email_Address

1 Akanksha
Sharma

3/4/1990 Ahmedabad 6/15/2009 Female

Domain:
Set of all
valid student
numbers

Domain:
Set of all
valid e-mail
addresses

Attribute 1 Attribute 2

c
a

r

d

i

n

a

l

i

t

y

Degree

akankshasharma@hlica.ac.in

2 Arpita Shah 9/17/1990 Ahmedabad 6/15/2009 Female arpitashah@hlica.ac.in

3

4
5

6

7

8
9

10

Pratik Patel

Hiren Pandya

Hardik Jain

Dhara Thakkar

Payal Shah

Kinjal Modi

Devarsh Mehta

Smit Shah

6/23/1990

12/28/1990

1/1/1991

5/24/1992

12/12/1992

7/23/1992

4/20/1992

8/23/1992

Ahmedabad

Surat

Surat

Bhavnagar

Ahmedabad

Ahmedabad

Ahmedanad

Ahmedabad

6/15/2009

6/15/2009

6/15/2009

6/19/2010

6/19/2010

6/19/2010

6/19/2010

6/19/2010

Male

Male

Male

Female

Female

Female

Male

Male

pratikpatel@hlica.ac.in

hirenpandya@hlica.ac.in

hardikjain@hlica.ac.in

dharathakkar@hlica.ac.in

payalshah@hlica.ac.in

kinjalmodi@hlica.ac.in

devarshmehta@hlica.ac.in

smitshah@hlica.ac.in

CH_3_Relational Database Management System_Final.indd 43 2/26/2014 3:38:12 PM

44  |  Chapter 3

Table 3.1  |  Comparison Between RDBMS and Traditional Terminologies

RDBMS Terminology Traditional Terminology

Relation Table

Tuple Record/Row

Attribute Field/Column

Domain Valid set of values

Cardinality Total number of records in a table

Degree Total number of fields in a table

3.3  | V arious Types of Keys
In a relational model, each tuple should be identified with a unique identification number. The
unique identification number could be a single attribute value, or combination of attribute val-
ues. Also, to relate two relations, there should be a common attribute or combination of attri-
butes between two relations.

An attribute, or combination of attributes which help to define relationships between entities
is called a key. Any attribute that is part of a key is known as a key attribute.

There are various types of keys, such as primary key, composite key, super key, candidate
key, alternate key, unique key, foreign key, secondary key and surrogate key. Consider the rela-
tions given in Figure 3.2, for which different types of keys can be defined.

	 1.	 Primary Key: The attribute (column) or combination of attributes which uniquely iden-
tifies each tuple(row) of a relation(table) is called a primary key. A relation can have
only one primary key, but it can be combination of more than one attributes. Primary key
cannot contain duplicate or null values. If primary key is a combination of more than one
attributes, then combination of all the attribute values should be unique and none of the
attributes can contain null value. Null means unknown value. It does not mean zero or
space, or blank. For the relations as given in Figure 3.2, Table 3.2 shows the primary keys.

	 2.	 Composite Key: When primary key is a combination of two or more attributes, it is
known as composite key. Composite key uniquely identifies each tuple of a relation.The

Table 3.2  |  List of Primary Keys for Relations Given in Figure 3.2

Relation Name (Table) Primary Key

Batch Batchid

Class Classcode+Batchid (+ sign shows the combination
of attributes)

Faculty Facid

Subject Subjectno

Student Stdno+classcode+batchno

Teach Facid+subjectno+classcode+batchid

CH_3_Relational Database Management System_Final.indd 44 2/26/2014 3:38:12 PM

Relational Database Management System  |  45

Figure 3.2  |  Database of an institute.

Faculty

Facid Faculty Name

1 Shefali Naik

2 Hemal Desai

3 Heena Timani

4 Kunjal Gajjar

5 Trushali Jambudi

6 Aniruddh Parmar

7 Siddhi Shah

Student

Std No. Class Code Batch No. Std Name Gender

 1 fy-1 1 Hetal Agrawal Female

 2 fy-1 1 Hemal Bavishi Male

82 fy-2 1 Malav Shah Male

84 fy-2 1 Megha Mehta Female

 1 fy-1 2 Avani Kapadia Female

82 sy-2 2 Jenish Shah Male

63 sy-2 2 Richa Pathak Female

Teach

Facid Subject No. Class Code Batch

1 102 fy-1 1

1 201 sy-1 1

1 102 fy-2 1

2 104 fy-1 1

2 104 fy-2 1

3 202 sy-1 1

3 202 sy-2 2

Subject

Subject No. Subject Name

101 Communicative English

102 Internet and HTML

103 C Programming

104 Business Data Processing

105 PC Software

201 Computer System Architecure

202 Mathematical Foundation of
Computer Science

203 Operating System

204 Database Management
System

205 Windows Programming

Batch

Batch ID Year

 1 1999-2002

 2 2000-2003

 3 2001-2004

 4 2002-2005

 5 2003-2006

 6 2004-2007

 7 2005-2008

 8 2006-2009

 9 2007-2010

10 2008-2011

 11 2009-2012

Class

Class Code Class Desc Total Students Batch ID

Fy-1 fy div-1 60 1

Fy-2 fy div-2 60 1

Sy-1 sy div-1 60 1

Fy-1 fy div-1 60 2

Sy-2 sy div-2 60 2

Fy-1 fy div-1 90 3

Fy-2 fy div-2 90 3

CH_3_Relational Database Management System_Final.indd 45 2/26/2014 3:38:12 PM

46  |  Chapter 3

combination of attribute values in composite key for each tuple is unique. No attribute of
a composite key can contain null value. A relation (table) can have only one composite
key because ultimately it is a primary key. For the relations as given in Figure 3.2, Table
3.3 shows the composite keys.

	 3.	 Super Key: An attribute or combination of attributes that uniquely identify each record
in a table is called a super key. Super key is a super set of primary keys. i.e., if we add
any attributes of same table into primary key, then it is called a super key. It means,	
super key = primary key + any other attribute(s) of that table. For the relations as given
in Figure 3.2, Table 3.4 shows the super keys.

	 4.	 Candidate Key: A super key without redundancies or a minimal super key, is called a
candidate key. The candidate key uniquely identifies each record of a table. In a table,
there may be more than one candidate keys. After identifying the candidate keys, any one
of the appropriate candidate key is selected as a primary key. The candidate keys have
unique values. For the relations as given in Figure 3.2, Table 3.5 shows the candidate keys.

	 5.	 Alternate Key: The candidate keys, which are not a primary key, are called alternate
keys. For example, in the table CLASS, one candidate key (classcode + batchid)	

Table 3.3  |  List of Primary Keys for Relations Given in Figure 3.2

Relation Name (Table) Composite Key

Class Classcode + Batchid (+ sign shows the combination
of attributes)

Student Stdno + classcode + batchno

Teach Facid + subjectno + classcode + batchid

Table 3.4  |  List of Super Keys for Relations Given in Figure 3.2

Relation Name (Table) Super Key

Batch i.  (Batchid)+year

Class i.  (Classcode+Batchid)+classdesc
 ii.  (Classcode+Batchid)+Totalstudents
iii.  (Classcode+Batchid)+classdesc+Totalstudents

Faculty i.  (Facid)+facultyname

Subject i.  (Subjectno)+subjectname

Student i.  (Stdno+classcode+batchno)+stdname
 ii.  (Stdno+classcode+batchno)+gender
iii.  (Stdno+classcode+batchno)+stdname+gender

Teach —

CH_3_Relational Database Management System_Final.indd 46 2/26/2014 3:38:12 PM

Relational Database Management System  |  47

combination is selected as a primary key. Therefore, the other candidate key (class
desc+batchid) combination is known as an alternate key. For the relations as given in
Figure 3.2, Table 3.6 shows the respective alternate keys.

	 6.	 Unique Key: The key which contains unique values id known as unique key. Unique
key accepts only unique values, but it accepts null values also. For example, classdesc is
a unique key in CLASS table.

	 7.	 Foreign Key: An attribute or combination of attributes, in one table, whose value must
either match the primary key in another table or be null is known as foreign key. The
field or combination of fields can become foreign key, if and only if, it is a primary key
of another table. Whenever primary key is referred, the entire primary key should be
referred, no single attribute of a primary key can be referred. Also, if the foreign key is
referred from a composite key, then the sequence of the attributes should be maintained
in the foreign key and data types (domains) of corresponding attributes should match.
The attributes may have different names. The foreign key can accept duplicate and null
values. For the relations as given in Figure 3.2, Table 3.7 shows the foreign keys.

Table 3.5  |  List of Candidate Keys for Relations Given in Figure 3.2

Relation Name (Table) Candidate Key

Batch I.  Batchid
II.  Year

Class I.  Classcode+Batchid
II.  Classdesc+Batchid

Faculty Fac id

Subject I.  Subjectno
II.  Subjectname

Student Stdno + classcode + batchno

Teach Facid + subjectno + classcode + batchid

 Table 3.6  |  List of Alternate Keys for Relations Given
 in Figure 3.2

Relation (Table) Alternate Key

Batch Year

Class Classdesc + Batchid

Faculty —

Subject Subject name

Student —

Teach —

CH_3_Relational Database Management System_Final.indd 47 2/26/2014 3:38:12 PM

48  |  Chapter 3

Table 3.7  |  List of Foreign Keys for Relations Given in Figure 3.2.

Relation Name (Table) Foreign Key

Batch —
Class Batchid is a foreign key which is referred from batch

table’s batchid field.
Faculty —
Subject —
Student Classcode+batchid referred from class tables

classcode+batchid
Teach I.  Facid referred from faculty table’s facid

 II.  Subjectno referred from subject table’s subjectno
III. � Classcode+batchid referred from class tables

classcode+batchid

	 8.	 Secondary Key: The attribute or combination of attributes which are used for retrieval
purpose is known as secondary key. For example, subjectname, facultyname, etc., are
secondary keys.

	 9.	 Surrogate Key: The artificial primary key is known as surrogate key. When primary
key is very complicated and difficult to handle, then surrogate key is required. It is gen-
erally an attribute which is a number and can be autogenerated. For example, the table
TEACH contains a primary key which has four attributes and difficult to maintain. In this
case, one additional attribute say teachingid could be taken as a primary key which could
be autogenerated number.

3.4  | I ntegrity Rules
There were problems of integrity with traditional models, such as network and hierarchical
models. Change or removal of parent records were not reflected in the child record. User had
to do it manually. The relational model facilitate this with the help of defining the Primary Key
and the Foreign Key. The two rules, related to these keys, are known as the integrity rules. The
first integrity rule is related to the primary key which is known as Entity Integrity Rule, and the
second rule related to the Foreign Key is known as the Referential Integrity Rule. Both the rules
are explained below:

	 1.	 Entity Integrity Rule (Integrity Rule-I): ‘No primary key value of a relation is allowed
to be null, or to have a null component.’ Here, Component means any attribute which
is part of a primary key. If the primary key is a composite key, then each attribute of
that composite key is known as one component. To explain this, if a composite key is a
combination of four attributes, then there are four components. If a composite key is a
combination of two attributes, then there are two components, and so on.

	 	 	 The entity integrity rule states that primary key cannot contain null value and, if pri-
mary key is a composite key, then none of the attribute of this composite key can contain
null value. Figure 3.3 shows a table, SUBJECT, in which the primary key is a subjectno,
which is a single attribute. In this case subjectno cannot contain null value. Figure 3.4
shows a table, CLASS, in which primary key is a composite key which is a combination

CH_3_Relational Database Management System_Final.indd 48 2/26/2014 3:38:13 PM

Relational Database Management System  |  49

of fields classcode and batchid. In this case, classcode cannot contain null and batchid
also cannot contain null.

	 2.	 Referential Integrity Rule (Integrity Rule-II): ‘Let Attribute1 is an attribute for
which values are derived from domain Domain1. Attribute1 is a primary key of Rela-
tion1 relation. Let Attribute2 is an attribute for which values are derived from domain
of Attribute1 which is Domain1. Attribute2 is a part of Relation2 relation. Then, at any
given time, each value of Attribute2 in Relation2 must be either: (a) null or (b) equal to
Value1, where Value1 is the value of an Attribute1.’

	 	 	 The above rule says that when any attribute or combination of attributes is a primary
key of some table and referred as a foreign key, the foreign key may have either null
value or the value of a primary key from where it is referred. Foreign key can have du-
plicate values. The rule is, data types(domains) of corresponding attributes of primary
key and foreign key should be same, the names of attributes may be different. For ex.,
consider two tables DEPARTMENT and EMPLOYEE in Figure 3.5. If an employee
exists, he/she must be working in some department. i.e., the department should exists
before employee is assigned to that department. It means that deptno field of employee
table will have only those values which exists in the deptno field of department table.
Here, deptno field of both the tables share the same domain. If employee’s department
is not known, in case of new recruitment, then at that time deptno in employee table
may be kept null, but it cannot have value which is not there in the deptno field of de-
partment table. Therefore, deptno field of employee table could be defined as a foreign
key which is reference from the deptno field of department.

Subject
Subject No. Subject Name

101 Communicative English
102 Internet and HTML
103 C Programming
104 Business Data Processing
105 PC Software
201 Computer System Architecure

Class
Class Code Class Desc Total Students Batch ID

Fy-1 fy div-1 60 1
Fy-2 fy div-2 60 1
Sy-1 sy div-1 60 1
Fy-1 fy div-1 60 2
Sy-2 sy div-2 60 2
Fy-1 fy div-1 90 3
Fy-2 fy div-2 90 3

Figure 3.3  |  SUBJECT table has Subject No. primary key.

Figure 3.4  |  CLASS table has (Classcode + Batchid) primary key.

CH_3_Relational Database Management System_Final.indd 49 2/26/2014 3:38:13 PM

50  |  Chapter 3

3.5  | R elational Set Operators
The traditional set operations are Union, Intersection, Difference and Cartesian Product. The two
relations (tables) used in Union, Intersection or Difference must be union-compatible. It means,
they must be of same degree (same number of fields), and all the fields of both the relations must
be drawn from same domain (data type). For example, if employee (empno, empname, bdate,
deptno) and department (dno, dname) are two relations and, if we are doing union of these two
relations, then both should have same number of attributes and corresponding attributes must
have same data type. To explain this, when we select fields from tables using a ‘select’ state-
ments, number of fields in both select statements should be same and data types of corresponding
fields should be same. (Note: same degree/number of fields in both relations does not mean that if
employee table have 5 fields, then department table must have 5 fields. But, if we select 2 fields
from the employee table, then we must have to select only 2 fields from the department table.)
The same is applicable for intersection and difference (difference is called ‘minus’ in Oracle).

	 1.	 Union: The union of two union-compatible relations A and B, A Union B, is the set of all
tuples t belonging to either A or B or both. For example, consider tables department and
employee given in Figure 3.6. If we take union of department table and employees working
in specific department, then the resultant table will display department either department
names or employee names working in specific department, or both. The query should be:

Select deptno, deptname from department

Union

Select deptno, empname from employee;

	 	 The resultant table will be Table 3.8.
	 2.	 Intersection: The intersection of two union-compatible relations A and B, A Intersec-

tion B, is the set of all tuples t belonging to both A and B. For example, intersection of
department and employee table will display all the records for which deptno matches in
both the tables. The query should be :

Select deptno from department
Intersect

Select deptno from employee;

	 	 The resultant table will be Table 3.9.
	 3.	 Difference: The difference between the two union-compatible relations A and B, A	

minus B, is the set of all tuples t belonging to A and not to B. For example, the difference	

Figure 3.5  |  Primary key of department table is referred as foreign key in Employee table.

1011 S.K.Khanna 20000.00

1012

1

1 N.V.Jani 15000.00

1013 Null B.R.Shah 17000.00

Foreign Key

Employee
Empno Deptno Empname Basic_Salary

Primary Key

Department
DeprtnameDeptno
Computer1

2 HR

CH_3_Relational Database Management System_Final.indd 50 2/26/2014 3:38:13 PM

Relational Database Management System  |  51

between the department table and the employee table will display all the departments
which have no employee. The query should be (in Oracle database):

Select deptno from department
Minus

Select deptno from employee;

	 	 The resultant table will be Table 3.10.
	 4.	 Cartesian Product: The cartesian product of two relations A and B, A times B, is the

set of all tuples t such that t is the concatenation of a tuple a belonging to A and a tuple b
belonging to B. For example, Cartesian product of department and employee tables will
display pair of department and employee. There are 4 records in department and five re-
cords in employee, so resultant table will display 4 × 5 = 20 total records. No condition
should be specified in select query to display Cartesian product. The query should be:

Select department.deptno, deptname, empname
from department, employee;

	 	 The resultant table will be Table 3.11.

Figure 3.6  |  Employee and department tables.

Department

Dept No. Dept Name

1 Computer

2 HR

3 Marketing

4 Production

Employee

Emp No Dept No. Emp Name Basic_Salary

1011 1 S. K. Khanna 20000

1012 1 N. V. Jani 15000

1013 2 B. R. Shah 17000

1014 2 T. J. Nair 12000

1015 3 V. T. Tripathi 23000

Table 3.8  |  Union	
of Department and Employee

Union

Dept No. Dept Name

1 Computer

1 N. V. Jani

1 S. K. Khanna

2 B. R. Shah

2 HR

2 T. J. Nair

3 Marketing

3 V. T. Tripathi

4 Production

Table 3.9  |	
Intersection	
of Department	
and Employee

Intersection

Dept No.

1

1

2

2

3

Table 3.10  |
Differenceof Department	
and Employee

Difference

Dept No.

4

CH_3_Relational Database Management System_Final.indd 51 2/26/2014 3:38:13 PM

52  |  Chapter 3

3.6  | R etrieval Operators
To retrieve particular data from tables, retrieval operators are used. The result of any retrieval
is again a table. Resultant table is retrieved from source tables. To form a resultant table, more
than one database tables may be used. There are 3 types of such retrieval operators: (i) Select,
(ii) Project, and (iii) Join.

●● Select: The select operator creates a new table by taking a horizontal subset of an existing
table, i.e., all rows of an existing table that satisfies some condition. For example, if we
want to find details of employee 1011, then it can be done by the select operator.

Select * from employee where empno=1011;

It will display Table 3.12.
Employee is the original table on which we are applying select operator to find details of
employee whose number is 1011.
●● Project: The project operator displays a vertical subset of an existing table by retriev-
ing the specified columns. For example, if we want to display the columns deptno

Table 3.11  |  Cartesian Product of Department and Employee Tables

Cartesian Product

Dept No. Dept Name Emp Name

1 Computer S K Khanna

2 HR S K Khanna

3 Marketing S K Khanna

4 Production S K Khanna

1 Computer N V Jani

2 HR N V Jani

3 Marketing N V Jani

4 Production N V Jani

1 Computer B R Shah

2 HR B R Shah

3 Marketing B R Shah

4 Production B R Shah

1 Computer T J Nair

2 HR T J Nair

3 Marketing T J Nair

4 Production T J Nair

1 Computer V T Tripathi

2 HR V T Tripathi

3 Marketing V T Tripathi

4 Production V T Tripathi

CH_3_Relational Database Management System_Final.indd 52 2/26/2014 3:38:13 PM

Relational Database Management System  |  53

and empname from employee table then it can be done by project operator. To imple-
ment the project operator the following query should be written, which will display	
Table 3.13.

Select deptno, empname from employee;

Employee is the original table on which we are applying project operator to find all em-
ployee numbers and employee names.

●● Join: If two tables contain a column defined over a same domain (domain = data type),
they may be joined over those two columns. The result of this join is a new table in which
each row will contain attributes from selected tables. For example, if we want to display
department name and employees working in that department, then it can be done by join
operator. To implement the join operator the following query should be written, which
will display Table 3.14.

Select deptname, empname from employee, department where

department.deptno= employee.deptno;

3.7  |  Codd’s Twelve rules of relational database
E. F. Codd represented the following twelve rules of relational database:

	 1.	 Information Rule: Information should be stored as a value in each cell of a table. Cell
is an intersection of row and column.

	 2.	Guaranteed Access Rule: Each value of a table should be accessed through table name
and key attributes/columns.

	 3.	Null Values: ‘Null’ represents unknown values of a column irrespective of data type.

Table 3.13  |  Result of Project	
Operator

Dept No. Emp Name

1 S. K. Khanna

1 N. V. Jani

2 B. R. Shah

2 T. J. Nair

3 V. T. Tripathi

Table 3.14  |  Join of Department	
and Employee Tables

Dept Name Emp Name

Computer S. K. Khanna

Computer N. V. Jani

HR B. R. Shah

HR T. J. Nair

Production V. T. Tripathi

Table 3.12  |  Result of SELECT Operator

EmpNo Dept No. EmpName Basic_Salary

1011 1 S. K. Khanna 20000

CH_3_Relational Database Management System_Final.indd 53 2/26/2014 3:38:13 PM

54  |  Chapter 3

	 4.	 System catalog maintenance: Data about data is generated and stored automatically in
the system catalog or data dictionary.

	 5.	Database language: There must exists one common language for all relational data-
bases to manage the data within database. Syntax of this language should remain same
in all the databases. This language is currently known as Structured Query Language.

	 6.	Rule for updatable view: views should be updatable.
	 7.	 Insert, Update and Delete operations: Data should be inserted, deleted and updated to/

from tables.
	 8.	Physical Data Independence: Application programs should be independent from	

memory locations.
	 9.	Logical Data Independence: Application programs should be independent from data

values.
	 10.	 Integrity Independence: All the tables within one database should be integrated prop-

erly through relationships.
	 11.	Distribution Independence: Application program should be independent from table’s

location.
	 12.	Non-subversion Rule: All the rules written on fields of a table should be enforced for

each record.

3.8  | D atabase Life Cycle
Database life cycle is a part of System Development Life Cycle (SDLC). During system	
design phase, the database of the system is designed. Database Life Cycle (DBLC) contains the	
following phases:

	 1.	 Database selection: From the System Requirements Specification (SRS) Document,
proper database management system is selected to manage the system’s data.

	 2.	 Database design: According to SRS, the tables are designed with its fields and con-
straints. Tables are integrated with proper relationship.

	 3.	 Data loading or data transfer (conversion): After tables are designed, the data are stored
in the tables through the application software after they are tested for the correctness. If
data are already stored in some other database, then they are imported (transferred) using
proper command or application.

	 4.	Maintenance of data: In case of any changes in data due to changing requirements, the
database is changed and data are maintained.

3.9  | D ata Dictionary
Data dictionary is also known as system catalog. It stores data about data or metadata. Data
dictionary contains all the tables, description of tables, fields and its data types, constraints
which should be applied on the fields, format of the fields, specific set of values which fields
should contain, etc. Data dictionary also contains description of other objects of database.

CH_3_Relational Database Management System_Final.indd 54 2/26/2014 3:38:13 PM

Relational Database Management System  |  55

Summary
●● Relational model is based on the concepts of set theory of mathematics. In relational
model, entity is stored as a relation, each entity occurrence is stored as a tuple and char-
acteristic of an entity is stored as an attribute.

●● Relation means table, tuple means row/record, and, attribute means column/field.
●● Total number of columns in relation is known as a degree of relation and total number of
rows is known as cardinality.
●● A domain is a valid set of values from where attribute’s values are derived.
●● Each relation must have unique tuple which can be obtained by defining unique identifier
for each tuple. This unique identifier is known as the primary key of the table.

●● To maintain integrity between data, foreign key can be defined, which should be referred
from the parent table’s primary key. The data type of both the fields should match.
●● Primary key is a field or combination of fields which uniquely identifies each tuple. Pri-
mary key contains unique and not null values.
●● Candidate key is also a field or combination of fields which uniquely identifies each tuple.
From the list of candidate keys, any one key is selected as a primary key, the remaining
keys are known as alternate keys.
●● Super key is a super set of primary key. That is, if we add some other fields from the same
relation in a primary key, it is known as super key.
●● Unique key contains unique values. The difference between primary key and unique key
is: unique key can contain null values, while primary key cannot.
●● Secondary key is used for retrieval purpose.
●● Surrogate key is an artificial primary key which is introduced in place of the original
primary key when it is very difficult to handle the original primary key.

●● To maintain integrity, two rules should be applied-Entity integrity and Referential	
integrity.

●● Rule of entity integrity says that primary key/composite key cannot contain null values.
In case of composite key, any component cannot contain null value. Component means,
individual field of a composite key.

●● Rule of referential integrity says that foreign key can be derived from the primary key
of some other table or same table. The data type of a foreign key should be same as data
type of a primary key of other table. Foreign key can have either null value or the value
of a field from where it is referenced.
●● There are different set operators which can be applied on tables. Union, Intersection, Dif-
ference and Cartesian Product are set operators.

●● Union will display rows from first table or second table or from both the tables.
●● Intersection will display common rows from first table and second table.
●● Difference will display records from the first tables which do not exists in the second table.
●● Cartesian Product will display cross join of two tables. It will display pair of records from
both the tables.

●● There are operators-Select, Project and Join which are used to retrieve data.
●● Select will display horizontal subset of the table, Project will display vertical subset of the
table, and Join will display fields from two tables.

CH_3_Relational Database Management System_Final.indd 55 2/26/2014 3:38:14 PM

56  |  Chapter 3

Exercises

	 1.	 Explain the terminologies of a relation model.
	 2.	What is domain? Give any five examples of domain.
	 3.	 Discuss various types of keys giving suitable examples.
	 4.	 State and explain entity and referential integrity rules.
	 5.	 Describe set operators with examples.
	 6.	 Describe retrieval operators with examples.
	 7.	 Tick the correct answer:

	 i.	 The key which contains unique and not null values is key.
	 	 a.  foreign	 	 	 b.  primary
	 	 c.  unique	 	 	 d.  secondary
	 ii.	 Unique key contain null values.
	 	 a.  true	 	 	 b.  false
	 iii.	 Foreign key can be derived from the key of another table.
	 	 a.  foreign	 	 	 b.  primary
	 	 c.  unique	 	 	 d.  secondary
	 iv.	 Relation means .
	 	 a.  field	 	 	 b.  record
	 	 c.  table	 	 	 d.  attribute
	 v.	 Attribute means ____________.
	 	 a.  field	 	 	 b.  record
	 	 c.  table	 	 	 d.  tuple
	 vi.	 Tuple means .
	 	 a.  field	 	 	 b.  record
	 	 c.  table	 	 	 d.  attribute
	 vii.	 Entity integrity rule is related with key.
	 	 a.  foreign	 	 	 b.  primary
	 	 c.  unique	 	 	 d.  secondary
	 viii.	 Referential integrity rule is related with key.
	 	 a.  foreign	 	 	 b.  primary
	 	 c.  unique	 	 	 d.  secondary
	 ix.	 Each composite key is a primary key, but each primary key is not necessarily com-

posite key.
	 	 a.  true	 	 	 b.  false
 	 x.	 is a horizontal subset of a table.
 	 	 a.  Select	 	 	 b.  Project
	 	 c.  Join	 	 	 d.  Divide
	 xi.	 is a vertical subset of a table.
	 	 a.  Select	 	 	 b.  Project
	 	 c.  Join	 	 	 d.  Divide
	 xii.	 displays records from first or second or both the tables.
	 	 a.  Union	 	 	 b.  Intersection
	 	 c.  Divide	 	 	 d.  Difference

CH_3_Relational Database Management System_Final.indd 56 2/26/2014 3:38:14 PM

Relational Database Management System  |  57

	 xiii.	 displays common records from both the tables.
	 	 a.  Union	 	 	 b.  Intersection
	 	 c.  Divide	 	 	 d.  Difference
	 xiv.	 Domain of Rollno. Field can be .
	 	 a.  Integer	 	 	 b.  Float
	 	 c.  Date	 	 	 d.  Text
	 xv.	 Domain of birthdate Field can be .
	 	 a.  Integer	 	 	 b.  Float
	 	 c.  Date	 	 	 d.  Text

	 8.	 Identify all possible types of keys from the following tables.

Event_type

Event_type

Solo
Group

Event_category

Cat_ID Cat_Name
1 Drama
2 singing
3 dance
4 Intellect
5 Art
6 Sports
7 Others

Participant

Pid Pname Gender Class ID RollNo Phone Bdate

1 Nida F SY-II 111
2 Vedangi F SY-II 86
3 Sushil M SY-II 80
4 Poonam F TY-II 57
5 Kanan F TY-II 115
6 Robin M TY-I 20
7 Jay M TY-I 50
8 Niti F TY-I 23
9 Ritu F TY-I 3
10 Nilesh M SY-I 35
11 Sajan M SY-I 1

Event_transaction

Event_ID Parti_ID
17 4
17 3
1 4
3 4
3 3
3 6
11 1
11 8
5 5

Eventheader

Event ID Total_Parti Faculty_IC Leaderid

17 1 Heena Timani 4
17 1 Heena Timani 3
1 1 Shefali Naik 4
3 1 Hemal Desai 4
3 1 Hemal Desai 3
3 1 Hemal Desai 6

11 1 Shefali Naik 1
11 1 Shefali Naik 8
5 5 Hemal Desai 5

CH_3_Relational Database Management System_Final.indd 57 2/26/2014 3:38:14 PM

58  |  Chapter 3

Winner

Event ID Winner1_leader ID Winner2_leader ID Winner3_leader ID

17 3 4 NULL

1 NULL NULL NULL

3 3 4 6

5 NULL NULL 5

Event_master

Event ID Event_cat ID Event_Type Event_Desc Min_Parti Max_Parti

1 2 Solo Solo Singing 1 1
2 2 Group Group Singing 2 8
3 3 Solo Solo Dancing 1 1
4 3 Group Duet Dancing 2 2
5 3 Group Group Dancing 3 10
6 4 Group Debate 2 2
7 4 Solo Elocution 1 1
8 4 Solo Extempore 1 1
9 4 Group Quiz 1 3
10 5 Solo Rangoli 1 1
11 5 Solo Mehendi 1 1
12 5 Group Best Out Of

Waste
2 3

13 6 Solo Slow Cycling 1 1
14 6 Solo Lemon And

Spoon
1 1

15 6 Group Treasure Hunt 3 6
16 6 Group 3 Legs 2 2
17 7 Solo Mimicry 1 1
18 7 Group Mime 3 8
19 7 Group Skit 3 8
20 7 Solo Mono Acting 1 1

CH_3_Relational Database Management System_Final.indd 58 2/26/2014 3:38:14 PM

CHAPTER

4.1  |  Introduction
There are various semantic models, such as entity-relationship model (E-R model), data model,
object model, etc. The semantic model represents and explains the meaning of the real-world
concepts implemented in that model. An E-R model is the most popular semantic model.While
we are in the process of database designing, it is important to identify the correct tables, their
fields, definitions of each field (data type, size, constraints, formats, etc.) and relationship be-
tween each table of the same database. It is very important to design tables in such a way that
they cover all the requirements of the system, in the form of data stored within the tables.
Before we design tables, we need to keep the rules of relational database in mind. For example,
each table should have a key which uniquely identifies each tuple; table should be related with
a common key which should be a primary key of other table, etc. Therefore, it is advisable to
identify entities and relationships between entities before we design the actual tables. Once we
finalize the entity-relationship diagram for the system, it can be converted into relational model.
There are many symbol sets available, nowadays, in the market to design and draw the entity-
relationship diagrams. The concept of E-R Model was given by Chen in 1976. Thereafter, the

4

Developing Entity-Relationship
Diagram

•	 Importance of Entity-Relationship diagram in database design.
•	 Understanding entities, and how to identify entity from a given problem.
•	 Understanding how entities can be related to each other.
•	 Knowing relationship types.
•	 Knowing participation of an entity into another entity.
•	 Representing entity and relationships by using notations.
•	 Modelling Entity-Relationship diagram.
•	 Converting Entity-Relationship diagram into Relational Model.
•	 Understanding object modelling.
•	 Identifying classes, subclasses, and superclasses.
•	 Drawing class diagrams.
•	 Comparison between E-R diagram and class diagram.
•	 Summary

Chapter Objectives

CH_4_Developing Entity-Relationship Diagram_Final.indd 59 2/26/2014 3:39:39 PM

60  |  Chapter 4

Crow’s Foot model was developed in the 90’s. The Chen model and Crow’s Foot model symbol
sets are widely accepted and used to draw E-R diagrams. In this book, we are going to use
symbols from the Chen model.

4.2  |  Identifying Entities
When we have to develop any software or system, we need to design the database in which we
are going to store data of that system or software. To design the tables, entities should be identi-
fied from the given problem definition or problem description.

Entity or entity set is a collection of any real-life similar type of objects which can be de-
scribed using its characteristics. Using these characteristics, each object of an entity can be
differentiated with other objects of that entity. Each object will have its own values for the
characteristics. The characteristics are also known as attributes. For example, STUDENT is
an entity which has the characteristics rollno, name, birth_date, city, contactno, email_ID, etc.,
(i.e., each unique student can be described with the help of values of its characteristics. Figure
4.1 describes the entity STUDENT and its characteristics. Figure 4.2 shows values of charac-
teristics for some student objects within STUDENT entity).

Entity: Student

Roll_no
Name
Birth_date
City
Contact_no
Email_ID

Characteristics of Student Entity

Figure 4.1  |  Student entity and its characteristics.

Roll_no: 1
Name: Kirtan
Birth_date: 23-4-1990
City: Ahmedabad
Contact_no.: 26467360
Email_ID: parth@gmail.com

Roll_no: 15
Name: Neel
Birth_date: 2-6-1989
City: Baroda
Contact_no: 27414360
Email_ID: neel@gmail.com

Roll_no: 4
Name: Aditi
Birth_date: 2-6-1990
City: Ahmedabad
Contact_no: 26434360
Email_ID: aditi@gmail.com

Figure 4.2  |  Three objects with their characteristics’ values within student entity.

CH_4_Developing Entity-Relationship Diagram_Final.indd 60 2/26/2014 3:39:40 PM

Developing Entity-Relationship Diagram  |  61

It is not possible to combine two different objects in the same entity, because different objects have
different characteristics. For example, it is not possible to combine ‘STUDENT’ and ‘PROD-
UCT’ objects within the same entity, as it is not possible to compare any student with any product.

The examples of entities are Supplier, Patient, Doctor, Employee, Student, Nominee, Staff,
Equipment, Item, Product, Stationery, Company, Location, Department, Warehouse, University,
Institute, Bank, Branch, Exam, Shipment, Competition, Treatment, etc.

We can represent any person, any place, any item or thing, any event or activity as entity. Figure
4.3 shows the possible classification of the above examples of entities as per their types.

Entity is represented as a horizontal rectangle in Chen’s model. Name of the entity should be
written in capital letters within the symbol of an entity. It must be any noun and singular. Figure
4.4 describes the entity COUNTRY as a symbol.

The characteristics or attributes are represented as oval shape or capsule shape and should be
connected to an entity using a line segment. Figure 4.5 shows the representation of attributes
country_code and country_name in a Chen’s model. These are the attributes of entity COUN-
TRY. Table 4.1 shows the terminologies of E-R model in brief. There are following concepts
related to attribute:

Types of
 Entities

Person Place Thing Event

Supplier
Patient
Doctor
Employee
Student
Nominees
Staff

Company
Location
Department
Warehouse
University
Institute
Bank
Branch

Equipment
Item
Product
Stationery

Exam
Shipment
Competition
Treatment

Country

Country_code Country_name

Country

Country_code Country_name

Figure 4.3  |  Types of entities and their examples.

Figure 4.4  |  Entity: Country

Figure 4.5  |  Representation of attributes of an entity country.

CH_4_Developing Entity-Relationship Diagram_Final.indd 61 2/26/2014 3:39:40 PM

62  |  Chapter 4

●● Single-valued Attribute: The attribute which contains a single value for any entity in-
stance is called the single-valued attribute. For example, gender, age, retirement_date,
blood_group, name, etc. The single-valued attribute is denoted with an oval shape in
Chen model.

●● Multi-valued Attribute: The attribute which contains many values or multiple values for
any entity instance is called the multi-valued attribute. For example, degree, hobby, con-
tactno., etc. The multi-valued attribute is denoted with an oval within oval shape in Chen
model.

●● Derived Attribute: The attribute which is derived from another attribute is known as
derived attribute. For example, retirement_date is a derived attribute because its value
is calculated from the attribute birthdate by adding 60 years (if person’s retirement age is
60) in the birth date. Another example is the value of total_years_of_experience attribute
is calculated from the attribute joining_date (by subtracting current year from the joining
year). The derived attribute is denoted with a dashed oval shape in Chen model.

●● Simple Attribute: The attribute which can not be further divided into more attributes is
known as simple attribute. For example, hobby, gender, joining_date, etc. The simple
attribute is denoted with an oval shape in Chen model.

●● Composite Attribute: The attribute which can be further divided into more attributes is
known as composite attribute. For example, name, address, etc., are composite attributes
because name can be divided into simple attributes first_name, middle_name and surname;
address can be further divided into addressline1, addressline 2, city and pincode. The com-
posite attribute is denoted with an oval shape connected with its simple attributes through
line segments in Chen model.

●● Key Attribute or Identifier: The key attribute is an attribute which uniquely identi-
fies each entity. For example, employee’s PAN Number uniquely identifies each entity
instance in an entity. The key attribute is underlined and written within the oval shape
in Chen model. Table 4.2 shows notations to denote different attributes in Chen model.

Table 4.1  |  Terminologies of E-R Model

Terminology Meaning
Entity(Entity set) A set of similar type of objects (but each object is unique within

the set) which can be distinguished from other set of objects. For
example, STUDENT, COUNTRY, BOOK

Object(Entity instance) Here, it can be described as entity instance or entity occurrence,
i.e., a collection of values of characteristics for any student repre-
sents one unique object. For example, within COUNTRY entity the
collection of values of (country_code, country_name) characteristics
(IND, INDIA) represents one object.

Attribute Characteristics of an entity. (Each object within the same entity
will have same characteristics, but values of characteristics will be
different.) For example, attributes of entity BOOK are ISBN, title,
price, author, etc.

Relationship/relation-
ship set (relationship
entity set)

Association between entities. For example, the relationship be-
tween entities MEMBER and BOOK is MEMBER issues BOOK.

CH_4_Developing Entity-Relationship Diagram_Final.indd 62 2/26/2014 3:39:40 PM

Developing Entity-Relationship Diagram  |  63

Table 4.2  |  Different Types of Attribute Symbols in Chen model

Attributes Symbols in Chen Model

Single-valued

Multi-valued

Derived

Key attribute attribute

Composite attribute

Composite
attribute

4.3  |  Identifying Relationships
The way in which individual entities interact with each other is known as relationship. For
example, entities TEACHER and STUDENT will interact with each other when a teacher teach-
es student. In other way, we can say that student is taught by teacher. The relationship between
TEACHER and STUDENT entities is teaching or learning. In most of the cases, the relation-
ship is nothing but an event or activity.

When any event or activity takes place, it is between two or more than two entities, i.e., an
event or activity relates two or more entities. Therefore, it is referred as relationship. In some of
the cases, the entity can also be associated or related with entity itself.

4.4  | T ypes of Relationships
When entities are associated with relationship, one object of an entity can be associated with
one or more objects of other entity or with itself.

The symbol to represent relationship is diamond shape in Chen model of E-R. Name of the
relationship is written within the diamond shape should be any verb. We can read relation-
ship from either side. Therefore, the relationship name can be written as present verb or past
perfect verb. For example, the relationship between STUDENT and INSTRUCTOR could be
either ‘instructed by’ or ‘instructs’. We can read this relationship as ‘STUDENT instructed by

CH_4_Developing Entity-Relationship Diagram_Final.indd 63 2/26/2014 3:39:41 PM

64  |  Chapter 4

INSTRUCTOR’ or ‘INSTRUCTOR instructs STUDENT’. The relationship should be connect-
ed with entities with line segments. Figure 4.6 shows the representation of relationship between
STUDENT and INSTRUCTOR entities. We can classify the relationships in following three
types:

One-to-One Relationship: This relationship describes that one object of one entity can be
associated with one object of another entity. For example, the relationship between entities
COUNTRY and CAPITAL is one to one, i.e., one COUNTRY can have only one CAPITAL
and a CAPITAL belongs to any one COUNTRY. This relationship is represented pictorially as
following. Symbolically, one to one relationship is represented as 1:1. Figure 4.7 shows one
to one relationship.

One-to-Many or Many-to-One Relationship: This relationship describes that one object of
one entity can be associated with many objects of another entity or many objects of one entity
can be associated with one object of other entity. For example, the relationship between entities
COUNTRY and STATE is one to many, i.e., one COUNTRY can have many STATE and many
STATE belong to one and only one COUNTRY. This relationship is represented pictorially as
following. Symbolically, one to many relationship is represented as 1:M. Figure 4.8 shows
one to many relationship.

Many-to-Many Relationship: This relationship describes that many objects of one entity can
be associated with many objects of another entity. For example, the relationship between en-
tities PARTICIPANT and SUMMER_PROGRAMME is many to many, i.e., one STUDENT
participates in many SUMMER_PROGRAMME and one SUMMER_PROGRAMME contains
many PARTICIPANT. Symbolically, many to many relationship is represented as M:N. Fig-
ure 4.9 shows many to many relationship. We can also classify the relationship according to its
degree as following:

Unary or Recursive Relationship: The degree of relationship is said to be unary when
the entity is related with itself. As entity is related with itself, it is also known as recursive
relationship. For example, the STUDENT entity represents all the student instances. From
all the students, one student is a class representative, who monitors the class. Therefore, this

Figure 4.6  |  Representation of
relationship.

StudentInstructsInstructor

Figure 4.7  |  Representation of 1:1 (one
-to-one) relationship.

Country Capitalhas

Country Statehas

Figure 4.8  |  Representation of 1:M
(one-to-many) relationship.

Participant Summer_
ProgrammeParticipates

Figure 4.9  |  Representation of M:N (many-to
-many) relationship.

CH_4_Developing Entity-Relationship Diagram_Final.indd 64 2/26/2014 3:39:42 PM

Developing Entity-Relationship Diagram  |  65

relationship can be represented as STUDENT (here role of this student is CR—Class Repre-
sentative and any STUDENT becomes CR if and only if he/she is first a student monitors STU-
DENT. In unary relationship degree of relationship is 1. Unary relationship appears rarely in
E-R model. Figure 4.10 represents unary relationship. The unary relationship can be further
categorized as:

	 1.	 One-to-One Unary Relationship: If one entity instance appears one and only once in
other entity, the type of relationship is said to be 1 to 1. If this happens within the same
entity, it is called 1 to 1 unary relationship. For example, consider employees working in
an organization. It is possible that two employees of this organization marry each other.
In this case, one EMPLOYEE marries only one EMPLOYEE. Therefore, the relation-
ship is one to one. As the relationship exists within the same entity EMPLOYEE, it is
said to be 1 to 1 unary relationship. Figure 4.11 represents 1:1, 1:M and M:N unary
relationships.

	 2.	 One-to-Many Unary Relationship: If one entity instance of an entity appears many
times in other entity, the type of relationship is said to be 1 to M. If this happens within
the same entity, it is called 1 to M unary relationship. For example, one STUDENT(CR)
monitors many STUDENT, but each student is monitored by only one STUDENT(CR).
Hence, this relationship is a 1 to many unary relationship.

	 3.	 Many-to-ManyUnary Relationship: If many entity instances of an entity appears many
times in other entity, the type of relationship is said to be M to N. If this happens within the
same entity, it is called M to N unary relationship. For example, assume that there are more
than one Class Representatives(CRs) who are also students, then they will monitor other
students of the class. Therefore, this relationship is known as M to N unary relationship.

StudentMonitors

Figure 4.10  |  Unary relationship: STUDENT (CR) monitors STUDENT.

Figure 4.11  |  1:1, 1:M and M:N unary relationships.

Student

Monitors Monitors

StudentEmployee

Marries

1-to-1 unary relationship:
Employee marries
Employee

1-to-M unary relationship:
Student (1 CR) monitors
Student (many)

M to N unary relationship:
Student (Many CRs)
monitors Student (many)

CH_4_Developing Entity-Relationship Diagram_Final.indd 65 2/26/2014 3:39:42 PM

66  |  Chapter 4

Binary Relationship: The degree of relationship is said to be binary when one entity is
related with another entity. The relationship type between entities may be 1:1, 1:M or M:N. For
example, the relationship EMPLOYEE has NOMINEE is a 1 to many binary relationship. Be-
cause one employee may have many nominees, but a nominee depends on only one employee.
[Note: Nominee is a person who is dependent on the employee. For example, if Mr Neel Shah is
working in any company, then his nominees are his family members. So, Neel Shah may have
many family members as nominees (dependents), but Mr Neel Shah’s family members depend
only on Mr Neel Shah and not on any other employee of the same company.] Figure 4.12 shows
1:M binary relationship between entities EMPLOYEE and NOMINEE. Figure 4.13 represents
many to many binary relationship ‘PARTICIPANT participates EVENT’ between entities
PARTICIPANT and EVENT, i.e., one participant can participate in many events and one event
can have many participants. In binary relationship, degree of relationship is 2.

Ternary Relationship: The degree of relationship is said to be ternary when three entities are
related with each other with common relationship. For example, Figure 4.14 shows M:N ter-
nary relationship between three entities STUDENT, FACULTY and SUBJECT, i.e., one student
learns many subjects from many faculties. One faculty teaches many subjects to many students
and one subject is taught to many students by many faculties. Figure 4.14 represents many to
many ternary relationship ‘STUDENT learns SUBJECT’, ‘SUBJECT taught by FACULTY’ and
‘FACULTY teaches STUDENT’. In ternary relationship, degree of relationship is 3.

N-ary Relationship: As unary, binary and ternary, any number of entities can be associated
with each other using a common relationship. Therefore, N-ary relationship can be defined as
when n entities are related with each other using common relationship, the relationship is said
to be N-ary relationship. In N-ary relationship, degree of relationship is N.

4.5  | R elationship Participation
When one entity is associated with another entity, this association is either mandatory (compul-
sory) or optional.

Employee Nomineehas

Figure 4.12  |  1:M binary relationship.

Participant EventParticipates

Figure 4.13  |  M:N binary relationship.

Student SubjectLearns

Faculty

Figure 4.14  |  M:N ternary relationship.

CH_4_Developing Entity-Relationship Diagram_Final.indd 66 2/26/2014 3:39:42 PM

Developing Entity-Relationship Diagram  |  67

Optional Participation: Optional participation means that if entity instance (object)
of one entity participates zero times in another entity, the participation is said to be optional.
For example, consider two entities—STUDENT and SUMMER_PROGRAMME. The relation-
ship between these two entities is ‘STUDENT attends SUMMER_PROGRAMME’‘, i.e., one
student can attend only one summer programme, but one summer programme can be attended
by many students. Here, it is not required that if summer programme exists then it should have
student participants. It may be the case that there is not a single participant in some summer
programmes. Therefore, we can say that participation of SUMMER_PROGRAMME in the
STUDENT entity is optional. Figure 4.15 shows this optional participation. The optional par-
ticipation is denoted by writing 0 (zero).

Mandatory participation: Mandatory participation means that if entity instance (object) of
one entity participates one or many times in another entity, the participation is said to be manda-
tory. For example, consider two entities—DIVISION and STUDENT. The relationship between
these two entities is ‘STUDENT studies DIVISION’‘, i.e., one division contains many students,
but there must be at least one student in a division and a student is enrolled in one and only one
division. Here, it is compulsory that if division exists then it must contain at least one student,
i.e., participation of DIVISION entity in a STUDENT entity is compulsory. Figure 4.16 shows
this mandatory participation. The mandatory participation is denoted by writing 1,M. When
we want to show exact one participation, 1,1 is written near the entity. Different participations
symbols are shown in Table 4.3.

Optionality symbol

Student
Summer_
programme

Attends
0, M 1, 1

Figure 4.15  |  Optional participation of SUMMER_PROGRAMME in STUDENT.

Table 4.3  |  Terminologies of E-R model

Symbol Meaning

0,1 1 is optional, i.e., zero or one.

0,M Many is optional, i.e., zero or many.

1,1 1 is compulsory, but not more than 1, i.e., one and only one.

1,M Many is compulsory, i.e., one or many.

Figure 4.16  |  Mandatory participation of DIVISION in STUDENT.

1, 1
Division StudentContains

Compulsion symbol

1, M

CH_4_Developing Entity-Relationship Diagram_Final.indd 67 2/26/2014 3:39:42 PM

68  |  Chapter 4

4.6  | S trong and Weak Relationship
Strong Relationship: When existence of any entity depends fully upon another entity, the re-
lationship between these two entities is called strong relationship. For example, consider two
entities COURSE and SYLLABUS. The existence of SYLLABUS entity totally depends on the
COURSE entity, i.e., if COURSE exists then it is required to create its SYLLABUS. COURSE
without SYLLABUS is not possible. In Chen model of E-R, the strong relationship is denoted
using diamond (relationship entity) shape. When strong relationship exists between entities, the
dependent entity is called weak entity. Weak entity is denoted as rectangle within rectangle and
two parallel lines are shown from weak entity to the relationship. We can say that when rela-
tionship between entities is strong, the dependent entity is always weak and vice versa is also
true. Figure 4.17 shows strong relationship between the entities COURSE and SYLLABUS and
weak entity SYLLABUS.

Weak Relationship: When existence of any entity does not depend on another entity, the re-
lationship between these two entities is called weak relationship. For example, consider two
entities USER and FEEDBACK. It is not required that each USER should give FEEDBACK.
In Chen model of E-R, the weak relationship is denoted by using diamond within diamond (re-
lationship entity) shape. When weak relationship exists between entities, the entities are known
as strong entities. We can say that when relationship between entities is weak, the entities are
always strong. Figure 4.18 shows weak relationship between the entities USER and FEEDBACK.

4.7  |  Managing many-to-many relationship
When there exists many-to-many relationship between entities, the many-to-many relationship
should be converted into two relationships—one-to-many (1:M) and many (N:1) to one. For
example, the relationship ‘TEACHER teaches STUDENT’ is many-to-many which says that
one teacher teaches many students and each student is taught by many teachers. Figure 4.19
shows M:N relationship between entities STUDENT and TEACHER and representation of this
relationship as one-to-many (one STUDENT taught by many TEACHER) and many-to-one
(one TEACHER teaches many STUDENT).

4.8  | E xample of E-R Model
To draw an E-R diagram from the given real-time problem statement, we may follow the fol-
lowing procedures:

	 1.	 Understand the problem thoroughly.
	 2.	 Identify entities and its attributes.

1, M1, 1
Course Syllabushas

Figure 4.17  |  Strong relationship
and weak entity.

0, M1, 1
User Feedbackgives

Figure 4.18  |  Weak relationship and strong�
entities.

CH_4_Developing Entity-Relationship Diagram_Final.indd 68 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram  |  69

1, M
Teacher

Teacher

Student

Student

Teaches

Teaches

1, 1

1, 1

1, 1

Teach_stud
1, M

Taught
 by

1, N

	 3.	 Identify one attribute or combination of attributes which could be used to represent each
entity instance uniquely.

	 4.	 Categorize the attributes as simple, composite, single-valued, multi-valued and derived.
Identify simple attributes for the given composite attribute.

	 5.	 Identify relationships between each entity. Remember that no entity should remain iso-
lated in the E-R diagram. Specify type of relationship whether it is 1:M, M:N or 1:1.

	 6.	 Covert many to many relationship further as one to many and many to one.
	 7.	 Identify strong and weak relationships.
	 8.	 Draw E-R diagram and check the correctness of the diagram. If required, make changes

and refine further.

Example 4.8.1: Consider the following problem statement and draw E-R diagram for it.

A training association organizes various programmes on different topics for the people of dif-
ferent age groups, different interest, different streams, etc., throughout the year. It offers mem-
bership of the organization and gives discount to its members. It also arranges different types
of events, such as workshops, conferences, conventions, etc., for its members only. It has halls,
auditoriums and rooms which are given unique room number according to floors. Rooms are
used to organize events and programmes (courses). Its members and non-members can partici-
pate in the courses by registering themselves into courses. They invite experts from different
fields who serve as resource persons for the courses.

Solution 4.8.1:
First, we will have to identify entities and attributes. To identify the entities, consider the proper
nouns given in the problem definition. Think about the nouns whether they are entities or just
an attribute. For example, in the first line ‘A training association organizes various programmes
on different topics for the people of different age groups, of different interest, of different
backgrounds, etc., throughout the year.’ Nouns are training association, programmes, topics,
people, age, interest, stream and year. Here training association is an organization for which
we are going to draw E-R diagram; so it can’t become an entity. From others, we can say that

Figure 4.19  |  Representation of M:N relationship as 1:M and N:1.

CH_4_Developing Entity-Relationship Diagram_Final.indd 69 2/26/2014 3:39:43 PM

70  |  Chapter 4

programmes and people are entities. ‘Topics and year’ are attributes of entity programme be-
cause they describe the programme (i.e., programme is organized on which topic and in which
year). Also, we can identify more attributes for programme which are not specified in the prob-
lem definition, but should be used such as starting date, ending date, duration of the programme,
etc. Another entity is people, which will have attributes such as name, age, interested in, back-
grounds, etc. Similarly, analyze the entire problem definition, understand it and decide entities
and attributes. Question yourself while analyzing the problem and you will get the answer. Re-
member that, ‘Practice makes man perfect’. If you will try to solve various kinds of problems,
you will be an expert in drawing E-R diagram. After analyzing the above problem definition,
the following entities and attributes are identified. (They might be wrong in the early stage, but
that can be revised or corrected at the later stages.) There is no need to show all the attributes in
the E-R diagram, only key attributes and important attributes could be shown.
Programme (Course) with attributes topic, year in which it is organized, starting date, end-
ing date, duration, etc.

Note: Here, to identify each programme uniquely (i.e., key attribute). We need one unique at-
tribute. None of the attributes or combination of attributes which we have specified can serve
as a key attribute because they will have duplicate values. For example, there are many pro-
grammes on same topic; starting date, ending date and duration could be same for different pro-
grammes. Therefore, we will have to consider some unique code to identify each programme
(each programme means entity instance/object of an entity programme) uniquely, say prog_ID
(programme identification number). Similarly, think about other entities.

  Person with attributes person_ID, name, birth_date, age, interested_in, background, etc.
 � Member with attributes member_ID, member_type (values could be employee/student/

others), organization (company name/school name) name, age, interested_in, member-
ship_type (values could be life time or temporary), discount_given, membership_date,
membership_renewal_date, etc.

 � Event with attributes event_ID, event_name, starting_datetime, ending_datetime, com-
pany_name, etc.

 � Infrastructure entity has attributes floor_ID, roomno, description, capacity, etc.
  Expert (Resource Person) entity has attributes expert_ID, name, expert_in, etc.

Following are the key attributes in each entity specified:

●● In programme entity, the attribute duration is a derived attribute which can be calcu-
lated from two attributes—starting_date and ending_date.

●● In person entity, the attribute age is a derived attribute which can be calculated from
other attribute birth_date. The attribute interested_in is a multi-valued attribute, because
a person may be interested in many subjects. Person’s name is a composite attribute be-
cause it can be further divided into fname and surname.

●● In member entity, the attribute interested_in is a multi-valued attribute, because a per-
son may be interested in many subjects. Member’s name is a composite attribute, because
it can be further divided into fname and surname.

●● In expert entity, the attribute expert_in is a multi-valued attribute, because a person may
have expertise in many topics.

CH_4_Developing Entity-Relationship Diagram_Final.indd 70 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram  |  71

The following relationships exist between the entities identified on the previous page:

●● Member registers for programme/course is a many to many relationship, i.e., one
member registers for many programmes and one programme contains many members.

●● Person registers for programme/course is a many to many relationship, i.e., one person
registers for many programmes and one programme contains many persons.

●● Infrastructure conducts programme is a many to many relationship, i.e., one
infrastructure(room) conducts many programmes and one programme is conducted into
many infrastructure(room) on different dates.

●● Expert teaches programme/course is one to many relationship, i.e., an expert can teach
many programmes, but one programme can be taught by only one expert.

●● Member organizes event is one to many relationship, i.e., one member can organize
many events, but an event is organized by only one member.

●● Event books infrastructure is a many to many relationship, i.e., one event is conducted
into many infrastructure and an infrastructure may conduct many events.

From the above relationships, all many to many relationships can be decomposed into one to
many and many to one relationships.

●● Member registers for programme/course can be converted as
○○ member registers reg_mem(1 : M) and
○○ reg_mem registers for programme(N:1)

●● Similarly, person registers for programme/course can be converted as
○○ person registers reg_per(1:M) and
○○ reg_per registers for programme(N:1)

●● Infrastructure conducts programme can be converted as
○○ Infrastructure conducts infra_prog(1 : M) and
○○ Infra_prog conducts programme(N:1)

●● Similarly, Infrastructure conducts event can be converted as
○○ Infrastructure conducts infra_event(1 : M) and
○○ Infra_prog conducts event(N:1)

The following relationships are strong relationships:

●● member registers reg_mem(1 : M) (reg_mem is dependent entity which depends on mem-
ber entity)

●● reg_mem registers for programme(N:1) (reg_mem is dependent entity which depends on
programme entity)

●● person registers reg_per(1 : M) (reg_mem is dependent entity which depends on person entity)
●● reg_per registers for programme(N:1) (reg_mem is dependent entity which depends on
programme entity)

●● infrastructure conducts infra_prog(1 : M) (infra_prog is dependent which depends on
infrastructure)

●● infra_prog conducts programme(N:1) (infra_prog is dependent which depends on programme)
●● infrastructure conducts infra_event(1 : M) (infra_event is dependent which depends on
infrastructure)

●● infra_event conducts event(N:1) (infra_event is dependent which depends on event)

CH_4_Developing Entity-Relationship Diagram_Final.indd 71 2/26/2014 3:39:43 PM

72  |  Chapter 4

The following relationships are weak relationships:

●● expert teaches programme(1 : M)(programme is dependent)
●● member organizes event(1 : M) (event is dependent)

From the above specifications we can draw the E-R diagram for the training association which
is shown in Figure 4.20.

4.9  | E xtended E-R Model
The E-R diagram can be extended further by implementing some new concepts. By implement-
ing these concepts, it will be easier to understand the diagram.

Sometimes, an entity inherits all the properties of any other entity. In that case, the base en-
tity from where other entity inherits all the properties is called supertype and the entity which
inherits properties from base entity is called its supertype. This relationship is known as ‘is a’
relationship.

As the example given in Figure 4.20, the person entity is a base entity. Entities Expert and
Member inherit all the properties (attributes) of entity Person. So, we can say that ‘Expert is
a Person’ and ‘Member is a Person’. Here, Person is a supertype, while Expert and Member

First
name

Name

Member Registers Registers

Registers

Reg_per
Per_id

Prog_id

Registers

Person

Per_id

Name

First
name

Age

SurnameInterested_in

Teaches

Infra_id

Expert

Expid

Expert_in

Programme

Duration

1

1
Mem_id

Organizes

M

N

N

M

M

1

1

1

1Event
Mem_id

Event_id

Organized
 in

Organized
 In

Event_infra

Conducts

Infrastructure

Conducts

Prog_id

Infra_prog

Infra_id
Infra_id

Event_id

Age

Surname

Mem_id

Reg_mem N

1 M

M

N

1M

Prog_id Exp_id Prog_id

Figure 4.20  |  E-R diagram for a training association.

CH_4_Developing Entity-Relationship Diagram_Final.indd 72 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram  |  73

Member

Discount_perc

Interested_in

Age

Person
Name

Surname

Firstname
Per_id

Expert

Expert_in

are its subtypes. Figure 4.21 shows this ‘is a’ relationship. To denote ‘is a’ relationship, the
line with arrow is shown from supertype(Person) to subtype(Member and Expert).

Entities Member and Expert will have all the attributes of Person and some attributes of their
own, but vice versa is not true, i.e., an expert has its own attribute expert_in which is not an at-
tribute of person entity. Similarly, a member has its own attribute discount_perc which is not an
attribute of person entity.

In the above diagram, person entity is ‘general’ entity; while expert and member entities are
‘special’ entities of person type entity. These concepts are called ‘Generalization’ and ‘Spe-
cialization’ respectively.

4.10  | C onverting E-R Model into Relational Model
When we convert E-R diagram into Relational model, the rules we should follow are given
below:

	 1.	 Each entity is converted as a ‘table and entities’ attributes are converted as fields. The
identifier, which is underlined in E-R diagram, is converted as primary key of that table.
Decide data types for each attribute from its value. Remember that the key attribute of
one entity participating in another entity will have the same data type of a key attribute.

	 2.	 The derived attributes may or may not be converted as field. It depends on the database de-
signer whether to store the derived attribute or not. There are certain advantages and disad-
vantages of storing derived attribute as a field. If the attribute’s value is changing with time,
it is advisable not to store it. For example, the value of ‘age’ will change with time; therefore,
it should be calculated every time when we want to use it in process. If the attribute’s value
is not going to be changed with time, it is advisable to store it in table once it is calculated.
For example, the value of ‘total bill amount’ is calculated from the sum of multiplication of
quantity and price, i.e., once it is calculated, it will not be changed in future.

	 3.	 When we convert weak entity into table, the identifier of strong entity on which the weak
entity is dependent becomes foreign key of the weak entity as well as it becomes part of
the primary key of that weak entity. In other cases, the foreign key will not be part of the
primary key.

Figure 4.21  |  Representation of supertype and subtype in E-R diagram.

CH_4_Developing Entity-Relationship Diagram_Final.indd 73 2/26/2014 3:39:43 PM

74  |  Chapter 4

	 4.	 The entities with cardinality 1 should be created first as tables. After that, entities with
cardinality M/N should be created.

If we convert the example given in Figure 4.20 into relation model, it will contain the tables
which are given in Table 4.4. The third column in Table 4.4 shows data definition language to
create tables in Oracle.

Table 4.4  |  Tables which are Converted from the E-R Diagram given in Figure 4.20.

Table Name Fields Create Table command in Oracle

Person Person_ID, name, birth_date,
age, interested_in, back-
ground

Create table person(person_ID int pri-
mary key, name varchar(20), birth_date
date, age float, interested_in var-
char2(100), background varchar2(50));

Member Member_ID, member_type,
organization, name, birth_
date, age, interested_in,
membership_type, disc_
given, membership_date,
renewal_date

Create table member(member_ID, int_pri-
mary key, member_type varchar(10), orga-
nization varchar(30), name varchar(30),
birth_date date, age float, interested_in
varchar(100), membership_type var-
char(10), disc_given float, membership_
date date, renewal_date date)

Expert Expert_ID, name, birth_date,
age, expertise_in

Create table expert(expert_ID int primary
key, name varchar(30), birth_date date,
age float, expertise_in varchar(30))

Infrastructure Infra_ID, floor_ID, roomno,
description, capacity

Create table infrastructure(infra_ID
int, floor_ID int, roomno int, descrip-
tion varchar(30), capacity int)

Programme Prog_ID, expert_ID, topic,
year, starting_date, end-
ing_date

Create table programme(prog_ID int pri-
mary key, expert_ID int references
expert(expert_ID), topic varchar(30),
year int, starting_date date, ending_date
date)

Event Event_ID, member_ID,
event_name, starting_date,
ending_date

Create table event(event_ID int primary
key, member_ID int references member
(member_ID), event_name varchar(30),
starting_date date, ending_date date)

Reg_mem Member_ID, progid Create table reg_mem(prog_ID int refer-
ences programme(prog_ID), member_ID int
references member(member_ID), primary
key(prog_ID,member_ID))

Reg_per Person_ID, progid Create table reg_per(person_ID int ref-
erences person(person_ID), prog_ID int
references programme(prog_ID), primary
key(person_ID, prog_ID));

Event_infra Event_ID, infra_ID Create table event_infra(event_ID int
references event(event_ID), infra_ID int
references infrastructure (infra_ID),
primary key(event_ID, infra_ID))

Infra_prog Infra_ID, prog_ID Create table infra_prog(infra_ID int
references infrastructure(infra_ID),
prog_ID int references programme(prog_
ID), primary key(infra_ID, prog_ID))

CH_4_Developing Entity-Relationship Diagram_Final.indd 74 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram  |  75

4.11  | O bject Modelling
Object modelling is another type of semantic model. In this model, entities are referred as
class; each entity instance is referred as object and characteristics of entity are referred as
attributes.

The relationships between these classes along with participation of one class into another
class should be shown in object model. If we convert the example given in Figure 4.20 into
relation model, it will contain the tables which are given in Table 4.4. The third column in Table
4.4 shows data definition language to create tables in Oracle.

Object model is more semantic (meaningful) than E-R model because it represents real world
concepts more clearly.

Object model represents E-R model’s entity as class, entity’s characteristics as attributes, en-
tity instance as object and relationship as association. Moreover, it assigns each object a unique
identification no. Attributes have their behaviour and classes have methods. Each class can send
message to other class. Classes are associated with each other through association. Participation
of one object into another object is shown using cardinality.

The subtype and supertype in E-R model is known as subclass and superclass, respectively,
in object model. Table 4.5 shows comparison between E-R model and Object model.

Object model represents some more concepts which are not available in E-R model, such as
inheritance, encapsulation, polymorphism, etc.

In object model, the class is represented as vertical rectangle. Class name is written on the top
of the rectangle. Below class name, the attributes are written and below attributes, the methods
are written. The associations between classes are denoted with line segment connecting two
classes. The examples of class, attributes and methods are shown in Figure 4.22.

Table 4.5  |  Comparison between E-R Model
and Object Model

Entity-Relationship Model Object Model
Entity Class
Entity instance Object
Characteristics (Attributes) Attributes
Relationship Association
Subtype Subclass
Supertype Superclass

Class name Event
Attributes event_ID

member_ID
event_name
starting_date
ending_date

Methods add event
remove event
update event

Figure 4.22  |  Representation of class
EVENT with its attributes and methods.

4.11.1  | S ubclass and Superclass

The object model represents class hierarchy as subclass and superclass. The class which inherits
some or all the attributes and methods from some class is known as subclass. The class from
where other class inherits the attributes and methods is known as superclass. The class hierar-
chy is shown in Figure 4.23.

CH_4_Developing Entity-Relationship Diagram_Final.indd 75 2/26/2014 3:39:43 PM

76  |  Chapter 4

In Figure 4.23, the CLASS 1 is a superclass of classes CLASS 2, CLASS 3 and CLASS 4.
CLASS 2, CLASS 3 and CLASS 4 are subclasses of CLASS 1. CLASS 3 is a superclass of
classes CLASS 5 and CLASS 6. CLASS 5 and CLASS 6 are subclasses of CLASS 3. Here,
CLASS 3 is superclass as well as subclass.

4.11.2  | S pecialization and Generalization

Subclasses inherit the attributes and methods from the superclass. In this case, we can say that
subclasses are specialization of its superclass. For example, the classes EXPERT and MEM-
BER are subclasses of superclass PERSON, i.e., EXPERT and MEMBER classes are special-
ization of class PERSON.

Conversely, superclass is a generalization of subclasses. For example, PERSON class is a
generalization of classes EXPERT and MEMBER. Figure 4.24 shows the concept of General-
ization and Specialization.

4.11.3  | C lass Diagram

The class diagram shows association between classes. It is similar to E-R diagram. We can
follow the same rules of drawing E-R diagram to draw the class diagram. Then, we convert E-R
diagram into class diagram. If we draw the class diagram for the problem definition given in
Example 4.8.1, it will be as shown in Figure 4.25.

Summary
●● E-R model is a semantic model which represents real world concepts in meaningful way.
E-R model was proposed by Peter Chen.

CLASS 1

Attributes

Methods

CLASS 2

Attributes
Methods

CLASS 3

Attributes
Methods

CLASS 6

Attributes
Methods

CLASS 5

Attributes
Methods

CLASS 4

Attributes
Methods

Figure 4.23  |  Representation of class hierarchy.

CH_4_Developing Entity-Relationship Diagram_Final.indd 76 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram  |  77

Class: PERSON

Attributes
Person_id
Name
Birth_date
Intersted_in,
Background

Add person
Calculate age

Methods

Specialization

Generalization

Class: EXPERT

Attributes
Expert_id
Name
Birth_date
Expertise_in

Add expert
Calculate age

Methods

Class: MEMBER

Attributes
 Member_id
 Member_type
 Organization
 Name
 Birth_date
 Expertise_in
 Membership_type,
 Disc_given
 Membership_date
 Renewal_date

Add Member
Calculate Age

Methods

Figure 4.24  |  Class specialization and generalization.

●● Entity means any real world object which can be differentiated from any other real world
object.

●● Characteristics of an entity are called attributes. The different types of attributes are
simple attribute, composite attribute, single-valued attribute, multi-valued attribute and
derived attribute.

●● Each entity is a collection of objects which share the same attributes, but each object is
unique.

●● Entity can be associated with each other using relationship.
●● Relationship can be categorized as unary, binary, ternary and so on up to n-ary, which is
known as degree of relationship.

●● The relationship which associates entity with itself is called unary relationship. The rela-
tionship which associates two entities is known as binary relationship. The relationship
which associates three entities is known as ternary relationship. The relationship which
associates n number of entities is known as n-ary relationship.

●● The relationships are of three types: one to one, one to many (or many to one) and many
to many.

●● One entity participates in other entity through relationship, but this participation may be
optional or mandatory. This participation is denoted as cardinality in E-R diagram.

●● The relationship could be strong or weak relationship. If one entity totally depends on the
existence of another entity, the relationship is said to be strong relationship. In this case,

CH_4_Developing Entity-Relationship Diagram_Final.indd 77 2/26/2014 3:39:43 PM

78  |  Chapter 4

Figure 4.25  |  Class diagram.

Class: MEMEBER

Attributes
Member_id
Name

Methods
Add member
Calculate age

1

1

1

0..*

1..*

1..*

Class: EVENT

Attributes
Event_id
Member_id

Event_id
Infra_id

Methods
Add member

Class: EVENT_INFRA

Class: INFRASTRUCTURE

Attributes

Methods
Assign room

infra_id
Attributes

Methods
 Add room

1

1

1

1..*

1..*

1..*

Class: REG_MEM

Attributes
Prog_id
Member_id

Prog_id
Expert_id

Methods
Register member

Class: PROGRAMME

Class: INFRA_PROG

Attributes

Methods
Add programme

Prog_id
Infra_id

Attributes

Methods
 Assign room

1

1

1

1..*

0..*

1..* Per_id
Prog_id

Class: REG_PER

Class: EXPERT

Attributes

Methods
 Register person

Expert_id
Name
Expert_in

Attributes

Methods

Class: PERSON

Attributes
Person_id
Name
Birth_date
Intersted_in,
Background

Add person
Calculate age

Add expert
Calculate age

Methods

...

...

...

the dependent entity is called weak entity. If existence of an entity doesn’t totally depend
on other entity, the relationship is said to be weak relationship. In this case, the entities
are called strong entities.

●● To draw an E-R diagram various symbols are used. Some important symbols are rect-
angle to represent entity, oval to represent attribute, diamond to represent relationship and
line segment to connect entity with relationship.

CH_4_Developing Entity-Relationship Diagram_Final.indd 78 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram  |  79

After drawing an E-R diagram, it is converted into Relational Model, i.e., entities are converted
into tables, attributes are converted into fields. Each table will have unique identifier, which is
known as primary key.

Exercises

	 1.	 Draw symbols which are used to draw E-R diagram.
	 2.	 Define the following:
	 a.	 Entity					 b.  Relationship
	 c.	 Entity instance				 d.  Attribute
	 e.	 Simple attribute			 f.  Composite attribute
	 g.	 Single-valued attribute			 h.  Multi-valued attribute
	 i.	 Derived attribute			 j.  Strong relationship
	 k.	 Weak entity				 l.  Supertype
	 m.	 Subtype

	 3.	 Compare E-R model and Object model.
	 4.	 Explain one to one, one to many and many to many relationships with example.
	 5.	 Explain unary/recursive relationship with example.
	 6.	 Show symbolic representation of following relationships.
	 a.	 One singer sings many songs and a song is sung by many singers.
	 b.	 Student gives many exams.
	 c.	 Many food items are listed in a menu.
	 d.	 One author writes many books and a book is written by many authors.
	 e.	 Professor writes many research papers.

	 7.	 Draw an E-R diagram for the kindergarten according to the rules given below:
	 a.	 There are classes like playgroup, nursery and KG.
	 b.	 There are many divisions of each class.
	 c.	 In each division there are many students, but one student studies in only one division.
	 d.	 Each division is assigned to two teachers.
	 e.	 Parent-teacher meeting is held on every even Saturday. Parents’ attendance is main-

tained for each meeting.
	 f.	 Progress of each student is maintained in every month.

	 8.	 Draw an E-R diagram for the summer camp which is held in the school during summer
vacation. Use following rules to draw the diagram.

	 a.	 There are many activities under different categories such as sports, intellectual, art,
etc., are organized. Sports activities such as football, volleyball, badminton, table
tennis, basketball, swimming, skating, etc.; art activities such as calligraphy, paper
craft, sand sculptures, glass painting, etc.; intellectual activities such as effective
speaking, fun with maths, fun with science, good reading habits, etc.; are organized.

	 b.	 One participant can participate in many activities under different categories.
	 c.	 Each activity has a schedule.
	 d.	 Each activity is conducted by one resource person. A resource person can conduct

many activities at different time.

CH_4_Developing Entity-Relationship Diagram_Final.indd 79 2/26/2014 3:39:43 PM

80  |  Chapter 4

	 9.	 Draw an E-R diagram for the newspaper distributor for the given procedure.
The newspaper distributor daily collects various newspapers from different printing
press. The newspapers are distributed area-wise among the persons who look after that
area. The area distributor has many employees who will distribute the newspaper to the
clients. The area distributor sorts the newspapers client-wise and hand over them to his
employees. Employees distribute bunch of newspapers to each client. On demand of his
client, the newspaper distributor also distributes periodicals. In the month end, he deliv-
ers bill of newspaper to each client.

	 10.	 Select the correct answer:
	 a.	 The attribute which contains multiple attributes is called ____________.
		 i.  Composite attribute		 ii.  Multi-valued attribute
		 iii.  Derived attribute			 iv.  None of the given
	 b.	 The attribute which is calculated from the value of some other attribute is called

____________.
		 i.  Composite attribute		 ii.  Multi-valued attribute
		 iii.  Derived attribute			 iv.  None of the given
	 c.	 The attribute which can be further divide into simple attributes is called __________.
		 i.  Composite attribute	 ii.  Multi-valued attribute
		 iii.  Derived attribute		 iv.  None of the given
	 d.	 From the following, ‘Kindergarten’ entity can be categorized as which type of entity?
		 i.  Person			 ii.  Place
		 iii.  Thing			 iv.  Event
	 e.	 From the following, ‘Supervisor’ entity can be categorized as which type of entity?
		 i.  Person			 ii.  Place
		 iii.  Thing			 iv.  Event
	 f.	 From the following, ‘Furniture’ entity can be categorized as which type of entity?
		 i.  Person			 ii.  Place
		 iii.  Thing			 iv.  Event
	 g.	 From the following, ‘Registration’ entity can be categorized as which type of entity?
		 i.  Person			 ii.  Place
		 iii.  Thing			 iv.  Event
	 h.	 Recursive relationship means ______________ relationship.
		 i.  Binary			 ii.  Ternary
		 iii.  Unary			 iv.  N-ary
	 i.	 The ______________ model is more semantic than E-R model.
		 i.  Hierarchical		 ii.  Network
		 iii.  Relational 			 iv.  Object
	 j.	 When E-R model is converted into relational model, entity is converted in a

____________.
		 i.  Field			 ii.  Table
		 iii.  None
	 k.	 In Chen model of E-R, entity is denoted with which symbol?
		 i.  Rectangle			 ii.  Diamond
		 iii.  Oval 			 iv.  Line segment

CH_4_Developing Entity-Relationship Diagram_Final.indd 80 2/26/2014 3:39:44 PM

Developing Entity-Relationship Diagram  |  81

	 l.	 In Chen model of E-R, relationship is denoted with which symbol?
		 i.  Rectangle			 ii.  Diamond
		 iii.  Oval			 iv.  Line segment
	 m.	 In Chen model of E-R, simple attribute is denoted with which symbol?
		 i.  Rectangle			 ii.  Diamond
		 iii.  Oval			 iv.  Line segment
	 n.	 In Chen model of E-R, derived attribute is denoted with which symbol?
		 i.  Dashed oval		 ii.  Oval within oval
		 iii.  Oval 			 iv.  Oval connecting oval
	 o.	 In Chen model of E-R, multi-valued attribute is denoted with which symbol?
		 i.  Dashed oval		 ii.  Oval within oval
		 iii.  Oval 			 iv.  Oval connecting oval
	 p.	 In Chen model of E-R, key identifier (attribute) is denoted with which symbol?
		 i.  Dashed oval		 ii.  With underlined
		 iii.  In bold face		 iv.  Italic

CH_4_Developing Entity-Relationship Diagram_Final.indd 81 2/26/2014 3:39:44 PM

CHAPTER
5

Normalization

•	 Understanding importance of normalization.
•	 Identifying dependencies from the given Table.
•	 Converting Tables into various normal forms.
•	 Evaluating Tables after normalization for correctness and lossless decomposition.
•	 Understanding some more dependencies.
•	 Learning with examples: how to normalize Tables.

Chapter Objectives

5.1  | I ntroduction
After drawing E-R diagram, the Tables should be designed. An E-R model is a conceptual
(semantic) model which shows only entities, relationships and attributes. It does not show data
types and constraints which should be put up on the attributes. Data types and constraints must
be decided by studying actual values of the attributes. Moreover, we can decide input format, set
of values to be inputted in the attribute, etc.

If E-R diagram is converted into Relational Model, we get Tables which are already con-
verted into normal forms, but not fully. After conversion from E-R Model to Relational Model,
we need to check correctness using the normalization rules. When we have only records (i.e., data)
available, we need to store them in the respective Tables by identifying fields, constraints, format,
etc. After that, the Tables should be converted into normal forms. In this chapter, we will learn how
to convert Tables into normal forms when only records (data) are given.

5.2  | N eed for normalization
Imagine a Table which contains more than 150 fields and about ten lakhs records. It is very
difficult to maintain such a big volume of records, especially when it contains so many fields.

Moreover, many of the records will contain redundant (duplicate/repetitive) data in this
case. We need to take combination of many fields to identify each record uniquely. To do this,
none of the fields may contain null values which are not possible always.

CH_5_Normalization_Final.indd 82 2/28/2014 12:46:51 PM

Normalization  |  83

To reduce/remove these problems, we need to normalize a Table by decomposing it into
many Tables. Care should be taken, so that no information is lost from the Table while we
decompose it. We would get back the original information when we merge the decomposed	
Table again.

Normalization is a process of simplifying a complex Table into multiple Tables by decom-
posing it. To normalize a Table, some rules should be followed. There are mainly five normal
forms. Before starting the normalization process, we need to understand some kinds of depen-
dencies, such as functional dependency, full functional dependency, transitive dependency and
multi-valued dependency.

The concept of normalization was propounded by E. F. Codd. To normalize Tables, first,	
we need to understand some types of dependencies which exist between the fields in	
a Table.

5.3  | T ypes of dependencies
There are many types of dependencies exist between the fields of a Table. These are as	
follows:

●● Functional dependency
●● Full-functional dependency
●● Partial dependency
●● Transitive dependency
●● Multi-valued dependency
●● Join dependency

Functional Dependency: If field1 and field2 are two attributes of a Table, then field1 is said
to be functionally dependent on field2, if there exists one precise (unique) value of field1 for
the corresponding value of field2. To explain, field1 is functionally dependent on fields 2, if
and only if each value of field2 is associated with the precise value of field1. Symbolically, it is
represented as follows:

field2 field1

We can read this functional dependency as either ‘field 1 functionally dependent on field 2’ or
‘filed 2 functionally determines field1’

Here, for each value of field 2 in each tuple (record), we will get one precise value of field1.
For an example, in Table event, if we have fields, such as eventid, eventname, startdate, end-
date, duration, etc., then each value of eventid can be associated with one value of startdate.
The startdate may be same for two or more different eventid, but each eventid is unique, and
using eventid we can access precise startdate. If we change value of eventid, then the associ-
ated value of startdate will also be changed.

It can be simply explained as, for two different records (tuples), if there are two identical
values of the eventid field, then there must be the same values of the startdate field, but the
converse is not true (i.e., for two different records, if two values of startdate are same, then it is
not necessary that the corresponding values of eventid must be same). Consider the example
as given in Table 5.1.

CH_5_Normalization_Final.indd 83 2/28/2014 12:46:51 PM

84  |  Chapter 5

Table 5.1  |  Event Table Showing Functional Dependency Between Fields EventID and Start
Date

Event_ID Event_Name Start_Date End_Date Duration (in days)

1 Solo singing 2-May-2013 5-May-2013 4

2 Solo dance 2-May-2013 7-May-2013 6

3 Debate 3-May-2013 2-May-2013 1

4 Skit 2-May-2013 7-May-2013 6

5 Elocution 3-May-2013 5-May-2013 3

Table 5.2  |  An Attendance Table

Date Lecture No. Class_ID Std_No. Subject_ID Attendance

1-Apr-2013 1 FY Div-I 23 APCL Present

1-Apr-2013 1 FY Div-II 150 DHTML Present

1-Apr-2013 1 FY Div-I 57 APCL Absent

1-Apr-2013 1 SY Div-I 62 OOMUL Present

1-Apr-2013 2 FY Div-I 57 BM Present

2-Apr-2013 1 FY Div-I 23 IMUD Present

2-Apr-2013 1 FY Div-II 150 DHTML Present

2-Apr-2013 1 FY Div-I 57 IMUD Absent

2-Apr-2013 1 SY Div-I 62 SAD Present

2-Apr-2013 2 FY Div-I 57 PM Present

Event_ID Event_name

Event_ID functionally determines event_name, or
event_name functionally dependent on event_ID

Figure 5.1  |  Functional dependency.

Table 5.1 represents the details of various events. The events which have eventId values 3 and 5,
have the same values in the field startdate. It means, two different events may start on the same
dates, but it does not mean that if start dates are same, the events are also same.

Pictorially, the functional dependency can be denoted as follows:
●● In functional dependency, the attribute/field which is on the left side of the arrow (i.e.,
eventId) is known as determinant, and the attribute/field which is on the right side of
the arrow, is known as dependent. The determinant can be defined as the field or com-
bination of fields on which some other field(s) depends, is known as determinant. The
dependent can be defined as the field(s) which is determined by some other field(s), is
known as dependent.
●● The field may be dependent on the combination of two or more fields. For an example,
in Table 5.2, the field attendance depends on the combination of fields date, lectureno,
class id, stdno and subject id.

CH_5_Normalization_Final.indd 84 2/28/2014 12:46:51 PM

Normalization  |  85

●● From the data, as given in Table 5.2, we can say that attendance of students functionally
depends on the combination of fields date, lectureno, class id, stdno and subject id. Be-
cause none of the fields, alone, determines attendance of the students. Only for the com-
bination of the given five fields, we get the correct attendance of the students. Pictorially,
it can be denoted as shown in Figure 5.2. Here, Attendance is a dependent and combina-
tion of fields (date, lectureno, class id, stdno, subject id) is determinant.

In the example as given in Figure 5.2, the composite determinant contains five components
namely, date, lectureno, class id, std no and subject id.

Full Functional Dependency: When determinant contains only a single field, the dependent
is fully dependent on that determinant. This dependency is called, ‘full function dependency’.
But when determinant is a combination of more than one field, it is possible that dependent is
not fully dependent on the combination. It may also be dependent on any component of that
determinant. It means if we change any component, the corresponding value of the dependent	
will also be changed. In the example as given in Figure 5.2, the attendance of students fully	
functionally depends on the whole combination of (date, lectureno, class id, stdno and	
subject id). There is no individual component or combination of components on which atten-
dance depends other than the whole combination. Therefore, the example as shown in Figure
5.2 shows full functional dependence between dependent attendance and determinant (date,
lecture no, class id, stdno, subject id).

Now, consider Table 5.3. It contains data related to amenity booking of a professional society.

Table 5.3  |  Booking Table

Member_ID Member_Name Amenity_ID Amenity_Desc Booking_Date Booking_Status

Mem003 S. R. Desai Conf 01 Conference hall 6-May-2013 Confirm

Mem026 T. S. Pathak Sem 03 Seminar room 3-June-2013 Not confirm

Mem123 N. C. Vora Conf 01 Conference hall 21-May-2013 Confirm

Mem456 J. N. Patel Aud 02 Auditorium 6-May-2013 Confirm

Mem122 S. P. Sabugola Sem 11 Seminar room 6-June-2013 Not confirm

Attendance

Date

Lecture_no

Class_ID

Std_no

Subject_ID

Figure 5.2  |  Functional dependency where determinant is a combination of fields.

CH_5_Normalization_Final.indd 85 2/28/2014 12:46:52 PM

86  |  Chapter 5

In Table 5.2, the following functional dependencies exist between the fields:

 (member_ID, amenity_id) member_name
 (member_ID, amenity_ID) amenity_desc
 (member_ID, amenity_ID) booking_date

 (member_ID, amenity_ID) booking_status

Here, the determinant is a combination of fields, member_ID and amenity_ID. member_ID
and amenity_ID are two different components. The above four dependencies are functional
dependencies, but we need to check if they are full functional dependencies or not.

Consider the case ‘(member_ID, amenity_ID) determines booking_date’. Here, booking_
date is fully functionally dependent on the combination (member_ID, amenity_ID) because
none of the component of (member_ID, amenity_ID) determines booking_date. The booking_
ID field will have some values when a member books any amenity. Likewise, the dependency
‘(member_ID, amenity_ID) determines booking_status’ is a full functional dependency. Figure
5.3 shows the pictorial representation of full function dependence of these two cases.

Now, consider the case ‘(member_ID, amenity_ID) determines member_name’. In this case,
if we change the component member_ID, we will get a precise value of member_name. It
means, member_name is not fully functionally dependent on the combination (member_ID,
amenity_ID), but also depend on member_ID alone. Therefore, this dependency is known
as partial dependency. Here, member_name is functionally dependent on the combination
(member_ID, amenity_ID), and also partially dependent on member_ID.

Similarly, in the dependency ‘(member_ID, amenity_ID) determines amenity_desc’, we get
precise value of amenity_desc for any value of amenity_ID. Therefore, amenity_desc is func-
tionally dependent on the combination (member_ID, amenity_ID), and also partially dependent
on amenity_ID. We can define partial dependency as follows:

Partial Dependency: When determinant (i.e., on which some field depends) is a combination of
more than one fields, determines any field; if any component(s) of determinant also determines
that field, the field is said to be partially dependent on determinant. For an example, ‘(mem-
ber_ID, amenity_ID) partially determines amenity_desc’ because amenity_ID also determines
amenity_desc.‘(member_ID, amenity_ID) partially determines member_name’ because mem-
ber_ID also determines member_name. Figure 5.4 shows these partial dependencies.

Booking_date
Amenity_ID

Member_ID

Amenity_ID

Member_ID
Booking_status

Figure 5.3  |  Full Functional Dependencies: (member_ID, amenity_ID) Fully Function-
ally Determines booking_date and (member_ID, amenity_ID) Fully Functionally Determines
Booking_status.

CH_5_Normalization_Final.indd 86 2/28/2014 12:46:52 PM

Normalization  |  87

Table 5.4  |  City_Team Table

City_Code City_Name Team_ID Team_Name

KK Kolkata KKR Kolkata Knight Riders

CH Chennai CSR Chennai Super Kings

BG Bangalore RCB Royal Challengers Bangalore

MH Mohali KXIP Kings XI Punjab

DL Delhi DD Delhi Daredevils

HD Hyderabad HDC Hyderabad Deccan Chargers

JP Jaipur RR Rajasthan Royals

MB Mumbai MI Mumbai Indian

PN Pune PWI Pune Warriors India

Member_name

Member_name

Member_ID

Member_ID

Amenity_ID

Amenity_ID

Amenity_desc

Amenity_desc

Figure 5.4  |  Partial dependencies: (member_ID, amenity_ID) Partially determines member_
name; and (member_ID, amenity_ID) Partially determines amenity_desc.

Field 1 Field 3
Field 2

Field 2

Field 1

Field 3

Figure 5.5  |  Transitive dependency between field1 and field3.

Transitive Dependency: In a Table, consider that there exists functional dependency between
its fields; field 1 and field 2, where field1 is a determinant and field 2 is a dependent. If any other
field, namely field 3 depends on the determinant (field 1), as well as on the dependent (field 2)	
the type of dependency between field 1 and field 3 is said to be transitive dependency. It is
shown in Figure 5.5.

For an example, in Table 5.4, the field city_code determines team_ID, and City_code de-
termines team_name, but also team_ID determines team_name. Hence, there exists transitive
dependency between the city_code and team_name fields.

Pictorially, it can be represented as shown in Figure 5.6.

Multi-valued Dependency: It is explained in Section 5.8.

Join Dependency: It is explained in Section 5.9.

CH_5_Normalization_Final.indd 87 2/28/2014 12:46:52 PM

88  |  Chapter 5

City_code Team_ID

Team_name

City_code fully functionally determines team_ID,
city_code fully functionally determines team
team_name, team_ID fully functionally
determines team_name which implies that
city_code transitively determines team_name

City_code Team_ID and team_ID Team_name. Therefore, city_code team_name

Figure 5.6  |  Transitive Dependency between City_Code and Team_Name.

5.4  | F irst Normal Form
When we are given some problem description, then first we need to identify the fields along
with the values from the Table. In case, when Table has been given directly, then we have to
check whether it is in first normal form or not. Consider Table 5.5 which describes data related
to IPL cricket matches.

First Normal Form/1NF Definition: The relation (Table) is said to be in first normal form,
if and only if, all the fields of the Table contain atomic value in a record.

In other words, the Table is said to be in 1NF, if and only if, none of the attributes is a
composite attribute. In the given Table, the attributes (i.e., player_name and coach_name)
are composite attributes because player_name can be further divided into player_firstname
and player_lastname. Likewise, coach_name can be further divided into coach_fname and
coach_lname. All other attributes are simple attributes (i.e., values in the fields are atomic). As
the Table 5.5 contains two composite attributes, so it is not in 1NF.

To convert the IPL Table in 1NF, player_name should be divided into two fields, player_fname
and player_lname. Similarly, coach_name should be divided into two fields, coach_fname and
coach_lname. After converting, composite attributes into simple attributes,Table 5.6 does not
contain any composite attribute. Therefore, it is in first normal form.

After converting the Table into 1NF, it should be converted into 2NF.

5.5  | S econd normal form
Second Normal Form/2NF Definition: The relation (Table) is said to be in second normal
form, if and only if:

	 1.	 It is in 1NF.
	 2.	 All the attributes are fully functionally dependent on the primary key.
	 	 or
	 3.	 None of the attribute is partially dependent on the primary key.

To check whether the Table is in 2NF or not, first identify the primary key of a Table, and sec-
ond, list out all the dependencies.

In Table 5.6, the primary key is a combination of fields (team_ID, player_ID) as it identifies
each record of a Table uniquely.

CH_5_Normalization_Final.indd 88 2/28/2014 12:46:52 PM

Ta
b

le
 5

.5
 |
 I
PL

C
it

y_
C

o
d

e
C

it
y_

N
am

e
Te

am
_

ID
Te

am
_

N
am

e
Pl

ay
er

_
ID

Pl
ay

er
_

N
am

e
C

it
iz

en
_

C
o

u
n

tr
y

ID

C
it

iz
en

_
C

o
u

n
tr

y
N

am
e

R
o

le
O

w
n

er
_

ID
O

w
n

er
_N

am
e

C
o

ac
h

_
ID

C
o

ac
h

_
N

am
e

W
eb

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P1
G

au
ta

m

G
am

b
h

ir
IN

D
In

d
ia

B
at

sm
an

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P2
B

re
tt

 L
ee

A
U

S
A

u
st

ra
lia

B

o
w

le
r

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P3
B

ra
d

H

ad
d

in
A

U
S

A
u

st
ra

lia

W
ic

ke
t

ke
ep

er
A

1
K

n
ig

h
t

R
id

er
s

Sp
o

rt
s

Pr
iv

at
e

Lt
d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P4
Eo

in

M
o

rg
an

EN
G

En
g

la
n

d

B
at

sm
an

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P5
M

ah
en

d
ra

Si

n
h

 D
h

o
n

i
IN

D
In

d
ia

W
ic

ke
t

ke
ep

er
A

2
Th

e
In

d
ia

C

em
en

ts
 L

td
C

2
St

ep
h

en

Fl
em

in
g

w
w

w
.c

h
en

n
ai

su

p
er

ki
n

g
s.

co
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P6
Su

re
sh

R

ai
n

a
IN

D
In

d
ia

B
at

sm
an

A
2

Th
e

In
d

ia

C
em

en
ts

 L
td

C
2

St
ep

h
en

Fl

em
in

g
w

w
w

.c
h

en
n

ai

su
p

er
ki

n
g

s.
co

m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P7
R

av
in

d
ra

Ja

d
ej

a
IN

D
In

d
ia

A
ll-

ro
u

n
d

er
A

2
Th

e
In

d
ia

C

em
en

ts
 L

td
C

2
St

ep
h

en

Fl
em

in
g

w
w

w
.c

h
en

n
ai

su

p
er

ki
n

g
s.

co
m

M
B

M
u

m
b

ai
M

I
M

u
m

b
ai

In

d
ia

n
P8

Sa
ch

in

Te
n

d
u

lk
ar

IN
D

In
d

ia
B

at
sm

an
A

3
In

d
ia

W
in

Sp

o
rt

s
Pv

t
Lt

d
C

3
Jo

h
n

W

ri
g

h
t

w
w

w
.m

u
m

b
ai

in

d
ia

n
s.

co
m

M
B

M
u

m
b

ai
M

I
M

u
m

b
ai

In

d
ia

n
P9

R
o

h
it

Sh

ar
m

a
IN

D
In

d
ia

B
at

sm
an

A
3

In
d

ia
W

in

Sp
o

rt
s

Pv
t

Lt
d

C
3

Jo
h

n

W
ri

g
h

t
w

w
w

.m
u

m
b

ai

in
d

ia
n

s.
co

m

M
B

M
u

m
b

ai
M

I
M

u
m

b
ai

In

d
ia

n
P1

0
La

si
th

M

al
in

g
a

SL
Sr

i L
an

ka
B

o
w

le
r

A
3

In
d

ia
W

in

Sp
o

rt
s

Pv
t

Lt
d

C
3

Jo
h

n

W
ri

g
h

t
w

w
w

.m
u

m
b

ai
-

in
d

ia
n

s.
co

m

89

CH_5_Normalization_Final.indd 89 2/28/2014 12:46:52 PM

www.kkr.com
www.kkr.com
www.kkr.com
www.kkr.com
www.chennaisuperkings.com
www.chennaisuperkings.com
www.chennaisuperkings.com
www.mumbaiindians.com
www.mumbaiindians.com
www.mumbaiindians.com

90

Ta
b

le
 5

.6
 |
 I
PL

 in
 F
ir
st
 N

or
m
al
 F
or
m

C
it

y_
C

o
d

e
C

it
y_

N
am

e
Te

am
_

ID
Te

am
_

N
am

e
Pl

ay
er

_
ID

Pl
ay

er
_

fn
am

e
Pl

ay
er

_
ln

am
e

C
it

iz
en

_
C

o
u

n
tr

y
ID

C
it

iz
en

_
C

o
u

n
tr

y
N

am
e

R
o

le
O

w
n

er
_

ID
O

w
n

er
_N

am
e

C
o

ac
h

_
ID

C
o

ac
h

_
fn

am
e

C
o

ac
h

_
ln

am
e

W
eb

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P1
G

au
ta

m

G
am

b
h

ir
IN

D
In

d
ia

B
at

sm
an

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P2
B

re
tt

Le

e
A

U
S

A
u

st
ra

lia

B
o

w
le

r
A

1
K

n
ig

h
t

R
id

er
s

Sp
o

rt
s

Pr
iv

at
e

Lt
d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P3
B

ra
d

H

ad
d

in
A

U
S

A
u

st
ra

lia

W
ic

ke
t

ke
ep

er
A

1
K

n
ig

h
t

R
id

er
s

Sp
o

rt
s

Pr
iv

at
e

Lt
d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P4
Eo

in

M
o

rg
an

EN
G

En
g

la
n

d

B
at

sm
an

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P3
M

ah
en

-
d

ra
si

n
h

D

h
o

n
i

IN
D

In
d

ia
W

ic
ke

t
ke

ep
er

A
2

Th
e

In
d

ia

C
em

en
ts

 L
td

C
2

St
ep

h
en

Fl

em
in

g
w

w
w

.c
h

en
n

ai

su
p

er
ki

n
g

s
.c

o
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P5
Su

re
sh

R

ai
n

a
IN

D
In

d
ia

B
at

sm
an

A
2

Th
e

In
d

ia

C
em

en
ts

 L
td

C
2

St
ep

h
en

Fl

em
in

g
w

w
w

.c
h

en
n

ai

su
p

er
ki

n
g

s
.c

o
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P7
R

av
in

d
ra

Ja

d
ej

a
IN

D
In

d
ia

A
ll-

ro
u

n
d

er
A

2
Th

e
In

d
ia

C

em
en

ts
 L

td
C

2
St

ep
h

en

Fl
em

in
g

w
w

w
.c

h
en

n
ai

su

p
er

ki
n

g
s

.c
o

m
M

B
M

u
m

b
ai

M
I

M
u

m
b

ai

In
d

ia
n

P1
Sa

ch
in

Te

n
d

u
lk

ar
IN

D
In

d
ia

B
at

sm
an

A
3

In
d

ia
W

in

Sp
o

rt
s

Pv
t

Lt
d

C
3

Jo
h

n

W
ri

g
h

t
w

w
w

.m
u

m
b

ai

in
d

ia
n

s.
co

m
M

B
M

u
m

b
ai

M
I

M
u

m
b

ai

In
d

ia
n

P2
R

o
h

it

Sh
ar

m
a

IN
D

In
d

ia
B

at
sm

an
A

3
In

d
ia

W
in

Sp

o
rt

s
Pv

t
Lt

d
C

3
Jo

h
n

W

ri
g

h
t

w
w

w
.m

u
m

b
ai

in

d
ia

n
s.

co
m

M
B

M
u

m
b

ai
M

I
M

u
m

b
ai

In

d
ia

n
P1

0
La

si
th

M

al
in

g
a

SL
Sr

i L
an

ka
B

o
w

le
r

A
3

In
d

ia
W

in

Sp
o

rt
s

Pv
t

Lt
d

C
3

Jo
h

n

W
ri

g
h

t
w

w
w

.m
u

m
b

ai

in
d

ia
n

s.
co

m

CH_5_Normalization_Final.indd 90 2/28/2014 12:46:52 PM

www.kkr.com
www.kkr.com
www.kkr.com
www.kkr.com
www.chennaisuperkings.com
www.chennaisuperkings.com
www.chennaisuperkings.com
www.mumbaiindians.com
www.mumbaiindians.com
www.mumbaiindians.com

Normalization  |  91

Table 5.6 contains the following functional dependencies:

 (team_ID, player_ID) city_code
 (team_ID, player_ID) city_name
 (team_ID, player_ID) team_name
 (team_ID, player_ID) player_fname
 (team_ID, player_ID) player_lname
 (team_ID, player_ID) citizen_countryid

(team_ID, player_ID) citizen_countryname
 (team_ID, player_ID) role
 (team_ID, player_ID) owner_ID
 (team_ID, player_ID) owner_name
 (team_ID, player_ID) coach_ID
 (team_ID, player_ID) coach_fname
 (team_ID, player_ID) coach_lname
 (team_ID, player_ID) web

The above dependencies can also be written as follows:

(team_ID, player_ID) city_code, city_name, team_name,
 player_fname, player_lname,
 citizen_countryid,
 citizen_countryname, role, owner_ID,
 owner_name, coach_ID,
 coach_fname, coach_lname, web

For the above dependencies, a dependency diagram can be shown as given in Figure 5.7.

Team_ID

Player_ID

RoleCity_code

City_name

Team_name

Citizen_countryname

Citizen_country ID

Player_lname

Player_fname

Owner_ID

Owner_name

Coach_ID

Coach_fname

Coach_lname

Web

Figure 5.7  |  Functional dependencies of IPL Table as Given in Table 5.6.

CH_5_Normalization_Final.indd 91 2/28/2014 12:46:52 PM

92  |  Chapter 5

There exist the following partial dependencies in Table 5.6.

 team_ID city_code
 team_ID city_name
 team_ID team_name
 team_ID owner_ID
 team_ID owner_name
 team_ID coach_ID

 team_ID coach_fname
 team_ID coach_lname

 team_ID web

The above partial dependencies can be denoted as given in Figure 5.8.
To remove partial dependencies from the Table, remove all the fields which are partially de-

pendent on a component of primary key (do not remove the component on which other fields
are partially dependent). Add all these removed fields along with the field on which they depend
into a new Table and give that Table some meaningful name. In other words, add all the fields
which are there on the left and right side of the partial dependency into one new Table. The field
which is determinant (on left side of arrow) in the partial dependency will become a primary
key of the new Table.

For Table 5.6, we have listed the following partial dependencies:

 team_ID city_code, city_name, team_name, owner_id,
 owner_name, coach_ID, coach_fname,
 coach_lname, web

Therefore, we are required to create a new Table, say TEAM.
TEAM Table will have attributes team_ID, city_code, city_name, team_name, owner_ID,

owner_name, coach_ID, coach_fname, coach_lname and web. team_ID (which is on the left
side of the arrow in partial dependency) will become primary key of Table TEAM. However,
team_ID will remain as it is in the original IPL Table.

Figure 5.8  |  Partial dependencies of IPL Table as shown in Table 5.6.

Team_ID

Player_ID

City_code

City_name

Team_name
Owner_ID

Owner_name

Coach_ID

Coach_fname

Coach_lname

Web

CH_5_Normalization_Final.indd 92 2/28/2014 12:46:52 PM

Normalization  |  93

Now, after decomposition of Table IPL, we will have two Tables namely, IPL and TEAM
as follows:
		 IPL (team_ID, player_ID, player_fname, player_lname, role, citizen_countryid,	

citizen_countryname)
		 TEAM (team_ID, city_code, city_name, team_name, owner_ID, owner_name, coach_

ID, coach_fname, coach_lname, web)

The fields which are underlined are the primary keys of the respective Tables. Table 5.7 shows
IPL Table after decomposition, and Table 5.8 shows TEAM Table.

The duplicate rows will be deleted from all the Tables, and hence the redundancy (duplica-
tion of data) will be reduced. After the decomposition, again we need to check whether there
exists any partial dependency in any of the Table. If yes, then it should be removed by further
decomposition. This process must be continued until all the Tables fall in 2NF.

After decomposition, both the Tables IPL and TEAM are in 2NF. TEAM has only one field
as a primary key. So, there is no question of partial dependency (Remember the rule that partial
dependency may exists if primary key is a composite key) in this Table.

In the IPL Table primary key is a composite key which contains combination of team_ID and
player_ID. But the combination fully functionally determines all the other fields. Therefore,
also in this Table, no partial dependencies exist.

Hence IPL and TEAM both the Tables are in 2NF.

Table 5.7  |  IPL Which is in 2NF

Team_
ID

Player_
ID Player_fname Player_lname

Citizen_
Country ID

Citizen_
Country Name Role

KKR P1 Gautam Gambhir IND India Batsman
KKR P2 Brett Lee AUS Australia Bowler
KKR P3 Brad Haddin AUS Australia Wicket keeper
KKR P4 Eoin Morgan ENG England Batsman
CSR P3 Mahendrasinh Dhoni IND India Wicket keeper
CSR P5 Suresh Raina IND India Batsman
CSR P7 Ravindra Jadeja IND India All-rounder
MI P1 Sachin Tendulkar IND India Batsman
MI P2 Rohit Sharma IND India Batsman
MI P10 Lasith Malinga SL Sri Lanka Bowler

Table 5.8  |  TEAM Which is in 2NF

City_
Code

City_
Name

Team_
ID

Team_
Name

Owner_
ID Owner_Name Coach_ID

Coach_
fname

Coach_
lname Web

KK Kolkata KKR Kolkata
Knight
Riders

A1 Knight Riders
Sports Private
Ltd

C1 Trevor Bayliss www.kkr.com

CH Chennai CSR Chennai
Super
Kings

A2 The India
Cements Ltd

C2 Stephen Fleming www.chennai
superkings.com

MB Mumbai MI Mumbai
Indian

A3 IndiaWin Sports
Pvt Ltd

C3 John Wright www.mumbai
indians.com

CH_5_Normalization_Final.indd 93 2/28/2014 12:46:52 PM

www.kkr.com
www.chennaisuperkings.com
www.mumbaiindians.com

94  |  Chapter 5

5.6  | T hird Normal Form
Third Normal Form/3NF Definition: The relation (Table) is said to be in third normal form,
if and only if:

  1.  It is in 2NF.
  2.  All the attributes are non-transitively dependent on the primary key. Or,
  3.  None of the attribute is transitively dependent on the primary key.

To check whether the Table is in 3NF or not, first, list all the transitive dependencies. The fol-
lowing transitive dependencies exists in the IPL Table:

 (team_ID, player_ID) citizen_countryid
 citizen_countryid citizen_countryname

(team_ID, player_ID) citizen_countryname

The transitive dependency of the IPL Table is shown in Figure 5.9.

The following transitive dependencies exists in the TEAM Table:

  1.  team_ID city_code, city_code city_name
   Which implies team_ID city_name
  2.  team_ID owner_ID, owner_ID owner_name
   Which implies team_ID owner_name
  3.  team_ID coach_ID, coach_ID coach_fname
   Which implies team_ID coach_fname
  4.  team_ID coach_ID, coach_ID coach_lname
   Which implies team_ID coach_lname
The transitive dependency of the TEAM Table is shown in Figure 5.10.

Citizen_countryid

Citizen_countryname

Team_ID

Player_ID

Figure 5.9  |  Transitive dependency of the IPL Table.

Team_ID

City_code City_name

Owner_ID

Owner_name

Coach_ID

Coach_fname

Coach_lname

Figure 5.10  |  Transitive dependency of the TEAM Table.

CH_5_Normalization_Final.indd 94 2/28/2014 12:46:53 PM

Normalization  |  95

To remove transitive dependency from the Table, do the following:

	 1.	 Decompose the Table and create a new Table which will contain the field because of
which transitive dependency exists (i.e., the field other than primary key which also de-
termines the third field). Do not remove that intermediate field from the original Table.

	 2.	 Remove the field which transitively depends on the primary key and add that field(s) into
the new Table.

Consider the transitive dependency of the IPL Table. The field, citizen_countryid, is the field
which also determines citizen_countryname field besides the primary key (teamid, player_ID).
Therefore, the IPL Table will be decomposed as following two Tables. Citizen_countryid will
be added in a new Table, say CITIZEN_COUNTRY along with the field citizen_countryname.
But citizen_countryid will remain as it is in the IPL Table also. In a new Table, CITIZEN_
COUNTRY, citizen_countryID will become a primary key.

		 CITIZEN_COUNTRY (citizen_countryid, citizen_country name)
		 IPL (team_ID, player_ID, player_fname, player_lname, role, citizen_countryid)

Similarly, from TEAM Table, when we remove transitive dependencies, it will be decomposed
as TEAM, CITY, OWNER and COACH Tables.

		 TEAM (team_ID, city_code, team_name, owner_ID, coach_ID, web)
		 CITY (city_code, city_name)
		 OWNER (owner_ID, owner_name)
		 COACH (coach_ID, coach_fname, coach_lname)

After removal of transitive dependencies, now we will have 6 IPL Tables, these are as: CITI-
ZEN_COUNTRY, TEAM, CITY, OWNER and COACH. For all these Tables, again, check
whether any one of them contains transitive dependencies? If yes, then remove it by applying
the rules given above until all the transitive dependencies are removed.

There are no transitive dependencies exists in any of the six Tables, IPL, CITIZEN_COUN-
TRY, TEAM, CITY, OWNER and COACH. Therefore, now they are in 3NF. Tables 5.9–5.14
shows the IPL, CITIZEN_COUNTRY, TEAM, CITY, OWNER and COACH Tables which are
all in 3NF. They will not contain any redundant records.

Table 5.9  |  IPL Which is in 3NF

Team_ID Player_ID Player_fname Player_lname Citizen_Country ID Role

KKR P1 Gautam Gambhir IND Batsman
KKR P2 Brett Lee AUS Bowler

KKR P3 Brad Haddin AUS Wicket keeper

KKR P4 Eoin Morgan ENG Batsman

CSR P3 Mahendrasinh Dhoni IND Wicket keeper

CSR P5 Suresh Raina IND Batsman

CSR P7 Ravindra Jadeja IND All-rounder

MI P1 Sachin Tendulkar IND Batsman

MI P2 Rohit Sharma IND Batsman
MI P10 Lasith Malinga SL Bowler

CH_5_Normalization_Final.indd 95 2/28/2014 12:46:53 PM

96  |  Chapter 5

Table 5.10  |  CITIZEN_COUNTRY Which is in 3NF

Citizen_Country ID Citizen_Country Name

IND India

AUS Australia

ENG England

SL Sri Lanka

Table 5.11  |  TEAM Which is in 3NF

City_Code Team_ID Team_Name Owner_ID Coach_ID Web

KK KKR Kolkata Knight
Riders

A1 C1 www.kkr.com

CH CSR Chennai Super
Kings

A2 C2 www.chennaisuperkings
.com

MB MI Mumbai Indian A3 C3 www.mumbaiindians
.com

Table 5.12  |  CITY Which is in 3NF

City_Code City_Name

KK Kolkata

CH Chennai

MB Mumbai

Table 5.13  |  OWNER Which is in 3NF

Owner_ID Owner_Name

A1 Knight Riders Sports Private Ltd

A2 The India Cements Ltd

A3 India Win Sports Pvt Ltd

Table 5.14  |  COACH Which is in 3NF

Coach_ID Coach_fname Coach_lname

C1 Trevor Bayliss

C2 Stephen Fleming

C3 John Wright

5.7  | Bo yce–Codd Normal Form
Boyce–Codd Normal Form (BCNF) is a special type of 3NF which was propounded by	
R. F. Boyce and E. F. Codd.

BCNF Definition: The relation (Table) is said to be in BCNF, if and only if:

	 1.	 It is in 3NF.
	 2.	 Every determinant (field/combination of fields) of the Table should be a candidate key.

CH_5_Normalization_Final.indd 96 2/28/2014 12:46:53 PM

www.kkr.com
www.chennaisuperkings.com
www.mumbaiindians.com

Normalization  |  97

Consider the relation IPL as given in the Table 5.15; where there are two determinants:

	 1.	 (team_ID,player_ID)
	 2.	 (captain_name, player_ID)

Both the determinants are candidate keys. All the other attributes are fully functionally depen-
dent on both the candidate keys, i.e, there does not exist any partial dependency. Table 5.15 is
therefore, in 2NF. Also, there does not exist any transitive dependency in the Table, and hence
the IPL Table is in 3NF. But, also there exists two more determinants team _ID and captain_ID
(as shown below) which determines each other.

 team_ID captain_name and
captain_name team_ID

team_ID and captain_name are determinants, but niether team_ID nor captain_name is a candi-
date key (as both contains duplicate values). Therefore, Table 5.15 is not in BCNF. To convert
it into BCNF, we should keep both the determinants, team_ID and captain_name, in one Table
and from the original Table, remove any of the field, either team_ID, or captain_name. Table
5.15 should be decomposed as follows:

		 IPL (team_ID, player_ID, player_fname, player_lname, citizen_countryID, role)
		 CAPTAIN (captain_name, team_ID)

OR
		 IPL (captain_name, player_ID, player_fname, player_lname, citizen_countryid, role)
		 CAPTAIN (team_ID, captain_name)

Now, both the above decompositions are in BCNF, because every determinant of both the	
Tables in both the decomposition is a candidate key. In the first decomposition, the IPL Table
has only one determinant (team_ID, player_ID) which is a candidate key and the Captain Table
has two determinants, team_ID and captain_ID; and both are candidate keys. Similarly, for

Table 5.15  |  Captain is in 3NF, but Not in BCNF

Team_ID Player_ID Captain_Name Player_fname
Player_
lname

Citizen_
Country ID Role

KKR P1 G. Gambhir Gautam Gambhir IND Batsman

KKR P2 G. Gambhir Brett Lee AUS Bowler

KKR P3 G. Gambhir Brad Haddin AUS Wicket
keeper

KKR P4 G. Gambhir Eoin Morgan ENG Batsman

CSR P3 M. S. Dhoni Mahendrasinh Dhoni IND Wicket
keeper

CSR P5 M. S. Dhoni Suresh Raina IND Batsman

CSR P7 M. S. Dhoni Ravindra Jadeja IND All-rounder

MI P1 R. Sharma Sachin Tendulkar IND Batsman

MI P2 R. Sharma Rohit Sharma IND Batsman

MI P10 R. Sharma Lasith Malinga SL Bowler

CH_5_Normalization_Final.indd 97 2/28/2014 12:46:53 PM

98  |  Chapter 5

the second decomposition, the IPL Table has only one determinant (captain_name, player_ID)
which is a candidate key and the Captain Table has two determinants, team_ID and captain_ID;
and both are candidate keys.

5.8  | M ulti-valued Dependency
For the given relation R, consider field 1, field 2 and field 3 as attributes of R. Then, for each
record of R, there exist multi-valued dependency between field 1 and field 2 known as field 1
multi-determines field 2 (i.e., field 2 is multi-dependent on field1), if and only if, the set of field
2 values depends only on the field 1 value and is independent of field 3 values for matching pair
of (field 1, field 3). In other words, we can say that in relation R, for fields (field 1, field 2, field
3), the multi-valued dependency field 1 multi-determines field 2 exists, if and only if, the multi-
valued dependency field 1 multi-determines field 3 also exists. The concept of multi-valued de-
pendency was proposed by Ronald Fagin. In notations, multi-valued dependency is denoted as:

field 1 field 2
field 1 field 3

Definition of multi-valued dependency: Consider a relation with A, B and C—subsets of	
attributes of a relation. Then, B is said to be multi-dependent on A, if and only if, in each record
(tuple) of a relation, the set of B values which match with a given (A, C) value pair depends only
on the value of A and is completely independent of value of C.

Consider the as data given in Table 5.16 (MOBILE), which represents company-wise mobile
types and their features.

Mobile phone companies offer many types of handsets that comes fitted with multiple fea-
tures. In the MOBILE Table, there exists the following multi-valued dependencies:

●● Model_type and Features are multi-dependent on Company_name, but Model_type and
Features are ‘ independent’, or ‘orthogonal’ of each other.

●● Multi-valued dependency is a special form of functional dependency. In a functional
dependency, the dependent attribute is a single-value attribute: while in multi-valued de-
pendency, the dependent attribute is a multi-valued attribute.

●● Ronald Fagin propounded a fourth normal form on the basis of multi-valued dependency.

Table 5.16  |  Mobile Table with Multiple Values of Model Type and Features

Company_Name Model_Type Features

SAMSUNG •  Smart phone
•  Tablet
•  Touch Phones

•  Bluetooth
•  Android OS
•  7 MP Camera

NOKIA •  Smart phone
•  Multimedia Phone
•  Dual SIM

•  Bluetooth
•  Windows 8.0 OS
•  4GB memory card

 Company_name Model_type
Company_name Features

CH_5_Normalization_Final.indd 98 2/28/2014 12:46:53 PM

Normalization  |  99

Fourth normal form definition: The relation (Table) is said to be in 4NF, if and only if:

	 1.  It is in BCNF.
	 2. � For the existence of nontrivial (nontrivial means the attribute on the right side of the

arrow is not a subset of left hand side attribute) multi-valued dependency between	
attributes A→→B in a relation, all other attributes of relation should also functionally
dependent on A.

Or
	 2.  Every nontrivial MVD in a relation is implied by the candidate key(s) of relation.

Or
	 4. � Remove multi-valued dependency from the relation which are not also functional	

dependencies.

The MOBILE Table can be converted as shown in Table 5.17, which contains combination of
all the three attributes as primary key, but there are some problems, such as, if we want to add
new model_type for the company SAMSUNG, it is required to add three new records one for
each feature. This problem occurs because model_type and features are independent.

To resolve this problem, the MOBILE Table should be decomposed into two Tables as	
follows:

		 MOB_TYPE (company_name, model_type)
		 MOB_FEAT (company_name, features)

Now, the Tables MOB_TYPE and MOB_FEAT are in 4NF, as they do not contain any multi-
valued dependency.

Table 5.17  |  MOBILE Table

Company_Name Model_Type Features

SAMSUNG Smart phone Bluetooth
SAMSUNG Smart phone Android OS
SAMSUNG Smart phone 7 MP Camera

SAMSUNG Tablet Bluetooth
SAMSUNG Tablet Android OS
SAMSUNG Tablet 7 MP Camera
SAMSUNG Touch Phones Bluetooth
SAMSUNG Touch Phones Android OS
SAMSUNG Touch Phones 7 MP Camera
NOKIA Smart phone Bluetooth
NOKIA Smart phone Windows 8.0 OS
NOKIA Smart phone 4GB memory card
NOKIA Multimedia Phone Bluetooth
NOKIA Multimedia Phone Windows 8.0 OS
NOKIA Multimedia Phone 4GB memory card
NOKIA Dual SIM Bluetooth
NOKIA Dual SIM Windows 8.0 OS
NOKIA Dual SIM 4GB memory card

CH_5_Normalization_Final.indd 99 2/28/2014 12:46:53 PM

100  |  Chapter 5

5.9  | Jo in Dependency
Join dependency is a generalization of multi-valued dependency.

Definition of Join dependency: Consider any relation with projections P
1
, P

2
, …, P

n
. There	

exists join dependency (denoted as *{P
1
, P

2
, …, P

n
}), if and only if, value of every record(tuple)

of a relation is the join of its projections on P1, P2, …, P
n
. From the Fagin’s definition of multi-

valued dependency, we can say that the join dependency in a relation with attributes A, B and
C; *{AB, AC} holds, if and only if, it satisfies the multi-valued dependencies A →→ B and A
→→ C.

Fifth Normal Form Definition: The relation(Table) is said to be in 5NF, if and only if:

	 1.	 It is in 4NF.
	 2.	 Every nontrivial join dependency in a relation is implied by the candidate key(s) of	

relation.
Or

	 	 Each projection (decomposition) of a relation should contain candidate key(s) of a	
relation.

Or
	 	 Each projection of the relation should be based only on the candidate key(s).

The fifth normal form is also known as projection-join normal form (PJNF). Consider the
relation (Table) as given in Table 5.18. It describes which faculty takes which subject in which
class.

Table 5.18  |  TEACHING

Faculty_ID Subject_ID Class_ID

SN FOP FY-I
SN FOP FY-II
SN APCL FY-I
SN APCL FY-II
SN PCL FY-I
SN PCL FY-II
HT SC SY-I
HT SC SY-II
HT MFCS SY-I
HT MFCS SY-II
HD IHTML FY-I
HD IHTML FY-II
HD DHTML FY-I
HD DHTML FY-II
HD AJ TY-I
HD AJ TY-II
KG OOP SY-I
KG OOP SY-II
KG OOMUL SY-I
KG OOMUL SY-II

CH_5_Normalization_Final.indd 100 2/28/2014 12:46:53 PM

Normalization  |  101

Table 5.18 shows the details of the faculties teaching various subjects in different classes. It
has a Candidate key which is a combination of all the three attributes. The TEACHING Table
is in 4NF because it has no nontrivial multi-valued dependency. This Table is not in 5NF
because it contains join dependency which is not implied by its candidate key (combination
offaculty_ID, subject_ID and class_ID). To convert this Table into 5NF, it should be further
decomposed as 3 projections, namely FAC_SUB, SUB_CLASS and CLASS_FAC. These three
Tables would contain the following attributes:

		 FAC_SUB (faculty_ID, subject_ID)
		 SUB_CLASS (subject_ID, class_ID)
		 CLASS_FAC (class_ID, faculty_ID)

The 3 decompositions FAC_SUB, SUB_CLASS and CLASS_FAC are shown in Tables 5.19,
5.20 and 5.21 respectively.

The 3 decompositions FAC_SUB, SUB_CLASS and CLASS_FAC are in 5NF.

5.10  | Lo ssless and Lossy Decompositions
During the normalization process, when we decompose a Table into different decompositions
(projections), care should be taken so that original information should not be lost when we,
again, join those decompositions.

When we decompose the Table and, if original information will not be lost, the decomposi-
tion is said to be lossless decomposition. Lossless decomposition is also known as nonloss
decomposition. The concept was given by Heath.

When we decompose a Table and, if original information will be lost when we, again, join the
decompositions; the type of decomposition is said to be lossy decomposition.

The nonloss decomposition can be achieved by preserving the functional dependencies in the
decompositions.

Table 5.19  |  FAC_SUB

Faculty_ID Subject_ID

SN FOP

SN APCL

SN PCL

HT SC

HT MFCS

HD IHTML

HD DHTML

HD AJ

KG OOP

KG OOMUL

CH_5_Normalization_Final.indd 101 2/28/2014 12:46:53 PM

102  |  Chapter 5

Definition of Nonloss Decomposition: If R is a relation, and P
1
, P

2
, …, P

n
 are decompositions

(Projections) of R which are nonloss decompositions if join of P
1
, P

2
, …, P

n
 results into original

relation R. We cannot omit any of the decompositions (P
1
, P

2
, …, P

n
) while joining them as it

will result into incorrect information.

5.11  | No rmalizing Tables
We have already seen the normalization of Tables and its importance in database design. Before
we start learning normalization, we should know all the types of dependency in detail. The first
normal form gives a Table with atomic fields. The second normal form removes partial depen-
dencies from the Table(s). The third normal form removes transitive dependencies from the

Table 5.20  |  SUB_CLASS

Subject_ID Class_ID

FOP FY-I

FOP FY-II

APCL FY-I

APCL FY-II

PCL FY-I

PCL FY-II

SC SY-I

SC SY-II

MFCS SY-I

MFCS SY-II

IHTML FY-I

IHTML FY-II

DHTML FY-I

DHTML FY-II

AJ TY-I

AJ TY-II

OOP SY-I

OOP SY-II

OOMUL SY-I

OOMUL SY-II

Table 5.21  |  CLASS_FAC

Faculty_ID Class_ID

SN FY-I

SN FY-II

HT SY-I

HT SY-II

HD FY-I

HD FY-II

HD TY-I

HD TY-II

KG SY-I

KG SY-II

CH_5_Normalization_Final.indd 102 2/28/2014 12:46:53 PM

Normalization  |  103

Table(s). Advanced form of 3NF is BCNF which ensures that all the determinants are candidate
keys. The fourth normal form removes multi-valued dependencies from the Table which are not
functional dependencies. The fifth normal form ensures that every join dependency is implied
by the candidate key of a Table. During normalization process, when we decompose the Table,
all the functional dependencies should be preserved into decompositions to make it sure that
the decompositions are nonloss decompositions. During the normalization process, if we found
primary key is a combination of too many fields and difficult to handle, then we can use sur-
rogate key (an artificial primary key which contains positive integer’s values and mostly auto-
generated) as a primary key instead of an actual primary key. Also, if there are some derived
fields in the Table, it depends on the database designer whether to store its value or not. Beside
five normal forms which are based on functional dependency, there are some more normal
forms proposed, such as domain-key normal form (DK/NF), ‘PSJU/NF or Restriction-Union
normal form’, sixth normal form, etc.

Domain-Key Normal Form is based on domain constraints and key constraints. Domain con-
straint means the constraint which is put up on the values of attributes and key constraint is a
constraint which is applied on the key attributes of a Table. R. Fagin proposed this normal form.
The relation is said to be in DKNF, if and only if, it is in 5NF and every constraint is derived
automatically from the enforcement of domain constraints and key constraints.

Normal forms 1NF to 5NF are achieved by decomposing a Table into its projections (vertical
subset of Table, i.e., decomposition which is based on columns) and ensuring that when we will
again join these decomposition, we will get back the original Table with all the information. It
means that 1NF to 5NF are based on ‘Projection’ and ‘Join’ operators. Is it possible to decom-
pose the Table by taking its horizontal subset (based on the attribute’s specific value) which is
called, ‘split/restriction’ and ‘recomposition’ (join the decomposition again) by doing union of
those restrictions? For an example, let WORKER is a Table which contains details of workers
of a factory with one field ‘gender’. By applying PSJU/NF (projection split join union/normal
form), all the male workers can be kept in one Table and the female workers in the other one.
PSJU/NF may result in a poor database design.

Sixth normal form is proposed for temporal databases. The database which stores historical
data is known as temporal database.

Many other normal forms are also proposed, such as NNF (Nested Normal Form) by Z.
Meral Oasoyoglu and Li-yan Yuan, Normal form for XML documents by Marcelo Arenas and
Leon id Libkin, ETNF (Essential Tuple Normal Form) by H. Darwen, C. J. Date and R. Fagin.
ETNF lies between 4NF and 5NF. ETNF is for preventing or eliminating redundant tuples.

5.12  | E xamples
Example 1: Normalize Table 5.22 up to its maximum possible normal form.

Table 5.22 is not in 1NF, because the field custadd can be decomposed into addline 1,	
addline 2, city and pincode. When we decompose this field, we will get Table 5.23 which is in
1NF.

Table 5.23 (i.e., PERIODICALS) has a primary key which is a combination of fields bill no
and peri_ID. It contains the following functional dependencies:

CH_5_Normalization_Final.indd 103 2/28/2014 12:46:53 PM

Ta
b

le
 5

.2
2 

| 
PE

R
IO

D
IC

A
L
S

B
ill

 N
o

B
ill

 D
at

e
C

u
st

 ID
C

u
st

 N
am

e
C

u
st

 A
d

d
Pe

ri
_ID

Pe

ri
_D

es
c

Q
ty

Pr
ic

e
To

ta
l_

p
r

D
el

iv
er

y_
C

h
ar

g
es

B
ill

_T
o

ta
l

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
11

Ti
m

es
 o

f
In

d
ia

30
2.

50
75

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
15

D
iv

ya
 B

h
as

ka
r

30
3.

00
90

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
23

Ec
o

n
o

m
ic

 T
im

es
21

3.
00

63
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
 3

M
in

t
26

3.
00

78
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
 5

1
C

h
am

p
ak

1
20

.0
0

20
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
33

En
tr

ep
re

n
eu

r
1

10
0.

00
10

0.
00

10
.0

0
43

6.
00

 5

4-
5-

20
13

3
M

. N
. D

av
e

11
, A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
11

Ti
m

es
 o

f
In

d
ia

30
2.

50
75

.0
0

10
.0

0
17

5.
00

 5

4-
5-

20
13

3
M

. N
. D

av
e

11
, A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
15

D
iv

ya
 B

h
as

ka
r

30
3.

00
90

.0
0

10
.0

0
17

5.
00

14

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
12

G
u

ja
ra

t
Sa

m
ac

h
ar

28
3.

00
84

.0
0

10
.0

0
20

4.
00

14

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
11

Ti
m

es
 o

f
In

d
ia

30
2.

50
75

.0
0

10
.0

0
20

4.
00

14

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
 7

O
p

en
1

35
.0

0
35

.0
0

10
.0

0
20

4.
00

104

CH_5_Normalization_Final.indd 104 2/28/2014 12:46:53 PM

Ta
b

le
 5

.2
3 

| 
PE

R
IO

D
IC

A
L
S
in
 1
N
F

B
ill

N

o
B

ill
 D

at
e

C
u

st

ID
C

u
st

N

am
e

A
d

d
lin

e1
A

d
d

lin
e2

C
it

y
Pi

n
co

d
e

Pe
ri

_
ID

Pe
ri

_D
es

c
Q

ty
Pr

ic
e

To
ta

l_

p
r

D
el

iv
er

y_
C

h
ar

g
es

B
ill

_
To

ta
l

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

11
Ti

m
es

 o
f

In
d

ia
30

2.
50

75
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

15
D

iv
ya

B

h
as

ka
r

30
3.

00
90

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

23
Ec

o
n

o
m

ic

Ti
m

es
21

3.
00

63
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

 3
M

in
t

26
3.

00
78

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

51
C

h
am

p
ak

1

20
.0

0
20

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

33
En

tr
ep

re
n

eu
r

1

10
0.

00
10

0.
00

10
.0

0
43

6.
00

 5

4-
5-

20
13

 3
M

. N
. D

av
e

11
, A

d
it

i
A

p
t

A
m

b
aw

ad
i

A
h

m
ed

ab
ad

38
00

15
11

Ti
m

es
 o

f
In

d
ia

30
2.

50
75

.0
0

10
.0

0
17

5.
00

 5

4-
5-

20
13

 3
M

. N
. D

av
e

11
, A

d
it

i
A

p
t

A
m

b
aw

ad
i

A
h

m
ed

ab
ad

38
00

15
15

D
iv

ya

B
h

as
ka

r
30

3.
00

90
.0

0
10

.0
0

17
5.

00

 1
4

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

12
G

u
ja

ra
t

Sa
m

ac
h

ar
28

3.
00

84
.0

0
10

.0
0

20
4.

00

 1
4

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

11
Ti

m
es

 o
f

In
d

ia
30

2.
50

75
.0

0
10

.0
0

20
4.

00

 1
4

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

 7
O

p
en

1

35
.0

0
35

.0
0

10
.0

0
20

4.
00

105

CH_5_Normalization_Final.indd 105 2/28/2014 12:46:54 PM

106  |  Chapter 5

(Bill No., peri_ID) �bill date, cust ID, cust name, addline 1, addline 2, city, pincode,
peri_desc, qty, price, total_pr, delivery_charges, bill_total

Following are the partial dependencies in a Table, PERIODICALS.

Bill No. �bill date, delivery_charges, bill_total, cust ID, cust name, addline1,	
addline2, city, pincode

Peri_ID peri_desc, price

To convert Table 5.23 into 2NF, the above partial dependencies should be removed from the
Table by decomposing it into the following three Tables, namely PERIODICALS, BILL and
BILL DETAIL.

For each partial dependency, there will be one Table with attribute which is on left side as a
primary key. This attribute will remain in original Table and right hand side attributes will be
removed from the original Table.

PERIODICALS (peri_ID, peri_desc, price)
BILL (Bill no, cust ID, bill date, delivery_charges, bill_total, cust name, addline1, addline

2, city, pincode)
BILLDETAIL (bill no, peri_ID, qty, total_pr)
After decomposition of the Tables, PERIODICALS, BILL and BILL DETAIL are shown in

Table 5.24, 5.25 and 5.26 respectively, which are now in 2NF.
Table 5.24 (i.e., PERIODICALS) and Table 5.26 (i.e., BILL DETAIL) are also in 3NF	

because they do not contain any transitive dependencies.
Table 5.25 (i.e., BILL) is not in 3NF because there exists the following transitive dependencies:

Billno cust id, and
 cust id cust name, addline 1, addline 2, city, pincode

To convert Table 5.25 into 3NF the above transitive dependencies should be removed by
decomposing it into two Tables namely BILL and CUSTOMER. Both the Tables, after decom-
position, will be as follows:

		 BILL (billno, cust id, billdate, delivery_charge, bill_total)
		 CUSTOMER (cust id, custname, addline1, addline2, city, pincode)

Table 5.27 and Table 5.28 shows BILL and CUSTOMER Tables respective which are in 3NF.
Now, all the Tables, BILL, BILL DETAIL, CUSTOMER and PERIODICALS are in BCNF,

4NF and 5NF also.

Example 2: Normalize Table 5.29 up to its maximum possible normal form.
Table 5.29 is in 1NF. Primary key of this Table is a combination of fields case_ID and	

visit_date.
By applying the rules of normalization, the above Table can be decomposed into following

Tables which are all in 5NF.

		 CASE (case_ID, visit_date, doc_ID, pat_ID, treat_ID, next_visit_date)
		 DOCTOR (doc_ID, doc_name)
		 PATIENT (pat_ID, pat_name)
		 TREATMENT (treat_ID, treat_desc)

CH_5_Normalization_Final.indd 106 2/28/2014 12:46:54 PM

Normalization  |  107

Table 5.24  |  PERIODICALS in 2NF

Peri_ID Peri_Desc Price

11 Times of India 2.50

15 Divya Bhaskar 3.00

23 Economic Times 3.00

 3 Mint 3.00

51 Champak 20.00

33 Entrepreneur 100.00

12 Gujarat Samachar 3.00

 7 Open 35.00

Table 5.26  |  BILLDETAIL in 2NF

Bill No Peri_ID Qty Total_pr

123 11 30 75.00

123 15 30 90.00

123 23 21 63.00

123 3 26 78.00

123 51 1 20.00

123 33 1 100.00

 5 11 30 75.00

 5 15 30 90.00

 14 12 28 84.00

 14 11 30 75.00

 14 7 1 35.00

Table 5.25  |  BILL in 2NF

Bill
No Bill Date

Cust
ID Cust Name Addline1 Addline2 City Pincode

Delivery_
Charges

Bill_
total

123 2-5-2013 12 S. G. Shah 9, Aditi Apt Ambawadi Ahmedabad 380015 10.00 436.00

 5 4-5-2013 3 M. N. Dave 11, Aditi Apt Ambawadi Ahmedabad 380015 10.00 175.00

 14 2-5-2013 16 V. P. Vyas 1, Aditi Apt Ambawadi Ahmedabad 380015 10.00 204.00

Table 5.27  |  BILL in 3NF

Bill No Bill Date Cust ID Delivery_Charges Bill_Total

123 2-5-2013 12 10.00 436.00

 5 4-5-2013 3 10.00 175.00

 14 2-5-2013 16 10.00 204.00

Table 5.28  |  CUSTOMER in 3NF

Cust ID Cust Name Addline1 Addline2 City Pincode

12 S. G. Shah 9, Aditi Apt Ambawadi Ahmedabad 380015

 3 M. N. Dave 11, Aditi Apt Ambawadi Ahmedabad 380015

16 V. P. Vyas 1, Aditi Apt Ambawadi Ahmedabad 380015

CH_5_Normalization_Final.indd 107 2/28/2014 12:46:54 PM

108  |  Chapter 5

Summary
●● Normalization means, reducing redundancy in a database by decomposing Tables further
by preventing functional dependency.

●● Functional dependency exists between attributes of the same Table. If A and B are two
attributes of a Table, then B is said to be functionally dependent on A, if and only if, each
value of A there exists precise value of B. Symbolically, it is written as A→B. It can be
read as ‘A functionally determines B’ or ‘B is functionally dependent on A’.
●● In functional dependency A → B, the attribute, which is on the right side of the arrow,
is known as dependent(B) and the attribute, which is on the left side of the arrow, is
known as determinant(A). In functional dependency, if determinant is a combination of
more than one attributes, then each attribute of this composition is called a component.
If the dependent depends on any of this component other than the whole combination,
the dependency is called, ‘partial dependency’. If the dependent depends on the whole
combination and, not on any of the component, the dependency is called, ‘full functional
dependency’.

●● In a Table, if A, B and C are attributes, then A→B and B→C implies that A→C. This type
of dependency between A and C is known as transitive dependency.
●● Let A, B and C are attributes of a relation. Then B is said to be multi-dependent on A, if
and only if, in each record (tuple) of a relation, the set of B values which match with a
given (A, C) value pair depends only on the value of A and is completely independent of
value of C. This dependency is known as multi-valued dependency.

●● If a Table has projections P
1
, P

2
, …, P

n
, there exists join dependency (denoted as *{P

1
, P

2
,

…, P
n
}), if and only if, every record (tuple) value of a relation is the join of its projections

on P
1
, P

2
, …, P

n
.

●● There are different levels of normal forms ranging from 1NF to 5NF and, they can be
achieved by removing certain dependency by decomposing Tables.
●● The Table is said to be in 1NF if all its attributes contain atomic values.
●● The Table is said to be in 2NF, if and only if, it is in 1NF and there does not exists any
partial dependencies.

●● The Table is said to be in 3NF, if and only if, it is in 2NF and there does not exists any
transitive dependencies.

Table 5.29  |  TREATMENT

Case_
ID

Doct_
ID Doct_Name Pat_ID Pat_Name

Treat_
ID Treat_Desc Visit_Date

Next_Visit_
Date

 21 D4 S. Nanavaty P2 L. Mathur T2 Medicines
given

21-4-2013 23-4-2013

 21 D4 S. Nanavaty P2 L. Mathur T3 Injection 23-4-2013

 21 D3 S. Trivedi P2 L. Mathur T11 Dressing 2-5-2013

134 D4 S. Nanavaty P9 A. Soni T6 B.P Tablet 5-5-2013 5-6-2013

134 D4 S. Nanavaty P9 A. Soni T0 No treatment 5-6-2013

CH_5_Normalization_Final.indd 108 2/28/2014 12:46:54 PM

Normalization  |  109

●● The Table is said to be in BCNF, if and only if, it is in 3NF and every determinant is a
candidate key. The Table is said to be in 4NF, if and only if, it is in BCNF, and it does not
contain any multi-valued dependency which is not functional dependency.

●● The Table is said to be in 5NF, if and only if, it is in 4NF, and each projection (decomposi-
tion) of a relation should contain candidate key(s) of a relation.

Exercises

	 1.	 Discuss the following dependencies with examples:
	 a.	 Functional dependency
	 b.	 Full functional dependency
	 c.	 Transitive dependency
	 d.	Multi-valued dependency
	 e.	 Join dependency
	 2.	What is a component? Explain it by giving an example.
	 3.	 Answer the questions with respect to the following Table.

Table: Termwork

Tw_
ID

Date_
Given Fac_ID

Fac_
Name Sub_ID Sub_Name Class_ID

Class_
Desc Submi_Dt

101 12-7-2012 SN Shefali
Naik

FOP Funda-
mentals of
Programming

FY First
Year

31-7-2012

102 8-8-2012 SN Shefali
Naik

FOP Funda-
mentals of
Programming

FY First
Year

3-9-2012

103 10-12-2012 SN Shefali
Naik

PCL Programming
in C Lan-
guage

FY First
Year

23-1-2013

104 3-3-2013 SN Shefali
Naik

APCL Advanced
Programming
in C Lan-
guage

FY First
Year

1-4-2013

105 2-7-2012 HD Hemal
Desai

AJ AdvaTnced
Java

TY Third
Year

23-7-2012

106 18-8-2012 HD Hemal
Desai

AJ Advanced
Java

TY Third
Year

13-9-2012

107 10-11-2012 HD Hemal
Desai

OS Operating
Systems

SY Second
Year

3-12-2012

108 9-2-2013 KG Kunjal
Gajjar

OOP Object-
Oriented
Programming

SY Second
Year

10-3-2013

109 4-3-2013 KG Kunjal
Gajjar

OOP Object-
Oriented
Programming

SY Second
Year

31-3-2013

CH_5_Normalization_Final.indd 109 2/28/2014 12:46:54 PM

110  |  Chapter 5

	 a.	 Identify primary key of the Table.
	 b.	 Identify full-functional, partial and transitive dependencies.
	 c.	 Draw a dependency diagram for all types of dependencies.
	 d.	 Is the Table in 1NF? Why?
	 e.	 Convert the Table up to 5NF.
	 4.	Fill in the blanks:

	 	 a. � The Table is said to be in ______________, if it contains fields which have atomic	
values.

 b. � If the primary key is a combination of more than one field, then each field is known
as _____________.

 c.  There may exist partial dependency, if primary key is a ______________.
 d. � If the primary key contains only one field, then there is no need to check for

____________ dependency.
 e. � If a given Table is in 1NF and, if primary key contains only one field, then it is said to

be in ______________ normal form.
 f. � If billno → customer_ID and customer_ID → customer_status then bill no → customer_

status is called ____________ dependency.
 g. � We can obtain _____________ normal form by removing multi-valued dependencies

which are not functional dependencies.
 h .  Fifth normal form is also known as ____________ normal form.
 i.  Fifth normal form is related with ____________ dependency.
 j.  Projection means _______________ subset of a Table. (horizontal/vertical).
 k. �In notations of dependency, double arrow denotes ____________ dependency and,

single arrow denotes _____________ dependency.
 l.  In Kindergarten_ID → kindergarten_name, _____________ determines ____________.
 m.  In branch_ID → branch_name, ______________ is dependent on _______________.
 n. � In school_ID → school_name, school_ID is called, ‘_____________’and school_name

is called, ‘_____________’.
 o.  In person_ID → degree, ______________ multi-determines _________.
 p.  In, person_ID → hobby, _____________ is multi-dependent on _________.
 q.  When we remove transitive dependency, we obtain _________ normal form.
 r.  In ________ normal form, every determinant should be a candidate key.

	 5.	 Discuss the following normal forms with proper examples.

 a.  First NF
 b.  Second NF
 c.  Third NF

	 d.	 Boyce-Codd NF
	 e.	 Fourth NF
	 f.	 Fifth NF

CH_5_Normalization_Final.indd 110 2/28/2014 12:46:54 PM

CHAPTER

6.1  |  Introduction
In Relational Database Management System, data is managed by using Fourth Generation
Language (4GL), named as Structured Query Language (SQL). Using simple commands
available in SQL, we can retrieve (fetch), update (change/edit), insert (add) and delete (remove)
data. SQL is a common language of Relational Database Management System (RDBMS) which
is used for data management. The syntax of statements available in SQL can be used with very
minor modifications in any RDBMS. In SQL, we can also use different types of functions to
display data in different formats, to summarize the data, to calculate any mathematical formula,
fetch different parts of date, display string (text) in upper and lower case, etc. These functions
and their syntax vary from RDBMS to RDBMS. In this chapter, we will see SQL and different
functions with respect to Oracle RDBMS. All the statements are executed in ‘Oracle Database
10g Express Edition’.

In advanced SQL, we can do some advanced operations on data to display them according
to groups. We will also see, how to put constraints (conditions) on fields and tables by using
data definition commands. It is also possible to write one SELECT statement into another for
complex queries. The SELECT statement is used to retrieve data from tables.

6

Managing Data Using Structured
Query Language (SQL)

•	 Knowing usage of Structured Query Language (SQL) in managing data.
•	 Knowing usefulness of data definition and manipulation commands.
•	 Learning SELECT statement to fetch data from a database.
•	 Understanding different types of constraints.
•	 Learning how to use different functions given in a database management system.
•	 Understanding the application of special operators.
•	 Retrieving data with complex nested, or sub query.
•	 Summarizing data using advanced SQL, such as rollup, cube and crosstab.
•	 Summary

Chapter Objectives

CH_6_Managing Data using Structured Query Language_Final.indd 111 2/28/2014 1:06:23 PM

112  |  Chapter 6

6.2  | D ata Definition Commands
Data definition commands are used to create, change or delete structures in which we are
going to store data (i.e., data definition commands are used to define data structures). For an
example, the commands used to create/change/delete table/view/user, etc., are called, ‘Data
Definition Commands’.

Here, we will see, how to create a table structure, change table structure and delete table
structure in a Oracle database.

In syntaxes given throughout this chapter, words written in upper case shows the keywords/
reserve word, but it is not required to be written in upper case when we actually execute the
command; part of the syntax written in square brackets shows that part is optional in the syntax;
part of the syntax written in angular brackets shows the variables.

The following syntax is used to create table in Oracle:

CREATE TABLE <table_name> (<field1> data_type [constraint1
 constraint2,..]
 [, <field2> data_type [constraint1
 constraint2..]]……….
 [, <fieldn> data_type [constraint1 constraint2..]])

	 1.	 In CREATE TABLE command <table_name> and <field_name> are any valid variable
name, we can define any number of constraints on individual fields (Note: We will see
different field level and table level constraints in Section 6.11.).

	 2.	 For each field, the data type should be defined. Table 6.1 shows some data types which
we can use in Oracle.

Table 6.1  |  Oracle 10g Data Types

Data Type Maximum Size Description

Char(size), or character(size) 2000 bytes Used to store text.

Varchar2(size) 4000 bytes

Long 2 GB

Int or integer Used to store integer values.

Float or real Used to store real numbers.

Number(p, s) or numeric(p,s)
or dec(p,s) or decimal(p,s)

Precision (p) range
up to 38.

Used to store numbers. For example.,
number (5,3) will have 2 digits
before decimal place and 3 digits
after decimal place.

Date Used to store date in dd-mon-yyyy or
dd-mon-yy format.

Timestamp Store date with time.

Blob 4GB binary data Stores binary large object.

Clob 4GB character data Stores character large object.

Nclob 4GB character data Stores Unicode data.

CH_6_Managing Data using Structured Query Language_Final.indd 112 2/28/2014 1:06:23 PM

Managing Data Using Structured Query Language (SQL)  |  113

	 3.	 The list of fields should be enclosed in round brackets and each field should be separated
with comma.

	 4.	 For an example, to create a Table 6.2, the following command should be written and
executed in Oracle.

 create table kg(kgid int primary key, kgname varchar 2 (20),
 city varchar 2 (20), pincode int)

	 5.	 The KG Table will be created with kgid as a primary key. It will have unique and, not
null values.

To view the table structure, the ‘describe’ command is used as follows:

describe <table_name> or desc <table_name>

For an example,

Describe kg or desc kg

Now, if we want to make some changes in the table structure, we have to use the command
ALTER TABLE. Using the ‘alter table’ command, we may add new fields; delete or modify
existing fields, change data type and size of the fields; add, delete or modify constraints, etc.

Following syntaxes are used to alter table in Oracle.

ALTER TABLE <table_name> ADD (<field1> data_type constraint1
 constraint2,]
 [, <field2> data_type [constraint1
 constraint2..]], …)
 [MODIFY (<field1> data_type constraint1
 constraint2, ...]
 [, <field2> data_type [constraint1
 constraint2..]], …)

OR

ALTER TABLE <table_name> DROP COLUMN <fieldname>

OR

ALTER TABLE <table_name> RENAME COLUMN <old_fieldname>
 TO <new_fieldname>

The drop column and rename column options can not be combined with other options of
ALTER TABLE command. They should be written in a separate, ‘alter table’ command.

Table 6.2  |  Table KG

KG ID KG Name City Pincode

1 Eurokids Surat

2 Kidzee Baroda

3 Eurokids Ahmedabad 380015

CH_6_Managing Data using Structured Query Language_Final.indd 113 2/28/2014 1:06:23 PM

114  |  Chapter 6

Following are some examples of ALTER TABLE command:

	 1.	alter table kg add address1 char(20) add address2 char(20) mod-
ify pincode number (6) modify kgid int add constraint chk_kgid
check(kgid<100) modify kgname varchar2(20) not null unique

	 2.	alter table kg modify (pincode int, kgname varchar2(30))
	 3.	alter table kg add (a1 int, b1 int)
	 4.	alter table kg drop column a1
	 5.	alter table kg rename column kgname to kgnm
	 6.	alter table kg drop constraint chk_kgid
	 7.	alter table kg add constraint ckh_city check(city = upper(city))

add constraint chk_city_len check (length(city) > 0)

To delete any existing table structure, the ‘drop table’ command is used. The syntax to drop any
table is given below:

DROP TABLE <table_name>

Following is an example of the ‘drop table’ command:

DROP TABLE kg

Thus, any CREATE, ALTER and DROP commands are known as Data Definition Commands.

6.3  | D ata Manipulation Commands
Data manipulation commands are used to insert, manipulate and delete data to/from table.
There are three data manipulation commands in SQL-INSERT, UPDATE and DELETE.

The different syntaxes of INSERT statement is as follows:

		 Syntax-1: �INSERT INTO <table_name> VALUES (field1_value,
		 field2_value, …, fieldn_value)

●● The above syntax is used when we want to insert all values of all the fields. For an
example:

insert into kg values(1,’Eurokids’,’Surat’,null)

●● When the values are of type text and date they must be enclosed within single quotations.
When the field value is unknown ‘null’ keyword should be written instead of the value.

		 Syntax-2: �INSERT INTO <table_name> (<field1>, <field2>, …, <fieldn>)
VALUES (field1_value, field2_value, …, fieldn_value)

●● The above syntax is used when we want to insert values of selected fields. For an example,

insert into kg(kgid,kgname) values(4,’Thumbelina’)

●● The following syntax is used when we want to insert filed values from a different table.
Before inserting values into a table, the table must be created and, the fields in which we
are inserting values, its data type should be matched with the field data types from where
we are inserting values.

		 Syntax-3: �INSERT INTO <table1_name>[(field_names)] SELECT <field_
names>/* FROM <table2_name>

CH_6_Managing Data using Structured Query Language_Final.indd 114 2/28/2014 1:06:23 PM

Managing Data Using Structured Query Language (SQL)  |  115

●● For an example, the following statement will insert values of all the fields of the kg Table
into the corresponding fields of Table kg1.

insert into kg1 select * from kg

●● Following is an example of INSERT ALL, …, SELECT command which is used to enter
multiple rows in a single INSERT statement.

 Insert all

 into kg1(kgid, kgname) values (5, ‘Mothers Pet’)
into kg1(kgid, kgname) values (6, ‘Todan’)
into kg1(kgid, kgname) values (7, ‘Radiant’)

 select * from dual

●● If we want users to enter values at run-time, then it can be done by using : operator before
a field name. For an example:

insert into kg(kgid,kgname) values(:kgid,:kgname)

●● The above statement will take inputs for kgid and kgname from user and insert into table.
●● The syntax of the UPDATE statement is as follows:

UPDATE <table_name> SET <field1 > = field1_value [, <field2>
 = field2_ value, …, <fieldn> = fieldn_value] [WHERE <condition>];

●● The above ‘update’ statement will update existing values of fields according to condition
specified. If we write condition, updation will be made for all the records. For an example:

update kg set city = ‘Ahmedabad’, pincode = 380009
 where kg ID = 7

●● The above ‘update’ statement will change value of city = ‘Ahmedabad’ and pincode =
380009 for records where value of kg ID = 1.

●● The syntax of DELETE statement is as follows:

DELETE FROM <table_name> [WHERE <condition>];

●● The above ‘delete’ statement will remove records from the table. If we do not specify the
‘where’ condition, it will delete all the records. For an example,

delete from kg where city = ‘Ahmedabad’

●● The above delete statement will delete records of kindergarten which are in ‘Ahmedabad’.

6.4  | SELECT statement and its clauses
The SELECT statement is used to retrieve data from one or more than one tables and display
them into appropriate format. Also, it is used to display group-wise summary and records in a
particular order.

The syntax of SELECT statement is as follows:

 SELECT DISTINCT */<field1>[, <field2>, …, <fieldn>]
FROM <table1_name> [,<table2_name>, …, <tablen_name>]

 [WHERE <condition>/<subquery>]

CH_6_Managing Data using Structured Query Language_Final.indd 115 2/28/2014 1:06:23 PM

116  |  Chapter 6

 [GROUP BY <field1> [, <field2>, …, <fieldn>]
 [HAVING <condition on aggregate function]]

[ORDER BY <field1> [ASC/DESC] [,<field2> [ASC/DESC], …,
 <fieldn> [ASC/DESC]]]

In the SELECT statement, only SELECT and FROM clauses are compulsory, all other clauses
are optional. Other clauses can be used as per the requirement.

The different clauses of SELECT are explained as follows:

	 1.	 SELECT: It is used to select fields. After writing SELECT, if we want to display all
the fields, then character ‘*’ should be written. To display values of selected fields,
field names should be specified after SELECT keyword. We can also specify arithmetic
calculations and, various functions after SELELCT keyword. For an example:

Select * from kg

		 The above statement will display all the field values of table kg.

Select kgid, kgname from kg

		 The above statement will display all the values of fields kgid and kgname from
table kg.

Select length(kgname) from kg

		 The above statement will display length of the values of field kgname for each record.

Select total_fee_paid_fee from fees

		 The above statement will display fees amount which is pending for all the records of fees
table.

Select max(length(kgname)) from kg

		 The above statement will display kgname which is the longest.

	 2.	 DISTINCT: When DISTINCT is specified before the field names, it displays the unique
values of a field. If many fields are selected and DISTINCT is written before those fields,
it will display unique combination values of those fields.

	 3.	 FROM: It is used after SELECT, and it is a compulsory clause of SELECT statement.
After FROM, table names are written from where we want to select data. Table names
are separated with comma. For an example:

Select * from class, student

		 The above statement will display all the field values of tables class and student.

 Select class.classID, classdesc, stdname from class, student

		 The above statement will display values of classid, classdesc and stdname fields. Here,
both the tables class and student contains the field ‘classid’. Therefore, it is required to
write table name before field name to tell the DBMS that which table’s classid we want
to display. When field names are unique between tables, there is no need to specify table
name before field name.

	 4.	 WHERE: It is an optional clause of SELECT, but when used it should be written after
the FROM clause. It is used to specify conditions on the fields. According to the condi-
tions, field values will be displayed. For an example:

CH_6_Managing Data using Structured Query Language_Final.indd 116 2/28/2014 1:06:23 PM

Managing Data Using Structured Query Language (SQL)  |  117

 Select * from class, student where class.classID = ‘fy’

		 The above statement will display details of students who are in FY by selecting all the
fields from tables class and student.
 Select class.classID, classdesc, stdname from class,

 student where stdid > 20;

		 The above statement will display details of only those students whose roll number is
greater than 20.

	 4.	 GROUP BY: It is an optional clause of SELECT, but when used, it should be written
after the WHERE clause. If WHERE is not required, then it should be written after the
FROM clause. It is used to group data on a specific field. When we want to display
summarized details for any group, the clause GROUP BY should be used. We may group
data on multiple fields. Multiple fields are separated by comma in GROUP BY. While
using GROUP BY, the following important points should be remembered, otherwise the
query will cause an error.

●● We can write only those fields which are specified after GROUP BY. For an example,
if grouping is done on dept_ID and emp_no, then GROUP BY is written as ‘GROUP
BY dept_ID, emp_no’. In this case, after select statement, we can write only two field
names, dept_ID and emp_number (i.e., only ‘SELECT dept_ID, emp_no’ is valid).
Other fields can not be written after SELECT.

●● We can also write aggregate functions after SELECT. For example, we may write
max(salary), min(salary) after SELECT.

●● For an example, the following SELECT statement is valid if grouping is done on
dept_ID and emp_number.

 SELECT dept_ID, emp_no, avg(salary) FROM salary GROUP BY
 dept_ID, empno

The above statement will display department-wise each employee’s average salary.
	 5.	 HAVING: It is an optional clause of SELECT, but when it is used, it should be written af-

ter GROUP BY clause only and because it is used to specify condition on the group level.
Mostly, in HAVING clause, condition is written on aggregate function. For an example:

 �select class ID, count(std ID) from student group
by classid having count(stdid) > 50

		 The above SELECT statement will display class-wise total number of students for those
class in which total number of students are more than 50.

		 We can also write the WHERE clause with the HAVING clause. The WHERE clause
will specify condition on each row, while the HAVING clause will specify condition on
a group. For an example, the following query will display total number of students of
class SY, if total number of students in SY are more than 50.

 select class ID, count (std ID) from student where
 class ID = ‘SY’ group by classidhaving count (std ID) > 50

		 The difference between the WHERE and HAVING clauses is given in Table 6.3.

	 6.	 ORDER BY: It is an optional clause of SELECT, which is used to display data in a
specific order. Using this clause data can be arranged in ascending or descending order.

CH_6_Managing Data using Structured Query Language_Final.indd 117 2/28/2014 1:06:23 PM

118  |  Chapter 6

Ordering can be done on multiple fields. If we want to arrange data in ascending order, then
keyword ASC should be written after a field name and for descending order DESC should
be written after a field name. For an example, the following query will arrange records
of the student table into ascending order of ‘classID’ and descending order of ‘stdname’.

 Select * from student order by classid asc, stdname desc
Or

 Select * from student order by classid, stdname desc

		 When GROUP BY clause is written in SELECT statement, then we can write only those
fields after ORDER BY which are written after GROUP BY, no other fields can be used
to arrange data in order or aggregate function. For an example:

 Select classID, count(stdID) from student group
 by classID order by classID desc, count (stdID) desc

		 The above query will display class-wise total number of students in descending order of
class ID and descending order of total number of students within each class.

6.5  | Agg regate functions
Aggregate functions are used to display summarized data, such as maximum and minimumsal-
ary, average participation in the event, total number of students in the class, total sales amount,
etc.

There are many aggregate functions available in Oracle 10g, but five main functions are listed
and explained below.

	 1.	 Count(*) or count(field_name): Count(*) counts total number of rows. It includes
NULL values also during counting. For an example, if we execute the following query
on Table 6.2 KG, then it will display 3 as output.

Select count(*) from kg

		 Count(field_name) counts total number of values in the field ‘field_name’ excluding
NULLs. For an example, if we execute the following query on Table 6.2 KG then it will
display 1 as output.

Select count(pincode) from kg

		 If there are no records or no values in the field, count function returns zero. The query, given
below will group records on classid and will display total number of students in the class.

 Select classID, count(stdID) from student group by classID

Table 6.3  |  Difference Between WHERE and HAVING Clauses

WHERE HAVING
It is used when condition is written for each
row.

It is used when condition is written for a
group.

Aggregate functions cannot be used in the
WHERE clause.

Aggregate functions can be used in the
HAVING clause.

To use the WHERE clause, GROUP BY clause is
not required.

To use the WHERE clause, the GROUP BY
clause required.

CH_6_Managing Data using Structured Query Language_Final.indd 118 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL)  |  119

	 2.	 Max(field_name): The max function will return maximum value from the column. If
grouping is done, it will return maximum value from each group. If there are no values
in the field, it will return NULL. For an example:

Select max(salary) from employee

		 The above query will return maximum value from the field salary of the employee table.

Select deptID, max(salary) from employee

		 The above query will return maximum value of salary from each department of
employee table.

	 3.	 Min(field_name): The min function will return minimum value from the column. If
grouping is done, it will return minimum value from each group. If there are no values
in the field, it will return NULL. For an example:

Select min(salary) from employee

		 The above query will return minimum value from the field salary of the employee table.

Select deptID, min(salary) from employee

		 The above query will return minimum value of salary from each department of the
employee table.

	 4.	 Avg(field_name): The avg function will return average value from the column. If group-
ing is done, it will return average value from each group. If there are no values in the
field, it will return NULL. For an example:

Select avg(salary) from employee

		 The above query will return average value of the field salary of employee table.

Select deptID, avg(salary) from employee

		 The above query will return average salary of each department of employee table.
	 5.	 Sum(field_name): The sum function will return total value of the column. If grouping

is done, it will return total value for each group. If there are no values in the field, it will
return NULL. For an example:

Select sum(sales_amt) from sales

		 The above query will return total sales amount from sales table.

Select deptID, sum(sales_amt) from sales group by deptID

		 The above query will return department-wise total sales amount from sales table.

6.6  | D ate and time functions
Date and time functions are used to display date and time in different formats and, for calcula-
tions which are based on date. There are various date and time functions available in Oracle
10g. Date is stored in dd-mon-yyyy format in Oracle. Following are some important functions:

	 1.	 Sysdate and current_date: Both the functions return system date in dd-mon-yy format.
For an example, if system date is 28-5-2012, sysdate and current_date both will display
28-May-12, if we execute the following query.

Select sysdate, current_date from dual

CH_6_Managing Data using Structured Query Language_Final.indd 119 2/28/2014 1:06:24 PM

120  |  Chapter 6

	 2.	 Add_months: The syntax of this function is add_months(<date_var>,no. of months). It
returns new date value after adding number of months into <date_var>. For an example,
If we execute the following query it will return the date value 4-JAN-14.

Select add_months(to_date(‘4-Jan-2013’), 12) from dual

		 Any value, written in single quotations, is treated as a character value. Therefore, before
passing any date value as a parameter, it should be converted into date using to_date
conversion function. If date field is passed as a parameter in add_months, then there is no
need to convert it using to_date, because its data type itself tells the server that the field
which is passed as a parameter is a ‘date’ type of field.

	 3.	 Months_between: The syntax of this function is months_between(<date1>,<date2>). It
returns total number of months between two dates which are passed as a parameter. For
an example, If we execute the following query, it will return value 12.

 �Select months_between(to_date(‘4-Jan-2014’), to_date
(‘4-Jan-2013’)) from dual

		 The following query will return value 7.22.

 �Select months_between(to_date(‘4-Jan-2014’),
 to_date (‘28-May-2013’)) from dual

	 4.	 Extract: The syntax of this function is extract(<format> FROM DATE/TIMESTAMP
<date_value in yyyy-mm-dd format’>). It returns value based on the format passed in
the parameter. Some formats which we can pass in extract function are – hour, minute,
second, year, month and day. Some examples are given below.

 select extract (year from date ‘2009-5-28’) from dual

		 The above query will return the value 2009.

 select extract (month from date ‘2009-5-28’) from dual

		 The above query will return the value 5.

select extract (day from date ‘2009-5-28’) from dual

		 The above query will return the value 28.

 �select extract (hour from timestamp ‘2009-5-28
12:01:45’) from dual

		 The above query will return the value 12.

 �select extract (minute from timestamp ‘2009-5-28
12:01:45’) from dual

		 The above query will return the value 1.

 �select extract (second from timestamp ‘2009-5-28
12:01:45’) from dual

		 The above query will return the value 45.

	 5.	 Systimestamp: This function returns system time in ‘dd-mon-yy hh.mm.ss:ssssss
AM/PM timezone’ format. For example, if system time is 28-5-2012 10:01:45:23233,

CH_6_Managing Data using Structured Query Language_Final.indd 120 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL)  |  121

the function will display 28-5-2012 10.01.45.23233 AM + 05:30, if we execute the
following query.

Select systimestamp from dual

	 6.	 Last_day: This function returns the last day of the month based on the date value passed
in the function. For example, the following query will return the value 31-MAY-13.

select last_day (to_date (‘28-May-13’)) from dual

	 7.	 Next_day: The syntax of this function is next_day(<date_value>,<day_name>). This
function returns the the date on which next <day_name> falls after the date < date_
value>. For example, the following query will return the value 13-MAY-13, because
9-may-2013 is a thursday and next monday after 9-may-13 is on 13-may-2013.

 select next_day (to_date (‘9-May-13’),’monday’) from dual

6.7  | S tring functions
String functions are used to format text data. Following are some useful string functions of
Oracle 10g:

●● upper: This function will convert the string into upper case which is passed as a param-
eter. The following query will display the output SHEFALI.

select upper (‘Shefali’) from dual

●● lower: This function will convert the string into lower case which is passed as a param-
eter. The following query will display the output shefali.

select lower (‘SHEfali’) from dual

●● initcap: This function will convert the string’s first letter into upper case and, other char-
acters into lower case, which is passes as a parameter. The following query will display
the output Shefali.

select initcap (‘shefali’) from dual

●● substr: The syntax of this function is substr(<string_var>, <start_char_no>,<total_no_
of_char>). This function will display sub string of the string which is passed as a param-
eter. The following query will display a total 8 characters starting from third character
which is ‘e’. The output displayed will be ‘efali Na’.

select substr (‘Shefali Naik’, 3, 8) from dual

●● length: This function will display total number of characters in the string which is passed
as a parameter. The following query will display the output 12.

select length (‘Shefali Naik’) from dual

●● ltrim: This function will remove blank spaces from left hand side of the string which is
passed as parameter. For example, on execution of following query, extra spaces will be
removed from left side of the string ‘Shefali Naik’.

select ltrim (‘Shefali Naik’) from dual

CH_6_Managing Data using Structured Query Language_Final.indd 121 2/28/2014 1:06:24 PM

122  |  Chapter 6

●● rtrim: This function will remove blank spaces from right hand side of the string which is
passed as parameter. For example, on execution of following query, extra spaces will be
removed from right side of the string ‘Shefali Naik’.

select rtrim (‘Shefali Naik’) from dual

●● trim: This function will remove blank spaces from both right and left hand side of the
string which is passed as parameter. For example, on execution of following query, extra
spaces will be removed from right and left side of the string ‘Shefali Naik’.

select trim (‘Shefali Naik’) from dual

●● concat: This function will concat two strings which are passed as parameters. For ex., on
execution of following query, both the strings ‘Shefali’ and ‘ Naik’ will be merged and
the output Shefali Naik will be displayed.

select concat(‘Shefali’, ‘Naik’) from dual

6.8  | C onversion functions
Conversion functions are used to convert one data type into another data type. Following are
some useful conversion functions of Oracle 10g.

●● To_number: This function will convert inputted character into number.

Select to_number(‘4.15’) from dual

●● To_char: This function will convert any number into character.

Select to _char(3453) from dual

●● To_date: This function will convert inputted string into date.

Select to_date(‘4-Jan-2003’) from dual

●● To_timestamp: This function will convert inputted string into timestamp.

Select to_timestamp(‘10-Sep-02 11:10:10.123000’) from dual

6.9  | M athematical functions
Mathematical functions are used to numeric calculations. There are many mathematical func-
tions in oracle. Some of them are as follows:

●● Sqrt: It displays square root of the number.
●● Round: It rounds off the number.
●● Mod: The syntax of function is mod(num1,num2). It returns the remainder when num1
is divided by num2. For example,

Select mod (9, 2) from dual
 will display 1.

●● Power: The syntax of function is mod(num1,num2). It returns the ‘num1 raise to num2’.
For example,

Select power (3, 2) from dual
 will display 9.

CH_6_Managing Data using Structured Query Language_Final.indd 122 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL)  |  123

6.10  | S pecial Operators
There are five special operators in SQL which can be used in WHERE clause to specify the
condition.

	 1.	 Is null: This operator will check that the field value contains null or not. IS NULL will
return true if field contains null, else it will return false. For example, the query given
below will display the records in which value of pincode field is null.

Select * from kg where pincode is null

		 The logical operator NOT can also be combined with is null. For example, the query
given below, will display the records in which value of pincode field is not null.

Select * from kg where pincode is not null

	 2.	 In: This operator will check that the specific field value is contained within the list
of value or not. If the value contained in the list, it displays the records based on that
value. After IN operator we can specify constant values or any SELECT subquery. But in
subquery, the data type of field name written after SELECT should match with the data
type of field which is written after IN. For example, the following query will check
whether there exists values of kgid field in the list of values (2,4,6,8,10). If value of any
kgid matches with the list of values, its record will be displayed in the output.

Select * from kg where kg ID in(2,4,6,8,10)

		 The following query will display details of only those departments from dept table
whose deptid matches with the deptid of employee table.

 �Select * from dept where dept ID in(select deptID
from employee)

		 We can also use NOT logical operator with IN. For example, the following query will
display details of only those departments from dept table whose dept ID does not match
with the deptid of employee table.

 �Select * from dept where deptID not in(select deptID
from employee)

		 We can also match pair of values using IN operator. For example,

 Select * from employee where(empID,empname) not
 in (select empno,empnm from employee_history)

		 Another example of multiple values is given below:

 Select * from class where(classID, classdesc, capacity) not
 in((‘sy’, ‘second year’, 150), (‘ty’, ‘third year’, 120))

		 We can also use AND and OR logical operators with IN. For example,

 �Select * from class where class ID in (‘fy’)
and classdesc not in (‘second year’, ‘third year’)

	 3.	 Exists: This operator is used with subquery. It checks the existence of records in a parti-
cular table and returns true to outer query if table contains at least one record, else

CH_6_Managing Data using Structured Query Language_Final.indd 123 2/28/2014 1:06:24 PM

124  |  Chapter 6

returns false. If the value true is returned, the outer query will display the result, else it
will not display any result. For example, in the following query, first subquery will be
executed. If there exists at least one record in a student table, exists will return true to
the outer query and then outer query will display the values of stdid and stdname from
remarks table.

 Select stdID, stdname from remarks where exists
 (select * from student)

		 Remember that in the nested query(subquery), we have to write * after select. We can
not specify fields names in the nested query. We can also use logical operator NOT with
EXISTS. For example:

 �Select std ID, stdname from remarks where not
exists (select * from student)

		 We can also use logical operators AND and OR with EXISTS.

 Select std ID, stdname from remarks where exists
 (select * from student) or exists(select * from class)

	 4.	 Between: This operator checks whether the field value lies between to specific values
or not. It includes the lower and upper value while checking the condition. For example,
the query given below, will display records of students for only those students whose roll
number lies between 1,2,3,4, …, 10. The clause ‘std ID BETWEEN 1 and 10’ is same as
‘std ID ≥ 1 and std ID ≤ 10’

Select * from remarks where stdid between 1 and 10

		 We can also use logical operator NOT with BETWEEN.

Select * from remarks where stdid not between 2 and 5

	 5.	 Like: This operator matches the pattern and displays the result if field value matches
with the specified pattern. Wildcards %(percentage) and_(underscore) are used in
writing patterns. Different wildcards are used in pattern. % means many characters
and_ means only one character. For example, the query as given below will display stu-
dent names which start with character ‘s’.

Select stdname from student where stdname like ‘s%’;

		 To display the faculty details whose name end with letter ‘I’ or ‘a’, the following query
is written:

 �Select * from faculty where faculty_name like ‘%i’
or faculty_name like ‘%a’;

		 To display the faculty details whose name start with any letter, but second letter should
be ‘e’ and third letter should be ‘t’, and remaining letter can be anything; the following
query is written:

 Select * from faculty where faculty_name like ‘_et%’

		 To display the subject details which contains the ‘data’ word anywhere in the subject
name, the following query is written:

 Select * from subject where subject_name like ‘%data%’

CH_6_Managing Data using Structured Query Language_Final.indd 124 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL)  |  125

6.11  | T ypes of Constraints
Basically there are two types of constraints:

●● Table-level Constraints: The constraint which is applied on combination of more than
one field is known as table-level constraint. For example, a primary key which is a com-
bination of two or more than two fields is a table-level constraint.

●● Field-level Constraints: The constraint which is applied on a single field is known as
field-level constraint. For example, a primary key, which contains a single field, is a field-
level constraint.

In Oracle, during table creation we can apply different types of constraints which are given below.

	 1.	 Primary key: It is a constraint which identify each row of a table uniquely. The primary
key can not contain NULL and duplicate value. If primary key is a composite key (com-
bination of more than one field), then none of the fields of this composite key can be null
and the combination must be unique. For example, in the class table classid is a primary
key. It contains single field, so it is a field-level constraint.

 Create table class(classID int primary key,
 classdesc char(5))

		 In the table created below, primary key is a combination of two fields classid and stdid.
Therefore, it is called, ‘table-level constraint’.

 Create table student(stdID int, classID int, std name
varchar 2 (30), primary key (std ID, class ID))

	 2.	 Foreign key: It is a constraint which refers primary key of another table and will accept,
(1) only those values which are there in that primary key, or (2) null. The data type of
a foreign key should match with the primary key from where it is referred, field names
may be different. When we refer composite key, the entire composite key should be
referred. For example, if we want to refer classid field of class table into student table, it
should be written as follows :

 Create table student(std ID int, class code int
 references class (class ID), stdnamevarchar 2 (30),
 primary key (std ID, class code))

		 If we want to refer primary key of student table into result table, the entire primary key
(combination of stdid and classcode) should be referred and sequence of fields should be
maintained.

 Create table result (exam ID int, stdid int, classcode
 int, foreign key
 (std ID, classcode) references student(std ID,
 classcode),
 primary key (examid, std ID, classcode))

		 A table can have more than one foreign keys. For example, the following table has 3
foreign keys-doctorid referred from doctor table, patientid referred from patient table
and treatmentid referred from treatment table.

CH_6_Managing Data using Structured Query Language_Final.indd 125 2/28/2014 1:06:24 PM

126  |  Chapter 6

 create table doctor(doctorid int primary key)
 create table patient(patientid int primary key)
 create table treatment(treatmentid int primary key)
 create table case(doctor ID int references
 doctor (doctor ID), patient ID
 int references patient(patient ID), treatmentid int
 references treatment(treatment ID))

	 3.	 Unique: The fields will accept only unique values on which unique constraint is applied.
For example, in the following table, employee, the unique constraint is applied on PAN_
cardno, therefore it can not accept duplicate values. But unique key accepts null values.
Those employees who have applied for PAN card, we can enter null in the PAN_cardno
for them.

 Create table employee (empno int primary key,
 PAN_cardno char(10) unique, basic_salary float)

		 Now, see the result after inserting the following records in the employee table.

 insert into employee values(1, ‘gsrth6545m’, 50000)
 insert into employee values(2, null, 50000)
 insert into employee values(3, null, 50000)

	 4.	 Not null: The fields will not accept null values on which not null constraint is enforced.
For example, in the following table employee, the not null constraint is enforced on emp-
name. If employee table is already created, it can be altered to add the filed empname
with not null constraint as follows:

alter table employee add empname varchar2 (30) not null

	 5.	 Default: This constraint should be applied when we want to insert some default value,
especially when that value is repeated many times in the field. For example, in the worker
table, gender of worker is mostly ‘male’. So, default constraint can be defined for the field
gender as following.

 Create table worker(worker_ID int primary key,
 worker_name varchar2(30), gender char(1) default ‘m’)

		 To input default value in the field, keyword ‘default’ should be written instead of value.
When we do not want to insert default value, simply write the value which we want to insert.
Following are two insert statement. In the first statement, default value(‘m’) will be inserted
in the field gender and in second statement ‘f’ value will be inserted in the field gender.

 Insert into worker values(101, ‘F. Chaudhary’, default)
 Insert into worker values(102, ‘N. Chaudhary’, ‘f’)

	 6.	 Check: This constraint is used to check specific condition before we insert value in the
field, such as the length of pincode should be exactly 6 digits, itemname should start with
letter ‘I’, empname should be entered into uppercase, etc. Following is an example of
check constraints which are applied on different fields of customer table:

 Create table customer (custid int check(custid > 100
 and custid < 1000), custname varchar 2(30)

CH_6_Managing Data using Structured Query Language_Final.indd 126 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL)  |  127

 check(custname = upper(custname)),
 city varchar2 (20), pincode int check(length
 (pincode) = 6))

6.12  | T ypes of join and Set Operators
We can join multiple table using different types of joins. To join the tables, we can use different
relational operators, such as <, >, ≥, ≤, = and != in WHERE clause. Following are some join
types which can be used to join multiple tables:

	 1.	 Equijoin/Simple Join/Natural Join: When we join two or more than two tables using
an ‘=’ sign, the type of join is said to be an equi join. For example,

select * from class, student where class.
 classID = student.classcode

	 2.	 Non-equi Join: When we join two or more than two tables using a sign other than ‘=’,
the type of join is said to be an equi join. For example,

select * from class, student where class.
 class ID ≥ student.class code
	 3.	 Cross Join: When join condition is not specified in WHERE clause, the join is said to be

cross join. Cross join displays cartesian product of the tables. For example,

select * from class, student

	 4.	 Multiple Join: When we join more than two tables in a single query, the type of join is
said to be a multiple join. For example,

 select * from class, student, mark where class.
 classID = student.classcode and student.
 stdno = mark.stdno

	 5.	 Inner Join: Inner joins displays common values from the tables which are joined on a
common field. For example,

 select * from class inner join student on class.
 classID = student.class code

	 6.	 Outer Join: There are three types of outer joins.

		 Full Outer Join: Full outer join displays all the records of the left table and all the
records of the right table (i.e., it displays union of two tables). For example:

 select * from class full outer join student on class.
 class ID = student.classcode

		 Left Outer Join: Left outer join displays all the records which is on the left side and
matching records of the right side table. If the left side values do not exist in the right side
table, then null values will be displayed for the right side table’s records. For example:

 select * from class left outer join student on class.
 classID = student.classcode

CH_6_Managing Data using Structured Query Language_Final.indd 127 2/28/2014 1:06:24 PM

128  |  Chapter 6

		 Right Outer Join: Right outer join displays all the records which is on the right side and
matching records of the left side table. If the right side values do not exist in the left side
table, then null values will be displayed for the left side table’s records. For example,

 select * from class right outer join student on class.
 class ID = student.classcode

	 7.	 Self Join: If a table is joined with itself, the type of join is called, self join. For example:

 Select s1.stdname, s2.stdname from student s1, student s2
 where s1.city = s2. city and s1.stdno! = s2.stdno

		 The above query will create two alias s1 and s2 of table student and then compare city of
each record of s1 with city of each record of s2. If city is same, then it will display pair
of those students. Here, it will not display student pair whose roll number is same.

Set Operators: Set operators are also used to join tables. Following are the set operators
which we can use in Oracle:

	 1.	 Union: Union operator displays all the records from two or more tables on the basis of
selected fields. When we use union set operator, number of fields written after SELECT
in both all the queries should be same and datatype of corresponding fields should match
with one another. For example:

select class ID from class union select classcode
 from student union select classID from marks

		 The above query will display union of three tables class, student and marks.
	 2.	 Intersect: Intersect operator displays all the common records from two or more tables

on the basis of selected fields. When we use intersect set operator, number of fields
written after SELECT in both all the queries should be same and datatype of corres-
ponding fields should match with one another. For example:

 select classID from class intersect select classcode
 from student intersect select classID from marks

		 The above query will display intersection of three tables class, student and marks.
	 3.	 Minus: Minus operator displays all the records from the first table which are not there in

second table. For example:

 select class ID from class minus select classcode
 from student minus
 select class ID from marks

6.13  | S ub-query
Sub query is a SELECT query which is written within another SELECT query. It is also known
as nested query. We can perform complex queries using sub query. For example:

 Select empname from employee where
salary = (select max(salary) from employee)

The above query will display name of the employee who earns maximum salary.

CH_6_Managing Data using Structured Query Language_Final.indd 128 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL)  |  129

Following are some other examples of sub-query:

Select * from employee where empid not in
 (select empid from loan)

The above query will display details of employees who have not taken any loan.

 Select max (percentage) from result where
 class ID = ‘TY’ and percentage <

(select max(percentage) from result where classID = ‘TY’)

The above query will display the second highest percentage of class ‘TY’.

 Select r.class ID, max(r.percentage) from result
 r where r.percentage <(select max

(percentage) from result where classID = r.classID)
 group by r.class ID

The above query will display class-wise second maximum percentage. This type of query where
each sub-query is executed for each row of outer query is called co-related sub query. In this
type of query the alias is used in outer query.

 select * from class where class ID in (select
 class ID from student where std ID in (select
 stdid from marks))

The above query will first fetch classid from student table of those students whose stdid also
exists in marks table and on the basis of this, it will display class details of those classes which
are returned by the inner query.

Whenever we execute sub-query, the inner most query is executed first and on the basis of
output of inner query, outer query is executed.

6.14  | A dvances SQL Roll-up, Cube, Crosstab
Rollup and Cube are used with the GROUP BY clause. With GROUP BY, it can be used
as follows:

SELECT….GROUP BY cube/rollup (<field1>[,<field2>,….<fieldn>]

Rollup: Rollup will display group-wise summary, such as count, sum, average, minimum, maxi-
mum, etc. Consider Table 6.4 (EVENT).

If we execute the following query, then it will display in each event type how many total
number of events of a particular category. At the end of each event_type group, it will display
total number of events of each event_type. Also, at the end of total number of events of last
event_type group, it will display overall total number of events.

			� select event_type,event_category, count(event_ID) from
 event group by rollup (event_type,event_category)

The above query will display the result as given in Table 6.5

Cube: Cube also displays group-wise summary, but it starts with overall summary and then
displays each group-wise summary. It is like a cross tab summary.

CH_6_Managing Data using Structured Query Language_Final.indd 129 2/28/2014 1:06:24 PM

130  |  Chapter 6

If we execute the following query, the output given in Table 6.6 will be displayed. First, it
will display overall event count, then total number of events in each event type and, within each
event type, it will display type-wise category-wise total number of events.

			� select event_type, event_category, count (event_ID) from
event group by cube (event_type, event_category)

Table 6.4  |  EVENT

Event_ID Event_Name Event_Category Event_Type Min_Part Max_Part

 1 solo singing music solo 1 1
 2 duet singing music group 2 2
 3 group singing music group 3 8
 4 solo western singing music solo 1 1
 6 Classical Instrumental music solo 1 1
 7 skit drama group 3 10
 8 mime drama group 3 10
 9 mono acting drama solo 1 1
10 mimicry drama solo 1 1
11 elocution intellect solo 1 1
12 extempore intellect solo 1 1
13 poetry recitation intellect solo 1 1
14 book review intellect solo 1 1
15 poetry writing intellect solo 1 1
16 debate intellect group 2 2
17 collage art group 3 3
18 poster making art group 3 3
19 graffiti art group 3 3
20 cartooning art solo 1 1
21 glass painting art solo 1 1
22 rangoli art solo 1 1
23 mehendi art solo 1 1
24 salad making art solo 1 1
25 solo dancing dance solo 1 1
26 duet dancing dance group 2 2
27 group dancing dance group 3 10
 5 group western singing music group 3 8

Table 6.5  |  Output of ‘Rollup’

Event_Type Event_Category Count (Event_ID)
Group art 3
Group dance 2
Group drama 2
Group intellect 1
Group music 3
Group — 11
solo art 5
solo dance 1
solo drama 2
solo intellect 5
solo music 3
solo — 16

— — 27

CH_6_Managing Data using Structured Query Language_Final.indd 130 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL)  |  131

Table 6.6  |  Output of ‘Cube’

Event_Type Event_Category Count (Event_ID)

— — 27

— art 8

— dance 3

— drama 4

— intellect 6

— music 6
group — 11
group art 3
group dance 2
group drama 2
group intellect 1
group music 3
solo — 16
solo art 5
solo dance 1
solo drama 2
solo intellect 5
solo music 3

Crosstab: With cross tabulation, we can display row and column-wise summary. For example,
the following query will display category-wise total number of solo event and group events.

Decode: The Decode function is used to count type-wise total number of events in each
category. The first argument in decode function is a field name, second argument is a value
which we want to search in the field which is specified as first argument, third argument is
a field of which we want to find count. Table 6.7 shows output of the following query which
shows crosstab of event category and event type.

select upper (event_category) ‘EVENT CATEGORY’,
count (decode (trim(event_type),’ solo’, event_ID, NULL))
‘SOLO EVENTS’, count(decode(trim (event_type), ‘group’,
event_ID, NULL)) ‘GROUP EVENTS’ from event group by
event_category order by event_category

The following query will display crosstab event type and event category. The query will display
the output which is given in Table 6.8.

 select upper (event_type) ‘EVENT TYPE’,
 count(decode(trim(event_category),’art’,event_ID))
 ‘Artistic Events’, count
 (decode (trim (event_category), ‘dance’, event_ID))
 ‘Dancing Events’, count (decode (trim (event_category),’
 drama’, event_ID)) ‘Dramatic Events’, count (decode
 (trim (event_category),’ intellect’, event_ID))

CH_6_Managing Data using Structured Query Language_Final.indd 131 2/28/2014 1:06:24 PM

132  |  Chapter 6

 ‘Intellectual Events’, count (decode (trim (event_
 category), ‘music’, event_ID)) ‘Musical Events’
 from event group by event_type order by event_type desc

Table 6.7  |  Cross Tab of Event Table Which Shows Category-
wise Total Number of Solo and Group Events

Event Category Solo Events Group Events

ART 5 3

DANCE 1 2

DRAMA 2 2

INTELLECT 5 1

MUSIC 3 3

Table 6.8  |  Cross Tab of Event Table Which Shows Type-wise Total Number of Art, Dance,
Drama, Intellect and Music Events

Event Type Artistic Events
Dancing
Events

Dramatic
Events Intellectual Events Musical Events

SOLO 5 1 2 5 3

GROUP 3 2 2 1 3

Summary
●● The language which is provided to manipulate data stored in a relational database man-
agement system is known as Structured Query Language (SQL).

●● SQL has many commands, such as Data definition, data commands, Data Manipulation
commands, Data control commands.

●● Data definition commands are used to create, modify and delete database objects, such as
tables, views, procedures. Examples of data definition commands are CREATE TABLE,
ALTER TABLE, DROP TABLE, CREATE VIEW, ALTER VIEW, DROP VIEW, etc.

●● Data manipulation commands are used to fetch, insert, remove and change values in a
table. INSERT, UPDATE, DELETE and SELECT, etc., are data manipulation commands.

●● In SELECT statement, there are clauses FROM, WHERE, GROUP BY, HAVING and
ORDER BY. The FROM clause is only compulsory in SELECT statement; all the other
clauses are optional.

●● In the SELECT statement, after SELECT keyword, field names/* is specified. * means,
all the fields of a table. If unique records need to be displayed, then before the field names
the DISTINCT predicate is written. Also, we can specify functions and mathematical
calculations after the SELECT keyword.

●● In the FROM clause, table names are specified. Also, we can write SELECT statement
in FROM clause.

CH_6_Managing Data using Structured Query Language_Final.indd 132 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL)  |  133

●● WHERE is used to write conditions on record level. After WHERE we can also write
sub-queries.

●● GROUP BY is used to group records and display summary of groups. We can group more
than one field.

●● The HAVING clause is written only with the GROUP BY clause to specify condition on
aggregate functions. HAVING is used to write a condition on group level, while WHERE
is used to write a condition on row level.

●● ORDER BY is used to arrange records in ascending or descending order. Records can be
arranged on multiple fields also.

●● With group by clause, we can rollup and cube to show summary on different groups.
●● There are many functions which we can use to format data and for calculation, such as
string functions, mathematical functions, conversion functions and date functions.

●● Aggregate functions are used to show count, maximum, minimum, sum and average of
column values.

●● There are table level and field level constraints which we can enforce on table and field.
They will validate the data before data is inserted into database. If any constraint is vio-
lated, error will be displayed. The constraints which are written on single field are called
field level constraints and the constraints which are written on more than one field are
called table level constraints.

●● Various types of constraints are the primary key constraint, foreign key constraint, unique
constraint, default constraint, not null constraint and check constraint.

●● We can join multiple tables using different types of joins, such as inner join, outer join,
equijoin, nonequi join, self join, cross join and multiple join.

●● There are some special operators which are used with WHERE clause. They are LIKE,
BETWEEN, IN, EXISTS and IS NULL. LIKE operator is used to match patterns in data,
BETWEEN operator is used with numeric fields to check if value lies within the range or
not, IN will check that field value match with the specified list or values or not, EXISTS
will check existence of data in a table and IS NULL will check whether the field contains
null or not.

●● Besides join types, there are some set operators which are used to join tables. They are UNION,
INTERSECT and MINUS. To use these operators, the tables or SELECT statements, used in
queries, should be union-compatible. Union-compatible means the tables or SELECT state-
ments should contain same number of fields and data types of corresponding fields should
also match.

●● For complex data retrieval, we can use sub-query or nested query. The SELECT state-
ment which is written within another SELECT statement is called sub-query.

●● Also, crosstab results can be displayed using decode function.

Exercises

	 1.	 What is SQL?
	 2.	 Define Data Definition and Data Manipulation Commands.
	 3.	 Explain SELECT statement with all the clauses.
	 4.	 Write syntax of INSERT, DELETE and UPDATE statements.

CH_6_Managing Data using Structured Query Language_Final.indd 133 2/28/2014 1:06:24 PM

134  |  Chapter 6

	 5.	 Give one-one examples of each of the following operators:
	 a.	 Is null				 b.  Is not null
	 c.	 In				 d.  Not in
	 e.	 Exists				 f.  Not exists
	 g.	 Between			 h.  Not between
	 i.	 Like				 j.  Not like
	 6.	 Explain different types of constraints. Differentiate between field level and table level

constraints.
	 7.	 Write the differences between WHERE and HAVING clauses.
	 8.	 What is the difference between count(*) and count(field_name)?
	 9.	 Which points should be kept in mind while using GROUP BY clause in SELECT?
	 10.	 Describe different types of joins with examples.
	 11.	 What is co-related query? When is it used? Give an example.
	 12.	 Write syntax and return type of any two of the given functions:
	 a.	 Aggregate functions		 b.  Mathematical/numerical functions
	 c.	 String/text functions		 d.  Date functions
	 e.	 Conversion functions
	 13.	 Create the following tables with appropriate data types and constraints. Insert given re-

cords and solve the queries.

Kindergarten

kg ID Kg Name Main Branch Sub Branch City State

1 Kidzee Navrangpura Naranpura Ahmedabad Gujarat

2 Kidzee Navrangpura Satellite Ahmedabad Gujarat

3 Thumbelina Naranpura Ahmedabad Gujarat

4 Eurokids Naranpura Vastrapur Ahmedabad Gujarat

5 Redbricks Satellite Paldi Ahmedabad Gujarat

6 Eurokids Citylite Surat Gujarat

7 Eorilids Alkapuri Makarpura Baroda Gujarat

Class Details

Class Code Desc1 Min_age_Required Others

PG Play Group 2 Admission given in the month of November
and May.

NUR Nursery 2.5 Admissions open in the month of April

JrKG Junior KG 3.5 Admissions open in the month of April

CH_6_Managing Data using Structured Query Language_Final.indd 134 2/28/2014 1:06:25 PM

Managing Data Using Structured Query Language (SQL)  |  135

KGdetails

Kg ID Class ID Division Capacity

1 PG 1 30

1 NUR 1 25

1 NUR 2 25

1 JrKG 1 40

2 NUR 1 20

2 JrKG 1 30

4 NUR 1 30

4 NUR 2 30

4 JrKG 1 30

	 i.	 Display average capacity of the class ‘Nursery’.
	 ii.	 Display names of kindergartens which do not have any sub-branch.
	 iii.	 Display city-wise total number of kindergartens.
	 iv.	 Display intersection of classdetails and kgdetails tables.
	 v.	 Display class-wise minimum age requirement.
	 vi.	 Display details of kindergartens of state ‘Gujarat’.
	 vii.	 Display total capacity of class ‘Nursery’.
	 viii.	 Display the sub-branches of kindergarten, ‘Eurokids’.
	 ix.	 Display names of kindergartens which have more than two branches in the same city.
	 x.	 Display state-wise total number of kindergartens.
	 xi.	 Display details of kindergarten which exists in the kindergarten table, but not in

KG details.
	 xii.	 Display kindergarten name, main branch and total number of sub branches.
	 xiii.	 Copy records of table KGdetails in a new table named KGdetails_2010
	 xiv.	 Display name of the kindergarten which has maximum number of sub-branches.
	 xv.	 Display kgid which has maximum no. of divisions of class ‘Jr. KG’.
	 xvi.	 Display union of KGdetails and Kindergarten table.
	 xvii.	 Display Kindergarten names only once from the kindergarten table.
	 xviii.	 Display details of top 2 classes which have maximum capacity.
	 xix.	 Display kindergarten names which contains the word ‘kid’.
	 xx.	 Display total capacity from KGdetails table.
	 xxi.	 Display name of the main branch for which sub-branch contains null.
	 xxii.	 Display all the details of kindergarten where capacity is 25 or 30.
	 xxiii.	 Display name of the city which has the maximum length.
	 xxiv.	 Display total no. of records of KGdetails.
	 xv.	 Display unique records from KGdetails.

CH_6_Managing Data using Structured Query Language_Final.indd 135 2/28/2014 1:06:25 PM

136  |  Chapter 6

	 14.	 Create the following tables with appropriate data types and constraints. Insert given re-
cords and solve the queries.

Item

Item Code Item Desc Price Qty_on_Hand (in Pcs.) Reorder_Level

I003 Polo-neck T-shirt 345.00 50 25

I004 Turtle-neck T-shirt 450.00 50 25

I005 Hooded T-shirt 750.00 5 10

I006 Round-neck T-shirt 299.00 100 50

Customer

Cust Code Cust Name Address Balance

C1 A.R. Patel 23, Acme house 5000.00

C2 S.M. Sharma Navrangpura 2000.00

Invoice

Invoice No Invdate Cust Code Total_inv_Amt

1034 23-03-1999 C1 3522.00

Invoice Detail

Invoice No Item No Qty Price Total_Price

1034 I004 2 450.00 900.00

1034 I003 5 345.00 1725.00

1034 I006 3 299.00 897.00

	 i.	 Display name of items, which are below reorder level.
	 ii.	 Display information of all customers who have purchased items for which price is

more than `1000.00.
	 iii.	 Display all item names, which are not purchased by any customer.
	 iv.	 Display information of all items, which are purchased between 1st January, 2001 to

28th February, 2001.
	 v.	 Find second maximum price from the ITEM Table along with itemcode.
	 vi.	 Display invoice wise total price in descending order of invoiceno.
	 vii.	 Display union of ITEM and INVOICE Tables.
	 viii.	 Display customer number and customer name whose name ends with letter ‘a’ or ‘i’.
	 ix.	 Display number of items that are sold in the month of ‘May’.
	 x.	 Print all the records of ITEM table for which quantity on hand is less than reordered

level.
	 xi.	 Display sum of all item quantities, for those items, which are purchased by any cus-

tomer.

CH_6_Managing Data using Structured Query Language_Final.indd 136 2/28/2014 1:06:25 PM

Managing Data Using Structured Query Language (SQL)  |  137

	 xii.	 Copy all the records of the Invoice Table in a new table named inv_history.
	 xiii.	 Display first ten characters of customer name.
	 xiv.	 Display the number of items purchased up to the current date.
	 xv.	 Display information of all items for which quantity is same.
	 xvi.	 Display sum of the field ‘Total_inv_amt’.
	 xvii.	 Display details of itemno ‘I006’.
	 xviii.	 Change price of itemno I002 to `500.00.
	 xix.	 Delete record if item I001.
	 xx.	 Display join of Customer, Invoice and Invoicedetail tables.
	 xxi.	 Display item details in descending order of price.
	 xxii.	 Display 12% records of item table.
	 xxiii.	 Display names of the items which are purchased maximum.
	 xxiv.	 Display item names which contain the word ‘neck’.
	 xxv.	 Display unique item names.
	 xvi.	 Decrease price of each item by `100.00.
	 xvii.	 Display multiplication of the fields qty and price and give the name ‘Total Price’ to

this field.
	 xviii.	 Display details of customers with balance >1000.00 and <7000.00.
	 xxix.	 Display first ten characters of the address field.
	 xxx.	 Display length of the itemdesc field along with the description of items.

CH_6_Managing Data using Structured Query Language_Final.indd 137 2/28/2014 1:06:25 PM

CHAPTER

7.1  |  Introduction
PL/SQL is an abbreviation of Procedural Language/Structured Query Language. We can create
small programs using PL/SQL named and unnamed blocks.

By writing SQL update/select/insert/delete statement, we can apply same condition on set of
records, but we cannot apply different conditions on different records depending upon the field
values. It could be done by declaring cursor and accessing the cursor within the PL/SQL block.

We may also write stored procedure or function which could be called from remote com-
puter. Using exceptions, system errors could be trapped or handled. Triggers could be written to
apply validations at record level and to apply security on tables. We can combine PL/SQL
blocks within a package and access them.

7.2  |  Block of PL/SQL in Oracle
PL/SQL block has three basic parts: a declarative part (DECLARE), an executable part (BEGIN
... END) and an exception-handling part (EXCEPTION). Variables and cursors are defined in
Declare section. Declare section is optional. Declare section should be written first in the block.
After Declare, body part is written within Begin … End, which is compulsory to write in PL/
SQL block. Operations could be performed in this executable part. Errors raised during execu-
tion can be handled within the exception-handling part. User can define his/her own exception
in this part.

7

Introduction to PL/SQL

•	 Creating functions in Oracle.
•	 Creating procedures in Oracle.
•	 Applying validations and security through triggers in Oracle.
•	 Overview of packages in Oracle.

Chapter Objectives

CH_7_Introduction to PL_SQL_Final.indd 138 2/26/2014 3:43:24 PM

Introduction to PL/SQL  |  139

PL/SQL Block Structure:
Declare
 Declarations

Begin
Statements

Exception
Error handlers

End;

Following is an example of PL/SQL unnamed block:

 DECLARE
   Sub_marks NUMBER;
   Sub_credit NUMBER;
   Total_credit NUMBER;
   Grade_point float;
 BEGIN
 Grade_point = (sub_marks*sub_credit)/total_credit
 dbms_output.put_line (‘Grade Points = ||grade_point’);
 END;
 /

Example 2
			 declare
			 fname char(10):=‘&fname’;
			 lname char(10):=‘&lname’;
			 begin
 dbms_output.put_line(‘Full name is:
 ‘||rtrim(fname)||’, ‘||lname);
			 end;

7.3  | C ursors in Oracle
When any SQL statement is executed, it results into a record set. This record set is allocated
some area in a memory. We can give name to this area, which is known as a cursor. Cursor
points to that area.

When you declare a cursor, you get a pointer variable, which does not point any thing. When
the cursor is opened, memory is allocated and the cursor structure is created. The cursor variable
now points the cursor. When the cursor is closed, the memory allocated for the cursor is released.

Cursors allow the programmer to retrieve data from a table and perform actions on that data
one row at a time. There are two types of cursors—implicit cursors and explicit cursors.

	 1.	 Implicit cursor: Implicit cursor could be declared for the select query which returns
only one row/record. Implicit cursor is a select statement which is written in the body

CH_7_Introduction to PL_SQL_Final.indd 139 2/26/2014 3:43:24 PM

140  |  Chapter 7

part (begin…end) of a PL/SQL block. The oracle’s implicit cursor is referred with the
name SQL. When defining implicit cursor, it is required to write ‘into’ after select state-
ment. Following is the syntax to define implicit cursor.

SELECT <fieldname 1>, <fieldname 2>,
 … INTO <variable_name 1>,

 <variable_name 2>,
 … FROM <table_name>;

The above select statement should return exact one row.
For example,
 DECLARE
 Cnt int;
 BEGIN
 SELECT count(stdno)
 INTO cnt FROM student;

Dbms_output.put_line(‘Total no. of students are:
‘||cnt);

 END;

Note: stdno is a column of the table student and cnt is a variable used to store total number of
students.

	 2.	 Explicit Cursor: Explicit cursors is used in queries that return multiple rows. Explicit
cursor is declared in the DECLARE section of PL/SQL program. Explicit cursor is a
user-defined cursor. Following is the syntax to define explicit cursor.

CURSOR <cursor-name> IS <select statement>

For example,
DECLARE
 CURSOR cur_emp IS SELECT ename FROM EMP;
BEGIN

END;

After declaring the explicit cursor, we need to follow the steps given below to retrieve and pro-
cess records which this cursor contains.
	 i.	 Open cursor. (syntax: OPEN <cursor-name>;)
		 Example, open cur_std;
	 ii.	 Fetch records in a loop and process them.
		 (syntax: FETCH <cursor-name> INTO <variables>;
		 Example, fetch cur_std into c_std_rec;
	 iii.	 Specify condition to exit from the loop.
	 iv.	 Close cursor.(syntax: CLOSE <cursor-name>;)
		 Example, close cur_std;

CH_7_Introduction to PL_SQL_Final.indd 140 2/26/2014 3:43:24 PM

Introduction to PL/SQL  |  141

Attributes: Following are the attributes which are used to define variables of type—row and
column.

	 1.	 %type—It is used to define a variable with the same datatype of any table’s column/field.
For example, in a SUPPLIER table there is a column named last_name. If we want to
define a variable which should have datatype of this last_name column, we can write the
following statement in the declare section of PL/SQL block.

l_nm supplier.last_name%TYPE;

		 It will define a variable named l_nm which will have datatype of the column last_name
of table supplier.

	 2.	 %rowtype—–It is used to define a variable of record type which matches any table’s re-
cord. For example, to define a record type variable which should store records of supplier
table, the following statement should be written in the declare section of PL/SQL block.

Rec_sup supplier%rowtype;

		 It will define a variable named rec_sup which will store one record of the table supplier.

Cursor Attributes: Cursor attributes start with symbol %. Following are the cursor attributes
which are frequently used with cursor.

	 1.	 %notfound—It returns ‘true’ if there is not a single record in the cursor and returns
‘false’ if there is at least one record in a cursor.

	 2.	 %found—It returns ‘false’ if there is not a single record in the cursor and returns ‘true’
if there is at least one record in a cursor.

	 3.	 %rowcount—It returns total number of records fetched by the cursor.
	 4.	 %isopen—It returns ‘true’ if the cursor is open and ‘false’ if cursor is not open.

Cursor FOR loop: The Cursor FOR loop can be used to process multiple records. There are
two benefits with cursor for Loop, these are as:

	 1.	 It implicitly declares a %ROWTYPE variable.
	 2.	 Cursor For Loop itself opens a cursor, read records then closes the cursor automatically.

Hence OPEN, FETCH and CLOSE statements are not necessary in it.

		 For example,

 Declare
 Cursor c1 is select * from emp;
 R1 c1%rowtype;
 Begin
 For r1 in c1 loop
 Dbms_output.put_line(r1.eid);
 End loop;
	    End;

We have not used OPEN, FETCH and CLOSE in the above example as for cursor for loop does
it automatically.

CH_7_Introduction to PL_SQL_Final.indd 141 2/26/2014 3:43:24 PM

142  |  Chapter 7

To update or delete rows, the cursor must be defined with the FOR UPDATE clause. ‘For
update of’ clause locks the current row exclusively for updation. The Update or Delete state-
ment must be declared with WHERE CURRENT OF clause.
For example,
 Declare
 Cursor c1 is select * from emp for update of salary;
 r1 c1%rowtype;
 Begin
 For r1 in c1 loop
 if r1.sal<20000 then
 Update emp set salary = r1.salary + 1000 where current
 of c1;
 End if;
 End loop;
 End;

7.4  |  Procedures in Oracle
Procedure is a named pl/sql block because it should contain some name. A procedure con-
tains declaration and body part. Procedure can take parameters. Procedures which do not take
parameters are written without a parenthesis. Following is the syntax to write a procedure.

 CREATE OR REPLACE PROCEDURE
 <procedure-name>(<parameter 1> [in/out/in out] <datatype>, …….)
 AS <variable declaration>
 BEGIN
 <procedure body>
 EXCEPTION
 <Exception handlers>
 END;

For example,
 create or replace procedure emp_age(sdt date, ldt date) as
 cursor c_emp is select fname, deptno,
 trunc(to_char(sysdate-bdate)/365.5)

 age from employee where bdate between sdt and

 ldt and rownum = 1 group by deptno, fname,

 trunc(to_char (sysdate-bdate)/365.5);

 r_emp c_emp%rowtype;
begin
 open c_emp;
 loop
 fetch c_emp into r_emp;
 exit when c_emp%not found;

CH_7_Introduction to PL_SQL_Final.indd 142 2/26/2014 3:43:24 PM

Introduction to PL/SQL  |  143

 dbms_output.put_line(r_emp.fname||’ ‘||r_emp.
	 deptno||’ ‘||r_emp.age);
 end loop;
		 close c_emp;
	 end;

Parameters: Parameters are used to pass the values to the procedure. There are three types of
parameters—IN, OUT and IN OUT.

		 IN parameter is used to pass the values to the called procedure. It works as read only
within the procedure.

		 OUT parameter returns the value from the procedure.
		 IN OUT parameter allows to pass and return values from the procedure. Default

parameter type is IN.

A procedure can be executed by writing EXEC <procedure_name>; on the SQL prompt. It
can also be executed by using a calling block. Following is a calling block which calls proce-
dure named proc1.

BEGIN
 PROC1;
END;

7.5  | F unctions in Oracle
A function is a named block, which is used to compute a value. Function returns only one
value. Following is the syntax to create the function.

CREATE [OR REPLACE] FUNCTION <function-name> ([pa-
rameter 1, parameter 2, …)] RETURN <datatype> IAS
  [variable declarations…]
BEGIN
  Executable statements
EXCEPTION
  Exception handlers
END;

For example,

 Create or replace function cal(n1 int, n 2 int) return int as
   S int;
 Begin
   S: = n 1 + n 2;
   Return S;
 End;

The function is executed by writing the select statement on the SQL prompt or it can be called
using a calling block. For example, select cal(20, 30) from dual will call the function call and
will display sum of 20 and 30 which is 50.

CH_7_Introduction to PL_SQL_Final.indd 143 2/26/2014 3:43:24 PM

144  |  Chapter 7

7.6  | T riggers in Oracle
Trigger is a PL/SQL block which is used to write validation rules on record when data is
manipulated. Trigger is fired automatically depending on the manipulation operation.

Figure 7.1 shows different types of triggers.
Statement level triggers are fired for any DML operation. When we define statement level

trigger, ‘for each row’ statement is not written and ‘old’ and ‘new’ variables cannot be used.
Statement level triggers are used when data are not manipulated.

Row level triggers are fired for each row which are affected by DML operation. We must
write ‘for each row’ statement when we define row level trigger. ‘Old’ and ‘new’ variables can
also be used with this type of trigger.

Each row and statement level triggers could be written before insert or delete or update and
after insert or delete or update.

Following is an example of statement-level trigger.

create or replace trigger emp1 before insert on employee

		   begin
 if (to_char(sysdate,‘dy’) = ‘thu’
 or to_char(sysdate,‘dy’) = ‘sun’)

			 then
		 raise_application_error(-20501,‘may not
		 change employee table during the weekend’);
		 end if;
			 if (to_char(sysdate,‘hh24’)<10 or
			 to_char(sysdate,‘hh24’)> = 18) then
			 raise_application_error(-20501,‘may change
			 employee table during working hours’);
			 end if;
		   end;

Before After

1. Insert
2. Delete
3. Update

1. Insert
2. Delete
3. Update

Before After

1. Insert
2. Delete
3. Update

1. Insert
2. Delete
3. Update

Types of Triggers

Row-levelStatement-level

Figure 7.1  |  Types of triggers.

CH_7_Introduction to PL_SQL_Final.indd 144 2/26/2014 3:43:24 PM

Introduction to PL/SQL  |  145

Following is an example of row-level trigger.

create or replace trigger tr1_11 after insert on mark for each row

 declare
 t int;
 p float;
 g char (1);
 status char (4);

 begin
 t: = :new.mark 1 + :new.mark 2 + :new.mark 3;
 p: = t/3;
   if (:new.mark 1 < 36 or:new.mark 2 < 36 or:new.mark 3 < 36)
  then
 status: = ‘fail’;
 g: = ‘c’;
 else
 status: = ‘pass’;
 if p> = 70 then
 g: = ‘A’;
 else
 g: = ‘B’;
 end if;
 end if;

 insert into result values(:new.stdno, t, p, status,g);
 end;

Following is an example of instead of trigger which is written on a view instead of table.

create or replace trigger instr1 instead of insert on v2 for
each row

 begin
 if (substr(:new.itemname, 1, 1) = ‘s’ or substr(:new.

 itemname, 1, 1) = ‘S’) then

 raise_application_error(-20000, ‘Invalid item name... ‘);

 end if;
 end;

7.7  | O verview of Packages in Oracle
Package is a collection of functions and procedures. Package has two sections—package dec-
laration and package body. Package declaration contains function or procedure declaration and
package body contains body of functions or procedures.

CH_7_Introduction to PL_SQL_Final.indd 145 2/26/2014 3:43:24 PM

146  |  Chapter 7

Summary
●● PL/SQL is an extension of SQL, which is used to write small programs such as functions
and procedures.

●● Procedures and functions are named PL/SQL block.
●● Procedure could be called through calling block or by writing ‘exec proc_name’ statement.
●● Function could be called through calling block or by writing select statement.
●● Function returns exactly one value.
●● We can manipulate individual row by defining cursor.
●● There are two types of cursors—implicit and explicit.
●● The built-in cursor of oracle is known as implicit cursor and it could be referred with
name SQL.

●● Explicit cursor is a user-defined cursor which has some name.
●● Cursor contains active recordset which is assigned some area in memory. Cursor is a kind
of pointer which points to the current record in this recordset.

●● Triggers are fired automatically when any DML statement is executed. Triggers could be
defined on statement level or row level.

●● Row level trigger is used when some data is manipulated.
●● Each statement and row level triggers are written before insert or delete or update and
after insert or delete or update.

Exercises

	 1.	 What is a cursor? Explain implicit and explicit cursors. With which name the implicit
cursor is referred?

	 2.	 Explain the cursor attributes %type, %rowtype, %found and %notfound.
	 3.	 Write syntax of cursor for loop and give an example.
	 4.	 Differentiate between procedure and function.
	 5.	 What are ‘in’ and ‘out’ parameters?
	 6.	 Fill in the blanks.
	 a.	 A function can return ___________ value.
	 b.	 To define a variable whose data type matches the data type of a table’s field, the

_________ cursor attribute is used.
	 c.	 _____________ command is used to execute the procedure.
	 d.	 PL/SQL is an abbreviation of __________________________.
	 e.	 ____________ command retrieves the record from a cursor.

LAB ACTIVITIES
	 1.	 Create a procedure which will display the employees in descending order of employee

name.
	 2.	 Write a procedure to accept start date, end date and subject code as inputs and print

student attendance report in ascending order of student number with student name, total
number of lectures attended of that subject and percentage.

CH_7_Introduction to PL_SQL_Final.indd 146 2/26/2014 3:43:24 PM

Introduction to PL/SQL  |  147

	 3.	 Create a function that will return total number of employees whose joining date is
between two inputted dates.

	 4.	 Create a function that will return age of a given employee.
	 5.	 Write a function which will take emp_id as an argument and returns a day on which

employee was born.
	 6.	 Write a trigger that is fired after an insert statement is executed for the MARK table. The

trigger writes the student’s identification number, total, percentage, grade and status in
the RESULT table. (Student’s status is fail if he fails in any subject and pass if he gets
more than 35 marks in each subject. Grade is A if percentage ≥70, B if percentage ≥60
and percentage <70, C if percentage ≥50 and percentage <60, D if percentage ≥40 and
percentage <50 and E if percentage <40.

	 7.	 Write a function that will take department number as an input and will return employee
name along with salary from EMPLOYEE table who earned maximum.

	 8.	 Write a PL/SQL block that will display student’s result with total number of passed and
failed students. Also display number of students who get distinction, first class, second
class and pass class.

CH_7_Introduction to PL_SQL_Final.indd 147 2/26/2014 3:43:24 PM

CHAPTER
8

Transaction Management
in Database

•	 Defining transaction.
•	 Understanding transaction properties.
•	 Knowing different states of transactions.
•	 Understanding concurrent execution of a transaction and problems which occur during con-
current execution.

•	 Identifying problem of deadlock.
•	 Learning backup and recovery procedure.
•	 Understanding importance of security, integrity and authorization in database transaction.

Chapter Objectives

8.1  | I ntroduction
When the database contains large volume of data, which is shared among many users for	
reading and writing, it is very important that data is read and updated correctly during the	
transaction. Transaction should be completed successfully; otherwise, the database will contain	
inconsistent data.

Moreover, when the transaction fails due to some errors (application or system or another
error), data should be recovered properly after the failure. In this chapter, transactions are dis-
cussed with recovery and security requirements. Also, the problems which may occur during
the simultaneous execution of transaction and how they can be avoided are also discussed.

8.2  | D efinition of Transaction
When user reads/writes/removes data from/to the database (Tables), in simple language it
is called transaction. To do data manipulation, SQL commands, e.g., INSERT, UPDATE,	
DELETE and SELECT are used. Therefore, in other words, when we execute any data manipu-
lation commands in database, it is called transaction. A single transaction can contain sequence
of many data manipulation commands. In this case, the transaction is said to be completed

CH_8_Transaction Management in Database_Final.indd 148 2/26/2014 5:31:53 PM

Transaction Management in Database  |  149

successfully when all the commands are executed successfully and changes are recorded in the
database permanently. This can be achieved by executing ‘COMMIT’ command at the end of
the transaction.

Because of some reason, if some of the statements are executed, but some are not, then upda-
tions are done partially in the database. It is called unsuccessful completion of transaction. In
this case, the partial changes made should be undone and the transaction should be executed
again. To undo the partial changes, which are made to the database, the ‘ROLLBACK’ com-
mand is used.

The care for saving changes permanently (through COMMIT) and undoing the changes
(through ROLLBACK) is taken by the system component ‘transaction manager’ in most of
the DBMS.

Figure 8.1 shows an example of a transaction in which there are two SQL statements which
should be executed and committed together. The two statements are as follows:

 insert into instalment values(yr, st, cl, amt, sysdate);
 update student set remaining_amt = remaining_amt
 where year = yr and stdno = st and trim(class ID) = cl;

The INSERT statement adds details of fees instalment paid and UPDATE statement subtracts
the instalment amount from the remaining payable amount.

The procedure given in Figure 8.3 shows how fee-payment transaction process is done. The
Tables involved in the transaction are STUDENT, INSTALMENT and FEES_TO_BE_PAID.
To create these Tables in Oracle, the syntax is given in Figure 8.2. To execute and see the
result of this procedure, some sample data is given in Table 8.1 FEES_TO_BE_PAID and	

Figure 8.1  |  Example of a fees payment transaction.

Student studying in fy, sy or ty pays the fee
installment for a particular year

New record is inserted into Installment
table by executing Insert statement

Student table is updated by executing
Update statement

Begin transaction

End transaction
(Successful completion)

Commit
(Save changes permanently)

End transaction
(Unsuccessful completion)
Database will be in the previous state.

Rollback
(Undo all changes)

CH_8_Transaction Management in Database_Final.indd 149 2/26/2014 5:31:54 PM

150  |  Chapter 8

create table fees_to_be_paid (year int, classid char(5),
annual_fees int)

create table student (year int, stdno int, classid
char(5),stdname char(30), remaining_amt int)

create table installment (year int, stdno int, classid
char(5), amt_paid int, inst_date date)

Figure 8.2  |  Syntax to create Tables 8.1 and 8.2.

create or replace procedure calfees(yr int, st int, cl char, amt int) as
	 cursor c_fees is select * from student where year = yr and
	 stdno = st and

	 trim (class ID) = cl;
cursor c_inst is select count(*) m from installment
where year = yr and stdno = st
	 and trim(class ID) = cl;

	 cursor c_anfees is select * from fees_to_be_paid
	 where year = yr and
		 trim(class ID) = cl;
	 r_fees c_fees%rowtype;

r_inst c_inst%rowtype;
r_anfees c_anfees%rowtype;

begin
open c_fees;
open c_inst;
open c_anfees;
fetch c_inst into r_inst;
fetch c_fees into r_fees;
fetch c_anfees into r_anfees;
if c_inst%notfound then
 insert into installment values (yr, st, cl, amt, sysdate);

 update student set remaining_amt = r_anfees.annual_fees-amt;
else

 if r_fees.remaining_amt ≤ 0 then
dbms_output.put_line (‘Fees already paid...’);

 else
insert into installment values(yr,st,cl, amt,sysdate);
update student set remaining_amt = remaining_amt-amt
where year = yr
 and stdno = st and trim(class ID) = cl;

 end if;
end if;
close c_fees;
close c_inst;
close c_anfees;

end

Figure 8.3  |  Procedure to execute fee payment transaction.

Table 8.1  |  Sample Data in Table FEES_TO_BE_PAID

Year Class ID Annual_Fees
2012 fybca 48000
2012 sybca 45000
2012 tybca 42000

CH_8_Transaction Management in Database_Final.indd 150 2/26/2014 5:31:54 PM

Transaction Management in Database  |  151

Table 8.2 STUDENT and Data will be inserted automatically into the INSTALMENT Table
when we will run this procedure by executing calling block given in Figure 8.4.

Student pays fees in instalments throughout the year. Here, a transaction means ‘payment of
fees of each student in each instalment’. When student pays fees, records are selected from
three Tables and two Tables instalment and student are updated using INSERT and UPDATE
statements respectively. One transaction is said to be completed when these two statements are	
executed successfully. If, for some reason, any one of the statement is executed and another is not
executed, the transaction will not be completed and the database will be in inconsistent state. This
should not happen. Therefore, in this case, the whole transaction should be rolled back or should be
committed. No intermediate state is possible, i.e., atomicity should be maintained.

There are two commands ‘commit’ and ‘rollback’ which are used to save changes perma-
nently and undo changes respectively. If we want to save part of transaction, we may use ‘save-
point’ command. The ‘savepoint <savepoint_name>’ command can be written anywhere in the
process and later in the program ‘rollback to <savepoint name>’ command can be used which
will undo the changes up to that specified savepoint. The changes which are done before that
savepoint will remain as it is. They would not be rolled back.

For example, in the procedure as given in Figure 8.5, there is a savepoint ‘undo_payment’
which will undo the changes which are made after this savepoint, in case, if the instalment amount	
entered by the calling block is more than the fees to be paid. For example, if actual fees is
`48,000 and, by mistake instalment amount entered in calling block is `4,80,000 (it means,
whether we are paying more than the actual amount).

Thus, if the amount entered is more than the instalment amount, the changes done after save-
point will be undone.

Table 8.2  |  Sample Data in Table STUDENT

Year STD No Class ID STD Name Remaining_AMT

2012 1 fybca Sumeenkaur Rattan 48000

2012 2 fybca Jimit Shah 48000

2012 3 fybca Nikhil Chopra 48000

2012 4 fybca Shubhangi Goel 48000

2012 5 fybca Gurmukhsingh Jandu 48000

2012 6 fybca Aditi Kothawala 48000

2012 7 fybca Smit Shah 48000

2012 8 fybca Rushang Shah 48000

declare

begin

 calfees(2012,8,‘fybca’,16000);

end

Figure 8.4  |  Calling block to execute the procedure given in Figure 8.1.

CH_8_Transaction Management in Database_Final.indd 151 2/26/2014 5:31:54 PM

152  |  Chapter 8

8.3  | P roperties of Transaction
To ensure the successful execution of a transaction, the four properties of ACID (i.e., Atomicity, Con-
sistency, Isolation and Durability) should be satisfied. If not, then the database may contain inconsis-
tent and incomplete data on failure of a transaction. The four ACID properties are explained below:

	 1.	Atomicity: By atomic, it means that all the statements of a transaction are either success-
fully completed or rolled back, i.e., in both the cases database should contain consistent
data. If transaction is successful, then changes are saved permanently and if transaction

create or replace procedure calfees (yr int, st int, cl char, amt int) as
 cursor c_fees is select * from student
 where year = yr and stdno = st and trim (class ID) = cl;
 cursor c_inst is select count(*) m from installment
 where year = yr and stdno = st and

trim(class ID) = cl;
 cursor c_anfees is select * from fees_to_be_paid
 where year = yr and trim (class ID) = cl;
 r_fees c_fees%rowtype;
 r_inst c_inst%rowtype;
 r_anfees c_anfees%rowtype;
 a int;
begin
 open c_fees;
 open c_inst;
 open c_anfees;
 fetch c_inst into r_inst;
 fetch c_fees into r_fees;
 fetch c_anfees into r_anfees;
 savepoint undo_payment;
 if c_inst%notfound then
 insert into installment values(yr, st, cl, amt,sysdate);
 update student set remaining_amt = r_anfees.annual_fees-amt;
 else
 if r_fees.remaining_amt<=0 then
 dbms_output.put_line(‘Fees already paid...’);
 else
 insert into installment values (yr, st, cl, amt, sysdate);
 update student set remaining_amt = remaining_amt - amt
 where year=yr and
 stdno=st and trim(class ID) = cl;
 end if;
 end if;
 select sum(amt) into a from installment
 where year=yr and stdno = st and
 trim(class ID) = cl;
 if a > r_anfees.annual_fees then
 rollback to undo_payment;
 end if;
 commit;
 close c_fees;
 close c_inst;
 close c_anfees;
end

Figure 8.5  |  Example of savepoint during transaction.

CH_8_Transaction Management in Database_Final.indd 152 2/26/2014 5:31:54 PM

Transaction Management in Database  |  153

is not successful, all the changes should be undone. No intermediate state is possible.
This is shown in Figure 8.1. COMMIT ensures that changes are permanently made into
database and rollback insures that because of failure, the partial changes which are made
should be undone and the database should be in the previous consistent state. The incom-
plete transaction could be executed later on. Oracle supports statement-level (any DML
statement) atomicity.

	 2.	Consistency: An execution of a transaction should keep database into consistent state.
The consistent state may be the previous or the next one. Consider the following example
of a transaction, in which there are two SQL statements which should be executed into
sequence and committed together. It is explained in Figure 8.6.

	 Insert into participant values (103,‘Shefali Nik’,
 ‘DBMS23’, ‘21-May-2013’, ‘31-May-2013’, ‘HLICA’, 2000.00);
	 Update registration set total_fees = total_fees + 2000.00
 where workshop_ID = ‘DBMS23’;

	 	 The example in Figure 8.6 shows that the database should be in consistent state in case
of either successful execution or unsuccessful execution of a transaction. If it is partially
committed or rolled back, the database will contain inconsistent data and will be in an
inconsistent state, which should not happen.

	 3.	 Isolation: The transaction should be isolated from other transactions until its execution
is completed, i.e., when one transaction is updating the data, no other transaction can
update that data until the first one releases the data. Isolation can be guaranteed with
serializable execution of a transaction. If only single transaction is executed at a time,	

Figure 8.6  |  Example of a transaction which should ensure consistent data after it is executed.

Before
execution of
transaction

After
successful
execution of
transaction

After
partial
execution of
transaction

Database’s
previous (consistent)
state

Database’s
next (consistent)
state

Insert and
Update

Start transaction

Commit?
nono

Rollback?

yes

yes

Database in
inconsistent state







CH_8_Transaction Management in Database_Final.indd 153 2/26/2014 5:31:54 PM

154  |  Chapter 8

it automatically ensures the serializability and, hence isolation. But when many transac-
tions are executed simultaneously, there are three types of interactions between transac-
tions which are defined as follows:

	 i.	Dirty read: When transaction reads uncommitted data, it is called dirty read.
	 ii.	Non-repeatable read: When transaction reads data at different time which is commit-

ted by another transaction and view new data, it is called non-repeatable read.
	 iii.	Phantom read: When a transaction runs query again and view newly inserted rows

by another committed transaction, it is called phantom read.

	 	 There are four types of isolation levels:

	 i.	Read uncommitted: Oracle does not allow read uncommitted, i.e., dirty read.
	 ii.	Read committed: It is the default isolation mode for Oracle database.
	 iii.	Repeatable read: When in set transaction command isolation mode is set to ‘serial-

izable’, Oracle supports it, otherwise not.
	 iv.	Serializable: When in set transaction command isolation mode is set to ‘serializable’,	

Oracle supports it, otherwise not. The example to set isolation mode to ‘serializable’
is reflected as follows:

		 declare

 			 sno int;

		 begin

			 set transaction isolation level serializable;

			 select count (std no) into sno from student;

			 dbms_output.put_line (‘Total students: ’||sno);

			 commit;

 		 end

	 	 In Oracle, we may set isolation level either ‘serializable’ or ‘read committed’. The ex-
ample of isolation level ‘read committed’ is given as follows:

		 declare

 			 sno int;

		 begin

			 set transaction isolation level read committed;

			 select count (stdno) into sno from student;

			 dbms_output.put_line(‘Total students: ’||sno);

			 commit;

		 end

	 4.	Durability: When transaction is completed and changes are made in database, the
changes should be permanent or long lasting or durable. This property is called durabil-
ity. Database’s recovery system takes care of durability.

CH_8_Transaction Management in Database_Final.indd 154 2/26/2014 5:31:54 PM

Transaction Management in Database  |  155

8.4  | S tates of Transaction
When a transaction has been started, it can be in different states, such as successfully completed
(COMMIT), unsuccessfully completed (ROLLBACK), partially completed and running.

When transaction is started, it is in the running or active state, in which data is manipulated
through data manipulation commands.

If there exists some error due to any reason, the transaction is stopped in between with par-
tially updated data. Because of this, database will contain inconsistent data. Therefore, the
changes made by the transaction should be undone through ROLLBACK statement. In this
case, transaction is said to be in unsuccessfully completed state. To execute the transaction
successfully, it should be restarted.

If all the changes are made successfully after execution of COMMIT statement, the transac-
tion will be in the successfully completed state.

8.5  |  Concurrency control using Locks
When more than one transaction is executed simultaneously at the same time and accessing data
from the same database, it is called concurrent execution of a transaction. For example, there
are three transactions which are started at the same time and accessing Tables from employee’s
payroll database is shown in Table 8.3.

During execution of a transaction, the following sequence of steps are done:

	 1.	 Reading data
	 2.	 Changing data
	 3.	Writing data
	 4.	 Changes stored permanently (COMMIT), or changes are undone (ROLLBACK).

Each transaction follows the above-mentioned four steps. There are three problems which
may occur during concurrent execution of transactions.

Table 8.3  |  Example of Concurrent Transactions.

Time Transaction 1 Transaction 2 Transaction 3

T1 Insert into salary
values (1002,’2-
May-2013’,
49000.00);

Insert into employee
(empno, empname, join-
ing_date, basic_sal-
ary) values (1345,
’P M Rana’, sysdate,
23000.00);

Insert into
loan_payment
values(1022,’2-
May-2013’,10000.00);

– Update comp_acct
set amt = amt-
49000 where sal_
month = to_char(
to_date (‘2-May-
2013), ’month’);

Select count(empno)
from employee;

Update loan_due set
remaining_amt = re-
maining_amt-10000
where empno = 1022;

– Commit; Commit; Commit;

CH_8_Transaction Management in Database_Final.indd 155 2/26/2014 5:31:54 PM

156  |  Chapter 8

	 1.	Lost update: Consider there are two transactions, T1 and T2, which are executed	
simultaneously. During execution, transaction T2 has updated some data which is read
by transaction T1. Now, T1 has made changes in that data and committed (changes saved
permanently). Later on, transaction T2 made changes in the same data and committed
it. Therefore, the changes made by transaction T1 in the same data are overwritten by
transaction T2. Thus, updation made by transaction T1 has been lost. This problem is
called lost update problem. In short, when one transaction overwrites the data which is
saved by another transaction, the problem of lost update occurs.

	 2.	Uncommitted data (dirty read): Consider there are two transactions, T1 and T2, which
are executed simultaneously. Transaction T2 is updating the data which is required by
transaction T1. After transaction, T2 writes the data; transaction T1 reads that data and
proceed. Then, transaction T2 is rolled back. So, the changes which are made are not
committed. But transaction T1 has already read the uncommitted data and it is continu-
ing with that data only. This problem is called uncommitted data which occurs due to
dirty read.

	 3.	 Inconsistent retrieval (unrepeatable read): When one transaction is performing some
summary on data and other transaction is adding or updating records which are being
used in summary, the problem of inconsistent retrieval occurs, i.e., when transaction
reads inconsistent data, the problem of inconsistent retrieval occurs.

Due to above problems, it is very essential to control concurrent execution of transactions,
otherwise the database will contain inconsistent data. To control concurrency, isolation (serial
execution of transactions) is required. To avoid the above problems, locks are required.

Different isolation levels are already discussed in Section 8.3 . Oracle supports ‘serializable’ and
‘read committed’ isolation levels. Oracle implicitly provides appropriate locks on data depending
on the isolation level. If isolation level is not defined by users, Oracle defines its default isolation
level which is ‘read committed’. Additionally, in Oracle, we can set transaction as read only to
maintain read consistency. An example of read-only transaction can be reflected as follows:

		 declare
 			 sno int;
		   begin
			 set transaction read only;
			 select count (stdno) into sno from student;
			 dbms_output.put_line(‘Total students:’||sno);
			 commit;
		   end

‘Set transaction read only’ allows executing only select queries, commit, rollback or DDL state-
ments. The read only transaction is terminated when DDL statement, COMMIT or ROLL-
BACK is completed.

Locks: Lock is required when two transactions are executed simultaneously and using the
same data and one of the transactions is updating the data. Conflict between transactions can
occur if any one of the transaction is writing (changing) data. To solve this conflict, data should
be locked for the transaction which is updating it and lock can be released after transaction is
completed.

CH_8_Transaction Management in Database_Final.indd 156 2/26/2014 5:31:54 PM

Transaction Management in Database  |  157

Locks can be acquired on different levels of database such as database level, Table level, row
level and field level. When lock is acquired on a particular level for a transaction, changes in that
portion of database cannot be allowed by other transaction. If other transaction wants to read
that data, then it may be allowed. It can be applied by shared/exclusive lock.

Shared/exclusive lock has two states—shared and exclusive. Shared lock is provided on the
data when more than one transaction wants to read the same data. Exclusive lock is provided
when more than one transaction are accessing the data and any one transaction wants to update
the data. The example of shared/exclusive lock is given in Table 8.4.

Shared lock is provided to read data and exclusive lock is provided to write data. Oracle
provides implicit shared/exclusive lock on data automatically when it is required for multi-user
database.

Lock conversion: In shared/exclusive lock, lock conversion is also possible. When shared lock
(read) is converted into exclusive (write) lock, it is called lock upgrade. When exclusive lock
is converted into shared lock, it is called lock downgrade. Oracle supports lock conversion and
does it automatically whenever required.

Lock escalation: When lock is upgraded from lower level to higher level, it is called lock
escalation. For example, consider a Table EMPLOYEE. Suppose, transaction T1 wants to	
update the row of emp_no 203. Therefore, row-level lock will be provided to T1. Thereafter, T1
wants to update records of emp_no 345, 231 and 211. Again, row-level lock is provided for these
three records to transaction T1. Later on, T1 request to update records of emp_no > 200. Now, as
number of rows which should be updated is more, DBMS automatically decides to escalate lock
from row-level to Table-level. Therefore, the lock will be provided on entire EMPLOYEE Table	
by releasing all the previous row-level locks which were acquired on EMPLOYEE Table. This is
called lock escalation. Lock escalation decreases the number of locks, but increases restrictions	
on data. Oracle does not support lock escalation because it increases chances of deadlocks.

User can also define lock at transaction level in Oracle by using the following statements.
Locks will be released once the transaction is completed.

	 1.	 Set transaction isolation level: Refer Section 8.3 for the detail of this statement.
	 2.	 Lock Table: It will lock the entire Table. For example, the following PL/SQL block will

lock the Table student exclusively and will release the lock after execution of rollback
statement.

Table 8.4  |  Example of Shared/Exclusive Lock

Data Lock Type Transaction T1 Transaction T2

Emp_salary Shared lock is granted to both T1
and T2

Read Read

Emp_salary Exclusive lock for T2 Read Write

Emp_salary Exclusive lock for T1 Write Read

Emp_salary Exclusive lock will be granted to
transaction which will request first
to update emp_salary

Write Write

CH_8_Transaction Management in Database_Final.indd 157 2/26/2014 5:31:54 PM

158  |  Chapter 8

		 declare
		 begin
		   lock table student in exclusive mode;
   delete from student;
   rollback;
		 end;

Similarly, the following block will lock the Table in shared mode and will allow read records
from student Table. The lock will be released after execution of commit statement.

		 declare
		 c int;
		 begin
		 lock table student in share mode;
		 select count (*) into c from student;
		 commit;
		 end;

	 3.	 Select….for update of it locks the field(s) exclusively which is to be updated. For exam-
ple, the following statement will lock two fields, stdname and remaining_amt, of student
Table for updation.

select * from student for update of stdname, remaining_amt;

In distributed database system, there are multiple fragments of database stored on different nodes.
In this case, transaction updates multiple portions of database. The correctness of data is ensured
using two-phase commit during transaction execution in distributed database. The two phases
are ‘prepare’ and ‘commit’. In prepare phase, the node which has started the transactions asks all
the nodes other than the node who is responsible to execute commit, to get prepared for commit.
If any of the node is not prepared, the transaction is rolled back. After all, the nodes agree to do
commit, then in commit phase, the node responsible to execute commit will execute commit and
after that the node which has started transaction tells other nodes to commit.

8.6  | D eadlocks
The lock which is forever permanent or which can never be released is called deadlock.	
Assume that there are two transactions which are running concurrently. During the execution,
T1 is waiting for the data which is locked by T2 and T2 is waiting for the data which is locked
by T1. In this case, none of the transaction will release the lock because none of the transaction
is completed. Both will wait infinitely for data to be released by other transaction which will
never happen. This situation is called deadlock. [A simple real time example of deadlock: Sup-
pose, two friends are sharing ruler and eraser to draw a diagram. Currently, ruler and eraser are
not occupied by any of the friend. During drawing, first friend needs an eraser, so he will use
(lock) the eraser. Meanwhile, second friend needs ruler, so he will use (lock) ruler. Now, first
friend needs ruler to continue drawing. But second friend will not give it, because he is using it
currently. Later on, second friend needs eraser, but first friend will not give it as his drawing is

CH_8_Transaction Management in Database_Final.indd 158 2/26/2014 5:31:55 PM

Transaction Management in Database  |  159

not completed and he is waiting for ruler. Thus, none of the friend will release the stationery and
both will wait infinitely for other one to release the stationery. This situation is called deadlock.]

Table 8.5 shows an example of deadlock. In this example, both the transactions T1 and T2
start at time t1. At t3 time, transaction T1 requests a lock on Table EMPLOYEE and acquires
the lock because EMPLOYEE Table is not locked currently. At t4 time, transaction T2 requests
a lock on Table SALARY and acquires the lock because SALARY Table is not locked currently.
At t5 time, transaction T1 requests a lock on Table SALARY, but does not acquire the lock and
will be in wait mode because SALARY is being used by transaction T2 currently. At t8 time,
transaction T2 requests a lock on Table EMPLOYEE, but does not acquire the lock and will be
in wait mode because EMPLOYEE is being used by transaction T1 currently. Both the transac-
tions will wait infinitely for other one to release a lock and will be in deadlock.

To end deadlock, one of the transaction should be aborted and restarted. DBMSs detect dead-
locks automatically and roll back the transaction which causes deadlock.

To avoid deadlock, all the data which are required by the transaction should be locked in
advance.

8.7  | D atabase Backup and Recovery
When some transactions fail before data are saved permanently, it causes loss of data. The data
should be regenerated using some process or using previous data or related data which are
stored into database. This process of regenerating data is called recovery.

By keeping in mind the failure of transaction and data loss, some precautionary steps can be	
taken by copying last updated data somewhere in memory or by keeping log of transaction	

Table 8.5  |  Example of Deadlock

Time Transaction T1 Transaction T2

t1 Running Running

t2 Running Running

t3 Lock EMPLOYEE Table Running

t4 Running Lock SALARY Table

t5 Running Running

t6 Request to Lock SALARY Table Running

t7 Waiting Running

t8 Waiting Running

– Waiting Running

– Waiting Running

– Waiting Request to Lock EMPLOYEE Table Waiting

– Waiting Waiting

– Waiting

– Waiting Waiting

– Waiting Waiting

CH_8_Transaction Management in Database_Final.indd 159 2/26/2014 5:31:55 PM

160  |  Chapter 8

for the reference is called keeping backup of data. The backup of data taken could be used in
future to recover the lost data by executing some commands or procedures or simply by copy-
ing all the data again into database. Thus, backup means maintaining copy of data. Recovery
means, restoring or regenerating the lost data from the backup taken or by applying some
methods.

Failure can be due to system crash, or any media crash, or application failure. Failures
may affect one transaction or all the transactions which are running. When failure occurs, trans-
actions are partially completed and, therefore, when system restarts or application restarts the
incomplete transactions should be rolled back and should be restarted. When system failure
occurs, it destroys the data stored into main memory (buffer cache/buffer) which is volatile.
Hence, the data stored in memory buffer which are updated by execution of a transaction are
also getting destroyed.

At the time of system failure, the state of transaction during that period is not possible to
know. May be updates of some transactions are already completed in buffer, but not written
into database (data files) permanently. These transactions need not be undone when the system
restarts; they need to be redone only.

As a solution to know the transaction state at the time of failure, checkpoints can be issued
at some fixed interval of time, so that the transactions for which changes are stored in buffer
can be redone; the transactions for which changes are not stored even in buffer can be undone
and the transactions for which changes are stored in the database permanently need not be un-
done/redone as they are already completed. Thus, to recover the data, checkpoints can be used.
Checkpoints could be kept at fixed time interval and in case of failure the last checkpoint could
be used to decide which transaction should be redone/undone or should not be redone/undone.

Figure 8.7 shows that transaction T3 was completed successfully before failure and its up-
dations are already reflected in the database; therefore, it should not be undone/redone when
system restarts. Transaction T1 should be redone because it is completed and updations made
by this transactions are stored in buffer, but still not reflected in database (i.e., COMMIT is not

Figure 8.7  |  Example of checkpoint.

Completed and data
stored in buffer, so
redone

Completed and data
stored in database.

Partially completed, so
undone and restarted
again

T1

T2

T3

Checkpoint Time of failure

CH_8_Transaction Management in Database_Final.indd 160 2/26/2014 5:31:55 PM

Transaction Management in Database  |  161

executed). Transaction T2 should be undone and should be restarted because it was partially
completed when failure occurs.

Oracle implicitly issues checkpoints depending on the internal settings. Checkpoints can also
be defined explicitly in Oracle using the statement ALTER SYSTEM CHECKPOINT.

Also, to recover the lost data, backup should be taken on some separate devices in fixed time
duration such as daily, monthly, yearly, etc. Backup can be taken online or offline. In Oracle, the
online backup can be taken using the following statements.

 ALTER TABLESPACE <tablespace_name> BEGIN BACKUP;
 ALTER TABLESPACE <tablespace_name> END BACKUP;

In Oracle, flashback queries are also used to recover the data.

8.8  | S ecurity, Integrity and Authorization
Security means, data protection. Integrity means, correct updations of data. Authorization
means, preventing unauthorized users from accessing data. Security can be enforced at different
levels such as user level, application level, object level, etc.

User can be allowed to access data by providing them username and password, which is
called authentication. When user logs into the database using username and password, it is
checked by the DBMS whether he/she is an authorized user to access the database or not.

After logging into the database, user cannot access all the data. To access the selected data
or all the data, users are given privileges. The privileges can be given for creating objects,	
manipulating objects, deleting objects, execution and manipulating data, etc. Also, roles can
be defined to assign common rights to a group of users. The types of data access are read
only and read/write. Users can be provided access of limited fields of Table by creating views.
Views can be defined to assign read only access as well as read/write access for some fields.
We can also hide some fields from user by defining views. Database triggers can also be
used to keep track of who is updating what. To see how privileges and roles are assigned to	
users in Oracle, refer Chapter 12. For more security of data, data can be encrypted which can be
accessed only by authorized users.

Database integrity ensures the consistency of data by correct updation. Integrity can be	
enforced with the help of constraints and validation rules put up on the data.

Summary
●● Transaction is a group of statements which should be executed in sequence and should
be committed together.

●● Transaction must have four properties: ACIDS (Atomicity, Consistency, Isolation and
Durability).
●● Execution of a transaction should be atomic, i.e., there should be only two possibilities—
either successfully completed (COMMITTED) or completely unsuccessful (Rolled
back), otherwise it can put database in an inconsistent state.

●● Transaction should be isolated, i.e., changes made by one transaction should be available
to other transactions after it is fully completed (COMMITTED or ROLLED BACK).

CH_8_Transaction Management in Database_Final.indd 161 2/26/2014 5:31:55 PM

162  |  Chapter 8

Different DBMSs provide the facility to set isolation levels to ensure serial execution of
transactions.
●● Transaction should ensure consistency, i.e., it should bring database from previous (last)
consistent state to next consistent state or keep it in the previous consistent state only.
●● Transaction should ensure durability, i.e., once the changes are committed, system or
device or any other failure should not affect the data.

●● Database systems take care of starting and ending of a transaction, but user can also mark
starting and ending of a transaction. Generally, transaction starts with execution of any
SQL statement and ends with successful completion of that SQL statement or COMMIT
statement or ROLLBACK statement.

●● The transaction can be different states such as running (active), completed successfully
(COMMITTED), completed unsuccessfully (ROLLED BACK) or completed partially.
The transaction which is partially completed should be rolled back and should start again.
●● In DBMSs, many transactions can access the data from same database simultaneously,
which is known as concurrent transactions. The concurrent transactions should be con-
trolled otherwise they will create problems such as lost update, uncommitted data and in-
consistent retrieval. The concurrent execution of transactions can be controlled by setting
isolation levels and by locking data which are being used by the transactions.

●● There will be no problem if all the active transactions are reading the same data, but prob-
lem occurs when transaction is updating the data. During data updation, the data should
be locked and should be released after transaction is completed.

●● Data can be locked into two modes—shared and exclusive. Shared lock can be acquired
to read data and exclusive lock can be acquired to update (write) data. Locking is implic-
itly done by DBMSs, but user can also lock data explicitly by issuing some commands.
●● Shared lock can be converted into exclusive lock and exclusive lock can be converted into
shared lock during execution of transactions. This is called lock conversion. Conversion
from shared to exclusive lock is called lock upgrade and conversion from exclusive to
shared lock is called lock downgrade.
●● Locks can be escalated from lower level to higher level (e.g., from field level to row level)
which is known as lock escalation. Lock escalation increases restriction on data, but de-
creases number of locks.

●● There are different levels of locking such as database level, Table level, record level, field
level, etc. Assume that lock is provided to a transaction T4 on database level; then no
other transaction can access the database until the transaction T4 gets completed. Simi-
larly, if Table is locked by one transaction, other transactions can’t access it until the first
transaction gets completed.
●● During concurrent execution, locking may generate deadlocks also. When two transac-
tions are executed simultaneously and both are waiting for one another to release data
so that they could complete the transaction, both will be in infinite waiting state which
is called deadlock.
●● To avoid deadlocks, the data required by the transaction should be locked in advance.
●● To recover the lost data due to any failure, copy of the data is being kept timely which
is known as backup.

CH_8_Transaction Management in Database_Final.indd 162 2/26/2014 5:31:55 PM

Transaction Management in Database  |  163

●● Restoring the lost data using backup or any other method is known as data recovery. Check-
points are used to recover the data in database. Checkpoint keeps track of transaction which
can be used to know which transactions should be undone or redone in case of failure.

●● Security means data protection. Integrity means correct updation of data. Authorization
means preventing unauthorized users from accessing data.

Exercises

	 1.	What is a transaction? Explain it by giving an example.
	 2.	 Discuss ACIDS properties of a transaction.
	 3.	 Discuss different states of a transaction.
	 4.	Which of the two isolation levels does Oracle support? Explain them. Which isolation

level is default in Oracle?
	 5.	 Define the following:
	 a.	 Dirty read
	 b.	 Phantom read
	 c.	 Non-repeatable read
	 6.	What does it mean by concurrent execution of a transaction? Which three problems can

occur during concurrent execution?
	 7.	 Explain shared/exclusive lock.
	 8.	What is the difference between lock conversion and lock escalation?
	 9.	What is deadlock? Explain it.
	 10.	 Discuss backup and recovery, in your own words.
	 11.	 Explain importance of database security, integrity and authorization.
	 12.	 Select the correct answer from the multiple choices:
	 a.	 From the following which one is not a property of transaction?
	 	 i.  Inconsistency	 	 	 ii.  Durability
	 	 iii.  Atomicity	 	 	 	 iv.  Consistency
	 b.	 In ACIDS, A stands for ______________
	 	 i.  Authorization	 	 	 ii.  Atomicity
	 	 iii.  Augmentation	 	 	 iv.  Accessibility
	 c.	 What is the significance of COMMIT statement?
	 	 i.  Undo changes	 	 	 ii.  Save changes permanently
	 	 iii.  Restart the transaction	 	 iv.  None
	 d.	 When conflict for data occurs between two transactions?
	 	 i.  When both are reading the same data.
	 	 ii.  When both the transactions want to update same data.
	 	 iii.  When both the transactions want to update different data.
	 	 iv.  When both are reading different data.
	 e.	 Shared lock is provided to ___________ data and exclusive lock is provided to

_____________ data.
	 	 i.  Write, read		 	 	 ii.  Read, write
	 	 iii.  Read, read/write	 	 	 iv.  Write, read/write

CH_8_Transaction Management in Database_Final.indd 163 2/26/2014 5:31:55 PM

164  |  Chapter 8

	 f.	 What is lock escalation?
	 	 i.  Changing lower level lock to upper level.
	 	 ii.  Changing upper level lock to lower level.
	 	 iii.  Converting shared lock to exclusive lock.
	 	 iv.  Converting exclusive lock to shared lock.
	 13.	 Fill up ‘yes’ or ‘no’ values in the Table for the transactions given in the following figure.

Sample values are given for transaction T1.

T1

T2

T3

T4

T5

T6

T7

Checkpoint
Time of
failure

Transactions → T1 T2 T3 T4 T5 T6 T7

Undone No

Redone No

Do not need to be redone or undone Yes

Changes made in database (COMMITTED or
ROLLEDBACK)

Yes

Changes made in buffer, but not in database
(completed, but not committed)

No

Changes not made in buffer or database
(transaction is incomplete)

No

CH_8_Transaction Management in Database_Final.indd 164 2/26/2014 5:31:55 PM

CHAPTER
9

Centralized and Distributed
Database Management System

•	 Knowing different types of databases.
•	 Defining centralized and distributed databases.
•	 Understanding difference between centralized and distributed databases.
•	 Learning components of distributed database management system.
•	 Understanding distributed processing.
•	 Describing advantages and disadvantages of distributed data.

Chapter Objectives

9.1  | I ntroduction
In present days, users are using the applications on the Internet and mobile phones, for which
satellite networks and wireless networks are required. The amount of data, which is stored and
used, is huge. It is impossible to keep these data on a single site. The data need to be stored at
different sites, but the user should be allowed to access the data stored at any site. To implement
this functionality, the distribution of data is required. Using the networking technologies, it is
possible to access data stored at different sites geographically.

On the other hand, if data are stored at a single site and users can access the data from that
single site, the concept is known as centralization of data.

9.2  | T ypes of Databases
The databases can be broadly classified as Centralized and Distributed.

In centralized database management system, the database is located at a single (central)
site whereas in distributed database management system (DDBMS), the database is distrib-
uted on different sites.

Database can also be referred as single-user and multi-user database. The database which
allows only one user to access the database at a time, is called single-user database. The	
database, which allows many users to access the database at the same time, is called multi-user
database.

CH_9_Centralized and Distributed Database Management System_Final.indd 165 2/26/2014 3:46:54 PM

166  |  Chapter 9

9.3  | � Centralized Database Management System Vs.
Distributed Database Management System

Centralized Database: In a centralized database management system, the entire database is	
located at a single (central) site, which is called server.

The server computer is connected with other computers through communication networks.
Other computers can access the database, which resides on the server machine, by sending the
request to the server.

The processing of the data may be executed at the server computer or at the local computer.
If the local computer has the ability to process the data, which is retrieved from the server, the
processing is called distributed processing. If the local machine cannot process the data, then
data is processed on server itself, which is known as centralized processing. For distributed
processing, the database need not be distributed.

Figure 9.1 shows the diagram of a centralized database with three computers connected
through communication networks. The database named ‘stu’ is located at the site ‘computer 1’.	
Users of ‘computer 2’ and ‘computer 3’ can access the ‘stu’ database from the machine ‘com-
puter 1’. After processing has been done on the data, the new data is stored again at the site
‘computer 1’. The ‘stu’ database contains the tables, class, exam, student, faculty, attendance
and result. All the tables are located at the site of ‘computer 1’.

The advantages of centralized database are—it is easy to manage and maintain. It is cost	
effective. The disadvantages are—when server fails at central site, the computers at different
locations cannot access the database. To overcome this problem, the mirror copy of the centra-	
lized database should be maintained at some other site which increases the overhead.

Distributed Database: In distributed database management system, the entire database is di-
vided into fragments (parts). These parts are kept on computers at different sites. Sometimes,
the copies of same database are also maintained on different sites and this process is known as
replication.

Class
Exam
Student
Faculty
Attendance
Result

Computer 1

Computer 2

Computer 3Network

Stu

Figure 9.1  |  Centralized database.

CH_9_Centralized and Distributed Database Management System_Final.indd 166 2/26/2014 3:46:54 PM

Centralized and Distributed Database Management System  |  167

Attendance
Result

Student
Faculty

Class
Exam

Computer 1

Computer 2

Computer 3

Stu2

Stu1

Stu3

Network

Figure 9.2  |  Distributed database.

All the computers are connected with each other through a communication network. Each
user from different computers can access the data stored at their own computer as well as	
computers located at remote sites. The processing can be done at any site.

Figure 9.2 shows the diagram of a distributed database with three computers which are connect-
ed through a communication network. The database named ‘stu’ is divided into three fragments
named ‘stu1’, ‘stu2’ and ‘stu3’. The fragment ‘stu1’ is located at the site ‘computer 1’ which con-
tains the tables of student and faculty; ‘stu2’ is located at the site ‘computer 2’ which contains the
tables of class and exam; and ‘stu3’ is located at the site ‘computer 3’ which contains the tables
of attendance and result. User at site Computer1 can access all the three database fragments stu1,
stu2 and stu3 through communication networks. Same is applicable for user 2 and user 3.

If failure occurs at any computer in distributed database, then it will affect working of other
computers in the network. The computer which has failed can be replaced with other computer.

Distributed database uses client-server architecture to process the data. It is possible that
computers which are parts of distributed database may be of different configuration. They may
use different hardware and software. It is possible that the database fragments stu1, stu2 and
stu3 shown in Figure 9.2 may be implemented in different databases, operating systems, com-
puters, etc. For example, assume that stu1 fragment is stored in DB2, stu2 fragment is stored in
Oracle and stu3 fragment is stored in Ingres.

If failure occurs at any computer in distributed database, then it will affect working of other
computers in the network. The computer which has failed can be replaced with other computer.

There are two types of distributed databases:

●● Homogeneous Distributed Database: It is a type of distributed database in which com-
puters on all the sites use the same database management software. In this type of dis-
tributed database, there will not be any problems regarding the database software as all
the computers are using the same database software at different sites. Figure 9.3 shows
an example of homogeneous distributed database in which databases at all the sites are
stored in the same database management software, Oracle.

CH_9_Centralized and Distributed Database Management System_Final.indd 167 2/26/2014 3:46:54 PM

168  |  Chapter 9

Attendance
Result

Oracle
DBMS

Oracle
DBMS

Oracle
DBMS

Student
Faculty

Class
Exam

Computer 1

Computer 2

Computer 3

Stu2

Stu1

Stu3

Network

Figure 9.3  |  Homogeneous distributed database which uses Oracle DBMS at different sites.

Attendance
Result

DB2
DBMS

Ingress
DBMS

Oracle
DBMS

Student
Faculty

Class
Exam

Computer 1

Computer 2

Computer 3

Stu2

Stu1

Stu3

Network

Figure 9.4  |  Heterogeneous distributed database which uses Oracle, DB 2 and Ingress	
DDBMSs at different sites.

●● Heterogeneous Distributed Database: It is a type of distributed database in which com-
puters on all the sites use different database management software. Figure 9.4 shows
an example of heterogeneous distributed database in which databases at all the sites are
stored in the different database management software. The database at site Computer1 is
stored in Oracle DBMS, database at site Computer 2 is stored in DB2 DBMS and data-
base at site Computer 3 is stored in Ingress DBMS.

CH_9_Centralized and Distributed Database Management System_Final.indd 168 2/26/2014 3:46:54 PM

Centralized and Distributed Database Management System  |  169

In DDBMS, data are replicated or fragmented as per the need. Data fragmentation means
database is divided into parts (fragments) and these fragments are stored at different sites. Data
replication means copies of database fragments are created on the sites where it is required.

9.4  | DDB MS Components
Distributed Database needs the following hardware and software components:

Computer System: Distributed DBMS needs computers at different sites to store fragments of
database, to access data from database fragments stored at other sites and to process the data.
Distributed DBMS must be independent of hardware, i.e., it should support different hardware
(Computer System) at different sites.

Communication Network: It is required to transfer data from one site to other. Distributed
database should provide network transparency, i.e., it should support different types of com-
munication networks.

Data Processor: Data Processor is a software component which is required to access from and
store data at different sites. Data Processor is also known as Data Manager.
Transaction Processor: Transaction Processor is also a software component which processes
the transaction, i.e., it processes the retrieved data at local site. Transaction Processor is also
known as Transaction Manager or Application Processor.

Figure 9.5 shows the components of DDBMS.

9.5  | D istributed Processing
When the database is distributed, it requires distributed processing. It means that computers at
each site must be able to process the data, i.e., processors are required at each site. If there is no
support for distributed processing, the database cannot be distributed. However, it is possible
that if the database is not distributed, the processing can be distributed.

TP
DP

TP
DP

TP
DP

Computer System Computer System

Computer System

Communication Network

Figure 9.5  |  Components of distributed database management system.

CH_9_Centralized and Distributed Database Management System_Final.indd 169 2/26/2014 3:46:54 PM

170  |  Chapter 9

For both distributed database and distributed processing, the communication network is re-
quired.

9.6  | DDB MS Advantages and Disadvantages
Advantages of DDBMS: Following are the advantages of DDBMS:

●● User does not know the things, such as at which site which data is stored, whether data-
base’s fragments are created or database’s copies are maintained, which network technol-
ogy is used to share data, etc.

●● Data can be shared using common communication network.
●● Failure of any site will not affect other sites. So, it is more reliable and it will give better
performance than centralized database.

●● Computers can be added and removed easily from the network.
●● Easy to maintain as database is distributed among sites.
●● It provides data independence, hardware independence, network independence, DBMS
independence, fragmentation independence, replication independence, location indepen-
dence, etc.

Disadvantages of DDBMS: Following are the disadvantages of DDBMS:

●● It is more complex because of independence provided at different levels.
●● It increases cost because maintenance and security of each individual site is required.
●● As data is replicated and shared, the data integration issues occur.
●● Problems may occur during concurrent transaction processing.
●● When different hardware and software are implemented at different sites, it is difficult to
handle them technically.

Summary
●● There are two types of databases: centralized and distributed.
●● In centralized database management system, the database is located on a single site;
whereas in distributed database management system, the database is distributed in parts
and theses parts are stored on different sites. All the sites are connected through com-
munication protocol.
●● There are two types of distributed databases—homogeneous and heterogeneous. In	
homogeneous distributed database, computers on all the sites use the same database man-
agement software. In heterogeneous distributed database, computers on all the sites use
different database computers.
●● Distributed database requires distributed processing. Distributed processing means that
processing is done on different sites.

●● The components of distributed database are transaction processor, data processor, com-
puter system and communication network.

●● Transaction processor is a software which processes data on different sites. Data proces-
sor is software which accesses data from remote/local site and stores data at remote/local
site. Computer system is a hardware, on which database fragment, transaction processor

CH_9_Centralized and Distributed Database Management System_Final.indd 170 2/26/2014 3:46:54 PM

Centralized and Distributed Database Management System  |  171

and data processor are stored. Through communication network, the computers at differ-
ent sites communicate with each other.

●● The advantages of distributed database are data sharing, failure of one site does not affect
other sites, computers can be added or removed easily, easy to maintain and provides
independence at different levels.

●● The disadvantages of distributed database are complexity, increased cost, data integration
issues, problems in concurrent transaction processing, difficult to handle different hard-
ware and software at different sites.

Exercises

	 1.	 Differentiate between centralized and distributed databases.
	 2.	 Explain homogeneous and heterogeneous distributed databases with diagrams.
	 3.	 Prepare a list of advantages and disadvantages of distributed database.
	 4.	 Explain components of a distributed database system.
	 5.	What is distributed processing?
	 6.	 Name some database management systems which provide distributed database function-

alities.

CH_9_Centralized and Distributed Database Management System_Final.indd 171 2/26/2014 3:46:54 PM

CHAPTER

10.1  |  Multidimensional Database
Multidimensional database is a special type of relational database management system
(RDBMS) which supports data to be stored and retrieved as multiple dimensions. The simple
relational database model supports only two dimensions—rows and columns. The data within
multidimensional databases are stored as a cube.

Multidimensional database represents the aggregated data for each of its dimension. The
aggregate values are computed from the base values. Multidimensional databases are useful in
On-Line Analytical Processing (OLAP). Microsoft SQL Server Analysis, Oracle’s Hyperion
Essbase and Oracle 11g OLAP option are examples of multidimensional database. Figure 10.1
shows an overview of Multidimensional database.

10.2  |  Mobile Databases
The database which is connected with the mobile device is known as mobile database. Many
mobile applications are based on the following three architectures:

	 1.	 Mobile Client-Fixed Host architecture:
●● In this, Host (Data Service Provider) will provide data to the mobile client (device)
(e.g., users’ personal data such as bank account details). Another type of host is
servers which broadcast information (e.g., broadcast servers which provide weather
information).

10

Advancements in Databases

•	 Knowing multidimensional databases.
•	 Understanding mobile databases.
•	 Knowing multimedia databases.
•	 Learning concept of data mining and data warehousing.
•	 Defining open source databases.
•	 Understanding spatical databases.
•	 Knowing moving object databases.
•	 Understanding NoSQL databases.
•	 Summary

Chapter Objectives

CH_10_Advancements in Databases_Final.indd 172 2/26/2014 3:47:54 PM

Advancements in Databases | 173

Dimension 2

Dimension 1

Dimension 3

Figure 10.1 | Multidimensional database.

 ● The main copy of the data is managed by the server, while the replica of data is man-
aged by user’s mobile device.

 2. Mobile Client-Mobile Host: In this case, the database is embedded in the user’s mobile
device. For example, phonebook, multimedia data (photos, videos, etc.) in the SIM card.

 3. Fixed Client-Fixed Host: In this case, the applications may use mobile database to keep
track of moving objects. For example, to keep track of fl eet during transportation, traffi c
database, etc.

The mobile database can be designed for light-weighted devices such as PDAs and mobile
phones. The database can also be designed for smart cards. To process the data stored on a smart
card, the smart card should be connected with the host computer. The host computer contains
the application through which user can interact with the card.

Some examples of mobile database are SQLite (developed by D. Richard Hipp), SQL Any-
where (provided by Sybase iAnywhere), IBM DB2 Everyplace, Oracle Lite, Microsoft SQL
server CE, etc.

Figure 10.2 shows an overview of how data is accessed through mobile application from
mobile database. The primary data resides on the main database which are accessed through
mobile application and copied on to mobile device.

Primary
DatabaseMobile

Application

Mobile database replicated
from the primary database

Mobile Device

Mobile Server

Figure 10.2 | Mobile database.

CH_10_Advancements in Databases_Final.indd 173 2/26/2014 3:47:54 PM

174  |  Chapter 10

10.3  |  Multimedia Databases
The database which can store data such as images, video, audio, graphics, animation, text,
etc., is known as multimedia database. The multimedia database should be able to store huge
amount of data and should provide multimedia data which are widely used in applications,
such as healthcare, distance learning, web applications, weather forecast, etc. Also, multimedia
database is capable of storing metadata related to multimedia data.

While designing multimedia database the volume, complexity and nature of data needs to
be considered. In a multimedia database, inputs come from different devices, such as CCTV
camera, digital camera, mobile phones, fingerprint readers, barcode readers, biometric scan-
ners, audio and video files, microphone, etc.

Similarly, the stored data are retrieved from the database and displayed on screen or any other
output device.

The multimedia data can be stored in a relational database or object-oriented database. It
depends on the nature of data, that is, the particular data model should be used to store multi-
media data.

Oracle provides the feature ‘Oracle Multimedia’ (formerly Oracle interMedia) that enable
user to store and retrieve multimedia data from heterogeneous environments. It also provides
integration of such data.

10.4  | D ata Warehousing and Data Mining
Data Warehousing: The relational database can store limited data into related tables which are
normalized, while data warehouse is used to store large amount of data.

Data stored in data warehouse are accessed from multiple heterogeneous databases and
stored in the uniform format. Once data are stored into data warehouse, they are not updated or
changed (i.e., read only). Users can only retrieve the stored data from warehouse.

Data warehouse is used to store enterprise’s historical and summarized data which can be
used for future analysis and to take decisions. Before data is stored into warehouse, inconsistent
data are removed. Data warehouse contains Server, OLAP (On-Line Analytical Processing)
engine and Client. Data are accessed from various heterogeneous databases and stored into
data warehouse server after cleaning. Client contains various tools for data processing, such as
reporting tools, data mining tools, etc. Figure 10.3 represents data warehouse system in which
data are stored from various sources.

Some of the popular data warehousing tools are Oracle Data Integrator, MS-SQL Server’s
Integration Services, IBM Cognos Data Manager, etc.

Data Mining: The analysis which is done on static data stored in data warehouse, is known as
Data Mining. It is also known as Knowledge Discovery in Database (KDD). Data mining is
used to discover hidden patterns from large volume of data. For example, in real life, there are
many hidden patterns which are still not known to human, such as patterns found in stars in the
sky; patterns in the DNA of human, animals and birds; patterns lies in nature which cause natural
calamities, etc. If we store and analyze historical data about all these things, we would get some
amazing information. To analyze these data, we need powerful methods, tools and formats.

CH_10_Advancements in Databases_Final.indd 174 2/26/2014 3:47:54 PM

Advancements in Databases  |  175

There are many data mining methods which can be used to discover patterns from stored
data, such as structured data analysis, classification, association rule learning, cluster analysis,
decision tree, neural networks, regression analysis, etc. Mining can be done on text data, mul-
timedia data, web data, etc.

There are many tools available for data mining which also includes open source tools. Some
of these tools are Microsoft SQL Server Analysis Services, Weka, RapidMiner, GeoDa, AR-
Miner, etc.

10.5  |  Open Source Database
Open source database means, the database whose source code is open to all. Anyone can
download the source code and use it. There is no need to purchase license to use that database.
Moreover, users can modify its source code and can redistribute it after modification.

MySQL, PostgreSQL, etc., are some very good open source databases which provide fea-
tures of RDBMS.

In open source environment, the warranty of product and support is not provided.

10.6  |  Spatial Databases
Spatial (pictorial/image) database is used to store geometrical or space related data, such as
line, region, different shapes, etc. It represents the object defined in a geometric space. Special
kind of spatial queries are used to store geometrical shapes.

Oracle DB 2 MySQL MS-Access PostgreSQL

Server

OLAP Engine

Client

Figure 10.3  |  A data warehouse.

CH_10_Advancements in Databases_Final.indd 175 2/26/2014 3:47:54 PM

176  |  Chapter 10

The main application of spatial database is GIS (Geographical Information System) which is
used to store and display geographical information on computers.

10.7  |  Moving Object Databases
The moving object database enables user to store data related to any moving object. There are
two approaches of moving object database: location-based and spatio-temporal.

In location-based approach, to store the moving object, location of the object is required.
The location of moving object gets changing with time. The updations to database are very
important in case of moving objects. To keep data of moving object the direction in which it
is moving, speed of movement, size of object, etc., should be considered besides the location.

In the location-based moving object database, the history of object is not kept. Only the cur-
rent position is stored.

The moving object database can be used to keep track of vehicles, criminals, land move-
ments, animals, etc.

To store moving objects, special kind of query language is required. TSQL2 is a Temporal
Structured Query Language which is used to store data related to moving objects.

10.8  |  NoSQL Database
Social media such as facebook, twitter, etc., generates bulk volumes of data across the
Internet. These data are unstructured. Relational database management systems are very
efficient in storing structured data, but to store unstructured data some special kind of data-
bases are required.

In relational database, schema (table structure using CREATE TABLE) should be defined
before data is stored into table. It can store similar types of data within a table. If different types
of data are to be stored in the same table, it requires schema to be modified (using ALTER
command). Changing of schema definition rapidly as per the requirement is known as agile
development. SQL (relational) databases fail to cope up with frequently changing unstructured
requirements. To cope up with these changing requirements, NoSQL database is evolved.

NoSQL means, not only SQL. NoSQL database is non-relational, distributed and open-source
database. NoSQL database is schemaless. It does not require schema to be created before stor-
ing the data. NoSQL databases are based on document store, graph store, wide-column store,
key-value/tuple store, etc. NoSQL database is used for very large sets of distributed data. It
spreads data automatically on servers and, also balances them. It replicates data automatically
across network. It keeps frequently used data in system’s cache memory.

NoSQL database which is based on key-value contains only two columns—‘key’ and
‘value’. The actual information is stored within the ‘value’ column.

NoSQL database which is based on ‘document store’ keeps key-document pair which stores
all the information in a single document in JSON (Java Script Object Notation), XML (Exten-
sible Markup Language), etc., data interchange formats, which can contain hierarchical values
or nested documents.

CH_10_Advancements in Databases_Final.indd 176 2/26/2014 3:47:54 PM

Advancements in Databases  |  177

Graph store NoSQL databases are used to store network information such as social con-
nections.

Wide-column NoSQL database stores columns of data instead of records, i.e., it adds col-
umns dynamically.

Some examples of NoSQL database are Hadoop, MongoDB, Redis, Apache Cassandara and
Hbase.

Summary
●● To store and retrieve data as multiple dimensions, the multidimensional database is used.
Multidimensional database represents the aggregated data for each of its dimension.

●● The database which is connected with the mobile device is known as mobile database.
●● The database which can store data such as images, video, audio, graphics, animation,
text, etc., is known as multimedia database.

●● Data warehouse is used to store enterprise’s historical and summarized data which can be
used for future analysis and to take decisions.

●● The analysis which is done on static data, stored in data warehouse, is known as Data
Mining. It is also known as Knowledge Discovery in Database (KDD). Using data min-
ing, hidden patterns can be found from the data.

●● Open source database means the database whose source code is open to all. Anyone can
download the source code and use it.

●● Spatial (pictorial/image) database is used to store geometrical or space-related data, such
as line, region, different shapes, etc.

●● NoSQL database means, not only SQL database which does not require schema to be
created before storing the data. NoSQL databases are based on document store, graph
store, wide-column store, key-vale/tuple store, etc.

Exercises

	 1.	 Select the correct answer from the following multiple choices:
	 a.	 The database which stores data as many dimensions is called ___________ database.
		 i.  Multidimension
		 ii.  Single Dimension
		 iii.  Multi
		 iv.  Mini
	 b.	 OLAP means _________________ .
		 i.  On-Line Application Processing
		 ii.  On-Line Analytical Processing
		 iii.  Off-Line Application Processing
		 iv.  Off-Line Analytical Processing
	 c.	 Oracle Lite is an example of _______________ database.
		 i.  Mobile
		 ii.  Multi

CH_10_Advancements in Databases_Final.indd 177 2/26/2014 3:47:54 PM

178  |  Chapter 10

		 iii.  Hierarchical
		 iv.  Network
	 d.	 __________________ architecture of mobile database is used to keep track of moving

objects.
		 i.  Mobile Client-Fixed Host
		 ii.  Mobile Client-Mobile Host
		 iii.  Fixed Client-Fixed Host
		 iv.  All of these
	 e.	 The database, which can store data such as images, video, audio, graphics, anima-

tion, text, etc., is known as multidimensional database.
		 i.  True
		 ii.  False
	 f.	 Oracle Data Integrator is an example of ____________________ tool.
		 i.  Data mining
		 ii.  Data warehousing
		 iii.  Spatial database
		 iv.  None of the given
	 g.	 Weka is an example of ____________________ tool.
		 i.  Data mining
		 ii.  Data warehousing
		 iii.  Spatial database
		 iv.  None of the given
	 h.	 In the following list, which one is not a feature of open source?
		 i.  Source code is not available
		 ii.  License to use a software is not required
		 iii.  Source code can be modified
		 iv.  Support is not provided
	 i.	 Which of the followings is an example of open source database?
		 i.  Oracle
		 ii.  MS Access
		 iii.  MS SQL Server
		 iv.  PostgreSQL
	 j.	 Which database is used to store geometrical or space-related data, such as line,

region, different shapes, etc.?
		 i.  Spatial database
		 ii.  NoSQL database
		 iii.  Network database
		 iv.  Hierarchical database
	 k.	 In the ______________ moving object database(s), the history of object is not kept.
		 i.  location-based
		 ii.  spatio-temporal

CH_10_Advancements in Databases_Final.indd 178 2/26/2014 3:47:55 PM

Advancements in Databases  |  179

		 iii.  both (i) and (ii)
		 iv.  none
	 l.	 NoSQL database is _________________.
		 i.  schema-based
		 ii.  schemaless
	 m.	 Hadoop, MongoDB, Redis, Apache Cassandara, Hbase are examples of:
		 i.  Relational database
		 ii.  Hierarchical database
		 iii.  Network database
		 iv.  NoSQL database

	 2.	 Which features differentiate NoSQL database with relational database?
	 3.	 Discuss the architectures on which mobile applications are based.
	 4.	 List down the features of open source database.
	 5.	 Write short notes on the followings:

	 a.	 Multidimensional database
	 b.	 NoSQL database
	 c.	 Open source database
	 d.	 Spatial database
	 e.	 Moving object database

CH_10_Advancements in Databases_Final.indd 179 2/26/2014 3:47:55 PM

CHAPTER
11

Overview of MS-Access 2007

•	 How to use MS-Access.
•	 Knowing elements of MS-Access.
•	 Managing data using form.
•	 Displaying data using reports.
•	 Designing and writing queries.
•	 Creating macros.
•	 Creating switchboard.

Chapter Objectives

11.1  |  MS-Access as an RDBMS
MS-Access is a Relational Database Management System (RDBMS) which allows us to define
and manage relationships between tables using primary and foreign keys.

Using MS-Access, we can write queries, create forms to manage data, create reports, write
macros to execute list of instructions in a sequence, etc. These elements are created within Ac-
cess database files.

We can use various controls to design forms and reports. The queries, tables, forms and re-
ports are imported and exported from/to another Access database.

11.2  | E lements of MS-Access
Following are the elements of MS-Access database.

Tables: A table contains information about entity such as student, exam, item, bill. Table is a
collection of related record. Each record contains details of one entity occurrence. For example,
a student table contains records of various students. Each record represents distinct student.
Each record contains many fields. Field describes the characteristics of an entity. For exam-
ple, each student record contains fields such as stdno, stdname, birthdate, which describe each
unique student. Record is also known as row and field is known as column.

Queries: A query is used to create subsets of any table. According to the table and criteria
defined in a query, the result is generated. Query will display records from tables or existing

CH_11_Overview of MS-Access 2007_Final.indd 180 2/26/2014 3:48:59 PM

Overview of MS-Access 2007  |  181

queries in MS-Access. We can store query as an independent object which can be executed at
any time. It will display up-to-date result whenever it is executed.

Forms: A form is an independent object which could be used to manage data stored in a table.
Using forms, user can insert, delete, update, view and navigate records. Besides this, user can
validate data and restrict data using form. We can also create a special type of form named
switchboard, using which links can be provided to access any other database object such as
tables, queries.

Reports: A report is an object which displays data. The data are fetched from tables or queries.
Users cannot change the fetched data; they can only view it.

Macros: A macro is an object which contains list of instructions to be executed in a sequence.
It helps user to automate any task like opening report of employee and displaying only records
with salary amounting less than `10,000.

Modules: It is a type of program which an user can write.

11.3  |  Creating Database and Tables
Field Naming Convention
In MS-Access, there are some rules to define field names. When we give a field name in MS-
Access 2007, we should follow the rules as given below:

	 1.	 The field name should not exceed 64 characters.
	 2.	 Leading space (the space which is given in the starting of a field name) is not allowed in

a field name.
	 3.	 Letters, Numbers and Spaces (not leading space) are allowed.
	 4.	 The characters, such as period (.), Exclamation Mark (!), Square brackets [] and non-

printable characters such as carriage return (enter key) are not allowed.
	 5.	 Reserve words and keywords are not allowed as a field name. (Reserved words can never

be used as identifiers. Keywords can be used as identifiers, but this is not recommended.)
	 6.	 Field names are not case sensitive.

Creating a Database
There are two ways to create a database:

	 1.	 Creating a blank database.
	 2.	 Creating a database using a template.

To create a blank database, do the following:

Step 1: Open MS-Access. Select Blank Database option from the new blank database pane. If
any MS-Access is already open, then to create a new database click on the Microsoft Office
button and choose New. Then select the Blank Database option.

Step 2: The blank database pane opens where user can enter name for the new database and
click on the folder icon to select the path where user wants to store the database.

Step 3: Click on Create.

CH_11_Overview of MS-Access 2007_Final.indd 181 2/26/2014 3:49:00 PM

182  |  Chapter 11

To create a database using a template, do the following:

Step 1: Open MS-Access. Select any database from the pane ‘featured online Templates’.

Step 2: Give the file name, select path where you want to store the database.

Step 3: Click on Download.

Creating Tables
There are three ways to create a table:

	 1.	 Creating a table using design view.
	 2.	 Creating a table using datasheet view.
	 3.	 Creating a table using a template.

To create a table using datasheet view, do the following:

Step 1: Click on Create menu given on a ribbon. From ‘Table’ group, select table option. It will
open a blank table in a datasheet view with one field ID. We can change it by double clicking
on the field name. Similarly, we can add more fields by pressing a table.

Step 2: To set the data type and formats for the fields, click on the datasheet tab given in the
menu. Select Data type and Formatting group. Change data type and format by clicking on the
down arrow.

Step 3: Right click on the table name to save it with a new name.

To create a table using design view, do the following:

Step 1: Click on Create menu on a ribbon. From ‘Table’ group, select table design option. If we
select table option, then the blank table will be opened in a design view.

Step 2: Give field names and data types and set the field properties.

Step 3: Select the fields which you want to define as a primary key and click primary key option
of ‘tools’ group in a design tab.

Step 4: Right click on table name to save it with a new name.

To create a table using a template, do the following:

Step 1: Click on Create menu on a ribbon. From ‘Table’ Group, select table templates option.

Step 2: Select the table out of five given templates—contacts, tasks, issues, events and assets.

Step 3: Make changes in a field as required and save it.

Table 11.1 shows the difference between Design view and Datasheet view of a table:

Table 11.1  |  Difference Between Design View and Datasheet View

Design View Datasheet View

We can set primary key using this view. We cannot set primary key using this view.

We cannot enter records using this view. We can enter records using this view.

We cannot change formatting of text
entered in a table using this view.

We can change formatting of text
entered in a table using this view.

We can set the field properties such as
validation rule, default, validation text,
indexed, by using this view.

We cannot set the field properties such
as validation rule, default, validation
text, indexed, by using this view.

CH_11_Overview of MS-Access 2007_Final.indd 182 2/26/2014 3:49:00 PM

Overview of MS-Access 2007  |  183

Navigation Pane: The left pane in the MS-Access is called Navigation Pane. It displays all the
objects such as tables, queries, forms, reports, macros, created by the user. User can navigate
through this pane to open any existing object.

11.4  |  Data types of MS-Access
MS-Access 2007 provides 10 different data types, and each type has a specific purpose. Table
11.2 lists all the data types.

Changing from one data type to other data type:

●● Change data types in Datasheet view

	 1.	 Opens the table in Datasheet view.
	 2.	 Select the field (the column) for which you want to change the data type.
	 3.	 On the Datasheet tab, in the Data Type & Formatting group, click the arrow in the

drop-down list next to Data Type, and then select a data type.
	 4.	 Save your changes.

●● Change data types in Design view

	 1.	 Open table in Design view.
	 2.	 Select the field (the column) for which you want to change the data type, and select

a new data type from the list in the Data Type column.
	 3.	 Save your changes.

Table 11.2  |  Data Types of MS-Access 2007

Data Type Used to Store Maximum Limit

Text Alphanumeric data 255 characters

Memo Alphanumeric data 65,535 characters

Number Numeric data Field size could be set to 1, 2, 4, 8, or 16
bytes

Date/Time Dates and times

Currency Financial data 8 bytes with four decimal places

Auto Number Unique values created by MS
Access for a new record

4 bytes

Yes/No Boolean (true or false) data −1 for all Yes values and 0 for all No
values

OLE Object Images, documents, graphs and
other objects

Up to 2GB of data (the size limit for all
Access databases)

Hyperlink Web addresses Up to 1 gigabyte of data

Attachment Any supported type of file

CH_11_Overview of MS-Access 2007_Final.indd 183 2/26/2014 3:49:00 PM

184  |  Chapter 11

●● Restrictions on changing data types
As a rule, we can change the data type of all fields, except for:
○○ Number fields with the Replication ID property enabled
○○ OLE Object fields
○○ Attachment fields

When we change data type of the field which contains data, Access truncates or deletes
some data or may not allow convert the data type.

Field Properties: Each data type has some properties:

	 1.	Number field properties: Table 11.3 shows ‘Number’ field properties.
	 2.	Text field properties: Table 11.4 shows ‘text’ field properties.

‘Format’ property: We may use some predefined Access formats or may define our own for-
mats by using some specific characters:

●● Table 11.5 shows predefined formats for the Number, AutoNumber and Currency data
types.

●● Table 11.6 shows predefined formats for the date/time data type.

Applying custom (user defined) formats to numeric data: We can also apply custom formatting
by using some characters.

Input Mask: The following table lists and describes the placeholder and literal characters that
you can use in an input mask. Table 11.7 shows input mask characters.

Table 11.3  |  ‘Number’ Field Properties

Property Description

Field Size Controls the size of the value that you can enter and store in the field.

Format Values in the column will be displayed as per the defined format.

Decimal Places Sets the number of decimal places for the values in the field.

Input Mask Controls how user enters data.

Caption Defines the column heading.

Default Value Value which will be displayed in the column for each new record.

Validation Rule Defines conditions on column data.

Validation Text Defines error message which should be displayed when validation rule is
violated.

Required Shows compulsory data entry for the field.

Indexed Index is defined for fast data retrieval.

Smart Tags Smart tag recognizes the data type and performs action accordingly.

Text Align Aligns the data.

CH_11_Overview of MS-Access 2007_Final.indd 184 2/26/2014 3:49:00 PM

Overview of MS-Access 2007  |  185

Table 11.4  |  ‘Text’ Field Properties

Property Description

Field Size Maximum 255 characters.

Format Values in the column will be displayed as per the defined format.

Input Mask Controls how user enters data

Caption Defines the column heading

Default Value Value which will be displayed in the column for each new record.

Validation Rule Defines conditions on column data.

Validation Text Defines error message which should be displayed when validation
rule is violated.

Required Shows compulsory data entry for the field.

Allow Zero Length It allows entering zero-length strings (“ “).

Indexed Index is defined for fast data retrieval.

Unicode
Compression

Any character whose first byte is 0 is compressed when it is stored
and uncompressed when it is retrieved.

IME Mode Input Method Editor, a tool for using English versions of Access with
files created in Japanese or Korean versions of Access.

IME Sentence Mode Specifies the type of data you can enter by using an Input Method
Editor.

Smart Tags Smart tag recognizes the data type and performs action accordingly.

Text Align Aligns the data.

Table 11.5  |  Predefined Formats for Number, Autonumber, and Currency Data Types

Format Description Example

General Number Displays the number as entered. 456

Currency Applies the currency symbol. $4, 342

Euro Applies the Euro symbol. €4,234.23

Fixed Displays numbers without thousand separators
and with two decimal places.

9823.23

Standard Displays numbers with thousand separators
and two decimal places.

9,823.23

Percent Displays numbers as percentages (number multiplied
by 100) with two decimal places percent sign.

563.15%

Scientific Displays numbers with scientific (exponential) nota-
tions. For example, 1230000 is displayed as 1.23E + 04

1.23E+04

CH_11_Overview of MS-Access 2007_Final.indd 185 2/26/2014 3:49:00 PM

186  |  Chapter 11

Table 11.6  |  Predefined Formats for the Date/Time Data Type

Format Description Example

General Date (Default) Displays date and time values
followed by AM or PM.

08/29/2006 10:10:42 AM

Long Date Displays long date. Monday, August 29, 2006
Medium Date Displays the date as dd/mon/yyyy. 29/Aug/2006 29-Aug-2006
Short Date Displays short date. 8/29/2005 8-29-2006
Long Time Displays hours, minutes, and seconds

followed by AM or PM.
10:10:42 AM

Medium Time Displays hours and minutes followed by
AM or PM.

1:10 AM

Short Time Displays only hours and minutes. 13:10

Table 11.7  |  Input Mask Characters

Character Description

0 We can enter any Digit (0-9) where 0 is used in the input mask. Data entry is
compulsory at the position where 0 is specified.

9 We can enter any Digit (0-9) where 9 is used in the input mask. Data entry is
optional at the position where 9 is specified.

We can enter a digit (0-9), a space, or a plus or minus sign in this position. If
users skip this position, Access enters a blank space. Data entry is optional
for this position.

L We can enter any alphabet (A-Z or a-z) where L is used in the input mask.
Data entry is compulsory at the position where L is specified.

? We can enter any alphabet (A-Z or a-z) where ? is used in the input mask.
Data entry is optional at the position where ? is specified.

A We can enter any alphabet or digit (A-Z or a-z or 0-9) where A is used in the
input mask. Data entry is compulsory at the position where A is specified.

A We can enter any alphabet or digit (A-Z or a-z or 0-9) where a is used in the
input mask. Data entry is optional at the position where a is specified.

& Any character (including symbols) or space. Data entry is compulsory at the
position where & is specified.

C Any character (including symbols) or space. Data entry is optional at the
position where C is specified.

. , : ; / Decimal and thousands placeholders, date and time separators. The charac-
ter you select depends on your Windows regional settings.

< All characters that follow appear in uppercase.
> All characters that follow appear in lowercase.
! Causes the input mask to fill from left to right instead of right to left.
\ Forces Access to display the character that immediately follows. This is the

same as surrounding a character in double quotation marks.
‘Literal text’ Surround any text that you want users to see in double quotation marks.
Password In Design view for tables or forms, setting the Input Mask property to Pass-

word creates a password entry box. When users type passwords in the box,
Access stores the characters but displays asterisks (*).

CH_11_Overview of MS-Access 2007_Final.indd 186 2/26/2014 3:49:00 PM

Overview of MS-Access 2007  |  187

Defining a Foreign Key: By defining a foreign key, we can relate two tables. Do the following
to define a foreign key:

	 1.	 First, create the parent table and define a primary key in this table.
	 2.	 Create a child table which should contain the field with the same data type of parent

table’s primary key.
	 3.	 Select database tools tab from show/hide group and click relationships.
	 4.	 Select parent and child tables.
	 5.	 Drag parent table’s primary key to the related field of child table.
	 6.	 Click OK.
	 7.	We can also select Cascade option while defining a foreign key.

11.5  | So rting and filtering records in MS-Access
Sorting Records:

●● MS-Access automatically sorts records by the value in primary key field.
●● We can sort records based on the value in a specific field.
●● We can sort up to 255 characters.
●● Ascending sort order arranges text values in alphabetical order (A to Z), date/time values
from earliest to latest, number/currency values from lowest to highest, yes/no values are
sorted first by ‘yes’ values then by ‘no’ values.
●● We can sort memo fields using first 255 characters.
●● Hyperlink fields can be sorted by the text to display (if any) or the address.
●● We cannot sort OLE object or attachment fields.
●● We can sort single or multiple fields.

Sorting by a single field:
●● To sort by a single field in datasheet view, click within the field you want to sort by; and
then to sort by a single field on the ‘home’ tab in the ‘sort and filter’ group, do any of the
following:

	 i.	 Click ascending/descending command.
	 ii.	 Right click in the field and choose sort A to Z/Z to A from the shortcut menu.

●● To restore the records to their original order, on the ‘home’ tab’s sort and filter group,
click the ‘clear all sorts’ command.

Sorting by two or more fields:
●● To sort by more than one field, the sorted fields must be adjacent in the datasheet.
●● Sorting done from left to right, so the records are sorted first by the values in left column.
If the duplicate values appear in first column, sorting is performed on those records by the
values in the next column to the right.
●● If columns are not adjacent, then we must move the columns before sorting the records.
●● When we close the table after sorting is done, access asks to save changes. Click yes to
save changes permanently.

CH_11_Overview of MS-Access 2007_Final.indd 187 2/26/2014 3:49:00 PM

188  |  Chapter 11

Filtering Records:
●● When we want to see only certain records in our datasheet or form, we can filter out the
records which we do not want to see. The filter process displays only those records that
meet the criteria (conditions).

●● Advantages of using filter: Filtering can help you save time by displaying only those
records which are important to you at the moment.
●● Filtering does not remove the records from the table; it only removes them from your
view of the table.

●● Filter can display result of a condition consisting simple and complex rules.
●● Difference between finding records and filtering records: Table 11.8 shows the difference
between finding and filtering records.
●● In MS-Access, there are four ways to filter records depending on the conditions and a
particular sorted order. These are as follows:

	 1.	 Common context filters: They are available in the shortcut menus depending on the
field type.

	 2.	 Filter by selection: It leaves only the records with the same value as the one you
select in one of the records or the records that do not include the same value.

	 3.	 Filter by form: It displays records with the criteria entered into a table.
	 4.	 Advanced filter/sort: It gives the capability of specifying a complex sort. With a

complex sort, we can sort the records by two or more fields using different orders—
ascending or descending.

●● Difference between removing and clearing filters: Table 11.9 shows the differences be-
tween Removing and Clearing filters.

11.6  |  Creating queries in MS-Access
SQL is the standard command set that allows the users to interact with the relational database
management systems. (Some examples of relational database management systems are MS-
Access, MS-SQL Server, DB2, Oracle).

Table 11.8  |  Difference Between Finding and Filtering Records

Finding Records Filtering Records

When Access finds record, the cursor
moves to the record in a datasheet
and all the other records remain
on the screen.

Filter removes the records from the screen
which do not meet the condition and
displays only those records which you want
to see. But records remain in the table.

Table 11.9  |  Difference Between Removing and Clearing Filters

Removing filters Clearing filters

Removing a filter simply returns all
the records to the datasheet or form.

Clearing the filter erases the filter criteria.

We can reapply the filter later. We cannot reapply the filter without
reconstructing it.

CH_11_Overview of MS-Access 2007_Final.indd 188 2/26/2014 3:49:00 PM

Overview of MS-Access 2007  |  189

All tasks related to relational data management, such as creating tables, querying the data-
base for information, modifying the data in the database, deleting them, granting access to users
and so on, can be easily performed using SQL. We can create a query in MS-Access using query
design view, query wizard or SQL view. To create a query using query wizard, follow the steps
as given below:

	 1.	 Create the necessary tables.
	 2.	 Click on ‘create’ tab.
	 3.	 Click ‘Query wizard’ option available in the ‘other’ group on the ribbon.
	 4.	 As per the requirement, select any one option from the given four options—simple query

wizard, crosstab query wizard, find duplicates query wizard and find unmatched query
wizard.

	 5.	 Select tables and fields which you want to see in the result.
	 6.	 Click finish to view the result.

To create a query using query design, follow the steps as given below:

	 1.	 Create the necessary tables.
	 2.	 Click on ‘create’ tab.
	 3.	 Click ‘Query design’ option available in the ‘other’ group on the ribbon.
	 4.	 The ‘Show table’ dialog box will appear on the screen. Select the tables and click close.
	 5.	 Select the fields from the table and specify the criteria in the design pane and view the

result using datasheet view or by clicking on run option.

We can write any select statement in a ‘SQL view’ of Access. To write a query in SQL view,
follow the steps as given below:

	 1.	 Create the necessary tables.
	 2.	 Click on ‘create’ tab.
	 3.	 Click ‘Query design’ option available in the ‘other’ group on the ribbon.
	 4.	 The ‘Show table’ dialog box will appear on the screen. Click close.
	 5.	 Right click on ‘query1’ and select ‘SQL view’. Write select statement in the window and

then execute the query using ‘run’ option available in ‘results’ group of ‘Design’ tab.

Table 11.10 shows the differences between filter and query.

Table 11.10  |  Difference between Filter and Query

Filter Query

Filter is saved with a table. Query is a separate database object which
appears in the navigation pane.

To view the result of a filter, we must
open the table first.

There is no need to open a table first to view
the result because a query is an
independent object.

We can apply filter on a single table. We can create a query using multiple tables.

We cannot perform operations (insert,
update, delete) on data using a filter.

We can perform operations (insert, update,
delete) on fields using a query.

CH_11_Overview of MS-Access 2007_Final.indd 189 2/26/2014 3:49:01 PM

190  |  Chapter 11

Types of Queries in MS-Access: There are four categories of queries in MS-Access.
Select queries: It is the most common category and is used to fetch records from database
tables. We can create three types of select queries using query wizard.

	 a.	 Simple Select query: It displays data from one or more tables grouped or sorted in a
specific order. To create a simple query, follow the steps as given below:

	 1.	 Click on create → query wizard.
	 2.	 Select simple query wizard option and click OK.
	 3.	 Select table and fields which you want to display and click next.
	 4.	 Give any valid name to a query and click finish.

	 b.	 Find duplicate query: It displays all records with duplicate values in one or more speci-
fied fields. To create ‘find duplicate query’ follow the steps as given below:

	 1.	 Click on create → query wizard.
	 2.	 Select find duplicates query wizard option and click OK.
	 3.	 Select table from which you want to find duplicate values and click next.
	 4.	 Select the fields which may contain duplicate values and click next.
	 5.	 Select the fields which you want to display and click next.
	 6.	 Give any valid name to a query and click finish.

	 c.	 Find unmatched query: It displays records in one table that have no related records in
another table. To create a find unmatched query, follow the steps given below:

	 1.	 Click on create → query wizard.
	 2.	 Select find unmatched query wizard option and click OK.
	 3.	 Select table from which you want to display fields and click next.
	 4.	 Select the table which contains related field and click next.
	 5.	 Select the matching field from both the tables and click next.
	 6.	 Select the fields which you want to display and click next.
	 7.	 Give any valid name to a query and click finish.

Action queries: They are used to insert, update or delete records from/to tables. There are four
types of action queries in Access:
	 a.	Make table query: It is used to create a new table out of data from one or more tables. To

create a make table query follow the steps as given below:
	 1.	 Click on create → query design.
	 2.	 Select the table(s) from which you want to retrieve records.
	 3.	 Click on design tab’s query type group and select make-table option. MS-Access

will display the make-table dialog box and asks for the target table in which you
want to paste records.

	 4.	 Select the table name and database where you want to copy your records and click OK.
	 5.	 Drag fields from the available tables and write criteria if any.
	 6.	 Click on ‘Run’ option given in the results group.

	 b.	 Append query: Add a group of records from one or more tables to the end of one or more
other tables. To create an append query follow the steps as given below:

	 1.	 Click on create → query design. Select the table(s) from which you want to	
append records.

	 2.	 Click on design tab’s query type group and select append option.

CH_11_Overview of MS-Access 2007_Final.indd 190 2/26/2014 3:49:01 PM

Overview of MS-Access 2007  |  191

	 3.	 Select the table name in which you want to append records.
	 4.	 Select fields of source table in the design pane and select related fields of destination

table in ‘append to’ cell.
	 5.	 Click on ‘Run’ option given in the results group.

	 c.	 Update query: Make global changes to a group of records in one or more tables. To cre-
ate an update query follow the steps as given below:

	 1.	 Click on create → query design. Select the table(s) which you want to update.
	 2.	 Click on design tab’s query type group and select update option.
	 3.	 Select fields which you want to update and the fields on which you want to put condi-

tions.
	 4.	 Enter the new values of fields in the ‘Update to’ cell and field conditions in the ‘cri-

teria’ cell.
	 5.	 Click on ‘Run’ option given in the results group.

	 d.	 Delete query: Remove a specific group of records from one or more tables. To create a
delete query follow the steps as given below:

	 1.	 Click on create → query design. Select the table from which you want to delete re-
cords.

	 2.	 Click on design tab’s query type group and select delete option.
	 3.	 Select fields on which you want to put conditions.
	 4.	 Enter the conditions in the ‘criteria’ cell.
	 5.	 Click on ‘Run’ option given in the results group.

Special purpose queries: It is used to summarize values from one field in the table, grouped in
two ways or automatically fill in data or prompt for criteria.
	 a.	 Parameterized query: Display a dialog box where you enter the criteria for retrieving

data or a value to insert into a field. We can apply parameters to other types of queries as
well. To create a parameterized query, follow the steps as given below:

	 1.	 Click on create → query design and select the table.
	 2.	 Select the fields which you want to see in the result.
	 3.	 Click on the field for which you want to set parameter.
	 4.	Write name of the parameter in the criteria. The parameter name should be enclosed

within the square brackets.
	 5.	 Click on parameter in the ‘show/hide’ group and define the parameter in the avail-

able window by specifying its datatype.
	 6.	 To view the result click on datasheet view. MS-Access will prompt to enter the pa-

rameter value. Give parameter value and click OK.
	 b.	 Autolookup query: Special select queries that automatically fill in certain field values in

a new record in one or more tables. To create an autolookup query, follow the steps as
given below:

	 1.	 Click on create → query design and select the parent and child table.
	 2.	 Select related field from the child table and other fields from the parent table.
	 3.	 Click on datasheet view to see results.

	 c.	 Crosstab query: Calculate a sum or count and group the results in a spreadsheet format
that correlates the data with two types of information.

CH_11_Overview of MS-Access 2007_Final.indd 191 2/26/2014 3:49:01 PM

192  |  Chapter 11

Table 11.11  |  Predicates Used with Select Statement

Predicate Meaning
Distinct To display unique values of fields. For example, Select distinct stdname from

student.
Top n To display n (any integer number) top most values. For example,

select top 10 stdno from student order by stdno desc.

Table 11.12  |  Wildcards

Wildcard Meaning

? Single character
Single digit (between 0-9)
* Many characters
[char/digit_list] Specify range of characters or digits for a single character

SQL-specific queries: These are accessible only through SQL statements. All queries have
SQL statements in the background, but SQL-specific queries are constructed with the program-
ming language instead of a design grid like other types of queries.

	 a.	 Union: Combine fields from one or more tables into one field in the result.
	 b.	 Sub query: SQL SELECT or other server statements that form a SELECT query within

another query.
	 c.	 Pass-through query: Send instructions directly to open database connectivity (ODBC)

databases using commands specific to the server.
	 d.	 Data definition query: Create or change database objects in MS-Access, SQL server or

other server database.

Predicates: Predicates shown in Table 11.11 are written between select keyword and list of
fields as per the requirement.

Special Operators: There are five special operators available with select statement: 1. Like;	
2. Is Null; 3. In; 4. Exists; and 5. Between.

	 1.	 Like: It is written after where clause to match specific pattern in a text or string. MS-
Access allows the following wildcards to be used with the like operator. Table 11.12
shows the wildcard characters which could be used with select statement in MS-Access.
Here are some examples of Like operators:

●● Display names of the student in which first letter is A or Z.
SELECT students’ details from student

 where stdname like ‘[A,Z]*’

●● Display students’ details containing the word ‘kan’.

SELECT * from student where stdname like ‘*kan*’

●● Display students’ details in which second letter is a digit.

SELECT * from student where bdate like ‘?#*’

●● Display students’ details in which first letter lies between 0 and 9.

SELECT * from student where bdate like ‘[0-9]*’

CH_11_Overview of MS-Access 2007_Final.indd 192 2/26/2014 3:49:01 PM

Overview of MS-Access 2007  |  193

●● Display students’ details in which first letter does not lie between 0 and 9.

SELECT * from student where bdate like ‘![0-9]*’

	 2.	 Is null: It is needed to check and display the records in which specific field contains	
any null value or not. For example, select * from student where stdname
is null.

	 3.	 In: It is written before the subquery (query written within the select statement) to	
check the field value lies in specific list of values or in list of values selected by an-	
other subquery. The subquery will be executed first; and based on the result returned	
by a subquery, the main query will be executed. For example, select * from
student where stdno in (select stdno from mark).

	 4.	Exists: It is written before the subquery (query written within the select statement) to
check the existence of records returned by the subquery. It will return true if the subque-
ry contains any record else returns false if the subquery doesn’t contain any record. For
example, select * from student where exists(select * from mark).

	 5.	Between: It is written after the clause to check the field value lies in a specific range.	
The upper and lower values are also included in the range. For example, select *
from student where stdno lies between 10 and 20.

Functions: Following functions are available in MS-Access:

	 1.	Date and Time Functions: Table 11.13 shows date and time functions.
	 	 Some examples: You can write the following select queries to view the result of above

functions.

●● Display current date and time, only current date, only current time.

	 SELECT now (), date (), time () from student;

●● Display use of datepart, datediff and dateadd functions.

 SELECT datepart (‘d’, date ()) as ‘today’s date’,
 datepart (‘ww’, date ()) as ‘week no of the year’,
 datepart (‘y’, date ()) as ‘day of the year’,
 datepart (‘yyyy’, date()) as year_no,
 datepart (‘q’, date ()) as ‘quarter_no’ ,
 datepart (‘m’, date()) as ‘month of the year’,
 datepart (‘w’, date()) as ‘day of the week’,
 month (#12-12-2010#) as ‘month no’,
 year (#12-12-2010#) as ‘year no’,
 day (#12-12-2010#) as ‘day of the month’,
 weekday (#12-12-2010#) as ‘day of week’ ,
 datediff(‘d’, #12-12-2008#,#1-12-2010#)as ‘date difference’,
 datediff(‘m’, #12-12-2008#,#1-12-2010#)as ‘month difference’,
 datediff(‘yy yy’, #12-12-2008#,#1-12-2010#)as ‘year difference’,
 dateadd (‘d’,234, #12-12-2008#) as ‘Add no of days’,
 dateadd (‘yyyy’, 3,#12-12-2008#) as ‘Add no of years’,
 dateadd(‘m’,24,#12-12-2008#) as ‘Add no of months’ from student;

CH_11_Overview of MS-Access 2007_Final.indd 193 2/26/2014 3:49:01 PM

194  |  Chapter 11

○○ Display different uses of a format function.
 SELECT format (‘shefali’, ‘>’) as ‘string in upper case’,
 format(‘Shefali’, <’) as ‘string in lower case’,
 format (date (), ‘d-mmmm-yyyy’),
 format (date (),‘long date’),
 format (time (),‘long time’),
 format (date (), ‘dd-mm-yyyy’),
 format (date (), ‘mmmm’),
 format (date (), ‘dddd’),
 format (date (), ‘yyyy’),
 format (time (), ‘hh’), format (time (), ‘ss’) ,
 format (time (), ‘n’),
 format (time (), ‘hh : n : ss am/pm’)
 from student;

	 2.	 String functions: Table 11.14 shows the string functions of MS-Access.

Table 11.13  |  Date and Time Functions

Function Meaning
Now () Current date and time
Date () Current date
Time () Current time
Datepart (‘partofdate’,dateexpression) Display any part from the specified date
Datediff (‘partofdate’,from_dateexpress-
ion, to_dateexpression)

Display difference of two dates as number of
days or number of months or number of years

Dateadd (‘partofdate’, duration,
dateexpression)

Add number of days, months or years
and returns date.

Day (dateexpression) Extracts day from the date
Weekday (dateexpression) Extracts week day number from the date
Month dateexpression () Extracts month number from the date
Year (dateexpression) Extracts year number from the date

Table 11.14  |  String Functions

Function Meaning

Ucase(stringexpression) Display string in capital letters.
Lcase(stringexpression) Display string in small letters.
Ltrim(stringexpression) Removes spaces from left side of the string.
Rtrim(stringexpression) Removes spaces from right side of the string.
Trim(stringexpression) Removes spaces from left and right side of the string.
Left(stringexpression,no._of_char) Display specific number of characters from left

side of the string.
Right(stringexpression,no._of_char) Display specific number of characters from right

side of the string.
Mid(stringexpression,start_
position,no._of_char)

Display specific number of characters from the
position specified.

Len(stringexpression) Display length of a string.

CH_11_Overview of MS-Access 2007_Final.indd 194 2/26/2014 3:49:01 PM

Overview of MS-Access 2007  |  195

Some examples: You can write the following ‘select’ queries to view the result of the func-
tions as given in Table 11.14.

SELECT ucase(‘shefali’),
 lcase(‘SHEFELI’),
 ltrim(‘shefali’),
 rtrim(‘shefali’),
 trim(‘shefali’),

 left(‘shefali’, 4),
 right(‘shefali’, 4),
 mid(‘shefali’, 2, 3),

 len(‘shefali’)
 from student;

	 3.	Mathematical functions: Table 11.15 shows the mathematical functions.
	 	 For example:

SELECT round(34.57, 0),int(34.34), rnd() from student;

	 4.	Aggregate functions: These functions are used for summary or collective results. Table
11.16 shows the aggregate functions.

Types of Joins: We can join two or more than two tables to retrieve records from more than
one table. When you include multiple tables in a query, you use joins to help you get the results
you are looking for. A join helps a query return only the records from each table you want to
see based on how those tables are related to other tables in the query. Following are the types of
joins available in MS-Access:

	 1.	Equi Join: When we join two or more than two tables using a ‘=’ sign, then the type	
of join is said to be an equi join. For example, select * from class, student
where class.classcode = student.classcode.

Table 11.15  |  Mathematical Functions

Function Meaning

Round (number,decimal_places) Rounds a number
Int (number) Displays only quotient part of a number

Rnd () Generates unique random numbers

Table 11.16  |  Aggregate Functions

Function Meaning

Count(fieldname) or count(*) Displays total no. of values or records
Max(fieldname) Displays maximum value from the list of values
Min(fieldname) Displays minimum value from the list of values

Avg(fieldname) Displays average values
Sum(fieldname) Displays sum of values

CH_11_Overview of MS-Access 2007_Final.indd 195 2/26/2014 3:49:01 PM

196  |  Chapter 11

	 2.	 Inner Join: Inner joins are the most common type of join. They tell a query that rows
from one of the joined tables correspond to rows in the other table on the basis of the data
in the joined fields. When a query with an inner join is executed, only those rows where
common values exists in the tables which are joined will be displayed in the result. Use
an inner join if you want to return only those rows from both tables in the join that match
on the joining field. For example, select * from class inner join student
on class.classcode = student.classcode.

	 3.	Left Outer Join: Outer joins tell a query that although some of the rows on both sides
of the join correspond exactly, the query should include all of the rows from one table,
and also those rows from the other table that share a common value on both sides of the
join. Outer joins can be left outer joins or can be right outer joins. In a left outer join, the
query includes all of the rows from the first table in the SQL statement FROM clause,
and only those rows from the other table where the joining field contains values common
to both tables. For example, select * from class left join student on
class.classcode=student.classcode.

	 4.	Right Outer Join: In a right outer join, the query includes all of the rows from the sec-
ond table in the SQL statement FROM clause, and only those rows from the other table
where the joining field contains values common to both tables. Use an outer join if you
want all of the rows from one of the tables in the join to be included in your results and
you want the query to return only those rows from the other table that match the first
table on the joining field. For example, select * from class right join
student on class.classcode = student.classcode.

	 5.	Cross Join: When join criteria is not being specified after where clause, the query will
display Cartesian product of selected tables and this type of join is said to be cross join.
For example, select * from class, student.

	 6.	Multiple Join: When we join more than two tables in a single query, the type of join
is said to be multiple join. For example, select * from class, student,
mark where class.classcode = student.classcode and student.
stdno=mark.stdno.

	 7.	Union: A union query uses the UNION operator to combine the results of two or more
select queries and combines the results of two or more independent queries or tables.
When we use union keyword, number of fields in both the queries should be same and
datatype of corresponding fields should match with one another. For example, select
classcode from class union and select classcode from student.

11.7  |  Creating forms in MS-Access
Forms: Forms are used for viewing and entering data. In MS-Access, we can design a form
that presents data in a way that makes the information easy to understand, enter (add/insert) and
manage (change). There are three views available using which we can view, insert or change
data and change design or properties of a form. The three views are: Form View, Design View,
Layout View.

●● Form View: We can navigate the records, filter the records, search record and add, delete
or edit/change records in a form view.

CH_11_Overview of MS-Access 2007_Final.indd 196 2/26/2014 3:49:01 PM

Overview of MS-Access 2007  |  197

●● Design View: We can change the design or layout of a form; set properties for different
controls and sections of a form; change tab orders; set default properties for controls; add
calculated fields or add any control from the control group in a design view.

●● Layout View: It displays layout of a form. We cannot enter data in this view. We cannot
add new controls on a form using this view.

Types of Form: On the basis of table or query, we can create a form using the following form
structures:

	 1.	 Form: It is a form structure which creates a simple form. To create this type of form, the
steps are:

	 a.	 Select a table or query from the navigation pane for which you want to create a form.
	 b.	 Click the ‘Create’ tab.
	 c.	 Select the ‘Form’ option from the form group.

	 2.	 Split form: A split form is one of the form design structure which offers the data in two
views at the same time—the form layout view and the datasheet view. We can add, delete
or edit data in either part of the form. Both the views are synchronized as the changes
made in one view are reflected in the other view. To create a form using ‘Split form’
design structure the steps are:

	 a.	 Select a table or query from the navigation pane for which you want to create a form.
	 b.	 Click the ‘Create’ tab.
	 c.	 Select the ‘Split Form’ option from the form group.

	 3.	Multiple Items: This type of structure displays several records in the Layout view. To
create a form using the ‘Multiple Items’ design structure, the steps are:

	 a.	 Select a table or query from the navigation pane for which you want to create a form.
	 b.	 Click the ‘Create’ tab.
	 c.	 Select the ‘Multiple Items’ option from the form group.

	 4.	 Pivot Chart: It provides the tools to create a graphical analysis of the data in a table or
query. It can be used to add chart in an existing form.

	 5.	 Blank Form: To create a form using ‘blank form’ design structure the steps are:
	 a.	 Select a table or query from the navigation pane for which you want to create a form.
	 b.	 Click the ‘Create’ tab.
	 c.	 �Select ‘blank form’ option from the form group. This option opens an empty form in

the Layout View with the field List pane open at the right side. To add fields to the
form, select table and drag the fields to the form layout or we can set ‘recordsource’
property of a form with the name of a table. Then drag required controls from the
‘controls’ group and bind each control with the table’s field using ‘controlsource’
property.

	 6.	 Form Wizard: To create a form using the ‘form wizard’ design structure the steps are:
	 a.	 Select a table or query from the navigation pane for which you want to create a form.
	 b.	 Click the ‘Create’ tab.
	 c.	 �Select the ‘form wizard’ option from the ‘more forms’ option from the form group. It

takes you through the form design process where you can select table/query, layout,
style and name for your form.

CH_11_Overview of MS-Access 2007_Final.indd 197 2/26/2014 3:49:01 PM

198  |  Chapter 11

There are four layout options available in a form wizard.

	 1.	 Columnar: It arranges all the fields on the screen in one or more columns, depending on
the number and size of the fields.

	 2.	 Tabular: It places all the data from one record in a line across the form.
	 3.	 Datasheet: It is similar to table’s Datasheet view. This style is used for subforms.
	 4.	 Justified: The fields are arranged in rows, but the row of fields is wrapped to multiple

lines as necessary.
	 5.	 Datasheet: It opens the table or query that is the basis for the form currently selected in

the navigation pane in datasheet view.
	 6.	 Modal Dialog: It is used to create a dialog box which is not based on table data but it	

includes user-interaction controls such as command buttons, option groups and drop-down
lists.

	 7.	 Pivot Table: It summarizes and analyzes data and builds a table.

Recordsource: The record source is one of the properties of every form and report which pro-
vides the source of data from table, query or an SQL statement. We can set or change the record
source property of a form by doing the following:

	 1.	 In the form design view, click the form selector. Then in the tools group, click the prop-
erty sheet command or right-click the selector and choose properties from the shortcut
menu or click F4.

	 2.	 Open the ‘Data’ tab and click the down arrow in the recordsource property box.
	 3.	 Choose the record source from the drop-down list of all tables and queries in the current

database.

Form Sections: There are five sections of a form.

	 1.	 Detail: It contains the data.
	 2.	 Form Header: It contains information to show at the top of the screen. For example, title,

instructions, etc. This information is printed at the top of the first page.
	 3.	 Form Footer: It contains information to show at the bottom of the screen. This informa-

tion is printed at the bottom of the last page.
	 4.	 Page Header: It contains information to show at the top of each page when the form is

printed or previewed. This section is not visible in Form View.
	 5.	 Page Footer: It contains information to show at the bottom of each page when the form

is printed or previewed. This section is not visible in Form View.

Property Tabs: There are five tabs available in the property sheet.

	 1.	 Format: It lists all formatting properties of particular control such as caption, visible,
back colour, back style, height, width.

	 2.	 Data: Properties listed in this tab determines what data is displayed and how form han-
dles the data. For example, controlsource, filter, and sort order, etc.

	 3.	 Event: It specifies what happens when some event occurs. For example, when form
opens or closes, etc.

	 4.	 Other: It includes miscellaneous properties such as Popup and Modal.
	 5.	 All: It displays complete list of properties.

CH_11_Overview of MS-Access 2007_Final.indd 198 2/26/2014 3:49:01 PM

Overview of MS-Access 2007  |  199

●● Bound, Unbound and Calculated Controls:
○○ Bound control: The control which gets its value from a field in the table or query and
as data changes, the value of the control changes.
○○ Unbound control: The control which has no tie to the underlying table data and retains
the value user enters is called an unbound control.
○○ Calculated control: The control which gets its value from values in the table and is an
expression containing functions and operators that produces some result is called a
calculated control.

●● Set default properties for any control: To set default properties for any control follow
the steps given below:
○○ From the control groups given in the Design tab, click on the control for which you
want to set the default properties.
○○ In the property sheet window, you will get the selection type: Default for that control.
○○ Set the properties which you want as default properties.

●● To place a calculated control on a form which will display the age of a student:
○○ Select textbox control from the controls group.
○○ Open property sheet for that textbox.
○○ Select control source property and type =datediff(‘yyyy’,birthdate,date()) in that.

●● Controls available in ‘Controls’ group of MS-Access 2007:
○○ Textbox: A control that displays field data from tables, queries or calculated fields is
called a textbox.
○○ Label: A control which displays descriptive text, such as titles, captions or instructions
is called a label. It is an unbound control.
○○ Command Button: A control which initiates an action, such as opening a linked form,
running a macro or calling a Visual Basic for Application (VBA) procedure is called a
command button.
○○ Combo Box: It is a combination box which combines two controls-drop down list box
and check box. It is used to display multiple items.
○○ Check Box: It displays a check mark in a small box if the underlying field is yes. The
box is empty if the value is ‘no’.
○○ Option button: It is also known as radio button. It displays a black dot inside a circle if
the value in the underlying field is yes. The circle is empty if the value is ‘no’.
○○ Toggle button: When toggle button appears selected, the value in the underlying field is
yes. If the button appears raised, the value is ‘no’.
○○ Option Group: It provides groups of Toggle buttons, Check boxes or Option buttons.
○○ Bound object frame: It displays an object (e.g., image) which is stored in the field of
a table.
○○ Unbound object frame: It is used to display an object which does not belong to any
field of a table.
○○ Image: It is used to display unbound image. For example, Logo of a company.
○○ Line: Used to draw straight line. It is an unbound control.
○○ List box: A control that displays a list of choices, such as values for a field or search
criteria.

CH_11_Overview of MS-Access 2007_Final.indd 199 2/26/2014 3:49:01 PM

200  |  Chapter 11

○○ Logo: A picture to be used as a logo on a form or report. It is usually placed in the form
or report header.
○○ Page break: A control that creates a form with more than one page or causes a report to
move on the next printed page.
○○ Rectangle: It is used to draw rectangle. It is an unbound control.
○○ Subform/subreport: A form or report contained within another form or report that
shows data from related tables.
○○ Tab: A control that shows a multiple-page form with tabs at the top of each page.

●● Hierarchical Form: Hierarchical form represents 1:M (1 to many) type of relationship.
It consists of a main form and one or more subforms. The main form shows data from
records on the ‘one’ side of a one-to-many relationship and the subforms show data from
records on the ‘many’ side.

Steps to create a hierarchical form: Following steps should be followed to create a
hierarchical form:

	 1.	 Create parent table and child table.
	 2.	 Set relationship between parent and child table using a linked field.
	 3.	 Start form wizard and select parent table. In the first dialog box, select fields which

you want from the parent table.
	 4.	 Then select child table. Select fields which you want from the child table. Click next.
	 5.	 The second dialog box asks how you want to view the data, i.e., which records you

want in the main form and which in the subform. Click next.
	 6.	 Select the option ‘form with subform’ and click next.
	 7.	 Select the layout (tabular or datasheet) for the subform and click next.
	 8.	 Choose the style for the form in the next dialog box and click next.
	 9.	 In the final dialog box, name the form and the subform and click finish.

●● Put a hyperlink on the form: To put a hyperlink on the form, do the following:

	 1.	 Open the form in design view. On the create tab’s controls group, click the insert
hyperlink command.

	 2.	 From the dialog box, select the filename from the list or type the path and file name.
	 3.	 If you want to open an object from the current database then click on bookmark and

select the object. Click OK.
	 4.	 Drag the hyperlink control to the position you want in the form design.

●● Set tab order of different controls on a form: To set tab order of different controls on
a form follow the steps given below:

	 1.	 Right click on the form.
	 2.	 Select tab order option from the pop-up menu.
	 3.	 Adjust controls using record selector available in the tab order dialog box.

●● Steps to give conditional formatting to any control: We can specify format for a field
for specific condition by setting conditional formatting. To create conditional formatting,
select the control on a form and right click. Then select the option conditional formatting
and set format according to the condition.

●● Steps to create multiple pages: There are two ways to create a multiple-page form, as:

CH_11_Overview of MS-Access 2007_Final.indd 200 2/26/2014 3:49:02 PM

Overview of MS-Access 2007  |  201

	 1.	 By inserting a page-break control: Page breaks are used to separate the form horizon-
tally into two or more pages. To insert a page break on the ‘Design’ tab in the ‘controls’
group, click the ‘page break’ control and then click in the form where you want the split.

	 2.	 By using a tab control: Tab control produces multiple-page tabbed forms that combine
all the pages into a single control. Tab controls are useful for presenting grouped infor-
mation that can be assembled by category. A tab control has pages, each with a tab of its
own. Each tab page can contain all types of controls such as text boxes, labels, combo
boxes. To create a tab control on the ‘Design’ tab in the ‘controls’ group, click the ‘tab’
control and then click in the form where you want it. Then add controls on each tab. We
can rename the tab’s name by double clicking it or by changing new name in the ‘cap-
tion’ property of that page. To add or remove a page in a tab control, right click on a tab
control and select ‘insert page’ or ‘delete page’ option.

11.8  |  Creating reports in MS-Access
Reports: Reports are used for viewing and printing data in some specific format. There are four
views available using which we can view, insert or change data and change design or proper-
ties of a report. The four views are: Report View, Design View, Layout View and Print Preview.

	 1.	 Report View: We can view the details of data, but can’t change or insert anything. The
report will be available as read only in this view.

	 2.	 Design View: We can change the design or layout of a report; set properties for different
control and sections of a report; add calculated fields or add any control from the control
group in a design view.

	 3.	 Layout View: It displays layout of a report. We can add some controls such as logo, title,
page no. and date/time in this view. We can change properties of existing controls of a
report using this view.

	 4.	 Print Preview: It will display the layout of a report and shows how the report will look
when it will be printed.

Creating a Report: We can create a report in the following five ways. We may use

●● ‘Report’ option given in the ‘Reports’ group: To create a report using ‘report’ option,
the steps are:

	 a.	 Select a table or query from the navigation pane for which you want to create a report.
	 b.	 Click ‘Create’ tab and select ‘report’ option from the reports group.

●● ‘Report Wizard’ option given in the ‘Reports’ group: To create a report using ‘report
wizard’ design structure, the steps are:

	 a.	 Select ‘report wizard’ option from the ‘reports’ group. It takes you through the report
design process where you can select table/query, layout, style and name for your
report.

	 b.	 Select table/query using which you want to create a report and select fields of that
report.

	 c.	 Click next and select the filed/fields on which you want to group the records. After
selecting the field, you may select the grouping intervals for the fields. For example,

CH_11_Overview of MS-Access 2007_Final.indd 201 2/26/2014 3:49:02 PM

202  |  Chapter 11

if the field’s data type is number then MS-Access gives you the choice for no. of
intervals (10s, 50s, 100s, and so on.) on which you want to group the data.

	 d.	 Click next. Then we can select the sorting option and summary option.
	 e.	 Click next. We can select layout (Stepped, Outline or Block) and orientation (Land-

scape or Portrait).
	 f.	 Click next. We can select style for the report from the given option.
	 g.	 Click next and give name to the report and click finish.

●● ‘Labels’ option given in the ‘Reports’ group: To create a report of label type, the steps
are:

	 a.	 Select a table/query and click the ‘labels’ option from the ‘reports’ group.
	 b.	 The label wizard will be opened where you need to select ‘label type’ (sheet feed or

continuous), ‘unit of measure’ [English (it will display label size in inches) or Metric
(it will display label size in millimeter] and click Next.

	 c.	 Select font name, size, colour, etc., and click Next.
	 d.	 Select fields which you want to display on a label and click Next.
	 e.	 Select field name on which you want to sort your labels and click Next.
	 f.	 Give name to this report and click Finish.

●● ‘Report Design’ option given in the ‘Reports’ group: This option will open the design
view of a report where we can paste controls and bind them with the fields manually or
drag fields from the window ‘field list’.

●● ‘Blank Report’ option given in the ‘Reports’ group: To create a report using ‘blank
form’ design structure, the steps are:

	 a.	 Click the ‘Create’ tab and select the ‘blank form’ option from the reports group.
	 b.	 This option opens an empty report in a Layout View with the ‘Field List’ pane open

at the right side. To add fields to the report, select table and drag the fields to the re-
port layout or we can set ‘recordsource’ property of a report with the name of a table/
query. Then drag required controls from the ‘controls’ group and bind each control
with the table’s field using ‘controlsource’ property.

Report Sections: There are seven sections of a report:

●● Detail: It contains the data.
●● Report Header: It contains information to show at the top of the screen. For example, title,
instructions, etc. This information is printed at the top of the first page.

●● Report Footer: It contains information to show at the bottom of the screen. This informa-
tion is printed at the bottom of the last page.
●● Page Header: It contains information to show at the top of each page.
●● Page Footer: It contains information to show at the bottom of each page.
●● Group Header: It contains information to show at the top of a particular group. For each
group, individual group header section will be displayed.

●● Group Footer: It contains information to show at the bottom of a particular group. For
each group, individual group footer section will be displayed.

Subreport: A report which is inserted into another report is called a ‘subreport’. A main report
can include as many subreports and subforms as necessary. A first level subreport can contain

CH_11_Overview of MS-Access 2007_Final.indd 202 2/26/2014 3:49:02 PM

Overview of MS-Access 2007  |  203

another subreport or a subform. If the first level is a subform, it can contain only another sub-
form, not a subreport, as the second level. We can use the subform/subreport control given in
the create tab’s reports group to create a new subreport in the current report design. We can also
use the subform/subreport wizard to create a subreport. To create a subreport, do the following:

	 1.	 Create a main report. Open it in the design view.
	 2.	 Select subform/subreport control from the controls group and drag it into the main re-

port’s detail section.
	 3.	MS-Access will open the wizard and ask for the selection, where you can select an exist-

ing report as the subreport or create a new one using an existing table or query.
	 4.	 Choose use existing tables and queries to create the new subreport and click Next.
	 5.	 Select fields from the list of fields which you want to place in a subreport.
	 6.	 Select the linked field using which you want to relate records of main report and sub

report. Click Next.
	 7.	 Give any name to the subreport and click on finish.

Parameterized Report: To create a parameterized report, go with the following steps:

	 1.	 Create a parameterized query using a query design command or using an SQL view.
	 2.	 Save the query.
	 3.	 Select report wizard from the create tab’s reports group and select the saved parameter-

ized query in the dialog box.
	 4.	 Select fields which you want to see in the report and click Next.
	 5.	 Select grouping (if any) and click Next.
	 6.	 Select sorting fields (if any) and click Next.
	 7.	 Select layout and orientation and click Next.
	 8.	 Select style and click next. Save the report by giving appropriate name and click finish.

To print parameters in the report header, do the following:

	 1.	 On the Design tab’s controls group, click the text box and place the control in the Report
Header section.

	 2.	 Double click the text box control to open the property sheet and enter the expression in
the control source property box. When expression is entered, write the message (text) in
double quotation marks and parameters in square brackets.

	 3.	 To concatenate parameters and message (text), use ‘&’ character. For example, if the
parameter name is ‘enter student number’, then it should be enclosed within square
brackets. If the message is ‘Details of student number’, then it should be enclosed in
double quotation marks and, then both should be concatenated using ‘&’ character.
Therefore, the final expression in the control source property of a text box will be =	
‘Details of student number: ’& [enter student number]

 Adding groups or sorts in the report: To add any group in the report, do the following:

	 1.	 Select the design tab. Click the ‘group and sort’ option given in the ‘grouping and totals’
group. The ‘grouping, sort and totals’ window will be available below the report window.

	 2.	 Click on the ‘Add a group’ in that window. Select field name on which you want to group
your records. Group will be available in that window with some options which we can
set as per our requirement. Using these options, we can set sorting order, can apply	

CH_11_Overview of MS-Access 2007_Final.indd 203 2/26/2014 3:49:02 PM

204  |  Chapter 11

aggregate function on the data, can set title for the group, can select option to hide/show
group header/footer, and can select the printing position for the group.

	 3.	We can group the data on some part of a field also, i.e., you may select the grouping
intervals for the fields. For example, if the field’s data type is number, then MS-Access
gives you the choice for no. of intervals (10s, 50s, 100s, and so on) on which you want to
group the data. If the field’s data type is text, then MS-Access gives you the choice, such
as by entire value, by first character, by first two characters or we can set the number
of characters using custom option. If the field’s data type is date/time, then MS-Access
gives you the choice such as by entire value, by day, by week, by month, by quarter, by
year, or we can set any number for hour, minute and second.

	 4.	 To set the caption of an aggregate function, select the textbox and right click. Select the
option ‘Set caption’.

	 5.	 Similarly, we can click on ‘Add a sort’ in grouping, sort and totals window. Select field
name on which you want to sort your records.

Printing serial numbers on a report: To display serial numbers or line numbers in a report
which does not contain any group, do the following:

	 1.	 Add a calculated text box control to the detail section at the required position.
	 2.	 Remove the label of the text box and set the control source property of a text box=1.
	 3.	 Set the running sum property of a textbox to Over All.
	 4.	 If you want to restart the serial numbers for a new group, then set the running sum prop-

erty of a textbox to Over Group.

Exporting a report: To export the report, click on external data and select any option from the
‘export’ group. We can export the report as following files:

	 1.	Word file [(It will save the file with .rtf (rich text format) extension.]
	 2.	 Text file (It will save the file with .txt extension.)
	 3.	 Snapshot Viewer file (It will save the file with .snp extension. This file will keep report

formatting as it is.)
	 4.	 HTML file (It will save the file with .html extension.)
	 5.	 XML file (It will save the file with .xml extension.)
	 6.	 Save report in another database.

After selecting the option, choose path where you want to store your report and give file name.
If you want to save the steps of export, then select the option ‘save export steps’ and click on
Finish.

Removing duplicate values or repeating values: When we group our data, the data are re-
peated for the grouped column. To display the group detail only once, we can shift the textbox
of grouped field in the group header section or we can set ‘hide duplicates’ format property with
the value ‘yes’ of a textbox on which grouping is done.

Creating a chart: A chart is composed of elements, some of which relate to the data, while oth-
ers relate to the structure of the chart itself. Following are the main elements of a standard chart:

●● Category (x) axis: It is the horizontal line at the bottom of the chart that usually identifies
the data in the chart. For example, when you plot class-wise total number of students, the
class name appears on the Category (x) axis.

CH_11_Overview of MS-Access 2007_Final.indd 204 2/26/2014 3:49:02 PM

Overview of MS-Access 2007  |  205

●● Value (y) axis: The vertical line that measures the values in the chart data. For example,
when you plot class wise total number of students, the total number of students appears
on the Value (y) axis.

●● Z axis: It is optional. It appears in 3D charts, and also measures values.
●● Series: A group of related data values from one field in the underlying record source. For
example, in a class-wise total number of students, each class’s total number of students
would represent one of the series values. The values are grouped together in one cat-
egory—the classid.

●● Titles: Explain the purpose and scope of the chart. Titles are optional and can appear at
the top of the chart and by each axis.

●● Tick marks: Short lines that appear on the axes to mark evenly spaced segments. They
help you to read values and determine the scale of the chart.
●● Gridlines: Horizontal or vertical lines that appear across or up and down the chart at the
tick marks.

●● Scale: Defines the range of values in the chart and the increments marked by tick marks
on the axes.
●● Slice: It can be defined as a wedge of a single field in a pie chart which represents the
relative value of one data point with respect to the whole.
●● Data markers: The elements that show the value of the data. For example, bars, columns,
slices of a pie chart, etc.
●● Data labels: The actual values that can be displayed above or near the data markers.
●● Legend: The list that identifies the members of a series of data values.

To create a chart, open a report and select ‘insert chart’ control from ‘controls’ group and paste
it on a report. A chart wizard will be available where we can specify the field which should be
displayed on x-axis, the value to be displayed on y-axis, chart type, chart title, etc.

11.9  |  Creating Macros and Switchboard
Macro: A macro is a list of one or more actions that work together to carry out a particular task
in response to an event. Each action carries out a particular operation. We can create the list of
actions in the order in which we want them to execute. We can also specify other details of the
action called, ‘argument’ which provide additional information such as which form to open,
or how to filter the records to be displayed. We can also set conditions, under which the macro
action to be performed such as to display a message box if a field contains a certain value, or is
blank. The macro action runs only if the condition evaluates to True. If the condition is False,
the action is skipped. Then, if another action is in the macro, it is executed. If not, the macro
stops. To run a macro, we can assign it to the event property of a form, report, report section or
control. When the event occurs, a macro automatically executes, beginning with the first action
in the list. For example, a macro that opens a form and moves to a blank record for data entry
can be assigned to the ‘on click’ event property of a command button in a dialog box or another
form. When we click the button, the macro executes.

Types of Macros: There are two types of macros: (i) Standalone macro; (ii) Embedded macro.
The difference between standalone and embedded macro is provided inTable 11.17.

CH_11_Overview of MS-Access 2007_Final.indd 205 2/26/2014 3:49:02 PM

206  |  Chapter 11

Table 11.17  |  Differences Between Standalone and Embedded Macros

Standalone Macro Embedded Macro

Standalone macros are individual Access
objects which we can create by clicking on
macros group.

Embedded macros are created within forms
or reports for the specific control.

Standalone macros listed in the Navigation
Pane.

Embedded macros are not listed in the
Navigation Pane.

We can re-use Standalone macros. We cannot re-use embedded macros.

We can debug Standalone macros. We cannot debug embedded macros.

We can save standalone macro with some
name as they are individual Access objects.

We cannot save embedded macro with some
name as they belong to specific control of a
specific form or report.

Steps to create a Standalone Macro:

	 1.	 On the Create tab’s Other group, click the Macro drop down box and select Macro	
option.

	 2.	 The Macro window will be opened with three columns named Action, Arguments and
Comment. We can select the action, set arguments and write comments for that action.

	 3.	 To add conditions for the actions, in design tab’s show/hide group, select the option con-
ditions. Fourth column conditions will be available in the macro window where we can
specify condition for the particular action. If the condition is true then only the related
action is being executed.

	 4.	 Save the macro with some name. The macro will be available in the navigation pane.

We can assign this macro to the event property of a form, report, report section or control.

Steps to create an Embedded Macro:

	 1.	 Open the form or report and select the control for which we want the macro. Open
property sheet of that control and click on event property tab. Choose the event’s builder
dialog box by clicking … (ellipsis) for which you want to define macro.

	 2.	 The Macro window will be opened with three columns named Action, Arguments and
Comment. We can select the action, set arguments and write comments for that action.

	 3.	 To add conditions for the actions, in design tab’s show/hide group, select the option con-
ditions. Fourth column conditions will be available in the macro window where we can
specify condition for the particular action. If the condition is true, then only the related
action is being executed.

Different columns of a Macro sheet: There are five columns available in the macro sheet.

●● Condition: The condition can be specified for a particular action. The macro action runs
if the condition evaluates to true, otherwise the action is skipped. The condition column
will be available when we click on ‘condition’ option given on the show/hide group of
design tab. A condition applies only to the action on the same row in the macro sheet. If
the condition is not met, the next action is executed. To continue the condition to the next
action, enter an ellipsis (…) in the condition column of the next row. We can apply the
condition to several sequential actions. Some examples of conditions are:

CH_11_Overview of MS-Access 2007_Final.indd 206 2/26/2014 3:49:02 PM

Overview of MS-Access 2007  |  207

Table 11.18  |  Examples of Conditions

Expression Returns True If

[state]=‘Gujarat’ Value of the control state is ‘Gujarat’

Not Isnull ([stdname]) Stdname does not contain null

Forms![student]![birthdate]>date () Birthdate control of student form contains future date.

●● Action: Each action carries out one particular operation of a macro such as moving among
record in a form, playing sounds, displaying message boxes, etc. If a particular action is
not listed in the action drop down list box, then click on design tab’s show/hide group and
select ‘show all actions’ command.
●● Argument: Argument specifies the details of an action which provides additional infor-
mation such as which form to open or how to filter the records to be displayed.

●● Comment: We can write description for a particular action in this column.
●● Macro: It is used when we want to define a macro group. The macro column will be avail-
able when we click on ‘macro names’ option given on the show/hide group of design tab.

Testing and Debugging a Macro:
●● After creating a macro, we can run it to see if it gives correct output or not. We have a
choice of running the complete macro at once or stepping through the macro one action at
a time. If an error occurs in the macro or we don’t get the expected results, we can use the
single step method of running the macro to see what went wrong. We can run the macro
either by double clicking it in a navigation pane or by right clicking the macro name and
by choosing run from the shortcut menu.

●● If the error occurs during the operation, MS-Access displays an error message explaining
the reason for the error. Read the message and click OK to open the Action Failed dialog
box. It will show the error number and other details such as condition, action name and
arguments. Select ‘stop all macros’ option to stop execution. After that correct the prob-
lem and run the macro again.

●● Stepping through a macro: To debug the macro step by step, click on ‘single step’ com-
mand given in the tools group and click the run command to carry out the actions one by
one. In Macro single step dialog box, the following three options are available:

	 1.	 Step (default): If we click on step, it will move to the next action. It will show outputs
after each step if there is no error.

	 2.	 Stop All Macros: It stops macro execution.
	 3.	 Continue: If we click on continue, it stops single step mode and runs the rest of the

macro without stopping. It will show the final output if there is no error.

Common uses of a macro:

	 1.	 Displaying a message box: Using the ‘msgbox’ action we can display warnings, alerts or
other information. It is one of the most useful macro actions when interacting with the user.

	 2.	 Validating data: We ensure that valid data is entered in a form by specifying a valida-
tion rule for the control in the form by setting record and field validation rules in the
underlying table design. For more complex data validation, we use a macro or an event
procedure to specify the rule.

CH_11_Overview of MS-Access 2007_Final.indd 207 2/26/2014 3:49:02 PM

208  |  Chapter 11

	 3.	 Filtering records: We can create a macro to limit the records we want to print by adding
a Where condition to the OpenReport action. We can also set filters for forms.

	 4.	 Setting values and properties: ‘Set value’ is a useful macro action that sets the value of a
field, control or property of a form, a form datasheet or a report. We can also set property
of a control at run time.

	 5.	 Changing the flow of operations: We can control the flow of operations by adding condi-
tions that determine whether a macro action is carried out. If the condition evaluates to
True, the corresponding action takes place. We can add the msgbox function to a macro
condition to let the user decide which action to carry out.

Nested Macro: If we want to run one macro from another macro, ‘RunMacro’ action is used
and ‘macro name’ argument should be set to the name of the macro that we want to run. With
this RunMacro action, we can repeat the macro many times. The RunMacro action has two
arguments in addition to the Macro Name:

	 1.	 Repeat Count: It specifies the maximum number of times the macro is to run.
	 2.	 Repeat Expression: It contains an expression that evaluates to true (–1) or false (0). The

expression is evaluated each time the RunMacro action occurs. When it evaluates to
False, the called macro stops.
○○ The Repeat Count and Repeat Expression arguments work together to specify how
many times the macro runs.
○○ If both are blank, the macro runs only once.
○○ If Repeat Count contains a number, but the Repeat Expression is blank, the macro runs
the specified number of times.
○○ If the Repeat Count is blank, but the Repeat Expression contains an expression, the
macro runs until the expression evaluates to False.
○○ If both arguments contain entries, the macro runs the specified number of times or
until the expression evaluates to False, whichever occurs first.

When the called macro is finished, Access returns to the calling macro and runs the next action
after RunMacro.

Create a Macro Group: If we create several macros that apply to controls on the same form
or report, we can group them together as one file. Using macro groups offers two advantages:

	 1.	 It reduces the no. of macro names in the Navigation Pane.
	 2.	We can find all the macros for a single form or report in one place, where they are easy

to edit, if necessary.
○○ Steps to create a macro group:

	 	 1. � Open the macro sheet and in the show/hide group, click the Macro Names com-
mand to display the Macro Name column.

	 	 2. � Add a macro to the sheet and enter a name for it in the Macro Name column of the
first row of the macro.

	 	 3.  Add the rest of the actions to the macro.
	 	 4. � To add another macro, enter the macro name in the Macro Name column and add

actions that you want to occur.
	 	 5. � After adding all the macros to the group, close and save it as usual with the group

name.

CH_11_Overview of MS-Access 2007_Final.indd 208 2/26/2014 3:49:02 PM

Overview of MS-Access 2007  |  209

To assign macro from a macro group to an event property of any control, select a specific mac-
rogroupname.macroname from the drop down list box.

‘Autokeys’ Macro group: We can create a special macro group named ‘autokeys’, in which we
can assign an action or a set of actions to a specific key or key combination. These work as the
shortcut key that we can use to carry out a ribbon command. Pressing a key or combination of
keys carries out the action that we specify. We can add as many individual macros to the group
as we need, each one named with the key or key combination that runs it. The following table
shows a list of valid Autokeys key combinations. The carat symbol (^) represents CTRL and
the plus sign (+) represents SHIFT. Function keys and other key names are enclosed in curly
brackets ({}). Table 11.19 shows examples of some autokeys.

A database can have only one autokeys named macro.

‘Autoexec’ Macro: We can create a special macro that runs when we first open a database.
The ‘autoexec’ macro can carry out actions such as opening a form for data entry, displaying
a message box prompting the user to enter his/her name or playing a sound greeting. To create
‘autoexec’ macro, create the macro with the actions that we want to carry out at start up and
save it with the name ‘autoexec’. A database can have only one autoexec named macro.

Steps to protect the database with a password:

	 1.	 Click Microsoft Office button and click Open.
	 2.	 Locate and select the database in the open dialog box. Then click the Open down arrow

and choose Open Exclusive from the drop-down list.
	 3.	With the database open, on the Database Tools tab’s Database Tools group, click the

Encrypt with Password command.
	 4.	 In the Set Database Password dialog box, enter the password and press TAB. Enter the

password again to verify it.
	 5.	 Click OK.

Table 11.19  |  Examples of Autokeys

Key Combination Examples of Macro Name

CTRL with any letter or number key ^A, ^4

Any function key {F1}

CTRL with any function key ^{f1}

SHIFT with any function key +{f1}

INS {INSERT}

CTRL with INS ^{INSERT}

SHIFT with INS +{INSERT}

DEL {DELETE} or {DEL}

CTRL-DEL ^{DELETE} or ^{DEL}

SHIFT-DEL +{DELETE} or +{DEL}

CH_11_Overview of MS-Access 2007_Final.indd 209 2/26/2014 3:49:02 PM

210  |  Chapter 11

Steps to remove the password from the database:

	 1.	 Click Microsoft Office button and click open.
	 2.	 Locate and select the database in the open dialog box. Then click the Open down arrow

and choose Open Exclusive from the drop-down list.
	 3.	With the database open, on the Database Tools tab’s Database Tools group, click the

‘Decrypt database’ command.
	 4.	 In the Unset Database Password dialog box, enter the password and verify it.
	 5.	 Click OK.

Switchboard: A switchboard system for a database consists of a hierarchical arrangement of
switchboard pages, including a main switchboard page that usually branches out to two or more
subordinate pages. Each page consists of a set of items with commands that carry out a specified
activity. Most items also include an argument that specifies which form to open, which report
to preview, which macro to run, etc.

To create a switchboard, do the following:

	 1.	 Click the switchboard manager given on the database tools tab’s database tools group.
	 2.	 The first switchboard manager dialog box starts with the mandatory default main switch-

board page. We can rename the main switchboard page.
	 3.	 Then we can add new switchboard pages by clicking on ‘new’ option.
	 4.	 After creating all the pages, we can link these pages with other switchboard. To link

pages with main switchboard, double click the main switchboard and add the created
pages to link with main switchboard.

	 5.	 Similarly, we can double click on any other switchboard page and add items which we
want to link with that page.

	 6.	 At the last level, we can put pages to open form in edit or add mode, to open report, run
any macro or code, exit from the application, go to a particular switchboard, etc.

		 After creating a switchboard we can change its formatting by opening it into design view
because switchboard is created as a form.

To open the switchboard, when we start a database, do the following:

	 1.	 Click on MS Office Access button.
	 2.	 Click on ‘Access Options’ button.
	 3.	 Select ‘Current Database’ option.
	 4.	 Select switchboard from the ‘Display form’ drop down list box.

Difference between switchboard and navigation pane: Table 11.20 shows the difference
between navigation pane and switchboard.

Creating Documentation: To create a documentation, for any MS-Access object do the	
following.

	 1.	 Click on Database Tools and select ‘Database Documenter’ from the ‘Analyze’ group.
	 2.	 The Documenter dialog box will be opened where you can select the object type such as

forms, reports, macros.
	 3.	 After selecting object type, the object names of that type will be available in the list.

CH_11_Overview of MS-Access 2007_Final.indd 210 2/26/2014 3:49:02 PM

Overview of MS-Access 2007  |  211

Table 11.20  |  Switchboard vs. Navigation Pane

Navigation Pane Switchboard

It is always available, even when closed. We can close it.
All the objects are available to view. We can restrict/limit the objects to view by

creating a specific activity.
We can’t hide the object’s design view. We can hide the object’s design view and

hence restrict the user to change the design.
We can’t hide navigation pane when ob-
ject is open.

We can hide switchboard when object is open.

	 4.	 Select the object name for which you want to prepare the documentation. If you want to
create documentation for more than one object then you may select many objects from
the list.

	 5.	 Click OK.
	 6.	 The documentation will be created as a report and you cannot save it or change it.
	 7.	 You may take the printout of that report or export it as a word, text, XML, HTML, or

Snapshot Viewer file.

Summary
●● MS-Access is a Relational Database System.
●● We can create tables, queries, forms, reports, macros, etc., in Access.
●● Tables can be created using design view and datasheet view.
●● Records can be inserted in a table only using datasheet view.
●● Access is case insensitive.
●● Blanks are allowed in the field names in Access, but when it is retrieved, it should be
enclosed within square brackets.

●● There are some templates available to create a table, which can also be modified.
●● When we open Access, there is a pane available on left side, which is called navigation
pane. It contains all user-defined objects such as tables, queries, forms, reports, macros.
We can minimize navigation pane, but cannot close it.

●● Different 10 data types such as text, memo, number, date/time, currency, autonumber,
yes/no, OLE object, hyperlink and attachment are available in Access.
●● Most of the data types, except Number fields with the Replication ID property, enabled
OLE Object fields and attachment could be converted into any other data type.
●● Each field data type has some properties.
●● We can Filter and sort records in Access.
●● Filter removes the records from the screen which do not meet the condition and displays
only those records which you want to see. But records remain in the table.

●● There are four ways to filter records—Common context filters, Filter by selection, Filter
by form and Advanced filter/sort.
●● We can create a query in MS-Access using query design view, query wizard or SQL view.
●● Forms are used for viewing and entering data. We can create various types of forms in
Access such as split form, multiple items, pivot chart.

CH_11_Overview of MS-Access 2007_Final.indd 211 2/26/2014 3:49:02 PM

212  |  Chapter 11

●● The data can be retrieved from the table, query or other form and displayed on the form.
For that, the recordsource property of the form should be set with the name of table, query
or existing form.
●● To display data in each field of the form, the controlsource property should be set with
the field name.

●● There are five form sections—Detail, Form Header, Form Footer, Page Header and Page
Footer.

●● Form or report contains five property tabs—Format, Data, Event, Other and All.
●● There are three types of controls which could be kept on the form or report—Bound con-
trol, Unbound control and Calculated control.
●● We can set default property for any of the control.
●● Some controls available in the ‘controls’ group of Access are—Textbox, Label, Com-
mand Button, Combo Box, Check Box, Option Button, Toggle Button, Option Group,
Bound object frame, Unbound object frame, Image, Line, List box, Logo, Page break,
Rectangle, Subform/subreport and Tab.
●● Hierarchical form represents 1:M (1 to many) type of relationship. It consists of a main
form and one or more subforms. The main form shows data from records on the ‘one’
side of a one-to-many relationship and the subforms show data from records on the
‘many’ side.

●● We can put a hyperlink on the form, set tab order of controls, apply conditional format-
ting and create multiple pages.

●● Reports are used for viewing and printing data in some specific format. There are four
views available—Design View, Layout View, Print Preview and Report View.
●● There are seven sections of a report—Detail, Report Header, Report Footer, Page Header,
Page Footer, Group Header and Group Footer.

●● We can create subreport within the main report.
●● Also, parameterized report can be generated by using parameterized query as a record-
source property of a report.

●● We can export report as a word file, text file, Snapshot Viewer file, HTML file, XML file
or Save report in another database.

●● We can also create charts in Access.
●● A macro is a list of one or more actions that work together to carry out a particular task
in response to an event.

●● There are two types of macros: Standalone macro and Embedded macro.
●● Standalone macros are individual Access objects which we can create by clicking on
Macros group.
●● Embedded macros are created within forms or reports for the specific control.
●● Macro run within another macro is known as nested macro.
●● A database can have only one autokeys and autoexec macro.
●● Autokeys macro is used to define shortcut keys for actions.
●● Autoexec macro is executed automatically when we open the database within which it is
defined.

●● We can assign password to the database to protect it. To assign a password, the database
should be opened in exclusive mode.

CH_11_Overview of MS-Access 2007_Final.indd 212 2/26/2014 3:49:02 PM

Overview of MS-Access 2007  |  213

Exercises

	 1.	Write steps to create a new database in MS-Access. What is the extension of an Access
database? How we can create a copy of existing Access database?

	 2.	Which views are available in MS-Access to create a table? What is the difference be-
tween Design View and Datasheet View?

	 3.	 List and explain data types of MS-Access along with the size options.
	 4.	What is the usefulness of Lookup? Write steps to create a Lookup Column?
	 5.	What is a navigation pane?
	 6.	Write steps to assign a primary key and foreign key in the table.
	 7.	Write rules to give names to field or a table in MS-Access.
	 8.	What is sub datasheet?
	 9.	Write steps to create a database using database templates? Which templates are available

in MS-Access 2007?
	 10.	 Discuss field properties of ‘Text’ data type.
	 11.	Which field sizes are available with the ‘Number’ data type? Write the storage capacity

of each.
	 12.	Which formatting symbols can be used with all data types? Write significance of each.
	 13.	 List all ‘date/time’ formats with examples.
	 14.	Which data types can be converted into other data types?
	 15.	 Fill in the blanks.

	 i.	 The extension of MS-Access 2007 database is __________.
	 ii.	 A character _________ causes the input mask to fill numbers from left to right in-

stead of from right to left.
	 iii.	 A character ___________ forces MS-Access to display the character that imme-

diately follows this character, which is same as enclosing a character in double	
quotation marks.

	 iv.	 A character _________ will display all characters that follow this character in upper-
case.

	 v.	 To enter the value 079-26467760, the input mask property of a field should be set
with __________.

	 vi.	 To enter the value (206) 555-TELE, the input mask property should be set with
___________.

	 vii.	 To enter the date in dd-mm-yyyy (e.g., 30-Oct-2010) format, the input mask property
should be set with _________.

	 viii.	 To display the positive values in green colour, negative values in red colour and zeros
in blue colour, the format property of a field should be set with ____________.

	 ix.	 If we click on Create → Table then table will be opened in ___________ view.
	 x.	Maximum _________ characters are allowed in field name.
	 xi.	 __________ character is not allowed at the first position in field name.
	 xii.	 Duplicate and Null values are not allowed in a __________ key.
	 xiii.	 Processed data are called _______________.

	 16.	Write a brief note on sorting.
	 17.	 State the difference between finding records and filtering records.

CH_11_Overview of MS-Access 2007_Final.indd 213 2/26/2014 3:49:02 PM

214  |  Chapter 11

	 18.	Which are the four ways to filter records? Define each.
	 19.	What is the difference between removing and clearing a filter?
	 20.	 Differentiate between Filter and Query.
	 21.	 Discuss three types of select queries (Simple select query, Find duplicate query and Find

unmatched query) available in MS-Access.
	 22.	 Discuss three types of special purpose queries (parameter query, Autolookup query and

Crosstab query) available in MS-Access.
	 23.	 Discuss Action queries (Update query, Append query, Delete and Make table query)

available in MS-Access.
	 24.	Which are the four types of SQL-specific queries (Union query, Pass-through query,

Data-definition query and Subquery)? Define all.
	 25.	Write steps to create a query using query wizard option.
	 26.	Write steps to create a query using query design option.
	 27.	 In query design view, when you move out of the criteria cell after entering the expression,

Access automatically parses the expression and inserts characters to complete the syntax:

	 i.	 ________ around field names
	 ii.	 _________ around dates
	 iii.	 _______ around text
	 iv.	 _________ before a calculated field expression

	 28.	 Fill in the blanks.
	 i.	 The ________ process screens the records and displays only those that meet the	

criteria.
	 ii.	 The _______ is a set of conditions.
	 iii.	 Filter by ________ leaves only the records with the same value as the one you select

in one of the records or the records that do not include the same value.
	 iv.	 Filter by _______ screens records with the criteria you enter into a table skeleton.
	 v.	 _________ filters are not available for yes/no, OLE object or attachment fields.
	 vi.	 The statement ‘When we apply or remove a filter to/from a datasheet, the same is

applied to any sub-datasheet within it’, is _________ (true/false).

	 29.	 Explain the LIKE operator with all the wildcards used to specify the pattern. Give	
examples of each.

	 30.	What is a Recordsource? How can we set Recordsource for the Form?
	 31.	 Explain different design controls available in MS-Access (Textbox, Listbox, Option But-

ton, etc.). Also, categorize the controls as bound or unbound controls.
	 32.	Write steps to create a new form using Form/Split Form/Multiple Items/Datasheet struc-

ture.
	 33.	Which properties should be set to select a record set, to bind any control with the data

field, allow user to view data and allow user to edit or view data?
	 34.	 Explain different sections (Detail, Form header, Form footer, Page header and Page	

footer) of Form.
	 35.	 Explain procedure to create a hierarchical form from related tables.
	 36.	 How many sections are there in a report? Which are they?
	 37.	What is a subreport? Write steps to create subreport or hierarchical report.

CH_11_Overview of MS-Access 2007_Final.indd 214 2/26/2014 3:49:03 PM

Overview of MS-Access 2007  |  215

	 38.	What is conditional formatting? List steps to write conditional formatting on a column.
	 39.	What is a parameterized report? Write steps to create a parameterized report. Write steps

to print parameters in the report header.
	 40.	Which type of information is represented by Pivot table and Pivot chart?
	 41.	Which are the two types of macros? Explain both types.
	 42.	What is a macro group? Write steps to refer a particular macro from a macro group.
	 43.	What is a switchboard? Write steps to create a switchboard with options forms, reports

and exit.
	 44.	 Differentiate between switchboard and navigation pane.
	 45.	Write steps to create documentation of any macro.
	 46.	 Tick the correct answer.
	 i.	 The _______________ property changes column heading.
	 	 a.  Field size	 	 	 b.  Caption
	 	 c.  Validation rule	 	 d.  Format
	 ii.	 The left pane MS-Access, which displays all the objects, is known as ______________.
	 	 a.  Toolbar	 	 	 b.  Ribbon
	 	 c.  Navigation pane	 	 d.  Form
	 iii.	Which property specifies the value that automatically appears when new record is

inserted?
	 	 a.  Caption	 	 	 b.  Default
	 	 c.  Format	 	 	 d.  Field size
	 iv.	MS-Access is case _____________for field names.
	 	 a.  Sensitive	 	 	 b.  Insensitive
	 v.	We can enter records in a __________view.
	 	 a.  design	 	 	 b.  datasheet
	 	 c.  report	 	 	 d.  print
	 vi.	 In a report, page header and page footer are displayed only in the ___________ view.
	 	 a.  print preview	 	 b.  datasheet
	 	 c.  report	 	 	 d.  layout
	 vii.	 __________ are used for entering data.
	 	 a.  Forms	 	 	 b.  Reports
	 	 c.  Macros	 	 	 d.  Modules
	 viii.	Macro which is created within another macro is known as ________macro.
	 	 a.  Nested	 	 	 b.  Embedded
	 	 c.  Linked	 	 	 d.  Super
	 ix.	 The database can have ____________autoexec macro.
	 	 a.  Many	 	 	 b.  Only one
	 	 c.  Two	 	 	 d.  Three
	 x.	 To secure the database with a password, the database should be open in which mode?
	 	 a.  Read only	 	 	 b.  Exclusive
	 	 c.  Non exclusive	 	 d.  Write

CH_11_Overview of MS-Access 2007_Final.indd 215 2/26/2014 3:49:03 PM

216  |  Chapter 11

LAB ACTIVITIES
	 1.	Write and store a query which will display the details of faculty name, faculty’s birth

date, subject name and number of lectures assigned. Create a form with appropriate
headers and footers to display the details from this stored query. Select ‘Justified’ Lay-
out and ‘Concourse’ style for this form. Also display retirement date of faculty using a
calculated control. Display logo of an organization.

Faculty (faculty ID, facultyname, birthdate, photo, gender)
 Subject (subject ID, subjectname, nooflectures)

	 2.	 Create a form using split form option which will display the details of colleges. Set
appropriate headers and footers. Put command buttons to add and delete records and
to close the form. Format the form properly. Put a hyperlink which will open the word
document named ‘conditionst.doc’. Use option button control to input registered and
combo box control to input city of a college. Display logo of an organization.

College (college ID, collegename, address, city, pincode, registered, photo)

	 3.	 Create a report to generate I-cards of each student in the following format using follow-
ing tables:

 Class(classcode, classdesc)
Student (stdno, stdname, classcode, street_address, area, city, pincode,

 contact, photo, batch, gender)

Excellent University
Famous Institute of Computer Applications

Well-known street of Ahmedabad

<class desc>: <student name>
<batch>

<street address>
<area>

<city>-<pincode>
<contact>

Date of issue: <current date>

	 4.	 Create a chart which will show category of stationary on x-axis and total number of sta-
tioneries of particular category on y-axis. Format the graph properly.

	 5.	 Create a hierarchical form which will allow to insert and edit details of stationeries
category-wise. Put a command button on this form which will open the chart created in
Ex. no. 3. The chart must be changed if we change records throughout the form.

CH_11_Overview of MS-Access 2007_Final.indd 216 2/26/2014 3:49:03 PM

Overview of MS-Access 2007  |  217

	 6.	 Create a summary report which will display annual total amount of sales, average amount
of sales, maximum order amount and minimum order amount. Also display overall total
amount of sales, average amount of sales, maximum order amount and minimum order
amount.

	 7.	 Create a report which will take from date and to date as an input and will display details
of item wise sales with summary.

 Item (itemcode, itemname, price, unit_of_measurement)
Order (orderno, orderdate, customerno, total_order_amt)

 Sold_items (orderno, itemno, qty, total_amt)
 Customer (custno, custname)

	 8.	 Create a report with suitable headers and footers which will display sales report of each
area of each region of each zone. Display salesman’s name only once for each item sold
by him. If total sales amount of any salesman exceeds `1000000.00, then display it in
bold, italic and 14-size coloured font.

 Tables: zone (zone_no, zone_name)
 region (region_code, region_name, zone_no)
 area (area_no, area_name, region_no)
 salesman (salesman_no, salesman_name, area_no)

sales (salesman_no, itemno, total_qty_sold, total_amount)
 item (itemno, itemname)

Company logo

Zone-wise detailed Sales Report

Zone: ________� Date: ________
 Region: _________
 Area: ___________
 Salesman Name Item name Amount (in `)
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 Area: ___________
 Salesman Name Item name Amount (in `)
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------

CH_11_Overview of MS-Access 2007_Final.indd 217 2/26/2014 3:49:03 PM

218  |  Chapter 11

 Region: _________
 Area: ___________
 Salesman Name Item name Amount (in `)
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 Area: ___________
 Salesman Name Item name Amount (in `)
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 Zone: ________
 Region: _________
 Area: ___________
 Salesman Name Item name Amount (in `)
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 Area: ___________
 Salesman Name Item name Amount (in `)
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
 ------------------- ------------- --------------------
	 9.	 Create a hierarchical report which will display list of customers and details of orders of

those customers. Display serial numbers with each record of order and with each record
of a customer. Display total number of customers and total number of orders given by
each customer. Display count of orders in blue colour for the highest count. Don’t show
duplicate values in any column within a group.

 Customer (custno, custname)
Order (orderno, custno, orderdate, total_order_amt)

	 10.	 Create a main report which contains details of different categories of stationeries. Em-
bed a subreport which contains details of stationeries of particular category and details
of faculty members to whom that stationary is issued. Display serial numbers with each
record, count of total categories, count of total no. of stationeries within the category
and count of total no. of faculty members to whom particular stationary is issued. Put a
command button to close the report.

Category

Categoryid Categoryname

C1 Paper
C2 Storage device
C3 File

CH_11_Overview of MS-Access 2007_Final.indd 218 2/26/2014 3:49:03 PM

Overview of MS-Access 2007  |  219

Stationery

Stat ID Stat Name Cat ID
S1 Ruled C1
S2 Blank C1
S5 Pen Drive C2
S6 Spring C3

Issued to

Faculty ID Stat ID Issued Date Quantity
F1 S5 11-09-2005 25
F2 S7 12-9-2001 2

	 11.	 Create a parameterized report which will display I-card of user-entered roll no. Display
inputted roll number with proper message in the report header.

	 12.	 Create a report which will generate certificates for each participant with the following
details. Tables: student (stdno, name, classcode, gender)

 class (classcode, classdesc)
 event (eventID, eventname)

 participant (stdno, classID, eventide, participant_name, gender)
 winner (eventID, stdno, classID, position)

	 	 Display the last line ‘He/she stood ________ in the event’ if and only if the value of
‘position’ field is not null.

ABC Institute of Computer Applications

Talent Evening 2012

Certificate
 This is to certify that Mr/Ms _______________________ of class _____________ has
 participated in the event _________________ in the talent evening organized by ABC
 Institute of Computer Applications on 12th December, 2012. He/She stood __________
 in the event.

	 13.	 Create a standalone macro to close the specified report. Embed this macro into the click
event of a command button which is placed on the report which you want to close after
viewing.

	 14.	 Put a command button in the student form, and create an embedded macro for the click
event of this command button which will open the report of student details for student
names which starts with letter ‘a’.

CH_11_Overview of MS-Access 2007_Final.indd 219 2/26/2014 3:49:03 PM

220  |  Chapter 11

	 15.	 Put a command button in the student form and create an embedded macro for the click
event of this command button which will open the report of student details for student
numbers between 1 and 10.

	 16.	 Create a stand-alone macro named ‘search_report’ which contains two actions ‘naviga-
teto’ and ‘selectobject’ to search the specified object from the navigation pane.

	 17.	 Create a blank form. Set the ‘unload’ event of this form with the macro created in Ex. 13.
	 18.	 Create a stand-alone macro which contains two actions ‘openreport’ and ‘setproperty’.

Open the report which contains student details using ‘openreport’ action. Add a condi-
tion in the condition column which will check whether student name is null or not. If the
student name is not null, then using ‘setproperty’ action set the forecolour property of a
student name textbox to red colour.

	 19.	 Create a stand-alone macro named check_stdno which will check whether the entered
student number lies in a specific range or not. Write a condition in the condition sheet
of a macro to check the entered stdno in a ‘student’ form is ≥100 or not. If the number
is ≥100, then display the message using a message box that ‘The number is invalid…
please enter the number between 1 and 99’. Bind the macro with the ‘on lost focus’ event
property of stdno textbox.

	 20.	 Create a stand-alone macro named check_stdname which will check whether the entered
student name is null or not. Write a condition in the condition sheet of a macro to check
the entered stdname in a ‘student’ form. If the name is null, then display the message
using a message box that ‘The name can’t be null… please enter the valid name’. Bind
the macro with the ‘on lost focus’ event property of stdname textbox.

	 21.	 Create a macro group named check_marks_data which contains three macros named
chk_stdno to check whether the stdno <0, chk_marks to check marks ≥ 100 and chk_
classid to check classcode is null or not. Display proper messages if any of the condition
is false. Bind the proper macro from the created macro group with the ‘lost focus’ event
properties of stdno, classcode and marks controls on a marks form.

	 22.	 Create an autoexec macro which will display the message welcome to my database!
When the user opens the database, set password to open the database.

	 23.	 Create a switchboard which will display the following hierarchy:

Forms

Reports

Summary chart

Exit

Main
menu

Student

Class

Close

Class-wise list
of students

I-cards

close

CH_11_Overview of MS-Access 2007_Final.indd 220 2/26/2014 3:49:03 PM

CHAPTER
12

Overview of Oracle

•	 Understanding Oracle as a relational database.
•	 Knowing commands of Oracle Database 10g Express Edition.
•	 Learning how to manage users, roles and privileges.

Chapter Objectives

12.1  |  Oracle as an RDBMS
Oracle is a relational database management system (RDBMS) which also supports object-	
oriented features.

It allows creating tables and setting relationships between tables. Users can write stored pro-
cedures and functions with the use of PL/SQL. Automatic transaction support is provided by
Oracle. It allows developing applications which can run on the internet. Backup and recovery
features are available in Oracle.

12.2  | Lo gging into Oracle
Oracle provides ‘Oracle Database 10g Express Edition (Oracle Database 10g XE)’ which can
be downloaded for free to use. After logging into it, user can execute all SQL and PL/SQL state-
ments. When installing Oracle Database 10g XE, the default user named ‘system’ is created
with administrator’s rights. At the time of installation, user has to provide password for ‘system’
user. On completion of installation, user can log in using username ‘system’ and the password
(which is specified during installation).

After installation, user can open Oracle Database 10g XE in the Windows operating system
by following the steps given below.

	 1.	 Click on Start.
	 2.	 Select Programs → Oracle Database 10g XE → Select Go To Database Home Page.
	 3.	The login form will be displayed in which enter user name ‘system’ and password

which you have given at the time of installation. Let us assume that the password given

CH_12_Overview of Oracle_Final.indd 221 2/26/2014 3:50:08 PM

222  |  Chapter 12

during installation for ‘system’ user is ‘admin’. The window will look as specified in	
Figure 12.1.

After successful login, the window given in Figure 12.2 will appear. Here, user can select
SQL  SQL commands  Enter command to type any SQL or PL/SQL statements. After typ-
ing the statement, it can be executed by selecting and clicking on ‘Run’ button. The output will
be displayed in the window given below the command window. It will look as the snapshot
shown in Figure 12.3.

To logout from the Oracle, click on ‘Logout’ link given on the right side top of the command
window. The written statements or commands can be saved using ‘save’ option.

The ‘system’ user has administrator’s rights which allow him/her to create other databases,
users, roles, etc.

12.3  |  Command Summary of Oracle Database 10g XE
After logging into the Oracle Database 10g XE, there are main five options available. These are as:

	 1.	 Administration: Using this option, one can view and change storage and memory set-
tings, create new users and manage users which are already created, monitor sessions,
operations and system statistics, view details about current database and change his/her
own password. Following is a list of commands which is available when we click on the
‘Administration’ option.

Figure 12.1  |  Login Window of Oracle Database Express Edition.

CH_12_Overview of Oracle_Final.indd 222 2/26/2014 3:50:09 PM

Overview of Oracle  |  223

Figure 12.2  |  Oracle Database Express Edition.

Figure 12.3  |  Writing and Executing Command in Oracle Database Express Edition.

CH_12_Overview of Oracle_Final.indd 223 2/26/2014 3:50:09 PM

224  |  Chapter 12

	 i.	 Storage: It has the following suboptions.
	 	 a.  Storage utilization: This option shows the statistics regarding space utilized.
	 	 b.  View tablespaces: It shows details of tablespaces.
	 	 c.  View datafiles: It shows details of datafiles.
	 	 d. � Compact storage: It gives the option to do compact storage using which the un-

used free space in the database can be recovered.
	 	 e.  View logging status: It shows details of database log files.

	 ii.	Memory: It shows the following options related to memory.
	 	 a. � Memory utilization: It shows the memory allocation to System Global Area

(SGA) and Program Global Area (PGA).
	 	 b. � Manage SGA: It shows memory allocation to the components of SGA. The Sys-

tem Global Area (SGA) is a memory area that contains data shared between all
database users such as buffer cache and a shared pool.

	 	 c. � Manage PGA: It shows memory allocation statistics of PGA. The Program Global
Area (PGA) is a memory buffer that is allocated for each individual database ses-
sion and it contains session specific information.

	 iii.	 Database users: It shows the following options using which we can create and man-
age database users.

	 	 a.  Manage users: It shows all the users of database.
	 	 b. � Create users: New users can be created by assigning roles and privileges using

this option. Also, existing user’s privileges, role and other settings can also be
changed using this option.

	 iv.	Monitor: It shows the following options.
	 	 a.  Sessions: It shows user-wise session details.
	 	 b. � System statistics: It shows physical and logical I/O settings statistics, cursor sta-

tistics, transaction statistics, memory statistics and time statistics.
	 	 c. � Top SQL: It shows the details of SQL execution in a specific order such as disk

and bugger read wise, execution wise, CPU time wise, etc.
	 	 d.  Long operations: It shows details of long operations.

	 v.	 About database: It shows the following options.
	 	 a.  Version: It shows version of database.
	 	 b.  Settings: It shows settings of database.
	 	 c. � National language support: It shows details of national language supported by

database.
	 	 d. � CGI environment: Shows details of CGI environment parameters such as PL/SQL

gateway, request and server protocol, remote user name, etc.
	 	 e.  Parameters: It shows parameters of init.ora file and their values.

	 vi.	 Change my password: Using this option, user can change his/her password.
	 vii.	Manage login message: User can set login message which is to be displayed on the login

page.
	 viii.	Manage HTTP access: It is used to control HTTP access as local or remote for the exist-

ing database.

CH_12_Overview of Oracle_Final.indd 224 2/26/2014 3:50:09 PM

Overview of Oracle  |  225

	 2.	 Object Browser: It is used to create and browse various objects such as tables, views,
types, etc. Following is a list of commands which is available when we click on ‘Object
Browser’ option.

	 i.	 Create: It shows the following options using which user can create and manage vari-
ous objects of database.

	 	 a.  Tables: It is used to create a table.
	 	 b.  Views: Used to create a view from base table.
	 	 c.  Indexes: Used to create an index on table.
	 	 d. � Sequences: Used to create a sequence which can be used to auto increment or

decrement value of any column of a table.
	 	 e.  Types: Used to create a type which is equivalent to class.
	 	 f. � Packages: Used to create a package. Package is a combination of functions and

procedures.
	 	 g.  Procedures: Used to create a procedure which is a named PL/SQL block.
	 	 h.  Functions: Used to create a function which is also a named PL/SQL block.
	 	 i. � Triggers: Used to create trigger on any table which is fired automatically when

any manipulation is made in a record of that table.
	 	 j.  Database links: Used to create database link.
	 	 k. � Materialized views: Used to create a view which is stored physically in the data-

base.
	 	 l.  Synonyms: Used to create a synonym of a table which is a copy of table.

	 ii.	 Browse: It shows the following options.
	 	 a.  Tables: Used to search existing tables.
	 	 b.  Views: Used to search existing views.
	 	 c.  Indexes: Used to search existing indexes.
	 	 d.  Sequences: Used to search existing sequences.
	 	 e.  Types: Used to search existing types.
	 	 f.  Packages: Used to search existing packages.
	 	 g.  Procedures: Used to search existing procedures.
	 	 h.  Functions: Used to search existing functions.
	 	 i.  Triggers: Used to search existing triggers.
	 	 j.  Database links: Used to search existing database links.
	 	 k.  Materialized views: Used to search existing materialized views.
	 	 l.  Synonyms: Used to search existing synonyms.

	 3.	SQL: It is used to perform SQL-related tasks. By clicking on SQL, it shows the follow-
ing options.

	 i.	 SQL commands: It shows the following option.
	 	 a. � Enter command: By clicking on this option, a window opens in which user can

write and execute any SQL command or PL/SQL block. Also, user can save it as
SQL file, view history, etc.

CH_12_Overview of Oracle_Final.indd 225 2/26/2014 3:50:09 PM

226  |  Chapter 12

	 ii.	 SQL scripts: It shows the following options.
	 	 a.  Create: Used to create or download SQL script.
	 	 b.  Upload: Used to upload the existing SQL script.
	 	 c.  View: Used to view the existing SQL script.
	 	 d.  Export: Used to export SQL script from current database to any other database.
	 	 e. � Import: Used to import SQL script from any other database into the existing data-

base.
	 iii.	 Query builder: It shows the following options.
	 	 a. � Create: It is used to create and execute query automatically by selecting fields and

selecting SELECT clauses from the drop down list boxes. It is just like wizard.
	 	 b.  View saved queries: It is used to view existing queries.

	 4.	 Utilities: It gives the utilities such as load or unload data, generates data definition com-
mands from the existing objects, shows object reports, etc. When we click ‘Utilities’, it
gives the following options.

	 i.	 Data load/unload: It shows the following options.
	 	 a. � Load: Used to load data into existing or new table from the text file, excel sheet or

XML file.
	 	 b. � Unload: Used to unload (here it means copy) data from existing table into text file

or XML file.
	 	 c.  Repository: It shows the status of loaded text data.
	 ii.	 Generate DDL: Used to generate data definition command of any existing database

object. For example, if we want to create table syntax of any existing table, then the
definition (create table command) of that table will be generated automatically by
selecting that table from the list of existing tables.

	 iii.	 Object reports: It displays reports of the following existing database objects.
	 	 a.  Tables: It displays the following options.

●● Columns: Shows table-wise list of columns.
●● Comments: Shows comments written on tables.
●● Constraints: Shows table wise constraints.
●● Statistics: Shows the statistics of tables such as when the table last analyzed, etc.
●● Storage sizes: Shows storage size of existing tables.
●● Exception reports: It shows the following options.

○○ No indexes: Displays list of tables without indexes.
○○ No primary key: Displays list of tables without primary key.
○○ Unindexed foreign keys: Displays list of tables with unindexed foreign keys.

	 	 b.  PL/SQL: It shows the following options.
●● Program unit arguments: It shows details of package arguments.
●● Program unit line counts: It shows total lines in objects such as procedures,
packages, types, triggers, etc.
●● Search source code: It allows searching code for the selected object.

	 	 c.  Security: It shows the following options.
●● User privileges: It shows details of privileges granted to each user.
●● Role privileges: It shows details of roles granted to each user.
●● System privileges: It shows details of system privileges.

CH_12_Overview of Oracle_Final.indd 226 2/26/2014 3:50:09 PM

Overview of Oracle  |  227

	 	 d.  All objects: It shows the following options.
●● All objects: It shows details of all the objects created within the database.
●● Invalid objects: It shows the details of invalid objects, i.e., objects which are not
created successfully or objects which are created with some errors.

●● Object counts by type: It shows total no. of each type of objects created within
the database.

●● Object creation calendar: It shows names and types of objects which are created
or modified on a particular date in the calendar.

	 	 e. � Query data dictionary: It shows all the views and their description which describe
the metadata.

	 iv.	 Recycle bin: When user drops any table, Oracle does not remove it, but renames the
table and keeps it in the Recycle Bin. The dropped object can be recovered later from
here.

	 5.	 Application Builder: It contains some sample applications which user can run. It
also allows user to create new applications. Application builder will be available to
only those users who have admin rights. Application builder contains the following
options.

	 i.	 Create application: It shows the following options.
	 	 a.  Create application: Used to create new application.
	 	 b. � Create from spreadsheet: Used to create new application from spreadsheet (excel

file) data.
	 ii.	 View application: It is used to view existing applications.
	 iii.	 Demonstrations: It is used to execute sample applications which are already avail-

able in Oracle.
	 iv.	 Application administration: It shows the following options.
	 	 a.  Manage services: It is used to manage services such as sessions, logs, etc.
	 	 b. � Manage application Express Edition users: It is used to create and view users, cre-

ate and view groups and assign user to a specific group.
	 	 c. � Monitor activity: It is used to monitor different activities such as page views, ses-

sions and application changes.
	 	 d. � Email configuration: It is used to change email settings to manage email logs and

email queue.
	 	 e. � About application Express: It shows the details such as current user name, host

schema name, time of last DDL executed, etc.
	 v.	 Import: It shows the following options.
	 	 a. � Application: It is used to import any application file which can be installed after it

is imported.
	 	 b. � Page: It is used to import any Page (same as application) which can be installed

after it is imported.
	 	 c. � Theme: It is used to import any theme file which can be installed after it is im-

ported.
	 	 d. � User interface defaults: It is used to import any user interface defaults which can

be installed after it is imported.

CH_12_Overview of Oracle_Final.indd 227 2/26/2014 3:50:09 PM

228  |  Chapter 12

	 vi.	 Export: It shows the following options.
	 	 a.  Application: It is used to export any application file from the database.
	 	 b. � User interface defaults: It is used to export user interface defaults from the data-

base.

12.4  |  Database Administration

12.4.1  |  Managing Users

The user with administrator’s rights can create new users and update the existing users. To cre-
ate a new user, one has to login as SYS or SYSTEM user. Database users can use the database
and can perform tasks as per their roles or privileges assigned to them. To create a new user, the
following syntax is used:

CREATE USER <user_name>
IDENTIFIED {BY PASSWORD/EXTERNALLY/GLOBALLY
 AS ‘<directory_name>’
DEFAULT TABLESPACE <tablespace_name>
TEMPORARY TABLESPACE <tablespace_name>
QUOTA {<size>/UNLIMITED} ON <tablespace_name}
PROFILE <profile_name>
PASSWORD EXPIRE
ACCOUNT {LOCK/UNLOCK};

The clauses of CREATE USER command are explained below:

	 1.	CREATE USER: After CREATE USER, name of the user is specified which should be
any valid name.

	 2.	 IDENTIFIED: It is a compulsory clause of CREATE USER command; all other
clauses are optional. There are three options which we can specify after IDENTIFIED
keyword.

	 i.	 BY PASSWORD: In this clause, the password of user should be specified within
double quotation marks. When we specify this option, the local user is created.

	 ii.	 EXTERNALLY: This option is specified to create an external user. This type of user
is authenticated externally (not by Oracle database) by operating system.

	 iii.	 GLOBALLY AS ‘<directory_name>’: This option creates a global user. This type of
user should be authorized by the enterprise directory.

	 3.	DEFAULT TABLESPACE: The objects which will be created by this user will also be
stored in the tablespace specified after this clause. If this clause is not written, the objects
created by this user will be stored into default tablespace of the database.

	 4.	TEMPORARY TABLESPACE: The user’s temporary segments will be stored into
the tablespace which is specified after this clause. If this clause is not written, the
temporary segments are stored into database’s default tablespace or into SYSTEM
tablespace.

CH_12_Overview of Oracle_Final.indd 228 2/26/2014 3:50:09 PM

Overview of Oracle  |  229

	 5.	QUOTA…ON: This clause is used to specify amount of space to be allocated by user in
the specific tablespace. There are two options for size—either UNLIMITED or specify
size into bytes. After ON keyword, tablespace name should be written. We can’t specify
this clause for temporary tablespace. If we don’t write this clause, unlimited quota is al-
located to user for the tablespaces.

	 6.	PROFILE: It is used to specify the profile name which we want to assign to user. If we
don’t specify this clause, the default profile will be assigned to user.

	 7.	PASSWORD EXPIRE: It causes the user’s password to expire immediately after user
is created and will prompt the user to set new password when he/she logs in to the data-
base.

	 8.	ACCOUNT: There are two options—LOCK or UNLOCK. If we don’t specify this
clause, the default setting is unlock. If we specify ‘lock’ option, the user’s account will
be locked.

We can also change or update the existing user by writing ALTER USER command. The clauses
which are specified in the CREATE USER command are used in this command also. The GRANT/
REVOKE THROUGH clause is additional which will allow user to connect through proxy user.

To drop the existing user, the command is DROP USER <user_name>. Table 12.1 shows
some examples to create, alter and drop users with different options.

If we want to see the details of a particular user, it can be displayed by selecting specific
columns or all columns from the view named dba_users. Following is a command which will
display all user names and their passwords (in encrypted form) of current database.

select username, password from dba_users;

Oracle database converts and stores all the data in uppercase. Therefore, whenever we specify
some values in WHERE condition, it must be written in uppercase. The following command
will display password of user ‘jisha’ in encrypted form.

select password from dba_users, where username=’JISHA’;

12.4.2  |  Managing Roles

Role is a set of privileges which can be granted to users or other roles. When any role is cre-
ated, it doesn’t contain any privilege. The privileges can be granted to a specific role by using
GRANT statement.

Following is a syntax of CREATE ROLE.

CREATE ROLE <role_name> {NOT IDENTIFIED/
 IDENTIFIED {BY <password>/USING
 <package_name>/EXTERNALLY/
 GLOBALLY}};

NOT IDENTIFIED shows that there is no need of password to use this role. It is authorized
by the database itself. IDENTIFIED shows that user must be authorized by password externally
or globally or using some packages. Following is an example.

CREATE ROLE newadmin NOT IDENTIFIED;

CH_12_Overview of Oracle_Final.indd 229 2/26/2014 3:50:09 PM

230  |  Chapter 12

Table 12.1  |  Examples of CREATE USER command

Example Meaning

create user shefali identified
by ‘mahadev’

It will create a local user named shefali with the
password ‘mahadev’.

create user shefali_ex identi-
fied externally;

It will create an external user named shefali_ex
who will be authenticated by operating system,
but the user name should match with the operat-
ing system’s user name.

create user jisha identified by
fairy default tablespace users
temporary tablespace temp quota
20m on system quota 10m on users
password expire account unlock;

The user name ‘jisha’ will be created with
password ‘fairy’ and with the specified settings.
Her password will be expired immediately after
user is created. When she will login with user
name ‘jisha’, Oracle will prompt to set new
password ‘jisha’. User’s default tablespace will
be ‘users’ and temporary tablespace will be
‘temp’. The user ‘jisha’ will get maximum 20MB
on ‘system’ tablespace and ‘10MB’ on
‘users’ tablespace.

create profile sheev_profile limit
failed_login_attempts 3
password_life_time 3
password_reuse_time 2
password_reuse_max 2
password_lock_time 1/24
password_grace_time 20;

create user harsheev identified

by champ profile sheev_profile;

When we want to assign profile to a user,
the profile should be created first before we
create a user. Here, sheev_profile has been
created by executing the command ‘CREATE
PROFILE’ with some parameters. Then, the user
name ‘harsheev’ is created.
Note: After creating and assigning profile to
the user, the database initialization parameter
RESOURCE_LIMIT should be set to TRUE, other-
wise it will not be enforced.

alter user harsheev grant con-
nect through jisha;

It will change the current user ‘harsheev’ and will
allow him to connect with the database through
the user ‘jisha’.

alter user jisha identified by
elegant;

It will change the password of ‘jisha’ and set the
new password as ‘elegant’.

create user tybca009 identified
by tybca009;

The user name ‘tybca009’ will be created with
password ‘tybca009’.

drop user tybca009; And then it will be dropped.

After role is created, privileges should be granted to the role using GRANT statement as
following.

GRANT CREATE TABLE to newadmin;

This statement will grant privilege to create a table to the role newadmin. Now, the user can
create a table to whom this newadmin role is assigned.

Role can be assigned to the user using GRANT statement as following.

GRANT newadmin to jisha;

The above grant statement will assign newadmin role to the user named ‘jisha’.

CH_12_Overview of Oracle_Final.indd 230 2/26/2014 3:50:09 PM

Overview of Oracle  |  231

Many privileges can be assigned together to a specific role. For example,

GRANT INSERT, UPDATE on student to newadmin;

The privileges can also be granted directly to the users. For example,

GRANT create table to jisha, harsheev;

This is not convenient when many privileges should be granted to selected users or group of
users. At that time, roles are useful.

Following are advantages of role.

	 1.	Many privileges can be granted to a role and then the common role can be granted to
many users.

	 2.	 User doesn’t have to remember which roles should be assigned to which users.
	 3.	 Also, it is easy to revoke the set of privileges which are assigned to a role.

There are some predefined roles in Oracle database such as CONNECT, DBA, RESOURCE,
EXP_FULL_DATABASE, etc. These roles can be assigned to users directly using GRANT
statement. For example, the following statement will grant the role CONNECT to user named
‘harsheev’.

GRANT CONNECT to harsheev;

To view all the predefined roles and roles which are created by user, the data dictionary view
dba_roles is used as follows.

SELECT * from dba_roles;

The user who is given the role with the ADMIN OPTION or given the system privilege
GRANT ANY ROLE can grant role to users.

The role assigned can be revoked using REVOKE statement as following. Execute the fol-
lowing sequence of statements to create a user and a role, grant a role to the user and revoke a
role from the user.

create user harsheev identified by generous;
 create role newadmin;
 grant connect to newadmin;
 grant newadmin to harsheev;
 REVOKE newadmin from harsheev;

12.4.3  |  Managing Privileges

After logging into the database, the user can perform only those tasks for which he/she is given
privileges. Privileges can be assigned to an individual user, group of users or roles. Role is a
group of privileges. We can assign a name to the role.

There are two types of privileges in Oracle: System privileges and Object privileges.

	 1.	 System privilege: There are many system privileges which allow user to perform a spe-
cific database operation. The user, who is given the system privilege with the ADMIN
OPTION or given the system privilege ANY PRIVILEGE, is able to grant privileges to
other users or roles. The syntax to grant system privilege is:

Grant <privilege_name> to <user_name>;

CH_12_Overview of Oracle_Final.indd 231 2/26/2014 3:50:09 PM

232  |  Chapter 12

Following grant statement will grant the system privilege ‘create user’ to the user ‘shefali’.
After having this privilege, the user named ‘shefali’ can create new users.

grant create user to shefali;

Many privileges can be assigned together as following.

grant create any table, drop any table to shefali;

Similarly, one or more privileges can be granted to many users. The following grant state-
ment will grant two system privileges create any table and drop any table to two users —shefali
and jisha.

grant create any table, drop any table to shefali, jisha;

The following grant statement will grant all privileges to user shefali.

grant all privileges to shefali;

If we want to take back the privilege which is assigned to any user, then REVOKE statement
is used as following.

revoke all privileges from shefali;
revoke drop any table from jisha;

The following statement will grant privilege ‘group any table’ to role newadmin.

grant drop any table to newadmin;

After assigning privilege to a role, a role can be assigned to user as following.

grant newadmin to jisha;

Role and privilege can be assigned together to a user as following. The privilege ‘create any
table’ and a role newadmin is granted to user ‘harsheev’.

grant create any table, newadmin to harsheev;

	 2.	Object privilege: Object privileges can be granted to user and role. The user who has
created any object can grant privilege of that object to other users. Also, the user who has
the privilege ‘GRANT ANY OBJECT PRIVILEGE’ can grant any object to other users
or the user who was granted ‘WITH GRANT OPTION’ on object can grant privilege to
use that object to other users. For example,

 grant insert, select, delete on student to jisha, harsheev;

Here, ‘student’ is a table which is an object. The above statement will allow users ‘jisha’ and
‘harsheev’ to insert, select or delete records to/from table ‘student’.

grant all on student to jisha;

The above statement will grant all the object privileges on table ‘student’ to the user ‘jisha’.

grant insert(stdno), select, delete on student to jisha, harsheev;

The above statement will allow user ‘jisha’ and ‘harsheev’ to insert value only in the field
‘stdno’ of ‘student’ table and will allow to ‘delete’ and ‘select’ records from/to ‘student’ table.

The given object privileges can be taken back from the user by using ‘REVOKE’ statement
as follows. The following statement will revoke the object privilege SELECT and DELETE on
STUDENT table from user ‘harsheev’.

Revoke delete, select on student from harsheev;

CH_12_Overview of Oracle_Final.indd 232 2/26/2014 3:50:09 PM

Overview of Oracle  |  233

The following statement will grant all the object privileges to the role ‘newadmin’.

grant all on student to newadmin;

Later, the role ‘newadmin’ can be assigned to any user (e.g., ‘harsheev’) using grant state-
ment as the following one.

grant newadmin to harsheev;

The granted role can be revoked using REVOKE statement.

Summary
●● Oracle Database 10g XE can be downloaded free from the internet and can be used for
writing and executing SQL queries and small PL/SQL blocks.

●● User has to provide user name and password when installing Oracle. The same user name
and password can be used afterwards to work in Express Edition of Oracle.
●● Five components are available within Oracle XE which are Administration, Object
Browser, Utilities, SQL and Application Builder. The fifth component Application Build-
er is available only if the user had admin rights.

●● SQL component is used to write and execute queries and PL/SQL blocks.
●● SYS and SYSTEM users can create new users, profiles and roles using create user, create
profile and create role commands, respectively.
●● Using ‘grant’ command, the roles and privileges can be assigned to users. Using ‘revoke’
command, the assigned roles and privileges can be withdrawn from the users.
●● There are two types of privileges—system and object.

Exercises

	 1.	 Explain the features of Oracle as a relational database management system.
	 2.	Write steps to login into Oracle 10g XE.
	 3.	Write syntaxes of ‘create user’, ‘create role’ and ‘create profile’. Explain all these users

with examples.
	 4.	 Discuss system and object privileges.
	 5.	 List advantages of creating role.
	 6.	 Select the correct answer from the following multiple choices.
	 i.	 _________________ is a relational database management system which also supports

object-oriented features.
	 	 a.  IMS	 	 	 b.  Dbase
	 	 c.  Oracle	 	 	 d.  Sybase
	 ii.	 Using which option, one can view and change storage and memory settings, create

new users and manage users in Oracle 10g?
	 	 a.  Administration	 	 b.  Utilities
	 	 c.  SQL	 	 	 d.  Object Browser

CH_12_Overview of Oracle_Final.indd 233 2/26/2014 3:50:09 PM

234  |  Chapter 12

	 iii.	 Using which option, one can create and browse various objects such as tables, views,
types, etc., in Oracle 10g?

	 	 a.  Administration	 	 	 b.  Utilities
	 	 c.  Application Builder		 	 d.  Object Browser
	 iv.	 Using which option, one can write and execute queries in Oracle 10g?
	 	 a.  Administration 	 	 	 b.  Utilities
	 	 c.  SQL	 	 	 	 d.  Object Browser
	 v.	 Using which option, one can create and browse various objects such as tables, views,

types, etc., in Oracle 10g?
	 	 a.  Administration	 	 	 b.  Utilities
	 	 c.  SQL	 	 	 	 d.  Object Browser
	 vi.	 Using which option, one can load or unload data, generate data definition commands

from the existing objects, view object reports, create and browse various objects such
as tables, views, types, etc., in Oracle 10g?

	 	 a.  Administration	 	 	 b.  Utilities
	 	 c.  SQL	 	 	 	 d.  Object Browser
	 vii.	 Using which option, one can import or export applications to/from Oracle 10g?
	 	 a.  Administration 	 	 	 b.  Utilities
	 	 c.  SQL	 	 	 	 d.  Application Builder

CH_12_Overview of Oracle_Final.indd 234 2/26/2014 3:50:09 PM

References and Bibliography

Book References
	 1.	 C. J. Date, A. Kannan and S. Swamynathan, An Introduction to Database Systems,

Pearson Education, Eighth Edition, 2009.
	 2.	 Abraham Silberschatz, Henry F. Korth and S. Sudarshan, Database System Concepts,

McGraw-Hill Education (Asia), Fifth Edition, 2006.
	 3.	 Shio Kumar Singh, Database Systems Concepts, Designs and Application, Pearson

Education, Second Edition, 2011.
	 4.	 Peter Rob and Carlos Coronel, Database Systems Design, Implementation and Manage-

ment, Thomson Learning-Course Technology, Seventh Edition, 2007.
	 5.	 Patrick O’Neil and Elizabeth O’Neil, Database Principles, Programming and Perfor-

mance, Harcourt Asia Pte. Ltd., First Edition, 2001.
	 6.	 Atul Kahate, Introduction to Database Management Systems, Pearson Education Pte.

Ltd., First Edition, 2004.
	 7.	 Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, Tata

McGraw-Hill Education (Asia), Third Edition, 2003.
	 8.	 Dr Arun Kumar R., John Kanagaraj and Richard Stroupe, Oracle Database 10g: Insider

Solutions, Pearson Education, First Edition, 2006.
	 9.	 Sam Anahory and Dennis Murray, Data Warehousing in the Real World: A Practical

Guide for Building Decision Support Systems, Pearson Education Ltd., Eleventh Impres-
sion, 2012.

	 10.	 John Kauffman, Brian Matsik and Kevin Spencer, Beginning SQL Programming, Shroff
Publishers and Distributors Pvt. Ltd., First Reprint, 2001.

	 11.	 Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data Mining,
Pearson Education Inc., Fourth Impression, 2009.

	 12.	 Arun Pujari, Data Mining Techniques, Universities Press (India) Pvt. Ltd., Second
Edition, 2010.

	 13.	 Jia Wei Han and Micheline Kamber, Data Mining Concepts and Techniques, Morgan
Kaufmann Publishers, Second Edition, 2006.

	 14.	 Vikram Pudi and P. RadhaKrishna, Data Mining, Oxford University Press, First Edition,
2009.

	 15.	 John L. Viescas and Jeff Conrad, Microsoft Office Access 2007 Inside Out, Prentice-Hall
of India Private Limited, First Edition, 2007.

	 16.	 Virginia Andersen, The Complete Reference Microsoft Office Access 2007, Tata
McGraw-Hill Publishing Company Limited, Second Edition, 2008.

DBMS_References and Bibliography_Final.indd 235 2/26/2014 4:30:34 PM

236  |  References and Bibliography

	 17.	 Ivan Bayross, SQL, PL/SQL The Programming Language of ORACLE, BPB Publica-
tions, Third Edition, 2008.

	 18.	 E-Book: Introduction to Database Systems, By: ITL Education Solutions Limited, Pub-
lisher: Pearson Education India, 2008, e-book ISBN-10: 81-3174-319-5; e-book ISBN-
13: 978-8-131-74319-5.

	 19.	 E-book: Oracle Database Application Developer’s Guide-Fundamentals, 10g Release 2
(10.2), Oracle, 2005, By: Primary Author: Lance Ashdown; Contributing Authors: D.
Adams, M. Cowan, R. Moran, J. Melnick, E. Paapanen, J. Russell and R. Strohm.

Research Papers/Articles References
	 1.	 E. F. Codd, Extending the Database Relational Model to Capture More Meaning, ACM

Transactions on Database Systems, Vol. 4, No. 4, December 1979, Pages 397–434.
	 2.	 I-Min A. Chen, Richard Hull and Dennis Mcleod, An Execution Model for Limited Ambi-

guity Rules and Its Application to Derived-Data Update, ACM Transactions on Database
Systems, Vol. 20, No. 4, December 1995, Pages 365–413.

	 3.	 William C. Mcgee, On User Criteria for Data Model Evaluation, ACM Transactions on
Database Systems, Vol. 1, No. 4, December 1976, Pages 370 –387.

	 4.	 Feng Shao, Antal Novak and Jayavel Shanmugasundaram, Triggers over Nested Views
of Relational Data, ACM Transactions on Database Systems, Vol. 31, No. 3, September
2006, Pages 921–967.

	 5.	 Stanley Y. W. Su, Herman Lam and Der Her Lo, Transformation of Data Traversals and
Operations in Application Programs to Account for Semantic Changes of Databases,
ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, Pages 255–294.

	 6.	 Gad Ariav, A Temporally Oriented Data Model, ACM Transactions on Database
Systems, Vol. 11, No. 4, December 1986, Pages 499–527.

	 7.	 Millist W. Vincent, Jixue Liu and Chengfei Liu, Strong Functional Dependencies and
Their Application to Normal Forms in XML, ACM Transactions on Database Systems,
Vol. 29, No. 3, September 2004, Pages 445–462.

	 8.	 Martin Gogolla and Uwe Hohenstein, Towards a Semantic View of an Extended Entity-
Relationship Model, ACM Transactions on Database Systems, Vol. 16, No. 3, September
1991, Pages 369–416.

	 9.	 D. S. Batory, T. Y. Leung and T. E. Wise, Implementation Concepts for an Extensible
Data Model and Data Language, ACM Transactions on Database Systems, Vol. 13, No.
3, September 1988, Pages 231–262.

	 10.	 Antonio Albano, Luca Cardelli and Renzo Orsini, Galileo: A Strongly-Typed, Interactive
Conceptual Language, ACM Transactions on Database Systems, Vol. 10, No. 2, June
1985, Pages 230–260.

	 11.	 Debabrata Dey, Veda C. Storey and Terence M. Barron, Improving Database Design
through the Analysis of Relationships, ACM Transactions on Database Systems, Vol. 24,
No. 4, December 1999, Pages 453–486.

	 12.	 Eugene Wong, A Statistical Approach to Incomplete Information in Database Systems,
ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982, Pages 470–488.

DBMS_References and Bibliography_Final.indd 236 2/26/2014 4:30:34 PM

References and Bibliography  |  237

	 13.	 Carlos A. Hurtado, Claudio Gutierrez and Alberto O. Mendelzon, Capturing Summariz-
ability with Integrity Constraints in OLAP, ACM Transactions on Database Systems,
Vol. 30, No. 3, September 2005, Pages 854–886.

	 14.	 Yair Wand, Veda C. Storey and Ron Weber, An Ontological Analysis of the Relationship
Construct in Conceptual Modeling, ACM Transactions on Database Systems, Vol. 24,
No. 4, December 1999, Pages 494–528.

	 15.	 Dennis Shasha and Tsong-Li Wang, Optimizing Equijoin Queries in Distributed Data-
bases Where Relations are t-lash Partitioned, ACM Transactions on Database Systems,
Vol. 16, No. 2, June 1991, Pages 279–308.

	 16.	 Debabrata Dey and Sumit Sarkar, A Probabilistic Relational Model and Algebra, ACM
Transactions on Database Systems, Vol. 21, No. 3, September 1996, Pages 339–369.

	 17.	 Gü Ltekin Ö Zsoyoǧ Lu, Ismail Sengö R Altingö Vde, Abdullah Al-Hamdani, Selma
Ays¸ E Ö Zel, Ö Zgü R Ulusoy and Zehra Meral Ö Zsoyoǧ Lu, Querying Web Metadata:
Native Score Management and Text Support in Databases, ACM Transactions on Data-
base Systems, Vol. 29, No. 4, December 2004, Pages 581–634.

	 18.	 Laks V. S. Lakshmanan, Fereidoon Sadri and Subbu N. Subramanian, SchemaSQL—An
Extension to SQL for Multidatabase Interoperability, ACM Transactions on Database
Systems, Vol. 26, No. 4, December 2001, Pages 476–519.

	 19.	 Luca Forlizzi, Ralf Haxtmut Güting, Enrico Nardelli and Markus Schneider, A Data
Model and Data Structures for Moving Objects Databases, ACM SIGMOD 2000 5/00
Dallas,

	 20.	 Michael Stonebraker, Eugene Wong, Peter Kreps and Gerald Held, The Design and
Implementation of INGRES, ACM Transactions on Database Systems, Vol. 1, No. 3,
September 1976, Pages 189-222.

	 21.	 Mcchael Stonebraket and Lawrence A Rowe, The Design Of Postgres, ACM 0-89791-
191-1/86/0500/0340.

	 22.	 Tirthankar Lahiri, Amit Ganesh, Ron Weiss and Ashok Joshi , Fast-Start: Quick Fault
Recovery in Oracle, ACM SIGMOD 2001 May 21–24.

	 23.	 Evaggelia Pitoura and Bharat Bhargava, A Framework for Providing Consistent and
Recoverable Agent-based Access to Heterogeneous Mobile Databases, SIGMOD
Record, Vol. 24, No. 3, September 1995.

	 24.	 Krishna Kunchithapadam, Wei Zhang, Amit Ganesh and Niloy Mukherjee, Oracle
Database File System, SIGMOD’11, June 12–16, 2011, Athens, Greece.

	 25.	 Jos Moreira and Ribeiro, Query Operations for Moving Objects Database Systems, 8th
ACM symposium on GIS 11/00 Washington, D. C., USA.

	 26.	 Hyun Jin Moon and Carlo Zaniolo, Scalable Architecture and Query Optimization for
Transaction-time DBs with Evolving Schemas, SIGMOD’10, June 6–11, 2010, India-
napolis, Indiana, USA.

	 27.	 Thomas Behr, Victor Teixeira de Almeida and Ralf Hartmut Güting, Representation of
Periodic Moving Objects in Databases, ACM-GIS’06, November 10–11, 2006.

	 28.	 M. M. Astrahan, ht. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths,
W. F. King, R. A. Lorie, P. R. A. Jones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade
and V. Watson, System R: Relational Approach to Database Management, ACM Transac-
tions on Database Systems, Vol. 1, No. 2. June 1976, Pages 97–137.

DBMS_References and Bibliography_Final.indd 237 2/26/2014 4:30:34 PM

238  |  References and Bibliography

	 29.	 Jorge F Gana and Won Kim, Transaction Management in an Object-Oriented Database
System, ACM 0-89791-268-3/88/0006/0037.

	 30.	 Ewing L. Lusk, Ross A. dverbeek, and Bruce Parrello, A Practical Design Methodology
for the Implementation of IMS Databases Using the Entity-Relationship Model, ACM
0-89791418-4/80/0500/0009.

	 31.	 Bogdan Czejdo, Ramez Elmasri and Marek Rusinkiewicz, An Algebric Language for
Graphical Query Formulation Using an Extended Entity-Relationship Model, ACM
0-89791-218-7/87/0002-0154.

	 32.	 Alexander Egyed, Automated Abstraction of Class Diagrams, ACM Transactions on
Software Engineering and Methodology, Vol. 11, No. 4, October 2002, Pages 449–491.

	 33.	 Sudha Ram, Deriving Functional Dependencies from the Entity-Relationship Model,
Communications of the ACM, September 1995, Vol. 38, No. 9.

	 34.	 Carol Chrisman and Barbara Beccue, Entity Relationship Models as a Tool for Data
Analysis and Design, ACM-O-89791-178-4/86/0002/0008.

	 35.	 Antonio Badia, Entity-Relationship Modeling Revisited, SIGMOD Record, Vol. 33, No.
1, March 2004.

	 36.	 Joseph Fong, Mapping Extended Entity Relationship Model to Object Modeling Tech-
nique, SIGMOD Record, Vol. 24, No. 3, September 1995.

	 37.	 Victor M. Markowitz and Arie Shoshani, On the Correctness of Representing Extended
Entity-Relationship Structures in the Relational Model, ACM 0-89791-317-5/89/
ooO5/0430.

	 38.	 Ramez Elmasri and Gio Wiederhold, Properties of Relationships and Their Representation,
National Computer Conference, 1980.

	 39.	 James Rumbaugh, Relations as Semantic Constructs in an Object-Oriented Language,
OOPSLA’ 87 Proceedings October 4–8, 1987.

	 40.	 Victor M. Markowitz and Arie Shoshani, Representing Extended Entity-Relationship
Structures in Relational Databases-A Modular Approach, ACM Transactions on Data-
base Systems, Vol. 17, No. 3, September 1992, Pages 423–464.

	 41.	 Sikha Bagui, Rules for Migrating from ER and EER Diagrams to Object-Relationship
(OR) diagrams, 43rd ACM Southeast Conference, March 18–20, 2005.

	 42.	 Peter Pin-Shan Chen, The entity-relationship model—A basis for the enterprise view of
data, National Computer Conference, 1977.

	 43.	 Peter Pin-Shan Chen, The Entity-Relationship Model-Toward a Unified View of Data,
ACM Transactions on Database Systems, Vol. 1, No. 1. March 1976, Pages 9–36.

	 44.	 Hafeez Osman, Dave R. Stikkolorum, Arjan van Zadelhoff, Michel R.V. Chaudron and
Niels Bohrweg, UML Class Diagram Simplification: What is in the developer’s Mind?,
EESSMOD’12, October 1–5, 2012.

	 45.	 Fred J. Maryanski and Veda C. Storey, Understanding Semantic Relationships, VLDB
Journal, 2, 455–488 (1993).

	 46.	 Kofi Apenyo, Using the Entity-Relationship Model to Teach the Relational Model, No. 2
June 1999, SIGCSE Bulletin.

	 47.	 Michael Schrader, William Endress and Fred Richards, Understanding an OLAP Solu-
tion from Oracle, An Oracle White Paper, April 2008.

DBMS_References and Bibliography_Final.indd 238 2/26/2014 4:30:34 PM

References and Bibliography  |  239

	 48.	 John C. Peck, Distributed Database/File Systems, Introduction, ACM Computer Science
Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March
12–14.

	 49.	 Toby J. Teorey, Distributed Database Design: A Practical Approach and Example,
SIGMOD RECORD, Vol. 18, No. 4, December, 1989.

	 50.	 Carlos Ordonez, Javier García-García and Zhibo Chen, Measuring Referential Integrity
in Distributed Databases, CIMS’07, November 9, 2007.

	 51.	 Ralf Hartmut Güting, An Introduction to Spatial Database Systems, Special Issue on
Spatial Database Systems of the VLDB Journal, Vol. 3, No. 4, October 1994.

	 52.	 Z. Meral Ozsoyoglu and Li-Yan Yuan, A New Normal Form for Nested Relations, ACM
Transactions on Database Systems, Vol. 12, No. 1, March 1987.

	 53.	 Ronald Fagin, A Normal Form for Relational Databases That is Based on Domains and
Keys, ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

	 54.	 Marcelo Arenas and Leonid Libkin, A Normal Form for XML Documents, ACM Trans-
actions on Database Systems, Vol. 29, No. 1, March 2004.

	 55.	 P. A. Bernstein, J. R. Swenson and D. C. Tsichritzis, A Unified Approach to Functional
Dependencies and Relations.

	 56.	 Tok-Wang Ling, Frank W. Tompa and Tiko Kameda, An Improved Third Normal Form
for Relational Databases, ACM Transactions on Database Systems, Vol. 6, No. 2,
June 1981.

	 57.	 William Kerr, A Simple Guide to Five Normal Forms in Relational Database Theory,
Communications of the ACM February 1983, Vol. 26, No. 2.

	 58.	 Don-Min Tsou and Patrick C. Fischer, Decomposition of a Relation Scheme into Boyce-
Codd Normal Form, ACM 0-89791-028-1/80/1000/0411.

	 59.	 W. W. Armstrong and C. Delobel, Decompositions and Functional Dependencies in
Relations’, ACM Transactions on Database Systems, Vol. 5, No. 4, December 1980.

	 60.	 Sven Hartmann, Markus Kirchberg and Sebastian Link, Design by Example for SQL
Table Definitions with Functional Dependencies, 24 June 2011, Springer–Verlag, 2011.

	 61.	 Victor Vianu, Dynamic Functional Dependencies and Database Aging, Journal of the
Association for Computing Machinery, Vol. 34, No. 1, January 1987.

	 62.	 K. V. S. V. N. Raju and Arun K. Majumdar, Fuzzy Functional Dependencies and Loss-
less Join Decomposition of Fuzzy Relational Database Systems, ACM Transactions on
Database Systems, Vol. 13, No. 2, June 1988.

	 63.	 Dennis J. McLeod, High Level Domain Definition in a Relational Database System,
IBM Research Laboratory.

	 64.	 William Kent, Limitations of Record-Based Information Models, ACM Transactions on
Database Systems, Vol. 4, No. 1, March 1979.

	 65.	 Betty Salzberg, Third Normal Form Made Easy, SIGMOD RECORD, Vol. 15, No. 4,
December 1986.

	 66.	 Ronald Fagin, Multivalued Dependencies and a New Normal Form for Relational Data-
bases, ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

	 67.	 Hugh Darwen, C. J. Date, Ronald Fagin, A Normal Form for Preventing Redundant
Tuples in Relational Databases, ICDT 2012, March 26–30, 2012.

DBMS_References and Bibliography_Final.indd 239 2/26/2014 4:30:34 PM

240  |  References and Bibliography

	 68.	 Margaret S. Wu, The Practical Need for Fourth Normal Form, ACM 0-89791-468-
61921000210019.

	 69.	 Ronald Fagin, Normal Forms and Relational Database Operators, ACM 0-89791-001-
x/79/0500-0153.

	 70.	 Zahir Tari, John Stokes and Stefano Spaccapietra, Object Normal Forms and Dependen-
cy Constraints for Object-Oriented Schemata, ACM Transactions on Database Systems,
Vol. 22, No. 4, December 1997.

	 71.	 Catriel Beeri, On the Membership Problem for Functional and Multivalued Dependen-
cies in Relational Databases, ACM Transactions on Database Systems, Vol. 5, No. 3,
September 1980.

	 72.	 C. J. Date and Ronald Fagin, Simple Conditions for Guaranteeing Higher Normal Forms
in Relational Databases, ACM Transactions on Database Systems, Vol. 17, No. 3, Sep-
tember 1992.

	 73.	 Philip A. Bernstein, Synthesizing Third Normal Form Relations from Functional Depen-
dencies, ACM Transactions on Database Systems, Vol. 1. No. 4, December 1976.

	 74.	 Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann and Michael W. Watzke, Locking Proto-
cols for Materialized Aggregate Join Views, Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003.

	 75.	 Wen-Syan Li, K. Sel¸cuk Candan, Kyoji Hirata and Yoshinori Hara, Supporting Efficient
Multimedia Database Exploration, The VLDB Journal (2001) 9: 312–326 / Digital Object
Identifier (DOI), 10.1007/s007780100040.

	 76.	 Edmond Lau and Samuel Madden, An Integrated Approach to Recovery and High Avail-
ability in an Updatable, Distributed Data Warehouse, VLDB ‘06, September 1215,
2006.

	 77.	 Jeffrey Fischer and Rupak Majumdar, Ensuring Consistency in Long Running Transac-
tions, ASE ’07, November 5–9, 2007, ACM, 978-1-59593-882-4/07/0011.

	 78.	 Alexander Thomasian, Concurrency Control: Methods, Performance, and Analysis,
ACM Computing Surveys, Vol. 30, No. 1, March 1998.

	 79.	 Shahidul Islam Khan and Dr. A. S. M. Latiful Hoque, A New Technique for Database
Fragmentation in Distributed Systems, International Journal of Computer Applications
(0975–8887), Vol. 5, No. 9, August 2010.

	 80.	 Hiiko Schuldt, Gustavo Alonso, Catriel Beeri and Hans-Jö RG Schek, Atomicity and
Isolation for Transactional Processes, ACM Transactions on Database Systems, Vol. 27,
No. 1, March 2002.

	 81.	 Arpita Mathur, Mridul Mathur, Pallavi Upadhyay and Arpita Mathur et al., Cloud Based
Distributed Databases: The Future Ahead, International Journal on Computer Science
and Engineering (IJCSE), ISSN: 0975-3397, Vol. 3, No. 6, June 2011.

	 82.	 Sharad Mehrotra, Henry F. Korth and Avi Silberschatz, Concurrency Control in Hierar-
chical Multidatabase systems, The VLDB Journal (1997).

	 83.	 Jean-Pierre Briot, Rachid Guerraoui and Laus-Peter Lo¨ Hr, Concurrency and Distribu-
tion in Object-Oriented Programming, ACM Computing Surveys, Vol. 30, No. 3, Sep-
tember 1998.

DBMS_References and Bibliography_Final.indd 240 2/26/2014 4:30:34 PM

References and Bibliography  |  241

Web References
	 1.	 http://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm
	 2.	 http://docs.oracle.com/cd/E11882_01/server.112/e25789/transact.htm
	 3.	 http://lsirwww.epfl.ch/courses/iis/2009ss/slides/slides-11-Transactions.pdf
	 4.	 http://docs.oracle.com/cd/A57673_01/DOC/server/doc/SPS73/chap22.htm
	 5.	 http://docs.oracle.com/cd/B12037_01/network.101/b10777/protdata.htm
	 6.	 http://www.inf.unibz.it/dis/teaching/DDB/ln/ddb02.pdf
	 7.	 http://docs.oracle.com/cd/B12037_01/network.101/b10777/protdata.htm
	 8.	 http://www.oracle.com/us/solutions/business-intelligence/064300.pdf
	 9.	 http://link.springer.com/chapter/10.1007%2F978-1-4302-0528-9_12#page-1
	 10.	 http://www.peterindia.net/MultimediaDatabase.html
	 11.	 http://www.cs.cf.ac.uk/Dave/Multimedia/node141.html
	 12.	 http://docs.oracle.com/cd/B28359_01/appdev.111/b28415/ch_intr.htm
	 13.	 http://dna.fernuni-hagen.de/Lehre-offen/Kurse/1675/KE1.pdf
	 14.	 http://blog.safaribooksonline.com/2012/08/17/moving-to-nosql-databases/
	 15.	 http://nosql-database.org/
	 16.	 http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041

.pdf
	 17.	 http://www.10gen.com/nosql
	 18.	 http://www.ehow.com/info_10069998_spatial-databases.html
	 19.	 http://en.wikipedia.org/wiki/Data_mining
	 20.	 http://www.rdatamining.com/resources/tools
	 21.	 http://docs.oracle.com/cd/B19306_01/appdev.102/b14261/sqloperations.htm#BABJIHCC

DBMS_References and Bibliography_Final.indd 241 2/26/2014 4:30:34 PM

http://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm
http://docs.oracle.com/cd/E11882_01/server.112/e25789/transact.htm
http://lsirwww.epfl.ch/courses/iis/2009ss/slides/slides-11-Transactions.pdf
http://docs.oracle.com/cd/A57673_01/DOC/server/doc/SPS73/chap22.htm
http://docs.oracle.com/cd/B12037_01/network.101/b10777/protdata.htm
http://www.inf.unibz.it/dis/teaching/DDB/ln/ddb02.pdf
http://docs.oracle.com/cd/B12037_01/network.101/b10777/protdata.htm
http://www.oracle.com/us/solutions/business-intelligence/064300.pdf
http://link.springer.com/chapter/10.1007%2F978-1-4302-0528-9_12#page-1
http://www.peterindia.net/MultimediaDatabase.html
http://www.cs.cf.ac.uk/Dave/Multimedia/node141.html
http://docs.oracle.com/cd/B28359_01/appdev.111/b28415/ch_intr.htm
http://dna.fernuni-hagen.de/Lehre-offen/Kurse/1675/KE1.pdf
http://blog.safaribooksonline.com/2012/08/17/moving-to-nosql-databases/
http://nosql-database.org/
http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf
http://www.10gen.com/nosql
http://www.ehow.com/info_10069998_spatial-databases.html
http://en.wikipedia.org/wiki/Data_mining
http://www.rdatamining.com/resources/tools
http://docs.oracle.com/cd/B19306_01/appdev.102/b14261/sqloperations.htm#BABJIHCC
http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf

A

aggregate functions, 118–119
Avg(field_name), 119
Count(*) or count(field_name), 118–119
Max(field_name), 119
Min(field_name), 119
Sum(field_name), 119

agile development, 176
alternate keys, 46–47
alter table in Oracle, 113–114
ANSI/SPARC architecture of database, 33
application developer, 7
application failure, 160
application program, 5
application programmer, 7
architecture of database, 33–35

conceptual level, 34
External–Conceptual mapping, 35
external level, 33
internal level, 33
internal schema, 35
internal view, 35

ARMiner, 175
atomicity, 151
attribute (column), 27, 60–61
authentication, 161

B

backup of data, 160
bar charts, 4
binary relation, 42
binary relationship, 66
Boyce–Codd Normal Form (BCNF), 96–98

C

candidate key, 46–47
cardinality of relation, 42
Cartesian product, 51–52
cell, 53
centralized database management system, 165

advantages, 165
disadvantages, 165

centralized processing, 166
Character-based User Interface (CUI), 13
characteristic of an entity, 27

check constraint, 126
checkpoints, 160–161
Chen’s semantic model, 59, 61

attribute symbols, 63
class diagram, 76
clauses of SELECT statement, 115–118
COBOL, 12
COBOL (Common Business-Oriented Language), 19
Codd, Edgar F., 20, 41, 53
‘COMMIT’ command, 149
composite attribute, 62
composite key, 44–46
concurrent execution of transactions, 155–158
conversion functions

To_char, 122
To_date, 122
To_number, 122
To_timestamp, 122

co-related sub query, 129
create table in Oracle, 112–113
cross join, 127
Crow’s Foot semantic model, 59
cube, 129–131
cursor attributes, 141
cursors of PL/SQL block, 139–142

D

data, 1–2
constraints and, 5
in database, 8, 10–11
operational, 6

database, 5–6
ANSI/SPARC architecture of, 33
architecture of, 33–35
characteristics, 14–15
components of, 6–11
language, 54
limitations, 15–16
need for, 12

Database Administrator, 35
database administrator, 8
database design, 54
database designer, 8
database languages, 35–36
database life cycle (DBLC), 54

Index

DBMS_Index_Final.indd 243 3/4/2014 10:45:00 AM

244  |  Index

database management, 11
database management system, 11

difference between file-based management
system and, 15

database triggers, 161
data control language (DCL), 35–36
data definition commands, 112–114
Data Definition Language (DDL), 34
data definition language (DDL), 35
data dependence, 36
data dictionary, 54
data independence, 36
data loading, 54
data maintenance, 54
data manipulation commands, 114–115
Data Manipulation Language (DML), 34
data manipulation language (DML), 35
data mining, 174
data models

evolution of, 19–21
hierarchical, 21–26
network, 26–27
object-oriented, 30–32
relational, 27–30

Data Sub Language (DSL), 34
data transfer (conversion), 54
data warehouse, 174
date and time functions

Add_months, 120
Extract, 120
Last_day, 121
Months_between, 120
Next_day, 121
Sysdate and current_date, 119
Systimestamp, 120–121

deadlocks, 157–159
default constraint, 126
degree of relation, 42
delete operation, 54
dependencies, 83–88

full functional, 86
functional, 83–84
join, 87, 100–101
multi-valued, 87, 98–99
partial, 86, 92
transitive, 87

dependent segment, 21
derived attribute, 62
determinant, 84
difference, 50–51
distributed data, 176

distributed database management system
(DDBMS), 165

advantages, 170
application processor, 169
client-server architecture, 167
communication network, 167, 169
components, 169
data manager, 169
disadvantages, 170
distributed processing, 169–170
fragments (parts), 166
heterogeneous, 168–169
homogeneous, 167–168
replication, 166
transaction processor, 169

distributed processing, 166
distribution independence, 54
domain-key normal form (DKNF), 103
domain of an attribute, 42

E

email_address attribute, 43
end-users, 7
entities, 5–6, 41

identifying, 60–63
entity integrity rule, 48–49
entity occurrence, 27, 42
entity-relationship model, 21
entity-relationship model (E-R model), 59

converting into relational model, 73–74
example, 68–72
extended, 72–73
terminologies, 62

equi join, 127
External–Conceptual mapping, 35

F

field-level constraint, 125
file-based data management system, 12–14

difference between database management
system and, 15

first normal form, 88, 90
foreign key, 47–48, 125–126, 187
FORTRAN (Formula Translation), 19
Fourth Generation Language (4GL), 111
FoxPro, 13
fragments of database, 158
full functional dependency, 85–86
full outer join, 127
functional dependency, 83–84

DBMS_Index_Final.indd 244 3/4/2014 10:45:00 AM

Index  |  245

G

Gem-Stone, 20
gender attribute, 43
generalization of subclasses, 76
GeoDa, 175
GIS (Geographical Information System), 176
graph store NoSQL databases, 176
GROUP BY clause, 118
guaranteed access rule, 53

H

hardware, 8
heterogeneous databases, 174
heterogeneous distributed database, 168–169
hierarchical data model, 21–26
homogeneous distributed database, 167–168

I

IBM DB2 Everyplace, 173
inconsistent data, 10
inconsistent state, 151
information, 2–4

representation of, 4
Information Management System (IMS), 19
information rule, 53
inner joins, 127
insert operation, 54
INSERT statement, 149
integrated data, 10
Integrated Data Store (IDS), 19
integrity independence, 54
integrity rules

entity integrity rule, 48–49
referential integrity rule, 49

intersection, 50
intersect operator, 128
‘is a’ relationship, 73

J

join dependency, 87, 100–101
join operator, 53

K

key, 44
alternate, 46–47
attribute, 44, 70
candidate, 46–47
composite, 44–46
foreign, 47–48
primary, 44
secondary, 48

super, 46
surrogate, 48
unique, 47

key attribute/identifier, 62
key-document pair, 176
Knowledge Discovery in Database (KDD), 174

L

lab activities, 216–220
layman user, 7
left outer join, 127
location-based moving object database, 176
lock conversion of data, 157
lock downgrade of data, 157
lock escalation of data, 157–158
logical database, 5–6
logical data independence, 54
lossless decomposition, 101–102

M

macros of MS Access, 181, 205–210
‘autoexec,’ 209
autokeys macro group, 209
columns of a macro sheet, 206–207
embedded, 206
macro group, 208–209
nested, 208
to protect the database with a password,

209–210
running a, 205
standalone, 206
testing and debugging a macro, 207
uses of, 207–208

mandatory participation in relationship, 67
many-to-many relationship

managing, 68
unary, 65

many-to-many unary relationship, 65
mathematical functions

Mod, 122
Power, 122
Round, 122
Sqrt, 122

media crash, 160
metadata, 5, 54
Microsoft SQL Server Analysis, 172
Microsoft SQL Server Analysis Services, 175
Microsoft SQL server CE, 173
minus operator, 128
M:N ternary relationship, 66
mobile application, 173

DBMS_Index_Final.indd 245 3/4/2014 10:45:00 AM

246  |  Index

mobile database
fixed client-fixed host architecture, 173
for light-weighted devices, 173
mobile client-fixed host architecture, 172–173
mobile client-mobile host architecture, 173

moving object databases, 176
MS Access

action queries, 190–191
adding groups or sorts in the report, 203–204
aggregate functions, 195
as an RDBMS, 180
append query, 190–191
autolookup query, 191
chart, creating, 204–205
creating database and tables, 181–183
cross join, 196
crosstab query, 191
data types, 183–187
date and time functions, 193–194
delete query, 191
difference between Design view and

Datasheet view, 182
duplicate query, 190
elements of, 180–181
equi join, 195
exporting a report, 204
field naming convention, 181
filtering records, 188
foreign key, 187
format property, 184
formats for the Date/Time Data Type, 186
forms, 181
forms, creating, 196–201
inner join, 196
input mask characters, 184, 186
left outer join, 196
macros, 181, 205–210
mathematical functions, 195
modules, 181
multiple join, 196
Navigation Pane, 183
‘number’ field properties, 184
parameterized query, 191
parameterized report, creating, 203
predicates, 192
printing serial numbers on a report, 204
print parameters in the report header, 203
queries, creating, 188–196
query, 180–181
query using query wizard, 189
removing duplicate values or repeating values, 204

reports, 181
reports, creating, 201–205
‘report wizard’ option, 201–202
right outer join, 196
sections of a report, 202
select queries, 190
select query, 190
select statement, 189
sorting by single field, 187
sorting by two or more field, 187
sorting records, 187
special operators, 192–193
SQL-specific queries, 191–192
string functions, 194–195
subreports and subforms, 202–203
switchboard system for, 210–211
‘text’ field properties, 185
union query, 196
unmatched query, 190
update query, 191
wildcards, 192

MS-Access, 20
MS-SQL Server, 20
multidimensional database, 172
multimedia databases, 174
multiple join, 127
multi-user database, 165
multi-valued attribute, 62
multi-valued dependency, 87, 98–99
MySQL, 175

N

naive user, 7
n-ary relation, 42
N-ary relationship, 66
natural join, 127
nested normal form (NNF), 103
nested query, 128
network data model, 26–27

advantages, 27
disadvantages, 27
Member record, 26
Owner record, 26

non-equi join, 127
nonloss decomposition, 101–102
non-redundant data, 10
non-subversion rule, 54
normalization

Boyce–Codd Normal Form (BCNF), 96–98
defined, 83
examples, 103–108

DBMS_Index_Final.indd 246 3/4/2014 10:45:00 AM

Index  |  247

first normal form, 88
lossless decomposition, 101–102
need for, 82–83
nonloss decomposition, 101–102
second normal form, 88–93
tables, 102–103
third normal form, 94–96
types of dependencies, 83–88, 98–101

NoSQL database, 176–177
not null constraint, 126
null, 44
null values, 53–54

O

O2, 20
ObjectDesign, 20
Objectivity, 20
object modelling, 75

class diagram, 76
generalization, 76
specialization, 76
subclass, 75–76
superclass, 75–76

object-oriented database, 174
object-oriented data model

advantages, 32
disadvantages, 33

object-oriented data models, 30–32
object-oriented programming languages, 20
object relational DBMS, 20
OLAP (On-Line Analytical Processing) engine, 174
one-to-many unary relationship, 65
one-to-one unary relationship, 65
On-Line Analytical Processing (OLAP), 172
open source database, 175
open source database management systems, 11
open source tools, 175
operational data, 6
optional participation in relationship, 67
Oracle Lite, 173
Oracle Multimedia, 174
Oracle RDBMS, 32, 221. see also transactions

block, 138–139
cursors, 139–142
database backup and recovery, 159–161
functions, 143–144
11g OLAP, 172
Hyperion Essbase, 172
logging into, 221–222
Oracle Database 10g XE, 222–228
packages, 145

privileges, managing, 231–233
procedures, 142–143
roles, managing, 229–231
triggers, 144–145
users, managing, 228–229

ordering, 118
outer joins, 127–128

P

package body, 145
package declaration, 145
partial dependency, 86, 92
participation in relationship, 66–67

mandatory, 67
optional, 67

physical database, 6
physical data independence, 54
PostgreSQL, 175
primary key, 44, 46, 125
Procedural Language/Structured Query Language

(PL/SQL)
attributes, 141
block of, 138–139
cursor attributes, 141
cursor for Loop, 141
cursors, 139–142
explicit cursors, 140
functions, 143–144
implicit cursors, 139–140
packages, 145
procedures, 142–143
%rowtype, 141
triggers, 144–145
%type, 141
FOR UPDATE clause, 142
WHERE CURRENT OF clause, 142

programmer, 7
programming languages, 8
project operator, 52–53

Q

Query Language, 7

R

RapidMiner, 175
real-time physical database, 5
redundant (duplicate/repetitive) data, 82, 93
referential integrity rule, 49
related data, 2
related entity occurrences, 21
relation, 20, 41

DBMS_Index_Final.indd 247 3/4/2014 10:45:00 AM

248  |  Index

relational database management systems
(RDBMS), 20, 111

comparison between traditional terminology, 44
Oracle, 32
terminology, 41–44
twelve rules of relational database, 53–54

relational data model, 20, 27–30
advantages, 30
disadvantages, 30

relational set operators, 50–52
relationship

binary, 66
between the entities, 71
identifying, 63
‘is a,’ 73
many-to-many unary, 65
M:N ternary, 66
N-ary, 66
one-to-many unary, 65
one-to-one unary, 65
participation, 66–67
strong, 68
ternary, 66
types of, 63–66
unary, 65–66
weak, 68

retrieval operators, 52–53
right outer join, 128
‘ROLLBACK’ command, 149
rollup, 129
root segment, 21
row level triggers, 144–145

S

secondary key, 48
second normal form, 88–93
segment, 21
select operator, 52
SELECT query, 128–129
SELECT statement, 111

clauses of, 115–118
DISTINCT clause, 116
GROUP BY clause, 117
HAVING clause, 117
optional clauses of, 117–118
ORDER BY clause, 117–118
WHERE clause, 116–118

SELELCT keyword, 116
self join, 128
semantic models, 59
shared/exclusive lock of data, 157

simple join, 127
single-user database, 165
single-valued attribute, 62
sixth normal form, 103
Software programmer, 7
spatial (pictorial/image) database, 175–176
specialization of subclasses, 76
special operators in SQL, 123–124

IS NULL, 123
AND operator, 123–124
IN operator, 123
OR operator, 123–124

SQL Anywhere, 173
SQLite, 173
statement level triggers, 144
stored data, 2
string functions

concat, 122
initcap, 121
length, 121
lower, 121
ltrim, 121
rtrim, 122
substr, 121
trim, 122
upper, 121

structural dependence, 36
structural independence, 36
structured data, storing, 176
Structured Query Language (SQL), 8, 34–35, 111

aggregate functions, 118–119
conversion functions, 122
crosstab, 131
cube, 129–131
date and time functions, 119–121
decode function, 131–132
join and set operators, 127–128
mathematical functions, 122
rollup, 129
special operators, 123–124
sub-query, 128–129
types of constraints, 125–127

student_ID field, 42
student_name field, 42
subclass, 75–76
subquery, 123–124
superclass, 75–76
super key, 46
surrogate key, 48
switchboard system for a database, 210–211

DBMS_Index_Final.indd 248 3/4/2014 10:45:01 AM

Index  |  249

creating a documentation, 210–211
difference between navigation pane and, 210–211

syntax, 112–113
Sysdate and current_date

string functions, 121
system catalog (data dictionary), 33

maintenance, 54
system crash, 160
System Requirements Specification

(SRS) Document, 54

T

table-level constraint, 125
Temporal Structured Query Language

(TSQL2), 176
ternary relation, 42
ternary relationship, 66
third normal form, 94–96
transaction control language (TCL), 36
transaction manager, 149
transactions

authorization and, 161
checkpoints, 160–161
concurrent execution of, 155–158
consistency property, 153
database backup and recovery, 159–161
database integrity and, 161
database triggers, 161
deadlocks, chances of, 157–159
definition, 148–151
dirty property, 154
durability property, 154
inconsistent retrieval, problem of, 156
integrity and, 161
isolation property, 153–154
lock conversion of data, 157
lock downgrade of data, 157
lock escalation of data, 157–158
lost update, problem of, 156

non-repeatable read property, 154
phantom read property, 154
properties, 152–154
‘read committed’ isolation levels, 156
read committed property, 154
read only, 156
read uncommitted property, 154
repeatable read property, 154
running or active state, 155
serializable property, 154
shared/exclusive lock of data, 157
states, 155
successfully completed state, 155
two-phase commit during, 158
uncommitted data, problem of, 156
unsuccessfully completed state, 155

transitive dependency, 87
tuple of an entity, 27, 41
twelve rules of relational database, 53–54

U

unary relation, 42
unary relationship, 65–66
union, 50
union operator, 128
unique constraint, 126
unique key, 47
unstructured data, storing, 176
updatable view, rule for, 54
update operation, 54
user, 6–8

V

Versant, 20

W

weak relationship, 68
Weka, 175
Wide-column NoSQL database, 177

DBMS_Index_Final.indd 249 3/4/2014 10:45:01 AM

	Cover
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgements
	About the Author
	Chapter 1 Basics of Database
	1.1 Introduction
	1.2 Data and Information
	1.2.1 Data
	1.2.2 Information

	1.3 Database
	1.3.1 Components of Database System

	1.4 Database Management
	1.5 Database Management System
	1.6 Need for a Database
	1.7 File-based Data Management System
	1.8 Characteristics, or Features, or Advantages of Database Systems
	1.9 Limitations of Database
	Summary

	Chapter 2 Data Models and Architecture of DBMS
	2.1 Evolution of Data Models
	2.2 Hierarchical Data Model
	2.3 Network Data Model
	2.4 Relational Data Model
	2.5 Object-oriented Data Model
	2.6 Object-relational Data Model
	2.7 Three Level Architecture of Database
	2.8 Database Languages
	2.9 Data and Structural Independence
	Summary

	Chapter 3 Relational Database Management System
	3.1 Introduction
	3.2 RDBMS Terminology
	3.3 Various Types of Keys
	3.4 Integrity Rules
	3.5 Relational Set Operators
	3.6 Retrieval Operators
	3.7 CODD’s Twelve Rules of Relational Database
	Database Life Cycle
	Data Dictionary
	Summary

	Chapter 4 Developing Entity-Relationship Diagram
	4.1 Introduction
	4.2 Identifying Entities
	4.3 Identifying Relationships
	4.4 Types of Relationships
	4.5 Relationship Participation
	4.6 Strong and Weak Relationship
	4.7 Managing Many-to-many Relationship
	4.8 Example of E-R Model
	4.9 Extended E-R Model
	4.10 Converting E-R Model into Relational Model
	4.11 Object Modelling
	4.11.1 Subclass and Superclass
	4.11.2 Specialization and Generalization
	4.11.3 Class Diagram

	Summary

	Chapter 5 Normalization
	5.1 Introduction
	5.2 Need for Normalization
	5.3 Types of Dependencies
	5.4 First Normal Form
	5.5 Second Normal Form
	5.6 Third Normal Form
	5.7 Boyce-Codd Normal Form
	5.8 Multi-valued Dependency
	5.9 Join Dependency
	5.10 Lossless and Lossy Decompositions
	5.11 Normalizing Tables
	5.12 Examples
	Summary

	Chapter 6 Managing Data Using Structured Query Language (SQL)
	6.1 Introduction
	6.2 Data Definition Commands
	6.3 Data Manipulation Commands
	6.4 SELECT Statement and Its Clauses
	6.5 Aggregate Functions
	6.6 Date and Time Functions
	6.7 String Functions
	6.8 Conversion Functions
	6.9 Mathematical Functions
	6.10 Special Operators
	6.11 Types of Constraints
	6.12 Types of Join and Set Operators
	6.13 Sub-query
	6.14 Advances SQL Roll-up, Cube, Crosstab
	Summary

	Chapter 7 Introduction to PL/SQL
	7.1 Introduction
	7.2 Block of PL/SQL in Oracle
	7.3 Cursors in Oracle
	7.4 Procedures in Oracle
	7.5 Functions in Oracle
	7.6 Triggers in Oracle
	7.7 Overview of Packages in Oracle
	Summary

	Chapter 8 Transaction Management in Database
	8.1 Introduction
	8.2 Definition of Transaction
	8.3 Properties of Transaction
	8.4 States of Transaction
	8.5 Concurrency Control Using Locks
	8.6 Deadlocks
	8.7 Database Backup and Recovery
	8.8 Security, Integrity and Authorization
	Summary

	Chapter 9 Centralized and Distributed Database Management System
	9.1 Introduction
	9.2 Types of Databases
	9.3 Centralized Database Management System vs. Distributed Database Management System
	9.4 DDBMS Components
	9.5 Distributed Processing
	9.6 DDBMS Advantages and Disadvantages
	Summary

	Chapter 10 Advancement in Databases
	10.1 Multidimensional Database
	10.2 Mobile Databases
	10.3 Multimedia Databases
	10.4 Data Warehousing and Data Mining
	10.5 Open Source Database
	10.6 Spatial Databases
	10.7 Moving Object Databases
	10.8 NoSQL Database
	Summary

	Chapter 11 Overview of MS-Access 2007
	11.1 MS-Access as an RDBMS
	11.2 Elements of MS-Access
	11.3 Creating Database and Tables
	11.4 Data Types of MS-Access
	11.5 Sorting and Filtering Records in MS-Access
	11.6 Creating Queries in MS-Access
	11.7 Creating Forms in MS-Access
	11.8 Creating Reports in MS-Access
	11.9 Creating Macros and Switchboard
	Summary

	Chapter 12 Overview of Oracle
	12.1 Oracle as an RDBMS
	12.2 Logging into Oracle
	12.3 Command Summary of Oracle Database 10g XE
	12.4 Database Administration
	12.4.1 Managing Users
	12.4.2 Managing Roles
	12.4.3 Managing Privileges

	Summary

	References and Bibliography
	Index

