
CONCEPTS OF

DATABASE
MANAGEMENT
SYSTEM __ _
______ SHEFALI NAIK

ALWAYS LEARN I NG PEARSON

Concepts of Database
Management System

Shefali Naik

FM_Final.indd 1 3/18/2014 5:02:47 PM

Dedicated to

My husband Trushit, daughter Jisha, and son Harsheev

FM_Final.indd 2 3/18/2014 5:02:47 PM

Copyright © 2014 Dorling Kindersley (India) Pvt. Ltd.

No part of this eBook may be used or reproduced in any manner whatsoever without the
publisher’s prior written consent.

This eBook may or may not include all assets that were part of the print version. The
publisher reserves the right to remove any material in this eBook at any time.

10 9 8 7 6 5 4 3 2 1

Head Office: 7th Floor, Knowledge Boulevard, A-8(A) Sector 62, Noida 201 309, India.
Registered Office: 11 Community Centre, Panchsheel Park, New Delhi 110 017, India.

ISBN: 9789332526280
e-ISBN: 9789332537231

Contents

Foreword vii
Preface ix
Acknowledgements xi
About the Author xiii

Chapter 1 Basics of Database 1
1.1 Introduction 1
1.2 Data and Information 1

1.2.1 Data 1
1.2.2 Information 2

1.3 Database 5
1.3.1 Components of Database System 6

1.4 Database Management 11
1.5 Database Management System 11
1.6 Need for a Database 12
1.7 File-based Data Management System 12
1.8 Characteristics, or Features, or Advantages

of Database Systems 14
1.9 Limitations of Database 15

 Summary 16

Chapter 2 Data Models and Architecture of DBMS 19
2.1 Evolution of Data Models 19
2.2 Hierarchical Data Model 21
2.3 Network Data Model 26
2.4 Relational Data Model 27
2.5 Object-oriented Data Model 30
2.6 Object-relational Data Model 32
2.7 Three Level Architecture of Database 33
2.8 Database Languages 35
2.9 Data and Structural Independence 36

 Summary 36

Chapter 3 Relational Database Management System 41
3.1 Introduction 41
3.2 RDBMS Terminology 41
3.3 Various Types of Keys 44
3.4 Integrity Rules 48

FM_Final.indd 3 3/18/2014 5:02:47 PM

iv | Contents

3.5 Relational Set Operators 50
3.6 Retrieval Operators 52
3.7 CODD’s Twelve Rules of Relational Database 53
3.8 Database Life Cycle 54
3.9 Data Dictionary 54

 Summary 55

Chapter 4 Developing Entity-Relationship Diagram 59
 4.1 Introduction 59
 4.2 Identifying Entities 60
 4.3 Identifying Relationships 63
 4.4 Types of Relationships 63
 4.5 Relationship Participation 66
 4.6 Strong and Weak Relationship 68
 4.7 Managing Many-to-many Relationship 68
 4.8 Example of E-R Model 68
 4.9 Extended E-R Model 72
4.10 Converting E-R Model into Relational Model 73
4.11 Object Modelling 75

4.11.1 Subclass and Superclass 75
4.11.2 Specialization and Generalization 76
4.11.3 Class Diagram 76

 Summary 76

Chapter 5 Normalization 82
 5.1 Introduction 82
 5.2 Need for Normalization 82
 5.3 Types of Dependencies 83
 5.4 First Normal Form 88
 5.5 Second Normal Form 88
 5.6 Third Normal Form 94
 5.7 Boyce-Codd Normal Form 96
 5.8 Multi-valued Dependency 98
 5.9 Join Dependency 100
5.10 Lossless and Lossy Decompositions 101
5.11 Normalizing Tables 102
5.12 Examples 103

 Summary 108

Chapter 6 Managing Data Using Structured Query Language (SQL) 111
 6.1 Introduction 111
 6.2 Data Definition Commands 112
 6.3 Data Manipulation Commands 114
 6.4 SELECT Statement and Its Clauses 115

FM_Final.indd 4 3/18/2014 5:02:47 PM

Contents | v

 6.5 Aggregate Functions 118
 6.6 Date and Time Functions 119
 6.7 String Functions 121
 6.8 Conversion Functions 122
 6.9 Mathematical Functions 122
6.10 Special Operators 123
6.11 Types of Constraints 125
6.12 Types of Join and Set Operators 127
6.13 Sub-query 128
6.14 Advances SQL Roll-up, Cube, Crosstab 129

 Summary 132

Chapter 7 Introduction to PL/SQL 138
7.1 Introduction 138
7.2 Block of PL/SQL in Oracle 138
7.3 Cursors in Oracle 139
7.4 Procedures in Oracle 142
7.5 Functions in Oracle 143
7.6 Triggers in Oracle 144
7.7 Overview of Packages in Oracle 145

 Summary 146

Chapter 8 Transaction Management in Database 148
8.1 Introduction 148
8.2 Definition of Transaction 148
8.3 Properties of Transaction 152
8.4 States of Transaction 155
8.5 Concurrency Control Using Locks 155
8.6 Deadlocks 158
8.7 Database Backup and Recovery 159
8.8 Security, Integrity and Authorization 161

 Summary 161

Chapter 9 Centralized and Distributed Database
Management System 165

9.1 Introduction 165
9.2 Types of Databases 165
9.3 Centralized Database Management System
 vs. Distributed Database Management System 166
9.4 DDBMS Components 169
9.5 Distributed Processing 169
9.6 DDBMS Advantages and Disadvantages 170

 Summary 170

FM_Final.indd 5 3/18/2014 5:02:47 PM

vi | Contents

Chapter 10 Advancement in Databases 172
10.1 Multidimensional Database 172
10.2 Mobile Databases 172
10.3 Multimedia Databases 174
10.4 Data Warehousing and Data Mining 174
10.5 Open Source Database 175
10.6 Spatial Databases 175
10.7 Moving Object Databases 176
10.8 NoSQL Database 176

 Summary 177

Chapter 11 Overview of MS-Access 2007 180
11.1 MS-Access as an RDBMS 180
11.2 Elements of MS-Access 180
11.3 Creating Database and Tables 181
11.4 Data Types of MS-Access 183
11.5 Sorting and Filtering Records in MS-Access 187
11.6 Creating Queries in MS-Access 188
11.7 Creating Forms in MS-Access 196
11.8 Creating Reports in MS-Access 201
11.9 Creating Macros and Switchboard 205

 Summary 211

Chapter 12 Overview of Oracle 221
12.1 Oracle as an RDBMS 221
12.2 Logging into Oracle 221
12.3 Command Summary of Oracle Database 10g XE 222
12.4 Database Administration 228

12.4.1 Managing Users 228
12.4.2 Managing Roles 229
12.4.3 Managing Privileges 231

 Summary 233

References and Bibliography 235
Index 243

FM_Final.indd 6 3/18/2014 5:02:47 PM

Foreword

Database Management System is one of the most important subjects of the computer and IT
field. It is used in almost all the applications like management information systems, expert
systems, business information systems, mobile applications, and many more. Over the years, the
world has witnessed many inventions in database technologies. The most important invention
is relational database management system. Application developers, in the IT industry, are using
relational model-based databases for more than thirty years.

Students of IT, computer science and applications, are required to learn databases in one or more
courses. Databases are used to store and retrieve data. There are certain rules used to manage data
within a database. Database provides many features related to data, such as sharing and integration
of data, consistent transaction execution, security and recovery of data through authorization and
algorithms. The relational models use a common language, named as Structured Query Language
(SQL) to process data. With the rise of the Internet and mobile technologies, databases are also
evolving. To store huge amount of data which are spreading worldwide on the Internet and mobile
devices, relational database management systems are not enough. Special types of databases, such
as NoSQL (Not only SQL) are required for managing such data. Apart from NoSQL databases, the
databases which are able to store information related to moving objects, multimedia data, historical
data from multiple dimensions, spatial data, etc., are also needed. Automation of processes also
require maintenance of the existing applications and analysis of historical data. Analysis of histori-
cal data helps in improving business functions by taking important decisions.

In this book, the concepts of databases has been clearly explained giving examples in a lucid
language. All chapters are well-organized and comprehensively covering the syllabus of the
course on Database Management Systems. At the end of each chapter, summary is given to
quickly recap the concepts. The exercises include theory questions, multiple-choice questions,
and questions for student’s practice. The overview of emerging trends in databases is thoroughly
explained. This book addresses the need of B.Tech, M.C.A., and IT programme students, faculty
members, and professional developers. I am sure that they will be benefited from this book.

Shefali Naik, the author of this book, is working as senior faculty member, since past thirteen
years, at the School of Computer Studies of the Ahmedabad University. She teaches courses
on database management systems at graduate and post-graduate levels. To her credit, she has
written a good number of articles and technical papers in the area of databases. I wish her good
luck for authoring this book and her academic career.

—Bipin V. Mehta
Director

School of Computer Studies,
Ahmedabad University

FM_Final.indd 7 3/18/2014 5:02:47 PM

Preface

This is the first edition of this book. I have tried to cover all the concepts of database manage-
ment system. This book is useful for the students of computer science, IT, and the courses in
which database is offered as an interdisciplinary subject.

The readers who are new to this subject, can start this book reading from the first chapter.
Those who are already familiar with databases, can read any chapter to know more about it.
Readers, who are willing to learn about any Relational Database Management System, may read
Chapters 11 and 12 which gives brief details on MS-Access and Oracle RDBMS, respectively.
Readers, who are interested in advancement in database, may read Chapters 8, 9 and 10 which
describe advanced topics in database, such as Transactions, Distributed Database, and emerging
trends in Database. Those who wish to learn programming language used in database, may read
Chapters 6 and 7 in which SQL and PL/SQL is discussed.

The details covered in each chapter of this book are as follows:

 ● Chapter 1 gives an overview of database by explaining the basic concepts of database,
such as data, information; database management system’s advantages on other record-
keeping system and limitations, its components, etc.

 ● Chapter 2 describes the evolution of database management system from different sys-
tems, such as hierarchical model and network model. It also describes the architecture of
DBMS.

 ● Chapter 3 explains Relational Database Management System.
 ● Chapter 4 explains Entity-Relationship Model, and Chapter 5 describes Normalization
Process.

 ● Chapters 6 and 7 explains the common languages SQL and PL/SQL, which is used in
relational database systems to create and manage database objects; add, remove, change
and retrieve data to/from tables and write small programs.

 ● In Chapter 8, Transaction is discussed; Chapter 9 explains Centralized and Distributed
database, and Chapter 10 describes advancement in databases.

 ● Chapters 11 and 12 cover two well-known relational database management systems MS-
Access and Oracle.

Any suggestions to improve the content of the book are welcome.

—Shefali Naik

FM_Final.indd 9 3/18/2014 5:02:47 PM

Acknowledgements

I am indebted to many people who were directly or indirectly involved with the creation of
this book.

I would like to thank Bipin V. Mehta, Director at the School of Computer Studies of the
Ahmedabad University, for his inspiration and contribution with the Foreword of this book.
I am grateful to my colleague and friend, Pratik Thanawala, for his technical suggestions
which helped me to improve the contents of this book. I am thankful to my friends from other
universities, Sonal Jain, Shivani Trivedi and Tripti Dodiya, for their guidance.

I would like to acknowledge the assistance provided by the editorial team of Pearson
Education, Noida; especially, Neha Goomer and Nikhil Rakshit, for their continuous assistance
in solving various queries related to the publishing of this book. I am also thankful to Uma
Tamang and Naresh Sharma. A big thanks to Pearson Education for publishing this book.

I thank my parents, Girish and Bharati Naik, and children, Jisha and Harsheev along with
rest of the family, for their love and patience. Finally, I owe it to my husband Trushit, for his
constant support and encouragement.

—Shefali Naik

FM_Final.indd 11 3/18/2014 5:02:47 PM

About the Author

Mrs Shefali Naik, the author of this book, is working as a senior faculty member for past 13 years
at School of Computer Studies, Ahmedabad University, Ahmedabad. She teaches subjects related
to Databases, Programming, Systems Analysis and Design, and Software Project Management
at undergraduate and post-graduate levels. She has obtained her Master’s degree in Computer
Applications (M.C.A.) and Bachelor’s degree in science with mathematics as a special subject
(B.Sc., Mathematics) from Ahmedabad, Gujarat.

The author has written few technical papers and articles in the area of databases.
Presently, she is pursuing her Ph.D. from S.P. University, Vallabh Vidyanagar, Anand, Gujarat,

in the subject of Distributed Databases.

FM_Final.indd 13 3/18/2014 5:02:48 PM

CHAPTER

1.1 | IntroductIon
In the current era, people of all ages use database in one way or the other. Everyone uses
database in different ways. For example, school children use database of e-mail programs and
mobile phones, youngsters use online movie and railway ticket booking database to book tick-
ets, housewives use database of books to order books online or access various community site’s
database, businessmen use database of airlines to book their trips, academicians use online
journals database to do research work and many more. Nowadays, computers are used every-
where. We may reform the proverb ‘Where there is a will, there is a way!’ as ‘Where there
is a computer, there is a database.’ Computerized Databases have made our life very easy and
comfortable. We can search any place, product, area, thing, etc., with the help of stored data in
a fraction of a second. Stored data processed with the help of database management systems
extracts the desired information, every time. Let us understand the database in some more detail.

1.2 | data and InformatIon

1.2.1 | data

Data is a plural of word ‘datum’. In our daily life, we use the word data to describe facts about
any person, event, place or thing. Data are raw facts which may be numbers, values, names,

1

Basics of Database

•	 Understanding the meaning of data and information.
•	 Knowing how database and database management systems are useful in organizations to keep

records.
•	 Examples of database management system.
•	 Components of database system.
•	 Characteristics of data and DBMS.
•	 Differences between file-based management systems.
•	 Limitations of DBMS.

chapter objectIves

CH_1_Basics of Database_Final.indd 1 2/26/2014 3:36:03 PM

2 | Chapter 1

dates, etc. When we combine related data, they describe any real-world entity. Related data
means data which belong to the same entity (person, place, event or thing). For example, If
we consider the entity ‘Doctor’ (person type of entity), then doctor’s name, doctor’s address,
doctor’s birth date, doctor’s qualification, doctor’s specialization, etc., are data related to
doctor. We cannot say that supplier’s name and doctor’s qualification are related data;
because both describe two different entities named supplier and doctor. Thus, when we want
to describe any real-world entity, we use data values. Data values alone do not have any
meaning because they are not processed yet.

1.2.2 | Information

When we process related data it gives some information. Information is useful to take deci-
sions, it can be stored for future use, it has some meaning. To obtain information, we need data.
For example, when we process students’ attendance data, we can get a list of students with low
attendance, students who are attending lectures regularly, students who come to college to at-
tend particular lectures, pattern of class bunking for each student, etc.

On the basis of this information, the college may decide the attendance policy, reschedule
the time-table to improve attendance, decide whether to inform parents or not, determine which
students should be allowed to sit for an examination, etc. This information could also be stored
for future use. In case, when students need a transcript, this information can be used to fill up
lecture-wise attendance details of each student or to generate attendance certificates which may
be required along with migration certificates when students change universities.

Data can be stored manually or electronically. Similarly, stored data may be processed manu-
ally or electronically. Table 1.1 shows some examples of data and information.

We can show the relationship between data and information as given in Figure 1.1.
Figure 1.2 shows an example of data and information.
Table 1.1 shows some examples of data, processes which should be applied on stored data

and information which could be obtained after processing certain data.
Table 1.2 shows a student’s examination result data which can be processed as per the follow-

ing condition to obtain grade-wise Result analysis.

table 1.1 | Examples of Data and Information

data process description Information

Census data Sort records based on area and count
total no. of persons gender-wise and
age group-wise

Area-wise male and female
ratio for different age groups

Board Exam Data Count subject-wise, no. of students
who passed or failed in an exam

Subject-wise total no. of passed
or failed students

Climate Data Maximum temperature and minimum
temperature during the year

Hottest and coldest day of the
year

CH_1_Basics of Database_Final.indd 2 2/26/2014 3:36:03 PM

Basics of Database | 3

 If percentage < 40 then, Grade = ‘F’
If percentage ≥ 40 and < 50 then, Grade = ‘D’

 If percentage ≥ 50 and < 60 then, Grade = ‘C’
 If percentage ≥ 60 and < 70 then, Grade = ‘B’
 If percentage ≥ 70 then, Grade = ‘A’

The following sample information may be obtained after processing the data given in Table 1.2:

Class-wise Result Analysis

table 1.2 | Students’ Examination Result Data

std no. class code std name percentage Gender

1 FY Mitali Gupta 89 Female

2 FY Nirav Valera 91 Male

3 FY Jainam Vora 79 Male

4 FY Rajani Vyas 57 Female

5 FY Nidhi Jain 64 Female

1 SY Kartik Bhatt 82 Male

2 SY Kanika Yadav 84 Female

3 SY Karishma Yadav 70 Female

4 SY Siddharth Soni 39 Male

5 SY Akash Patel 69 Male

1 TY Paras Sanghvi 84 Male

2 TY Pankti Bindal 94 Female

3 TY Richa Singh 75 Female

4 TY Neel Shah 59 Male

5 TY Payal Shah 60 Female

Process
Data Information

fIGure 1.1 | Relationship between data and information.

Students’ Attendance Data

Percentage of lectures attended by student

Total no. of lectures attended × 100

Total no. of lectures conducted

Data

Process

Information

fIGure 1.2 | Example of data and information.

CH_1_Basics of Database_Final.indd 3 2/26/2014 3:36:04 PM

4 | Chapter 1

Class code: FY

No. of students who got ‘A’ Grade: 3
No. of students who got ‘B’ Grade: 1
No. of students who got ‘C’ Grade: 1
No. of students who got ‘D’ Grade: 0
No. of students who got ‘F’ Grade: 0

Class code: SY

No. of students who got ‘A’ Grade: 3
No. of students who got ‘B’ Grade: 1
No. of students who got ‘C’ Grade: 0
No. of students who got ‘D’ Grade: 0
No. of students who got ‘F’ Grade: 1

Class code: TY

No. of students who got ‘A’ Grade: 3
No. of students who got ‘B’ Grade: 1
No. of students who got ‘C’ Grade: 1
No. of students who got ‘D’ Grade: 0
No. of students who got ‘F’ Grade: 0

Overall total no. of students who passed in the exam:14

 Overall total no. of students who failed in the exam:1

The above information may be stored and processed further to represent the result analysis
graphically or pictorially using bar charts as represented in Figure 1.3. X-axis will contains
class code and grades, and Y-axis contains total number of students.

1 1 1 11 1

0 0 0 0 0 0

FY

3

2.5

1.5

0.5

0

1

2

SY TY

333

A
B

C

D
E

fIGure 1.3 | Bar chart represents class-wise grade-wise total number of students.

CH_1_Basics of Database_Final.indd 4 2/26/2014 3:36:04 PM

Basics of Database | 5

1.3 | database
As the name suggests, database is a collection of data, i.e., database is a storage area where we
can store all related data and process them. To understand the concept of database, let us take
some real-time examples of database (storage). One logical database which we carry with us
all the time is our brain. The brain stores all thoughts, ideas and things which we learn, view,
etc. and it relates them. We can retrieve, change or remove these stored ideas and thoughts any
time. The example of real-time physical database is a grain warehouse. When it is the season
for some grain/pulses, we store them and use them later as per the process requirements. When
we process the grains/pulses we obtain the information in the form of fl oor, sprouts, etc., which
could be used in further processing to cook food. The pulses/grains which we fi nd useless could
be removed from the warehouse and could be replaced (updated) with fresh stock. In real-life,
we use the concepts of data, information and database everywhere.

Figure 1.4 shows an example of real-life database of children’s’ schoolbag. It is a stationery
database which contains entities such as notebook, textbook, compass box, geometry case, etc.
Entity Notebook has distinguished notebooks of various subjects; Entity Textbook has distin-
guished textbooks of various subjects; Entity Compass box has pencils, erasers, sharpeners,
ruler, etc., and Entity Geometry box has common mathematical tools.

A database is like an electronic storage, which contains computerized data fi les (entities).
It can contain one or many data
fi les. Data fi les contain various
related data within it. Database
should contain accurate, con-
sistent and non-redundant data
which could be shared by differ-
ent application programs. Data
can be related by defi ning rela-
tionships between proper data.
Also, conditions (constraints)
may be applied on data. Different
users may access different data
sets from the same database by
writing application program. We
may put security and authentica-
tion procedures to provide autho-
rised access of data. There may be
more than one database within a
database management system. All
related entities are kept together
in the same database. Data within database can be retrieved, updated or deleted directly by
database administrator or by authorized users or application programs written by users. To
describe data, other details are stored along with the data such as data type, size, constraints,
description, format, etc. Using this information, the database management software generates
data dictionary which contains ‘data about data’ or ‘metadata’.

Schoolbag: A database
of stationery items

Notebook: An entity
within a database

Geometry box: An
entity within a database

Compass box: An
entity within a database

Textbook: An
entity within a
database

Geometry box: An

fIGure 1.4 | Real-life example of a database.

CH_1_Basics of Database_Final.indd 5 2/26/2014 3:36:04 PM

6 | Chapter 1

Database contains data stored in computer. To process the stored data, we need application
programs. The processed data could be again stored into database for future use. The data, on
which we can do some processing, is known as operational data. Any organization contains
operational data. Table 1.3 contains some examples of organizations and operational data of a
particular organization.

A database stores data of various entities. These entities can be related using relationships.
Data also contains description, which is known as metadata. Along with the data, one can keep
constraints on its data types.

A cylindrical shape, as shown in Figure 1.5, is used to represent physical database. Physical
database is useful for the computer (i.e., how a machine sees data), while logical database is
useful for the user (i.e., how a human being sees data). It is a database of a university, which
contains various related entities, such as course, college, student, class, attendance, exam, etc.
There are many colleges in a university; each college contains many students in different courses
and classes. Students attend lectures, appear in exams and get results.

The ‘University’ database contains interrelated data which could be shared by different ap-
plication programs to obtain meaningful information.

1.3.1 | components of database system

Figure 1.6 shows components of any conventional database system.

 1. User: User is any person who uses a database or any other object of the database. User
may be of different types and at different levels in an organization. Say for example, the
‘University’ database may be useful for different persons who are directly or indirectly as-
sociated with the university. Following are some categories of users who may use database.

fIGure 1.5 | Example of ‘University’ database.

College

Attendance Class

Exam

Student

Course

table 1.3 | List of Some Organizations and Related Operational Data

organization operational data

Public Library Member data, Books data, Publisher data, etc.

Restaurant Customer data, Employee data, Food Items data, etc.

Super Mall Product data, Customer data, Supplier data, etc.

University Student data, Faculty data, Exam data, etc.

Hospital Patient data, Doctor data, etc.

CH_1_Basics of Database_Final.indd 6 2/26/2014 3:36:05 PM

Basics of Database | 7

 a. Naive User, or End-user, or Layman: The clerk of the university uses the ‘university’
database to enter the data of applicants who have applied for various courses and the
same data are retrieved to generate a merit list. The clerk does not know anything about
the technical features of the database or the language, using which data is entered or
retrieved. He is completely unaware about the technology. Therefore, he/she is known as
an end-user or Layman or Naive user. Table 1.4 shows some examples of databases and
end-users of that database.

 b. Software Programmer, or Application Programmer, or Application Developer: A soft-
ware programmer is a person who writes application programs or logic in some specific
language to insert, delete, update or fetch data to/from database. An application program-
mer has brief knowledge about database and Query Language which is used for writing
programs. Query Language is a generalized language which is available with all data-
bases. A programmer may or may not have deep understanding about database concepts,
but he/she is able to operate on data stored in the database.

table 1.4 | Examples of End-users

database end-user
Online University Database Applicants, Parents, University Staff, etc.
Hotel database Customer, hotel Employees, etc.
Online Railway Reservation
Database

Citizens of the country, Agents, Railway
officials, etc.

fIGure 1.6 | Components of database system.

Datafile 1 Datafile 2

Data 1

Data 1

Data 2

Data 2

Data 2

D
a
t
a
f
i
l
e
1

D
a
t
a
f
i
l
e
2

 Data2

D
a
t
a
2

D
a
t
a
f
i
l
e
2

D
a
t
a
1

D
a
t
a
2

D
a
t
a
1

User(Software
programmer)
writes programs
to view data

User(DBA) writes
validation programs
and manages
security on

Hardware on which
database is stored

Programs

programs
programs

Programs
programs
programs

Programs

Programs

Datafile 2

CH_1_Basics of Database_Final.indd 7 2/26/2014 3:36:05 PM

8 | Chapter 1

 c. Database Designer: A database designer decides about entities (data files) which should
be stored within database, constraints to be applied on data, data types, format and
other specifications regarding data. The database designer is responsible for designing
of data files.

 d. Database Administrator: A database administrator (DBA) is the person who is the over-
all in-charge of a database. He/she assigns authorization to users, writes validation proce-
dures, decides backup and recovery policies, and manages users and privileges. In short,
DBA keeps control on database.

 2. Hardware: Hardware is a permanent storage where the database is stored. It may be a
hard-disc, or any other secondary memory. One single database may be stored on more
than one storage devices depending on the volume of data stored within the database. For
security purpose, a copy of database could be kept on some other storage device. Besides
storage device, other hardware, such as computer, peripherals, etc., are also required to
perform database-oriented operations.

 3. Software (data dictionary management, database schema management, SQL):
Software are programs or applications which are used to access data from database.
These applications reside in DBMS or there may be some applications which could be
interfaced with DBMS to manage data. For example, programming languages are used
to display data on monitor. There are some software programs, which are part of DBMS,
that manage data dictionary or metadata, define schema for the database objects, and are
used to write query on database. The common language available with all the databases
is known as Structured Query Language; if which is popularly known as SQL and
sometimes pronounced as ‘Sequel’.

 4. Data: Data is the most important component of a database system. Data is discussed in
detail in Section 1.1. When data is stored in database, it should be stored along with its
definition, data type and size, constraints, such as duplicate values are allowed or not,
possible range of values, formula if it is derived from some other data, etc., display format,
format in which it should be entered, validation rules, etc. Some examples of data
files/entities (tables) and data stored within the entity are given in Tables 1.5, 1.6 and 1.7.
These data files are inter-related data files which are part of the playschool’s database.

table 1.5 | Example of Data within Data File ‘Kindergarten’

data name data type (size) constraint Input format display format

data file name: Kindergarten

KG id Integer Unique number which
Should be generated
automatically.

— —

KG name Character(30) Must be entered. Should be entered
in upper case.

Should be dis-
played in title
case.

Address Character(100) — — —
No. of branches Integer ≥0 — —
Contact no. Integer — — —

Contact person Character (20) — — —

CH_1_Basics of Database_Final.indd 8 2/26/2014 3:36:05 PM

Basics of Database | 9

table 1.6 | Example of Data within Data File ‘Class’

data name data type (size) constraint Input format display format

data file name: class

Class code Character (3) Must be entered Should be entered
in upper case.

Should be displayed
in upper case.

Class desc. Character (30) — — —

Class capacity Integer >0 and ≤30 — —

No. of divisions Integer >0 and ≤4 — —

Age criteria Float ≥2 — —

table 1.7 | Example of Data within Data File ‘Class’

data name data type (size) constraint Input format display format

data file name: Kindergarten detail

Class code Character(3) Must be entered Should be entered
in upper case.

Should be displayed
in upper case.

KG id Integer Must be entered — —

Division Character(1) Upper case — —

No. of students Integer >0 and ≤30 — —

table 1.8 | Example of Data Values within Data File ‘Kindergarten’

KG Id KG name address no. of branches contact no. contact person

data file name: Kindergarten

1 Innocent
Flower

Naranpura,
Ahmedabad

1 27417411 Mr S. T. Pandya

2 Smart Kids Navrangpura,
Ahmedabad

3 27477471 Ms K. P. Verma

3 Kids Zone Satellite,
Ahmedabad

4 26306301 Mr A. R. Nair

4 Teacher’s Pet Naranpura,
Ahmedabad

2 27567561 Mr T. R. Khanna

5 Little Star Ambawadi,
Ahmedabad

1 26466461 Ms N. J. Gupta

When data are entered into tables, Kindergarten, Class and Kindergarten Details (Tables 1.5,
1.6 and 1.7 respectively); the correctness of data are checked. Invalid data cannot be entered
into data files.

Tables 1.8, 1.9 and 1.10 contain some valid data values for the tables Kindergarten, Class and
Kindergarten Details, respectively.

CH_1_Basics of Database_Final.indd 9 2/26/2014 3:36:05 PM

10 | Chapter 1

table 1.9 | Example of Data Values within Data File ‘Class’

The data in a database must have the following characteristics:

 ● Same data should be shared between different applications. For example, if there are two
departments , namely ‘accounts’ and ‘examination’, in a university, then data related to
student should be shared by these two departments. There should be no need to create a
copy of the same data.

 ● When data are shared, there is a question of integration. Integration means, changes in
one data file should also be reflected in the related data file. For example, if a clerk in the
accounts department deletes a record of any student, then it should also be deleted from
‘member data file’ used by the ‘library’ department of that university.

 ● When data are properly integrated, there are minimum chances of inconsistent data.
Data will be consistent if they are integrated properly.

 ● Data should be non-redundant: If possible to avoid duplication of data in different files,
data should be stored in one file, and whenever required, it should be referenced from the
original file. It is not possible to remove redundancy at all, but we should try to avoid redun-
dancy. Redundant data causes inconsistency within a database. For example, if a student’s
address is stored in the ‘enrolment’ file as well as in the ‘alumni’ file, then ‘address’ entry
for the same student would be redundant. Now, when the student’s address is changed,
the clerk changes the ‘address value’ in the ‘student’ file. He forgets to change address in

class code KG Id division no. of students class code KG Id division no. of students

data file name: Kindergarten detail data file name: Kindergarten detail

PG 1 1 15 JRKG 2 1 30
PG 1 2 13 JRKG 2 2 30

NUR 1 1 25 JRKG 2 3 30

NUR 1 2 25 JRKG 2 4 30

NUR 1 3 25 SRKG 2 1 30

NUR 1 4 25 SRKG 2 2 30

JRKG 1 1 30 PG 3 1 14

JRKG 1 2 30 PG 3 2 14

JRKG 1 3 30 NUR 3 1 20

JRKG 1 4 30 NUR 3 2 20

SRKG 1 1 30 NUR 3 3 20

SRKG 1 2 30 NUR 3 4 20

PG 2 1 15 JRKG 3 1 30

PG 2 2 10 JRKG 3 2 30

NUR 2 1 25 JRKG 3 3 30

NUR 2 2 25 JRKG 3 4 30

NUR 2 3 25 SRKG 3 1 20

NUR 2 4 25 SRKG 3 2 20

CH_1_Basics of Database_Final.indd 10 2/26/2014 3:36:05 PM

Basics of Database | 11

table 1.10 | Example of Data Values within Data File ‘Class’

class code class describe class capacity no. of divisions age criteria

data file name: class

PG Play Group 20 2 2

NUR Nursery 25 4 2.5

JRK Junior KG 30 4 3.5

SRK Senior KG 30 4 4.5

the ‘alumni’ file. So, now database will show different addresses for the same table which
is conflicting. This is called ‘data inconsistency’, which occurs due to redundant data.

 ● Data should represent complete details. For example, only customer’s first name entered
in the name field represents incomplete detail. It should contain at least first name of the
customer along with the surname.

1.4 | database manaGement
The process of managing data within database is called database management. To manage
database, a database management software/system is required. Database management includes
the following activities:

 ● Writing schema for creating new data files, updating structure of existing data file, delet-
ing a data file.

 ● Setting relationship among data files.
 ● Inserting, deleting and updating data values within data files.
 ● Maintaining data dictionary.
 ● Creating, updating and deleting database objects other than data files, such as views,
synonyms, procedures, functions, triggers, indexes, etc.

1.5 | database manaGement system
Database management system is a collection of application programs which is used to man-
age database objects. Database Management System is a generalised software which is used to
manage database and database objects, such as tables, users, procedures, functions, etc., and
to connect database with any front-end (language) with the help of some hardware. Many types
of database management systems are available in the market nowadays. One can purchase
license of any database from its vendor and start using it. Also, there are some open source
database management systems for which there is no license required to use it. It is available
on the Internet. One can download it and use it. The source code is also available for free which
could be modified by any user and redistributed. MySQL is one of the most popular open source
database management system. Table 1.11 contains some examples of database management
system and the vendor company who provides it.

CH_1_Basics of Database_Final.indd 11 2/26/2014 3:36:05 PM

12 | Chapter 1

1.6 | need for a database
Following are some reasons for the need of a database:

 ● Database is required for efficient and easy storage, retrieval, updation and deletion of data
records.

 ● Interrelated data should be grouped in one named storage area for easy access. This storage
area may be physical or logical which resides in computer.

 ● For avoiding unnecessary repetition of data values, checking correctness of data by applying
some validation rule, and searching the required information faster thus saving time and ef-
fort, etc.

 ● Database is required for flexibility, i.e., as and when required we can connect the database
with different front-ends.

 ● Once a database is created, it can be shared by many users. Hence, to share data with many
applications a database is required.

 ● Database is needed for storing high volume and complex data, such as documents files, pho-
tographs or images, multimedia data, mobile user’s data, audio and video files.

 ● For managing multi-dimensional data.
 ● Database is required for proper transaction management or transaction handling.

1.7 | fIle-based data manaGement system
File-based data management system is used by programmers to manage data. Languages, such as
C or COBOL contain file management system within it. Figure 1.7 shows a file-based system for
any ‘Playgroup’ in which different data files are used to manage admissions in (a) Nursery, (b)
Junior KG and (c) Senior KG—for which different application programs should be written to
handle different procedures. In file-based systems, data are managed using data files and these
files are created and manipulated by writing application programs. Each application program
contains its own data files.

File-based management system has the following disadvantages:

 ● File-based management system is not appropriate when volume of data is very high.
For example, it will be difficult to handle when daily transactions are in thousands
or more numbers.

 ● When number of data files increase, it becomes very complicated to manage data files,
i.e., if number of data files increase, number of application programs are also increased;
because to insert, update, delete or view data to/from data files, an independent applica-
tion program is to be written.

 table 1.11 | Examples of DBMS and Its Vendors

database management system vendor (supplier)

Oracle Oracle
SQL Server Microsoft
Access Microsoft
DB2 IBM

CH_1_Basics of Database_Final.indd 12 2/26/2014 3:36:05 PM

Basics of Database | 13

 ● Complex data structures, such as pointers, cannot be handled easily by a file-based
system.

 ● When the same data file is required by different programs at the same time, data sharing
is not possible. To use same files at the same time, copy of that data file must be created
and used. When these are two or more copies of same data file, it may result in inconsis-
tent and redundant data, because changes made in one file may not be carried out in the
other files.

 ● In a file-based system, the programs should only be written in a structured manner.
 ● It is not possible to set relationships between data files. Programs should be written to
relate them.

 ● Security settings cannot be applied on data files.
 ● Set of data files created in a specific file-based system cannot be used with other file-
based systems as storage formats of different file-based systems vary.

Database system is required to overcome the limitations of file-based management system. The
traditional database system contains data files which could be used to store data. The examples
of simple database management system are dBASE and FoxPro. These DBMS contains CUI
(Character-based User Interface) which provides faster access of data using commands. There
is no need to create data files manually. In simple DBMS, data files with data field names and its
data type can be created. However, a simple DBMS does not provide the facility to define keys.

Student
datafile

Applicant
datafile

Enrolment
 process

 Class
datafile

Attendance
datafile

Class
datafile

Student
 datafile

Attendance
 process

 Result
process

Result
datafile

Exam
datafile

Student
datafile

Class
datafile

fIGure 1.7 | File-based management system to manage data of ‘Playgroup’.

CH_1_Basics of Database_Final.indd 13 2/26/2014 3:36:06 PM

14 | Chapter 1

As keys cannot be defined, it is not possible to define relationship between data files either. If
user wants to relate data files, then he/she has to write programs to relate two or more file. An
example of such a program is given below in Figure 1.8.

But the advantage of simple DBMS, over file-based system, is that we can share data files be-
tween applications. Simple commands can be used to search, insert, update, delete and view data.

1.8 | characterIstIcs, or features, or advantaGes
of database systems

 ● It provides facility to use same data file with different applications, i.e., data can be shared.
As shown in Figure 1.8, ‘Employee’ data file can be used by ‘Accounts’ department to
generate salary slip and by ‘Human-Resource’ department to evaluate the performance
of the employee.

 ● Duplication of data can be minimized. There is no need to enter same data again and
again as data can be shared between different applications.

 ● Proper transaction management is provided by DBMS. When data are shared between
applications, there is a problem of updation when two users try to change same data at
the same time. Data can be changed by only one user at a time. DBMS itself decides the
priority to allow only one user to change the data at a time. The priority is decided by the
DBMS software on the basis of some algorithms. In this way, DBMS handles transac-
tions more efficiently than the file-based management system.

 ● There is no need to write long programs to manage data. It can be done by writing a
simple single line command using structured query language, which is the generalized
language provided with DBMS software.

 ● It is easy to maintain data file structures in DBMS using structured query language.
 ● Data can be integrated easily, i.e., change in one data is reflected automatically in the
related data file’s data. For example, if we delete any record from ‘Customer’ table, the
related child records from ‘Purchase Order’ data file will be deleted.

 ● Data inconsistency can be avoided. As data are integrated, user is not bothered about up-
dation of same data in different data files. It is handled by the database software. In this
way, data will be consistent.

 ● User management becomes easier. There may be many users of the same database who
may access the database from local or remote machines. By providing user rights and
authorization checks, the DBMS can control and restrict users.

Accounts
department

Human-resource
department

Employee

data file

fIGure 1.8 | Example of data file of DBMS which is shared by various departments in an
Organization.

CH_1_Basics of Database_Final.indd 14 2/26/2014 3:36:06 PM

Basics of Database | 15

table 1.12 | File-based Management System vs. Database Management System

file-based management system database management system

Needs individual application program to per-
form any operation on data file.

Any operation on data file is done using
single-line commands.

Programming is done using 3GL (Third Genera-
tion Languages, such as COBOL, C, PASCAL).

Programming is done using 4GL (Fourth
Generation Languages such, as SQL-
Structured Query Language).

Transaction management is very difficult. Transaction management is easy.

Same data file cannot be used simultaneously. Same data file can be used simultaneously.

Security features cannot be enforced. Security features can be enforced.

Backup and recovery facility is not available. Backup and recovery facility is available.

Duplication of data cannot be minimized. Duplication of data can be minimized.

Examples: C, COBOL, PASCAL languages’ file
management system.

Example: dBASE, FoxPro, MS Access, Oracle.

 ● Validation rules can be applied on data before data is entered in the database. It will pre-
vent wrong data inputs.

 ● Change in data file structure becomes very easy.
 ● Security can be enforced on data by assigning privileges for different users.
 ● Appropriate backup procedure is available to avoid loss of data in any adverse circum-
stances, such as power failure, server failure, hardware crash. In case of failure, the data
can be recovered using recovery procedures.

 ● DBMS provides Import and Export facility using which data files can be imported from
one DBMS and exported to another.

Table 1.12 shows the difference between file-based management system and database manage-
ment system.

1.9 | lImItatIons of database
Nothing is 100% perfect. Advantages also bring along limitations with them. Database manage-
ment system also has some limitations. They can be described as:

 ● Cost of database management system is very high. As the number of users increase, we
need to pay more.

 ● To install database in a network, high-end hardware and skilled personnel to manage the
network and database is required.

 ● As data can be shared through DBMS, it is difficult to control and keep track of data ac-
cessed by users. Proper encryption and decryption techniques are required to secure data
over a network.

 ● Efficient employees are required to handle users and decide policies about data access,
which requires considerable and constant training.

CH_1_Basics of Database_Final.indd 15 2/26/2014 3:36:06 PM

16 | Chapter 1

 ● If data volume is very high, performance will be poor. Also, when too many users are
using database at the same time, it may generate traffic on network and slow down the
response time.

 ● It will be more complex when DBMS contains many databases within it. It may reduce
the speed of data access.

SUMMARY
 ● Data means raw facts. It may be any values, such as integer numbers, float numbers,
characters, dates, images, Boolean.

 ● Examples of integer type of data are roll numbers form number, order number; float type
of data are salary, balance amount, fees, product price; character type of data are person’s
name, address, qualification, product name; date type of data are birth date, admission
date; retirement date, order date; image type of data are person’s photo, image of property
location, image of property; Boolean type of data are customer status, payment status,
gender.

 ● Interrelated data represent any entity, i.e., data are characteristics of entity. For example,
student name, student birth date and student gender are data (characteristics) related to
student entity. An entity is a distinguishable object of real-world.

 ● Data related to an entity are kept together in a data file, i.e., data file is a collection of
related data.

 ● Data may be stored manually or electronically. When we apply any process on stored
data, it gives some valuable information. The process on data stored electronically can be
applied by writing application programs.

 ● The data on which we do some operation, is known as operational data. Operational
data belongs to any organization. For example, student’s data is an operational data for
the ‘University’ organization. By processing student’s data, we can generate information
like a student’s mark sheet, list of college-wise total number of students, etc.

 ● Database is a collection of data files or tables which contain data within it. Relationship
can be set to access data from different files.

 ● The process of managing data within database is called database management.
 ● Database system contains the components data, user, hardware and software.
 ● Using database we can share and integrate data between applications.
 ● Database management system is a collection of software programs through which
database can be managed.

 ● File-based management system requires manual creation of data files which are very dif-
ficult to handle. Within file-based management system, independent programs should be
written to do operations such as insert, delete, update and view data.

 ● Database management system provides structured query language to store and access data
from database. There is no need to write long programs to access data. Data redundancy
and data inconsistency problems can be avoided using database management system.

CH_1_Basics of Database_Final.indd 16 2/26/2014 3:36:06 PM

Basics of Database | 17

 ● Database management system provides automatic transaction management, backup and
recovery facility, export and import facility, user management and other functionalities.

 ● The limitations of database management systems are: they are complex, expensive,
requires knowledge to use them, data control is difficult, performance may suffer because
of high data volume, etc.

ExErcisEs

 1. Define Data and Information. Show relationship between these two.
 2. Give any two examples of data. Write any two types of information which could be ob-

tained by processing these data.
 3. Define the terms:
 a. Database
 b. Database management
 c. Database management system
 d. Operational data
 e. Metadata

 4. For any restaurant system, which data are operational data? Write two examples of infor-
mation related to that.

 5. Draw a diagram of components of database system and explain.
 6. List down different types of users of database system with their roles.
 7. Name any four DBMS along with their supplier company.
 8. What is an open source database? Give an example.
 9. Which are the characteristics or features of data in a database?
 10. Write a short note on file-based management system.
 11. Give an example of file-based management system. Mention the disadvantages of this

system.
 12. List down and explain advantages of database management system over file-based man-

agement system.
 13. What are the limitations of database management system?
 14. Discuss data redundancy and data inconsistency with relevant example.
 15. Write/Tick the correct answer.

 i. Data means:
 a. Unprocessed facts b. Processed facts
 c. Unprocessed information d. Processed information
 ii. The operational data related with ‘Hostel’ are:
 a. Mess data b. Customer data
 c. Patient data d. Doctor data
 iii. DBMS is an abbreviation of ______________.
 a. Database Management System b. Distributed Management System
 c. Data Management System d. Database Modification System

CH_1_Basics of Database_Final.indd 17 2/26/2014 3:36:06 PM

18 | Chapter 1

 iv. Database contains data files or tables.
 a. True b. False
 v. Data represents ______________ of an entity.
 a. Relationship b. Definition
 c. Type d. Characteristics
 vi. DBMS supports structured query language (SQL) which is _________.
 a. 1GL b. 2GL
 c. 3GL d. 4GL
 vii. The user who does not know working of a database is called _____________.
 a. End-user b. Database Designer
 c. DBA d. System Analyst

 viii. _____________ is responsible for overall control of database.
 a. Data Analyst b. Database Administrator
 c. Programmer d. End-user

 ix. Among the following, which one is not a component of database system?
 a. Hardware b. Data
 c. Software d. None

 x. Data redundancy causes ________________ data in database.
 a. Accurate b. Complete
 c. Meaningful d. Duplicate

CH_1_Basics of Database_Final.indd 18 2/26/2014 3:36:06 PM

CHAPTER
2

Data Models and Architecture
of DBMS

•	 Evolution	of	data	models.
•	 Knowing	the	traditional	data	models.
•	 Advantages	and	disadvantages	of	various	types	of	data	models.
•	 Three-level	architecture	of	database	management	system.
•	 Understanding	languages	used	to	define	objects,	manage	and	control	data	and	transaction.

Chapter ObjeCtives

2.1 | evOlutiOn Of Data MODels
	● Data	are	the	primary	requirement	of	any	application.	It	is	important	to	store	data	appropri-
ately	for	easy	access.	During	the	1940s	and	1950s,	use	of	computer	to	write	applications	
in	programming	language	for	automation	increased.	The	file-based	management	system	
was	not	sufficient	to	manage	data.	Hence,	evolution	of	data	models	took	place.	Figure 2.1	
shows	the	block	diagram	of	evolution	of	data	models	from	manual	record	keeping	system	
to	file-based	management	system,	and	from	file-based	management	system	to	database	
management	system.

	● COBOL	(Common	Business-oriented	Language)	and	FORTRAN	(Formula	Translation)	
were	two	primary	programming	languages	used	to	create	enterprise	applications	during	
the	1950s.	The	file	systems	of	these	languages	were	not	able	to	handle	data	which	are	
required	by	the	applications	developed	in	these	languages.	

	● Therefore,	in	the	1960s,	IBM	and	Rockwell	International	developed	a	hierarchical	data-
base	system	named	IMS	(Information	Management	System).	Later,	C.W.	Bachman	pro-
posed	Network	Data	Model	and,	on	the	basis	of	this	model,	General	Electric	developed	
a	network	database	model	named	IDS	(Integrated	Data	Store).	Both	IMS	and	IDS	were	
accessible	 from	 the	 programming	 languages	 using	 an	 interface.	Using	 these	 database	
systems,	application	development	and	data	management	within	application	had	become	
easy,	but	a	complex	task.	

CH_2_Data Models and Architecture of DBMS_Final.indd 19 2/26/2014 3:37:02 PM

20 | Chapter 2

Manual record keeping

Manual record keeping

Manual record keeping

Manual record keeping
Manual record keeping

Data kept manually

...

 Data stored in computerized
file using file-based management

 system

Data stored in database using
database management system

figure 2.1 |	 Evolution	 from	 manual	 record	 keeping	 system	 to	 file-based	 management	
system	and,	from	file-based	management	system	to	database	management	system.

	● In	1970,	Edgar	F.	Codd	proposed	a	different	data	model,	in	which	he	had	suggested	that	
data	in	a	database	could	be	represented	as	a	 two-dimensional	 table	structure,	which	is	
known	as	relation,	and	could	be	accessed	without	writing	lengthy	programs	to	access	
data.	This	model	is	known	as	relational data model.	Nowadays,	many	vendors	provide	
relational	database	management	systems.	Some	well-known	RDBMS	are	MS-Access	and	
MS-SQL	Server	provided	by	Microsoft;	Oracle	provided	by	Oracle;	DB2	provided	by	
IBM,	and	many	more.

	● Along	with	RDBMS,	 the	 object-oriented	 concept	 evolved.	The	 use	 of	 object-oriented	
programming	 languages	 increased	 in	 the	 1980s,	 and	 along	with	 it	 increased	 the	 need	
of	a	database	system	which	would	be	able	to	handle	classes	and	objects.	Thus,	evolved	
the	object-oriented	data	model.	Many	vendors	had	developed	OODBMSs	namely	Gem-
Stone,	ObjectDesign,	Versant,	O2,	Objectivity,	etc.	
	● Extensive	 use	 of	 object-oriented	 languages	 resulted	 in	 an	 object-relational DBMS	
which	is	a	combination	of	object-oriented	and	relational	DBMS.	Many	vendors,	such	as	
Oracle,	IBM,	provided	functionalities	of	object-oriented	concepts	in	their	RDBMS	(see
Figure	2.2).

CH_2_Data Models and Architecture of DBMS_Final.indd 20 2/26/2014 3:37:03 PM

Data Models and Architecture of DBMS | 21

Data Models

Hierarchical

Example: IMS,
Mark IV

Network

Example: IDS, DMS
1100

Relational

Example: QBE,
MAGNUM,
Oracle

Object-oriented Object-relational

Example: OPAL Example: Oracle

figure 2.2 |	 Data	models.

2.2 | hierarChiCal Data MODel
	● The	data	model	describes	data	and	its	definition.	In	case	of	an	object-oriented	data	model,	
it	describes	the	object	and	its	behaviour.	A	data model	is	a	logic	which	is	based	on	con-
cepts,	while	its	implementation	is	called,	‘database	management	system’,	i.e.,	database	
management	system	 is	a	physical	 implementation	of	data	model.	Entity-relationship
model	is	a	conceptual	model	which	shows	entities	and	relationships	between	entities.
	● The	hierarchical data model	was	the	very	first	data	model	developed	in	the	1960s.	The	
hierarchical	data	model	named	IMS	(Information	Management	System)	was	developed	
by	IBM	and	Rockwell	Company	and	widely	used	during	the	1960s	and1970s.	The	enti-
ties	and	relationships	between	entities	were	managed	with	the	help	of	a	tree-like	structure	
in	the	hierarchical	model.	In	this	tree,	there	exists	a	root	and	it	is	related	with	its	child.	A	
root	is	known	as	a	parent.	One	parent	may	have	many	children	in	hierarchical	structure,	
but	one	child	cannot	have	more	than	one	parent,	i.e.,	if	there	is	a	child	entity	which	is	
related	with	more	than	one	parent	entities,	then	two	independent	parent	nodes	should	be	
created	which	contains	redundant	child	records.	The	redundant	child	records	should	be	
linked	with	both	the	parents.	On	root,	there	will	be	entity	occurrences	from	the	parent	
entity.	One	entity	occurrence	means	one	segment.	 If	 this	segment	 is	on	 the	 root,	 it	 is	
called	root segment.	The	entity	occurrence,	which	falls	under	the	root	segment	(parent),	
is	known	as	dependent segment	(child),	i.e.,	collection	of	entity	occurrences	are	called,	
‘segments’.	 Root	 segment	 and	 dependent	 segments	 are	 connected	 through	 link.	 In	 a	
hierarchical	structure,	one	root	segment	may	have	many	dependent	segments,	but	a	de-
pendent	segment	will	have	only	one	root	segment.	To	explain	this,	many-to-many	rela-
tionship	between	root	and	dependent	segments	is	not	possible	in	a	hierarchical	structure.

	● Entity	occurrence	from	parent	entity	is	shown	as	a	root	segment,	and	its	related	entity	
occurrences	are	shown	as	its	dependent	segments.	The	entity	occurrences	of	same	entities	
are	shown	at	the	same	level	in	a	tree.	The	related	entity	occurrences,	which	fall	under	it,	
are	its	branch.

	● To	give	an	example,	consider	the	entities	given	in	Figures	2.3	and	2.4.	Figure	2.3	contains	
entities	Zone,	Region,	Item	and	Area;	while	Figure	2.4	contains	entities	as	Salesman	and	
Sales.	All	the	entities	are	related	with	the	following	relationships	with	each	other.	

CH_2_Data Models and Architecture of DBMS_Final.indd 21 2/26/2014 3:37:03 PM

22 | Chapter 2

	● Figures	2.3	and	2.4	represents	the	following	entities:
	○ Zone
	○ Region
	○ Area

	○ Item
	○ Salesman
	○ Sales

region
region iD region name Zone iD

1 Punjab 1
2 Himachal Pradesh 1
3 Gujarat 4
4 Maharashtra 4
5 West Bengal 2
6 Kerala 3
7 Karnataka 3
8 Andhra Pradesh 3
9 Rajasthan 4
10 Bihar 2
11 Assam 2
13 Jammu and Kashmir 1

Zone
Zone iD Zone name

1 North
2 East
3 South
4 West

item
item no item Desc. price (in `)

1 Bulldozer 200000
2 Soil Stabilizer 300000
3 Scraper 350000
4 Excavator 200000
5 Dump Truck 150000

area
area Code area name region iD

1 Ludhiana 1
2 Amritsar 1
3 Bilaspur 2
4 Shimla 2
5 Hamirpur 2
11 Calicut 6
12 Cochin 6
13 Munnar 6
14 Patiala 1
31 Anantnag 13
32 Srinagar 13
33 Ahmedabad 3
34 Udhampur 13
44 Surat 3
55 Baroda 3
61 Kolkata 5
62 Darjeeling 5
63 Baranagar 5
71 Patna 10
72 Nalanda 10
73 Vaishali 10
81 Guwahati 11
82 Digboi 11
83 Sibsagar 11

111 Bangalore 7
112 Mysore 7
113 Coorg 7
121 Hyderabad 8
122 Vishakhapatnam 8
123 Vijaywada 8
131 Pune 4
132 Mumbai 4
133 Nashik 4
141 Jaisalmer 9
142 Jodhpur 9
143 Bikaner 9

figure 2.3 |	 Entities	Zone,	Region,	Area,	and	Item.

CH_2_Data Models and Architecture of DBMS_Final.indd 22 2/26/2014 3:37:03 PM

Data Models and Architecture of DBMS | 23

salesman
salesman iD salesman name area Code

1 A. P. Singh 1
2 K. N. Kapoor 1
3 R. K. Chopra 2
4 P. G. Singh 2
5 S. N. Pathan 3
6 R. K. Khan 3
11 S. R. Trivedi 4
12 P. K. Jain 4
21 T. P. Khan 5
22 A. R. Khan 5
29 D. C. Khanna 31
30 P. T. Mehra 31
51 A. K. Garoo 34
52 D. N. Brave 34
61 T. N. Khan 32
62 A. P. Mishra 32

101 P. K. Damani 141
102 A. R. Agrawal 141
109 P. F. Karnik 131
110 A. M. Panzade 131
111 S. R. Sukhadiya 143
112 V. R. Jain 143
123 S. D. Sharma 142
124 K. K. Jain 142
145 S. E. Tendulkar 132
146 V. V. Manjrekar 132
147 P. N. Khedekar 132
165 A. R. Narayan 112
175 R. Benerjee 61
176 S. Tagore 61
178 L. M. Srinivasan 113
183 T. Ray 62
184 M. Ghosh 62
187 F. Srivastava 63
188 V. Jain 71
189 T. Chaterjee 71
190 S. B. Pillai 12
191 A. R. Nair 11
221 K. Yadav 81
222 G. F. Mishra 133
223 J. J. Raina 133
231 T. R. Naik 44
232 S. V. Joshi 44
261 A. F. Ghoshal 13
271 M. N. Shah 33
272 T. N. Sanghvi 33
273 A. A. Pathak 33
281 S. G. Gupta 55
282 K. D. Mistry 55
331 S. Chattopadhyay 82
81 D. Mathur 83

991 S. Mudaliar 111

salesman no. item no. total_Qty_sold

1 1 2
1 2 1
1 3 2
2 1 2
2 2 2
3 1 2
3 3 2
4 1 4
4 3 5
5 1 4
5 2 3
6 4 2
6 5 3

11 1 2
11 5 7
12 2 3
12 3 4
29 3 2
29 4 4
30 1 4
30 2 3
51 4 3
51 5 2
52 1 10
52 2 3
52 3 1
52 4 7
52 5 3
61 1 1
62 3 2
62 5 2

101 1 2
102 2 3
109 4 3
110 5 2
111 1 3
112 1 3
123 3 2
124 4 1
145 1 1
146 1 2
147 4 3
165 2 3
175 1 3
176 1 5
178 1 2
183 1 1
184 2 2
187 2 2
188 2 2
189 1 1

figure 2.4 |	 Entities,	Salesman,	and	Sales.

CH_2_Data Models and Architecture of DBMS_Final.indd 23 2/26/2014 3:37:04 PM

24 | Chapter 2

	● The	entities	as	shown	in	Tables	2.3	and	2.4	are	related	with	the	following	relationships:
	○ Each	Zone	contains	many	Regions	(1	Zone–Many	Regions)
	○ Each	Region	contains	many	Areas	(1	Region–Many	Areas)
	○ Each	Area	contains	many	Salesman	(1	Area–Many	Salesman)
	○ Each	Salesman	sells	many	Items,	and	each	Item	is	sold	by	many	Salesman.	(1	Salesman–	
Many	 Items	 and	Many	 Salesman–1	 Item,	 i.e.,	 many-to-many	 relationship	 between	
Salesman	and	Item).

	● Figure	2.5	shows	the	hierarchical	model	which	represents	 the	entities	of	Figures	2.3	
and	2.4.	

	● Hierarchical	data	model	can	represent	one-to-many	relationships	very	effectively,	but	it	
is	not	possible	to	represent	many-to-many	relationship	because	a	child	can	have	only	one	
parent	in	hierarchical	model.	
	● To	solve	this	problem,	many-to-many	relationship	should	be	represented	as	two	indepen-
dent	trees.	For	example,	to	represent	the	relationship,	‘Each	Salesman	sells	many	Items	
and	each	Item	is	sold	by	many	Salesmen.’;	the	first	tree	will	have	Salesman	as	parent	and	
Item	as	child,	and	the	second	tree	will	have	Item	as	parent	and	Salesman	as	Child.	These	
two	different	scenarios	are	shown	in	Figures	2.6(a)	and	2.6(b).

	● The	hierarchical	data	model	has	the	following	advantages	and	disadvantages.

Advantages:
	 1.	 It	is	easy	to	understand.
	 2.	 The	one-to-many	relationship	can	be	handled	quite	effectively.

Disadvantages:
	 1.	 It	is	not	possible	to	insert	a	dependent	record	without	inserting	a	parent	record.	For	ex-

ample,	as	shown	in	Figure	2.6(b),	it	is	not	possible	to	insert	the	details	of	any	item	until	
it	is	been	sold	by	any	Salesman.	Similarly,	as	shown	in	Figure	2.6(a),	it	is	not	possible	to	
insert	the	details	of	any	Salesman	until	he	supplies	any	item.

figure 2.5 |	 The	hierarchical	model.

1

2

Level 0 - Root Segment: ZONE

Level 1: Child
Segment: Region Himachal Pradesh Jammu & Kashmir

Ludhiana Amritsar Patiala Level 2: Child
Segment: Area

Level 3: Child
Segment: Salesman

Level 4: Child
Segment: Items Sold

A. P. Singh K. N. Kapoor R. K. Chopra P. G. Singh

Bulldozer Soil Stabilizer Stomper

Quantity
 sold

North

1

1

1

1 2 2 1

2 3 4

2 14

3 Punjab

3 2

CH_2_Data Models and Architecture of DBMS_Final.indd 24 2/26/2014 3:37:04 PM

Data Models and Architecture of DBMS | 25

A. P. Singh
K. N. Kapoor

R. K. Chopra

P. G. Singh
S. N. Pathan

S. R. Trivedi
D. N. Brave

T. N. Khan

P. T. Mehra
S. E. Tendulkar

V. V. Manjrekar
P. K. Damani

S. R. Sukhadiya
V. R. Jain

G. F. Mishra
J. J. Raina

A. A. Pathak

T. N. Sanghvi

T. R. Naik
A. F. Ghoshal

R. Benerjee

S. Tagore

T. Ray
T. Chaterjee
K. Yadav

S. Chattopadhyay

1

2
2

2

4

4

2

10

1

4

1

2

2

3

3

1

2

1

1

2

3

2

3

5

1

1

3

4

Bulldozer

L. M. Srinivasan

A. P. Singh

K. N. Kapoor

R. K. Chopra

P. G. Singh

S. N. Pathan

D. N. Brave

A. P. Mishra
D. C. Khanna

S. D. Sharma
S. G. Gupta

A. R. Nair
S. B. Pillai

3

2
2

5

5

3

4

1

2

2

2

2

4

1

A. P. Singh
K. N. Kapoor

S. N. Pathan

S. R. Trivedi

D. N. Brave

P. T. Mehra

P. K. Jain
P. K. Jain

2

1
2

3

6

3

3

3

3

2

3

3

3

2

2

2

4

Soil Stabilizer Stomper

Excavator Dump Truck

A. P. Mishra

A. M. Panzade

S. Mudaliar

Quantity

A. R. Agrawal

M. N. Shah
S. V. Joshi

K. D. Mistry

A. R. Narayan
M. Ghosh
F. Srivastava

V. Jain

D. Mathur

R. K. Khan
A. K. Garoo

A. K. GarooD. N. Brave

D. C. Khanna

P. F. Karnik

P. N. Khedekar

K. K. Jain

4

2
3

7

4

1

3

3

R. K. Khan
S. R. Trivedi

D. N. Brave

4

3
7

2

3

2

2

1

(a)

Bulldozer

A. P. Singh

Soil Stabilizer

Stomper

1

2
1

2

Bulldozer

K. N. Kapoor

Soil Stabilizer

Stomper

2

2
2

5

Quantity

(b)

figure 2.6 |	 (a)	A	tree	representing	item	supplied	by	various	salesman;	(b)	A	tree	representing	
salesman	supplies	various	items.

CH_2_Data Models and Architecture of DBMS_Final.indd 25 2/26/2014 3:37:04 PM

26 | Chapter 2

	 2.	 If	we	delete	any	root	segment,	then	the	dependent	segments	which	falls	under	it,	are	also	
deleted.	For	example,	refer	to	Figure	2.6(a),	if	we	delete	root	segment	of	the	item	Bulldozer,	
then	all	the	Salesmen,	who	have	supplied	Bulldozer,	will	also	be	deleted.	As	a	result,	the	
Salesman	who	has	sold	only	Bulldozer	will	be	permanently	deleted	from	the	hierarchy	
model.	His	record	will	be	inserted	again,	only	when	he	will	supply	some	other	item.

	 3.	 It	is	difficult	to	update	any	Child	segment.	As	the	number	of	segment	increases,	the	tree	
becomes	extremely	complex.	At	that	time,	it	is	very	cumbersome	to	search	for	any	segment	
and	update	it,	i.e.,	to	search	the	last	dependent	segment	of	the	last	root	segment	of	a	tree,	
one	has	to	traverse	all	the	dependent	segments	of	all	the	root	segments.

	 4.	 The	hierarchical	model	can	represent	only	the	one-to-many	(1:	M)	relationship.	Here,	the	
many-to-many	relationship	causes	redundant	data.	

2.3 | netwOrk Data MODel
	● The	Network data model	represents	data	using	link	between	records.	The	parent	record	
is	called	Owner Record,	and	the	child	record	is	called	Member Record.	If	the	Owner	
and	Member	records	are	related	with	the	many-to-many	relationship,	then	they	are	con-
nected	through	connector	record	which	is	known	as	Set.	The	entities,	given	in	Figures	2.4	
and	2.5,	are	represented	as	a	network	model	as	shown	in	Figure	2.7.
	● Figure	2.7	shows	part	of	a	network	model,	where:

	○ Zone	records	are	Owner	records	of	Region	records	and	Region	records	are	Member	
records.
	○ Region	records	are	Owner	records	of	Area	records,	and	Area	records	are	Member	re-
cords	of	Region.
	○ Area	 records	 are	 Owner	 records	 of	 Salesman	 records,	 and	 Salesman	 records	 are	
Member	records	of	Area.
	○ Salesman	records	are	Owner	records	of	Item	records,	and	Item	records	are	Member	
records	of	Salesman	which	are	connected	through	the	‘Set’	Sales.	Sales	record	is	a	con-
nector	record	between	Salesman	and	Item.

Bulldozer 200000 Soil Stabilizer Stomper 350000

North1

Punjab HP J & K1

Ludhiana1

2 3

Amritsar2 Patiala14

A. P. Singh1 K. N. Kapoor2 R. K. Chopra3

1 1 2 1 2 1 1 3 2

1 2 3

P. G. Singh4

300000

figure 2.7 |	 The	network	model.

CH_2_Data Models and Architecture of DBMS_Final.indd 26 2/26/2014 3:37:04 PM

Data Models and Architecture of DBMS | 27

	● The	Owner	 record	 is	 linked	with	 the	first	Member	 record,	 the	first	member	 record	 is	
linked	with	the	second	Member	record,	and	the	second	Member	record	is	linked	with	the	
third	Member	record,	and	so	on	up	to	the	last	Member	record.	The	last	Member	record	is	
again	linked	with	the	Owner	record.	Management	of	the	many-to-many	relationship	in	a	
network	model	is	quite	simple.	
	● Following	are	the	advantages	and	disadvantages	of	a	network	model.

Advantages:
	 1.	 The	many-to-many	relationships	can	be	represented	more	easily	in	a	network	data	model	

than	that	of	a	hierarchical	data	model.
	 2.	 The	 network	 data	model	 supports	 Data	Definition	 Language	 and	Data	Manipulation	

Language.
	 3.	 To	insert	data	of	a	new	Item,	say	item	no.	6,	we	would	need	to	create	a	new	Item	record.	

There	will	be	no	connector	record	for	the	new	Item	until	it	is	sold	by	any	Salesman.	Item	
no.	‘6’	will	contain	a	single	link	from	Item	no.	‘6’	to	Item	no.	‘6’	itself,	initially.	

Disadvantages:
	 1.	 Searching	is	more	complicated	than	hierarchical	model	in	network	model	because	of	its	

complex	data	structure.
	 2.	 The	DML	is	also	very	complex	as	there	are	many	constructs,	such	as	records	and	links.

2.4 | relatiOnal Data MODel
The	concept	of	relational	model	was	given	by	E.	F.	Codd,	in	1970,	in	his	landmark	paper	on	
relational	data	model.	In	the	relational	model,	data	are	represented	in	a	tabular	form	which	is	
called,	relation	(table),	and	they	are	associated	with	relationships.	Therefore,	the	name	of	this	
model	is	relational	data	model.	Each	entity	is	converted	into	relation	and	association	is	handled	
through	 primary	 and	 foreign	 keys.	The	 detailed	 explanation	 of	 relational	model	 is	 given	 in	
Chapter	3.	Each	entity occurrence	is	known	as	tuple	(record)	and	characteristic	of	an	entity	
is	called	an	attribute	(column).	It	is	very	easy	to	represent	many-to-many	relationship	using	
relational	data	model.	The	relational	model	is	widely	used	worldwide,	nowadays,	to	store	data.	
Figures	2.8	and	2.9	show	the	relational	model	of	data	as	shown		in	Figures	2.3	and	2.4.	All	the	
relations	are	associated,	with	each	other	as	listed	here:

	● Relation	Zone	is	related	with	Region	through	‘zone	id’.
	● Relation	Region	is	related	with	Area	through	‘region	id’.
	● Relation	Area	is	related	with	Salesman	through	‘area	code’.
	● Relation	Salesman	is	related	with	Sales	through	‘salesman	id’.
	● Relation	Item	is	related	with	Sales	through	‘item	id’.

For	relations:

	● Zone—‘zone	id’	is	a	primary	key	which	is	referred	in	Region	relation.
	● Region—‘region	id’	is	a	primary	key	which	is	referred	in	Area	relation,	and	‘zone	id’	is	
referenced	from	Zone	relation	in	Region	relation.

	● Area—‘area	code’	is	a	primary	key	which	is	referred	in	Salesman	relation	and	‘region	id’	
is	referenced	from	Region	relation	in	Area	relation.

CH_2_Data Models and Architecture of DBMS_Final.indd 27 2/26/2014 3:37:04 PM

28 | Chapter 2

	● Salesman—‘salesman	id’	is	a	primary	key	which	is	referred	in	Sales	relation	and	‘area	
code’	is	referenced	from	Area	relation	in	Salesman	relation.
	● Sales—Combination	 of	 ‘salesman	 id’	 and	 ‘item	 id’	 is	 a	 primary	 key.	 ‘Salesman	 id’	
is	 referenced	 from	Salesman	and	 ‘item	 id’	 is	 referenced	 from	 Item	 relation	 in	Sales	
relation.

region
region iD region name Zone iD

1 Punjab 1
2 Himachal Pradesh 1
3 Gujarat 4
4 Maharashtra 4
5 West Bengal 2
6 Kerala 3
7 Karnataka 3
8 Andhra Pradesh 3
9 Rajasthan 4

10 Bihar 2
11 Assam 2
13 Jammu and Kashmir 1

Zone
Zone iD Zone name

1 North
2 East
3 South
4 West

item
item no. item Desc. price (in `)

1 Bulldozer 200000
2 Soil Stabilizer 300000
3 Scraper 350000
4 Excavator 200000
5 Dump Truck 150000

area
area Code area name region iD

1 Ludhiana 1
2 Amritsar 1
3 Bilaspur 2
4 Shimla 2
5 Hamirpur 2

11 Calicut 6
12 Cochin 6
13 Munnar 6
14 Patiala 1
31 Anantnag 13
32 Srinagar 13
33 Ahmedabad 3
34 Udhampur 13
44 Surat 3
55 Baroda 3
61 Kolkata 5
62 Darjiling 5
63 Baranagar 5
71 Patna 10
72 Nalanda 10
73 Vaishali 10
81 Guwahati 11
82 Digboi 11
83 Sibsagar 11
111 Bangalore 7
112 Mysore 7
113 Coorg 7
121 Hyderabad 8
122 Vishakhapatnam 8
123 Vijaywada 8
131 Pune 4
132 Mumbai 4
133 Nashik 4
141 Jaisalmer 9
142 Jodhpur 9
143 Bikaner 9

figure 2.8 |	 Relations	Zone,	Region,	Area	and	Item.

CH_2_Data Models and Architecture of DBMS_Final.indd 28 2/26/2014 3:37:04 PM

Data Models and Architecture of DBMS | 29

sales
salesman iD item iD total_qty_sold

1 1 2
1 2 1
1 3 2
2 1 2
2 2 2
3 1 2
3 3 2
4 1 4
4 3 5
5 1 4
5 2 3
6 4 2
6 5 3
11 1 2
11 5 7
12 2 3
12 3 4
29 3 2
29 4 4
30 1 4
30 2 3
51 4 3
51 5 2
52 1 10
52 2 3
52 3 1
52 4 7
52 5 3
61 1 1
62 3 2
62 5 2
101 1 2
102 2 3
109 4 3
110 5 2
111 1 3
112 1 3
123 3 2
124 4 1
145 1 1
146 1 2
147 4 3
165 2 3
175 1 3
176 1 5
178 1 2
183 1 1
184 2 2
187 2 2
188 2 2
189 1 1

salesman
salesman iD salesman name area Code

1 A. P. Singh 1
2 K. N. Kapoor 1
3 R. K. Chopra 2
4 P. G. Singh 2
5 S. N. Pathan 3
6 R. K. Khan 3

11 S. R. Trivedi 4
12 P. K. Jain 4
21 T. P. Khan 5
22 A. R. Khan 5
29 D. C. Khanna 31
30 P. T. Mehra 31
51 A. K. Garoo 34
52 D. N. Brave 34
61 T. N. Khan 32
62 A. P. Mishra 32

101 P. K. Damani 141
102 A. R. Agrawal 141
109 P. F. Karnik 131
110 A. M. Panzade 131
111 S. R. Sukhadiya 143
112 V. R. Jain 143
123 S. D. Sharma 142
124 K. K. Jain 142
145 S. E. Tendulkar 132
146 V. V. Manjrekar 132
147 P. N. Khedekar 132
165 A. R. Narayan 112
175 R. Benerjee 61
176 S. Tagore 61
178 L. M Srinivasan 113
183 T. Ray 62
184 M. Ghosh 62
187 F. Srivastava 63
188 V. Jain 71
189 T. Chaterjee 71
190 S. B. Pillai 12
191 A. R. Nair 11
221 K. Yadav 81
222 G. F. Mishra 133
223 J. J. Raina 133
231 T. R. Naik 44
232 S. V. Joshi 44
261 A. F. Ghoshal 13
271 M. N. Shah 33
272 T. N. Sanghvi 33
273 A. A. Pathak 33
281 S. G. Gupta 55
282 K. D. Mistry 55
331 S. Chattopadhyay 82
81 D. Mathur 83

991 S. Mudaliar 111

figure 2.9 |	 Relations	salesman	and	sales.

CH_2_Data Models and Architecture of DBMS_Final.indd 29 2/26/2014 3:37:05 PM

30 | Chapter 2

	● Item—‘item	id’	is	a	primary	key	which	is	referred	in	Sales	relation.
	● The	advantages	and	disadvantages	of	a	relational	model	are	as	follows:

Advantages:
	 1.	 Relational	model	is	easy	to	understand.
	 2.	 Data	can	be	managed	properly	in	it.
	 3.	 It	provides	structured	query	language	to	manage	data,	which	is	very	easy	to	learn.	DDL	

and	DML	are	simpler	in	respect	to	the	other	models.
	 4.	 Transactions	can	be	managed	properly.
	 5.	Many-to-many	relationships	can	be	 represented	 through	primary	and	foreign	key	and	

without	any	complexity.
	 6.	 Insert,	delete,	and	update	operations	can	be	performed	without	any	loss	of	data.
	 7.	 Data	dictionary	management	is	provided.

Disadvantage:
 1. It	is	difficult	to	handle	due	to	complex	data	types.	

2.5 | ObjeCt-OrienteD Data MODel
	● In	object-oriented	data	models	entity	is	represented	as	a	class.	A	class	within	it	contains	
data	and	methods.	Data	are	attributes	of	object	and	methods	are	behaviour.	For	example,	
class	Zone	contains	the	attribute	‘zone	id’	and	‘zone	name’.	It	contains	methods	to	man-
age	these	attribute	values.	However,	it	is	not	required	to	define	both	attributes	and	meth-
ods	in	the	same	class.	Methods	can	be	defined	separately.

	● Each	record	of	a	zone	is	known	as	an	object,	which	is	a	class	member.	For	example,	with	
respect	to	Zone	class,	there	are	four	objects.	Each	object	has	different	values	for	attributes	
‘zone	id’	and	‘zone	name’.	But	these	four	objects	will	share	the	same	methods.	Meth-
ods	are	procedures	which	are	the	programs	to	manage	attribute	values.	For	zone	class,	
methods	are—add	zone	details,	change	zone	details,	remove	zone	details	and	search	zone	
details.	Methods	are	invoked	by	messages.	There	are	many	built-in	classes	and	methods	
are	 available	 within	 object-oriented	 system.	 For	 example,	 class	 Integer	 and	 methods	
available	for	this	class	are	<,	>,	≥,	≤,	=,	<>,	etc.	
	● Figure	2.10	shows	the	class	ZONE	and	its	four	objects.	Each	object	has	unique	identi-
fication	number	which	 is	known	as	object identifier	 (OID).	OID	is	not	visible	 to	 the	
users	because	 they	are	addresses.	 It	 is	similar	 to	 the	pointer.	The	comparison	between	
object-oriented	terminology	and	traditional	terminologies	is	given	in	Table	2.1

table 2.1 |	 Comparison	between	Object-Oriented	and	Traditional	Terminologies

Object-oriented terminology traditional terminology

Class Type (it may be built-in, or user-defined)
Object (Class Instance)
 1. Immutable object
 2. Mutable object (which holds an object ID)

 1. Value (field value)
 2. Variable (field name)

Method Operator

Message Operator invocation

CH_2_Data Models and Architecture of DBMS_Final.indd 30 2/26/2014 3:37:05 PM

Data Models and Architecture of DBMS | 31

Object 1

1
North

Attributes:

Methods:
Add zone details
Change zone details

Remove zone details

Search zone details

Object 2

Attributes:

Methods:
Add zone details

Change zone details
Remove zone details
Search zone details

2
East

Object 3

Attributes:

Methods:
Add zone details
Change zone details
Remove zone details
Search zone details

3
South

Object 4

Attributes:

Methods:
Add zone details
Change zone details
Remove zone details
Search zone details

4
West

Class: ZONE

Attributes:

Methods:
Add zone details
Change zone details
Remove zone details
Search zone details

Zone id
Zone name

figure 2.10 |	 Class	and	Objects.

table 2.2 |	 Example	of	Object-oriented	Terminology

Object-oriented terminology example

Class Integer, Character (Built-in classes)
Zone, Region (User-defined classes)

Object 980, ‘Ahmedabad’ (immutable object = value)
Zone id, zone name (mutable object = variable)

Method Add_zone

Message Add_zone (z1)

	● To	understand	the	object-oriented	terminology,	an	example	is	given	in	Table	2.2.
	● Object-oriented	supports	abstract	data	types,	i.e.,	one	class	may	contain	another	class	as	
its	attribute.	For	example,	Zone	contains	Regions	within	it.	This	approach	is	‘container-
ship’	approach,	which	is	shown	in	Figure	2.11.	Actually,	Zone	object	does	not	contain	
the	Region	object,	but	Region	object	is	referenced	by	using	its	OID.	Object-oriented	data	
model	is	ideal	for	complex	data	types,	such	as	video,	audio,	image.

CH_2_Data Models and Architecture of DBMS_Final.indd 31 2/26/2014 3:37:05 PM

32 | Chapter 2

Zone:

Region:
Region #: 1

Region name: Punjab

Zone #: 1

Zone name: North

figure 2.11 |	 Example	of	containment	hierarchy—zone	contains	different	regions.

	● Object-oriented	databases	support	all	the	features	of	object-oriented	methodology,	such	
as	 message	 passing	 (methods	 can	 pass	 messages	 to	 other	 objects),	 class	 inheritance,	
method	overriding,	encapsulation,	polymorphism,	and	operator	overloading.
	● Following	are	the	advantage	and	disadvantages	of	an	object-oriented	data	model:

Advantage:
	 1.	 It	is	easy	to	handle	complex	data	types.	

Disadvantages:
	 1.	 It	is	difficult	to	understand	and	use	compared	to	relational	model.
	 2.	 It	does	not	have	ad	hoc	query	capability.
	 3.	 Integrity	issues	are	involved.	On	updation	or	deletion	of	parent	object,	child	object	is	not	

updated	or	deleted	automatically.	Procedural	code	should	be	written	for	that.
	 4.	 Object-oriented	systems	are	procedural,	which	are	3GL	languages.	It	does	not	support	

SQL	which	is	4GL.	Therefore,	it	is	a	step	back	from	4GL	to	3GL.	
	 5.	 Data	dictionary	is	not	managed	automatically.	Staff	is	required	to	do	so.

2.6 | ObjeCt-relatiOnal Data MODel
	● To	overcome	the	issues	of	OODBMS,	the	object-relational model	emerged,	which	is	a	
combination	of	object-oriented	and	relational	data	model.	It	means	that	the	model	should	
be	able	to	implement	SQL	for	complex	data	types,	such	as	geographical	data	types,	geo-
metrical	data	types	(polygons,	hexagons,	etc.),	and	space	data.
	● For	 any	 relational	 database,	 it	 is	 not	 possible	 to	 include	 all	 object-oriented	 concepts.	
And	for	any	object-oriented	database,	it	is	not	possible	to	include	all	relational	database	
concepts.	However,	 some	vendors,	 such	as	Oracle,	 IBM,	 Informix	and	others	provide	
additional	packages	to	handle	complex	data	types	which	are	sold	separately	and	installed	
as	plug-ins.	These	packages	have	different	names,	like	‘data	cartridge’	is	the	name	of	
Oracle’s	type	package	which	is	bought	separately	and	plugged	into	the	Oracle	RDBMS.	
Other	examples	are	‘Datablades’	of	Informix,	‘Relational	Extenders’	of	IBM.	By	using	
these	packages,	an	user	can	define	his/her	own	data	types	and	operators.

	● Following	are	the	advantages	and	disadvantages	of	Object-Relational	Data	Model.

Advantage:
 1. It	allows	to	define	user-defined	data	types	and	operators	and,	to	access	them	using	Struc-

tured	Query	Language	(SQL).

CH_2_Data Models and Architecture of DBMS_Final.indd 32 2/26/2014 3:37:05 PM

Data Models and Architecture of DBMS | 33

Disadvantages:
 1. The	information	related	to	user-defined	types	and	operators	should	be	kept	 in	system

catalog (data dictionary)	which	requires	redesigning	of	the	system	catalog.	Also,	com-
piler	should	be	updated	to	access	this	catalog	information.

	 2.	 Storage	structures	and	access	methods	become	quite	complex.
	 3.	 Issues	related	to	indexing	on	user-defined	types	are	experienced.
	 4.	 Besides	these	drawbacks,	several	other	optimization	problems	may	arise	while	handling	

the	user-defined	types	and	operators.	

2.7 | three-level arChiteCture Of Database
The	ANSI/SPARC	 architecture	 of	 database	 has	 three	 levels—Internal,	 Conceptual	 and	 Ex-	
ternal—which	are	shown	in	Figure	2.12.

	● There	are	three	levels	of	database	architecture:

	 1.	 Internal	level—This	is	a	storage	where	data	are	actually	stored.	It	is	also	known	as	
physical	level,	i.e.,	this	level	is	useful	for	computers	to	understand	the	data.

	 2.	 Conceptual	 level—With	 the	 help	 of	 this	 level,	 the	 internal	 and	 external	 levels	
communicate.	Database schema	 is	 defined	 at	 this	 level	 using	Data Definition
Language (DDL).

	 3.	 External	level—This	level	is	concerned	with	the	users.	At	this	level,	multiple	users	
access	stored	data	from	the	database.	There	may	be	more	than	one	external view	for	
different	users.	

	● The	detailed	architecture	of	database	is	shown	in	Figure	2.13.	The	internal	level	contains	
the	actual	stored	objects	and	data.	It	is	useful	only	for	the	computers.	The	internal	view	
or	physical	view	means,	how	computer	sees	the	data	or	objects.

	● The	 external level	 is	 the	 view	 of	 users.	There	may	 be	many	 users	who	 are	working	
on	different	platforms	or	languages,	and	they	are	accessing	the	data	and	data	structures	
stored	in	a	database.	The	users	are	working	in	different	languages	which	have	different	
syntaxes	to	access	the	data.	Users	will	access	only	the	required	part	of	the	database,	not	
the	entire	database.	In	Figure	2.13,	there	are	three	different	users	who	are	using	the	same	
table	‘t’,	but	different	fields	of	that	table.	Two	users	are	accessing	table	‘t’	and	its	different	
fields	 through	Visual	 Basic	 language	 and	 one	 user	 is	 accessing	 the	 same	 table,	 but	

figure 2.12 |	 Three	levels	of	database	architecture.

Internal
 Level

Conceptual
 Level

External
 Level

CH_2_Data Models and Architecture of DBMS_Final.indd 33 2/26/2014 3:37:05 PM

34 | Chapter 2

different	fields,	through	structured	language	‘C’.	Data	types,	to	define	variables	in	both	
the	languages,	have	different	syntax	and	may	have	different	variable	names	to	store	fields.	
The	users	 use	 a	 common	 language	 for	 databases,	 i.e.,	 Structured	Query	Language,	 to	
retrieve	data	from	database.	Thus,	user’s	view	is	a	combination	of	any	programming	lan-
guage	and	Structured	Query	Language.
	● Conceptual level	works	as	a	‘translator’	between	internal	and	external	levels.	External	
level	is	concerned	with	individual	user	views,	while	the	conceptual	view	level,	also	called	
logical	view,	is	meant	for	a	group	of	users	which	is	common	for	the	group.	From	this	
common	view,	each	user	can	access	a	part	of	the	database	relevant	to	them	through	some	
mappings.
	● There	is	only	one	internal	and	conceptual	view,	but	there	may	be	multiple	external	views.
	● The	users	who	are	accessing	the	database	may	be	any	type	of	user,	such	as	programmer,	
end-user,	 system	 analyst.	Data	 are	 retrieved	 at	 external	 view	 through	Data	Definition	
Language	(DDL)	and	Data Manipulation Language	(DML)	which	are	part	of	SQL.	The	
combination	of	DDL	and	DML	is	known	as	Data Sub Language	(DSL).

figure 2.13 |	 Database	architecture.

External
View 1

External
View 2

Create table

 t(a int, b int, c float, d date);

User 1 writes a
code to access stored
data in any language
with help of SQL

User 2 writes a
code to access stored
data in any language
with help of SQL

User 3 writes a
code to access stored
data in any language
with help of SQL

dim b int
dim a int Int b

Float c

Conceptual View

Internal
View Table

dim d datetime
dim b int

External-Conceptual
Mapping

External-Conceptual
Mapping

Conceptual-Internal
Mapping

CH_2_Data Models and Architecture of DBMS_Final.indd 34 2/26/2014 3:37:05 PM

Data Models and Architecture of DBMS | 35

	● The	 internal view	 is	 defined	 using	 internal schema	 which	 is	written	 using	 internal	
DDL.	Similarly,	conceptual	view	is	defined	using	conceptual	schema,	and	conceptual	
schema	is	written	using	conceptual	DDL.	External	view	is	defined	using	external	schema,	
and	external	schema	is	written	using	external	DDL.

	● There	are	mappings	between	these	levels.	The	Conceptual–Internal mapping	defines	
the	correspondence	between	 the	conceptual	view	and	 the	stored	database.	 It	 specifies,	
how	conceptual	records	and	fields	map	into	their	relative	stored	fields.

	● An	External–conceptual mapping	defines	the	correspondence	between	a	particular	ex-
ternal	view	and	the	conceptual	view.

	● A	DBMS	(Database	Management	System)	is	the	software	that	handles	all	access	to	the	
database.	A	user	issues	an	access	request	using	some	DML	(select,	insert,	delete,	or	up-
date)	command;	the	DBMS	accepts	and	converts	the	request;	and	then	performs	the	nec-
essary	operations	on	the	stored	database.

	● The	Database Administrator	is	the	person	or	a	group	of	people	responsible	for	overall	
control	of	the	database	system.

2.8 | Database languages
	● The	generalized	database	language,	which	is	common	in	all	databases,	is	Structured	Query	
Language	(SQL).	It	is	divided	into	the	following	four	parts:

	 1.	 Data	Definition	Language	(DDL):	The	database	 language	which	 is	used	 to	define	
database	objects;	to	drop	database	objects;	to	alter	(change)	database	objects,	such	
as	tables,	views,	users,	is	known	as	Data	Definition	Language	(DDL).	For	example:	
	○ DDL	to	create	a	ZONE	table.
Create table zone (zoneid integer, zonename char(20));
	○ DDL	to	alter	a	ZONE	table	which	changes	the	data	type	of	a	zoneid	from	integer	
to	char(1).
Alter table zone modify column zoneid char(1);
	○ DDL	to	drop	(delete)	a	ZONE	table.		
Drop table zone;

	 2.	 Data	Manipulation	Language	(DML):	The	database	language,	which	is	used	to	insert	
data,	manipulate	data;	delete	data	or	retrieve	data	in	tables	or	views,	is	known	as	Data	
Manipulation	Language	(DML).	For	example:
	○ DML	to	insert	data	in	a	ZONE	table.
Insert into zone values(1, ‘North’);
	○ DML	to	change	the	value	of	zonename	from	‘North’	to	‘East’	for	zoneid	=	1.	
Update zone set zonename = ‘East’ where zoneid = 1;
	○ DML	to	delete	a	record	of	zoneid	1	from	ZONE	table.		
Delete from zone where zoneid = 1;
	○ DML	to	retrieve	a	record	of	zoneid	1	from	ZONE	table.
Select * from zone where zoneid = 1;

	 3.	 Data	Control	Language	(DCL):	The	database	language	which	is	used	to	control	data	
access	 is	known	as	Data Control Language	 (DCL).	For	example,	 the	Grant	and	

CH_2_Data Models and Architecture of DBMS_Final.indd 35 2/26/2014 3:37:05 PM

36 | Chapter 2

Revoke	commands	are	used	to	assign	insert/delete/update/select	privileges	or	access	
of	specific	data.	For	example:
	○ DCL	to	assign	insert	privilege	on	table	ZONE	table	to	user	‘shefali’.	To	grant	or	
revoke	privileges	the	user	himself	should	have	privileges	or	rights	to	assign	privi-
leges	to	other	users.
Grant Insert on zone to ‘shefali’.

	 4.	 Transaction	Control	Language	(TCL):	The	database	language	which	is	used	to	con-
trol	transactions	is	known	as	transaction control language	(TCL).	For	example,	the	
checkpoint	and	savepoint	commands	are	used	to	control	transactions.

	 5.	 Data	Sub	Language	(DSL):	The	combination	of	Data	Definition	Language	and	Data	
Manipulation	Language	is	known	as	Data	Sub	Language	(DSL).

2.9 | Data anD struCtural inDepenDenCe
	● When	we	can	change	the	data	type	or	size	of	any	field	without	changing	the	application	
program,	data independence	is	said	to	be	exist.

	● When	we	can	change	 the	structure	of	any	 table	without	changing	 the	application	pro-
gram,	structural independence	is	said	to	be	exist.
	● Data	 and	 structural	 independence	 is	 provided	 by	 database	 systems,	 but	 100%	data	 or	
structural	independence	is	not	possible.

	● Conversely,	when	we	cannot	change	the	data	type	or	size	of	any	field	without	changing	
the	application	program,	data dependence	is	said	to	be	exist.

	● When	we	cannot	change	the	structure	of	any	table	without	changing	the	application	pro-
gram,	structural dependence	is	said	to	be	exist.

SUMMARY
	● A	data	model	is	a	representation	of	data	and	relationships	between	data.
	● Various	data	models	are	available.	The	very	first	data	model	was	proposed	 in	 the	1960s	
which	was	a	hierarchical	data	model.	It	was	based	on	the	tree	structure	that	represents	the	re-
lationship	between	parent	and	child	records.	It	was	efficient	in	relating	parent	and	child	with	
the	one-to-many	relationship.	By	that	time,	IMS	used	to	be	the	popular	hierarchical	model.

	● The	main	disadvantage	of	hierarchical	model	was:	 it	did	not	support	 the	many-to-many	
relationship.	To	overcome	this	disadvantage,	the	network	model	emerged.	It	provided	the	
functionality	 to	 relate	 parent	 and	 child	 record	with	 the	many-to-many	 relationship.	But	
handling	of	this	relationship	was	highly	complex.	IDS	is	an	example	of	the	network	model.

	● After	network	model,	 in	 the	1970s,	 the	 relational	model	was	proposed	by	E.	F.	Codd	
who	is	admired	as	the	father	of	relational	database	systems.	He	proposed	tabular	form	to	
represent	the	data	and	relationships.	It	is	quite	easy	to	handle	relationships	in	this	model	
by	defining	primary	and	foreign	keys.	Using	the	general-purpose	language	of	relational	
databases—Structured	Query	Language—it	is	easy	to	handle	data	within	a	database.	Re-
lational	database	systems	are	the	widely	used	systems	in	the	current	era.
	● With	 the	 evolution	 of	 object-oriented	 languages,	 the	 object-oriented	 data	 model	 also	
emerged	which	supports	all	the	concepts	of	object-oriented	system.	But	it	does	not	have	

CH_2_Data Models and Architecture of DBMS_Final.indd 36 2/26/2014 3:37:05 PM

Data Models and Architecture of DBMS | 37

Structured	Query	Language.	It	is	mainly	based	on	the	concept	of	containment	hierarchy.	
Using	object-oriented	data	model,	complex	data	types,	such	as	images,	videos,	audios,		
can	 be	 handled	 properly.	But	 because	 of	 the	 absence	 of	 SQL,	 it	 is	 highly	 difficult	 to	
handle	the	data.	This	data	model	is	suitable	for	multimedia	databases.

	● To	provide	facility	of	SQL	with	object-oriented	concepts,	the	object-relational	database	
came	in	the	picture.	But,	co-existence	of	these	two	is	very	complex.	To	handle	complex	
data	types,	Structured	Query	Language	needs	additional	‘type	package’	with	RDBMS.	
Also,	 there	are	 issues	related	 to	storage	structure,	data	dictionary	management,	access	
method,	and	many	more	with	this	data	model.

	● In	the	architecture	of	any	database,	there	are	three	levels—internal,	conceptual	and	ex-
ternal.	Internal	level	is	the	level	where	the	database	is	actually	stored.	It	describes	how	
database	is	physically	stored	into	memory,	i.e.,	through	this	level,	the	computer	sees	the	
data.	The	external	level	describes	individual	user’s	view.	User	accesses	stored	database	by	
writing	programs	in	various	languages	at	this	level,	i.e.,	through	this	level,	the	user	sees	
the	data.	Conceptual	view	is	an	indirection	between	internal	and	external	level.	It	is	the	
view	of	a	group	of	users.	Internal	and	conceptual	levels	are	defined	using	Data	Definition	
Language	(DDL),	while	external	level	is	defined	using	combination	of	Data	Definition	
Language	(DDL)	and	Data	Manipulation	Language	(DML)	which	is	known	as	Data	Sub	
Language	 (DSL).	There	 is	 only	 one	 internal	 and	 conceptual	 view,	 but	many	 external	
views	for	any	database.
	● The	language	which	is	used	to	define	database	objects	is	known	as	Data	Definition	Lan-
guage	(DDL).	Create,	Alter,	Drop	are	Data	definition	commands.
	● The	language	which	is	used	to	manipulate	(change)	data	is	known	as	Data	Manipulation	
Language	(DML).	Insert,	Delete,	Update	and	Select	are	Data	manipulation	commands.

	● The	language	which	is	used	to	control	data	access	is	known	as	Data	Control	Language	
(DCL).	Grant	and	Revoke	are	Data	control	commands.
	● The	language	which	is	used	to	manage	transactions	is	known	as	Transaction	Control	Lan-
guage	(TCL).	Savepoint	and	Checkpoint	are	Transaction	control	commands.
	● The	combination	of	DDL	and	DML	is	known	as	Data	Sub	Language	(DSL).
	● When	there	is	no	need	to	change	application	program	if	we	change	data	type	and	size	of	
any	field,	it	is	called	data	independence.

	● When	there	is	no	need	to	change	application	program	if	we	change	table	structure,	it	is	
called	structural	independence.

ExErcisEs

	 1.	What	is	a	data	model?	Draw	chart	of	various	data	models	and	write	an	example	of	each	
type	of	data	model.

	 2.	Which	data	model	does	not	support	the	many-to-many	relationship	between	entities?	
Explain	that	model	with	advantages	and	disadvantages.

	 3.	 Discuss	Network	Data	Model	with	its	advantages	and	disadvantages.
	 4.	 Describe	Relational	Model	with	its	advantages.	Which	is	the	biggest	drawback	of	this	

model?
	 5.	 Explain	object-oriented	and	object-relational	data	models	with	their	advantages	and	dis-

advantages.

CH_2_Data Models and Architecture of DBMS_Final.indd 37 2/26/2014 3:37:06 PM

38 | Chapter 2

	 6.	Which	are	the	three	level	of	database	architecture?	Explain	each	in	detail	with	diagram.
	 7.	Write	a	brief	note	on	database	languages.
	 8.	 Differentiate	between	data	independence	and	structural	independence.
	 9.	 Tick	the	correct	answer:
	 i.	 IMS	is	an	example	of	which	data	model?
	 	 a.	 network	 	 	 b.	 hierarchical
	 	 c.	 relational	 	 	 d.	 object-relational
	 ii.	 IDS	is	an	example	of	which	data	model?
	 	 a.	 network	 	 	 b.	 hierarchical
	 	 c.	 relational	 	 	 d.	 object-relational
	 iii.	 OPAL	is	an	example	of	which	data	model?
	 	 a.	 network	 	 	 b.	 hierarchical
	 	 c.	 object-oriented	 	 d.	 object-relational
	 iv.	 Oracle	is	an	example	of	which	data	model?
	 	 a.	 network	 	 	 b.	 hierarchical
	 	 c.	 relational	 	 	 d.	 object-oriented
	 v.	 The	vendor	of	IMS	is	____________.
	 	 a.	 IBM	 	 	 b.	 Oracle
	 	 c.	 Microsoft	 	 	 d.	 Informix
	 vi.	Which	model	does	not	support	many-to-many	relationship?
	 	 a.	 network	 	 	 b.	 hierarchical
	 	 c.	 relational	 	 	 d.	 object-relational
	 vii.	 SQL	is	a	general-purpose	language	of	which	model?
	 	 a.	 network	 	 	 b.	 hierarchical
	 	 c.	 relational	 	 	 d.	 object-oriented
	 viii.	 SQL	is	a	____________	generation	language.
	 	 a.	 first	 	 	 b.	 second
	 	 c.	 third	 	 	 d.	 fourth
	 ix.	Which	model	requires	installing	extra	package	to	handle	types?
	 	 a.	 network	 	 	 b.	 hierarchical
	 	 c.	 relational	 	 	 d.	 object-relational
	 x.	 In	hierarchical	model,	the	parent	segment	is	known	as	________	segement.
	 	 a.	 branch	 	 	 b.	 dependent
	 	 c.	 root	 	 	 d.	 leaf
	 xi.	 In	hierarchical	model,	the	child	segment	is	known	as	________	segment.
	 	 a.	 fruit	 	 	 b.	 dependent
	 	 c.	 root	 	 	 d.	 leaf
	 xii.	 In	network	model,	the	parent	is	known	as	________.
	 	 a.	 owner	 	 	 b.	 dependent
	 	 c.	 root	 	 	 d.	 member
	 xiii.	 In	network	model,	the	child	is	known	as	________.
	 	 a.	 owner	 	 	 b.	 dependent
	 	 c.	 root	 	 	 d.	 member

CH_2_Data Models and Architecture of DBMS_Final.indd 38 2/26/2014 3:37:06 PM

Data Models and Architecture of DBMS | 39

	 xiv.	 In	network	model,	the	member	which	relates	two	owners	with	many-to-many	rela-
tionship	is	known	as.

	 	 a.	 set		 	 	 b.	 reset
	 	 c.	 combiner	 	 	 d.	 joiner
	 xv.	 In	architecture	of	database	there	is	(are)	_________	internal	view	(s).
	 	 a.	 only	one	 	 	 b.	 zero
	 	 c.	 many	 	 	 d.	 none	of	the	above
	 xvi.	 In	architecture	of	database	there	is	(are)	_________	conceptual	view	(s).
	 	 a.	 only	one	 	 	 b.	 zero
	 	 c.	 many	 	 	 d.	 none	of	the	above
	 xvii.	 In	architecture	of	database	there	is	(are)	_________	external	view	(s).
	 	 a.	 only	one	 	 	 b.	 zero
	 	 c.	 many	 	 	 d.	 none	of	the	above
	 xviii.	 Internal	view	means	how	computer	sees	the	data.
	 	 a.	 true	 	 	 b.	 false
	 xix.	 External	view	means	how	user	sees	the	data.
	 	 a.	 true	 	 	 b.	 false
	 xx.	 The	language	which	defines	database	object	is	known	as	__________.
	 	 a.	 DDL	 	 	 b.	 DML
	 	 c.	 DCL	 	 	 d.	 TCL
	 xxi.	 The	language	which	manipulates	data	is	known	as	__________.
	 	 a.	 DDL	 	 	 b.	 DML
	 	 c.	 DCL	 	 	 d.	 TCL
	 xxii.	 The	language	which	controls	data	is	known	as	__________.
	 	 a.	 DDL	 	 	 b.	 DML
	 	 c.	 DCL	 	 	 d.	 TCL

	 10.	 Consider	the	entities	given	below	and	answer	the	following	questions.
	 (a)	 Draw	hierarchical	and	network	models	for	the	entities	given	below.	
	 (b)	 Identify	the	relationships	between	entities.
	 (c)	 Define	primary	and	foreign	keys	for	each	entity.	(After	you	study	the	chapter	on	‘The	

Relational	Model’)

batch
batch Year

1 1999-2002
2 2000-2003
3 2001-2004
4 2002-2005
5 2003-2006
6 2004-2007
7 2005-2008
8 2006-2009
9 2007-2010
10 2008-2011
11 2009-2012

Class
Class Code Class Describe total students batch

Fy-1 fy div-1 60 1
Fy-2 fy div-2 60 1
Sy-1 sy div-1 60 1
Fy-1 fy div-1 60 2
Sy-2 sy div-2 60 2
Fy-1 fy div-1 90 3
Fy-2 fy div-2 90 3

CH_2_Data Models and Architecture of DBMS_Final.indd 39 2/26/2014 3:37:06 PM

40 | Chapter 2

faculty

facid faculty name

1 Shefali Naik

2 Hemal Desai

3 Heena Timani

4 Kunjal Gajjar

5 Trushali Jambudi

6 Aniruddh Parmar

7 Pratik Thanawala

student

std no. Class Code batch no. std name gender

1 fy-1 1 Hetal Agrawal Female

2 fy-1 1 Hemal Bavishi Male

82 fy-2 1 Malav Shah Male

84 fy-2 1 Megha Mehta Female

1 fy-1 2 Avani Kapadia Female

82 sy-2 2 Jenish Shah Male

63 sy-2 2 Richa Pathak Female

teach

facid subject no. Class Code batch

1 102 fy-1 1

1 201 sy-1 1

1 102 fy-2 1

2 104 fy-1 1

2 104 fy-2 1

3 202 sy-1 1

3 202 sy-2 2

subject

subject no. subject name

101 Communicative English

102 Internet and HTML

103 C Programming

104 Business Data Processing

105 PC Software

201 Computer System Architecure

202 Mathematical Foundation of
Computer Science

203 Operating System

204 Database Management
System

205 Windows Programming

CH_2_Data Models and Architecture of DBMS_Final.indd 40 2/26/2014 3:37:06 PM

CHAPTER
3

Relational Database Management
System

•	 Understanding	the	RDBMS	terminologies.
•	 Knowing	the	various	types	of	keys.
•	 Managing	data	with	integrity	rules.
•	 Using	set	operators	to	retrieve	data.

Chapter ObjeCtives

3.1 | intrOduCtiOn
As	we	have	discussed	in	Chapter	2,	relational	model	was	proposed	by	E.	F.	Codd	in	the	1970s.	
In	his	paper	on	relational	data	model,	Codd	explained	the	concept	of	relational	database	based	
on	relational	theory	of	mathematics.	

The	data	models,	such	as	hierarchical	and	network	did	not	provide	data	and	structural	inde-
pendence,	i.e.,	when	data	type	or	data	characteristics	were	changed,	the	application	program	had	
to	be	changed	too.	Similarly,	when	data	structures	in	these	models	were	changed,	the	applica-
tion	program	had	to	be	changed	too.	There	were	problems	of	ordering,	indexing	and	access	path	
dependence.	E.	F.	Codd	defined	the	twelve	rules	of	relational	database.

3.2 | rdbMs terMinOlOgy
Relation: Relational	data	model	is	based	on	relations	and	relationships	between	these	relations.	
Relation	 is	 a	 combination	 of	 related	 entity	 occurrences.	 Relation	 represents	 the	 real	world	
entity.	Entity	is	a	collection	of	related	entity	occurrences.	The	relation	has	the	following	char-
acteristics:

	 1.	 Each	row	represents	one	tuple	of	a	relation	(table).
	 2.	 The	ordering	of	rows	is	not	important	in	a	relation.

CH_3_Relational Database Management System_Final.indd 41 2/26/2014 3:38:11 PM

42 | Chapter 3

	 3.	 All	tuples	should	be	distinct	(unique).	This	can	be	achieved	by	defining	a	unique	identi-
fier	for	each	tuple.

	 4.	 The	ordering	of	columns	is	significant	because	it	corresponds	to	the	ordering	of	the	do-
mains	on	which	the	Relation	is	defined.

	 5.	 The	significance	of	each	column	is	partially	conveyed	by	labeling	it	with	the	name	of	the	
corresponding	domain.	For	example,	the	label	of	a	column	which	contains	valid	values	
of	student’s	roll	numbers	could	be	‘stdno’	or	‘student_no’	or	‘student_ID’	or	‘stdid’	or	
anything	else.)

	 6.	 Relation	is	a	two-dimensional	structure	which	is	made	up	of	tuples	and	attributes.
	 7.	 The	intersection	of	a	tuple	and	an	attribute	should	contain	a	single	value.	

Tuple and Cardinality: Each	entity	occurrence	represents	one	object.	An	entity occurrence	is	
represented	as	a	tuple	in	relation.	Total	number	of	tuples	in	a	relation	is	known	as	cardinality	
of	that	relation.	

Attribute and Degree: Each	entity	occurrence	has	some	attributes.	Attributes	describe	the	ob-
ject,	i.e.,	an	attribute	is	a	characteristic	of	the	object.	All	attributes	together	tells	about	the	object.	
Total	number	of	attributes	in	a	relation	is	known	as	degree	of	the	relation.	

Domain: The	values	of	attributes	are	derived	from	some	valid	set	of	predefined	values,	which	
is	 known	 as	 the	Domain	 of	 an	 attribute.	Two	 attributes	may	 have	 the	 same	 domain	within	
the	relation.

Figure	3.1	shows	the	relation	STUDENT,	which	represents	various	STUDENTS	instances.	
STUDENT	relation	is	a	collection	of	only	students,	 i.e.,	 the	relation	STUDENT	can	contain	
details	of	students,	not	suppliers	or	patients	or	doctors	or	customers	or	any	other	person.	

There	are	10	tuples	in	the	relation	STUDENT.	Therefore,	cardinality	of	this	relation	is	10.	
There	are	total	of	seven	attributes	in	the	relation	STUDENT.	So,	degree	of	this	relation	is	seven,	
i.e.,	it	is	a	seven-ary	relation.	

The	relation	which	has	only	one	attribute	is	known	as	unary relation,	relation	with	two	attri-
butes	is	known	as	binary relation,	relation	with	three	attributes	is	known	as	ternary relation…
and	relation	with	n	attributes	is	known	as	n-ary relation.

In	Figure	3.1,	STUDENT	relation	has	seven	attributes	student_ID,	student_name,	date_of_
birth,	city,	admission_date,	gender	and	email_address.	The	attributes	have	their	values	from	
some	valid	set	of	values	which	are	their	domains.	

The	domain	of	student_ID	field	is	an	integer.	But	student_ID	cannot	be	any	integer,	 there	
is	a	fixed	range	for	student_ID	and	it	has	to	be	derived	from	within	that	range.	In	a	relational	
database	management	system	we	can	restrict	this	value	by	defining	a	constraint	on	student_ID.	
Thus,	when	student_id	is	stored	into	the	relational	database	management	system	as	a	field	of	a	
table,	its	data	type,	size	and	constraint	together	will	define	its	domain.	

The	domain	of	the	student_name	field	is	a	set	of	characters.	But	student_name	can	con-
tain	only	 alphabets.	Therefore,	 it	must	 be	 restricted	only	 to	 accept	 alphabets.	Thus,	when	
student_name	is	stored	into	a	relational	database	management	system	as	a	field	of	a	table,	its	
data	 type,	size[char(50)]	and	constraint	(accept	only	characters	from	a–z	or	A–Z)	together	
will	define	 its	domain.	The	same	 is	applicable	 for	 the	city	attribute.	 (Note:	 If	we	consider	

CH_3_Relational Database Management System_Final.indd 42 2/26/2014 3:38:11 PM

Relational Database Management System | 43

the	mathematical	domain	of	student_id	then	it	is	a	set	of	natural	values	(N)	which	contains	
numbers	1,	2,	3,	4,	...,	n)	

The	date_of_birth	and	admission_date	have	date/time	data	type	as	its	domain.	Additional	
restriction	such	as	difference	between	current	year	and	birth	year	should	not	be	less	than	18	
at	the	time	when	student	is	admitted.

The	gender	 attribute	 has	 domain	 char(6),	 but	 it	must	 have	 only	 two	 values—‘Male’	 or	
‘Female’.

The	email_address	attribute	has	the	domain	char(50)	with	restriction	it	should	contain	only	
alphabets,	numbers	and	three	special	characters	‘@’	,	‘.’	and	‘_’.	

Thus,	in	real	life,	the	domain	is	a	set	of	valid	values	from	where	value	of	attribute	is	derived.	
When	it	is	implemented	through	RDBMS,	it	could	be	implemented	using	data	types	and	con-
straints	put	on	the	attribute.

A	 comparison	 between	 RDBMS	 terminology	 and	 traditional	 terminology	 is	 given	 in	
Table	3.1.

Figure 3.1 |	 Relation	STUDENT.

Student
Student
 _ID Student_Name

Date_of
 _Birth City

Admission_
Date Gender Email_Address

1 Akanksha
Sharma

3/4/1990 Ahmedabad 6/15/2009 Female

Domain:
Set of all
valid student
numbers

Domain:
Set of all
valid e-mail
addresses

Attribute 1 Attribute 2

c
a

r

d

i

n

a

l

i

t

y

Degree

akankshasharma@hlica.ac.in

2 Arpita Shah 9/17/1990 Ahmedabad 6/15/2009 Female arpitashah@hlica.ac.in

3

4
5

6

7

8
9

10

Pratik Patel

Hiren Pandya

Hardik Jain

Dhara Thakkar

Payal Shah

Kinjal Modi

Devarsh Mehta

Smit Shah

6/23/1990

12/28/1990

1/1/1991

5/24/1992

12/12/1992

7/23/1992

4/20/1992

8/23/1992

Ahmedabad

Surat

Surat

Bhavnagar

Ahmedabad

Ahmedabad

Ahmedanad

Ahmedabad

6/15/2009

6/15/2009

6/15/2009

6/19/2010

6/19/2010

6/19/2010

6/19/2010

6/19/2010

Male

Male

Male

Female

Female

Female

Male

Male

pratikpatel@hlica.ac.in

hirenpandya@hlica.ac.in

hardikjain@hlica.ac.in

dharathakkar@hlica.ac.in

payalshah@hlica.ac.in

kinjalmodi@hlica.ac.in

devarshmehta@hlica.ac.in

smitshah@hlica.ac.in

CH_3_Relational Database Management System_Final.indd 43 2/26/2014 3:38:12 PM

44 | Chapter 3

table 3.1 |	 Comparison	Between	RDBMS	and	Traditional	Terminologies

rdbMs terminology traditional terminology

Relation Table

Tuple Record/Row

Attribute Field/Column

Domain Valid set of values

Cardinality Total number of records in a table

Degree Total number of fields in a table

3.3 | variOus types OF Keys
In	a	relational	model,	each	tuple	should	be	identified	with	a	unique	identification	number.	The	
unique	identification	number	could	be	a	single	attribute	value,	or	combination	of	attribute	val-
ues.	Also,	to	relate	two	relations,	there	should	be	a	common	attribute	or	combination	of	attri-
butes	between	two	relations.

An	attribute,	or	combination	of	attributes	which	help	to	define	relationships	between	entities	
is	called	a	key.	Any	attribute	that	is	part	of	a	key	is	known	as	a	key attribute.

There	are	various	types	of	keys,	such	as	primary	key,	composite	key,	super	key,	candidate	
key,	alternate	key,	unique	key,	foreign	key,	secondary	key	and	surrogate	key.	Consider	the	rela-
tions	given	in	Figure	3.2,	for	which	different	types	of	keys	can	be	defined.

 1. Primary Key:	The	attribute	(column)	or	combination	of	attributes	which	uniquely	iden-
tifies	each	tuple(row)	of	a	relation(table)	is	called	a	primary key.	A	relation	can	have	
only	one	primary	key,	but	it	can	be	combination	of	more	than	one	attributes.	Primary	key	
cannot	contain	duplicate	or	null	values.	If	primary	key	is	a	combination	of	more	than	one	
attributes,	then	combination	of	all	the	attribute	values	should	be	unique	and	none	of	the	
attributes	can	contain	null	value.	Null	means	unknown	value.	It	does	not	mean	zero	or	
space,	or	blank.	For	the	relations	as	given	in	Figure	3.2,	Table	3.2	shows	the	primary	keys.

 2. Composite Key:	When	primary	key	 is	a	combination	of	 two	or	more	attributes,	 it	 is	
known	as	composite key.	Composite	key	uniquely	identifies	each	tuple	of	a	relation.The	

table 3.2 |	 List	of	Primary	Keys	for	Relations	Given	in	Figure	3.2

relation name (table) primary Key

Batch Batchid

Class Classcode+Batchid (+ sign shows the combination
of attributes)

Faculty Facid

Subject Subjectno

Student Stdno+classcode+batchno

Teach Facid+subjectno+classcode+batchid

CH_3_Relational Database Management System_Final.indd 44 2/26/2014 3:38:12 PM

Relational Database Management System | 45

Figure 3.2 |	 Database	of	an	institute.

Faculty

Facid Faculty name

1 Shefali Naik

2 Hemal Desai

3 Heena Timani

4 Kunjal Gajjar

5 Trushali Jambudi

6 Aniruddh Parmar

7 Siddhi Shah

student

std no. Class Code batch no. std name gender

 1 fy-1 1 Hetal Agrawal Female

 2 fy-1 1 Hemal Bavishi Male

82 fy-2 1 Malav Shah Male

84 fy-2 1 Megha Mehta Female

 1 fy-1 2 Avani Kapadia Female

82 sy-2 2 Jenish Shah Male

63 sy-2 2 Richa Pathak Female

teach

Facid subject no. Class Code batch

1 102 fy-1 1

1 201 sy-1 1

1 102 fy-2 1

2 104 fy-1 1

2 104 fy-2 1

3 202 sy-1 1

3 202 sy-2 2

subject

subject no. subject name

101 Communicative English

102 Internet and HTML

103 C Programming

104 Business Data Processing

105 PC Software

201 Computer System Architecure

202 Mathematical Foundation of
Computer Science

203 Operating System

204 Database Management
System

205 Windows Programming

batch

batch id year

 1 1999-2002

 2 2000-2003

 3 2001-2004

 4 2002-2005

 5 2003-2006

 6 2004-2007

 7 2005-2008

 8 2006-2009

 9 2007-2010

10 2008-2011

 11 2009-2012

Class

Class Code Class desc total students batch id

Fy-1 fy div-1 60 1

Fy-2 fy div-2 60 1

Sy-1 sy div-1 60 1

Fy-1 fy div-1 60 2

Sy-2 sy div-2 60 2

Fy-1 fy div-1 90 3

Fy-2 fy div-2 90 3

CH_3_Relational Database Management System_Final.indd 45 2/26/2014 3:38:12 PM

46 | Chapter 3

combination	of	attribute	values	in	composite	key	for	each	tuple	is	unique.	No	attribute	of	
a	composite	key	can	contain	null	value.	A	relation	(table)	can	have	only	one	composite	
key	because	ultimately	it	is	a	primary	key.	For	the	relations	as	given	in	Figure	3.2,	Table	
3.3	shows	the	composite	keys.

 3. Super Key:	An	attribute	or	combination	of	attributes	that	uniquely	identify	each	record	
in	a	table	is	called	a	super key.	Super	key	is	a	super	set	of	primary	keys.	i.e.,	if	we	add	
any	attributes	of	 same	 table	 into	primary	key,	 then	 it	 is	 called	a	 super	key.	 It	means,	
super	key	=	primary	key	+	any	other	attribute(s)	of	that	table.	For	the	relations	as	given	
in	Figure	3.2,	Table	3.4	shows	the	super	keys.

 4. Candidate Key:	A	super	key	without	redundancies	or	a	minimal	super	key,	is	called	a	
candidate key.	The	candidate	key	uniquely	identifies	each	record	of	a	table.	In	a	table,	
there	may	be	more	than	one	candidate	keys.	After	identifying	the	candidate	keys,	any	one	
of	the	appropriate	candidate	key	is	selected	as	a	primary	key.	The	candidate	keys	have	
unique	values.	For	the	relations	as	given	in	Figure	3.2,	Table	3.5	shows	the	candidate	keys.

 5. Alternate Key:	The	candidate	keys,	which	are	not	a	primary	key,	are	called	alternate
keys.	 For	 example,	 in	 the	 table	 CLASS,	 one	 candidate	 key	 (classcode +	 batchid)	

table 3.3 |	 List	of	Primary	Keys	for	Relations	Given	in	Figure	3.2

relation name (table) Composite Key

Class Classcode + Batchid (+ sign shows the combination
of attributes)

Student Stdno + classcode + batchno

Teach Facid + subjectno + classcode + batchid

table 3.4 |	 List	of	Super	Keys	for	Relations	Given	in	Figure	3.2

relation name (table) super Key

Batch i. (Batchid)+year

Class i. (Classcode+Batchid)+classdesc
 ii. (Classcode+Batchid)+Totalstudents
iii. (Classcode+Batchid)+classdesc+Totalstudents

Faculty i. (Facid)+facultyname

Subject i. (Subjectno)+subjectname

Student i. (Stdno+classcode+batchno)+stdname
 ii. (Stdno+classcode+batchno)+gender
iii. (Stdno+classcode+batchno)+stdname+gender

Teach —

CH_3_Relational Database Management System_Final.indd 46 2/26/2014 3:38:12 PM

Relational Database Management System | 47

combination	 is	 selected	 as	 a	 primary	 key.	 Therefore,	 the	 other	 candidate	 key	 (class
desc+batchid)	combination	is	known	as	an	alternate	key.	For	the	relations	as	given	in	
Figure	3.2,	Table	3.6	shows	the	respective	alternate	keys.

 6. Unique Key: The	key	which	contains	unique	values	id	known	as	unique key.	Unique	
key	accepts	only	unique	values,	but	it	accepts	null	values	also.	For	example,	classdesc	is	
a	unique	key	in	CLASS	table.

 7. Foreign Key: An	attribute	or	combination	of	attributes,	in	one	table,	whose	value	must	
either	match	the	primary	key	in	another	table	or	be	null	is	known	as	foreign key.	The	
field	or	combination	of	fields	can	become	foreign	key,	if	and	only	if,	it	is	a	primary	key	
of	another	 table.	Whenever	primary	key	 is	 referred,	 the	entire	primary	key	should	be	
referred,	no	single	attribute	of	a	primary	key	can	be	referred.	Also,	if	the	foreign	key	is	
referred	from	a	composite	key,	then	the	sequence	of	the	attributes	should	be	maintained	
in	the	foreign	key	and	data	types	(domains)	of	corresponding	attributes	should	match.	
The	attributes	may	have	different	names.	The	foreign	key	can	accept	duplicate	and	null	
values.	For	the	relations	as	given	in	Figure	3.2,	Table	3.7	shows	the	foreign	keys.

table 3.5 |	 List	of	Candidate	Keys	for	Relations	Given	in	Figure	3.2

relation name (table) Candidate Key

Batch I. Batchid
II. Year

Class I. Classcode+Batchid
II. Classdesc+Batchid

Faculty Fac id

Subject I. Subjectno
II. Subjectname

Student Stdno + classcode + batchno

Teach Facid + subjectno + classcode + batchid

 table 3.6 |	 List	of	Alternate	Keys	for	Relations	Given
																																																	 		in	Figure	3.2

relation (table) alternate Key

Batch Year

Class Classdesc + Batchid

Faculty —

Subject Subject name

Student —

Teach —

CH_3_Relational Database Management System_Final.indd 47 2/26/2014 3:38:12 PM

48 | Chapter 3

table 3.7 |	 List	of	Foreign	Keys	for	Relations	Given	in	Figure	3.2.

relation name (table) Foreign Key

Batch —
Class Batchid is a foreign key which is referred from batch

table’s batchid field.
Faculty —
Subject —
Student Classcode+batchid referred from class tables

classcode+batchid
Teach I. Facid referred from faculty table’s facid

 II. Subjectno referred from subject table’s subjectno
III. Classcode+batchid referred from class tables

classcode+batchid

 8. Secondary Key:	The	attribute	or	combination	of	attributes	which	are	used	for	retrieval	
purpose	is	known	as	secondary key.	For	example,	subjectname,	facultyname,	etc.,	are	
secondary	keys.

 9. Surrogate Key:	The	artificial	primary	key	is	known	as	surrogate key.	When	primary	
key	is	very	complicated	and	difficult	to	handle,	then	surrogate	key	is	required.	It	is	gen-
erally	an	attribute	which	is	a	number	and	can	be	autogenerated.	For	example,	the	table	
TEACH	contains	a	primary	key	which	has	four	attributes	and	difficult	to	maintain.	In	this	
case,	one	additional	attribute	say	teachingid	could	be	taken	as	a	primary	key	which	could	
be	autogenerated	number.	

3.4 | integrity rules
There	were	problems	of	 integrity	with	 traditional	models,	 such	 as	network	 and	hierarchical	
models.	Change	or	removal	of	parent	records	were	not	reflected	in	the	child	record.	User	had	
to	do	it	manually.	The	relational	model	facilitate	this	with	the	help	of	defining	the	Primary	Key	
and	the	Foreign	Key.	The	two	rules,	related	to	these	keys,	are	known	as	the	integrity	rules.	The	
first	integrity	rule	is	related	to	the	primary	key	which	is	known	as	Entity	Integrity	Rule,	and	the	
second	rule	related	to	the	Foreign	Key	is	known	as	the	Referential	Integrity	Rule.	Both	the	rules	
are	explained	below:

 1. Entity Integrity Rule (Integrity Rule-I): ‘No	primary	key	value	of	a	relation	is	allowed	
to	be	null,	or	to	have	a	null	component.’ Here,	Component	means	any	attribute	which	
is	part	of	a	primary	key.	If	 the	primary	key	is	a	composite	key,	 then	each	attribute	of	
that	composite	key	is	known	as	one	component.	To	explain	this,	if	a	composite	key	is	a	
combination	of	four	attributes,	then	there	are	four	components.	If	a	composite	key	is	a	
combination	of	two	attributes,	then	there	are	two	components,	and	so	on.	

	 	 	 		The	entity	integrity	rule	states	that	primary	key	cannot	contain	null	value	and,	if	pri-
mary	key	is	a	composite	key,	then	none	of	the	attribute	of	this	composite	key	can	contain	
null	value.	Figure	3.3	shows	a	table,	SUBJECT,	in	which	the	primary	key	is	a	subjectno,	
which	is	a	single	attribute.	In	this	case	subjectno	cannot	contain	null	value.	Figure	3.4	
shows	a	table,	CLASS,	in	which	primary	key	is	a	composite	key	which	is	a	combination	

CH_3_Relational Database Management System_Final.indd 48 2/26/2014 3:38:13 PM

Relational Database Management System | 49

of	fields	classcode	and	batchid.	 In	this	case,	classcode	cannot	contain	null	and	batchid	
also	cannot	contain	null.

 2. Referential Integrity Rule (Integrity Rule-II):	 ‘Let	 Attribute1	 is	 an	 attribute	 for	
which	values	are	derived	from	domain	Domain1. Attribute1	is	a	primary	key	of	Rela-
tion1	relation.	Let	Attribute2	is	an	attribute	for	which	values	are	derived	from	domain	
of	Attribute1	which	is		Domain1. Attribute2	is	a	part	of	Relation2	relation.	Then,	at	any	
given	time,	each	value	of	Attribute2	in	Relation2	must	be	either:	(a)	null	or	(b)	equal	to	
Value1,	where	Value1		is	the	value	of	an	Attribute1.’

	 	 	 			The	above	rule	says	that	when	any	attribute	or	combination	of	attributes	is	a	primary	
key	of	some	table	and	referred	as	a	foreign	key,	the	foreign	key	may	have	either	null	
value	or	the	value	of	a	primary	key	from	where	it	is	referred.	Foreign	key	can	have	du-
plicate	values.	The	rule	is,	data	types(domains)	of	corresponding	attributes	of	primary	
key	and	foreign	key	should	be	same,	the	names	of	attributes	may	be	different.	For	ex.,	
consider	two	tables	DEPARTMENT	and	EMPLOYEE	in	Figure	3.5.	If	an	employee	
exists,	he/she	must	be	working	in	some	department.	i.e.,	the	department	should	exists	
before	employee	is	assigned	to	that	department.	It	means	that	deptno	field	of	employee	
table	will	have	only	those	values	which	exists	in	the	deptno	field	of	department	table.	
Here,	deptno	field	of	both	the	tables	share	the	same	domain.	If	employee’s	department	
is	not	known,	in	case	of	new	recruitment,	then	at	that	time	deptno	in	employee	table	
may	be	kept	null,	but	it	cannot	have	value	which	is	not	there	in	the	deptno	field	of	de-
partment	table.	Therefore,	deptno	field	of	employee	table	could	be	defined	as	a	foreign	
key	which	is	reference	from	the	deptno	field	of	department.

subject
subject no. subject name

101 Communicative English
102 Internet and HTML
103 C Programming
104 Business Data Processing
105 PC Software
201 Computer System Architecure

Class
Class Code Class desc total students batch id

Fy-1 fy div-1 60 1
Fy-2 fy div-2 60 1
Sy-1 sy div-1 60 1
Fy-1 fy div-1 60 2
Sy-2 sy div-2 60 2
Fy-1 fy div-1 90 3
Fy-2 fy div-2 90 3

Figure 3.3 |	 SUBJECT	table	has	Subject	No.	primary	key.

Figure 3.4 |	 CLASS	table	has	(Classcode	+	Batchid)	primary	key.

CH_3_Relational Database Management System_Final.indd 49 2/26/2014 3:38:13 PM

50 | Chapter 3

3.5 | relatiOnal set OperatOrs
The	traditional	set	operations	are	Union,	Intersection,	Difference	and	Cartesian	Product.	The	two	
relations	(tables)	used	in	Union,	Intersection	or	Difference	must	be	union-compatible. It	means,	
they	must	be	of	same	degree	(same	number	of	fields),	and	all	the	fields	of	both	the	relations	must	
be	drawn	from	same	domain	(data	type).	For	example,	if	employee	(empno,	empname,	bdate,	
deptno)	and	department	(dno,	dname)	are	two	relations	and,	if	we	are	doing	union	of	these	two	
relations,	then	both	should	have	same	number	of	attributes	and	corresponding	attributes	must	
have	same	data	type.	To	explain	this,	when	we	select	fields	from	tables	using	a	‘select’	state-
ments,	number	of	fields	in	both	select	statements	should	be	same	and	data	types	of	corresponding	
fields	should	be	same.	(Note:	same	degree/number	of	fields	in	both	relations	does	not	mean	that	if	
employee	table	have	5	fields,	then	department	table	must	have	5	fields.	But,	if	we	select	2	fields	
from	the	employee	table,	then	we	must	have	to	select	only	2	fields	from	the	department	table.)	
The	same	is	applicable	for	intersection	and	difference	(difference	is	called	‘minus’	in	Oracle).

 1. Union:		The	union	of	two	union-compatible	relations	A	and	B,	A	Union	B,	is	the	set	of	all	
tuples	t	belonging	to	either	A	or	B	or	both.	For	example,	consider	tables	department	and	
employee	given	in	Figure	3.6.	If	we	take	union	of	department	table	and	employees	working	
in	specific	department,	then	the	resultant	table	will	display	department	either	department	
names	or	employee	names	working	in	specific	department,	or	both.	The	query	should	be:

Select deptno, deptname from department

Union

Select deptno, empname from employee;

	 	 The	resultant	table	will	be	Table	3.8.
 2. Intersection:		The	intersection	of	two	union-compatible	relations	A	and	B,	A	Intersec-

tion	B,	is	the	set	of	all	tuples	t	belonging	to	both	A	and	B.	For	example,	intersection	of	
department	and	employee	table	will	display	all	the	records	for	which	deptno	matches	in	
both	the	tables.	The	query	should	be	:

Select deptno from department
Intersect

Select deptno from employee;

	 	 The	resultant	table	will	be	Table	3.9.
 3. Difference:	The	difference	between	 the	 two	union-compatible	 relations	A	and	B,	A	

minus	B,	is	the	set	of	all	tuples	t	belonging	to	A	and	not	to	B.	For	example,	the	difference	

Figure 3.5 |	 Primary	key	of	department	table	is	referred	as	foreign	key	in	Employee	table.

1011 S.K.Khanna 20000.00

1012

1

1 N.V.Jani 15000.00

1013 Null B.R.Shah 17000.00

Foreign Key

Employee
Empno Deptno Empname Basic_Salary

Primary Key

Department
DeprtnameDeptno
Computer1

2 HR

CH_3_Relational Database Management System_Final.indd 50 2/26/2014 3:38:13 PM

Relational Database Management System | 51

between	the	department	 table	and	the	employee	table	will	display	all	 the	departments	
which	have	no	employee.	The	query	should	be	(in	Oracle	database):

Select deptno from department
Minus

Select deptno from employee;

	 	 The	resultant	table	will	be	Table	3.10.
 4. Cartesian Product:	The	cartesian	product	of	two	relations	A	and	B,	A	times	B,	is	the	

set	of	all	tuples	t	such	that	t	is	the	concatenation	of	a	tuple	a	belonging	to	A	and	a	tuple	b	
belonging	to	B.	For	example,	Cartesian	product	of	department	and	employee	tables	will	
display	pair	of	department	and	employee.	There	are	4	records	in	department	and	five	re-
cords	in	employee,	so	resultant	table	will	display	4	×	5	=	20	total	records.	No	condition	
should	be	specified	in	select	query	to	display	Cartesian	product.	The	query	should	be:

Select department.deptno, deptname, empname
from department, employee;

	 	 The	resultant	table	will	be	Table	3.11.

Figure 3.6 |	 Employee	and	department	tables.

department

dept no. dept name

1 Computer

2 HR

3 Marketing

4 Production

employee

emp no dept no. emp name basic_salary

1011 1 S. K. Khanna 20000

1012 1 N. V. Jani 15000

1013 2 B. R. Shah 17000

1014 2 T. J. Nair 12000

1015 3 V. T. Tripathi 23000

table 3.8 |	 Union	
of	Department	and	Employee

union

dept no. dept name

1 Computer

1 N. V. Jani

1 S. K. Khanna

2 B. R. Shah

2 HR

2 T. J. Nair

3 Marketing

3 V. T. Tripathi

4 Production

table 3.9 |	
Intersection	
of	Department	
and	Employee

intersection

dept no.

1

1

2

2

3

table 3.10 |
Differenceof	Department	
and	Employee

difference

dept no.

4

CH_3_Relational Database Management System_Final.indd 51 2/26/2014 3:38:13 PM

52 | Chapter 3

3.6 | retrieval OperatOrs
To	retrieve	particular	data	from	tables,	retrieval	operators	are	used.	The	result	of	any	retrieval	
is	again	a	table.	Resultant	table	is	retrieved	from	source	tables.	To	form	a	resultant	table,	more	
than	one	database	tables	may	be	used.	There	are	3	types	of	such	retrieval	operators:	(i)	Select,	
(ii)	Project,	and	(iii)	Join.

	● Select:	The	select	operator	creates	a	new	table	by	taking	a	horizontal	subset	of	an	existing	
table,	i.e.,	all	rows	of	an	existing	table	that	satisfies	some	condition.	For	example,	if	we	
want	to	find	details	of	employee	1011,	then	it	can	be	done	by	the	select	operator.

Select * from employee where empno=1011;

It	will	display	Table	3.12.
Employee	is	the	original	table	on	which	we	are	applying	select	operator	to	find	details	of	
employee	whose	number	is	1011.	
	● Project:	The	project	operator	displays	a	vertical	subset	of	an	existing	table	by	retriev-
ing	 the	 specified	 columns.	 For	 example,	 if	 we	want	 to	 display	 the	 columns	 deptno	

table 3.11 |	 Cartesian	Product	of	Department	and	Employee	Tables

Cartesian product

dept no. dept name emp name

1 Computer S K Khanna

2 HR S K Khanna

3 Marketing S K Khanna

4 Production S K Khanna

1 Computer N V Jani

2 HR N V Jani

3 Marketing N V Jani

4 Production N V Jani

1 Computer B R Shah

2 HR B R Shah

3 Marketing B R Shah

4 Production B R Shah

1 Computer T J Nair

2 HR T J Nair

3 Marketing T J Nair

4 Production T J Nair

1 Computer V T Tripathi

2 HR V T Tripathi

3 Marketing V T Tripathi

4 Production V T Tripathi

CH_3_Relational Database Management System_Final.indd 52 2/26/2014 3:38:13 PM

Relational Database Management System | 53

and	empname	from	employee	table	then	it	can	be	done	by	project	operator.	To	imple-
ment	 the	project	operator	 the	 following	query	 should	be	written,	which	will	display	
Table	3.13.

Select deptno, empname from employee;

Employee	is	the	original	table	on	which	we	are	applying	project	operator	to	find	all	em-
ployee	numbers	and	employee	names.	

	● Join:	If	two	tables	contain	a	column	defined	over	a	same	domain	(domain	=	data	type),	
they	may	be	joined	over	those	two	columns.	The	result	of	this	join	is	a	new	table	in	which	
each	row	will	contain	attributes	from	selected	tables.	For	example,	if	we	want	to	display	
department	name	and	employees	working	in	that	department,	then	it	can	be	done	by	join		
operator.	To	implement	the	join	operator	the	following	query	should	be	written,	which	
will	display	Table	3.14.

Select deptname, empname from employee, department where

department.deptno= employee.deptno;

3.7 | COdd’s twelve rules OF relatiOnal database
E.	F.	Codd	represented	the	following	twelve	rules	of	relational	database:

	 1.	 Information Rule:	Information	should	be	stored	as	a	value	in	each	cell	of	a	table.	Cell	
is	an	intersection	of	row	and	column.

	 2.	Guaranteed Access Rule:	Each	value	of	a	table	should	be	accessed	through	table	name	
and	key	attributes/columns.

	 3.	Null Values:	‘Null’	represents	unknown	values	of	a	column	irrespective	of	data	type.

table 3.13 |	 Result	of	Project	
Operator

dept no. emp name

1 S. K. Khanna

1 N. V. Jani

2 B. R. Shah

2 T. J. Nair

3 V. T. Tripathi

table 3.14 |	 Join	of	Department	
and	Employee	Tables

dept name emp name

Computer S. K. Khanna

Computer N. V. Jani

HR B. R. Shah

HR T. J. Nair

Production V. T. Tripathi

table 3.12 |	 Result	of	SELECT	Operator

empno dept no. empname basic_salary

1011 1 S. K. Khanna 20000

CH_3_Relational Database Management System_Final.indd 53 2/26/2014 3:38:13 PM

54 | Chapter 3

	 4.	 System catalog maintenance:	Data	about	data	is	generated	and	stored	automatically	in	
the	system	catalog	or	data	dictionary.

	 5.	Database language:	There	must	exists	one	common	 language	 for	all	 relational	data-
bases	to	manage	the	data	within	database.	Syntax	of	this	language	should	remain	same	
in	all	the	databases.	This	language	is	currently	known	as	Structured	Query	Language.

	 6.	Rule for updatable view:	views	should	be	updatable.
	 7.	 Insert, Update and Delete operations:	Data	should	be	inserted,	deleted	and	updated	to/

from	tables.
	 8.	Physical Data Independence:	 Application	 programs	 should	 be	 independent	 from	

memory	locations.
	 9.	Logical Data Independence:	Application	programs	should	be	independent	from	data	

values.
	 10.	 Integrity Independence:	All	the	tables	within	one	database	should	be	integrated	prop-

erly	through	relationships.
	 11.	Distribution Independence:	Application	program	should	be	independent	from	table’s	

location.
	 12.	Non-subversion Rule:	All	the	rules	written	on	fields	of	a	table	should	be	enforced	for	

each	record.

3.8 | database liFe CyCle
Database	 life	 cycle	 is	 a	 part	 of	 System	Development	 Life	Cycle	 (SDLC).	During	 system	
design	phase,	the	database	of	the	system	is	designed.	Database	Life	Cycle	(DBLC)	contains	the	
following	phases:

 1. Database	 selection:	 From	 the	 System	 Requirements	 Specification	 (SRS)	 Document,	
proper	database	management	system	is	selected	to	manage	the	system’s	data.

	 2.	 Database	 design:	According	 to	 SRS,	 the	 tables	 are	 designed	with	 its	 fields	 and	 con-
straints.	Tables	are	integrated	with	proper	relationship.	

	 3.	 Data	loading	or	data	transfer	(conversion):		After	tables	are	designed,	the	data	are	stored	
in	the	tables	through	the	application	software	after	they	are	tested	for	the	correctness.	If	
data	are	already	stored	in	some	other	database,	then	they	are	imported	(transferred)	using	
proper	command	or	application.

	 4.	Maintenance	of	data:	In	case	of	any	changes	in	data	due	to	changing	requirements,	the	
database	is	changed	and	data	are	maintained.

3.9 | data diCtiOnary
Data dictionary	is	also	known	as	system	catalog.	It	stores	data	about	data	or	metadata.	Data	
dictionary	 contains	 all	 the	 tables,	 description	of	 tables,	fields	 and	 its	 data	 types,	 constraints	
which	should	be	applied	on	the	fields,	format	of	the	fields,	specific	set	of	values	which	fields	
should	contain,	etc.	Data	dictionary	also	contains	description	of	other	objects	of	database.

CH_3_Relational Database Management System_Final.indd 54 2/26/2014 3:38:13 PM

Relational Database Management System | 55

SuMMARY
	● Relational	model	 is	based	on	 the	 concepts	of	 set	 theory	of	mathematics.	 In	 relational	
model,	entity	is	stored	as	a	relation,	each	entity	occurrence	is	stored	as	a	tuple	and	char-
acteristic	of	an	entity	is	stored	as	an	attribute.	

	● Relation	means	table,	tuple	means	row/record,	and,	attribute	means	column/field.	
	● Total	number	of	columns	in	relation	is	known	as	a	degree	of	relation	and	total	number	of	
rows	is	known	as	cardinality.
	● A	domain	is	a	valid	set	of	values	from	where	attribute’s	values	are	derived.
	● Each	relation	must	have	unique	tuple	which	can	be	obtained	by	defining	unique	identifier	
for	each	tuple.	This	unique	identifier	is	known	as	the	primary	key	of	the	table.

	● To	maintain	integrity	between	data,	foreign	key	can	be	defined,	which	should	be	referred	
from	the	parent	table’s	primary	key.	The	data	type	of	both	the	fields	should	match.	
	● Primary	key	is	a	field	or	combination	of	fields	which	uniquely	identifies	each	tuple.	Pri-
mary	key	contains	unique	and	not	null	values.
	● Candidate	key	is	also	a	field	or	combination	of	fields	which	uniquely	identifies	each	tuple.	
From	the	list	of	candidate	keys,	any	one	key	is	selected	as	a	primary	key,	the	remaining	
keys	are	known	as	alternate	keys.
	● Super	key	is	a	super	set	of	primary	key.	That	is,	if	we	add	some	other	fields	from	the	same	
relation	in	a	primary	key,	it	is	known	as	super	key.
	● Unique	key	contains	unique	values.	The	difference	between	primary	key	and	unique	key	
is:	unique	key	can	contain	null	values,	while	primary	key	cannot.
	● Secondary	key	is	used	for	retrieval	purpose.
	● Surrogate	key	 is	an	artificial	primary	key	which	 is	 introduced	 in	place	of	 the	original	
primary	key	when	it	is	very	difficult	to	handle	the	original	primary	key.

	● To	 maintain	 integrity,	 two	 rules	 should	 be	 applied-Entity	 integrity	 and	 Referential	
integrity.

	● Rule	of	entity	integrity	says	that	primary	key/composite	key	cannot	contain	null	values.	
In	case	of	composite	key,	any	component	cannot	contain	null	value.	Component	means,	
individual	field	of	a	composite	key.

	● Rule	of	referential	integrity	says	that	foreign	key	can	be	derived	from	the	primary	key	
of	some	other	table	or	same	table.	The	data	type	of	a	foreign	key	should	be	same	as	data	
type	of	a	primary	key	of	other	table.	Foreign	key	can	have	either	null	value	or	the	value	
of	a	field	from	where	it	is	referenced.	
	● There	are	different	set	operators	which	can	be	applied	on	tables.	Union,	Intersection,	Dif-
ference	and	Cartesian	Product	are	set	operators.

	● Union	will	display	rows	from	first	table	or	second	table	or	from	both	the	tables.
	● Intersection	will	display	common	rows	from	first	table	and	second	table.
	● Difference	will	display	records	from	the	first	tables	which	do	not	exists	in	the	second	table.
	● Cartesian	Product	will	display	cross	join	of	two	tables.	It	will	display	pair	of	records	from	
both	the	tables.

	● There	are	operators-Select,	Project	and	Join	which	are	used	to	retrieve	data.
	● Select	will	display	horizontal	subset	of	the	table,	Project	will	display	vertical	subset	of	the	
table,	and	Join	will	display	fields	from	two	tables.

CH_3_Relational Database Management System_Final.indd 55 2/26/2014 3:38:14 PM

56 | Chapter 3

ExErcisEs

	 1.	 Explain	the	terminologies	of	a	relation	model.
	 2.	What	is	domain?	Give	any	five	examples	of	domain.
	 3.	 Discuss	various	types	of	keys	giving	suitable	examples.
	 4.	 State	and	explain	entity	and	referential	integrity	rules.
	 5.	 Describe	set	operators	with	examples.
	 6.	 Describe	retrieval	operators	with	examples.
	 7.	 Tick	the	correct	answer:

	 i.	 The	key	which	contains	unique	and	not	null	values	is																										key.
	 	 a.	 foreign	 	 	 b.	 primary
	 	 c.	 unique	 	 	 d.	 secondary
	 ii.	 Unique	key	contain	null	values.
	 	 a.	 true	 	 	 b.	 false
	 iii.	 Foreign	key	can	be	derived	from	the																									key	of	another	table.
	 	 a.	 foreign	 	 	 b.	 primary
	 	 c.	 unique	 	 	 d.	 secondary
	 iv.	 Relation	means																								.
	 	 a.	 field	 	 	 b.	 record
	 	 c.	 table	 	 	 d.	 attribute
	 v.	 Attribute	means	____________.
	 	 a.	 field	 	 	 b.	 record
	 	 c.	 table	 	 	 d.	 tuple
	 vi.	 Tuple	means																									.
	 	 a.	 field	 	 	 b.	 record
	 	 c.	 table	 	 	 d.	 attribute
	 vii.	 Entity	integrity	rule	is	related	with																									key.
	 	 a.	 foreign	 	 	 b.	 primary
	 	 c.	 unique	 	 	 d.	 secondary
	 viii.	 Referential	integrity	rule	is	related	with																												key.
	 	 a.	 foreign	 	 	 b.	 primary
	 	 c.	 unique	 	 	 d.	 secondary
	 ix.	 Each	composite	key	is	a	primary	key,	but	each	primary	key	is	not	necessarily	com-

posite	key.
	 	 a.	 true	 	 	 b.	 false
		 x.	 																							is	a	horizontal	subset	of	a	table.
		 	 a.	 Select	 	 	 b.	 Project
	 	 c.	 Join	 	 	 d.	 Divide
	 xi.	 																						is	a	vertical	subset	of	a	table.
	 	 a.	 Select	 	 	 b.	 Project
	 	 c.	 Join	 	 	 d.	 Divide
	 xii.	 																						displays	records	from	first	or	second	or	both	the	tables.
	 	 a.	 Union	 	 	 b.	 Intersection
	 	 c.	 Divide	 	 	 d.	 Difference

CH_3_Relational Database Management System_Final.indd 56 2/26/2014 3:38:14 PM

Relational Database Management System | 57

	 xiii.	 																						displays	common	records	from	both	the	tables.
	 	 a.	 Union	 	 	 b.	 Intersection
	 	 c.	 Divide	 	 	 d.	 Difference
	 xiv.	 Domain	of	Rollno.	Field	can	be																				.
	 	 a.	 Integer	 	 	 b.	 Float
	 	 c.	 Date	 	 	 d.	 Text
	 xv.	 Domain	of	birthdate	Field	can	be																						.
	 	 a.	 Integer	 	 	 b.	 Float
	 	 c.	 Date	 	 	 d.	 Text

	 8.	 Identify	all	possible	types	of	keys	from	the	following	tables.

event_type

event_type

Solo
Group

event_category

Cat_id Cat_name
1 Drama
2 singing
3 dance
4 Intellect
5 Art
6 Sports
7 Others

participant

pid pname gender Class id rollno phone bdate

1 Nida F SY-II 111
2 Vedangi F SY-II 86
3 Sushil M SY-II 80
4 Poonam F TY-II 57
5 Kanan F TY-II 115
6 Robin M TY-I 20
7 Jay M TY-I 50
8 Niti F TY-I 23
9 Ritu F TY-I 3
10 Nilesh M SY-I 35
11 Sajan M SY-I 1

event_transaction

event_id parti_id
17 4
17 3
1 4
3 4
3 3
3 6
11 1
11 8
5 5

eventheader

event id total_parti Faculty_iC leaderid

17 1 Heena Timani 4
17 1 Heena Timani 3
1 1 Shefali Naik 4
3 1 Hemal Desai 4
3 1 Hemal Desai 3
3 1 Hemal Desai 6

11 1 Shefali Naik 1
11 1 Shefali Naik 8
5 5 Hemal Desai 5

CH_3_Relational Database Management System_Final.indd 57 2/26/2014 3:38:14 PM

58 | Chapter 3

winner

event id winner1_leader id winner2_leader id winner3_leader id

17 3 4 NuLL

1 NuLL NuLL NuLL

3 3 4 6

5 NuLL NuLL 5

event_master

event id event_cat id event_type event_desc Min_parti Max_parti

1 2 Solo Solo Singing 1 1
2 2 Group Group Singing 2 8
3 3 Solo Solo Dancing 1 1
4 3 Group Duet Dancing 2 2
5 3 Group Group Dancing 3 10
6 4 Group Debate 2 2
7 4 Solo Elocution 1 1
8 4 Solo Extempore 1 1
9 4 Group Quiz 1 3
10 5 Solo Rangoli 1 1
11 5 Solo Mehendi 1 1
12 5 Group Best Out Of

Waste
2 3

13 6 Solo Slow Cycling 1 1
14 6 Solo Lemon And

Spoon
1 1

15 6 Group Treasure Hunt 3 6
16 6 Group 3 Legs 2 2
17 7 Solo Mimicry 1 1
18 7 Group Mime 3 8
19 7 Group Skit 3 8
20 7 Solo Mono Acting 1 1

CH_3_Relational Database Management System_Final.indd 58 2/26/2014 3:38:14 PM

CHAPTER

4.1 | IntroductIon
There are various semantic models, such as entity-relationship model (E-R model), data model,
object model, etc. The semantic model represents and explains the meaning of the real-world
concepts implemented in that model. An E-R model is the most popular semantic model.While
we are in the process of database designing, it is important to identify the correct tables, their
fields, definitions of each field (data type, size, constraints, formats, etc.) and relationship be-
tween each table of the same database. It is very important to design tables in such a way that
they cover all the requirements of the system, in the form of data stored within the tables.
Before we design tables, we need to keep the rules of relational database in mind. For example,
each table should have a key which uniquely identifies each tuple; table should be related with
a common key which should be a primary key of other table, etc. Therefore, it is advisable to
identify entities and relationships between entities before we design the actual tables. Once we
finalize the entity-relationship diagram for the system, it can be converted into relational model.
There are many symbol sets available, nowadays, in the market to design and draw the entity-
relationship diagrams. The concept of E-R Model was given by Chen in 1976. Thereafter, the

4

Developing Entity-Relationship
Diagram

•	 Importance of Entity-Relationship diagram in database design.
•	 Understanding entities, and how to identify entity from a given problem.
•	 Understanding how entities can be related to each other.
•	 Knowing relationship types.
•	 Knowing participation of an entity into another entity.
•	 Representing entity and relationships by using notations.
•	 Modelling Entity-Relationship diagram.
•	 Converting Entity-Relationship diagram into Relational Model.
•	 Understanding object modelling.
•	 Identifying classes, subclasses, and superclasses.
•	 Drawing class diagrams.
•	 Comparison between E-R diagram and class diagram.
•	 Summary

chapter objectIves

CH_4_Developing Entity-Relationship Diagram_Final.indd 59 2/26/2014 3:39:39 PM

60 | Chapter 4

Crow’s Foot model was developed in the 90’s. The Chen model and Crow’s Foot model symbol
sets are widely accepted and used to draw E-R diagrams. In this book, we are going to use
symbols from the Chen model.

4.2 | IdentIfyIng entItIes
When we have to develop any software or system, we need to design the database in which we
are going to store data of that system or software. To design the tables, entities should be identi-
fied from the given problem definition or problem description.

Entity or entity set is a collection of any real-life similar type of objects which can be de-
scribed using its characteristics. Using these characteristics, each object of an entity can be
differentiated with other objects of that entity. Each object will have its own values for the
characteristics. The characteristics are also known as attributes. For example, STUDENT is
an entity which has the characteristics rollno, name, birth_date, city, contactno, email_ID, etc.,
(i.e., each unique student can be described with the help of values of its characteristics. Figure
4.1 describes the entity STUDENT and its characteristics. Figure 4.2 shows values of charac-
teristics for some student objects within STUDENT entity).

Entity: Student

Roll_no
Name
Birth_date
City
Contact_no
Email_ID

Characteristics of Student Entity

fIgure 4.1 | Student entity and its characteristics.

Roll_no: 1
Name: Kirtan
Birth_date: 23-4-1990
City: Ahmedabad
Contact_no.: 26467360
Email_ID: parth@gmail.com

Roll_no: 15
Name: Neel
Birth_date: 2-6-1989
City: Baroda
Contact_no: 27414360
Email_ID: neel@gmail.com

Roll_no: 4
Name: Aditi
Birth_date: 2-6-1990
City: Ahmedabad
Contact_no: 26434360
Email_ID: aditi@gmail.com

fIgure 4.2 | Three objects with their characteristics’ values within student entity.

CH_4_Developing Entity-Relationship Diagram_Final.indd 60 2/26/2014 3:39:40 PM

Developing Entity-Relationship Diagram | 61

It is not possible to combine two different objects in the same entity, because different objects have
different characteristics. For example, it is not possible to combine ‘STUDENT’ and ‘PROD-
UCT’ objects within the same entity, as it is not possible to compare any student with any product.

The examples of entities are Supplier, Patient, Doctor, Employee, Student, Nominee, Staff,
Equipment, Item, Product, Stationery, Company, Location, Department, Warehouse, University,
Institute, Bank, Branch, Exam, Shipment, Competition, Treatment, etc.

We can represent any person, any place, any item or thing, any event or activity as entity. Figure
4.3 shows the possible classification of the above examples of entities as per their types.

Entity is represented as a horizontal rectangle in Chen’s model. Name of the entity should be
written in capital letters within the symbol of an entity. It must be any noun and singular. Figure
4.4 describes the entity COUNTRY as a symbol.

The characteristics or attributes are represented as oval shape or capsule shape and should be
connected to an entity using a line segment. Figure 4.5 shows the representation of attributes
country_code and country_name in a Chen’s model. These are the attributes of entity COUN-
TRY. Table 4.1 shows the terminologies of E-R model in brief. There are following concepts
related to attribute:

Types of
 Entities

Person Place Thing Event

Supplier
Patient
Doctor
Employee
Student
Nominees
Staff

Company
Location
Department
Warehouse
University
Institute
Bank
Branch

Equipment
Item
Product
Stationery

Exam
Shipment
Competition
Treatment

Country

Country_code Country_name

Country

Country_code Country_name

fIgure 4.3 | Types of entities and their examples.

fIgure 4.4 | Entity: Country

fIgure 4.5 | Representation of attributes of an entity country.

CH_4_Developing Entity-Relationship Diagram_Final.indd 61 2/26/2014 3:39:40 PM

62 | Chapter 4

 ● Single-valued Attribute: The attribute which contains a single value for any entity in-
stance is called the single-valued attribute. For example, gender, age, retirement_date,
blood_group, name, etc. The single-valued attribute is denoted with an oval shape in
Chen model.

 ● Multi-valued Attribute: The attribute which contains many values or multiple values for
any entity instance is called the multi-valued attribute. For example, degree, hobby, con-
tactno., etc. The multi-valued attribute is denoted with an oval within oval shape in Chen
model.

 ● Derived Attribute: The attribute which is derived from another attribute is known as
derived attribute. For example, retirement_date is a derived attribute because its value
is calculated from the attribute birthdate by adding 60 years (if person’s retirement age is
60) in the birth date. Another example is the value of total_years_of_experience attribute
is calculated from the attribute joining_date (by subtracting current year from the joining
year). The derived attribute is denoted with a dashed oval shape in Chen model.

 ● Simple Attribute: The attribute which can not be further divided into more attributes is
known as simple attribute. For example, hobby, gender, joining_date, etc. The simple
attribute is denoted with an oval shape in Chen model.

 ● Composite Attribute: The attribute which can be further divided into more attributes is
known as composite attribute. For example, name, address, etc., are composite attributes
because name can be divided into simple attributes first_name, middle_name and surname;
address can be further divided into addressline1, addressline 2, city and pincode. The com-
posite attribute is denoted with an oval shape connected with its simple attributes through
line segments in Chen model.

 ● Key Attribute or Identifier: The key attribute is an attribute which uniquely identi-
fies each entity. For example, employee’s PAN Number uniquely identifies each entity
instance in an entity. The key attribute is underlined and written within the oval shape
in Chen model. Table 4.2 shows notations to denote different attributes in Chen model.

table 4.1 | Terminologies of E-R Model

terminology Meaning
Entity(Entity set) A set of similar type of objects (but each object is unique within

the set) which can be distinguished from other set of objects. For
example, STUDENT, COUNTRY, BOOK

Object(Entity instance) Here, it can be described as entity instance or entity occurrence,
i.e., a collection of values of characteristics for any student repre-
sents one unique object. For example, within COUNTRY entity the
collection of values of (country_code, country_name) characteristics
(IND, INDIA) represents one object.

Attribute Characteristics of an entity. (Each object within the same entity
will have same characteristics, but values of characteristics will be
different.) For example, attributes of entity BOOK are ISBN, title,
price, author, etc.

Relationship/relation-
ship set (relationship
entity set)

Association between entities. For example, the relationship be-
tween entities MEMBER and BOOK is MEMBER issues BOOK.

CH_4_Developing Entity-Relationship Diagram_Final.indd 62 2/26/2014 3:39:40 PM

Developing Entity-Relationship Diagram | 63

table 4.2 | Different Types of Attribute Symbols in Chen model

attributes symbols in chen Model

Single-valued

Multi-valued

Derived

Key attribute attribute

Composite attribute

Composite
attribute

4.3 | IdentIfyIng relatIonshIps
The way in which individual entities interact with each other is known as relationship. For
example, entities TEACHER and STUDENT will interact with each other when a teacher teach-
es student. In other way, we can say that student is taught by teacher. The relationship between
TEACHER and STUDENT entities is teaching or learning. In most of the cases, the relation-
ship is nothing but an event or activity.

When any event or activity takes place, it is between two or more than two entities, i.e., an
event or activity relates two or more entities. Therefore, it is referred as relationship. In some of
the cases, the entity can also be associated or related with entity itself.

4.4 | types of relatIonshIps
When entities are associated with relationship, one object of an entity can be associated with
one or more objects of other entity or with itself.

The symbol to represent relationship is diamond shape in Chen model of E-R. Name of the
relationship is written within the diamond shape should be any verb. We can read relation-
ship from either side. Therefore, the relationship name can be written as present verb or past
perfect verb. For example, the relationship between STUDENT and INSTRUCTOR could be
either ‘instructed by’ or ‘instructs’. We can read this relationship as ‘STUDENT instructed by

CH_4_Developing Entity-Relationship Diagram_Final.indd 63 2/26/2014 3:39:41 PM

64 | Chapter 4

INSTRUCTOR’ or ‘INSTRUCTOR instructs STUDENT’. The relationship should be connect-
ed with entities with line segments. Figure 4.6 shows the representation of relationship between
STUDENT and INSTRUCTOR entities. We can classify the relationships in following three
types:

One-to-One Relationship: This relationship describes that one object of one entity can be
associated with one object of another entity. For example, the relationship between entities
COUNTRY and CAPITAL is one to one, i.e., one COUNTRY can have only one CAPITAL
and a CAPITAL belongs to any one COUNTRY. This relationship is represented pictorially as
following. Symbolically, one to one relationship is represented as 1:1. Figure 4.7 shows one
to one relationship.

One-to-Many or Many-to-One Relationship: This relationship describes that one object of
one entity can be associated with many objects of another entity or many objects of one entity
can be associated with one object of other entity. For example, the relationship between entities
COUNTRY and STATE is one to many, i.e., one COUNTRY can have many STATE and many
STATE belong to one and only one COUNTRY. This relationship is represented pictorially as
following. Symbolically, one to many relationship is represented as 1:M. Figure 4.8 shows
one to many relationship.

Many-to-Many Relationship: This relationship describes that many objects of one entity can
be associated with many objects of another entity. For example, the relationship between en-
tities PARTICIPANT and SUMMER_PROGRAMME is many to many, i.e., one STUDENT
participates in many SUMMER_PROGRAMME and one SUMMER_PROGRAMME contains
many PARTICIPANT. Symbolically, many to many relationship is represented as M:N. Fig-
ure 4.9 shows many to many relationship. We can also classify the relationship according to its
degree as following:

Unary or Recursive Relationship: The degree of relationship is said to be unary when
the entity is related with itself. As entity is related with itself, it is also known as recursive
relationship. For example, the STUDENT entity represents all the student instances. From
all the students, one student is a class representative, who monitors the class. Therefore, this

fIgure 4.6 | Representation of
relationship.

StudentInstructsInstructor

fIgure 4.7 | Representation of 1:1 (one
-to-one) relationship.

Country Capitalhas

Country Statehas

fIgure 4.8 | Representation of 1:M
(one-to-many) relationship.

Participant Summer_
ProgrammeParticipates

fIgure 4.9 | Representation of M:N (many-to
-many) relationship.

CH_4_Developing Entity-Relationship Diagram_Final.indd 64 2/26/2014 3:39:42 PM

Developing Entity-Relationship Diagram | 65

relationship can be represented as STUDENT (here role of this student is CR—Class Repre-
sentative and any STUDENT becomes CR if and only if he/she is first a student monitors STU-
DENT. In unary relationship degree of relationship is 1. Unary relationship appears rarely in
E-R model. Figure 4.10 represents unary relationship. The unary relationship can be further
categorized as:

 1. One-to-One Unary Relationship: If one entity instance appears one and only once in
other entity, the type of relationship is said to be 1 to 1. If this happens within the same
entity, it is called 1 to 1 unary relationship. For example, consider employees working in
an organization. It is possible that two employees of this organization marry each other.
In this case, one EMPLOYEE marries only one EMPLOYEE. Therefore, the relation-
ship is one to one. As the relationship exists within the same entity EMPLOYEE, it is
said to be 1 to 1 unary relationship. Figure 4.11 represents 1:1, 1:M and M:N unary
relationships.

 2. One-to-Many Unary Relationship: If one entity instance of an entity appears many
times in other entity, the type of relationship is said to be 1 to M. If this happens within
the same entity, it is called 1 to M unary relationship. For example, one STUDENT(CR)
monitors many STUDENT, but each student is monitored by only one STUDENT(CR).
Hence, this relationship is a 1 to many unary relationship.

 3. Many-to-ManyUnary Relationship: If many entity instances of an entity appears many
times in other entity, the type of relationship is said to be M to N. If this happens within the
same entity, it is called M to N unary relationship. For example, assume that there are more
than one Class Representatives(CRs) who are also students, then they will monitor other
students of the class. Therefore, this relationship is known as M to N unary relationship.

StudentMonitors

fIgure 4.10 | Unary relationship: STUDENT (CR) monitors STUDENT.

fIgure 4.11 | 1:1, 1:M and M:N unary relationships.

Student

Monitors Monitors

StudentEmployee

Marries

1-to-1 unary relationship:
Employee marries
Employee

1-to-M unary relationship:
Student (1 CR) monitors
Student (many)

M to N unary relationship:
Student (Many CRs)
monitors Student (many)

CH_4_Developing Entity-Relationship Diagram_Final.indd 65 2/26/2014 3:39:42 PM

66 | Chapter 4

Binary Relationship: The degree of relationship is said to be binary when one entity is
related with another entity. The relationship type between entities may be 1:1, 1:M or M:N. For
example, the relationship EMPLOYEE has NOMINEE is a 1 to many binary relationship. Be-
cause one employee may have many nominees, but a nominee depends on only one employee.
[Note: Nominee is a person who is dependent on the employee. For example, if Mr Neel Shah is
working in any company, then his nominees are his family members. So, Neel Shah may have
many family members as nominees (dependents), but Mr Neel Shah’s family members depend
only on Mr Neel Shah and not on any other employee of the same company.] Figure 4.12 shows
1:M binary relationship between entities EMPLOYEE and NOMINEE. Figure 4.13 represents
many to many binary relationship ‘PARTICIPANT participates EVENT’ between entities
PARTICIPANT and EVENT, i.e., one participant can participate in many events and one event
can have many participants. In binary relationship, degree of relationship is 2.

Ternary Relationship: The degree of relationship is said to be ternary when three entities are
related with each other with common relationship. For example, Figure 4.14 shows M:N ter-
nary relationship between three entities STUDENT, FACULTY and SUBJECT, i.e., one student
learns many subjects from many faculties. One faculty teaches many subjects to many students
and one subject is taught to many students by many faculties. Figure 4.14 represents many to
many ternary relationship ‘STUDENT learns SUBJECT’, ‘SUBJECT taught by FACULTY’ and
‘FACULTY teaches STUDENT’. In ternary relationship, degree of relationship is 3.

N-ary Relationship: As unary, binary and ternary, any number of entities can be associated
with each other using a common relationship. Therefore, N-ary relationship can be defined as
when n entities are related with each other using common relationship, the relationship is said
to be N-ary relationship. In N-ary relationship, degree of relationship is N.

4.5 | relatIonshIp partIcIpatIon
When one entity is associated with another entity, this association is either mandatory (compul-
sory) or optional.

Employee Nomineehas

fIgure 4.12 | 1:M binary relationship.

Participant EventParticipates

fIgure 4.13 | M:N binary relationship.

Student SubjectLearns

Faculty

fIgure 4.14 | M:N ternary relationship.

CH_4_Developing Entity-Relationship Diagram_Final.indd 66 2/26/2014 3:39:42 PM

Developing Entity-Relationship Diagram | 67

Optional Participation: Optional participation means that if entity instance (object)
of one entity participates zero times in another entity, the participation is said to be optional.
For example, consider two entities—STUDENT and SUMMER_PROGRAMME. The relation-
ship between these two entities is ‘STUDENT attends SUMMER_PROGRAMME’‘, i.e., one
student can attend only one summer programme, but one summer programme can be attended
by many students. Here, it is not required that if summer programme exists then it should have
student participants. It may be the case that there is not a single participant in some summer
programmes. Therefore, we can say that participation of SUMMER_PROGRAMME in the
STUDENT entity is optional. Figure 4.15 shows this optional participation. The optional par-
ticipation is denoted by writing 0 (zero).

Mandatory participation: Mandatory participation means that if entity instance (object) of
one entity participates one or many times in another entity, the participation is said to be manda-
tory. For example, consider two entities—DIVISION and STUDENT. The relationship between
these two entities is ‘STUDENT studies DIVISION’‘, i.e., one division contains many students,
but there must be at least one student in a division and a student is enrolled in one and only one
division. Here, it is compulsory that if division exists then it must contain at least one student,
i.e., participation of DIVISION entity in a STUDENT entity is compulsory. Figure 4.16 shows
this mandatory participation. The mandatory participation is denoted by writing 1,M. When
we want to show exact one participation, 1,1 is written near the entity. Different participations
symbols are shown in Table 4.3.

Optionality symbol

Student
Summer_
programme

Attends
0, M 1, 1

fIgure 4.15 | Optional participation of SUMMER_PROGRAMME in STUDENT.

table 4.3 | Terminologies of E-R model

symbol Meaning

0,1 1 is optional, i.e., zero or one.

0,M Many is optional, i.e., zero or many.

1,1 1 is compulsory, but not more than 1, i.e., one and only one.

1,M Many is compulsory, i.e., one or many.

fIgure 4.16 | Mandatory participation of DIVISION in STUDENT.

1, 1
Division StudentContains

Compulsion symbol

1, M

CH_4_Developing Entity-Relationship Diagram_Final.indd 67 2/26/2014 3:39:42 PM

68 | Chapter 4

4.6 | strong and Weak relatIonshIp
Strong Relationship: When existence of any entity depends fully upon another entity, the re-
lationship between these two entities is called strong relationship. For example, consider two
entities COURSE and SYLLABUS. The existence of SYLLABUS entity totally depends on the
COURSE entity, i.e., if COURSE exists then it is required to create its SYLLABUS. COURSE
without SYLLABUS is not possible. In Chen model of E-R, the strong relationship is denoted
using diamond (relationship entity) shape. When strong relationship exists between entities, the
dependent entity is called weak entity. Weak entity is denoted as rectangle within rectangle and
two parallel lines are shown from weak entity to the relationship. We can say that when rela-
tionship between entities is strong, the dependent entity is always weak and vice versa is also
true. Figure 4.17 shows strong relationship between the entities COURSE and SYLLABUS and
weak entity SYLLABUS.

Weak Relationship: When existence of any entity does not depend on another entity, the re-
lationship between these two entities is called weak relationship. For example, consider two
entities USER and FEEDBACK. It is not required that each USER should give FEEDBACK.
In Chen model of E-R, the weak relationship is denoted by using diamond within diamond (re-
lationship entity) shape. When weak relationship exists between entities, the entities are known
as strong entities. We can say that when relationship between entities is weak, the entities are
always strong. Figure 4.18 shows weak relationship between the entities USER and FEEDBACK.

4.7 | ManagIng Many-to-Many relatIonshIp
When there exists many-to-many relationship between entities, the many-to-many relationship
should be converted into two relationships—one-to-many (1:M) and many (N:1) to one. For
example, the relationship ‘TEACHER teaches STUDENT’ is many-to-many which says that
one teacher teaches many students and each student is taught by many teachers. Figure 4.19
shows M:N relationship between entities STUDENT and TEACHER and representation of this
relationship as one-to-many (one STUDENT taught by many TEACHER) and many-to-one
(one TEACHER teaches many STUDENT).

4.8 | exaMple of e-r Model
To draw an E-R diagram from the given real-time problem statement, we may follow the fol-
lowing procedures:

 1. Understand the problem thoroughly.
 2. Identify entities and its attributes.

1, M1, 1
Course Syllabushas

fIgure 4.17 | Strong relationship
and weak entity.

0, M1, 1
User Feedbackgives

fIgure 4.18 | Weak relationship and strong
entities.

CH_4_Developing Entity-Relationship Diagram_Final.indd 68 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram | 69

1, M
Teacher

Teacher

Student

Student

Teaches

Teaches

1, 1

1, 1

1, 1

Teach_stud
1, M

Taught
 by

1, N

 3. Identify one attribute or combination of attributes which could be used to represent each
entity instance uniquely.

 4. Categorize the attributes as simple, composite, single-valued, multi-valued and derived.
Identify simple attributes for the given composite attribute.

 5. Identify relationships between each entity. Remember that no entity should remain iso-
lated in the E-R diagram. Specify type of relationship whether it is 1:M, M:N or 1:1.

 6. Covert many to many relationship further as one to many and many to one.
 7. Identify strong and weak relationships.
 8. Draw E-R diagram and check the correctness of the diagram. If required, make changes

and refine further.

Example 4.8.1: Consider the following problem statement and draw E-R diagram for it.

A training association organizes various programmes on different topics for the people of dif-
ferent age groups, different interest, different streams, etc., throughout the year. It offers mem-
bership of the organization and gives discount to its members. It also arranges different types
of events, such as workshops, conferences, conventions, etc., for its members only. It has halls,
auditoriums and rooms which are given unique room number according to floors. Rooms are
used to organize events and programmes (courses). Its members and non-members can partici-
pate in the courses by registering themselves into courses. They invite experts from different
fields who serve as resource persons for the courses.

Solution 4.8.1:
First, we will have to identify entities and attributes. To identify the entities, consider the proper
nouns given in the problem definition. Think about the nouns whether they are entities or just
an attribute. For example, in the first line ‘A training association organizes various programmes
on different topics for the people of different age groups, of different interest, of different
backgrounds, etc., throughout the year.’ Nouns are training association, programmes, topics,
people, age, interest, stream and year. Here training association is an organization for which
we are going to draw E-R diagram; so it can’t become an entity. From others, we can say that

fIgure 4.19 | Representation of M:N relationship as 1:M and N:1.

CH_4_Developing Entity-Relationship Diagram_Final.indd 69 2/26/2014 3:39:43 PM

70 | Chapter 4

programmes and people are entities. ‘Topics and year’ are attributes of entity programme be-
cause they describe the programme (i.e., programme is organized on which topic and in which
year). Also, we can identify more attributes for programme which are not specified in the prob-
lem definition, but should be used such as starting date, ending date, duration of the programme,
etc. Another entity is people, which will have attributes such as name, age, interested in, back-
grounds, etc. Similarly, analyze the entire problem definition, understand it and decide entities
and attributes. Question yourself while analyzing the problem and you will get the answer. Re-
member that, ‘Practice makes man perfect’. If you will try to solve various kinds of problems,
you will be an expert in drawing E-R diagram. After analyzing the above problem definition,
the following entities and attributes are identified. (They might be wrong in the early stage, but
that can be revised or corrected at the later stages.) There is no need to show all the attributes in
the E-R diagram, only key attributes and important attributes could be shown.
Programme (Course) with attributes topic, year in which it is organized, starting date, end-
ing date, duration, etc.

Note: Here, to identify each programme uniquely (i.e., key attribute). We need one unique at-
tribute. None of the attributes or combination of attributes which we have specified can serve
as a key attribute because they will have duplicate values. For example, there are many pro-
grammes on same topic; starting date, ending date and duration could be same for different pro-
grammes. Therefore, we will have to consider some unique code to identify each programme
(each programme means entity instance/object of an entity programme) uniquely, say prog_ID
(programme identification number). Similarly, think about other entities.

 Person with attributes person_ID, name, birth_date, age, interested_in, background, etc.
 Member with attributes member_ID, member_type (values could be employee/student/

others), organization (company name/school name) name, age, interested_in, member-
ship_type (values could be life time or temporary), discount_given, membership_date,
membership_renewal_date, etc.

 Event with attributes event_ID, event_name, starting_datetime, ending_datetime, com-
pany_name, etc.

 Infrastructure entity has attributes floor_ID, roomno, description, capacity, etc.
 Expert (Resource Person) entity has attributes expert_ID, name, expert_in, etc.

Following are the key attributes in each entity specified:

 ● In programme entity, the attribute duration is a derived attribute which can be calcu-
lated from two attributes—starting_date and ending_date.

 ● In person entity, the attribute age is a derived attribute which can be calculated from
other attribute birth_date. The attribute interested_in is a multi-valued attribute, because
a person may be interested in many subjects. Person’s name is a composite attribute be-
cause it can be further divided into fname and surname.

 ● In member entity, the attribute interested_in is a multi-valued attribute, because a per-
son may be interested in many subjects. Member’s name is a composite attribute, because
it can be further divided into fname and surname.

 ● In expert entity, the attribute expert_in is a multi-valued attribute, because a person may
have expertise in many topics.

CH_4_Developing Entity-Relationship Diagram_Final.indd 70 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram | 71

The following relationships exist between the entities identified on the previous page:

 ● Member registers for programme/course is a many to many relationship, i.e., one
member registers for many programmes and one programme contains many members.

 ● Person registers for programme/course is a many to many relationship, i.e., one person
registers for many programmes and one programme contains many persons.

 ● Infrastructure conducts programme is a many to many relationship, i.e., one
infrastructure(room) conducts many programmes and one programme is conducted into
many infrastructure(room) on different dates.

 ● Expert teaches programme/course is one to many relationship, i.e., an expert can teach
many programmes, but one programme can be taught by only one expert.

 ● Member organizes event is one to many relationship, i.e., one member can organize
many events, but an event is organized by only one member.

 ● Event books infrastructure is a many to many relationship, i.e., one event is conducted
into many infrastructure and an infrastructure may conduct many events.

From the above relationships, all many to many relationships can be decomposed into one to
many and many to one relationships.

 ● Member registers for programme/course can be converted as
 ○ member registers reg_mem(1 : M) and
 ○ reg_mem registers for programme(N:1)

 ● Similarly, person registers for programme/course can be converted as
 ○ person registers reg_per(1:M) and
 ○ reg_per registers for programme(N:1)

 ● Infrastructure conducts programme can be converted as
 ○ Infrastructure conducts infra_prog(1 : M) and
 ○ Infra_prog conducts programme(N:1)

 ● Similarly, Infrastructure conducts event can be converted as
 ○ Infrastructure conducts infra_event(1 : M) and
 ○ Infra_prog conducts event(N:1)

The following relationships are strong relationships:

 ● member registers reg_mem(1 : M) (reg_mem is dependent entity which depends on mem-
ber entity)

 ● reg_mem registers for programme(N:1) (reg_mem is dependent entity which depends on
programme entity)

 ● person registers reg_per(1 : M) (reg_mem is dependent entity which depends on person entity)
 ● reg_per registers for programme(N:1) (reg_mem is dependent entity which depends on
programme entity)

 ● infrastructure conducts infra_prog(1 : M) (infra_prog is dependent which depends on
infrastructure)

 ● infra_prog conducts programme(N:1) (infra_prog is dependent which depends on programme)
 ● infrastructure conducts infra_event(1 : M) (infra_event is dependent which depends on
infrastructure)

 ● infra_event conducts event(N:1) (infra_event is dependent which depends on event)

CH_4_Developing Entity-Relationship Diagram_Final.indd 71 2/26/2014 3:39:43 PM

72 | Chapter 4

The following relationships are weak relationships:

 ● expert teaches programme(1 : M)(programme is dependent)
 ● member organizes event(1 : M) (event is dependent)

From the above specifications we can draw the E-R diagram for the training association which
is shown in Figure 4.20.

4.9 | extended e-r Model
The E-R diagram can be extended further by implementing some new concepts. By implement-
ing these concepts, it will be easier to understand the diagram.

Sometimes, an entity inherits all the properties of any other entity. In that case, the base en-
tity from where other entity inherits all the properties is called supertype and the entity which
inherits properties from base entity is called its supertype. This relationship is known as ‘is a’
relationship.

As the example given in Figure 4.20, the person entity is a base entity. Entities Expert and
Member inherit all the properties (attributes) of entity Person. So, we can say that ‘Expert is
a Person’ and ‘Member is a Person’. Here, Person is a supertype, while Expert and Member

First
name

Name

Member Registers Registers

Registers

Reg_per
Per_id

Prog_id

Registers

Person

Per_id

Name

First
name

Age

SurnameInterested_in

Teaches

Infra_id

Expert

Expid

Expert_in

Programme

Duration

1

1
Mem_id

Organizes

M

N

N

M

M

1

1

1

1Event
Mem_id

Event_id

Organized
 in

Organized
 In

Event_infra

Conducts

Infrastructure

Conducts

Prog_id

Infra_prog

Infra_id
Infra_id

Event_id

Age

Surname

Mem_id

Reg_mem N

1 M

M

N

1M

Prog_id Exp_id Prog_id

fIgure 4.20 | E-R diagram for a training association.

CH_4_Developing Entity-Relationship Diagram_Final.indd 72 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram | 73

Member

Discount_perc

Interested_in

Age

Person
Name

Surname

Firstname
Per_id

Expert

Expert_in

are its subtypes. Figure 4.21 shows this ‘is a’ relationship. To denote ‘is a’ relationship, the
line with arrow is shown from supertype(Person) to subtype(Member and Expert).

Entities Member and Expert will have all the attributes of Person and some attributes of their
own, but vice versa is not true, i.e., an expert has its own attribute expert_in which is not an at-
tribute of person entity. Similarly, a member has its own attribute discount_perc which is not an
attribute of person entity.

In the above diagram, person entity is ‘general’ entity; while expert and member entities are
‘special’ entities of person type entity. These concepts are called ‘Generalization’ and ‘Spe-
cialization’ respectively.

4.10 | convertIng e-r Model Into relatIonal Model
When we convert E-R diagram into Relational model, the rules we should follow are given
below:

 1. Each entity is converted as a ‘table and entities’ attributes are converted as fields. The
identifier, which is underlined in E-R diagram, is converted as primary key of that table.
Decide data types for each attribute from its value. Remember that the key attribute of
one entity participating in another entity will have the same data type of a key attribute.

 2. The derived attributes may or may not be converted as field. It depends on the database de-
signer whether to store the derived attribute or not. There are certain advantages and disad-
vantages of storing derived attribute as a field. If the attribute’s value is changing with time,
it is advisable not to store it. For example, the value of ‘age’ will change with time; therefore,
it should be calculated every time when we want to use it in process. If the attribute’s value
is not going to be changed with time, it is advisable to store it in table once it is calculated.
For example, the value of ‘total bill amount’ is calculated from the sum of multiplication of
quantity and price, i.e., once it is calculated, it will not be changed in future.

 3. When we convert weak entity into table, the identifier of strong entity on which the weak
entity is dependent becomes foreign key of the weak entity as well as it becomes part of
the primary key of that weak entity. In other cases, the foreign key will not be part of the
primary key.

fIgure 4.21 | Representation of supertype and subtype in E-R diagram.

CH_4_Developing Entity-Relationship Diagram_Final.indd 73 2/26/2014 3:39:43 PM

74 | Chapter 4

 4. The entities with cardinality 1 should be created first as tables. After that, entities with
cardinality M/N should be created.

If we convert the example given in Figure 4.20 into relation model, it will contain the tables
which are given in Table 4.4. The third column in Table 4.4 shows data definition language to
create tables in Oracle.

table 4.4 | Tables which are Converted from the E-R Diagram given in Figure 4.20.

table name fields create table command in oracle

Person Person_ID, name, birth_date,
age, interested_in, back-
ground

Create table person(person_ID int pri-
mary key, name varchar(20), birth_date
date, age float, interested_in var-
char2(100), background varchar2(50));

Member Member_ID, member_type,
organization, name, birth_
date, age, interested_in,
membership_type, disc_
given, membership_date,
renewal_date

Create table member(member_ID, int_pri-
mary key, member_type varchar(10), orga-
nization varchar(30), name varchar(30),
birth_date date, age float, interested_in
varchar(100), membership_type var-
char(10), disc_given float, membership_
date date, renewal_date date)

Expert Expert_ID, name, birth_date,
age, expertise_in

Create table expert(expert_ID int primary
key, name varchar(30), birth_date date,
age float, expertise_in varchar(30))

Infrastructure Infra_ID, floor_ID, roomno,
description, capacity

Create table infrastructure(infra_ID
int, floor_ID int, roomno int, descrip-
tion varchar(30), capacity int)

Programme Prog_ID, expert_ID, topic,
year, starting_date, end-
ing_date

Create table programme(prog_ID int pri-
mary key, expert_ID int references
expert(expert_ID), topic varchar(30),
year int, starting_date date, ending_date
date)

Event Event_ID, member_ID,
event_name, starting_date,
ending_date

Create table event(event_ID int primary
key, member_ID int references member
(member_ID), event_name varchar(30),
starting_date date, ending_date date)

Reg_mem Member_ID, progid Create table reg_mem(prog_ID int refer-
ences programme(prog_ID), member_ID int
references member(member_ID), primary
key(prog_ID,member_ID))

Reg_per Person_ID, progid Create table reg_per(person_ID int ref-
erences person(person_ID), prog_ID int
references programme(prog_ID), primary
key(person_ID, prog_ID));

Event_infra Event_ID, infra_ID Create table event_infra(event_ID int
references event(event_ID), infra_ID int
references infrastructure (infra_ID),
primary key(event_ID, infra_ID))

Infra_prog Infra_ID, prog_ID Create table infra_prog(infra_ID int
references infrastructure(infra_ID),
prog_ID int references programme(prog_
ID), primary key(infra_ID, prog_ID))

CH_4_Developing Entity-Relationship Diagram_Final.indd 74 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram | 75

4.11 | object ModellIng
Object modelling is another type of semantic model. In this model, entities are referred as
class; each entity instance is referred as object and characteristics of entity are referred as
attributes.

The relationships between these classes along with participation of one class into another
class should be shown in object model. If we convert the example given in Figure 4.20 into
relation model, it will contain the tables which are given in Table 4.4. The third column in Table
4.4 shows data definition language to create tables in Oracle.

Object model is more semantic (meaningful) than E-R model because it represents real world
concepts more clearly.

Object model represents E-R model’s entity as class, entity’s characteristics as attributes, en-
tity instance as object and relationship as association. Moreover, it assigns each object a unique
identification no. Attributes have their behaviour and classes have methods. Each class can send
message to other class. Classes are associated with each other through association. Participation
of one object into another object is shown using cardinality.

The subtype and supertype in E-R model is known as subclass and superclass, respectively,
in object model. Table 4.5 shows comparison between E-R model and Object model.

Object model represents some more concepts which are not available in E-R model, such as
inheritance, encapsulation, polymorphism, etc.

In object model, the class is represented as vertical rectangle. Class name is written on the top
of the rectangle. Below class name, the attributes are written and below attributes, the methods
are written. The associations between classes are denoted with line segment connecting two
classes. The examples of class, attributes and methods are shown in Figure 4.22.

table 4.5 | Comparison between E-R Model
and Object Model

entity-relationship Model object Model
Entity Class
Entity instance Object
Characteristics (Attributes) Attributes
Relationship Association
Subtype Subclass
Supertype Superclass

class name event
Attributes event_ID

member_ID
event_name
starting_date
ending_date

Methods add event
remove event
update event

fIgure 4.22 | Representation of class
EVENT with its attributes and methods.

4.11.1 | subclass and superclass

The object model represents class hierarchy as subclass and superclass. The class which inherits
some or all the attributes and methods from some class is known as subclass. The class from
where other class inherits the attributes and methods is known as superclass. The class hierar-
chy is shown in Figure 4.23.

CH_4_Developing Entity-Relationship Diagram_Final.indd 75 2/26/2014 3:39:43 PM

76 | Chapter 4

In Figure 4.23, the CLASS 1 is a superclass of classes CLASS 2, CLASS 3 and CLASS 4.
CLASS 2, CLASS 3 and CLASS 4 are subclasses of CLASS 1. CLASS 3 is a superclass of
classes CLASS 5 and CLASS 6. CLASS 5 and CLASS 6 are subclasses of CLASS 3. Here,
CLASS 3 is superclass as well as subclass.

4.11.2 | specialization and generalization

Subclasses inherit the attributes and methods from the superclass. In this case, we can say that
subclasses are specialization of its superclass. For example, the classes EXPERT and MEM-
BER are subclasses of superclass PERSON, i.e., EXPERT and MEMBER classes are special-
ization of class PERSON.

Conversely, superclass is a generalization of subclasses. For example, PERSON class is a
generalization of classes EXPERT and MEMBER. Figure 4.24 shows the concept of General-
ization and Specialization.

4.11.3 | class diagram

The class diagram shows association between classes. It is similar to E-R diagram. We can
follow the same rules of drawing E-R diagram to draw the class diagram. Then, we convert E-R
diagram into class diagram. If we draw the class diagram for the problem definition given in
Example 4.8.1, it will be as shown in Figure 4.25.

SUMMARY
 ● E-R model is a semantic model which represents real world concepts in meaningful way.
E-R model was proposed by Peter Chen.

CLASS 1

Attributes

Methods

CLASS 2

Attributes
Methods

CLASS 3

Attributes
Methods

CLASS 6

Attributes
Methods

CLASS 5

Attributes
Methods

CLASS 4

Attributes
Methods

fIgure 4.23 | Representation of class hierarchy.

CH_4_Developing Entity-Relationship Diagram_Final.indd 76 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram | 77

Class: PERSON

Attributes
Person_id
Name
Birth_date
Intersted_in,
Background

Add person
Calculate age

Methods

Specialization

Generalization

Class: EXPERT

Attributes
Expert_id
Name
Birth_date
Expertise_in

Add expert
Calculate age

Methods

Class: MEMBER

Attributes
 Member_id
 Member_type
 Organization
 Name
 Birth_date
 Expertise_in
 Membership_type,
 Disc_given
 Membership_date
 Renewal_date

Add Member
Calculate Age

Methods

fIgure 4.24 | Class specialization and generalization.

 ● Entity means any real world object which can be differentiated from any other real world
object.

 ● Characteristics of an entity are called attributes. The different types of attributes are
simple attribute, composite attribute, single-valued attribute, multi-valued attribute and
derived attribute.

 ● Each entity is a collection of objects which share the same attributes, but each object is
unique.

 ● Entity can be associated with each other using relationship.
 ● Relationship can be categorized as unary, binary, ternary and so on up to n-ary, which is
known as degree of relationship.

 ● The relationship which associates entity with itself is called unary relationship. The rela-
tionship which associates two entities is known as binary relationship. The relationship
which associates three entities is known as ternary relationship. The relationship which
associates n number of entities is known as n-ary relationship.

 ● The relationships are of three types: one to one, one to many (or many to one) and many
to many.

 ● One entity participates in other entity through relationship, but this participation may be
optional or mandatory. This participation is denoted as cardinality in E-R diagram.

 ● The relationship could be strong or weak relationship. If one entity totally depends on the
existence of another entity, the relationship is said to be strong relationship. In this case,

CH_4_Developing Entity-Relationship Diagram_Final.indd 77 2/26/2014 3:39:43 PM

78 | Chapter 4

fIgure 4.25 | Class diagram.

Class: MEMEBER

Attributes
Member_id
Name

Methods
Add member
Calculate age

1

1

1

0..*

1..*

1..*

Class: EVENT

Attributes
Event_id
Member_id

Event_id
Infra_id

Methods
Add member

Class: EVENT_INFRA

Class: INFRASTRUCTURE

Attributes

Methods
Assign room

infra_id
Attributes

Methods
 Add room

1

1

1

1..*

1..*

1..*

Class: REG_MEM

Attributes
Prog_id
Member_id

Prog_id
Expert_id

Methods
Register member

Class: PROGRAMME

Class: INFRA_PROG

Attributes

Methods
Add programme

Prog_id
Infra_id

Attributes

Methods
 Assign room

1

1

1

1..*

0..*

1..* Per_id
Prog_id

Class: REG_PER

Class: EXPERT

Attributes

Methods
 Register person

Expert_id
Name
Expert_in

Attributes

Methods

Class: PERSON

Attributes
Person_id
Name
Birth_date
Intersted_in,
Background

Add person
Calculate age

Add expert
Calculate age

Methods

...

...

...

the dependent entity is called weak entity. If existence of an entity doesn’t totally depend
on other entity, the relationship is said to be weak relationship. In this case, the entities
are called strong entities.

 ● To draw an E-R diagram various symbols are used. Some important symbols are rect-
angle to represent entity, oval to represent attribute, diamond to represent relationship and
line segment to connect entity with relationship.

CH_4_Developing Entity-Relationship Diagram_Final.indd 78 2/26/2014 3:39:43 PM

Developing Entity-Relationship Diagram | 79

After drawing an E-R diagram, it is converted into Relational Model, i.e., entities are converted
into tables, attributes are converted into fields. Each table will have unique identifier, which is
known as primary key.

ExErcisEs

 1. Draw symbols which are used to draw E-R diagram.
 2. Define the following:
 a. Entity b. Relationship
 c. Entity instance d. Attribute
 e. Simple attribute f. Composite attribute
 g. Single-valued attribute h. Multi-valued attribute
 i. Derived attribute j. Strong relationship
 k. Weak entity l. Supertype
 m. Subtype

 3. Compare E-R model and Object model.
 4. Explain one to one, one to many and many to many relationships with example.
 5. Explain unary/recursive relationship with example.
 6. Show symbolic representation of following relationships.
 a. One singer sings many songs and a song is sung by many singers.
 b. Student gives many exams.
 c. Many food items are listed in a menu.
 d. One author writes many books and a book is written by many authors.
 e. Professor writes many research papers.

 7. Draw an E-R diagram for the kindergarten according to the rules given below:
 a. There are classes like playgroup, nursery and KG.
 b. There are many divisions of each class.
 c. In each division there are many students, but one student studies in only one division.
 d. Each division is assigned to two teachers.
 e. Parent-teacher meeting is held on every even Saturday. Parents’ attendance is main-

tained for each meeting.
 f. Progress of each student is maintained in every month.

 8. Draw an E-R diagram for the summer camp which is held in the school during summer
vacation. Use following rules to draw the diagram.

 a. There are many activities under different categories such as sports, intellectual, art,
etc., are organized. Sports activities such as football, volleyball, badminton, table
tennis, basketball, swimming, skating, etc.; art activities such as calligraphy, paper
craft, sand sculptures, glass painting, etc.; intellectual activities such as effective
speaking, fun with maths, fun with science, good reading habits, etc.; are organized.

 b. One participant can participate in many activities under different categories.
 c. Each activity has a schedule.
 d. Each activity is conducted by one resource person. A resource person can conduct

many activities at different time.

CH_4_Developing Entity-Relationship Diagram_Final.indd 79 2/26/2014 3:39:43 PM

80 | Chapter 4

 9. Draw an E-R diagram for the newspaper distributor for the given procedure.
The newspaper distributor daily collects various newspapers from different printing
press. The newspapers are distributed area-wise among the persons who look after that
area. The area distributor has many employees who will distribute the newspaper to the
clients. The area distributor sorts the newspapers client-wise and hand over them to his
employees. Employees distribute bunch of newspapers to each client. On demand of his
client, the newspaper distributor also distributes periodicals. In the month end, he deliv-
ers bill of newspaper to each client.

 10. Select the correct answer:
 a. The attribute which contains multiple attributes is called ____________.
 i. Composite attribute ii. Multi-valued attribute
 iii. Derived attribute iv. None of the given
 b. The attribute which is calculated from the value of some other attribute is called

____________.
 i. Composite attribute ii. Multi-valued attribute
 iii. Derived attribute iv. None of the given
 c. The attribute which can be further divide into simple attributes is called __________.
 i. Composite attribute ii. Multi-valued attribute
 iii. Derived attribute iv. None of the given
 d. From the following, ‘Kindergarten’ entity can be categorized as which type of entity?
 i. Person ii. Place
 iii. Thing iv. Event
 e. From the following, ‘Supervisor’ entity can be categorized as which type of entity?
 i. Person ii. Place
 iii. Thing iv. Event
 f. From the following, ‘Furniture’ entity can be categorized as which type of entity?
 i. Person ii. Place
 iii. Thing iv. Event
 g. From the following, ‘Registration’ entity can be categorized as which type of entity?
 i. Person ii. Place
 iii. Thing iv. Event
 h. Recursive relationship means ______________ relationship.
 i. Binary ii. Ternary
 iii. Unary iv. N-ary
 i. The ______________ model is more semantic than E-R model.
 i. Hierarchical ii. Network
 iii. Relational iv. Object
 j. When E-R model is converted into relational model, entity is converted in a

____________.
 i. Field ii. Table
 iii. None
 k. In Chen model of E-R, entity is denoted with which symbol?
 i. Rectangle ii. Diamond
 iii. Oval iv. Line segment

CH_4_Developing Entity-Relationship Diagram_Final.indd 80 2/26/2014 3:39:44 PM

Developing Entity-Relationship Diagram | 81

 l. In Chen model of E-R, relationship is denoted with which symbol?
 i. Rectangle ii. Diamond
 iii. Oval iv. Line segment
 m. In Chen model of E-R, simple attribute is denoted with which symbol?
 i. Rectangle ii. Diamond
 iii. Oval iv. Line segment
 n. In Chen model of E-R, derived attribute is denoted with which symbol?
 i. Dashed oval ii. Oval within oval
 iii. Oval iv. Oval connecting oval
 o. In Chen model of E-R, multi-valued attribute is denoted with which symbol?
 i. Dashed oval ii. Oval within oval
 iii. Oval iv. Oval connecting oval
 p. In Chen model of E-R, key identifier (attribute) is denoted with which symbol?
 i. Dashed oval ii. With underlined
 iii. In bold face iv. Italic

CH_4_Developing Entity-Relationship Diagram_Final.indd 81 2/26/2014 3:39:44 PM

CHAPTER
5

Normalization

•	 Understanding	importance	of	normalization.	
•	 Identifying	dependencies	from	the	given	Table.
•	 Converting	Tables	into	various	normal	forms.
•	 Evaluating	Tables	after	normalization	for	correctness	and	lossless	decomposition.
•	 Understanding	some	more	dependencies.
•	 Learning	with	examples:	how	to	normalize	Tables.

Chapter ObjeCtives

5.1 | intrOduCtiOn
After	 drawing	E-R	diagram,	 the	Tables	 should	 be	 designed.	An	E-R	model	 is	 a	 conceptual	
(semantic)	model	which	shows	only	entities,	relationships	and	attributes.	It	does	not	show	data	
types	and	constraints	which	should	be	put	up	on	the	attributes.	Data types	and	constraints	must	
be	decided	by	studying	actual	values	of	the	attributes.	Moreover,	we	can	decide	input	format,	set	
of	values	to	be	inputted	in	the	attribute,	etc.	

If	E-R diagram	 is	converted	into	Relational Model,	we	get	Tables	which	are	already	con-
verted	into	normal forms,	but	not	fully.	After	conversion	from	E-R	Model	to	Relational	Model,	
we	need	to	check	correctness	using	the	normalization	rules.	When	we	have	only	records	(i.e.,	data)	
available,	we	need	to	store	them	in	the	respective	Tables	by	identifying	fields,	constraints,	format,	
etc.	After	that,	the	Tables	should	be	converted	into	normal	forms.	In	this	chapter,	we	will	learn	how	
to	convert	Tables	into	normal	forms	when	only	records	(data)	are	given.

5.2 | need fOr nOrmalizatiOn
Imagine	a	Table	which	contains	more	than	150	fields	and	about	 ten	lakhs	records.	It	 is	very	
difficult	to	maintain	such	a	big	volume	of	records,	especially	when	it	contains	so	many	fields.

Moreover,	many	 of	 the	 records	will	 contain	 redundant	 (duplicate/repetitive)	 data	 in	 this	
case.	We	need	to	take	combination	of	many	fields	to	identify	each	record	uniquely.	To	do	this,	
none	of	the	fields	may	contain	null	values	which	are	not	possible	always.	

CH_5_Normalization_Final.indd 82 2/28/2014 12:46:51 PM

Normalization | 83

To	 reduce/remove	 these	 problems,	we	need	 to	 normalize	 a	Table	 by	 decomposing	 it	 into	
many	Tables.	Care	 should	be	 taken,	 so	 that	no	 information	 is	 lost	 from	 the	Table	while	we	
decompose	it.	We	would	get	back	the	original	information	when	we	merge	the	decomposed	
Table	again.

Normalization	is	a	process	of	simplifying	a	complex	Table	into	multiple	Tables	by	decom-
posing	it.	To	normalize	a	Table,	some	rules	should	be	followed.	There	are	mainly	five	normal	
forms.	Before	starting	the	normalization	process,	we	need	to	understand	some	kinds	of	depen-
dencies,	such	as	functional	dependency,	full	functional	dependency,	transitive	dependency	and	
multi-valued	dependency.	

The	concept	of	normalization	was	propounded	by	E.	F.	Codd.	To	normalize	Tables,	first,	
we	 need	 to	 understand	 some	 types	 of	 dependencies	 which	 exist	 between	 the	 fields	 in	
a	Table.

5.3 | types Of dependenCies
There	 are	 many	 types	 of	 dependencies	 exist	 between	 the	 fields	 of	 a	 Table.	 These	 are	 as	
follows:

	● Functional	dependency
	● Full-functional	dependency
	● Partial	dependency
	● Transitive	dependency
	● Multi-valued	dependency	
	● Join	dependency

Functional Dependency:	If	field1	and	field2	are	two	attributes	of	a	Table,	then	field1	is	said	
to	be	functionally	dependent	on	field2,	if	there	exists	one	precise	(unique)	value	of	field1	for	
the	corresponding	value	of	field2.	To	explain,	field1	is	functionally	dependent	on	fields	2,	 if	
and	only	if	each	value	of	field2	is	associated	with	the	precise	value	of	field1.	Symbolically,	it	is	
represented	as	follows:

field2		 		field1

We	can	read	this	functional dependency	as	either	‘field	1	functionally	dependent	on	field	2’	or	
‘filed	2	functionally	determines	field1’

Here,	for	each	value	of	field	2	in	each	tuple	(record),	we	will	get	one	precise	value	of	field1.	
For	an	example,	in	Table	event,	if	we	have	fields,	such	as	eventid,	eventname,	startdate,	end-
date,	duration,	etc.,	then	each	value	of	eventid	can	be	associated	with	one	value	of	startdate.	
The	startdate	may	be	same	for	two	or	more	different	eventid,	but	each	eventid	is	unique,	and	
using	eventid	we	can	access	precise	startdate.	If	we	change	value	of	eventid,	then	the	associ-
ated	value	of	startdate	will	also	be	changed.

It	can	be	simply	explained	as,	for	 two	different	records	(tuples),	 if	 there	are	two	identical	
values	of	the	eventid	field,	then	there	must	be	the	same	values	of	the	startdate	field,	but	the	
converse	is	not	true	(i.e.,	for	two	different	records,	if	two	values	of	startdate	are	same,	then	it	is	
not	necessary	that	the	corresponding	values	of	eventid	must	be	same).	Consider	the	example	
as	given	in	Table	5.1.

CH_5_Normalization_Final.indd 83 2/28/2014 12:46:51 PM

84 | Chapter 5

table 5.1 |	 Event	Table	Showing	Functional	Dependency	Between	Fields	Eventid	and	Start	
Date

event_id event_name start_date end_date duration (in days)

1 Solo singing 2-May-2013 5-May-2013 4

2 Solo dance 2-May-2013 7-May-2013 6

3 Debate 3-May-2013 2-May-2013 1

4 Skit 2-May-2013 7-May-2013 6

5 Elocution 3-May-2013 5-May-2013 3

table 5.2 |	 An	Attendance	Table

date lecture no. Class_id std_no. subject_id attendance

1-Apr-2013 1 FY Div-I 23 APCL Present

1-Apr-2013 1 FY Div-II 150 DHTML Present

1-Apr-2013 1 FY Div-I 57 APCL Absent

1-Apr-2013 1 SY Div-I 62 OOMUL Present

1-Apr-2013 2 FY Div-I 57 BM Present

2-Apr-2013 1 FY Div-I 23 IMUD Present

2-Apr-2013 1 FY Div-II 150 DHTML Present

2-Apr-2013 1 FY Div-I 57 IMUD Absent

2-Apr-2013 1 SY Div-I 62 SAD Present

2-Apr-2013 2 FY Div-I 57 PM Present

Event_ID Event_name

Event_ID functionally determines event_name, or
event_name functionally dependent on event_ID

figure 5.1 |	 Functional	dependency.

Table	5.1	represents	the	details	of	various	events.	The	events	which	have	eventid	values	3	and	5,	
have	the	same	values	in	the	field	startdate.	It	means,	two	different	events	may	start	on	the	same	
dates,	but	it	does	not	mean	that	if	start	dates	are	same,	the	events	are	also	same.

Pictorially,	the	functional	dependency	can	be	denoted	as	follows:
	● In	functional	dependency,	the	attribute/field	which	is	on	the	left	side	of	the	arrow	(i.e.,	
eventid)	is	known	as	determinant,	and	the	attribute/field	which	is	on	the	right	side	of	
the	arrow,	is	known	as	dependent.	The	determinant	can	be	defined	as	the	field	or	com-
bination	of	fields	on	which	some	other	field(s)	depends,	is	known	as	determinant.	The	
dependent	can	be	defined	as	the	field(s)	which	is	determined	by	some	other	field(s),	is	
known	as	dependent.
	● The	field	may	be	dependent	on	the	combination	of	two	or	more	fields.	For	an	example,	
in	Table	5.2,	the	field	attendance	depends	on	the	combination	of	fields	date,	lectureno,	
class	ID,	stdno	and	subject	ID.

CH_5_Normalization_Final.indd 84 2/28/2014 12:46:51 PM

Normalization | 85

	● From	the	data,	as	given	in	Table	5.2,	we	can	say	that	attendance	of	students	functionally	
depends	on	the	combination	of	fields	date,	lectureno,	class	ID,	stdno	and	subject	ID.	Be-
cause	none	of	the	fields,	alone,	determines	attendance	of	the	students.	Only	for	the	com-
bination	of	the	given	five	fields,	we	get	the	correct	attendance	of	the	students.	Pictorially,	
it	can	be	denoted	as	shown	in	Figure	5.2.	Here,	Attendance	is	a	dependent	and	combina-
tion	of	fields	(date,	lectureno,	class	ID,	stdno,	subject	ID)	is	determinant.

In	the	example	as	given	in	Figure	5.2,	 the	composite	determinant	contains	five	components	
namely,	date,	lectureno,	class	ID,	std	no	and	subject	ID.

Full Functional Dependency:	When	determinant	contains	only	a	single	field,	the	dependent	
is	fully	dependent	on	that	determinant.	This	dependency	is	called,	‘full function dependency’.	
But	when	determinant	is	a	combination	of	more	than	one	field,	it	is	possible	that	dependent	is	
not	fully	dependent	on	the	combination.	It	may	also	be	dependent	on	any	component	of	that	
determinant.	It	means	if	we	change	any	component,	the	corresponding	value	of	the	dependent	
will	also	be	changed.	In	the	example	as	given	in	Figure	5.2,	the	attendance	of	students	fully	
functionally	 depends	 on	 the	 whole	 combination	 of	 (date,	 lectureno,	 class	 ID,	 stdno	 and	
subject	ID).	There	is	no	individual	component	or	combination	of	components	on	which	atten-
dance	depends	other	than	the	whole	combination.	Therefore,	the	example	as	shown	in	Figure	
5.2	 shows	 full	 functional	 dependence	between	dependent	 attendance	 and	determinant	 (date,	
lecture	no,	class	ID,	stdno,	subject	ID).

Now,	consider	Table	5.3.	It	contains	data	related	to	amenity	booking	of	a	professional	society.	

table 5.3 |	 Booking	Table

member_id member_name amenity_id amenity_desc booking_date booking_status

Mem003 S. R. Desai Conf 01 Conference hall 6-May-2013 Confirm

Mem026 T. S. Pathak Sem 03 Seminar room 3-June-2013 Not confirm

Mem123 N. C. Vora Conf 01 Conference hall 21-May-2013 Confirm

Mem456 J. N. Patel Aud 02 Auditorium 6-May-2013 Confirm

Mem122 S. P. Sabugola Sem 11 Seminar room 6-June-2013 Not confirm

Attendance

Date

Lecture_no

Class_ID

Std_no

Subject_ID

figure 5.2 |	 Functional	dependency	where	determinant	is	a	combination	of	fields.

CH_5_Normalization_Final.indd 85 2/28/2014 12:46:52 PM

86 | Chapter 5

In	Table	5.2,	the	following	functional	dependencies	exist	between	the	fields:

																																			(member_ID,	amenity_ID)		 		member_name
																																		 (member_ID,	amenity_ID)		 		amenity_desc
																																		(member_ID,	amenity_ID)		 		booking_date

			(member_ID,	amenity_ID)		 		booking_status

Here,	the	determinant	is	a	combination	of	fields,	member_ID	and	amenity_ID.	member_ID	
and	 amenity_ID	are	 two	different	 components.	The	 above	 four	 dependencies	 are	 functional	
dependencies,	but	we	need	to	check	if	they	are	full	functional	dependencies	or	not.	

Consider	 the	 case	 ‘(member_ID,	 amenity_ID)	determines	booking_date’.	Here,	 booking_
date	 is	 fully	 functionally	dependent	on	 the	 combination	 (member_ID,	 amenity_ID)	because	
none	of	the	component	of	(member_ID,	amenity_ID)	determines	booking_date.	The	booking_
ID	field	will	have	some	values	when	a	member	books	any	amenity.	Likewise,	the	dependency	
‘(member_ID,	amenity_ID)	determines	booking_status’	is	a	full	functional	dependency.	Figure
5.3	shows	the	pictorial	representation	of	full	function	dependence	of	these	two	cases.

Now,	consider	the	case	‘(member_ID,	amenity_ID)	determines	member_name’.	In	this	case,	
if	we	 change	 the	 component	member_ID,	we	will	 get	 a	 precise	 value	 of	member_name.	 It	
means,	member_name	 is	not	 fully	 functionally	dependent	on	 the	combination	 (member_ID,	
amenity_ID),	 but	 also	 depend	 on	 member_ID	 alone.	 Therefore,	 this	 dependency	 is	 known	
as	partial dependency.	Here,	member_name	 is	 functionally	 dependent	 on	 the	 combination	
(member_ID,	amenity_ID),	and	also	partially	dependent	on	member_ID.	

Similarly,	in	the	dependency	‘(member_ID,	amenity_ID)	determines	amenity_desc’,	we	get	
precise	value	of	amenity_desc	for	any	value	of	amenity_ID.	Therefore,	amenity_desc	is	func-
tionally	dependent	on	the	combination	(member_ID,	amenity_ID),	and	also	partially	dependent	
on	amenity_ID.	We	can	define	partial	dependency	as	follows:

Partial Dependency:	When	determinant	(i.e.,	on	which	some	field	depends)	is	a	combination	of	
more	than	one	fields,	determines	any	field;	if	any	component(s)	of	determinant	also	determines	
that	field,	the	field	is	said	to	be	partially	dependent	on	determinant.	For	an	example,	‘(mem-
ber_ID,	amenity_ID)	partially	determines	amenity_desc’	because	amenity_ID	also	determines	
amenity_desc.‘(member_ID,	amenity_ID)	partially	determines	member_name’	because	mem-
ber_ID	also	determines	member_name.	Figure 5.4	shows	these	partial	dependencies.

Booking_date
Amenity_ID

Member_ID

Amenity_ID

Member_ID
Booking_status

figure 5.3 |	 Full	 Functional	 Dependencies:	 (member_ID,	 amenity_ID)	 Fully	 Function-
ally	Determines	booking_date	and	(member_ID,	amenity_ID)	Fully	Functionally	Determines	
Booking_status.

CH_5_Normalization_Final.indd 86 2/28/2014 12:46:52 PM

Normalization | 87

table 5.4 |	 City_Team	Table

City_Code City_name team_id team_name

KK Kolkata KKR Kolkata Knight Riders

CH Chennai CSR Chennai Super Kings

BG Bangalore RCB Royal Challengers Bangalore

MH Mohali KXIP Kings XI Punjab

DL Delhi DD Delhi Daredevils

HD Hyderabad HDC Hyderabad Deccan Chargers

JP Jaipur RR Rajasthan Royals

MB Mumbai MI Mumbai Indian

PN Pune PWI Pune Warriors India

Member_name

Member_name

Member_ID

Member_ID

Amenity_ID

Amenity_ID

Amenity_desc

Amenity_desc

figure 5.4 |	 Partial	dependencies:	(member_ID,	amenity_ID)	Partially	determines	member_
name;	and	(member_ID,	amenity_ID)	Partially	determines	amenity_desc.

Field 1 Field 3
Field 2

Field 2

Field 1

Field 3

figure 5.5 |	 Transitive	dependency	between	field1	and	field3.

Transitive Dependency:	In	a	Table,	consider	that	there	exists	functional	dependency	between	
its	fields;	field	1	and	field	2,	where	field1	is	a	determinant	and	field	2	is	a	dependent.	If	any	other	
field,	namely	field	3	depends	on	the	determinant	(field	1),	as	well	as	on	the	dependent	(field	2)	
the	type	of	dependency	between	field	1	and	field	3	is	said	to	be	transitive dependency.	It	is	
shown	in	Figure 5.5.

For	an	example,	 in	Table	5.4,	 the	field	city_code	determines	 team_ID,	and	City_code	de-
termines	team_name,	but	also	team_ID	determines	team_name.	Hence,	there	exists	transitive	
dependency	between	the	city_code	and	team_name	fields.

Pictorially,	it	can	be	represented	as	shown	in	Figure 5.6.

Multi-valued Dependency:	It	is	explained	in	Section	5.8.

Join Dependency:	It	is	explained	in	Section	5.9.

CH_5_Normalization_Final.indd 87 2/28/2014 12:46:52 PM

88 | Chapter 5

City_code Team_ID

Team_name

City_code fully functionally determines team_ID,
city_code fully functionally determines team
team_name, team_ID fully functionally
determines team_name which implies that
city_code transitively determines team_name

City_code Team_ID and team_ID Team_name. Therefore, city_code team_name

figure 5.6 |	 Transitive	Dependency	between	City_Code	and	Team_Name.

5.4 | first nOrmal fOrm
When	we	are	given	some	problem	description,	then	first	we	need	to	identify	the	fields	along	
with	the	values	from	the	Table.	In	case,	when	Table	has	been	given	directly,	then	we	have	to	
check	whether	it	is	in	first	normal	form	or	not.	Consider	Table	5.5	which	describes	data	related	
to	IPL	cricket	matches.	

First Normal Form/1NF Definition: The	relation	(Table)	is	said	to	be	in	first normal form,	
if	and	only	if,	all	the	fields	of	the	Table	contain	atomic	value	in	a	record.	

In	other	words,	 the	Table	 is	 said	 to	be	 in	1NF,	 if	and	only	 if,	none	of	 the	attributes	 is	a	
composite	 attribute.	 In	 the	 given	Table,	 the	 attributes	 (i.e.,	 player_name	 and	 coach_name)	
are	 composite	 attributes	 because	player_name	can	be	 further	 divided	 into	player_firstname	
and	 player_lastname.	 Likewise,	 coach_name	 can	 be	 further	 divided	 into	 coach_fname	 and	
coach_lname.	All	other	attributes	are	simple	attributes	(i.e.,	values	in	the	fields	are	atomic).	As	
the	Table	5.5	contains	two	composite	attributes,	so	it	is	not	in	1NF.	

To	convert	the	IPL	Table	in	1NF,	player_name	should	be	divided	into	two	fields,	player_fname	
and	player_lname.	Similarly,	coach_name	should	be	divided	into	two	fields,	coach_fname	and	
coach_lname.	After	converting,	composite	attributes	into	simple	attributes,Table	5.6	does	not	
contain	any	composite	attribute.	Therefore,	it	is	in	first	normal	form.

After	converting	the	Table	into	1NF,	it	should	be	converted	into	2NF.

5.5 | seCOnd nOrmal fOrm
Second Normal Form/2NF Definition:	The	relation	(Table)	is	said	to	be	in	second normal
form,	if	and	only	if:	

	 1.	 It	is	in	1NF.
	 2.	 All	the	attributes	are	fully	functionally	dependent	on	the	primary	key.	
	 	 or
	 3.	 None	of	the	attribute	is	partially	dependent	on	the	primary	key.

To	check	whether	the	Table	is	in	2NF	or	not,	first	identify	the	primary	key	of	a	Table,	and	sec-
ond,	list	out	all	the	dependencies.

In	Table	5.6,	the	primary	key	is	a	combination	of	fields	(team_ID,	player_ID)	as	it	identifies	
each	record	of	a	Table	uniquely.

CH_5_Normalization_Final.indd 88 2/28/2014 12:46:52 PM

ta
b

le
 5

.5
 |
	I
PL

C
it

y_
C

o
d

e
C

it
y_

n
am

e
te

am
_

id
te

am
_

n
am

e
pl

ay
er

_
id

pl
ay

er
_

n
am

e
C

it
iz

en
_

C
o

u
n

tr
y

id

C
it

iz
en

_
C

o
u

n
tr

y
n

am
e

r
o

le
O

w
n

er
_

id
O

w
n

er
_n

am
e

C
o

ac
h

_
id

C
o

ac
h

_
n

am
e

W
eb

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P1
G

au
ta

m

G
am

b
h

ir
IN

D
In

d
ia

B
at

sm
an

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P2
B

re
tt

 L
ee

A
U

S
A

u
st

ra
lia

B

o
w

le
r

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P3
B

ra
d

H

ad
d

in
A

U
S

A
u

st
ra

lia

W
ic

ke
t

ke
ep

er
A

1
K

n
ig

h
t

R
id

er
s

Sp
o

rt
s

Pr
iv

at
e

Lt
d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P4
Eo

in

M
o

rg
an

EN
G

En
g

la
n

d

B
at

sm
an

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P5
M

ah
en

d
ra

Si

n
h

 D
h

o
n

i
IN

D
In

d
ia

W
ic

ke
t

ke
ep

er
A

2
Th

e
In

d
ia

C

em
en

ts
 L

td
C

2
St

ep
h

en

Fl
em

in
g

w
w

w
.c

h
en

n
ai

su

p
er

ki
n

g
s.

co
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P6
Su

re
sh

R

ai
n

a
IN

D
In

d
ia

B
at

sm
an

A
2

Th
e

In
d

ia

C
em

en
ts

 L
td

C
2

St
ep

h
en

Fl

em
in

g
w

w
w

.c
h

en
n

ai

su
p

er
ki

n
g

s.
co

m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P7
R

av
in

d
ra

Ja

d
ej

a
IN

D
In

d
ia

A
ll-

ro
u

n
d

er
A

2
Th

e
In

d
ia

C

em
en

ts
 L

td
C

2
St

ep
h

en

Fl
em

in
g

w
w

w
.c

h
en

n
ai

su

p
er

ki
n

g
s.

co
m

M
B

M
u

m
b

ai
M

I
M

u
m

b
ai

In

d
ia

n
P8

Sa
ch

in

Te
n

d
u

lk
ar

IN
D

In
d

ia
B

at
sm

an
A

3
In

d
ia

W
in

Sp

o
rt

s
Pv

t
Lt

d
C

3
Jo

h
n

W

ri
g

h
t

w
w

w
.m

u
m

b
ai

in

d
ia

n
s.

co
m

M
B

M
u

m
b

ai
M

I
M

u
m

b
ai

In

d
ia

n
P9

R
o

h
it

Sh

ar
m

a
IN

D
In

d
ia

B
at

sm
an

A
3

In
d

ia
W

in

Sp
o

rt
s

Pv
t

Lt
d

C
3

Jo
h

n

W
ri

g
h

t
w

w
w

.m
u

m
b

ai

in
d

ia
n

s.
co

m

M
B

M
u

m
b

ai
M

I
M

u
m

b
ai

In

d
ia

n
P1

0
La

si
th

M

al
in

g
a

SL
Sr

i L
an

ka
B

o
w

le
r

A
3

In
d

ia
W

in

Sp
o

rt
s

Pv
t

Lt
d

C
3

Jo
h

n

W
ri

g
h

t
w

w
w

.m
u

m
b

ai
-

in
d

ia
n

s.
co

m

89

CH_5_Normalization_Final.indd 89 2/28/2014 12:46:52 PM

www.kkr.com
www.kkr.com
www.kkr.com
www.kkr.com
www.chennaisuperkings.com
www.chennaisuperkings.com
www.chennaisuperkings.com
www.mumbaiindians.com
www.mumbaiindians.com
www.mumbaiindians.com

90

ta
b

le
 5

.6
 |
	I
PL

	in
	F
ir
st
	N

or
m
al
	F
or
m

C
it

y_
C

o
d

e
C

it
y_

n
am

e
te

am
_

id
te

am
_

n
am

e
pl

ay
er

_
id

pl
ay

er
_

fn
am

e
pl

ay
er

_
ln

am
e

C
it

iz
en

_
C

o
u

n
tr

y
id

C
it

iz
en

_
C

o
u

n
tr

y
n

am
e

r
o

le
O

w
n

er
_

id
O

w
n

er
_n

am
e

C
o

ac
h

_
id

C
o

ac
h

_
fn

am
e

C
o

ac
h

_
ln

am
e

W
eb

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P1
G

au
ta

m

G
am

b
h

ir
IN

D
In

d
ia

B
at

sm
an

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P2
B

re
tt

Le

e
A

U
S

A
u

st
ra

lia

B
o

w
le

r
A

1
K

n
ig

h
t

R
id

er
s

Sp
o

rt
s

Pr
iv

at
e

Lt
d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P3
B

ra
d

H

ad
d

in
A

U
S

A
u

st
ra

lia

W
ic

ke
t

ke
ep

er
A

1
K

n
ig

h
t

R
id

er
s

Sp
o

rt
s

Pr
iv

at
e

Lt
d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

K
K

K
o

lk
at

a
K

K
R

K
o

lk
at

a
K

n
ig

h
t

R
id

er
s

P4
Eo

in

M
o

rg
an

EN
G

En
g

la
n

d

B
at

sm
an

A
1

K
n

ig
h

t
R

id
er

s
Sp

o
rt

s
Pr

iv
at

e
Lt

d

C
1

Tr
ev

o
r

B
ay

lis
s

w
w

w
.k

kr
.c

o
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P3
M

ah
en

-
d

ra
si

n
h

D

h
o

n
i

IN
D

In
d

ia
W

ic
ke

t
ke

ep
er

A
2

Th
e

In
d

ia

C
em

en
ts

 L
td

C
2

St
ep

h
en

Fl

em
in

g
w

w
w

.c
h

en
n

ai

su
p

er
ki

n
g

s
.c

o
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P5
Su

re
sh

R

ai
n

a
IN

D
In

d
ia

B
at

sm
an

A
2

Th
e

In
d

ia

C
em

en
ts

 L
td

C
2

St
ep

h
en

Fl

em
in

g
w

w
w

.c
h

en
n

ai

su
p

er
ki

n
g

s
.c

o
m

C
H

C
h

en
n

ai
C

SR
C

h
en

n
ai

Su

p
er

K

in
g

s

P7
R

av
in

d
ra

Ja

d
ej

a
IN

D
In

d
ia

A
ll-

ro
u

n
d

er
A

2
Th

e
In

d
ia

C

em
en

ts
 L

td
C

2
St

ep
h

en

Fl
em

in
g

w
w

w
.c

h
en

n
ai

su

p
er

ki
n

g
s

.c
o

m
M

B
M

u
m

b
ai

M
I

M
u

m
b

ai

In
d

ia
n

P1
Sa

ch
in

Te

n
d

u
lk

ar
IN

D
In

d
ia

B
at

sm
an

A
3

In
d

ia
W

in

Sp
o

rt
s

Pv
t

Lt
d

C
3

Jo
h

n

W
ri

g
h

t
w

w
w

.m
u

m
b

ai

in
d

ia
n

s.
co

m
M

B
M

u
m

b
ai

M
I

M
u

m
b

ai

In
d

ia
n

P2
R

o
h

it

Sh
ar

m
a

IN
D

In
d

ia
B

at
sm

an
A

3
In

d
ia

W
in

Sp

o
rt

s
Pv

t
Lt

d
C

3
Jo

h
n

W

ri
g

h
t

w
w

w
.m

u
m

b
ai

in

d
ia

n
s.

co
m

M
B

M
u

m
b

ai
M

I
M

u
m

b
ai

In

d
ia

n
P1

0
La

si
th

M

al
in

g
a

SL
Sr

i L
an

ka
B

o
w

le
r

A
3

In
d

ia
W

in

Sp
o

rt
s

Pv
t

Lt
d

C
3

Jo
h

n

W
ri

g
h

t
w

w
w

.m
u

m
b

ai

in
d

ia
n

s.
co

m

CH_5_Normalization_Final.indd 90 2/28/2014 12:46:52 PM

www.kkr.com
www.kkr.com
www.kkr.com
www.kkr.com
www.chennaisuperkings.com
www.chennaisuperkings.com
www.chennaisuperkings.com
www.mumbaiindians.com
www.mumbaiindians.com
www.mumbaiindians.com

Normalization | 91

Table	5.6	contains	the	following	functional	dependencies:

																																		(team_ID,	player_ID)		 		city_code
																																		(team_ID,	player_ID)		 		city_name
																																		(team_ID,	player_ID)		 		team_name
																																		(team_ID,	player_ID)		 		player_fname
																																		(team_ID,	player_ID)		 		player_lname
																																		(team_ID,	player_ID)		 		citizen_countryID

(team_ID,	player_ID)		 		citizen_countryname
																																		(team_ID,	player_ID)		 		role
																																		(team_ID,	player_ID)		 		owner_ID
																																		(team_ID,	player_ID)		 		owner_name
																																		(team_ID,	player_ID)		 		coach_ID
																																		(team_ID,	player_ID)		 		coach_fname
																																		(team_ID,	player_ID)		 		coach_lname
																																		(team_ID,	player_ID)		 		web

The	above	dependencies	can	also	be	written	as	follows:

(team_ID,	player_ID)		 		city_code,	city_name,	team_name,
																																																																										player_fname,	player_lname,
																																																																										citizen_countryID,	
																																																																										citizen_countryname,	role,	owner_ID,	
																																																																										owner_name,	coach_ID,	
																																																																										coach_fname,	coach_lname,	web

For	the	above	dependencies,	a	dependency	diagram	can	be	shown	as	given	in	Figure 5.7.

Team_ID

Player_ID

RoleCity_code

City_name

Team_name

Citizen_countryname

Citizen_country ID

Player_lname

Player_fname

Owner_ID

Owner_name

Coach_ID

Coach_fname

Coach_lname

Web

figure 5.7 |	 Functional	dependencies	of	IPL	Table	as	Given	in	Table	5.6.

CH_5_Normalization_Final.indd 91 2/28/2014 12:46:52 PM

92 | Chapter 5

There	exist	the	following	partial	dependencies	in	Table	5.6.

																																																		team_ID		 		city_code
																																																		team_ID		 		city_name
																																																		team_ID		 		team_name
																																																		team_ID		 		owner_ID
																																																		team_ID		 		owner_name
																																																		team_ID		 		coach_ID

	team_ID		 		coach_fname
	team_ID		 		coach_lname

																																																		team_ID		 		web

The	above	partial	dependencies	can	be	denoted	as	given	in	Figure 5.8.	
To	remove	partial	dependencies	from	the	Table,	remove	all	the	fields	which	are	partially	de-

pendent	on	a	component	of	primary	key	(do	not		remove	the	component	on	which	other	fields	
are	partially	dependent).	Add	all	these	removed	fields	along	with	the	field	on	which	they	depend	
into	a	new	Table	and	give	that	Table	some	meaningful	name.	In	other	words,	add	all	the	fields	
which	are	there	on	the	left	and	right	side	of	the	partial	dependency	into	one	new	Table.	The	field	
which	is	determinant	(on	left	side	of	arrow)	in	the	partial	dependency	will	become	a	primary	
key	of	the	new	Table.

For	Table	5.6,	we	have	listed	the	following	partial	dependencies:

		team_ID		 		city_code,	city_name,	team_name,	owner_ID,	
																																																								owner_name,	coach_ID,	coach_fname,
																																																								coach_lname,	web

Therefore,	we	are	required	to	create	a	new	Table,	say	TEAM.
TEAM	Table	will	have	attributes	 team_ID,	city_code,	city_name,	 team_name,	owner_ID,	

owner_name,	coach_ID,	coach_fname,	coach_lname	and	web.	team_ID	(which	is	on	the	left	
side	of	the	arrow	in	partial	dependency)	will	become	primary	key	of	Table	TEAM.	However,	
team_ID	will	remain	as	it	is	in	the	original	IPL	Table.

figure 5.8 |	 Partial	dependencies	of	IPL	Table	as	shown	in	Table	5.6.

Team_ID

Player_ID

City_code

City_name

Team_name
Owner_ID

Owner_name

Coach_ID

Coach_fname

Coach_lname

Web

CH_5_Normalization_Final.indd 92 2/28/2014 12:46:52 PM

Normalization | 93

Now,	after	decomposition	of	Table	IPL,	we	will	have	two	Tables	namely,	IPL	and	TEAM	
as	follows:	
 IPL (team_ID,	 player_ID,	 player_fname,	 player_lname,	 role,	 citizen_countryID,	

citizen_countryname)
 TEAM (team_ID,	city_code,	city_name,	team_name,	owner_ID,	owner_name,	coach_

ID,	coach_fname,	coach_lname,	web)

The	fields	which	are	underlined	are	the	primary	keys	of	the	respective	Tables.	Table	5.7	shows	
IPL	Table	after	decomposition,	and	Table	5.8	shows	TEAM	Table.	

The	duplicate	rows	will	be	deleted	from	all	the	Tables,	and	hence	the	redundancy	(duplica-
tion	of	data)	will	be	reduced.	After	the	decomposition,	again	we	need	to	check	whether	there	
exists	any	partial	dependency	in	any	of	the	Table.	If	yes,	then	it	should	be	removed	by	further	
decomposition.	This	process	must	be	continued	until	all	the	Tables	fall	in	2NF.	

After	decomposition,	both	the	Tables	IPL	and	TEAM	are	in	2NF.	TEAM	has	only	one	field	
as	a	primary	key.	So,	there	is	no	question	of	partial	dependency	(Remember	the	rule	that	partial	
dependency	may	exists	if	primary	key	is	a	composite	key)	in	this	Table.

In	the	IPL	Table	primary	key	is	a	composite	key	which	contains	combination	of	team_ID	and	
player_ID.	But	 the	combination	fully	 functionally	determines	all	 the	other	fields.	Therefore,	
also	in	this	Table,	no	partial	dependencies	exist.

Hence	IPL	and	TEAM	both	the	Tables	are	in	2NF.

table 5.7 |	 IPL	Which	is	in	2NF

team_
id

player_
id player_fname player_lname

Citizen_
Country id

Citizen_
Country name role

KKR P1 Gautam Gambhir IND India Batsman
KKR P2 Brett Lee AUS Australia Bowler
KKR P3 Brad Haddin AUS Australia Wicket keeper
KKR P4 Eoin Morgan ENG England Batsman
CSR P3 Mahendrasinh Dhoni IND India Wicket keeper
CSR P5 Suresh Raina IND India Batsman
CSR P7 Ravindra Jadeja IND India All-rounder
MI P1 Sachin Tendulkar IND India Batsman
MI P2 Rohit Sharma IND India Batsman
MI P10 Lasith Malinga SL Sri Lanka Bowler

table 5.8 |	 TEAM	Which	is	in	2NF

City_
Code

City_
name

team_
id

team_
name

Owner_
id Owner_name Coach_id

Coach_
fname

Coach_
lname Web

KK Kolkata KKR Kolkata
Knight
Riders

A1 Knight Riders
Sports Private
Ltd

C1 Trevor Bayliss www.kkr.com

CH Chennai CSR Chennai
Super
Kings

A2 The India
Cements Ltd

C2 Stephen Fleming www.chennai
superkings.com

MB Mumbai MI Mumbai
Indian

A3 IndiaWin Sports
Pvt Ltd

C3 John Wright www.mumbai
indians.com

CH_5_Normalization_Final.indd 93 2/28/2014 12:46:52 PM

www.kkr.com
www.chennaisuperkings.com
www.mumbaiindians.com

94 | Chapter 5

5.6 | third nOrmal fOrm
Third Normal Form/3NF Definition:	The	relation	(Table)	is	said	to	be	in	third normal form,	
if	and	only	if:

	 1.	 It	is	in	2NF.
	 2.	 All	the	attributes	are	non-transitively	dependent	on	the	primary	key.	Or,
	 3.	 None	of	the	attribute	is	transitively	dependent	on	the	primary	key.

To	check	whether	the	Table	is	in	3NF	or	not,	first,	list	all	the	transitive	dependencies.	The	fol-
lowing	transitive	dependencies	exists	in	the	IPL	Table:

																																		(team_ID,	player_ID)		 				citizen_countryID
																																		citizen_countryID					 				citizen_countryname

(team_ID,	player_ID)		 		citizen_countryname

The	transitive	dependency	of	the	IPL	Table	is	shown	in	Figure	5.9.

The	following	transitive	dependencies	exists	in	the	TEAM	Table:

	 1.	 team_ID		 		city_code,	city_code		 		city_name
	 	 	Which	implies	team_ID		 		city_name
	 2.	 team_ID		 		owner_ID,	owner_ID		 		owner_name
	 	 	Which	implies	team_ID		 		owner_name
	 3.	 team_ID		 		coach_ID,	coach_ID		 		coach_fname
	 	 	Which	implies	team_ID		 		coach_fname
 4. team_ID		 		coach_ID,	coach_ID		 		coach_lname
	 	 	Which	implies		team_ID		 		coach_lname
The	transitive	dependency	of	the	TEAM	Table	is	shown	in	Figure	5.10.

Citizen_countryid

Citizen_countryname

Team_ID

Player_ID

figure 5.9 |	 Transitive	dependency	of	the	IPL	Table.

Team_ID

City_code City_name

Owner_ID

Owner_name

Coach_ID

Coach_fname

Coach_lname

figure 5.10 |	 Transitive	dependency	of	the	TEAM	Table.

CH_5_Normalization_Final.indd 94 2/28/2014 12:46:53 PM

Normalization | 95

To	remove	transitive	dependency	from	the	Table,	do	the	following:

	 1.	 Decompose	 the	Table	and	create	a	new	Table	which	will	contain	 the	field	because	of	
which	transitive	dependency	exists	(i.e.,	the	field	other	than	primary	key	which	also	de-
termines	the	third	field).	Do	not	remove	that	intermediate	field	from	the	original	Table.

	 2.	 Remove	the	field	which	transitively	depends	on	the	primary	key	and	add	that	field(s)	into	
the	new	Table.

Consider	the	transitive	dependency	of	the	IPL	Table.	The	field,	citizen_countryID,	is	the	field	
which	also	determines	citizen_countryname	field	besides	the	primary	key	(teamid,	player_ID).	
Therefore,	the	IPL	Table	will	be	decomposed	as	following	two	Tables.	Citizen_countryID	will	
be	added	in	a	new	Table,	say	CITIZEN_COUNTRY	along	with	the	field	citizen_countryname.	
But	citizen_countryID	will	remain	as	it	is	in	the	IPL	Table	also.	In	a	new	Table,	CITIZEN_
COUNTRY,	citizen_countryID	will	become	a	primary	key.

 CITIZEN_COUNTRY (citizen_countryID,	citizen_country	name)
 IPL (team_ID,	player_ID,	player_fname,	player_lname,	role,	citizen_countryID)

Similarly,	from	TEAM	Table,	when	we	remove	transitive	dependencies,	it	will	be	decomposed	
as	TEAM,	CITY,	OWNER	and	COACH	Tables.

 TEAM (team_ID,	city_code,	team_name,	owner_ID,	coach_ID,	web)
 CITY (city_code,	city_name)
 OWNER (owner_ID,	owner_name)
 COACH (coach_ID,	coach_fname,	coach_lname)

After	removal	of	transitive	dependencies,	now	we	will	have	6	IPL	Tables,	these	are	as:	CITI-
ZEN_COUNTRY,	TEAM,	CITY,	OWNER	and	COACH.	For	 all	 these	Tables,	 again,	 check	
whether	any	one	of	them	contains	transitive	dependencies?	If	yes,	then	remove	it	by	applying	
the	rules	given	above	until	all	the	transitive	dependencies	are	removed.

There	are	no	transitive	dependencies	exists	in	any	of	the	six	Tables,	IPL,	CITIZEN_COUN-
TRY,	TEAM,	CITY,	OWNER	and	COACH.	Therefore,	now	they	are	in	3NF.	Tables	5.9–5.14	
shows	the	IPL,	CITIZEN_COUNTRY,	TEAM,	CITY,	OWNER	and	COACH	Tables	which	are	
all	in	3NF.	They	will	not	contain	any	redundant	records.

table 5.9 |	 IPL	Which	is	in	3NF

team_id player_id player_fname player_lname Citizen_Country id role

KKR P1 Gautam Gambhir IND Batsman
KKR P2 Brett Lee AUS Bowler

KKR P3 Brad Haddin AUS Wicket keeper

KKR P4 Eoin Morgan ENG Batsman

CSR P3 Mahendrasinh Dhoni IND Wicket keeper

CSR P5 Suresh Raina IND Batsman

CSR P7 Ravindra Jadeja IND All-rounder

MI P1 Sachin Tendulkar IND Batsman

MI P2 Rohit Sharma IND Batsman
MI P10 Lasith Malinga SL Bowler

CH_5_Normalization_Final.indd 95 2/28/2014 12:46:53 PM

96 | Chapter 5

table 5.10 |	 CITIZEN_COUNTRY	Which	is	in	3NF

Citizen_Country id Citizen_Country name

IND India

AUS Australia

ENG England

SL Sri Lanka

table 5.11 |	 TEAM	Which	is	in	3NF

City_Code team_id team_name Owner_id Coach_id Web

KK KKR Kolkata Knight
Riders

A1 C1 www.kkr.com

CH CSR Chennai Super
Kings

A2 C2 www.chennaisuperkings
.com

MB MI Mumbai Indian A3 C3 www.mumbaiindians
.com

table 5.12 |	 CITY	Which	is	in	3NF

City_Code City_name

KK Kolkata

CH Chennai

MB Mumbai

table 5.13 |	 OWNER	Which	is	in	3NF

Owner_id Owner_name

A1 Knight Riders Sports Private Ltd

A2 The India Cements Ltd

A3 India Win Sports Pvt Ltd

table 5.14 |	 COACH	Which	is	in	3NF

Coach_id Coach_fname Coach_lname

C1 Trevor Bayliss

C2 Stephen Fleming

C3 John Wright

5.7 | bOyCe–COdd nOrmal fOrm
Boyce–Codd Normal Form (BCNF)	 is	 a	 special	 type	of	3NF	which	was	propounded	by	
R.	F.	Boyce	and	E.	F.	Codd.

BCNF Definition:	The	relation	(Table)	is	said	to	be	in	BCNF,	if	and	only	if:

	 1.	 It	is	in	3NF.
	 2.	 Every	determinant	(field/combination	of	fields)	of	the	Table	should	be	a	candidate	key.

CH_5_Normalization_Final.indd 96 2/28/2014 12:46:53 PM

www.kkr.com
www.chennaisuperkings.com
www.mumbaiindians.com

Normalization | 97

Consider	the	relation	IPL	as	given	in	the	Table	5.15;	where	there	are	two	determinants:

	 1.	 (team_ID,player_ID)
	 2.	 (captain_name,	player_ID)

Both	the	determinants	are	candidate	keys.	All	the	other	attributes	are	fully	functionally	depen-
dent	on	both	the	candidate	keys,	i.e,	there	does	not	exist	any	partial	dependency.	Table	5.15	is	
therefore,	in	2NF.	Also,	there	does	not	exist	any	transitive	dependency	in	the	Table,	and	hence	
the	IPL	Table	is	in	3NF.	But,	also	there	exists	two	more	determinants	team	_ID	and	captain_ID	
(as	shown	below)	which	determines	each	other.

									team_ID		 		captain_name	and	
captain_name		 		team_ID

team_ID	and	captain_name	are	determinants,	but	niether	team_ID	nor	captain_name	is	a	candi-
date	key	(as	both	contains	duplicate	values).	Therefore,	Table	5.15	is	not	in	BCNF.	To	convert	
it	into	BCNF,	we	should	keep	both	the	determinants,	team_ID	and	captain_name,	in	one	Table	
and	from	the	original	Table,	remove	any	of	the	field,	either	team_ID,	or	captain_name.	Table	
5.15	should	be	decomposed	as	follows:

 IPL (team_ID,	player_ID,	player_fname,	player_lname,	citizen_countryID,	role)
 CAPTAIN (captain_name,	team_ID)

OR
 IPL (captain_name,	player_ID,	player_fname,	player_lname,	citizen_countryid,	role)
 CAPTAIN (team_ID,	captain_name)

Now,	 both	 the	 above	 decompositions	 are	 in	 BCNF,	 because	 every	 determinant	 of	 both	 the	
Tables	in	both	the	decomposition	is	a	candidate	key.	In	the	first	decomposition,	the	IPL	Table	
has	only	one	determinant	(team_ID,	player_ID)	which	is	a	candidate	key	and	the	Captain	Table	
has	 two	determinants,	 team_ID	and	 captain_ID;	 and	both	 are	 candidate	 keys.	Similarly,	 for	

table 5.15 |	 Captain	is	in	3NF,	but	Not	in	BCNF

team_id player_id Captain_name player_fname
player_
lname

Citizen_
Country id role

KKR P1 G. Gambhir Gautam Gambhir IND Batsman

KKR P2 G. Gambhir Brett Lee AUS Bowler

KKR P3 G. Gambhir Brad Haddin AUS Wicket
keeper

KKR P4 G. Gambhir Eoin Morgan ENG Batsman

CSR P3 M. S. Dhoni Mahendrasinh Dhoni IND Wicket
keeper

CSR P5 M. S. Dhoni Suresh Raina IND Batsman

CSR P7 M. S. Dhoni Ravindra Jadeja IND All-rounder

MI P1 R. Sharma Sachin Tendulkar IND Batsman

MI P2 R. Sharma Rohit Sharma IND Batsman

MI P10 R. Sharma Lasith Malinga SL Bowler

CH_5_Normalization_Final.indd 97 2/28/2014 12:46:53 PM

98 | Chapter 5

the	second	decomposition,	the	IPL	Table	has	only	one	determinant	(captain_name,	player_ID)	
which	is	a	candidate	key	and	the	Captain	Table	has	two	determinants,	team_ID	and	captain_ID;	
and	both	are	candidate	keys.

5.8 | multi-valued dependenCy
For	the	given	relation	R,	consider	field	1,	field	2	and	field	3	as	attributes	of	R.	Then,	for	each	
record	of	R,	there	exist	multi-valued dependency	between	field	1	and	field	2	known	as	field	1	
multi-determines	field	2	(i.e.,	field	2	is	multi-dependent	on	field1),	if	and	only	if,	the	set	of	field	
2	values	depends	only	on	the	field	1	value	and	is	independent	of	field	3	values	for	matching	pair	
of	(field	1,	field	3).	In	other	words,	we	can	say	that	in	relation	R,	for	fields	(field	1,	field	2,	field	
3),	the	multi-valued	dependency	field	1	multi-determines	field	2	exists,	if	and	only	if,	the	multi-
valued	dependency	field	1	multi-determines	field	3	also	exists.	The	concept	of	multi-valued	de-
pendency	was	proposed	by	Ronald	Fagin.	In	notations,	multi-valued	dependency	is	denoted	as:

field	1		 		field	2
field	1		 		field	3

Definition of multi-valued dependency: Consider	 a	 relation	with	A,	B	 and	C—subsets	 of	
attributes	of	a	relation.	Then,	B	is	said	to	be	multi-dependent	on	A,	if	and	only	if,	in	each	record	
(tuple)	of	a	relation,	the	set	of	B	values	which	match	with	a	given	(A,	C)	value	pair	depends	only	
on	the	value	of	A	and	is	completely	independent	of	value	of	C.

Consider	the	as	data	given	in	Table	5.16	(MOBILE),	which	represents	company-wise	mobile	
types	and	their	features.

Mobile	phone	companies	offer	many	types	of	handsets	that	comes	fitted	with	multiple	fea-
tures.	In	the	MOBILE	Table,	there	exists	the	following	multi-valued	dependencies:	

	● Model_type	and	Features	are	multi-dependent	on	Company_name,	but	Model_type	and	
Features	are	‘	independent’,	or	‘orthogonal’	of	each	other.

	● Multi-valued	 dependency	 is	 a	 special	 form	 of	 functional	 dependency.	 In	 a	 functional	
dependency,	the	dependent	attribute	is	a	single-value	attribute:	while	in	multi-valued	de-
pendency,	the	dependent	attribute	is	a	multi-valued	attribute.

	● Ronald	Fagin	propounded	a	fourth	normal	form	on	the	basis	of	multi-valued	dependency.

table 5.16 |	 Mobile	Table	with	Multiple	Values	of	Model	Type	and	Features

Company_name model_type features

SAMSUNG •	 Smart phone
•	 Tablet
•	 Touch Phones

•	 Bluetooth
•	 Android OS
•	 7 MP Camera

NOKIA •	 Smart phone
•	 Multimedia Phone
•	 Dual SIM

•	 Bluetooth
•	 Windows 8.0 OS
•	 4GB memory card

 Company_name Model_type
Company_name Features

CH_5_Normalization_Final.indd 98 2/28/2014 12:46:53 PM

Normalization | 99

Fourth normal form definition:	The	relation	(Table)	is	said	to	be	in	4NF,	if	and	only	if:

	 1.	 It	is	in	BCNF.
	 2.	 	For	the	existence	of	nontrivial	(nontrivial	means	the	attribute	on	the	right	side	of	the	

arrow	 is	 not	 a	 subset	 of	 left	 hand	 side	 attribute)	 multi-valued	 dependency	 between	
attributes	A→→B	in	a	relation,	all	other	attributes	of	relation	should	also	functionally	
dependent	on	A.	

Or
	 2.	 Every	nontrivial	MVD	in	a	relation	is	implied	by	the	candidate	key(s)	of	relation.

Or	
	 4.	 	Remove	 multi-valued	 dependency	 from	 the	 relation	 which	 are	 not	 also	 functional	

dependencies.

The		MOBILE	Table	can	be	converted	as	shown	in	Table	5.17,	which	contains	combination	of	
all	the	three	attributes	as	primary	key,	but	there	are	some	problems,	such	as,	if	we	want	to	add	
new	model_type	for	the	company	SAMSUNG,	it	is	required	to	add	three	new	records	one	for	
each	feature.	This	problem	occurs	because	model_type	and	features	are	independent.	

To	 resolve	 this	 problem,	 the	MOBILE	Table	 should	 be	 decomposed	 into	 two	Tables	 as	
follows:

 MOB_TYPE (company_name,	model_type)
 MOB_FEAT (company_name,	features)

Now,	the	Tables	MOB_TYPE	and	MOB_FEAT	are	in	4NF,	as	they	do	not	contain	any	multi-
valued	dependency.

table 5.17 |	 MOBILE	Table

Company_name model_type features

SAMSUNG Smart phone Bluetooth
SAMSUNG Smart phone Android OS
SAMSUNG Smart phone 7 MP Camera

SAMSUNG Tablet Bluetooth
SAMSUNG Tablet Android OS
SAMSUNG Tablet 7 MP Camera
SAMSUNG Touch Phones Bluetooth
SAMSUNG Touch Phones Android OS
SAMSUNG Touch Phones 7 MP Camera
NOKIA Smart phone Bluetooth
NOKIA Smart phone Windows 8.0 OS
NOKIA Smart phone 4GB memory card
NOKIA Multimedia Phone Bluetooth
NOKIA Multimedia Phone Windows 8.0 OS
NOKIA Multimedia Phone 4GB memory card
NOKIA Dual SIM Bluetooth
NOKIA Dual SIM Windows 8.0 OS
NOKIA Dual SIM 4GB memory card

CH_5_Normalization_Final.indd 99 2/28/2014 12:46:53 PM

100 | Chapter 5

5.9 | jOin dependenCy
Join	dependency	is	a	generalization	of	multi-valued	dependency.

Definition of Join dependency:	Consider	any	relation	with	projections	P
1
,	P

2
,	…,	P

n
.	There	

exists	join	dependency	(denoted	as	*{P
1
,	P

2
,	…,	P

n
}),	if	and	only	if,	value	of	every	record(tuple)	

of	a	relation	is	the	join	of	its	projections	on	P1,	P2,	…,	P
n
.	From	the	Fagin’s	definition	of	multi-

valued	dependency,	we	can	say	that	the	join dependency	in	a	relation	with	attributes	A,	B	and	
C;	*{AB,	AC}	holds,	if	and	only	if,	it	satisfies	the	multi-valued	dependencies	A	→→	B	and	A	
→→	C.	

Fifth Normal Form Definition:	The	relation(Table)	is	said	to	be	in	5NF,	if	and	only	if:

	 1.	 It	is	in	4NF.
	 2.	 Every	nontrivial	 join	dependency	in	a	relation	is	 implied	by	the	candidate	key(s)	of	

relation.
Or

	 	 Each	 projection	 (decomposition)	 of	 a	 relation	 should	 contain	 candidate	 key(s)	 of	 a	
relation.

Or
	 	 Each	projection	of	the	relation	should	be	based	only	on	the	candidate	key(s).

The	fifth normal form	is	also	known	as	projection-join normal form (PJNF).	Consider	the	
relation	(Table)	as	given	in	Table	5.18.	It	describes	which	faculty	takes	which	subject	in	which	
class.

table 5.18 |	 TEACHING

faculty_id subject_id Class_id

SN FOP FY-I
SN FOP FY-II
SN APCL FY-I
SN APCL FY-II
SN PCL FY-I
SN PCL FY-II
HT SC SY-I
HT SC SY-II
HT MFCS SY-I
HT MFCS SY-II
HD IHTML FY-I
HD IHTML FY-II
HD DHTML FY-I
HD DHTML FY-II
HD AJ TY-I
HD AJ TY-II
KG OOP SY-I
KG OOP SY-II
KG OOMUL SY-I
KG OOMUL SY-II

CH_5_Normalization_Final.indd 100 2/28/2014 12:46:53 PM

Normalization | 101

Table	5.18	shows	the	details	of	the	faculties	teaching	various	subjects	in	different	classes.	It	
has	a	Candidate	key	which	is	a	combination	of	all	the	three	attributes.	The	TEACHING	Table	
is	 in	4NF	because	it	has	no	nontrivial multi-valued dependency.	This	Table	 is	not	 in	5NF	
because	it	contains	 join	dependency	which	is	not	 implied	by	its	candidate	key	(combination	
offaculty_ID,	subject_ID	and	class_ID).	To	convert	 this	Table	 into	5NF,	 it	should	be	further	
decomposed	as	3	projections,	namely	FAC_SUB,	SUB_CLASS	and	CLASS_FAC.	These	three	
Tables	would	contain	the	following	attributes:

 FAC_SUB (faculty_ID,	subject_ID)
 SUB_CLASS (subject_ID,	class_ID)
 CLASS_FAC (class_ID,	faculty_ID)

The	3	decompositions	FAC_SUB,	SUB_CLASS	and	CLASS_FAC	are	shown	in	Tables	5.19,	
5.20	and	5.21	respectively.	

The	3	decompositions	FAC_SUB,	SUB_CLASS	and	CLASS_FAC	are	in	5NF.	

5.10 | lOssless and lOssy deCOmpOsitiOns
During	the	normalization	process,	when	we	decompose	a	Table	into	different	decompositions	
(projections),	care	should	be	 taken	so	 that	original	 information	should	not	be	 lost	when	we,	
again,	join	those	decompositions.	

When	we	decompose	the	Table	and,	if	original	information	will	not	be	lost,	the	decomposi-
tion	 is	said	 to	be	 lossless decomposition.	Lossless	decomposition	 is	also	known	as	nonloss
decomposition.	The	concept	was	given	by	Heath.

When	we	decompose	a	Table	and,	if	original	information	will	be	lost	when	we,	again,	join	the	
decompositions;	the	type	of	decomposition	is	said	to	be	lossy decomposition.

The	nonloss	decomposition	can	be	achieved	by	preserving	the	functional	dependencies	in	the	
decompositions.

table 5.19 |	 FAC_SUB

faculty_id subject_id

SN FOP

SN APCL

SN PCL

HT SC

HT MFCS

HD IHTML

HD DHTML

HD AJ

KG OOP

KG OOMUL

CH_5_Normalization_Final.indd 101 2/28/2014 12:46:53 PM

102 | Chapter 5

Definition of Nonloss Decomposition:	If	R	is	a	relation,	and	P
1
,	P

2
,	…,	P

n
	are	decompositions	

(Projections)	of	R	which	are	nonloss	decompositions	if	join	of	P
1
,	P

2
,	…,	P

n
	results	into	original	

relation	R.	We	cannot	omit	any	of	the	decompositions	(P
1
,	P

2
,	…,	P

n
)	while	joining	them	as	it	

will	result	into	incorrect	information.

5.11 | nOrmalizing tables
We	have	already	seen	the	normalization	of	Tables	and	its	importance	in	database	design.	Before	
we	start	learning	normalization,	we	should	know	all	the	types	of	dependency	in	detail.	The	first	
normal	form	gives	a	Table	with	atomic	fields.	The	second	normal	form	removes	partial	depen-
dencies	 from	 the	Table(s).	The	 third	normal	 form	 removes	 transitive	dependencies	 from	 the	

table 5.20 |	 SUB_CLASS

subject_id Class_id

FOP FY-I

FOP FY-II

APCL FY-I

APCL FY-II

PCL FY-I

PCL FY-II

SC SY-I

SC SY-II

MFCS SY-I

MFCS SY-II

IHTML FY-I

IHTML FY-II

DHTML FY-I

DHTML FY-II

AJ TY-I

AJ TY-II

OOP SY-I

OOP SY-II

OOMUL SY-I

OOMUL SY-II

table 5.21 |	 CLASS_FAC

faculty_id Class_id

SN FY-I

SN FY-II

HT SY-I

HT SY-II

HD FY-I

HD FY-II

HD TY-I

HD TY-II

KG SY-I

KG SY-II

CH_5_Normalization_Final.indd 102 2/28/2014 12:46:53 PM

Normalization | 103

Table(s).	Advanced	form	of	3NF	is	BCNF	which	ensures	that	all	the	determinants	are	candidate	
keys.	The	fourth	normal	form	removes	multi-valued	dependencies	from	the	Table	which	are	not	
functional	dependencies.	The	fifth	normal	form	ensures	that	every	join	dependency	is	implied	
by	the	candidate	key	of	a	Table.	During	normalization	process,	when	we	decompose	the	Table,	
all	the	functional	dependencies	should	be	preserved	into	decompositions	to	make	it	sure	that	
the	decompositions	are	nonloss	decompositions.	During	the	normalization	process,	if	we	found	
primary	key	is	a	combination	of	too	many	fields	and	difficult	to	handle,	then	we	can	use	sur-
rogate	key	(an	artificial	primary	key	which	contains	positive	integer’s	values	and	mostly	auto-
generated)	as	a	primary	key	instead	of	an	actual	primary	key.	Also,	if	there	are	some	derived	
fields	in	the	Table,	it	depends	on	the	database	designer	whether	to	store	its	value	or	not.	Beside	
five	 normal	 forms	which	 are	 based	 on	 functional	 dependency,	 there	 are	 some	more	 normal	
forms	proposed,	such	as	domain-key	normal	form	(DK/NF),	‘PSJU/NF	or	Restriction-Union	
normal	form’,	sixth	normal	form,	etc.

Domain-Key Normal Form	is	based	on	domain	constraints	and	key	constraints.	Domain	con-
straint	means	the	constraint	which	is	put	up	on	the	values	of	attributes	and	key	constraint	is	a	
constraint	which	is	applied	on	the	key	attributes	of	a	Table.	R.	Fagin	proposed	this	normal	form.	
The	relation	is	said	to	be	in	DKNF,	if	and	only	if,	it	is	in	5NF	and	every	constraint	is	derived	
automatically	from	the	enforcement	of	domain	constraints	and	key	constraints.

Normal	forms	1NF	to	5NF	are	achieved	by	decomposing	a	Table	into	its	projections	(vertical	
subset	of	Table,	i.e.,	decomposition	which	is	based	on	columns)	and	ensuring	that	when	we	will	
again	join	these	decomposition,	we	will	get	back	the	original	Table	with	all	the	information.	It	
means	that	1NF	to	5NF	are	based	on	‘Projection’	and	‘Join’	operators.	Is	it	possible	to	decom-
pose	the	Table	by	taking	its	horizontal	subset	(based	on	the	attribute’s	specific	value)	which	is	
called,	‘split/restriction’	and	‘recomposition’		(join	the	decomposition	again)	by	doing	union	of	
those	restrictions?	For	an	example,	let	WORKER	is	a	Table	which	contains	details	of	workers	
of	a	factory	with	one	field	‘gender’.	By	applying	PSJU/NF	(projection	split	join	union/normal	
form),	all	the	male	workers	can	be	kept	in	one	Table	and	the	female	workers	in	the	other	one.	
PSJU/NF	may	result	in	a	poor	database	design.

Sixth normal form	is	proposed	for	temporal	databases.	The	database	which	stores	historical	
data	is	known	as	temporal	database.

Many	other	normal	forms	are	also	proposed,	such	as	NNF (Nested Normal Form)	by	Z.	
Meral	Oasoyoglu	and	Li-yan	Yuan,	Normal	form	for	XML	documents	by	Marcelo	Arenas	and	
Leon	ID	Libkin,	ETNF	(Essential	Tuple	Normal	Form)	by	H.	Darwen,	C.	J.	Date	and	R.	Fagin.	
ETNF	lies	between	4NF	and	5NF.	ETNF	is	for	preventing	or	eliminating	redundant	tuples.

5.12 | examples
Example 1:	Normalize	Table	5.22	up	to	its	maximum	possible	normal	form.

Table	 5.22	 is	 not	 in	 1NF,	 because	 the	 field	 custadd	 can	 be	 decomposed	 into	 addline	 1,	
addline	2,	city	and	pincode.	When	we	decompose	this	field,	we	will	get	Table	5.23	which	is	in	
1NF.

Table	5.23	(i.e.,	PERIODICALS)	has	a	primary	key	which	is	a	combination	of	fields	bill	no	
and	peri_ID.	It	contains	the	following	functional	dependencies:

CH_5_Normalization_Final.indd 103 2/28/2014 12:46:53 PM

ta
b

le
 5

.2
2

|	
PE

R
IO

D
IC

A
L
S

b
ill

 n
o

b
ill

 d
at

e
C

u
st

 id
C

u
st

 n
am

e
C

u
st

 a
d

d
pe

ri
_i

d
pe

ri
_d

es
c

Q
ty

pr
ic

e
to

ta
l_

p
r

d
el

iv
er

y_
C

h
ar

g
es

b
ill

_t
o

ta
l

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
11

Ti
m

es
 o

f
In

d
ia

30
2.

50
75

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
15

D
iv

ya
 B

h
as

ka
r

30
3.

00
90

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
23

Ec
o

n
o

m
ic

 T
im

es
21

3.
00

63
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
 3

M
in

t
26

3.
00

78
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
 5

1
C

h
am

p
ak

1
20

.0
0

20
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
33

En
tr

ep
re

n
eu

r
1

10
0.

00
10

0.
00

10
.0

0
43

6.
00

 5

4-
5-

20
13

3
M

. N
. D

av
e

11
, A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
11

Ti
m

es
 o

f
In

d
ia

30
2.

50
75

.0
0

10
.0

0
17

5.
00

 5

4-
5-

20
13

3
M

. N
. D

av
e

11
, A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
15

D
iv

ya
 B

h
as

ka
r

30
3.

00
90

.0
0

10
.0

0
17

5.
00

14

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
12

G
u

ja
ra

t
Sa

m
ac

h
ar

28
3.

00
84

.0
0

10
.0

0
20

4.
00

14

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
11

Ti
m

es
 o

f
In

d
ia

30
2.

50
75

.0
0

10
.0

0
20

4.
00

14

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t,
 A

m
b

aw
ad

i,
A

h
m

ed
ab

ad
-3

80
00

15
 7

O
p

en
1

35
.0

0
35

.0
0

10
.0

0
20

4.
00

104

CH_5_Normalization_Final.indd 104 2/28/2014 12:46:53 PM

ta
b

le
 5

.2
3

|	
PE

R
IO

D
IC

A
L
S	
in
	1
N
F

b
ill

n

o
b

ill
 d

at
e

C
u

st

id
C

u
st

n

am
e

a
d

d
lin

e1
a

d
d

lin
e2

C
it

y
pi

n
co

d
e

pe
ri

_
id

pe
ri

_d
es

c
Q

ty
pr

ic
e

to
ta

l_

p
r

d
el

iv
er

y_
C

h
ar

g
es

b
ill

_
to

ta
l

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

11
Ti

m
es

 o
f

In
d

ia
30

2.
50

75
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

15
D

iv
ya

B

h
as

ka
r

30
3.

00
90

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

23
Ec

o
n

o
m

ic

Ti
m

es
21

3.
00

63
.0

0
10

.0
0

43
6.

00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

 3
M

in
t

26
3.

00
78

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

51
C

h
am

p
ak

1

20
.0

0
20

.0
0

10
.0

0
43

6.
00

12
3

2-
5-

20
13

12
S.

 G
. S

h
ah

9,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

33
En

tr
ep

re
n

eu
r

1

10
0.

00
10

0.
00

10
.0

0
43

6.
00

 5

4-
5-

20
13

 3
M

. N
. D

av
e

11
, A

d
it

i
A

p
t

A
m

b
aw

ad
i

A
h

m
ed

ab
ad

38
00

15
11

Ti
m

es
 o

f
In

d
ia

30
2.

50
75

.0
0

10
.0

0
17

5.
00

 5

4-
5-

20
13

 3
M

. N
. D

av
e

11
, A

d
it

i
A

p
t

A
m

b
aw

ad
i

A
h

m
ed

ab
ad

38
00

15
15

D
iv

ya

B
h

as
ka

r
30

3.
00

90
.0

0
10

.0
0

17
5.

00

 1
4

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

12
G

u
ja

ra
t

Sa
m

ac
h

ar
28

3.
00

84
.0

0
10

.0
0

20
4.

00

 1
4

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

11
Ti

m
es

 o
f

In
d

ia
30

2.
50

75
.0

0
10

.0
0

20
4.

00

 1
4

2-
5-

20
13

16
V.

 P
. V

ya
s

1,
 A

d
it

i A
p

t
A

m
b

aw
ad

i
A

h
m

ed
ab

ad
38

00
15

 7
O

p
en

1

35
.0

0
35

.0
0

10
.0

0
20

4.
00

105

CH_5_Normalization_Final.indd 105 2/28/2014 12:46:54 PM

106 | Chapter 5

(Bill	No.,	peri_ID)	 		bill	date,	cust	ID,	cust	name,	addline	1,	addline	2,	city,	pincode,	
peri_desc,	qty,	price,	total_pr,	delivery_charges,	bill_total

Following	are	the	partial	dependencies	in	a	Table,	PERIODICALS.

Bill	No.		 			bill	date,	delivery_charges,	bill_total,	cust	ID,	cust	name,	addline1,	
addline2,	city,	pincode

Peri_ID		 		peri_desc,	price

To	convert	Table	5.23	into	2NF,	the	above	partial	dependencies	should	be	removed	from	the	
Table	by	decomposing	it	into	the	following	three	Tables,	namely	PERIODICALS,	BILL	and	
BILL	DETAIL.

For	each	partial	dependency,	there	will	be	one	Table	with	attribute	which	is	on	left	side	as	a	
primary	key.	This	attribute	will	remain	in	original	Table	and	right	hand	side	attributes	will	be	
removed	from	the	original	Table.	

PERIODICALS	(peri_ID,	peri_desc,	price)
BILL	(Bill	no,	cust	ID,	bill	date,	delivery_charges,	bill_total,	cust	name,	addline1,	addline	

2,	city,	pincode)
BILLDETAIL	(bill	no,	peri_ID,	qty,	total_pr)
After	decomposition	of	the	Tables,	PERIODICALS,	BILL	and	BILL	DETAIL	are	shown	in	

Table	5.24,	5.25	and	5.26	respectively,	which	are	now	in	2NF.
Table	 5.24	 (i.e.,	 PERIODICALS)	 and	 Table	 5.26	 (i.e.,	 BILL	 DETAIL)	 are	 also	 in	 3NF	

because	they	do	not	contain	any	transitive	dependencies.
Table	5.25	(i.e.,	BILL)	is	not	in	3NF	because	there	exists	the	following	transitive	dependencies:

Billno		 		cust	ID,	and	
		cust	ID		 		cust	name,	addline	1,	addline	2,	city,	pincode

To	convert	Table	5.25	 into	3NF	 the	 above	 transitive	dependencies	 should	be	 removed	by	
decomposing	it	into	two	Tables	namely	BILL	and	CUSTOMER.	Both	the	Tables,	after	decom-
position,	will	be	as	follows:

 BILL (billno,	cust	ID,	billdate,	delivery_charge,	bill_total)
 CUSTOMER (cust	ID,	custname,	addline1,	addline2,	city,	pincode)

Table	5.27	and	Table	5.28	shows	BILL	and	CUSTOMER	Tables	respective	which	are	in	3NF.
Now,	all	the	Tables,	BILL,	BILL	DETAIL,	CUSTOMER	and	PERIODICALS	are	in	BCNF,	

4NF	and	5NF	also.

Example 2:	Normalize		Table	5.29	up	to	its	maximum	possible	normal	form.
Table	5.29	 is	 in	1NF.	Primary	key	of	 this	Table	 is	 a	 combination	of	fields	case_ID	and	

visit_date.	
By	applying	the	rules	of	normalization,	the	above	Table	can	be	decomposed	into	following	

Tables	which	are	all	in	5NF.

 CASE (case_ID,	visit_date,	doc_ID,	pat_ID,	treat_ID,	next_visit_date)
 DOCTOR (doc_ID,	doc_name)
 PATIENT (pat_ID,	pat_name)
 TREATMENT (treat_ID,	treat_desc)

CH_5_Normalization_Final.indd 106 2/28/2014 12:46:54 PM

Normalization | 107

table 5.24 |	 PERIODICALS	in	2NF

peri_id peri_desc price

11 Times of India 2.50

15 Divya Bhaskar 3.00

23 Economic Times 3.00

 3 Mint 3.00

51 Champak 20.00

33 Entrepreneur 100.00

12 Gujarat Samachar 3.00

 7 Open 35.00

table 5.26 |	 BILLDETAIL	in	2NF

bill no peri_id Qty total_pr

123 11 30 75.00

123 15 30 90.00

123 23 21 63.00

123 3 26 78.00

123 51 1 20.00

123 33 1 100.00

 5 11 30 75.00

 5 15 30 90.00

 14 12 28 84.00

 14 11 30 75.00

 14 7 1 35.00

table 5.25 |	 BILL	in	2NF

bill
no bill date

Cust
id Cust name addline1 addline2 City pincode

delivery_
Charges

bill_
total

123 2-5-2013 12 S. G. Shah 9, Aditi Apt Ambawadi Ahmedabad 380015 10.00 436.00

 5 4-5-2013 3 M. N. Dave 11, Aditi Apt Ambawadi Ahmedabad 380015 10.00 175.00

 14 2-5-2013 16 V. P. Vyas 1, Aditi Apt Ambawadi Ahmedabad 380015 10.00 204.00

table 5.27 |	 BILL	in	3NF

bill no bill date Cust id delivery_Charges bill_total

123 2-5-2013 12 10.00 436.00

 5 4-5-2013 3 10.00 175.00

 14 2-5-2013 16 10.00 204.00

table 5.28 |	 CUSTOMER	in	3NF

Cust id Cust name addline1 addline2 City pincode

12 S. G. Shah 9, Aditi Apt Ambawadi Ahmedabad 380015

 3 M. N. Dave 11, Aditi Apt Ambawadi Ahmedabad 380015

16 V. P. Vyas 1, Aditi Apt Ambawadi Ahmedabad 380015

CH_5_Normalization_Final.indd 107 2/28/2014 12:46:54 PM

108 | Chapter 5

SUMMARY
	● Normalization	means,	reducing	redundancy	in	a	database	by	decomposing	Tables	further	
by	preventing	functional	dependency.

	● Functional	dependency	exists	between	attributes	of	the	same	Table.	If	A	and	B	are	two	
attributes	of	a	Table,	then	B	is	said	to	be	functionally	dependent	on	A,	if	and	only	if,	each	
value	of	A	there	exists	precise	value	of	B.	Symbolically,	it	is	written	as	A→B.	It	can	be	
read	as	‘A	functionally	determines	B’	or	‘B	is	functionally	dependent	on	A’.
	● In	functional	dependency	A	→ B,	the	attribute,	which	is	on		the	right	side	of	the	arrow,	
is	 known	as	dependent(B)	 and	 the	 attribute,	which	 is	 on	 the	 left	 side	of	 the	 arrow,	 is	
known	as	determinant(A).	In	functional	dependency,	if	determinant	is	a	combination	of	
more	than	one	attributes,	then	each	attribute	of	this	composition	is	called	a	component.	
If	the	dependent	depends	on	any	of	this	component	other	than	the	whole	combination,	
the	dependency	is	called,	‘partial	dependency’.	If	the	dependent	depends	on	the	whole	
combination	and,	not	on	any	of	the	component,	the	dependency	is	called,	‘full	functional	
dependency’.

	● In	a	Table,	if	A,	B	and	C	are	attributes,	then	A→B	and	B→C	implies	that	A→C.	This	type	
of	dependency	between	A	and	C	is	known	as	transitive	dependency.
	● Let	A,	B	and	C	are	attributes	of	a	relation.	Then	B	is	said	to	be	multi-dependent	on	A,	if	
and	only	if,	in	each	record	(tuple)	of	a	relation,	the	set	of	B	values	which	match	with	a	
given	(A,	C)	value	pair	depends	only	on	the	value	of	A	and	is	completely	independent	of	
value	of	C.	This	dependency	is	known	as	multi-valued	dependency.

	● If	a	Table	has	projections	P
1
,	P

2
,	…,	P

n
,	there	exists	join	dependency	(denoted	as	*{P

1
,	P

2
,	

…,	P
n
}),	if	and	only	if,	every	record	(tuple)	value	of	a	relation	is	the	join	of	its	projections	

on	P
1
,	P

2
,	…,	P

n
.

	● There	are	different	levels	of	normal	forms	ranging	from	1NF	to	5NF	and,	they	can	be	
achieved	by	removing	certain	dependency	by	decomposing	Tables.
	● The	Table	is	said	to	be	in	1NF	if	all	its	attributes	contain	atomic	values.
	● The	Table	is	said	to	be	in	2NF,	if	and	only	if,	it	is	in	1NF	and	there	does	not	exists	any	
partial	dependencies.

	● The	Table	is	said	to	be	in	3NF,	if	and	only	if,	it	is	in	2NF	and	there	does	not	exists	any	
transitive	dependencies.

table 5.29 |	 TREATMENT

Case_
id

doct_
id doct_name pat_id pat_name

treat_
id treat_desc visit_date

next_visit_
date

 21 D4 S. Nanavaty P2 L. Mathur T2 Medicines
given

21-4-2013 23-4-2013

 21 D4 S. Nanavaty P2 L. Mathur T3 Injection 23-4-2013

 21 D3 S. Trivedi P2 L. Mathur T11 Dressing 2-5-2013

134 D4 S. Nanavaty P9 A. Soni T6 B.P Tablet 5-5-2013 5-6-2013

134 D4 S. Nanavaty P9 A. Soni T0 No treatment 5-6-2013

CH_5_Normalization_Final.indd 108 2/28/2014 12:46:54 PM

Normalization | 109

	● The	Table	is	said	to	be	in	BCNF,	if	and	only	if,	it	is	in	3NF	and	every	determinant	is	a	
candidate	key.	The	Table	is	said	to	be	in	4NF,	if	and	only	if,	it	is	in	BCNF,	and	it	does	not	
contain	any	multi-valued	dependency	which	is	not	functional	dependency.

	● The	Table	is	said	to	be	in	5NF,	if	and	only	if,	it	is	in	4NF,	and	each	projection	(decomposi-
tion)	of	a	relation	should	contain	candidate	key(s)	of	a	relation.

ExErcisEs

	 1.	 Discuss	the	following	dependencies	with	examples:
	 a.	 Functional	dependency
	 b.	 Full	functional	dependency
	 c.	 Transitive	dependency
	 d.	Multi-valued	dependency
	 e.	 Join	dependency
	 2.	What	is	a	component?	Explain	it	by	giving	an	example.
	 3.	 Answer	the	questions	with	respect	to	the	following	Table.

table: termwork

tw_
id

date_
given fac_id

fac_
name sub_id sub_name Class_id

Class_
desc submi_dt

101 12-7-2012 SN Shefali
Naik

FOP Funda-
mentals of
Programming

FY First
Year

31-7-2012

102 8-8-2012 SN Shefali
Naik

FOP Funda-
mentals of
Programming

FY First
Year

3-9-2012

103 10-12-2012 SN Shefali
Naik

PCL Programming
in C Lan-
guage

FY First
Year

23-1-2013

104 3-3-2013 SN Shefali
Naik

APCL Advanced
Programming
in C Lan-
guage

FY First
Year

1-4-2013

105 2-7-2012 HD Hemal
Desai

AJ AdvaTnced
Java

TY Third
Year

23-7-2012

106 18-8-2012 HD Hemal
Desai

AJ Advanced
Java

TY Third
Year

13-9-2012

107 10-11-2012 HD Hemal
Desai

OS Operating
Systems

SY Second
Year

3-12-2012

108 9-2-2013 KG Kunjal
Gajjar

OOP Object-
Oriented
Programming

SY Second
Year

10-3-2013

109 4-3-2013 KG Kunjal
Gajjar

OOP Object-
Oriented
Programming

SY Second
Year

31-3-2013

CH_5_Normalization_Final.indd 109 2/28/2014 12:46:54 PM

110 | Chapter 5

	 a.	 Identify	primary	key	of	the	Table.
	 b.	 Identify	full-functional,	partial	and	transitive	dependencies.
	 c.	 Draw	a	dependency	diagram	for	all	types	of	dependencies.
	 d.	 Is	the	Table	in	1NF?	Why?
	 e.	 Convert	the	Table	up	to	5NF.
	 4.	Fill	in	the	blanks:

	 	 a.	 	The	Table	 is	said	 to	be	 in	______________,	 if	 it	contains	fields	which	have	atomic	
values.

											b.	 	If	the	primary	key	is	a	combination	of	more	than	one	field,	then	each	field	is	known	
as	_____________.

											c.	 There	may	exist	partial	dependency,	if	primary	key	is	a	______________.
											d.	 	If	 the	 primary	 key	 contains	 only	 one	 field,	 then	 there	 is	 no	 need	 to	 check	 for	

____________	dependency.
											e.	 	If	a	given	Table	is	in	1NF	and,	if	primary	key	contains	only	one	field,	then	it	is	said	to	

be	in	______________	normal	form.
												f.	 	If	billno	→ customer_ID	and	customer_ID	→ customer_status	then	bill no	→ customer_

status	is	called	____________	dependency.
											g.	 	We	can	obtain	_____________	normal	form	by	removing	multi-valued	dependencies	

which	are	not	functional	dependencies.
											h .	 Fifth	normal	form	is	also	known	as	____________	normal	form.
												i.	 Fifth	normal	form	is	related	with	____________	dependency.
												j.	 Projection	means	_______________	subset	of	a	Table.	(horizontal/vertical).
											k.		In	 notations	 of	 dependency,	 double	 arrow	 denotes	 ____________	 dependency	 and,	

single	arrow	denotes	_____________	dependency.
															l.	 In	Kindergarten_ID	→ kindergarten_name,	_____________	determines	____________.
										m.	 In	branch_ID	→	branch_name,	______________	is	dependent	on	_______________.
										 	n.	 	In	school_ID	→ school_name,	school_ID	is	called,	‘_____________’and	school_name	

is	called,	‘_____________’.
											o.	 In	person_ID	→ degree,	______________	multi-determines	_________.
											p.	 In,	person_ID	→ hobby,	_____________	is	multi-dependent	on	_________.
											q.	 When	we	remove	transitive	dependency,	we	obtain	_________	normal	form.
												r.	 In	________	normal	form,	every	determinant	should	be	a	candidate	key.

	 5.	 Discuss	the	following	normal	forms	with	proper	examples.

									a.	 First	NF
									b.	 Second	NF
									c.	 Third	NF

	 d.	 Boyce-Codd	NF
	 e.	 Fourth	NF
	 f.	 Fifth	NF

CH_5_Normalization_Final.indd 110 2/28/2014 12:46:54 PM

CHAPTER

6.1 | IntroductIon
In Relational Database Management System, data is managed by using Fourth Generation
Language (4GL), named as Structured Query Language (SQL). Using simple commands
available in SQL, we can retrieve (fetch), update (change/edit), insert (add) and delete (remove)
data. SQL is a common language of Relational Database Management System (RDBMS) which
is used for data management. The syntax of statements available in SQL can be used with very
minor modifications in any RDBMS. In SQL, we can also use different types of functions to
display data in different formats, to summarize the data, to calculate any mathematical formula,
fetch different parts of date, display string (text) in upper and lower case, etc. These functions
and their syntax vary from RDBMS to RDBMS. In this chapter, we will see SQL and different
functions with respect to Oracle RDBMS. All the statements are executed in ‘Oracle Database
10g Express Edition’.

In advanced SQL, we can do some advanced operations on data to display them according
to groups. We will also see, how to put constraints (conditions) on fields and tables by using
data definition commands. It is also possible to write one SELECT statement into another for
complex queries. The SELECT statement is used to retrieve data from tables.

6

Managing Data Using Structured
Query Language (SQL)

•	 Knowing usage of Structured Query Language (SQL) in managing data.
•	 Knowing usefulness of data definition and manipulation commands.
•	 Learning SELECT statement to fetch data from a database.
•	 Understanding different types of constraints.
•	 Learning how to use different functions given in a database management system.
•	 Understanding the application of special operators.
•	 Retrieving data with complex nested, or sub query.
•	 Summarizing data using advanced SQL, such as rollup, cube and crosstab.
•	 Summary

chapter objectIves

CH_6_Managing Data using Structured Query Language_Final.indd 111 2/28/2014 1:06:23 PM

112 | Chapter 6

6.2 | data defInItIon commands
Data definition commands are used to create, change or delete structures in which we are
going to store data (i.e., data definition commands are used to define data structures). For an
example, the commands used to create/change/delete table/view/user, etc., are called, ‘Data
Definition Commands’.

Here, we will see, how to create a table structure, change table structure and delete table
structure in a Oracle database.

In syntaxes given throughout this chapter, words written in upper case shows the keywords/
reserve word, but it is not required to be written in upper case when we actually execute the
command; part of the syntax written in square brackets shows that part is optional in the syntax;
part of the syntax written in angular brackets shows the variables.

The following syntax is used to create table in Oracle:

CREATE TABLE <table_name> (<field1> data_type [constraint1
 constraint2,..]
 [, <field2> data_type [constraint1
 constraint2..]]……….
 [, <fieldn> data_type [constraint1 constraint2..]])

 1. In CREATE TABLE command <table_name> and <field_name> are any valid variable
name, we can define any number of constraints on individual fields (Note: We will see
different field level and table level constraints in Section 6.11.).

 2. For each field, the data type should be defined. Table 6.1 shows some data types which
we can use in Oracle.

table 6.1 | Oracle 10g Data Types

data type maximum size description

Char(size), or character(size) 2000 bytes Used to store text.

Varchar2(size) 4000 bytes

Long 2 GB

Int or integer Used to store integer values.

Float or real Used to store real numbers.

Number(p, s) or numeric(p,s)
or dec(p,s) or decimal(p,s)

Precision (p) range
up to 38.

Used to store numbers. For example.,
number (5,3) will have 2 digits
before decimal place and 3 digits
after decimal place.

Date Used to store date in dd-mon-yyyy or
dd-mon-yy format.

Timestamp Store date with time.

Blob 4GB binary data Stores binary large object.

Clob 4GB character data Stores character large object.

Nclob 4GB character data Stores Unicode data.

CH_6_Managing Data using Structured Query Language_Final.indd 112 2/28/2014 1:06:23 PM

Managing Data Using Structured Query Language (SQL) | 113

 3. The list of fields should be enclosed in round brackets and each field should be separated
with comma.

 4. For an example, to create a Table 6.2, the following command should be written and
executed in Oracle.

 create table kg(kgid int primary key, kgname varchar 2 (20),
 city varchar 2 (20), pincode int)

 5. The KG Table will be created with kgid as a primary key. It will have unique and, not
null values.

To view the table structure, the ‘describe’ command is used as follows:

describe <table_name> or desc <table_name>

For an example,

Describe kg or desc kg

Now, if we want to make some changes in the table structure, we have to use the command
ALTER TABLE. Using the ‘alter table’ command, we may add new fields; delete or modify
existing fields, change data type and size of the fields; add, delete or modify constraints, etc.

Following syntaxes are used to alter table in Oracle.

ALTER TABLE <table_name> ADD (<field1> data_type constraint1
 constraint2,]
 [, <field2> data_type [constraint1
 constraint2..]], …)
 [MODIFY (<field1> data_type constraint1
 constraint2, ...]
 [, <field2> data_type [constraint1
 constraint2..]], …)

OR

ALTER TABLE <table_name> DROP COLUMN <fieldname>

OR

ALTER TABLE <table_name> RENAME COLUMN <old_fieldname>
 TO <new_fieldname>

The drop column and rename column options can not be combined with other options of
ALTER TABLE command. They should be written in a separate, ‘alter table’ command.

table 6.2 | Table KG

KG Id KG name city pincode

1 Eurokids Surat

2 Kidzee Baroda

3 Eurokids Ahmedabad 380015

CH_6_Managing Data using Structured Query Language_Final.indd 113 2/28/2014 1:06:23 PM

114 | Chapter 6

Following are some examples of ALTER TABLE command:

 1. alter table kg add address1 char(20) add address2 char(20) mod-
ify pincode number (6) modify kgid int add constraint chk_kgid
check(kgid<100) modify kgname varchar2(20) not null unique

 2. alter table kg modify (pincode int, kgname varchar2(30))
 3. alter table kg add (a1 int, b1 int)
 4. alter table kg drop column a1
 5. alter table kg rename column kgname to kgnm
 6. alter table kg drop constraint chk_kgid
 7. alter table kg add constraint ckh_city check(city = upper(city))

add constraint chk_city_len check (length(city) > 0)

To delete any existing table structure, the ‘drop table’ command is used. The syntax to drop any
table is given below:

DROP TABLE <table_name>

Following is an example of the ‘drop table’ command:

DROP TABLE kg

Thus, any CREATE, ALTER and DROP commands are known as Data Definition Commands.

6.3 | data manIpulatIon commands
Data manipulation commands are used to insert, manipulate and delete data to/from table.
There are three data manipulation commands in SQL-INSERT, UPDATE and DELETE.

The different syntaxes of INSERT statement is as follows:

 Syntax-1: INSERT INTO <table_name> VALUES (field1_value,
 field2_value, …, fieldn_value)

 ● The above syntax is used when we want to insert all values of all the fields. For an
example:

insert into kg values(1,’Eurokids’,’Surat’,null)

 ● When the values are of type text and date they must be enclosed within single quotations.
When the field value is unknown ‘null’ keyword should be written instead of the value.

 Syntax-2: INSERT INTO <table_name> (<field1>, <field2>, …, <fieldn>)
VALUES (field1_value, field2_value, …, fieldn_value)

 ● The above syntax is used when we want to insert values of selected fields. For an example,

insert into kg(kgid,kgname) values(4,’Thumbelina’)

 ● The following syntax is used when we want to insert filed values from a different table.
Before inserting values into a table, the table must be created and, the fields in which we
are inserting values, its data type should be matched with the field data types from where
we are inserting values.

 Syntax-3: INSERT INTO <table1_name>[(field_names)] SELECT <field_
names>/* FROM <table2_name>

CH_6_Managing Data using Structured Query Language_Final.indd 114 2/28/2014 1:06:23 PM

Managing Data Using Structured Query Language (SQL) | 115

 ● For an example, the following statement will insert values of all the fields of the kg Table
into the corresponding fields of Table kg1.

insert into kg1 select * from kg

 ● Following is an example of INSERT ALL, …, SELECT command which is used to enter
multiple rows in a single INSERT statement.

 Insert all

 into kg1(kgid, kgname) values (5, ‘Mothers Pet’)
into kg1(kgid, kgname) values (6, ‘Todan’)
into kg1(kgid, kgname) values (7, ‘Radiant’)

 select * from dual

 ● If we want users to enter values at run-time, then it can be done by using : operator before
a field name. For an example:

insert into kg(kgid,kgname) values(:kgid,:kgname)

 ● The above statement will take inputs for kgid and kgname from user and insert into table.
 ● The syntax of the UPDATE statement is as follows:

UPDATE <table_name> SET <field1 > = field1_value [, <field2>
 = field2_ value, …, <fieldn> = fieldn_value] [WHERE <condition>];

 ● The above ‘update’ statement will update existing values of fields according to condition
specified. If we write condition, updation will be made for all the records. For an example:

update kg set city = ‘Ahmedabad’, pincode = 380009
 where kg ID = 7

 ● The above ‘update’ statement will change value of city = ‘Ahmedabad’ and pincode =
380009 for records where value of kg ID = 1.

 ● The syntax of DELETE statement is as follows:

DELETE FROM <table_name> [WHERE <condition>];

 ● The above ‘delete’ statement will remove records from the table. If we do not specify the
‘where’ condition, it will delete all the records. For an example,

delete from kg where city = ‘Ahmedabad’

 ● The above delete statement will delete records of kindergarten which are in ‘Ahmedabad’.

6.4 | select statement and Its clauses
The SELECT statement is used to retrieve data from one or more than one tables and display
them into appropriate format. Also, it is used to display group-wise summary and records in a
particular order.

The syntax of SELECT statement is as follows:

 SELECT DISTINCT */<field1>[, <field2>, …, <fieldn>]
FROM <table1_name> [,<table2_name>, …, <tablen_name>]

 [WHERE <condition>/<subquery>]

CH_6_Managing Data using Structured Query Language_Final.indd 115 2/28/2014 1:06:23 PM

116 | Chapter 6

 [GROUP BY <field1> [, <field2>, …, <fieldn>]
 [HAVING <condition on aggregate function]]

[ORDER BY <field1> [ASC/DESC] [,<field2> [ASC/DESC], …,
 <fieldn> [ASC/DESC]]]

In the SELECT statement, only SELECT and FROM clauses are compulsory, all other clauses
are optional. Other clauses can be used as per the requirement.

The different clauses of SELECT are explained as follows:

 1. SELECT: It is used to select fields. After writing SELECT, if we want to display all
the fields, then character ‘*’ should be written. To display values of selected fields,
field names should be specified after SELECT keyword. We can also specify arithmetic
calculations and, various functions after SELELCT keyword. For an example:

Select * from kg

 The above statement will display all the field values of table kg.

Select kgid, kgname from kg

 The above statement will display all the values of fields kgid and kgname from
table kg.

Select length(kgname) from kg

 The above statement will display length of the values of field kgname for each record.

Select total_fee_paid_fee from fees

 The above statement will display fees amount which is pending for all the records of fees
table.

Select max(length(kgname)) from kg

 The above statement will display kgname which is the longest.

 2. DISTINCT: When DISTINCT is specified before the field names, it displays the unique
values of a field. If many fields are selected and DISTINCT is written before those fields,
it will display unique combination values of those fields.

 3. FROM: It is used after SELECT, and it is a compulsory clause of SELECT statement.
After FROM, table names are written from where we want to select data. Table names
are separated with comma. For an example:

Select * from class, student

 The above statement will display all the field values of tables class and student.

 Select class.classID, classdesc, stdname from class, student

 The above statement will display values of classid, classdesc and stdname fields. Here,
both the tables class and student contains the field ‘classid’. Therefore, it is required to
write table name before field name to tell the DBMS that which table’s classid we want
to display. When field names are unique between tables, there is no need to specify table
name before field name.

 4. WHERE: It is an optional clause of SELECT, but when used it should be written after
the FROM clause. It is used to specify conditions on the fields. According to the condi-
tions, field values will be displayed. For an example:

CH_6_Managing Data using Structured Query Language_Final.indd 116 2/28/2014 1:06:23 PM

Managing Data Using Structured Query Language (SQL) | 117

 Select * from class, student where class.classID = ‘fy’

 The above statement will display details of students who are in FY by selecting all the
fields from tables class and student.
 Select class.classID, classdesc, stdname from class,

 student where stdid > 20;

 The above statement will display details of only those students whose roll number is
greater than 20.

 4. GROUP BY: It is an optional clause of SELECT, but when used, it should be written
after the WHERE clause. If WHERE is not required, then it should be written after the
FROM clause. It is used to group data on a specific field. When we want to display
summarized details for any group, the clause GROUP BY should be used. We may group
data on multiple fields. Multiple fields are separated by comma in GROUP BY. While
using GROUP BY, the following important points should be remembered, otherwise the
query will cause an error.

 ● We can write only those fields which are specified after GROUP BY. For an example,
if grouping is done on dept_ID and emp_no, then GROUP BY is written as ‘GROUP
BY dept_ID, emp_no’. In this case, after select statement, we can write only two field
names, dept_ID and emp_number (i.e., only ‘SELECT dept_ID, emp_no’ is valid).
Other fields can not be written after SELECT.

 ● We can also write aggregate functions after SELECT. For example, we may write
max(salary), min(salary) after SELECT.

 ● For an example, the following SELECT statement is valid if grouping is done on
dept_ID and emp_number.

 SELECT dept_ID, emp_no, avg(salary) FROM salary GROUP BY
 dept_ID, empno

The above statement will display department-wise each employee’s average salary.
 5. HAVING: It is an optional clause of SELECT, but when it is used, it should be written af-

ter GROUP BY clause only and because it is used to specify condition on the group level.
Mostly, in HAVING clause, condition is written on aggregate function. For an example:

 select class ID, count(std ID) from student group
by classid having count(stdid) > 50

 The above SELECT statement will display class-wise total number of students for those
class in which total number of students are more than 50.

 We can also write the WHERE clause with the HAVING clause. The WHERE clause
will specify condition on each row, while the HAVING clause will specify condition on
a group. For an example, the following query will display total number of students of
class SY, if total number of students in SY are more than 50.

 select class ID, count (std ID) from student where
 class ID = ‘SY’ group by classidhaving count (std ID) > 50

 The difference between the WHERE and HAVING clauses is given in Table 6.3.

 6. ORDER BY: It is an optional clause of SELECT, which is used to display data in a
specific order. Using this clause data can be arranged in ascending or descending order.

CH_6_Managing Data using Structured Query Language_Final.indd 117 2/28/2014 1:06:23 PM

118 | Chapter 6

Ordering can be done on multiple fields. If we want to arrange data in ascending order, then
keyword ASC should be written after a field name and for descending order DESC should
be written after a field name. For an example, the following query will arrange records
of the student table into ascending order of ‘classID’ and descending order of ‘stdname’.

 Select * from student order by classid asc, stdname desc
Or

 Select * from student order by classid, stdname desc

 When GROUP BY clause is written in SELECT statement, then we can write only those
fields after ORDER BY which are written after GROUP BY, no other fields can be used
to arrange data in order or aggregate function. For an example:

 Select classID, count(stdID) from student group
 by classID order by classID desc, count (stdID) desc

 The above query will display class-wise total number of students in descending order of
class ID and descending order of total number of students within each class.

6.5 | aGGreGate functIons
Aggregate functions are used to display summarized data, such as maximum and minimumsal-
ary, average participation in the event, total number of students in the class, total sales amount,
etc.

There are many aggregate functions available in Oracle 10g, but five main functions are listed
and explained below.

 1. Count(*) or count(field_name): Count(*) counts total number of rows. It includes
NULL values also during counting. For an example, if we execute the following query
on Table 6.2 KG, then it will display 3 as output.

Select count(*) from kg

 Count(field_name) counts total number of values in the field ‘field_name’ excluding
NULLs. For an example, if we execute the following query on Table 6.2 KG then it will
display 1 as output.

Select count(pincode) from kg

 If there are no records or no values in the field, count function returns zero. The query, given
below will group records on classid and will display total number of students in the class.

 Select classID, count(stdID) from student group by classID

table 6.3 | Difference Between WHERE and HAVING Clauses

Where havInG
It is used when condition is written for each
row.

It is used when condition is written for a
group.

Aggregate functions cannot be used in the
WHERE clause.

Aggregate functions can be used in the
HAVING clause.

To use the WHERE clause, GROUP BY clause is
not required.

To use the WHERE clause, the GROUP BY
clause required.

CH_6_Managing Data using Structured Query Language_Final.indd 118 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL) | 119

 2. Max(field_name): The max function will return maximum value from the column. If
grouping is done, it will return maximum value from each group. If there are no values
in the field, it will return NULL. For an example:

Select max(salary) from employee

 The above query will return maximum value from the field salary of the employee table.

Select deptID, max(salary) from employee

 The above query will return maximum value of salary from each department of
employee table.

 3. Min(field_name): The min function will return minimum value from the column. If
grouping is done, it will return minimum value from each group. If there are no values
in the field, it will return NULL. For an example:

Select min(salary) from employee

 The above query will return minimum value from the field salary of the employee table.

Select deptID, min(salary) from employee

 The above query will return minimum value of salary from each department of the
employee table.

 4. Avg(field_name): The avg function will return average value from the column. If group-
ing is done, it will return average value from each group. If there are no values in the
field, it will return NULL. For an example:

Select avg(salary) from employee

 The above query will return average value of the field salary of employee table.

Select deptID, avg(salary) from employee

 The above query will return average salary of each department of employee table.
 5. Sum(field_name): The sum function will return total value of the column. If grouping

is done, it will return total value for each group. If there are no values in the field, it will
return NULL. For an example:

Select sum(sales_amt) from sales

 The above query will return total sales amount from sales table.

Select deptID, sum(sales_amt) from sales group by deptID

 The above query will return department-wise total sales amount from sales table.

6.6 | date and tIme functIons
Date and time functions are used to display date and time in different formats and, for calcula-
tions which are based on date. There are various date and time functions available in Oracle
10g. Date is stored in dd-mon-yyyy format in Oracle. Following are some important functions:

 1. Sysdate and current_date: Both the functions return system date in dd-mon-yy format.
For an example, if system date is 28-5-2012, sysdate and current_date both will display
28-May-12, if we execute the following query.

Select sysdate, current_date from dual

CH_6_Managing Data using Structured Query Language_Final.indd 119 2/28/2014 1:06:24 PM

120 | Chapter 6

 2. Add_months: The syntax of this function is add_months(<date_var>,no. of months). It
returns new date value after adding number of months into <date_var>. For an example,
If we execute the following query it will return the date value 4-JAN-14.

Select add_months(to_date(‘4-Jan-2013’), 12) from dual

 Any value, written in single quotations, is treated as a character value. Therefore, before
passing any date value as a parameter, it should be converted into date using to_date
conversion function. If date field is passed as a parameter in add_months, then there is no
need to convert it using to_date, because its data type itself tells the server that the field
which is passed as a parameter is a ‘date’ type of field.

 3. Months_between: The syntax of this function is months_between(<date1>,<date2>). It
returns total number of months between two dates which are passed as a parameter. For
an example, If we execute the following query, it will return value 12.

 Select months_between(to_date(‘4-Jan-2014’), to_date
(‘4-Jan-2013’)) from dual

 The following query will return value 7.22.

 Select months_between(to_date(‘4-Jan-2014’),
 to_date (‘28-May-2013’)) from dual

 4. Extract: The syntax of this function is extract(<format> FROM DATE/TIMESTAMP
<date_value in yyyy-mm-dd format’>). It returns value based on the format passed in
the parameter. Some formats which we can pass in extract function are – hour, minute,
second, year, month and day. Some examples are given below.

 select extract (year from date ‘2009-5-28’) from dual

 The above query will return the value 2009.

 select extract (month from date ‘2009-5-28’) from dual

 The above query will return the value 5.

select extract (day from date ‘2009-5-28’) from dual

 The above query will return the value 28.

 select extract (hour from timestamp ‘2009-5-28
12:01:45’) from dual

 The above query will return the value 12.

 select extract (minute from timestamp ‘2009-5-28
12:01:45’) from dual

 The above query will return the value 1.

 select extract (second from timestamp ‘2009-5-28
12:01:45’) from dual

 The above query will return the value 45.

 5. Systimestamp: This function returns system time in ‘dd-mon-yy hh.mm.ss:ssssss
AM/PM timezone’ format. For example, if system time is 28-5-2012 10:01:45:23233,

CH_6_Managing Data using Structured Query Language_Final.indd 120 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL) | 121

the function will display 28-5-2012 10.01.45.23233 AM + 05:30, if we execute the
following query.

Select systimestamp from dual

 6. Last_day: This function returns the last day of the month based on the date value passed
in the function. For example, the following query will return the value 31-MAY-13.

select last_day (to_date (‘28-May-13’)) from dual

 7. Next_day: The syntax of this function is next_day(<date_value>,<day_name>). This
function returns the the date on which next <day_name> falls after the date < date_
value>. For example, the following query will return the value 13-MAY-13, because
9-may-2013 is a thursday and next monday after 9-may-13 is on 13-may-2013.

 select next_day (to_date (‘9-May-13’),’monday’) from dual

6.7 | strInG functIons
String functions are used to format text data. Following are some useful string functions of
Oracle 10g:

 ● upper: This function will convert the string into upper case which is passed as a param-
eter. The following query will display the output SHEFALI.

select upper (‘Shefali’) from dual

 ● lower: This function will convert the string into lower case which is passed as a param-
eter. The following query will display the output shefali.

select lower (‘SHEfali’) from dual

 ● initcap: This function will convert the string’s first letter into upper case and, other char-
acters into lower case, which is passes as a parameter. The following query will display
the output Shefali.

select initcap (‘shefali’) from dual

 ● substr: The syntax of this function is substr(<string_var>, <start_char_no>,<total_no_
of_char>). This function will display sub string of the string which is passed as a param-
eter. The following query will display a total 8 characters starting from third character
which is ‘e’. The output displayed will be ‘efali Na’.

select substr (‘Shefali Naik’, 3, 8) from dual

 ● length: This function will display total number of characters in the string which is passed
as a parameter. The following query will display the output 12.

select length (‘Shefali Naik’) from dual

 ● ltrim: This function will remove blank spaces from left hand side of the string which is
passed as parameter. For example, on execution of following query, extra spaces will be
removed from left side of the string ‘Shefali Naik’.

select ltrim (‘Shefali Naik’) from dual

CH_6_Managing Data using Structured Query Language_Final.indd 121 2/28/2014 1:06:24 PM

122 | Chapter 6

 ● rtrim: This function will remove blank spaces from right hand side of the string which is
passed as parameter. For example, on execution of following query, extra spaces will be
removed from right side of the string ‘Shefali Naik’.

select rtrim (‘Shefali Naik’) from dual

 ● trim: This function will remove blank spaces from both right and left hand side of the
string which is passed as parameter. For example, on execution of following query, extra
spaces will be removed from right and left side of the string ‘Shefali Naik’.

select trim (‘Shefali Naik’) from dual

 ● concat: This function will concat two strings which are passed as parameters. For ex., on
execution of following query, both the strings ‘Shefali’ and ‘ Naik’ will be merged and
the output Shefali Naik will be displayed.

select concat(‘Shefali’, ‘Naik’) from dual

6.8 | conversIon functIons
Conversion functions are used to convert one data type into another data type. Following are
some useful conversion functions of Oracle 10g.

 ● To_number: This function will convert inputted character into number.

Select to_number(‘4.15’) from dual

 ● To_char: This function will convert any number into character.

Select to _char(3453) from dual

 ● To_date: This function will convert inputted string into date.

Select to_date(‘4-Jan-2003’) from dual

 ● To_timestamp: This function will convert inputted string into timestamp.

Select to_timestamp(‘10-Sep-02 11:10:10.123000’) from dual

6.9 | mathematIcal functIons
Mathematical functions are used to numeric calculations. There are many mathematical func-
tions in oracle. Some of them are as follows:

 ● Sqrt: It displays square root of the number.
 ● Round: It rounds off the number.
 ● Mod: The syntax of function is mod(num1,num2). It returns the remainder when num1
is divided by num2. For example,

Select mod (9, 2) from dual
 will display 1.

 ● Power: The syntax of function is mod(num1,num2). It returns the ‘num1 raise to num2’.
For example,

Select power (3, 2) from dual
 will display 9.

CH_6_Managing Data using Structured Query Language_Final.indd 122 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL) | 123

6.10 | specIal operators
There are five special operators in SQL which can be used in WHERE clause to specify the
condition.

 1. Is null: This operator will check that the field value contains null or not. IS NULL will
return true if field contains null, else it will return false. For example, the query given
below will display the records in which value of pincode field is null.

Select * from kg where pincode is null

 The logical operator NOT can also be combined with is null. For example, the query
given below, will display the records in which value of pincode field is not null.

Select * from kg where pincode is not null

 2. In: This operator will check that the specific field value is contained within the list
of value or not. If the value contained in the list, it displays the records based on that
value. After IN operator we can specify constant values or any SELECT subquery. But in
subquery, the data type of field name written after SELECT should match with the data
type of field which is written after IN. For example, the following query will check
whether there exists values of kgid field in the list of values (2,4,6,8,10). If value of any
kgid matches with the list of values, its record will be displayed in the output.

Select * from kg where kg ID in(2,4,6,8,10)

 The following query will display details of only those departments from dept table
whose deptid matches with the deptid of employee table.

 Select * from dept where dept ID in(select deptID
from employee)

 We can also use NOT logical operator with IN. For example, the following query will
display details of only those departments from dept table whose dept ID does not match
with the deptid of employee table.

 Select * from dept where deptID not in(select deptID
from employee)

 We can also match pair of values using IN operator. For example,

 Select * from employee where(empID,empname) not
 in (select empno,empnm from employee_history)

 Another example of multiple values is given below:

 Select * from class where(classID, classdesc, capacity) not
 in((‘sy’, ‘second year’, 150), (‘ty’, ‘third year’, 120))

 We can also use AND and OR logical operators with IN. For example,

 Select * from class where class ID in (‘fy’)
and classdesc not in (‘second year’, ‘third year’)

 3. Exists: This operator is used with subquery. It checks the existence of records in a parti-
cular table and returns true to outer query if table contains at least one record, else

CH_6_Managing Data using Structured Query Language_Final.indd 123 2/28/2014 1:06:24 PM

124 | Chapter 6

returns false. If the value true is returned, the outer query will display the result, else it
will not display any result. For example, in the following query, first subquery will be
executed. If there exists at least one record in a student table, exists will return true to
the outer query and then outer query will display the values of stdid and stdname from
remarks table.

 Select stdID, stdname from remarks where exists
 (select * from student)

 Remember that in the nested query(subquery), we have to write * after select. We can
not specify fields names in the nested query. We can also use logical operator NOT with
EXISTS. For example:

 Select std ID, stdname from remarks where not
exists (select * from student)

 We can also use logical operators AND and OR with EXISTS.

 Select std ID, stdname from remarks where exists
 (select * from student) or exists(select * from class)

 4. Between: This operator checks whether the field value lies between to specific values
or not. It includes the lower and upper value while checking the condition. For example,
the query given below, will display records of students for only those students whose roll
number lies between 1,2,3,4, …, 10. The clause ‘std ID BETWEEN 1 and 10’ is same as
‘std ID ≥ 1 and std ID ≤ 10’

Select * from remarks where stdid between 1 and 10

 We can also use logical operator NOT with BETWEEN.

Select * from remarks where stdid not between 2 and 5

 5. Like: This operator matches the pattern and displays the result if field value matches
with the specified pattern. Wildcards %(percentage) and_(underscore) are used in
writing patterns. Different wildcards are used in pattern. % means many characters
and_ means only one character. For example, the query as given below will display stu-
dent names which start with character ‘s’.

Select stdname from student where stdname like ‘s%’;

 To display the faculty details whose name end with letter ‘I’ or ‘a’, the following query
is written:

 Select * from faculty where faculty_name like ‘%i’
or faculty_name like ‘%a’;

 To display the faculty details whose name start with any letter, but second letter should
be ‘e’ and third letter should be ‘t’, and remaining letter can be anything; the following
query is written:

 Select * from faculty where faculty_name like ‘_et%’

 To display the subject details which contains the ‘data’ word anywhere in the subject
name, the following query is written:

 Select * from subject where subject_name like ‘%data%’

CH_6_Managing Data using Structured Query Language_Final.indd 124 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL) | 125

6.11 | types of constraInts
Basically there are two types of constraints:

 ● Table-level Constraints: The constraint which is applied on combination of more than
one field is known as table-level constraint. For example, a primary key which is a com-
bination of two or more than two fields is a table-level constraint.

 ● Field-level Constraints: The constraint which is applied on a single field is known as
field-level constraint. For example, a primary key, which contains a single field, is a field-
level constraint.

In Oracle, during table creation we can apply different types of constraints which are given below.

 1. Primary key: It is a constraint which identify each row of a table uniquely. The primary
key can not contain NULL and duplicate value. If primary key is a composite key (com-
bination of more than one field), then none of the fields of this composite key can be null
and the combination must be unique. For example, in the class table classid is a primary
key. It contains single field, so it is a field-level constraint.

 Create table class(classID int primary key,
 classdesc char(5))

 In the table created below, primary key is a combination of two fields classid and stdid.
Therefore, it is called, ‘table-level constraint’.

 Create table student(stdID int, classID int, std name
varchar 2 (30), primary key (std ID, class ID))

 2. Foreign key: It is a constraint which refers primary key of another table and will accept,
(1) only those values which are there in that primary key, or (2) null. The data type of
a foreign key should match with the primary key from where it is referred, field names
may be different. When we refer composite key, the entire composite key should be
referred. For example, if we want to refer classid field of class table into student table, it
should be written as follows :

 Create table student(std ID int, class code int
 references class (class ID), stdnamevarchar 2 (30),
 primary key (std ID, class code))

 If we want to refer primary key of student table into result table, the entire primary key
(combination of stdid and classcode) should be referred and sequence of fields should be
maintained.

 Create table result (exam ID int, stdid int, classcode
 int, foreign key
 (std ID, classcode) references student(std ID,
 classcode),
 primary key (examid, std ID, classcode))

 A table can have more than one foreign keys. For example, the following table has 3
foreign keys-doctorid referred from doctor table, patientid referred from patient table
and treatmentid referred from treatment table.

CH_6_Managing Data using Structured Query Language_Final.indd 125 2/28/2014 1:06:24 PM

126 | Chapter 6

 create table doctor(doctorid int primary key)
 create table patient(patientid int primary key)
 create table treatment(treatmentid int primary key)
 create table case(doctor ID int references
 doctor (doctor ID), patient ID
 int references patient(patient ID), treatmentid int
 references treatment(treatment ID))

 3. Unique: The fields will accept only unique values on which unique constraint is applied.
For example, in the following table, employee, the unique constraint is applied on PAN_
cardno, therefore it can not accept duplicate values. But unique key accepts null values.
Those employees who have applied for PAN card, we can enter null in the PAN_cardno
for them.

 Create table employee (empno int primary key,
 PAN_cardno char(10) unique, basic_salary float)

 Now, see the result after inserting the following records in the employee table.

 insert into employee values(1, ‘gsrth6545m’, 50000)
 insert into employee values(2, null, 50000)
 insert into employee values(3, null, 50000)

 4. Not null: The fields will not accept null values on which not null constraint is enforced.
For example, in the following table employee, the not null constraint is enforced on emp-
name. If employee table is already created, it can be altered to add the filed empname
with not null constraint as follows:

alter table employee add empname varchar2 (30) not null

 5. Default: This constraint should be applied when we want to insert some default value,
especially when that value is repeated many times in the field. For example, in the worker
table, gender of worker is mostly ‘male’. So, default constraint can be defined for the field
gender as following.

 Create table worker(worker_ID int primary key,
 worker_name varchar2(30), gender char(1) default ‘m’)

 To input default value in the field, keyword ‘default’ should be written instead of value.
When we do not want to insert default value, simply write the value which we want to insert.
Following are two insert statement. In the first statement, default value(‘m’) will be inserted
in the field gender and in second statement ‘f’ value will be inserted in the field gender.

 Insert into worker values(101, ‘F. Chaudhary’, default)
 Insert into worker values(102, ‘N. Chaudhary’, ‘f’)

 6. Check: This constraint is used to check specific condition before we insert value in the
field, such as the length of pincode should be exactly 6 digits, itemname should start with
letter ‘I’, empname should be entered into uppercase, etc. Following is an example of
check constraints which are applied on different fields of customer table:

 Create table customer (custid int check(custid > 100
 and custid < 1000), custname varchar 2(30)

CH_6_Managing Data using Structured Query Language_Final.indd 126 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL) | 127

 check(custname = upper(custname)),
 city varchar2 (20), pincode int check(length
 (pincode) = 6))

6.12 | types of joIn and set operators
We can join multiple table using different types of joins. To join the tables, we can use different
relational operators, such as <, >, ≥, ≤, = and != in WHERE clause. Following are some join
types which can be used to join multiple tables:

 1. Equijoin/Simple Join/Natural Join: When we join two or more than two tables using
an ‘=’ sign, the type of join is said to be an equi join. For example,

select * from class, student where class.
 classID = student.classcode

 2. Non-equi Join: When we join two or more than two tables using a sign other than ‘=’,
the type of join is said to be an equi join. For example,

select * from class, student where class.
 class ID ≥ student.class code
 3. Cross Join: When join condition is not specified in WHERE clause, the join is said to be

cross join. Cross join displays cartesian product of the tables. For example,

select * from class, student

 4. Multiple Join: When we join more than two tables in a single query, the type of join is
said to be a multiple join. For example,

 select * from class, student, mark where class.
 classID = student.classcode and student.
 stdno = mark.stdno

 5. Inner Join: Inner joins displays common values from the tables which are joined on a
common field. For example,

 select * from class inner join student on class.
 classID = student.class code

 6. Outer Join: There are three types of outer joins.

 Full Outer Join: Full outer join displays all the records of the left table and all the
records of the right table (i.e., it displays union of two tables). For example:

 select * from class full outer join student on class.
 class ID = student.classcode

 Left Outer Join: Left outer join displays all the records which is on the left side and
matching records of the right side table. If the left side values do not exist in the right side
table, then null values will be displayed for the right side table’s records. For example:

 select * from class left outer join student on class.
 classID = student.classcode

CH_6_Managing Data using Structured Query Language_Final.indd 127 2/28/2014 1:06:24 PM

128 | Chapter 6

 Right Outer Join: Right outer join displays all the records which is on the right side and
matching records of the left side table. If the right side values do not exist in the left side
table, then null values will be displayed for the left side table’s records. For example,

 select * from class right outer join student on class.
 class ID = student.classcode

 7. Self Join: If a table is joined with itself, the type of join is called, self join. For example:

 Select s1.stdname, s2.stdname from student s1, student s2
 where s1.city = s2. city and s1.stdno! = s2.stdno

 The above query will create two alias s1 and s2 of table student and then compare city of
each record of s1 with city of each record of s2. If city is same, then it will display pair
of those students. Here, it will not display student pair whose roll number is same.

Set Operators: Set operators are also used to join tables. Following are the set operators
which we can use in Oracle:

 1. Union: Union operator displays all the records from two or more tables on the basis of
selected fields. When we use union set operator, number of fields written after SELECT
in both all the queries should be same and datatype of corresponding fields should match
with one another. For example:

select class ID from class union select classcode
 from student union select classID from marks

 The above query will display union of three tables class, student and marks.
 2. Intersect: Intersect operator displays all the common records from two or more tables

on the basis of selected fields. When we use intersect set operator, number of fields
written after SELECT in both all the queries should be same and datatype of corres-
ponding fields should match with one another. For example:

 select classID from class intersect select classcode
 from student intersect select classID from marks

 The above query will display intersection of three tables class, student and marks.
 3. Minus: Minus operator displays all the records from the first table which are not there in

second table. For example:

 select class ID from class minus select classcode
 from student minus
 select class ID from marks

6.13 | sub-query
Sub query is a SELECT query which is written within another SELECT query. It is also known
as nested query. We can perform complex queries using sub query. For example:

 Select empname from employee where
salary = (select max(salary) from employee)

The above query will display name of the employee who earns maximum salary.

CH_6_Managing Data using Structured Query Language_Final.indd 128 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL) | 129

Following are some other examples of sub-query:

Select * from employee where empid not in
 (select empid from loan)

The above query will display details of employees who have not taken any loan.

 Select max (percentage) from result where
 class ID = ‘TY’ and percentage <

(select max(percentage) from result where classID = ‘TY’)

The above query will display the second highest percentage of class ‘TY’.

 Select r.class ID, max(r.percentage) from result
 r where r.percentage <(select max

(percentage) from result where classID = r.classID)
 group by r.class ID

The above query will display class-wise second maximum percentage. This type of query where
each sub-query is executed for each row of outer query is called co-related sub query. In this
type of query the alias is used in outer query.

 select * from class where class ID in (select
 class ID from student where std ID in (select
 stdid from marks))

The above query will first fetch classid from student table of those students whose stdid also
exists in marks table and on the basis of this, it will display class details of those classes which
are returned by the inner query.

Whenever we execute sub-query, the inner most query is executed first and on the basis of
output of inner query, outer query is executed.

6.14 | advances sql roll-up, cube, crosstab
Rollup and Cube are used with the GROUP BY clause. With GROUP BY, it can be used
as follows:

SELECT….GROUP BY cube/rollup (<field1>[,<field2>,….<fieldn>]

Rollup: Rollup will display group-wise summary, such as count, sum, average, minimum, maxi-
mum, etc. Consider Table 6.4 (EVENT).

If we execute the following query, then it will display in each event type how many total
number of events of a particular category. At the end of each event_type group, it will display
total number of events of each event_type. Also, at the end of total number of events of last
event_type group, it will display overall total number of events.

 select event_type,event_category, count(event_ID) from
 event group by rollup (event_type,event_category)

The above query will display the result as given in Table 6.5

Cube: Cube also displays group-wise summary, but it starts with overall summary and then
displays each group-wise summary. It is like a cross tab summary.

CH_6_Managing Data using Structured Query Language_Final.indd 129 2/28/2014 1:06:24 PM

130 | Chapter 6

If we execute the following query, the output given in Table 6.6 will be displayed. First, it
will display overall event count, then total number of events in each event type and, within each
event type, it will display type-wise category-wise total number of events.

 select event_type, event_category, count (event_ID) from
event group by cube (event_type, event_category)

table 6.4 | EVENT

event_Id event_name event_category event_type min_part max_part

 1 solo singing music solo 1 1
 2 duet singing music group 2 2
 3 group singing music group 3 8
 4 solo western singing music solo 1 1
 6 Classical Instrumental music solo 1 1
 7 skit drama group 3 10
 8 mime drama group 3 10
 9 mono acting drama solo 1 1
10 mimicry drama solo 1 1
11 elocution intellect solo 1 1
12 extempore intellect solo 1 1
13 poetry recitation intellect solo 1 1
14 book review intellect solo 1 1
15 poetry writing intellect solo 1 1
16 debate intellect group 2 2
17 collage art group 3 3
18 poster making art group 3 3
19 graffiti art group 3 3
20 cartooning art solo 1 1
21 glass painting art solo 1 1
22 rangoli art solo 1 1
23 mehendi art solo 1 1
24 salad making art solo 1 1
25 solo dancing dance solo 1 1
26 duet dancing dance group 2 2
27 group dancing dance group 3 10
 5 group western singing music group 3 8

table 6.5 | Output of ‘Rollup’

event_type event_category count (event_Id)
Group art 3
Group dance 2
Group drama 2
Group intellect 1
Group music 3
Group — 11
solo art 5
solo dance 1
solo drama 2
solo intellect 5
solo music 3
solo — 16

— — 27

CH_6_Managing Data using Structured Query Language_Final.indd 130 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL) | 131

table 6.6 | Output of ‘Cube’

event_type event_category count (event_Id)

— — 27

— art 8

— dance 3

— drama 4

— intellect 6

— music 6
group — 11
group art 3
group dance 2
group drama 2
group intellect 1
group music 3
solo — 16
solo art 5
solo dance 1
solo drama 2
solo intellect 5
solo music 3

Crosstab: With cross tabulation, we can display row and column-wise summary. For example,
the following query will display category-wise total number of solo event and group events.

Decode: The Decode function is used to count type-wise total number of events in each
category. The first argument in decode function is a field name, second argument is a value
which we want to search in the field which is specified as first argument, third argument is
a field of which we want to find count. Table 6.7 shows output of the following query which
shows crosstab of event category and event type.

select upper (event_category) ‘EVENT CATEGORY’,
count (decode (trim(event_type),’ solo’, event_ID, NULL))
‘SOLO EVENTS’, count(decode(trim (event_type), ‘group’,
event_ID, NULL)) ‘GROUP EVENTS’ from event group by
event_category order by event_category

The following query will display crosstab event type and event category. The query will display
the output which is given in Table 6.8.

 select upper (event_type) ‘EVENT TYPE’,
 count(decode(trim(event_category),’art’,event_ID))
 ‘Artistic Events’, count
 (decode (trim (event_category), ‘dance’, event_ID))
 ‘Dancing Events’, count (decode (trim (event_category),’
 drama’, event_ID)) ‘Dramatic Events’, count (decode
 (trim (event_category),’ intellect’, event_ID))

CH_6_Managing Data using Structured Query Language_Final.indd 131 2/28/2014 1:06:24 PM

132 | Chapter 6

 ‘Intellectual Events’, count (decode (trim (event_
 category), ‘music’, event_ID)) ‘Musical Events’
 from event group by event_type order by event_type desc

table 6.7 | Cross Tab of Event Table Which Shows Category-
wise Total Number of Solo and Group Events

event category solo events Group events

ART 5 3

DANCE 1 2

DRAMA 2 2

INTELLECT 5 1

MUSIC 3 3

table 6.8 | Cross Tab of Event Table Which Shows Type-wise Total Number of Art, Dance,
Drama, Intellect and Music Events

event type artistic events
dancing
events

dramatic
events Intellectual events musical events

SOLO 5 1 2 5 3

GROUP 3 2 2 1 3

SUMMARY
 ● The language which is provided to manipulate data stored in a relational database man-
agement system is known as Structured Query Language (SQL).

 ● SQL has many commands, such as Data definition, data commands, Data Manipulation
commands, Data control commands.

 ● Data definition commands are used to create, modify and delete database objects, such as
tables, views, procedures. Examples of data definition commands are CREATE TABLE,
ALTER TABLE, DROP TABLE, CREATE VIEW, ALTER VIEW, DROP VIEW, etc.

 ● Data manipulation commands are used to fetch, insert, remove and change values in a
table. INSERT, UPDATE, DELETE and SELECT, etc., are data manipulation commands.

 ● In SELECT statement, there are clauses FROM, WHERE, GROUP BY, HAVING and
ORDER BY. The FROM clause is only compulsory in SELECT statement; all the other
clauses are optional.

 ● In the SELECT statement, after SELECT keyword, field names/* is specified. * means,
all the fields of a table. If unique records need to be displayed, then before the field names
the DISTINCT predicate is written. Also, we can specify functions and mathematical
calculations after the SELECT keyword.

 ● In the FROM clause, table names are specified. Also, we can write SELECT statement
in FROM clause.

CH_6_Managing Data using Structured Query Language_Final.indd 132 2/28/2014 1:06:24 PM

Managing Data Using Structured Query Language (SQL) | 133

 ● WHERE is used to write conditions on record level. After WHERE we can also write
sub-queries.

 ● GROUP BY is used to group records and display summary of groups. We can group more
than one field.

 ● The HAVING clause is written only with the GROUP BY clause to specify condition on
aggregate functions. HAVING is used to write a condition on group level, while WHERE
is used to write a condition on row level.

 ● ORDER BY is used to arrange records in ascending or descending order. Records can be
arranged on multiple fields also.

 ● With group by clause, we can rollup and cube to show summary on different groups.
 ● There are many functions which we can use to format data and for calculation, such as
string functions, mathematical functions, conversion functions and date functions.

 ● Aggregate functions are used to show count, maximum, minimum, sum and average of
column values.

 ● There are table level and field level constraints which we can enforce on table and field.
They will validate the data before data is inserted into database. If any constraint is vio-
lated, error will be displayed. The constraints which are written on single field are called
field level constraints and the constraints which are written on more than one field are
called table level constraints.

 ● Various types of constraints are the primary key constraint, foreign key constraint, unique
constraint, default constraint, not null constraint and check constraint.

 ● We can join multiple tables using different types of joins, such as inner join, outer join,
equijoin, nonequi join, self join, cross join and multiple join.

 ● There are some special operators which are used with WHERE clause. They are LIKE,
BETWEEN, IN, EXISTS and IS NULL. LIKE operator is used to match patterns in data,
BETWEEN operator is used with numeric fields to check if value lies within the range or
not, IN will check that field value match with the specified list or values or not, EXISTS
will check existence of data in a table and IS NULL will check whether the field contains
null or not.

 ● Besides join types, there are some set operators which are used to join tables. They are UNION,
INTERSECT and MINUS. To use these operators, the tables or SELECT statements, used in
queries, should be union-compatible. Union-compatible means the tables or SELECT state-
ments should contain same number of fields and data types of corresponding fields should
also match.

 ● For complex data retrieval, we can use sub-query or nested query. The SELECT state-
ment which is written within another SELECT statement is called sub-query.

 ● Also, crosstab results can be displayed using decode function.

ExErcisEs

 1. What is SQL?
 2. Define Data Definition and Data Manipulation Commands.
 3. Explain SELECT statement with all the clauses.
 4. Write syntax of INSERT, DELETE and UPDATE statements.

CH_6_Managing Data using Structured Query Language_Final.indd 133 2/28/2014 1:06:24 PM

134 | Chapter 6

 5. Give one-one examples of each of the following operators:
 a. Is null b. Is not null
 c. In d. Not in
 e. Exists f. Not exists
 g. Between h. Not between
 i. Like j. Not like
 6. Explain different types of constraints. Differentiate between field level and table level

constraints.
 7. Write the differences between WHERE and HAVING clauses.
 8. What is the difference between count(*) and count(field_name)?
 9. Which points should be kept in mind while using GROUP BY clause in SELECT?
 10. Describe different types of joins with examples.
 11. What is co-related query? When is it used? Give an example.
 12. Write syntax and return type of any two of the given functions:
 a. Aggregate functions b. Mathematical/numerical functions
 c. String/text functions d. Date functions
 e. Conversion functions
 13. Create the following tables with appropriate data types and constraints. Insert given re-

cords and solve the queries.

Kindergarten

kg Id Kg name main branch sub branch city state

1 Kidzee Navrangpura Naranpura Ahmedabad Gujarat

2 Kidzee Navrangpura Satellite Ahmedabad Gujarat

3 Thumbelina Naranpura Ahmedabad Gujarat

4 Eurokids Naranpura Vastrapur Ahmedabad Gujarat

5 Redbricks Satellite Paldi Ahmedabad Gujarat

6 Eurokids Citylite Surat Gujarat

7 Eorilids Alkapuri Makarpura Baroda Gujarat

class details

class code desc1 min_age_required others

PG Play Group 2 Admission given in the month of November
and May.

NUR Nursery 2.5 Admissions open in the month of April

JrKG Junior KG 3.5 Admissions open in the month of April

CH_6_Managing Data using Structured Query Language_Final.indd 134 2/28/2014 1:06:25 PM

Managing Data Using Structured Query Language (SQL) | 135

KGdetails

Kg Id class Id division capacity

1 PG 1 30

1 NUR 1 25

1 NUR 2 25

1 JrKG 1 40

2 NUR 1 20

2 JrKG 1 30

4 NUR 1 30

4 NUR 2 30

4 JrKG 1 30

 i. Display average capacity of the class ‘Nursery’.
 ii. Display names of kindergartens which do not have any sub-branch.
 iii. Display city-wise total number of kindergartens.
 iv. Display intersection of classdetails and kgdetails tables.
 v. Display class-wise minimum age requirement.
 vi. Display details of kindergartens of state ‘Gujarat’.
 vii. Display total capacity of class ‘Nursery’.
 viii. Display the sub-branches of kindergarten, ‘Eurokids’.
 ix. Display names of kindergartens which have more than two branches in the same city.
 x. Display state-wise total number of kindergartens.
 xi. Display details of kindergarten which exists in the kindergarten table, but not in

KG details.
 xii. Display kindergarten name, main branch and total number of sub branches.
 xiii. Copy records of table KGdetails in a new table named KGdetails_2010
 xiv. Display name of the kindergarten which has maximum number of sub-branches.
 xv. Display kgid which has maximum no. of divisions of class ‘Jr. KG’.
 xvi. Display union of KGdetails and Kindergarten table.
 xvii. Display Kindergarten names only once from the kindergarten table.
 xviii. Display details of top 2 classes which have maximum capacity.
 xix. Display kindergarten names which contains the word ‘kid’.
 xx. Display total capacity from KGdetails table.
 xxi. Display name of the main branch for which sub-branch contains null.
 xxii. Display all the details of kindergarten where capacity is 25 or 30.
 xxiii. Display name of the city which has the maximum length.
 xxiv. Display total no. of records of KGdetails.
 xv. Display unique records from KGdetails.

CH_6_Managing Data using Structured Query Language_Final.indd 135 2/28/2014 1:06:25 PM

136 | Chapter 6

 14. Create the following tables with appropriate data types and constraints. Insert given re-
cords and solve the queries.

Item

Item code Item desc price qty_on_hand (in pcs.) reorder_level

I003 Polo-neck T-shirt 345.00 50 25

I004 Turtle-neck T-shirt 450.00 50 25

I005 Hooded T-shirt 750.00 5 10

I006 Round-neck T-shirt 299.00 100 50

customer

cust code cust name address balance

C1 A.R. Patel 23, Acme house 5000.00

C2 S.M. Sharma Navrangpura 2000.00

Invoice

Invoice no Invdate cust code total_inv_amt

1034 23-03-1999 C1 3522.00

Invoice detail

Invoice no Item no qty price total_price

1034 I004 2 450.00 900.00

1034 I003 5 345.00 1725.00

1034 I006 3 299.00 897.00

 i. Display name of items, which are below reorder level.
 ii. Display information of all customers who have purchased items for which price is

more than `1000.00.
 iii. Display all item names, which are not purchased by any customer.
 iv. Display information of all items, which are purchased between 1st January, 2001 to

28th February, 2001.
 v. Find second maximum price from the ITEM Table along with itemcode.
 vi. Display invoice wise total price in descending order of invoiceno.
 vii. Display union of ITEM and INVOICE Tables.
 viii. Display customer number and customer name whose name ends with letter ‘a’ or ‘i’.
 ix. Display number of items that are sold in the month of ‘May’.
 x. Print all the records of ITEM table for which quantity on hand is less than reordered

level.
 xi. Display sum of all item quantities, for those items, which are purchased by any cus-

tomer.

CH_6_Managing Data using Structured Query Language_Final.indd 136 2/28/2014 1:06:25 PM

Managing Data Using Structured Query Language (SQL) | 137

 xii. Copy all the records of the Invoice Table in a new table named inv_history.
 xiii. Display first ten characters of customer name.
 xiv. Display the number of items purchased up to the current date.
 xv. Display information of all items for which quantity is same.
 xvi. Display sum of the field ‘Total_inv_amt’.
 xvii. Display details of itemno ‘I006’.
 xviii. Change price of itemno I002 to `500.00.
 xix. Delete record if item I001.
 xx. Display join of Customer, Invoice and Invoicedetail tables.
 xxi. Display item details in descending order of price.
 xxii. Display 12% records of item table.
 xxiii. Display names of the items which are purchased maximum.
 xxiv. Display item names which contain the word ‘neck’.
 xxv. Display unique item names.
 xvi. Decrease price of each item by `100.00.
 xvii. Display multiplication of the fields qty and price and give the name ‘Total Price’ to

this field.
 xviii. Display details of customers with balance >1000.00 and <7000.00.
 xxix. Display first ten characters of the address field.
 xxx. Display length of the itemdesc field along with the description of items.

CH_6_Managing Data using Structured Query Language_Final.indd 137 2/28/2014 1:06:25 PM

CHAPTER

7.1 | IntroductIon
PL/SQL is an abbreviation of Procedural Language/Structured Query Language. We can create
small programs using PL/SQL named and unnamed blocks.

By writing SQL update/select/insert/delete statement, we can apply same condition on set of
records, but we cannot apply different conditions on different records depending upon the field
values. It could be done by declaring cursor and accessing the cursor within the PL/SQL block.

We may also write stored procedure or function which could be called from remote com-
puter. Using exceptions, system errors could be trapped or handled. Triggers could be written to
apply validations at record level and to apply security on tables. We can combine PL/SQL
blocks within a package and access them.

7.2 | Block of Pl/SQl In oracle
PL/SQL block has three basic parts: a declarative part (DECLARE), an executable part (BEGIN
... END) and an exception-handling part (EXCEPTION). Variables and cursors are defined in
Declare section. Declare section is optional. Declare section should be written first in the block.
After Declare, body part is written within Begin … End, which is compulsory to write in PL/
SQL block. Operations could be performed in this executable part. Errors raised during execu-
tion can be handled within the exception-handling part. User can define his/her own exception
in this part.

7

Introduction to PL/SQL

•	 Creating functions in Oracle.
•	 Creating procedures in Oracle.
•	 Applying validations and security through triggers in Oracle.
•	 Overview of packages in Oracle.

chaPter oBjectIveS

CH_7_Introduction to PL_SQL_Final.indd 138 2/26/2014 3:43:24 PM

Introduction to PL/SQL | 139

PL/SQL Block Structure:
Declare
 Declarations

Begin
Statements

Exception
Error handlers

End;

Following is an example of PL/SQL unnamed block:

 DECLARE
 Sub_marks NUMBER;
 Sub_credit NUMBER;
 Total_credit NUMBER;
 Grade_point float;
 BEGIN
 Grade_point = (sub_marks*sub_credit)/total_credit
 dbms_output.put_line (‘Grade Points = ||grade_point’);
 END;
 /

Example 2
 declare
 fname char(10):=‘&fname’;
 lname char(10):=‘&lname’;
 begin
 dbms_output.put_line(‘Full name is:
 ‘||rtrim(fname)||’, ‘||lname);
 end;

7.3 | curSorS In oracle
When any SQL statement is executed, it results into a record set. This record set is allocated
some area in a memory. We can give name to this area, which is known as a cursor. Cursor
points to that area.

When you declare a cursor, you get a pointer variable, which does not point any thing. When
the cursor is opened, memory is allocated and the cursor structure is created. The cursor variable
now points the cursor. When the cursor is closed, the memory allocated for the cursor is released.

Cursors allow the programmer to retrieve data from a table and perform actions on that data
one row at a time. There are two types of cursors—implicit cursors and explicit cursors.

 1. Implicit cursor: Implicit cursor could be declared for the select query which returns
only one row/record. Implicit cursor is a select statement which is written in the body

CH_7_Introduction to PL_SQL_Final.indd 139 2/26/2014 3:43:24 PM

140 | Chapter 7

part (begin…end) of a PL/SQL block. The oracle’s implicit cursor is referred with the
name SQL. When defining implicit cursor, it is required to write ‘into’ after select state-
ment. Following is the syntax to define implicit cursor.

SELECT <fieldname 1>, <fieldname 2>,
 … INTO <variable_name 1>,

 <variable_name 2>,
 … FROM <table_name>;

The above select statement should return exact one row.
For example,
 DECLARE
 Cnt int;
 BEGIN
 SELECT count(stdno)
 INTO cnt FROM student;

Dbms_output.put_line(‘Total no. of students are:
‘||cnt);

 END;

Note: stdno is a column of the table student and cnt is a variable used to store total number of
students.

 2. Explicit Cursor: Explicit cursors is used in queries that return multiple rows. Explicit
cursor is declared in the DECLARE section of PL/SQL program. Explicit cursor is a
user-defined cursor. Following is the syntax to define explicit cursor.

CURSOR <cursor-name> IS <select statement>

For example,
DECLARE
 CURSOR cur_emp IS SELECT ename FROM EMP;
BEGIN

END;

After declaring the explicit cursor, we need to follow the steps given below to retrieve and pro-
cess records which this cursor contains.
 i. Open cursor. (syntax: OPEN <cursor-name>;)
 Example, open cur_std;
 ii. Fetch records in a loop and process them.
 (syntax: FETCH <cursor-name> INTO <variables>;
 Example, fetch cur_std into c_std_rec;
 iii. Specify condition to exit from the loop.
 iv. Close cursor.(syntax: CLOSE <cursor-name>;)
 Example, close cur_std;

CH_7_Introduction to PL_SQL_Final.indd 140 2/26/2014 3:43:24 PM

Introduction to PL/SQL | 141

Attributes: Following are the attributes which are used to define variables of type—row and
column.

 1. %type—It is used to define a variable with the same datatype of any table’s column/field.
For example, in a SUPPLIER table there is a column named last_name. If we want to
define a variable which should have datatype of this last_name column, we can write the
following statement in the declare section of PL/SQL block.

l_nm supplier.last_name%TYPE;

 It will define a variable named l_nm which will have datatype of the column last_name
of table supplier.

 2. %rowtype—–It is used to define a variable of record type which matches any table’s re-
cord. For example, to define a record type variable which should store records of supplier
table, the following statement should be written in the declare section of PL/SQL block.

Rec_sup supplier%rowtype;

 It will define a variable named rec_sup which will store one record of the table supplier.

Cursor Attributes: Cursor attributes start with symbol %. Following are the cursor attributes
which are frequently used with cursor.

 1. %notfound—It returns ‘true’ if there is not a single record in the cursor and returns
‘false’ if there is at least one record in a cursor.

 2. %found—It returns ‘false’ if there is not a single record in the cursor and returns ‘true’
if there is at least one record in a cursor.

 3. %rowcount—It returns total number of records fetched by the cursor.
 4. %isopen—It returns ‘true’ if the cursor is open and ‘false’ if cursor is not open.

Cursor FOR loop: The Cursor FOR loop can be used to process multiple records. There are
two benefits with cursor for Loop, these are as:

 1. It implicitly declares a %ROWTYPE variable.
 2. Cursor For Loop itself opens a cursor, read records then closes the cursor automatically.

Hence OPEN, FETCH and CLOSE statements are not necessary in it.

 For example,

 Declare
 Cursor c1 is select * from emp;
 R1 c1%rowtype;
 Begin
 For r1 in c1 loop
 Dbms_output.put_line(r1.eid);
 End loop;
 End;

We have not used OPEN, FETCH and CLOSE in the above example as for cursor for loop does
it automatically.

CH_7_Introduction to PL_SQL_Final.indd 141 2/26/2014 3:43:24 PM

142 | Chapter 7

To update or delete rows, the cursor must be defined with the FOR UPDATE clause. ‘For
update of’ clause locks the current row exclusively for updation. The Update or Delete state-
ment must be declared with WHERE CURRENT OF clause.
For example,
 Declare
 Cursor c1 is select * from emp for update of salary;
 r1 c1%rowtype;
 Begin
 For r1 in c1 loop
 if r1.sal<20000 then
 Update emp set salary = r1.salary + 1000 where current
 of c1;
 End if;
 End loop;
 End;

7.4 | ProcedureS In oracle
Procedure is a named PL/SQL block because it should contain some name. A procedure con-
tains declaration and body part. Procedure can take parameters. Procedures which do not take
parameters are written without a parenthesis. Following is the syntax to write a procedure.

 CREATE OR REPLACE PROCEDURE
 <procedure-name>(<parameter 1> [in/out/in out] <datatype>, …….)
 AS <variable declaration>
 BEGIN
 <procedure body>
 EXCEPTION
 <Exception handlers>
 END;

For example,
 create or replace procedure emp_age(sdt date, ldt date) as
 cursor c_emp is select fname, deptno,
 trunc(to_char(sysdate-bdate)/365.5)

 age from employee where bdate between sdt and

 ldt and rownum = 1 group by deptno, fname,

 trunc(to_char (sysdate-bdate)/365.5);

 r_emp c_emp%rowtype;
begin
 open c_emp;
 loop
 fetch c_emp into r_emp;
 exit when c_emp%not found;

CH_7_Introduction to PL_SQL_Final.indd 142 2/26/2014 3:43:24 PM

Introduction to PL/SQL | 143

 dbms_output.put_line(r_emp.fname||’ ‘||r_emp.
 deptno||’ ‘||r_emp.age);
 end loop;
 close c_emp;
 end;

Parameters: Parameters are used to pass the values to the procedure. There are three types of
parameters—IN, OUT and IN OUT.

 IN parameter is used to pass the values to the called procedure. It works as read only
within the procedure.

 OUT parameter returns the value from the procedure.
 IN OUT parameter allows to pass and return values from the procedure. Default

parameter type is IN.

A procedure can be executed by writing EXEC <procedure_name>; on the SQL prompt. It
can also be executed by using a calling block. Following is a calling block which calls proce-
dure named proc1.

BEGIN
 PROC1;
END;

7.5 | functIonS In oracle
A function is a named block, which is used to compute a value. Function returns only one
value. Following is the syntax to create the function.

CREATE [OR REPLACE] FUNCTION <function-name> ([pa-
rameter 1, parameter 2, …)] RETURN <datatype> IAS
 [variable declarations…]
BEGIN
 Executable statements
EXCEPTION
 Exception handlers
END;

For example,

 Create or replace function cal(n1 int, n 2 int) return int as
 S int;
 Begin
 S: = n 1 + n 2;
 Return S;
 End;

The function is executed by writing the select statement on the SQL prompt or it can be called
using a calling block. For example, select cal(20, 30) from dual will call the function call and
will display sum of 20 and 30 which is 50.

CH_7_Introduction to PL_SQL_Final.indd 143 2/26/2014 3:43:24 PM

144 | Chapter 7

7.6 | trIggerS In oracle
Trigger is a PL/SQL block which is used to write validation rules on record when data is
manipulated. Trigger is fired automatically depending on the manipulation operation.

Figure 7.1 shows different types of triggers.
Statement level triggers are fired for any DML operation. When we define statement level

trigger, ‘for each row’ statement is not written and ‘old’ and ‘new’ variables cannot be used.
Statement level triggers are used when data are not manipulated.

Row level triggers are fired for each row which are affected by DML operation. We must
write ‘for each row’ statement when we define row level trigger. ‘Old’ and ‘new’ variables can
also be used with this type of trigger.

Each row and statement level triggers could be written before insert or delete or update and
after insert or delete or update.

Following is an example of statement-level trigger.

create or replace trigger emp1 before insert on employee

 begin
 if (to_char(sysdate,‘dy’) = ‘thu’
 or to_char(sysdate,‘dy’) = ‘sun’)

 then
 raise_application_error(-20501,‘may not
 change employee table during the weekend’);
 end if;
 if (to_char(sysdate,‘hh24’)<10 or
 to_char(sysdate,‘hh24’)> = 18) then
 raise_application_error(-20501,‘may change
 employee table during working hours’);
 end if;
 end;

Before After

1. Insert
2. Delete
3. Update

1. Insert
2. Delete
3. Update

Before After

1. Insert
2. Delete
3. Update

1. Insert
2. Delete
3. Update

Types of Triggers

Row-levelStatement-level

fIgure 7.1 | Types of triggers.

CH_7_Introduction to PL_SQL_Final.indd 144 2/26/2014 3:43:24 PM

Introduction to PL/SQL | 145

Following is an example of row-level trigger.

create or replace trigger tr1_11 after insert on mark for each row

 declare
 t int;
 p float;
 g char (1);
 status char (4);

 begin
 t: = :new.mark 1 + :new.mark 2 + :new.mark 3;
 p: = t/3;
 if (:new.mark 1 < 36 or:new.mark 2 < 36 or:new.mark 3 < 36)
 then
 status: = ‘fail’;
 g: = ‘c’;
 else
 status: = ‘pass’;
 if p> = 70 then
 g: = ‘A’;
 else
 g: = ‘B’;
 end if;
 end if;

 insert into result values(:new.stdno, t, p, status,g);
 end;

Following is an example of instead of trigger which is written on a view instead of table.

create or replace trigger instr1 instead of insert on v2 for
each row

 begin
 if (substr(:new.itemname, 1, 1) = ‘s’ or substr(:new.

 itemname, 1, 1) = ‘S’) then

 raise_application_error(-20000, ‘Invalid item name... ‘);

 end if;
 end;

7.7 | overvIew of PackageS In oracle
Package is a collection of functions and procedures. Package has two sections—package dec-
laration and package body. Package declaration contains function or procedure declaration and
package body contains body of functions or procedures.

CH_7_Introduction to PL_SQL_Final.indd 145 2/26/2014 3:43:24 PM

146 | Chapter 7

Summary
 ● PL/SQL is an extension of SQL, which is used to write small programs such as functions
and procedures.

 ● Procedures and functions are named PL/SQL block.
 ● Procedure could be called through calling block or by writing ‘exec proc_name’ statement.
 ● Function could be called through calling block or by writing select statement.
 ● Function returns exactly one value.
 ● We can manipulate individual row by defining cursor.
 ● There are two types of cursors—implicit and explicit.
 ● The built-in cursor of oracle is known as implicit cursor and it could be referred with
name SQL.

 ● Explicit cursor is a user-defined cursor which has some name.
 ● Cursor contains active recordset which is assigned some area in memory. Cursor is a kind
of pointer which points to the current record in this recordset.

 ● Triggers are fired automatically when any DML statement is executed. Triggers could be
defined on statement level or row level.

 ● Row level trigger is used when some data is manipulated.
 ● Each statement and row level triggers are written before insert or delete or update and
after insert or delete or update.

ExErcisEs

 1. What is a cursor? Explain implicit and explicit cursors. With which name the implicit
cursor is referred?

 2. Explain the cursor attributes %type, %rowtype, %found and %notfound.
 3. Write syntax of cursor for loop and give an example.
 4. Differentiate between procedure and function.
 5. What are ‘in’ and ‘out’ parameters?
 6. Fill in the blanks.
 a. A function can return ___________ value.
 b. To define a variable whose data type matches the data type of a table’s field, the

_________ cursor attribute is used.
 c. _____________ command is used to execute the procedure.
 d. PL/SQL is an abbreviation of __________________________.
 e. ____________ command retrieves the record from a cursor.

LaB aCTIVITIES
 1. Create a procedure which will display the employees in descending order of employee

name.
 2. Write a procedure to accept start date, end date and subject code as inputs and print

student attendance report in ascending order of student number with student name, total
number of lectures attended of that subject and percentage.

CH_7_Introduction to PL_SQL_Final.indd 146 2/26/2014 3:43:24 PM

Introduction to PL/SQL | 147

 3. Create a function that will return total number of employees whose joining date is
between two inputted dates.

 4. Create a function that will return age of a given employee.
 5. Write a function which will take emp_id as an argument and returns a day on which

employee was born.
 6. Write a trigger that is fired after an insert statement is executed for the MARK table. The

trigger writes the student’s identification number, total, percentage, grade and status in
the RESULT table. (Student’s status is fail if he fails in any subject and pass if he gets
more than 35 marks in each subject. Grade is A if percentage ≥70, B if percentage ≥60
and percentage <70, C if percentage ≥50 and percentage <60, D if percentage ≥40 and
percentage <50 and E if percentage <40.

 7. Write a function that will take department number as an input and will return employee
name along with salary from EMPLOYEE table who earned maximum.

 8. Write a PL/SQL block that will display student’s result with total number of passed and
failed students. Also display number of students who get distinction, first class, second
class and pass class.

CH_7_Introduction to PL_SQL_Final.indd 147 2/26/2014 3:43:24 PM

CHAPTER
8

Transaction Management
in Database

•	 Defining	transaction.
•	 Understanding	transaction	properties.
•	 Knowing	different	states	of	transactions.
•	 Understanding	concurrent	execution	of	a	transaction	and	problems	which	occur	during	con-
current	execution.

•	 Identifying	problem	of	deadlock.
•	 Learning	backup	and	recovery	procedure.
•	 Understanding	importance	of	security,	integrity	and	authorization	in	database	transaction.

Chapter ObjeCtives

8.1 | intrOduCtiOn
When	 the	database	 contains	 large	volume	of	data,	which	 is	 shared	among	many	users	 for	
reading	and	writing,	 it	 is	very	important	that	data	is	read	and	updated	correctly	during	the	
transaction.	Transaction should 	be	completed	successfully;	otherwise,	the	database	will	contain	
inconsistent	data.

Moreover,	when	the	transaction	fails	due	to	some	errors	(application	or	system	or	another	
error),	data	should	be	recovered	properly	after	the	failure.	In	this	chapter,	transactions	are	dis-
cussed	with	recovery	and	security	requirements.	Also,	the	problems	which	may	occur	during	
the	simultaneous	execution	of	transaction	and	how	they	can	be	avoided	are	also	discussed.

8.2 | definitiOn Of transaCtiOn
When	 user	 reads/writes/removes	 data	 from/to	 the	 database	 (Tables),	 in	 simple	 language	 it	
is	 called	 transaction.	 To	 do	 data	manipulation,	 SQL	 commands,	 e.g.,	 INSERT,	UPDATE,	
DELETE	and	SELECT	are	used.	Therefore,	in	other	words,	when	we	execute	any	data	manipu-
lation	commands	in	database,	it	is	called	transaction.	A	single	transaction	can	contain	sequence	
of	many	data	manipulation	 commands.	 In	 this	 case,	 the	 transaction	 is	 said	 to	be	 completed	

CH_8_Transaction Management in Database_Final.indd 148 2/26/2014 5:31:53 PM

Transaction Management in Database | 149

successfully	when	all	the	commands	are	executed	successfully	and	changes	are	recorded	in	the	
database	permanently.	This	can	be	achieved	by	executing	‘COMMIT’	command	at	the	end	of	
the	transaction.

Because	of	some	reason,	if	some	of	the	statements	are	executed,	but	some	are	not,	then	upda-
tions	are	done	partially	in	the	database.	It	is	called	unsuccessful	completion	of	transaction.	In	
this	case,	the	partial	changes	made	should	be	undone	and	the	transaction	should	be	executed	
again.	To	undo	the	partial	changes,	which	are	made	to	the	database,	the	‘ROLLBACK’	com-
mand	is	used.

The	 care	 for	 saving	 changes	 permanently	 (through	 COMMIT)	 and	 undoing	 the	 changes	
(through	ROLLBACK)	is	taken	by	the	system	component	‘transaction manager’	in	most	of	
the	DBMS.

Figure	8.1	shows	an	example	of	a	transaction	in	which	there	are	two	SQL	statements	which	
should	be	executed	and	committed	together.	The	two	statements	are	as	follows:

 insert into instalment values(yr, st, cl, amt, sysdate);
 update student set remaining_amt = remaining_amt
 where year = yr and stdno = st and trim(class ID) = cl;

The	INSERT	statement	adds	details	of	fees	instalment	paid	and	UPDATE	statement	subtracts	
the	instalment	amount	from	the	remaining	payable	amount.	

The	procedure	given	in	Figure	8.3	shows	how	fee-payment	transaction	process	is	done.	The	
Tables	involved	in	the	transaction	are	STUDENT,	INSTALMENT	and	FEES_TO_BE_PAID.	
To	create	these	Tables	in	Oracle,	 the	syntax	is	given	in	Figure	8.2.	To	execute	and	see	the	
result	of	 this	procedure,	some	sample	data	 is	given	 in	Table	8.1	FEES_TO_BE_PAID	and	

figure 8.1 |	 Example	of	a	fees	payment	transaction.

Student studying in fy, sy or ty pays the fee
installment for a particular year

New record is inserted into Installment
table by executing Insert statement

Student table is updated by executing
Update statement

Begin transaction

End transaction
(Successful completion)

Commit
(Save changes permanently)

End transaction
(Unsuccessful completion)
Database will be in the previous state.

Rollback
(Undo all changes)

CH_8_Transaction Management in Database_Final.indd 149 2/26/2014 5:31:54 PM

150 | Chapter 8

create table fees_to_be_paid (year int, classid char(5),
annual_fees int)

create table student (year int, stdno int, classid
char(5),stdname char(30), remaining_amt int)

create table installment (year int, stdno int, classid
char(5), amt_paid int, inst_date date)

figure 8.2 |	 Syntax	to	create	Tables	8.1	and	8.2.

create or replace procedure calfees(yr int, st int, cl char, amt int) as
 cursor c_fees is select * from student where year = yr and
 stdno = st and

 trim (class ID) = cl;
cursor c_inst is select count(*) m from installment
where year = yr and stdno = st
 and trim(class ID) = cl;

 cursor c_anfees is select * from fees_to_be_paid
 where year = yr and
 trim(class ID) = cl;
 r_fees c_fees%rowtype;

r_inst c_inst%rowtype;
r_anfees c_anfees%rowtype;

begin
open c_fees;
open c_inst;
open c_anfees;
fetch c_inst into r_inst;
fetch c_fees into r_fees;
fetch c_anfees into r_anfees;
if c_inst%notfound then
 insert into installment values (yr, st, cl, amt, sysdate);

 update student set remaining_amt = r_anfees.annual_fees-amt;
else

 if r_fees.remaining_amt ≤ 0 then
dbms_output.put_line (‘Fees already paid...’);

 else
insert into installment values(yr,st,cl, amt,sysdate);
update student set remaining_amt = remaining_amt-amt
where year = yr
 and stdno = st and trim(class ID) = cl;

 end if;
end if;
close c_fees;
close c_inst;
close c_anfees;

end

figure 8.3 |	 Procedure	to	execute	fee	payment	transaction.

table 8.1 |	 Sample	Data	in	Table	FEES_TO_BE_PAID

Year Class id annual_fees
2012 fybca 48000
2012 sybca 45000
2012 tybca 42000

CH_8_Transaction Management in Database_Final.indd 150 2/26/2014 5:31:54 PM

Transaction Management in Database | 151

Table	8.2	STUDENT	and	Data	will	be	inserted	automatically	into	the	INSTALMENT	Table	
when	we	will	run	this	procedure	by	executing	calling	block	given	in	Figure	8.4.	

Student	pays	 fees	 in	 instalments	 throughout	 the	year.	Here,	 a	 transaction	means	 ‘payment	of	
fees	 of	 each	 student	 in	 each	 instalment’.	When	 student	 pays	 fees,	 records	 are	 selected	 from	
three	 Tables	 and	 two	Tables	 instalment	 and	 student	 are	 updated	 using	 INSERT	 and	UPDATE	
statements	 respectively.	One	 transaction	 is	 said	 to	be	completed	when	 these	 two	statements	 are	
executed	successfully.	If,	for	some	reason,	any	one	of	the	statement	is	executed	and	another	is	not	
executed,	the	transaction	will	not	be	completed	and	the	database	will	be	in	inconsistent state.	This	
should	not	happen.	Therefore,	in	this	case,	the	whole	transaction	should	be	rolled	back	or	should	be	
committed.	No	intermediate	state	is	possible,	i.e.,	atomicity	should	be	maintained.	

There	are	two	commands	‘commit’	and	‘rollback’	which	are	used	to	save	changes	perma-
nently	and	undo	changes	respectively.	If	we	want	to	save	part	of	transaction,	we	may	use	‘save-
point’	command.	The	‘savepoint	<savepoint_name>’	command	can	be	written	anywhere	in	the	
process	and	later	in	the	program	‘rollback	to	<savepoint	name>’	command	can	be	used	which	
will	undo	the	changes	up	to	that	specified	savepoint.	The	changes	which	are	done	before	that	
savepoint	will	remain	as	it	is.	They	would	not	be	rolled	back.

For	example,	in	the	procedure	as	given	in	Figure	8.5,	there	is	a	savepoint	‘undo_payment’	
which	will	undo	the	changes	which	are	made	after	this	savepoint,	in	case,	if	the	instalment	amount	
entered	by	the	calling	block	is	more	than	the	fees	to	be	paid.	For	example,	if	actual	fees	is	
`48,000	and,	by	mistake	 instalment	amount	entered	 in	calling	block	 is	`4,80,000	 (it	means,	
whether	we	are	paying	more	than	the	actual	amount).	

Thus,	if	the	amount	entered	is	more	than	the	instalment	amount,	the	changes	done	after	save-
point	will	be	undone.

table 8.2 |	 Sample	Data	in	Table	STUDENT

Year std no Class id std name remaining_aMt

2012 1 fybca Sumeenkaur Rattan 48000

2012 2 fybca Jimit Shah 48000

2012 3 fybca Nikhil Chopra 48000

2012 4 fybca Shubhangi Goel 48000

2012 5 fybca Gurmukhsingh Jandu 48000

2012 6 fybca Aditi Kothawala 48000

2012 7 fybca Smit Shah 48000

2012 8 fybca Rushang Shah 48000

declare

begin

 calfees(2012,8,‘fybca’,16000);

end

figure 8.4 |	 Calling	block	to	execute	the	procedure	given	in	Figure	8.1.

CH_8_Transaction Management in Database_Final.indd 151 2/26/2014 5:31:54 PM

152 | Chapter 8

8.3 | prOperties Of transaCtiOn
To	ensure	the	successful	execution	of	a	transaction,	the	four	properties	of	ACID	(i.e.,	Atomicity,	Con-
sistency,	Isolation	and	Durability)	should	be	satisfied.	If	not,	then	the	database	may	contain	inconsis-
tent	and	incomplete	data	on	failure	of	a	transaction.	The	four	ACID	properties	are	explained	below:

	 1.	Atomicity: By	atomic,	it	means	that	all	the	statements	of	a	transaction	are	either	success-
fully	completed	or	rolled	back,	i.e.,	in	both	the	cases	database	should	contain	consistent	
data.	If	transaction	is	successful,	then	changes	are	saved	permanently	and	if	transaction	

create or replace procedure calfees (yr int, st int, cl char, amt int) as
 cursor c_fees is select * from student
 where year = yr and stdno = st and trim (class ID) = cl;
 cursor c_inst is select count(*) m from installment
 where year = yr and stdno = st and

trim(class ID) = cl;
 cursor c_anfees is select * from fees_to_be_paid
 where year = yr and trim (class ID) = cl;
 r_fees c_fees%rowtype;
 r_inst c_inst%rowtype;
 r_anfees c_anfees%rowtype;
 a int;
begin
 open c_fees;
 open c_inst;
 open c_anfees;
 fetch c_inst into r_inst;
 fetch c_fees into r_fees;
 fetch c_anfees into r_anfees;
 savepoint undo_payment;
 if c_inst%notfound then
 insert into installment values(yr, st, cl, amt,sysdate);
 update student set remaining_amt = r_anfees.annual_fees-amt;
 else
 if r_fees.remaining_amt<=0 then
 dbms_output.put_line(‘Fees already paid...’);
 else
 insert into installment values (yr, st, cl, amt, sysdate);
 update student set remaining_amt = remaining_amt - amt
 where year=yr and
 stdno=st and trim(class ID) = cl;
 end if;
 end if;
 select sum(amt) into a from installment
 where year=yr and stdno = st and
 trim(class ID) = cl;
 if a > r_anfees.annual_fees then
 rollback to undo_payment;
 end if;
 commit;
 close c_fees;
 close c_inst;
 close c_anfees;
end

figure 8.5 |	 Example	of	savepoint	during	transaction.

CH_8_Transaction Management in Database_Final.indd 152 2/26/2014 5:31:54 PM

Transaction Management in Database | 153

is	not	successful,	all	the	changes	should	be	undone.	No	intermediate	state	is	possible.	
This	is	shown	in	Figure	8.1.	COMMIT	ensures	that	changes	are	permanently	made	into	
database	and	rollback	insures	that	because	of	failure,	the	partial	changes	which	are	made	
should	be	undone	and	the	database	should	be	in	the	previous	consistent	state.	The	incom-
plete	transaction	could	be	executed	later	on.	Oracle	supports	statement-level	(any	DML	
statement)	atomicity.

	 2.	Consistency: An	execution	of	a	transaction	should	keep	database	into	consistent	state.	
The	consistent	state	may	be	the	previous	or	the	next	one.	Consider	the	following	example	
of	a	transaction,	in	which	there	are	two	SQL	statements	which	should	be	executed	into	
sequence	and	committed	together.	It	is	explained	in	Figure	8.6.

 Insert into participant values (103,‘Shefali Nik’,
 ‘DBMS23’, ‘21-May-2013’, ‘31-May-2013’, ‘HLICA’, 2000.00);
 Update registration set total_fees = total_fees + 2000.00
 where workshop_ID = ‘DBMS23’;

	 	 The	example	in	Figure	8.6	shows	that	the	database	should	be	in	consistent	state	in	case	
of	either	successful	execution	or	unsuccessful	execution	of	a	transaction.	If	it	is	partially	
committed	or	rolled	back,	the	database	will	contain	inconsistent	data	and	will	be	in	an	
inconsistent	state,	which	should	not	happen.

	 3.	 Isolation: The	transaction	should	be	isolated	from	other	transactions	until	its	execution	
is	completed,	 i.e.,	when	one	transaction	is	updating	the	data,	no	other	 transaction	can	
update	 that	data	until	 the	first	one	releases	 the	data.	 Isolation	can	be	guaranteed	with	
serializable	execution	of	a	transaction.	If	only	single	transaction	is	executed	at	a	time,	

figure 8.6 |	 Example	of	a	transaction	which	should	ensure	consistent	data	after	it	is	executed.

Before
execution of
transaction

After
successful
execution of
transaction

After
partial
execution of
transaction

Database’s
previous (consistent)
state

Database’s
next (consistent)
state

Insert and
Update

Start transaction

Commit?
nono

Rollback?

yes

yes

Database in
inconsistent state

CH_8_Transaction Management in Database_Final.indd 153 2/26/2014 5:31:54 PM

154 | Chapter 8

it	automatically	ensures	the	serializability	and,	hence	isolation.	But	when	many	transac-
tions	are	executed	simultaneously,	there	are	three	types	of	interactions	between	transac-
tions	which	are	defined	as	follows:

	 i.	Dirty read:	When	transaction	reads	uncommitted	data,	it	is	called	dirty read.
	 ii.	Non-repeatable read:	When	transaction	reads	data	at	different	time	which	is	commit-

ted	by	another	transaction	and	view	new	data,	it	is	called	non-repeatable read.
	 iii.	Phantom read:	When	a	transaction	runs	query	again	and	view	newly	inserted	rows	

by	another	committed	transaction,	it	is	called	phantom read.

	 	 	There	are	four	types	of	isolation	levels:

	 i.	Read uncommitted: Oracle	does	not	allow	read uncommitted,	i.e.,	dirty	read.
	 ii.	Read committed: It	is	the	default	isolation	mode	for	Oracle	database.
	 iii.	Repeatable read: When	in	set	transaction	command	isolation	mode	is	set	to	‘serial-

izable’,	Oracle	supports	it,	otherwise	not.
	 iv.	Serializable: When	in	set	transaction	command	isolation	mode	is	set	to	‘serializable’,	

Oracle	supports	it,	otherwise	not.	The	example	to	set	isolation	mode	to	‘serializable’	
is	reflected	as	follows:

 declare

 sno int;

 begin

 set transaction isolation level serializable;

 select count (std no) into sno from student;

 dbms_output.put_line (‘Total students: ’||sno);

 commit;

 end

	 	 In	Oracle,	we	may	set	isolation	level	either	‘serializable’	or	‘read	committed’.	The	ex-
ample	of	isolation	level	‘read	committed’	is	given	as	follows:

 declare

 sno int;

 begin

 set transaction isolation level read committed;

 select count (stdno) into sno from student;

 dbms_output.put_line(‘Total students: ’||sno);

 commit;

 end

	 4.	Durability: When	 transaction	 is	 completed	 and	 changes	 are	 made	 in	 database,	 the	
changes	should	be	permanent	or	long	lasting	or	durable.	This	property	is	called	durabil-
ity.	Database’s	recovery	system	takes	care	of	durability.

CH_8_Transaction Management in Database_Final.indd 154 2/26/2014 5:31:54 PM

Transaction Management in Database | 155

8.4 | states Of transaCtiOn
When	a	transaction	has	been	started,	it	can	be	in	different	states,	such	as	successfully	completed	
(COMMIT),	unsuccessfully	completed	(ROLLBACK),	partially	completed	and	running.

When	transaction	is	started,	it	is	in	the	running or active state,	in	which	data	is	manipulated	
through	data	manipulation	commands.	

If	there	exists	some	error	due	to	any	reason,	the	transaction	is	stopped	in	between	with	par-
tially	 updated	 data.	 Because	 of	 this,	 database	will	 contain	 inconsistent	 data.	Therefore,	 the	
changes	made	by	 the	 transaction	 should	be	undone	 through	ROLLBACK	statement.	 In	 this	
case,	 transaction	is	said	to	be	in	unsuccessfully completed state.	To	execute	the	transaction	
successfully,	it	should	be	restarted.

If	all	the	changes	are	made	successfully	after	execution	of	COMMIT	statement,	the	transac-
tion	will	be	in	the	successfully completed	state.	

8.5 | COnCurrenCY COntrOl using lOCks
When	more	than	one	transaction	is	executed	simultaneously	at	the	same	time	and	accessing	data	
from	the	same	database,	it	is	called	concurrent execution	of	a	transaction.	For	example,	there	
are	three	transactions	which	are	started	at	the	same	time	and	accessing	Tables	from	employee’s	
payroll	database	is	shown	in	Table	8.3.

During	execution	of	a	transaction,	the	following	sequence	of	steps	are	done:

	 1.	 Reading	data
	 2.	 Changing	data
	 3.	Writing	data
	 4.	 Changes	stored	permanently	(COMMIT),	or	changes	are	undone	(ROLLBACK).

Each	 transaction	 follows	 the	above-mentioned	 four	 steps.	There	are	 three	problems	which	
may	occur	during	concurrent	execution	of	transactions.	

table 8.3 |	 Example	of	Concurrent	Transactions.

time transaction 1 transaction 2 transaction 3

T1 Insert into salary
values (1002,’2-
May-2013’,
49000.00);

Insert into employee
(empno, empname, join-
ing_date, basic_sal-
ary) values (1345,
’P M Rana’, sysdate,
23000.00);

Insert into
loan_payment
values(1022,’2-
May-2013’,10000.00);

– Update comp_acct
set amt = amt-
49000 where sal_
month = to_char(
to_date (‘2-May-
2013), ’month’);

Select count(empno)
from employee;

Update loan_due set
remaining_amt = re-
maining_amt-10000
where empno = 1022;

– Commit; Commit; Commit;

CH_8_Transaction Management in Database_Final.indd 155 2/26/2014 5:31:54 PM

156 | Chapter 8

	 1.	Lost update: Consider	 there	 are	 two	 transactions,	 T1	 and	 T2,	 which	 are	 executed	
simultaneously.	During	execution,	transaction	T2	has	updated	some	data	which	is	read	
by	transaction	T1.	Now,	T1	has	made	changes	in	that	data	and	committed	(changes	saved	
permanently).	Later	on,	transaction	T2	made	changes	in	the	same	data	and	committed	
it.	Therefore,	the	changes	made	by	transaction	T1	in	the	same	data	are	overwritten	by	
transaction	T2.	Thus,	updation	made	by	transaction	T1	has	been	lost.	This	problem	is	
called	lost	update	problem.	In	short,	when	one	transaction	overwrites	the	data	which	is	
saved	by	another	transaction,	the	problem	of	lost update	occurs.

	 2.	Uncommitted data (dirty read): Consider	there	are	two	transactions,	T1	and	T2,	which	
are	executed	simultaneously.	Transaction	T2	is	updating	the	data	which	is	required	by	
transaction	T1.	After	transaction,	T2	writes	the	data;	transaction	T1	reads	that	data	and	
proceed.	Then,	transaction	T2	is	rolled	back.	So,	the	changes	which	are	made	are	not	
committed.	But	transaction	T1	has	already	read	the	uncommitted	data	and	it	is	continu-
ing	with	that	data	only.	This	problem	is	called	uncommitted data	which	occurs	due	to	
dirty	read.

	 3.	 Inconsistent retrieval (unrepeatable read): When	one	transaction	is	performing	some	
summary	on	data	and	other	transaction	is	adding	or	updating	records	which	are	being	
used	 in	 summary,	 the	 problem	of	 inconsistent	 retrieval	 occurs,	 i.e.,	when	 transaction	
reads	inconsistent	data,	the	problem	of	inconsistent retrieval	occurs.

Due	 to	 above	 problems,	 it	 is	 very	 essential	 to	 control	 concurrent	 execution	 of	 transactions,	
otherwise	the	database	will	contain	inconsistent	data.	To	control	concurrency,	isolation	(serial	
execution	of	transactions)	is	required.	To	avoid	the	above	problems,	locks	are	required.

Different	isolation	levels	are	already	discussed	in	Section	8.3	.	Oracle	supports	‘serializable’	and	
‘read	committed’	isolation levels.	Oracle	implicitly	provides	appropriate	locks	on	data	depending	
on	the	isolation	level.	If	isolation	level	is	not	defined	by	users,	Oracle	defines	its	default	isolation	
level	which	is	‘read	committed’.	Additionally,	 in	Oracle,	we	can	set	 transaction	as	read	only	to	
maintain	read consistency.	An	example	of	read-only	transaction	can	be	reflected	as	follows:

 declare
 sno int;
 begin
 set transaction read only;
 select count (stdno) into sno from student;
 dbms_output.put_line(‘Total students:’||sno);
 commit;
 end

‘Set	transaction	read	only’	allows	executing	only	select	queries,	commit,	rollback	or	DDL	state-
ments.	The	 read	 only	 transaction	 is	 terminated	when	DDL	 statement,	COMMIT	or	ROLL-
BACK	is	completed.

Locks:	Lock	 is	 required	when	 two	 transactions	 are	 executed	 simultaneously	 and	 using	 the	
same	data	and	one	of	the	transactions	is	updating	the	data.	Conflict	between	transactions	can	
occur	if	any	one	of	the	transaction	is	writing	(changing)	data.	To	solve	this	conflict,	data	should	
be	locked	for	the	transaction	which	is	updating	it	and	lock	can	be	released	after	transaction	is	
completed.

CH_8_Transaction Management in Database_Final.indd 156 2/26/2014 5:31:54 PM

Transaction Management in Database | 157

Locks	can	be	acquired	on	different	levels	of	database	such	as	database	level,	Table	level,	row	
level	and	field	level.	When	lock	is	acquired	on	a	particular	level	for	a	transaction,	changes	in	that	
portion	of	database	cannot	be	allowed	by	other	transaction.	If	other	transaction	wants	to	read	
that	data,	then	it	may	be	allowed.	It	can	be	applied	by	shared/exclusive lock.

Shared/exclusive	lock	has	two	states—shared	and	exclusive.	Shared	lock	is	provided	on	the	
data	when	more	than	one	transaction	wants	to	read	the	same	data.	Exclusive	lock	is	provided	
when	more	than	one	transaction	are	accessing	the	data	and	any	one	transaction	wants	to	update	
the	data.	The	example	of	shared/exclusive	lock	is	given	in	Table	8.4.

Shared lock	 is	provided	to	read	data	and	exclusive lock	 is	provided	to	write	data.	Oracle	
provides	implicit	shared/exclusive	lock	on	data	automatically	when	it	is	required	for	multi-user	
database.

Lock conversion: In	shared/exclusive	lock,	lock conversion	is	also	possible.	When	shared	lock	
(read)	is	converted	into	exclusive	(write)	lock,	it	is	called	lock upgrade.	When	exclusive	lock	
is	converted	into	shared	lock,	it	is	called	lock downgrade.	Oracle	supports	lock	conversion	and	
does	it	automatically	whenever	required.

Lock escalation:	When	 lock	 is	 upgraded	 from	 lower	 level	 to	 higher	 level,	 it	 is	 called	 lock
escalation.	 For	 example,	 consider	 a	 Table	 EMPLOYEE.	 Suppose,	 transaction	 T1	 wants	 to	
update	the	row	of	emp_no	203.	Therefore,	row-level	lock	will	be	provided	to	T1.	Thereafter,	T1	
wants	to	update	records	of	emp_no	345,	231	and	211.	Again,	row-level	lock	is	provided	for	these	
three	records	to	transaction	T1.	Later	on,	T1	request	to	update	records	of	emp_no	>	200.	Now,	as	
number	of	rows	which	should	be	updated	is	more,	DBMS	automatically	decides	to	escalate	lock	
from	row-level	to	Table-level.	Therefore,	the	lock	will	be	provided	on	entire	EMPLOYEE	Table	
by	releasing	all	the	previous	row-level	locks	which	were	acquired	on	EMPLOYEE	Table.	This	is	
called	lock	escalation.	Lock	escalation	decreases	the	number	of	locks,	but	increases	restrictions	
on	data.	Oracle	does	not	support	lock	escalation	because	it	increases	chances	of	deadlocks.

User	can	also	define	lock	at	transaction	level	in	Oracle	by	using	the	following	statements.	
Locks	will	be	released	once	the	transaction	is	completed.

	 1.	 Set	transaction	isolation	level:	Refer	Section	8.3	for	the	detail	of	this	statement.
	 2.	 Lock	Table:	It	will	lock	the	entire	Table.	For	example,	the	following	PL/SQL	block	will	

lock	the	Table	student	exclusively	and	will	release	the	lock	after	execution	of	rollback	
statement.

table 8.4 |	 Example	of	Shared/Exclusive	Lock

data lock type transaction t1 transaction t2

Emp_salary Shared lock is granted to both T1
and T2

Read Read

Emp_salary Exclusive lock for T2 Read Write

Emp_salary Exclusive lock for T1 Write Read

Emp_salary Exclusive lock will be granted to
transaction which will request first
to update emp_salary

Write Write

CH_8_Transaction Management in Database_Final.indd 157 2/26/2014 5:31:54 PM

158 | Chapter 8

 declare
 begin
 lock table student in exclusive mode;
 delete from student;
 rollback;
 end;

Similarly,	the	following	block	will	lock	the	Table	in	shared	mode	and	will	allow	read	records	
from	student	Table.	The	lock	will	be	released	after	execution	of	commit	statement.

 declare
 c int;
 begin
 lock table student in share mode;
 select count (*) into c from student;
 commit;
 end;

	 3.	 Select….for	update	of	it	locks	the	field(s)	exclusively	which	is	to	be	updated.	For	exam-
ple,	the	following	statement	will	lock	two	fields,	stdname	and	remaining_amt,	of	student	
Table	for	updation.

select * from student for update of stdname, remaining_amt;

In	distributed	database	system,	there	are	multiple	fragments	of	database	stored	on	different	nodes.	
In	this	case,	transaction	updates	multiple	portions	of	database.	The	correctness	of	data	is	ensured	
using	two-phase commit	during	transaction	execution	in	distributed	database.	The	two	phases	
are	‘prepare’	and	‘commit’.	In	prepare	phase,	the	node	which	has	started	the	transactions	asks	all	
the	nodes	other	than	the	node	who	is	responsible	to	execute	commit,	to	get	prepared	for	commit.	
If	any	of	the	node	is	not	prepared,	the	transaction	is	rolled	back.	After	all,	the	nodes	agree	to	do	
commit,	then	in	commit	phase,	the	node	responsible	to	execute	commit	will	execute	commit	and	
after	that	the	node	which	has	started	transaction	tells	other	nodes	to	commit.

8.6 | deadlOCks
The	 lock	which	 is	 forever	 permanent	 or	which	 can	 never	 be	 released	 is	 called	deadlock.	
Assume	that	there	are	two	transactions	which	are	running	concurrently.	During	the	execution,	
T1	is	waiting	for	the	data	which	is	locked	by	T2	and	T2	is	waiting	for	the	data	which	is	locked	
by	T1.	In	this	case,	none	of	the	transaction	will	release	the	lock	because	none	of	the	transaction	
is	completed.	Both	will	wait	infinitely	for	data	to	be	released	by	other	transaction	which	will	
never	happen.	This	situation	is	called	deadlock.	[A	simple	real	time	example	of	deadlock:	Sup-
pose,	two	friends	are	sharing	ruler	and	eraser	to	draw	a	diagram.	Currently,	ruler	and	eraser	are	
not	occupied	by	any	of	the	friend.	During	drawing,	first	friend	needs	an	eraser,	so	he	will	use	
(lock)	the	eraser.	Meanwhile,	second	friend	needs	ruler,	so	he	will	use	(lock)	ruler.	Now,	first	
friend	needs	ruler	to	continue	drawing.	But	second	friend	will	not	give	it,	because	he	is	using	it	
currently.	Later	on,	second	friend	needs	eraser,	but	first	friend	will	not	give	it	as	his	drawing	is	

CH_8_Transaction Management in Database_Final.indd 158 2/26/2014 5:31:55 PM

Transaction Management in Database | 159

not	completed	and	he	is	waiting	for	ruler.	Thus,	none	of	the	friend	will	release	the	stationery	and	
both	will	wait	infinitely	for	other	one	to	release	the	stationery.	This	situation	is	called	deadlock.]

Table	8.5	shows	an	example	of	deadlock.	In	this	example,	both	the	transactions	T1	and	T2	
start	at	time	t1.	At	t3	time,	transaction	T1	requests	a	lock	on	Table	EMPLOYEE	and	acquires	
the	lock	because	EMPLOYEE	Table	is	not	locked	currently.	At	t4	time,	transaction	T2	requests	
a	lock	on	Table	SALARY	and	acquires	the	lock	because	SALARY	Table	is	not	locked	currently.	
At	t5	time,	transaction	T1	requests	a	lock	on	Table	SALARY,	but	does	not	acquire	the	lock	and	
will	be	in	wait	mode	because	SALARY	is	being	used	by	transaction	T2	currently.	At	t8	time,	
transaction	T2	requests	a	lock	on	Table	EMPLOYEE,	but	does	not	acquire	the	lock	and	will	be	
in	wait	mode	because	EMPLOYEE	is	being	used	by	transaction	T1	currently.	Both	the	transac-
tions	will	wait	infinitely	for	other	one	to	release	a	lock	and	will	be	in	deadlock.

To	end	deadlock,	one	of	the	transaction	should	be	aborted	and	restarted.	DBMSs	detect	dead-
locks	automatically	and	roll	back	the	transaction	which	causes	deadlock.	

To	avoid	deadlock,	all	 the	data	which	are	required	by	 the	 transaction	should	be	 locked	in	
advance.

8.7 | database baCkup and reCOverY
When	some	transactions	fail	before	data	are	saved	permanently,	it	causes	loss	of	data.	The	data	
should	 be	 regenerated	 using	 some	process	 or	 using	previous	 data	 or	 related	 data	which	 are	
stored	into	database.	This	process	of	regenerating	data	is	called	recovery.

By	keeping	in	mind	the	failure	of	transaction	and	data	loss,	some	precautionary	steps	can	be	
taken	by	copying	last	updated	data	somewhere	in	memory	or	by	keeping	log	of	transaction	

table 8.5 |	 Example	of	Deadlock

time transaction t1 transaction t2

t1 Running Running

t2 Running Running

t3 Lock EMPLOYEE Table Running

t4 Running Lock SALARY Table

t5 Running Running

t6 Request to Lock SALARY Table Running

t7 Waiting Running

t8 Waiting Running

– Waiting Running

– Waiting Running

– Waiting Request to Lock EMPLOYEE Table Waiting

– Waiting Waiting

– Waiting

– Waiting Waiting

– Waiting Waiting

CH_8_Transaction Management in Database_Final.indd 159 2/26/2014 5:31:55 PM

160 | Chapter 8

for	the	reference	is	called	keeping	backup	of	data.	The	backup	of	data	taken	could	be	used	in	
future	to	recover	the	lost	data	by	executing	some	commands	or	procedures	or	simply	by	copy-
ing	all	the	data	again	into	database.	Thus,	backup	means	maintaining	copy	of	data.	Recovery	
means,	 restoring	or	 regenerating	 the	 lost	 data	 from	 the	backup	 taken	or	by	 applying	 some	
methods.	

Failure	can	be	due	to	system crash,	or	any	media crash,	or	application failure.	Failures	
may	affect	one	transaction	or	all	the	transactions	which	are	running.	When	failure	occurs,	trans-
actions	are	partially	completed	and,	therefore,	when	system	restarts	or	application	restarts	the	
incomplete	 transactions	should	be	 rolled	back	and	should	be	 restarted.	When	system	failure	
occurs,	it	destroys	the	data	stored	into	main memory	(buffer	cache/buffer)	which	is	volatile.	
Hence,	the	data	stored	in	memory	buffer	which	are	updated	by	execution	of	a	transaction	are	
also	getting	destroyed.	

At	the	time	of	system	failure,	 the	state	of	transaction	during	that	period	is	not	possible	to	
know.	May	be	updates	of	some	transactions		are	already	completed	in	buffer,	but	not	written	
into	database	(data	files)	permanently.	These	transactions	need	not	be	undone	when	the	system	
restarts;	they	need	to	be	redone	only.	

As	a	solution	to	know	the	transaction	state	at	the	time	of	failure,	checkpoints	can	be	issued	
at	some	fixed	interval	of	time,	so	that	the	transactions	for	which	changes	are	stored	in	buffer	
can	be	redone;	the	transactions	for	which	changes	are	not	stored	even	in	buffer	can	be	undone	
and	the	transactions	for	which	changes	are	stored	in	the	database	permanently	need	not	be	un-
done/redone	as	they	are	already	completed.	Thus,	to	recover	the	data,	checkpoints	can	be	used.	
Checkpoints	could	be	kept	at	fixed	time	interval	and	in	case	of	failure	the	last	checkpoint	could	
be	used	to	decide	which	transaction	should	be	redone/undone	or	should	not	be	redone/undone.	

Figure	8.7	shows	that	transaction	T3	was	completed	successfully	before	failure	and	its	up-
dations	are	already	reflected	in	the	database;	therefore,	it	should	not	be	undone/redone	when	
system	restarts.	Transaction	T1	should	be	redone	because	it	is	completed	and	updations	made	
by	this	transactions	are	stored	in	buffer,	but	still	not	reflected	in	database	(i.e.,	COMMIT	is	not	

figure 8.7 |	 Example	of	checkpoint.

Completed and data
stored in buffer, so
redone

Completed and data
stored in database.

Partially completed, so
undone and restarted
again

T1

T2

T3

Checkpoint Time of failure

CH_8_Transaction Management in Database_Final.indd 160 2/26/2014 5:31:55 PM

Transaction Management in Database | 161

executed).	Transaction	T2	should	be	undone	and	should	be	restarted	because	it	was	partially	
completed	when	failure	occurs.

Oracle	implicitly	issues	checkpoints	depending	on	the	internal	settings.	Checkpoints	can	also	
be	defined	explicitly	in	Oracle	using	the	statement	ALTER	SYSTEM	CHECKPOINT.

Also,	to	recover	the	lost	data,	backup	should	be	taken	on	some	separate	devices	in	fixed	time	
duration	such	as	daily,	monthly,	yearly,	etc.	Backup	can	be	taken	online	or	offline.	In	Oracle,	the	
online	backup	can	be	taken	using	the	following	statements.

 ALTER TABLESPACE <tablespace_name> BEGIN BACKUP;
 ALTER TABLESPACE <tablespace_name> END BACKUP;

In	Oracle,	flashback	queries	are	also	used	to	recover	the	data.

8.8 | seCuritY, integritY and authOrizatiOn
Security	means,	data	protection.	Integrity	means,	correct	updations	of	data.	Authorization	
means,	preventing	unauthorized	users	from	accessing	data.	Security	can	be	enforced	at	different	
levels	such	as	user	level,	application	level,	object	level,	etc.

User	 can	be	allowed	 to	 access	data	by	providing	 them	username	and	password,	which	 is	
called	authentication.	When	user	logs	into	the	database	using	username	and	password,	 it	 is	
checked	by	the	DBMS	whether	he/she	is	an	authorized	user	to	access	the	database	or	not.	

After	logging	into	the	database,	user	cannot	access	all	the	data.	To	access	the	selected	data	
or	 all	 the	data,	 users	 are	given	privileges.	The	privileges	 can	be	given	 for	 creating	objects,	
manipulating	objects,	deleting	objects,	execution	and	manipulating	data,	etc.	Also,	roles	can	
be	 defined	 to	 assign	 common	 rights	 to	 a	 group	 of	 users.	The	 types	 of	 data	 access	 are	 read	
only	and	read/write.	Users	can	be	provided	access	of	limited	fields	of	Table	by	creating	views.	
Views	can	be	defined	to	assign	read	only	access	as	well	as	read/write	access	for	some	fields.	
We	 can	 also	 hide	 some	fields	 from	user	 by	 defining	 views.	Database triggers	 can	 also	 be	
used	to	keep	track	of	who	is	updating	what.	To	see	how	privileges	and	roles	are	assigned	to	
users	in	Oracle,	refer	Chapter	12.	For	more	security	of	data,	data	can	be	encrypted	which	can	be	
accessed	only	by	authorized	users.

Database	 integrity	ensures	 the	consistency	of	data	by	correct	updation.	 Integrity	can	be	
enforced	with	the	help	of	constraints	and	validation	rules	put	up	on	the	data.

SuMMARY
	● Transaction	is	a	group	of	statements	which	should	be	executed	in	sequence	and	should	
be	committed	together.

	● Transaction	must	 have	 four	 properties:	ACIDS	 (Atomicity,	Consistency,	 Isolation	 and	
Durability).
	● Execution	of	a	transaction	should	be	atomic,	i.e.,	there	should	be	only	two	possibilities—
either	 successfully	 completed	 (COMMITTED)	 or	 completely	 unsuccessful	 (Rolled	
back),	otherwise	it	can	put	database	in	an	inconsistent	state.

	● Transaction	should	be	isolated,	i.e.,	changes	made	by	one	transaction	should	be	available	
to	 other	 transactions	 after	 it	 is	 fully	 completed	 (COMMITTED	or	ROLLED	BACK).	

CH_8_Transaction Management in Database_Final.indd 161 2/26/2014 5:31:55 PM

162 | Chapter 8

Different	DBMSs	provide	the	facility	to	set	isolation	levels	to	ensure	serial	execution	of	
transactions.
	● Transaction	should	ensure	consistency,	i.e.,	it	should	bring	database	from	previous	(last)	
consistent	state	to	next	consistent	state	or	keep	it	in	the	previous	consistent	state	only.
	● Transaction	 should	 ensure	 durability,	 i.e.,	 once	 the	 changes	 are	 committed,	 system	or	
device	or	any	other	failure	should	not	affect	the	data.

	● Database	systems	take	care	of	starting	and	ending	of	a	transaction,	but	user	can	also	mark	
starting	and	ending	of	a	transaction.	Generally,	transaction	starts	with	execution	of	any	
SQL	statement	and	ends	with	successful	completion	of	that	SQL	statement	or	COMMIT	
statement	or	ROLLBACK	statement.

	● The	transaction	can	be	different	states	such	as	running	(active),	completed	successfully	
(COMMITTED),	completed	unsuccessfully	 (ROLLED	BACK)	or	completed	partially.	
The	transaction	which	is	partially	completed	should	be	rolled	back	and	should	start	again.	
	● In	DBMSs,	many	transactions	can	access	the	data	from	same	database	simultaneously,	
which	is	known	as	concurrent	transactions.	The	concurrent	transactions	should	be	con-
trolled	otherwise	they	will	create	problems	such	as	lost	update,	uncommitted	data	and	in-
consistent	retrieval.	The	concurrent	execution	of	transactions	can	be	controlled	by	setting	
isolation	levels	and	by	locking	data	which	are	being	used	by	the	transactions.

	● There	will	be	no	problem	if	all	the	active	transactions	are	reading	the	same	data,	but	prob-
lem	occurs	when	transaction	is	updating	the	data.	During	data	updation,	the	data	should	
be	locked	and	should	be	released	after	transaction	is	completed.

	● Data	can	be	locked	into	two	modes—shared	and	exclusive.	Shared	lock	can	be	acquired	
to	read	data	and	exclusive	lock	can	be	acquired	to	update	(write)	data.	Locking	is	implic-
itly	done	by	DBMSs,	but	user	can	also	lock	data	explicitly	by	issuing	some	commands.
	● Shared	lock	can	be	converted	into	exclusive	lock	and	exclusive	lock	can	be	converted	into	
shared	lock	during	execution	of	transactions.	This	is	called	lock	conversion.	Conversion	
from	shared	to	exclusive	lock	is	called	lock	upgrade	and	conversion	from	exclusive	to	
shared	lock	is	called	lock	downgrade.
	● Locks	can	be	escalated	from	lower	level	to	higher	level	(e.g.,	from	field	level	to	row	level)	
which	is	known	as	lock	escalation.	Lock	escalation	increases	restriction	on	data,	but	de-
creases	number	of	locks.

	● There	are	different	levels	of	locking	such	as	database	level,	Table	level,	record	level,	field	
level,	etc.	Assume	that	 lock	 is	provided	to	a	 transaction	T4	on	database	 level;	 then	no	
other	transaction	can	access	the	database	until	the	transaction	T4	gets	completed.	Simi-
larly,	if	Table	is	locked	by	one	transaction,	other	transactions	can’t	access	it	until	the	first	
transaction	gets	completed.
	● During	concurrent	execution,	locking	may	generate	deadlocks	also.	When	two	transac-
tions	are	executed	simultaneously	and	both	are	waiting	for	one	another	to	release	data	
so	that	they	could	complete	the	transaction,	both	will	be	in	infinite	waiting	state	which	
is	called	deadlock.
	● To	avoid	deadlocks,	the	data	required	by	the	transaction	should	be	locked	in	advance.
	● To	recover	the	lost	data	due	to	any	failure,	copy	of	the	data	is	being	kept	timely	which	
is	known	as	backup.	

CH_8_Transaction Management in Database_Final.indd 162 2/26/2014 5:31:55 PM

Transaction Management in Database | 163

	● Restoring	the	lost	data	using	backup	or	any	other	method	is	known	as	data	recovery.	Check-
points	are	used	to	recover	the	data	in	database.	Checkpoint	keeps	track	of	transaction	which	
can	be	used	to	know	which	transactions	should	be	undone	or	redone	in	case	of	failure.

	● Security	means	data	protection.	Integrity	means	correct	updation	of	data.	Authorization	
means	preventing	unauthorized	users	from	accessing	data.

ExErcisEs

	 1.	What	is	a	transaction?	Explain	it	by	giving	an	example.
	 2.	 Discuss	ACIDS	properties	of	a	transaction.
	 3.	 Discuss	different	states	of	a	transaction.
	 4.	Which	of	the	two	isolation	levels	does	Oracle	support?	Explain	them.	Which	isolation	

level	is	default	in	Oracle?
	 5.	 Define	the	following:
	 a.	 Dirty	read
	 b.	 Phantom	read
	 c.	 Non-repeatable	read
	 6.	What	does	it	mean	by	concurrent	execution	of	a	transaction?	Which	three	problems	can	

occur	during	concurrent	execution?	
	 7.	 Explain	shared/exclusive	lock.
	 8.	What	is	the	difference	between	lock	conversion	and	lock	escalation?	
	 9.	What	is	deadlock?	Explain	it.
	 10.	 Discuss	backup	and	recovery,	in	your	own	words.
	 11.	 Explain	importance	of	database	security,	integrity	and	authorization.
	 12.	 Select	the	correct	answer	from	the	multiple	choices:
	 a.	 From	the	following	which	one	is	not	a	property	of	transaction?
	 	 		i.	 Inconsistency	 	 	 	ii.	 Durability
	 	 iii.	 Atomicity	 	 	 	 iv.	 Consistency
	 b.	 In	ACIDS,	A	stands	for	______________
	 	 		i.	 Authorization	 	 	 	ii.	 Atomicity
	 	 iii.	 Augmentation	 	 	 iv.	 Accessibility
	 c.	 What	is	the	significance	of	COMMIT	statement?
	 	 		i.	 Undo	changes	 	 	 	ii.	 Save	changes	permanently
	 	 iii.	 Restart	the	transaction	 	 iv.	 None
	 d.	 When	conflict	for	data	occurs	between	two	transactions?
	 	 		i.	 When	both	are	reading	the	same	data.
	 	 	ii.	 When	both	the	transactions	want	to	update	same	data.
	 	 iii.	 When	both	the	transactions	want	to	update	different	data.
	 	 	iv.	 When	both	are	reading	different	data.
	 e.	 Shared	 lock	 is	 provided	 to	 ___________	 data	 and	 exclusive	 lock	 is	 provided	 to	

_____________	data.
	 	 		i.	 Write,	read		 	 	 	ii.	 Read,	write
	 	 iii.	 Read,	read/write	 	 	 iv.	 Write,	read/write

CH_8_Transaction Management in Database_Final.indd 163 2/26/2014 5:31:55 PM

164 | Chapter 8

	 f.	 What	is	lock	escalation?
	 	 		i.	 Changing	lower	level	lock	to	upper	level.
	 	 	ii.	 Changing	upper	level	lock	to	lower	level.
	 	 iii.	 Converting	shared	lock	to	exclusive	lock.
	 	 	iv.	 Converting	exclusive	lock	to	shared	lock.
	 13.	 Fill	up	‘yes’	or	‘no’	values	in	the	Table	for	the	transactions	given	in	the	following	figure.	

Sample	values	are	given	for	transaction	T1.

T1

T2

T3

T4

T5

T6

T7

Checkpoint
Time of
failure

transactions → t1 t2 t3 t4 t5 t6 t7

undone No

Redone No

Do not need to be redone or undone Yes

Changes made in database (COMMITTED or
ROLLEDBACK)

Yes

Changes made in buffer, but not in database
(completed, but not committed)

No

Changes not made in buffer or database
(transaction is incomplete)

No

CH_8_Transaction Management in Database_Final.indd 164 2/26/2014 5:31:55 PM

CHAPTER
9

Centralized and Distributed
Database Management System

•	 Knowing	different	types	of	databases.
•	 Defining	centralized	and	distributed	databases.
•	 Understanding	difference	between	centralized	and	distributed	databases.
•	 Learning	components	of	distributed	database	management	system.
•	 Understanding	distributed	processing.
•	 Describing	advantages	and	disadvantages	of	distributed	data.

Chapter ObjeCtives

9.1 | intrOduCtiOn
In	present	days,	users	are	using	the	applications	on	the	Internet	and	mobile	phones,	for	which	
satellite	networks	and	wireless	networks	are	required.	The	amount	of	data,	which	is	stored	and	
used,	is	huge.	It	is	impossible	to	keep	these	data	on	a	single	site.	The	data	need	to	be	stored	at	
different	sites,	but	the	user	should	be	allowed	to	access	the	data	stored	at	any	site.	To	implement	
this	functionality,	the	distribution	of	data	is	required.	Using	the	networking	technologies,	it	is	
possible	to	access	data	stored	at	different	sites	geographically.

On	the	other	hand,	if	data	are	stored	at	a	single	site	and	users	can	access	the	data	from	that	
single	site,	the	concept	is	known	as	centralization	of	data.

9.2 | types Of databases
The	databases	can	be	broadly	classified	as	Centralized	and	Distributed.

In	centralized database management system,	the	database	is	located	at	a	single	(central)	
site	whereas	in	distributed database management system	(DDBMS),	the	database	is	distrib-
uted	on	different	sites.

Database	can	also	be	referred	as	single-user	and	multi-user	database.	The	database	which	
allows	only	one	user	 to	access	 the	database	at	a	 time,	 is	called	single-user database.	The	
database,	which	allows	many	users	to	access	the	database	at	the	same	time,	is	called	multi-user
database.

CH_9_Centralized and Distributed Database Management System_Final.indd 165 2/26/2014 3:46:54 PM

166 | Chapter 9

9.3 | Centralized database ManageMent systeM vs.
distributed database ManageMent systeM

Centralized Database:	In	a	centralized	database	management	system,	the	entire	database	is	
located	at	a	single	(central)	site,	which	is	called	server.	

The	server	computer	is	connected	with	other	computers	through	communication	networks.	
Other	computers	can	access	the	database,	which	resides	on	the	server	machine,	by	sending	the	
request	to	the	server.

The	processing	of	the	data	may	be	executed	at	the	server	computer	or	at	the	local	computer.	
If	the	local	computer	has	the	ability	to	process	the	data,	which	is	retrieved	from	the	server,	the	
processing	is	called	distributed processing.	If	the	local	machine	cannot	process	the	data,	then	
data	is	processed	on	server	itself,	which	is	known	as	centralized processing.	For	distributed	
processing,	the	database	need	not	be	distributed.

Figure	 9.1	 shows	 the	 diagram	 of	 a	 centralized	 database	with	 three	 computers	 connected	
through	communication	networks.	The	database	named	‘stu’	is	located	at	the	site	‘computer	1’.	
Users	of	‘computer	2’	and	‘computer	3’	can	access	the	‘stu’	database	from	the	machine	‘com-
puter	1’.	After	processing	has	been	done	on	the	data,	the	new	data	is	stored	again	at	the	site	
‘computer	1’.	The	‘stu’	database	contains	the	tables,	class,	exam,	student,	faculty,	attendance	
and	result.	All	the	tables	are	located	at	the	site	of	‘computer	1’.

The	advantages	of	centralized	database	are—it	is	easy	to	manage	and	maintain.	It	is	cost	
effective.	The	disadvantages	are—when	server	fails	at	central	site,	the	computers	at	different	
locations	cannot	access	the	database.	To	overcome	this	problem,	the	mirror	copy	of	the	centra-	
lized	database	should	be	maintained	at	some	other	site	which	increases	the	overhead.

Distributed Database:	In	distributed	database	management	system,	the	entire	database	is	di-
vided	into	fragments	(parts).	These	parts	are	kept	on	computers	at	different	sites.	Sometimes,	
the	copies	of	same	database	are	also	maintained	on	different	sites	and	this	process	is	known	as	
replication.

Class
Exam
Student
Faculty
Attendance
Result

Computer 1

Computer 2

Computer 3Network

Stu

figure 9.1 |	 Centralized	database.

CH_9_Centralized and Distributed Database Management System_Final.indd 166 2/26/2014 3:46:54 PM

Centralized and Distributed Database Management System | 167

Attendance
Result

Student
Faculty

Class
Exam

Computer 1

Computer 2

Computer 3

Stu2

Stu1

Stu3

Network

figure 9.2 |	 Distributed	database.

All	the	computers	are	connected	with	each	other	through	a	communication network.	Each	
user	 from	different	computers	can	access	 the	data	stored	at	 their	own	computer	as	well	as	
computers	located	at	remote	sites.	The	processing	can	be	done	at	any	site.

Figure	9.2	shows	the	diagram	of	a	distributed	database	with	three	computers	which	are	connect-
ed	through	a	communication	network.	The	database	named	‘stu’	is	divided	into	three	fragments	
named	‘stu1’,	‘stu2’	and	‘stu3’.	The	fragment	‘stu1’	is	located	at	the	site	‘computer	1’	which	con-
tains	the	tables	of	student	and	faculty;	‘stu2’	is	located	at	the	site	‘computer	2’	which	contains	the	
tables	of	class	and	exam;	and	‘stu3’	is	located	at	the	site	‘computer	3’	which	contains	the	tables	
of	attendance	and	result.	User	at	site	Computer1	can	access	all	the	three	database	fragments	stu1,	
stu2	and	stu3	through	communication	networks.	Same	is	applicable	for	user	2	and	user	3.

If	failure	occurs	at	any	computer	in	distributed	database,	then	it	will	affect	working	of	other	
computers	in	the	network.	The	computer	which	has	failed	can	be	replaced	with	other	computer.

Distributed	database	uses	client-server architecture	to	process	the	data.	It	is	possible	that	
computers	which	are	parts	of	distributed	database	may	be	of	different	configuration.	They	may	
use	different	hardware	and	software.	It	is	possible	that	the	database	fragments	stu1,	stu2	and	
stu3	shown	in	Figure	9.2	may	be	implemented	in	different	databases,	operating	systems,	com-
puters,	etc.	For	example,	assume	that	stu1	fragment	is	stored	in	DB2,	stu2	fragment	is	stored	in	
Oracle	and	stu3	fragment	is	stored	in	Ingres.

If	failure	occurs	at	any	computer	in	distributed	database,	then	it	will	affect	working	of	other	
computers	in	the	network.	The	computer	which	has	failed	can	be	replaced	with	other	computer.

There	are	two	types	of	distributed	databases:

	● Homogeneous Distributed Database:	It	is	a	type	of	distributed	database	in	which	com-
puters	on	all	the	sites	use	the	same	database	management	software.	In	this	type	of	dis-
tributed	database,	there	will	not	be	any	problems	regarding	the	database	software	as	all	
the	computers	are	using	the	same	database	software	at	different	sites.	Figure	9.3	shows	
an	example	of	homogeneous	distributed	database	in	which	databases	at	all	the	sites	are	
stored	in	the	same	database	management	software,	Oracle.

CH_9_Centralized and Distributed Database Management System_Final.indd 167 2/26/2014 3:46:54 PM

168 | Chapter 9

Attendance
Result

Oracle
DBMS

Oracle
DBMS

Oracle
DBMS

Student
Faculty

Class
Exam

Computer 1

Computer 2

Computer 3

Stu2

Stu1

Stu3

Network

figure 9.3 |	 Homogeneous	distributed	database	which	uses	Oracle	DBMS	at	different	sites.

Attendance
Result

DB2
DBMS

Ingress
DBMS

Oracle
DBMS

Student
Faculty

Class
Exam

Computer 1

Computer 2

Computer 3

Stu2

Stu1

Stu3

Network

figure 9.4 |	 Heterogeneous	 distributed	 database	which	 uses	Oracle,	 DB	 2	 and	 Ingress	
DDBMSs	at	different	sites.

	● Heterogeneous Distributed Database:	It	is	a	type	of	distributed	database	in	which	com-
puters	 on	 all	 the	 sites	 use	 different	 database	management	 software.	 Figure	 9.4	 shows	
an	example	of	heterogeneous	distributed	database	in	which	databases	at	all	the	sites	are	
stored	in	the	different	database	management	software.	The	database	at	site	Computer1	is	
stored	in	Oracle	DBMS,	database	at	site	Computer	2	is	stored	in	DB2	DBMS	and	data-
base	at	site	Computer	3	is	stored	in	Ingress	DBMS.

CH_9_Centralized and Distributed Database Management System_Final.indd 168 2/26/2014 3:46:54 PM

Centralized and Distributed Database Management System | 169

In	DDBMS,	data	are	replicated	or	fragmented	as	per	 the	need.	Data	fragmentation	means	
database	is	divided	into	parts	(fragments)	and	these	fragments	are	stored	at	different	sites.	Data	
replication	means	copies	of	database	fragments	are	created	on	the	sites	where	it	is	required.

9.4 | ddbMs COMpOnents
Distributed	Database	needs	the	following	hardware	and	software	components:

Computer System:	Distributed	DBMS	needs	computers	at	different	sites	to	store	fragments	of	
database,	to	access	data	from	database	fragments	stored	at	other	sites	and	to	process	the	data.	
Distributed	DBMS	must	be	independent	of	hardware,	i.e.,	it	should	support	different	hardware	
(Computer	System)	at	different	sites.

Communication Network:	 It	 is	 required	to	 transfer	data	from	one	site	 to	other.	Distributed	
database	should	provide	network	transparency,	i.e.,	 it	should	support	different	types	of	com-
munication	networks.

Data Processor:	Data	Processor	is	a	software	component	which	is	required	to	access	from	and	
store	data	at	different	sites.	Data	Processor	is	also	known	as	Data Manager.
Transaction Processor:	Transaction	Processor	is	also	a	software	component	which	processes	
the	transaction,	i.e.,	it	processes	the	retrieved	data	at	local	site.	Transaction	Processor	is	also	
known	as	Transaction Manager	or	Application Processor.

Figure	9.5	shows	the	components	of	DDBMS.

9.5 | distributed prOCessing
When	the	database	is	distributed,	it	requires	distributed	processing.	It	means	that	computers	at	
each	site	must	be	able	to	process	the	data,	i.e.,	processors	are	required	at	each	site.	If	there	is	no	
support	for	distributed	processing,	the	database	cannot	be	distributed.	However,	it	is	possible	
that	if	the	database	is	not	distributed,	the	processing	can	be	distributed.

TP
DP

TP
DP

TP
DP

Computer System Computer System

Computer System

Communication Network

figure 9.5 |	 Components	of	distributed	database	management	system.

CH_9_Centralized and Distributed Database Management System_Final.indd 169 2/26/2014 3:46:54 PM

170 | Chapter 9

For	both	distributed	database	and	distributed	processing,	the	communication	network	is	re-
quired.

9.6 | ddbMs advantages and disadvantages
Advantages of DDBMS: Following	are	the	advantages	of	DDBMS:

	● User	does	not	know	the	things,	such	as	at	which	site	which	data	is	stored,	whether	data-
base’s	fragments	are	created	or	database’s	copies	are	maintained,	which	network	technol-
ogy	is	used	to	share	data,	etc.

	● Data	can	be	shared	using	common	communication	network.
	● Failure	of	any	site	will	not	affect	other	sites.		So,	it	is	more	reliable	and	it	will	give	better	
performance	than	centralized	database.

	● Computers	can	be	added	and	removed	easily	from	the	network.
	● Easy	to	maintain	as	database	is	distributed	among	sites.	
	● It	provides	data	independence,	hardware	independence,	network	independence,	DBMS	
independence,	fragmentation	independence,	replication	independence,	location	indepen-
dence,	etc.

Disadvantages of DDBMS: Following	are	the	disadvantages	of	DDBMS:

	● It	is	more	complex	because	of	independence	provided	at	different	levels.
	● It	increases	cost	because	maintenance	and	security	of	each	individual	site	is	required.
	● As	data	is	replicated	and	shared,	the	data	integration	issues	occur.
	● Problems	may	occur	during	concurrent	transaction	processing.	
	● When	different	hardware	and	software	are	implemented	at	different	sites,	it	is	difficult	to	
handle	them	technically.

SuMMary
	● There	are	two	types	of	databases:	centralized	and	distributed.
	● In	 centralized	 database	management	 system,	 the	 database	 is	 located	 on	 a	 single	 site;	
whereas	in	distributed	database	management	system,	the	database	is	distributed	in	parts	
and	theses	parts	are	stored	on	different	sites.	All	 the	sites	are	connected	through	com-
munication	protocol.
	● There	 are	 two	 types	 of	 distributed	 databases—homogeneous	 and	 heterogeneous.	 In	
homogeneous	distributed	database,	computers	on	all	the	sites	use	the	same	database	man-
agement	software.	In	heterogeneous	distributed	database,	computers	on	all	the	sites	use	
different	database	computers.
	● Distributed	database	requires	distributed	processing.	Distributed	processing	means	that	
processing	is	done	on	different	sites.	

	● The	components	of	distributed	database	are	transaction	processor,	data	processor,	com-
puter	system	and	communication	network.	

	● Transaction	processor	is	a	software	which	processes	data	on	different	sites.	Data	proces-
sor	is	software	which	accesses	data	from	remote/local	site	and	stores	data	at	remote/local	
site.	Computer	system	is	a	hardware,	on	which	database	fragment,	transaction	processor	

CH_9_Centralized and Distributed Database Management System_Final.indd 170 2/26/2014 3:46:54 PM

Centralized and Distributed Database Management System | 171

and	data	processor	are	stored.	Through	communication	network,	the	computers	at	differ-
ent	sites	communicate	with	each	other.

	● The	advantages	of	distributed	database	are	data	sharing,	failure	of	one	site	does	not	affect	
other	sites,	computers	can	be	added	or	 removed	easily,	easy	 to	maintain	and	provides	
independence	at	different	levels.

	● The	disadvantages	of	distributed	database	are	complexity,	increased	cost,	data	integration	
issues,	problems	in	concurrent	transaction	processing,	difficult	to	handle	different	hard-
ware	and	software	at	different	sites.

ExErcisEs

	 1.	 Differentiate	between	centralized	and	distributed	databases.
	 2.	 Explain	homogeneous	and	heterogeneous	distributed	databases	with	diagrams.
	 3.	 Prepare	a	list	of	advantages	and	disadvantages	of	distributed	database.
	 4.	 Explain	components	of	a	distributed	database	system.
	 5.	What	is	distributed	processing?	
	 6.	 Name	some	database	management	systems	which	provide	distributed	database	function-

alities.

CH_9_Centralized and Distributed Database Management System_Final.indd 171 2/26/2014 3:46:54 PM

CHAPTER

10.1 | MultidiMensional database
Multidimensional database is a special type of relational database management system
(RDBMS) which supports data to be stored and retrieved as multiple dimensions. The simple
relational database model supports only two dimensions—rows and columns. The data within
multidimensional databases are stored as a cube.

Multidimensional database represents the aggregated data for each of its dimension. The
aggregate values are computed from the base values. Multidimensional databases are useful in
On-Line Analytical Processing (OLAP). Microsoft SQL Server Analysis, Oracle’s Hyperion
Essbase and Oracle 11g OLAP option are examples of multidimensional database. Figure 10.1
shows an overview of Multidimensional database.

10.2 | Mobile databases
The database which is connected with the mobile device is known as mobile database. Many
mobile applications are based on the following three architectures:

 1. Mobile Client-Fixed Host architecture:
 ● In this, Host (Data Service Provider) will provide data to the mobile client (device)
(e.g., users’ personal data such as bank account details). Another type of host is
servers which broadcast information (e.g., broadcast servers which provide weather
information).

10

Advancements in Databases

•	 Knowing multidimensional databases.
•	 Understanding mobile databases.
•	 Knowing multimedia databases.
•	 Learning concept of data mining and data warehousing.
•	 Defining open source databases.
•	 Understanding spatical databases.
•	 Knowing moving object databases.
•	 Understanding NoSQL databases.
•	 Summary

Chapter objeCtives

CH_10_Advancements in Databases_Final.indd 172 2/26/2014 3:47:54 PM

Advancements in Databases | 173

Dimension 2

Dimension 1

Dimension 3

Figure 10.1 | Multidimensional database.

 ● The main copy of the data is managed by the server, while the replica of data is man-
aged by user’s mobile device.

 2. Mobile Client-Mobile Host: In this case, the database is embedded in the user’s mobile
device. For example, phonebook, multimedia data (photos, videos, etc.) in the SIM card.

 3. Fixed Client-Fixed Host: In this case, the applications may use mobile database to keep
track of moving objects. For example, to keep track of fl eet during transportation, traffi c
database, etc.

The mobile database can be designed for light-weighted devices such as PDAs and mobile
phones. The database can also be designed for smart cards. To process the data stored on a smart
card, the smart card should be connected with the host computer. The host computer contains
the application through which user can interact with the card.

Some examples of mobile database are SQLite (developed by D. Richard Hipp), SQL Any-
where (provided by Sybase iAnywhere), IBM DB2 Everyplace, Oracle Lite, Microsoft SQL
server CE, etc.

Figure 10.2 shows an overview of how data is accessed through mobile application from
mobile database. The primary data resides on the main database which are accessed through
mobile application and copied on to mobile device.

Primary
DatabaseMobile

Application

Mobile database replicated
from the primary database

Mobile Device

Mobile Server

Figure 10.2 | Mobile database.

CH_10_Advancements in Databases_Final.indd 173 2/26/2014 3:47:54 PM

174 | Chapter 10

10.3 | MultiMedia databases
The database which can store data such as images, video, audio, graphics, animation, text,
etc., is known as multimedia database. The multimedia database should be able to store huge
amount of data and should provide multimedia data which are widely used in applications,
such as healthcare, distance learning, web applications, weather forecast, etc. Also, multimedia
database is capable of storing metadata related to multimedia data.

While designing multimedia database the volume, complexity and nature of data needs to
be considered. In a multimedia database, inputs come from different devices, such as CCTV
camera, digital camera, mobile phones, fingerprint readers, barcode readers, biometric scan-
ners, audio and video files, microphone, etc.

Similarly, the stored data are retrieved from the database and displayed on screen or any other
output device.

The multimedia data can be stored in a relational database or object-oriented database. It
depends on the nature of data, that is, the particular data model should be used to store multi-
media data.

Oracle provides the feature ‘Oracle Multimedia’ (formerly Oracle interMedia) that enable
user to store and retrieve multimedia data from heterogeneous environments. It also provides
integration of such data.

10.4 | data Warehousing and data Mining
Data Warehousing: The relational database can store limited data into related tables which are
normalized, while data warehouse is used to store large amount of data.

Data stored in data warehouse are accessed from multiple heterogeneous databases and
stored in the uniform format. Once data are stored into data warehouse, they are not updated or
changed (i.e., read only). Users can only retrieve the stored data from warehouse.

Data warehouse is used to store enterprise’s historical and summarized data which can be
used for future analysis and to take decisions. Before data is stored into warehouse, inconsistent
data are removed. Data warehouse contains Server, OLAP (On-Line Analytical Processing)
engine and Client. Data are accessed from various heterogeneous databases and stored into
data warehouse server after cleaning. Client contains various tools for data processing, such as
reporting tools, data mining tools, etc. Figure 10.3 represents data warehouse system in which
data are stored from various sources.

Some of the popular data warehousing tools are Oracle Data Integrator, MS-SQL Server’s
Integration Services, IBM Cognos Data Manager, etc.

Data Mining: The analysis which is done on static data stored in data warehouse, is known as
Data Mining. It is also known as Knowledge Discovery in Database (KDD). Data mining is
used to discover hidden patterns from large volume of data. For example, in real life, there are
many hidden patterns which are still not known to human, such as patterns found in stars in the
sky; patterns in the DNA of human, animals and birds; patterns lies in nature which cause natural
calamities, etc. If we store and analyze historical data about all these things, we would get some
amazing information. To analyze these data, we need powerful methods, tools and formats.

CH_10_Advancements in Databases_Final.indd 174 2/26/2014 3:47:54 PM

Advancements in Databases | 175

There are many data mining methods which can be used to discover patterns from stored
data, such as structured data analysis, classification, association rule learning, cluster analysis,
decision tree, neural networks, regression analysis, etc. Mining can be done on text data, mul-
timedia data, web data, etc.

There are many tools available for data mining which also includes open source tools. Some
of these tools are Microsoft SQL Server Analysis Services, Weka, RapidMiner, GeoDa, AR-
Miner, etc.

10.5 | open sourCe database
Open source database means, the database whose source code is open to all. Anyone can
download the source code and use it. There is no need to purchase license to use that database.
Moreover, users can modify its source code and can redistribute it after modification.

MySQL, PostgreSQL, etc., are some very good open source databases which provide fea-
tures of RDBMS.

In open source environment, the warranty of product and support is not provided.

10.6 | spatial databases
Spatial (pictorial/image) database is used to store geometrical or space related data, such as
line, region, different shapes, etc. It represents the object defined in a geometric space. Special
kind of spatial queries are used to store geometrical shapes.

Oracle DB 2 MySQL MS-Access PostgreSQL

Server

OLAP Engine

Client

Figure 10.3 | A data warehouse.

CH_10_Advancements in Databases_Final.indd 175 2/26/2014 3:47:54 PM

176 | Chapter 10

The main application of spatial database is GIS (Geographical Information System) which is
used to store and display geographical information on computers.

10.7 | Moving objeCt databases
The moving object database enables user to store data related to any moving object. There are
two approaches of moving object database: location-based and spatio-temporal.

In location-based approach, to store the moving object, location of the object is required.
The location of moving object gets changing with time. The updations to database are very
important in case of moving objects. To keep data of moving object the direction in which it
is moving, speed of movement, size of object, etc., should be considered besides the location.

In the location-based moving object database, the history of object is not kept. Only the cur-
rent position is stored.

The moving object database can be used to keep track of vehicles, criminals, land move-
ments, animals, etc.

To store moving objects, special kind of query language is required. TSQL2 is a Temporal
Structured Query Language which is used to store data related to moving objects.

10.8 | nosQl database
Social media such as facebook, twitter, etc., generates bulk volumes of data across the
Internet. These data are unstructured. Relational database management systems are very
efficient in storing structured data, but to store unstructured data some special kind of data-
bases are required.

In relational database, schema (table structure using CREATE TABLE) should be defined
before data is stored into table. It can store similar types of data within a table. If different types
of data are to be stored in the same table, it requires schema to be modified (using ALTER
command). Changing of schema definition rapidly as per the requirement is known as agile
development. SQL (relational) databases fail to cope up with frequently changing unstructured
requirements. To cope up with these changing requirements, NoSQL database is evolved.

NoSQL means, not only SQL. NoSQL database is non-relational, distributed and open-source
database. NoSQL database is schemaless. It does not require schema to be created before stor-
ing the data. NoSQL databases are based on document store, graph store, wide-column store,
key-value/tuple store, etc. NoSQL database is used for very large sets of distributed data. It
spreads data automatically on servers and, also balances them. It replicates data automatically
across network. It keeps frequently used data in system’s cache memory.

NoSQL database which is based on key-value contains only two columns—‘key’ and
‘value’. The actual information is stored within the ‘value’ column.

NoSQL database which is based on ‘document store’ keeps key-document pair which stores
all the information in a single document in JSON (Java Script Object Notation), XML (Exten-
sible Markup Language), etc., data interchange formats, which can contain hierarchical values
or nested documents.

CH_10_Advancements in Databases_Final.indd 176 2/26/2014 3:47:54 PM

Advancements in Databases | 177

Graph store NoSQL databases are used to store network information such as social con-
nections.

Wide-column NoSQL database stores columns of data instead of records, i.e., it adds col-
umns dynamically.

Some examples of NoSQL database are Hadoop, MongoDB, Redis, Apache Cassandara and
Hbase.

SummAry
 ● To store and retrieve data as multiple dimensions, the multidimensional database is used.
Multidimensional database represents the aggregated data for each of its dimension.

 ● The database which is connected with the mobile device is known as mobile database.
 ● The database which can store data such as images, video, audio, graphics, animation,
text, etc., is known as multimedia database.

 ● Data warehouse is used to store enterprise’s historical and summarized data which can be
used for future analysis and to take decisions.

 ● The analysis which is done on static data, stored in data warehouse, is known as Data
Mining. It is also known as Knowledge Discovery in Database (KDD). Using data min-
ing, hidden patterns can be found from the data.

 ● Open source database means the database whose source code is open to all. Anyone can
download the source code and use it.

 ● Spatial (pictorial/image) database is used to store geometrical or space-related data, such
as line, region, different shapes, etc.

 ● NoSQL database means, not only SQL database which does not require schema to be
created before storing the data. NoSQL databases are based on document store, graph
store, wide-column store, key-vale/tuple store, etc.

ExErcisEs

 1. Select the correct answer from the following multiple choices:
 a. The database which stores data as many dimensions is called ___________ database.
 i. Multidimension
 ii. Single Dimension
 iii. Multi
 iv. Mini
 b. OLAP means _________________ .
 i. On-Line Application Processing
 ii. On-Line Analytical Processing
 iii. Off-Line Application Processing
 iv. Off-Line Analytical Processing
 c. Oracle Lite is an example of _______________ database.
 i. Mobile
 ii. Multi

CH_10_Advancements in Databases_Final.indd 177 2/26/2014 3:47:54 PM

178 | Chapter 10

 iii. Hierarchical
 iv. Network
 d. __________________ architecture of mobile database is used to keep track of moving

objects.
 i. Mobile Client-Fixed Host
 ii. Mobile Client-Mobile Host
 iii. Fixed Client-Fixed Host
 iv. All of these
 e. The database, which can store data such as images, video, audio, graphics, anima-

tion, text, etc., is known as multidimensional database.
 i. True
 ii. False
 f. Oracle Data Integrator is an example of ____________________ tool.
 i. Data mining
 ii. Data warehousing
 iii. Spatial database
 iv. None of the given
 g. Weka is an example of ____________________ tool.
 i. Data mining
 ii. Data warehousing
 iii. Spatial database
 iv. None of the given
 h. In the following list, which one is not a feature of open source?
 i. Source code is not available
 ii. License to use a software is not required
 iii. Source code can be modified
 iv. Support is not provided
 i. Which of the followings is an example of open source database?
 i. Oracle
 ii. MS Access
 iii. MS SQL Server
 iv. PostgreSQL
 j. Which database is used to store geometrical or space-related data, such as line,

region, different shapes, etc.?
 i. Spatial database
 ii. NoSQL database
 iii. Network database
 iv. Hierarchical database
 k. In the ______________ moving object database(s), the history of object is not kept.
 i. location-based
 ii. spatio-temporal

CH_10_Advancements in Databases_Final.indd 178 2/26/2014 3:47:55 PM

Advancements in Databases | 179

 iii. both (i) and (ii)
 iv. none
 l. NoSQL database is _________________.
 i. schema-based
 ii. schemaless
 m. Hadoop, MongoDB, Redis, Apache Cassandara, Hbase are examples of:
 i. Relational database
 ii. Hierarchical database
 iii. Network database
 iv. NoSQL database

 2. Which features differentiate NoSQL database with relational database?
 3. Discuss the architectures on which mobile applications are based.
 4. List down the features of open source database.
 5. Write short notes on the followings:

 a. Multidimensional database
 b. NoSQL database
 c. Open source database
 d. Spatial database
 e. Moving object database

CH_10_Advancements in Databases_Final.indd 179 2/26/2014 3:47:55 PM

CHAPTER
11

Overview of MS-Access 2007

•	 How	to	use	MS-Access.
•	 Knowing	elements	of	MS-Access.
•	 Managing	data	using	form.
•	 Displaying	data	using	reports.
•	 Designing	and	writing	queries.
•	 Creating	macros.
•	 Creating	switchboard.

Chapter ObjeCtives

11.1 | Ms-aCCess as an rDbMs
MS-Access	is	a	Relational	Database	Management	System	(RDBMS)	which	allows	us	to	define	
and	manage	relationships	between	tables	using	primary	and	foreign	keys.

Using	MS-Access,	we	can	write	queries,	create	forms	to	manage	data,	create	reports,	write	
macros	to	execute	list	of	instructions	in	a	sequence,	etc.	These	elements	are	created	within	Ac-
cess	database	files.

We	can	use	various	controls	to	design	forms	and	reports.	The	queries,	tables,	forms	and	re-
ports	are	imported	and	exported	from/to	another	Access	database.	

11.2 | eleMents Of Ms-aCCess
Following	are	the	elements	of	MS-Access	database.

Tables:	A	table	contains	information	about	entity	such	as	student,	exam,	item,	bill.	Table	is	a	
collection	of	related	record.	Each	record	contains	details	of	one	entity	occurrence.	For	example,	
a	 student	 table	contains	 records	of	various	 students.	Each	 record	 represents	distinct	 student.	
Each	record	contains	many	fields.	Field	describes	 the	characteristics	of	an	entity.	For	exam-
ple,	each	student	record	contains	fields	such	as	stdno,	stdname,	birthdate,	which	describe	each	
unique	student.	Record	is	also	known	as	row	and	field	is	known	as	column.

Queries:	A	query	 is	used	 to	 create	 subsets	of	 any	 table.	According	 to	 the	 table	 and	criteria	
defined	in	a	query,	the	result	is	generated.	Query	will	display	records	from	tables	or	existing	

CH_11_Overview of MS-Access 2007_Final.indd 180 2/26/2014 3:48:59 PM

Overview of MS-Access 2007 | 181

queries	in	MS-Access.	We	can	store	query	as	an	independent	object	which	can	be	executed	at	
any	time.	It	will	display	up-to-date	result	whenever	it	is	executed.

Forms:	A	form	is	an	independent	object	which	could	be	used	to	manage	data	stored	in	a	table.	
Using	forms,	user	can	insert,	delete,	update,	view	and	navigate	records.	Besides	this,	user	can	
validate	data	and	 restrict	data	using	 form.	We	can	also	create	a	 special	 type	of	 form	named	
switchboard,	using	which	 links	can	be	provided	 to	access	any	other	database	object	such	as	
tables,	queries.

Reports:	A	report	is	an	object	which	displays	data.	The	data	are	fetched	from	tables	or	queries.	
Users	cannot	change	the	fetched	data;	they	can	only	view	it.

Macros:	A	macro	is	an	object	which	contains	list	of	instructions	to	be	executed	in	a	sequence.	
It	helps	user	to	automate	any	task	like	opening	report	of	employee	and	displaying	only	records	
with	salary	amounting	less	than	`10,000.

Modules:	It	is	a	type	of	program	which	an	user	can	write.

11.3 | Creating Database anD tables
Field Naming Convention
In	MS-Access,	there	are	some	rules	to	define	field	names.	When	we	give	a	field	name	in	MS-
Access	2007,	we	should	follow	the	rules	as	given	below:

	 1.	 The	field	name	should	not	exceed	64	characters.
	 2.	 Leading	space	(the	space	which	is	given	in	the	starting	of	a	field	name)	is	not	allowed	in	

a	field	name.
	 3.	 Letters,	Numbers	and	Spaces	(not	leading	space)	are	allowed.
	 4.	 The	characters,	such	as	period	(.),	Exclamation	Mark	(!),	Square	brackets	[]	and	non-

printable	characters	such	as	carriage	return	(enter	key)	are	not	allowed.
	 5.	 Reserve	words	and	keywords	are	not	allowed	as	a	field	name.	(Reserved	words	can	never	

be	used	as	identifiers.	Keywords	can	be	used	as	identifiers,	but	this	is	not	recommended.)
	 6.	 Field	names	are	not	case	sensitive.

Creating a Database
There	are	two	ways	to	create	a	database:

	 1.	 Creating	a	blank	database.
	 2.	 Creating	a	database	using	a	template.

To	create	a	blank	database,	do	the	following:

Step 1:	Open	MS-Access.	Select	Blank	Database	option	from	the	new	blank	database	pane.	If	
any	MS-Access	is	already	open,	then	to	create	a	new	database	click	on	the	Microsoft	Office	
button	and	choose	New.	Then	select	the	Blank	Database	option.

Step 2:	The	blank	database	pane	opens	where	user	can	enter	name	for	the	new	database	and	
click	on	the	folder	icon	to	select	the	path	where	user	wants	to	store	the	database.

Step 3:	Click	on	Create.

CH_11_Overview of MS-Access 2007_Final.indd 181 2/26/2014 3:49:00 PM

182 | Chapter 11

To	create	a	database	using	a	template,	do	the	following:

Step 1:	Open	MS-Access.	Select	any	database	from	the	pane	‘featured	online	Templates’.	

Step 2:	Give	the	file	name,	select	path	where	you	want	to	store		the	database.

Step 3:	Click	on	Download.

Creating Tables
There	are	three	ways	to	create	a	table:

	 1.	 Creating	a	table	using	design	view.
	 2.	 Creating	a	table	using	datasheet	view.
	 3.	 Creating	a	table	using	a	template.

To	create	a	table	using	datasheet	view,	do	the	following:

Step 1:	Click	on	Create	menu	given	on	a	ribbon.	From	‘Table’	group,	select	table	option.	It	will	
open	a	blank	table	in	a	datasheet	view	with	one	field	ID.	We	can	change	it	by	double	clicking	
on	the	field	name.	Similarly,	we	can	add	more	fields	by	pressing	a	table.	

Step 2:	To	set	the	data	type	and	formats	for	the	fields,	click	on	the	datasheet	tab	given	in	the	
menu.	Select	Data	type	and	Formatting	group.	Change	data	type	and	format	by	clicking	on	the	
down	arrow.

Step 3:	Right	click	on	the	table	name	to	save	it	with	a	new	name.	

To	create	a	table	using	design	view,	do	the	following:

Step 1:	Click	on	Create	menu	on	a	ribbon.	From	‘Table’	group,	select	table	design	option.	If	we	
select	table	option,	then	the	blank	table	will	be	opened	in	a	design	view.	

Step 2:	Give	field	names	and	data	types	and	set	the	field	properties.

Step 3:	Select	the	fields	which	you	want	to	define	as	a	primary	key	and	click	primary	key	option	
of	‘tools’	group	in	a	design	tab.

Step 4:	Right	click	on	table	name	to	save	it	with	a	new	name.	

To	create	a	table	using	a	template,	do	the	following:

Step 1:	Click	on	Create	menu	on	a	ribbon.	From	‘Table’	Group,	select	table	templates	option.	

Step 2:	Select	the	table	out	of	five	given	templates—contacts,	tasks,	issues,	events	and	assets.	

Step 3:	Make	changes	in	a	field	as	required	and	save	it.

Table	11.1	shows	the	difference	between	Design	view	and	Datasheet	view	of	a	table:

table 11.1 |	 Difference	Between	Design	View	and	Datasheet	View

Design view Datasheet view

We can set primary key using this view. We cannot set primary key using this view.

We cannot enter records using this view. We can enter records using this view.

We cannot change formatting of text
entered in a table using this view.

We can change formatting of text
entered in a table using this view.

We can set the field properties such as
validation rule, default, validation text,
indexed, by using this view.

We cannot set the field properties such
as validation rule, default, validation
text, indexed, by using this view.

CH_11_Overview of MS-Access 2007_Final.indd 182 2/26/2014 3:49:00 PM

Overview of MS-Access 2007 | 183

Navigation Pane:	The	left	pane	in	the	MS-Access	is	called	Navigation	Pane.	It	displays	all	the	
objects	such	as	tables,	queries,	forms,	reports,	macros,	created by the user. User can navigate
through this pane to open any existing object.

11.4 | Data types Of Ms-aCCess
MS-Access	2007	provides	10	different	data	types,	and	each	type	has	a	specific	purpose.	Table	
11.2	lists	all	the	data	types.

Changing from one data type to other data type:

	● Change	data	types	in	Datasheet	view

	 1.	 Opens	the	table	in	Datasheet	view.
	 2.	 Select	the	field	(the	column)	for	which	you	want	to	change	the	data	type.	
	 3.	 On	the	Datasheet	tab,	in	the	Data	Type	&	Formatting	group,	click	the	arrow	in	the	

drop-down	list	next	to	Data	Type,	and	then	select	a	data	type.	
	 4.	 Save	your	changes.

	● Change	data	types	in	Design	view

	 1.	 Open	table	in	Design	view.	
	 2.	 Select	the	field	(the	column)	for	which	you	want	to	change	the	data	type,	and	select	

a	new	data	type	from	the	list	in	the	Data	Type	column.	
	 3.	 Save	your	changes.

table 11.2 |	 Data	Types	of	MS-Access	2007

Data type Used to store Maximum limit

Text Alphanumeric data 255 characters

Memo Alphanumeric data 65,535 characters

Number Numeric data Field size could be set to 1, 2, 4, 8, or 16
bytes

Date/Time Dates and times

Currency Financial data 8 bytes with four decimal places

Auto Number Unique values created by MS
Access for a new record

4 bytes

Yes/No Boolean (true or false) data −1 for all Yes values and 0 for all No
values

OLE Object Images, documents, graphs and
other objects

Up to 2GB of data (the size limit for all
Access databases)

Hyperlink Web addresses Up to 1 gigabyte of data

Attachment Any supported type of file

CH_11_Overview of MS-Access 2007_Final.indd 183 2/26/2014 3:49:00 PM

184 | Chapter 11

	● Restrictions	on	changing	data	types
As	a	rule,	we	can	change	the	data	type	of	all	fields,	except	for:
	○ Number	fields	with	the	Replication	ID	property	enabled	
	○ OLE	Object	fields	
	○ Attachment	fields

When	we	change	data	type	of	the	field	which	contains	data,	Access	truncates	or	deletes	
some	data	or	may	not	allow	convert	the	data	type.

Field Properties: Each	data	type	has	some	properties:

	 1.	Number field properties:	Table	11.3	shows	‘Number’	field	properties.
	 2.	Text field properties:	Table	11.4	shows	‘text’	field	properties.

‘Format’ property: We	may	use	some	predefined	Access	formats	or	may	define	our	own	for-
mats	by	using	some	specific	characters:

	● Table	11.5	shows	predefined	formats	for	the	Number,	AutoNumber	and	Currency	data	
types.

	● Table	11.6	shows	predefined	formats	for	the	date/time	data	type.

Applying	custom	(user	defined)	formats	to	numeric	data:	We	can	also	apply	custom	formatting	
by	using	some	characters.

Input Mask: The	following	table	lists	and	describes	the	placeholder	and	literal	characters	that	
you	can	use	in	an	input	mask.	Table	11.7	shows	input	mask	characters.

table 11.3 |	 ‘Number’	Field	Properties

property Description

Field Size Controls the size of the value that you can enter and store in the field.

Format Values in the column will be displayed as per the defined format.

Decimal Places Sets the number of decimal places for the values in the field.

Input Mask Controls how user enters data.

Caption Defines the column heading.

Default Value Value which will be displayed in the column for each new record.

Validation Rule Defines conditions on column data.

Validation Text Defines error message which should be displayed when validation rule is
violated.

Required Shows compulsory data entry for the field.

Indexed Index is defined for fast data retrieval.

Smart Tags Smart tag recognizes the data type and performs action accordingly.

Text Align Aligns the data.

CH_11_Overview of MS-Access 2007_Final.indd 184 2/26/2014 3:49:00 PM

Overview of MS-Access 2007 | 185

table 11.4 |	 ‘Text’	Field	Properties

property Description

Field Size Maximum 255 characters.

Format Values in the column will be displayed as per the defined format.

Input Mask Controls how user enters data

Caption Defines the column heading

Default Value Value which will be displayed in the column for each new record.

Validation Rule Defines conditions on column data.

Validation Text Defines error message which should be displayed when validation
rule is violated.

Required Shows compulsory data entry for the field.

Allow Zero Length It allows entering zero-length strings (“ “).

Indexed Index is defined for fast data retrieval.

Unicode
Compression

Any character whose first byte is 0 is compressed when it is stored
and uncompressed when it is retrieved.

IME Mode Input Method Editor, a tool for using English versions of Access with
files created in Japanese or Korean versions of Access.

IME Sentence Mode Specifies the type of data you can enter by using an Input Method
Editor.

Smart Tags Smart tag recognizes the data type and performs action accordingly.

Text Align Aligns the data.

table 11.5 |	 Predefined	Formats	for	Number,	Autonumber,	and	Currency	Data	Types

format Description example

General Number Displays the number as entered. 456

Currency Applies the currency symbol. $4, 342

Euro Applies the Euro symbol. €4,234.23

Fixed Displays numbers without thousand separators
and with two decimal places.

9823.23

Standard Displays numbers with thousand separators
and two decimal places.

9,823.23

Percent Displays numbers as percentages (number multiplied
by 100) with two decimal places percent sign.

563.15%

Scientific Displays numbers with scientific (exponential) nota-
tions. For example, 1230000 is displayed as 1.23E + 04

1.23E+04

CH_11_Overview of MS-Access 2007_Final.indd 185 2/26/2014 3:49:00 PM

186 | Chapter 11

table 11.6 |	 Predefined	Formats	for	the	Date/Time	Data	Type

format Description example

General Date (Default) Displays date and time values
followed by AM or PM.

08/29/2006 10:10:42 AM

Long Date Displays long date. Monday, August 29, 2006
Medium Date Displays the date as dd/mon/yyyy. 29/Aug/2006 29-Aug-2006
Short Date Displays short date. 8/29/2005 8-29-2006
Long Time Displays hours, minutes, and seconds

followed by AM or PM.
10:10:42 AM

Medium Time Displays hours and minutes followed by
AM or PM.

1:10 AM

Short Time Displays only hours and minutes. 13:10

table 11.7 |	 Input	Mask	Characters

Character Description

0 We can enter any Digit (0-9) where 0 is used in the input mask. Data entry is
compulsory at the position where 0 is specified.

9 We can enter any Digit (0-9) where 9 is used in the input mask. Data entry is
optional at the position where 9 is specified.

We can enter a digit (0-9), a space, or a plus or minus sign in this position. If
users skip this position, Access enters a blank space. Data entry is optional
for this position.

L We can enter any alphabet (A-Z or a-z) where L is used in the input mask.
Data entry is compulsory at the position where L is specified.

? We can enter any alphabet (A-Z or a-z) where ? is used in the input mask.
Data entry is optional at the position where ? is specified.

A We can enter any alphabet or digit (A-Z or a-z or 0-9) where A is used in the
input mask. Data entry is compulsory at the position where A is specified.

A We can enter any alphabet or digit (A-Z or a-z or 0-9) where a is used in the
input mask. Data entry is optional at the position where a is specified.

& Any character (including symbols) or space. Data entry is compulsory at the
position where & is specified.

C Any character (including symbols) or space. Data entry is optional at the
position where C is specified.

. , : ; / Decimal and thousands placeholders, date and time separators. The charac-
ter you select depends on your Windows regional settings.

< All characters that follow appear in uppercase.
> All characters that follow appear in lowercase.
! Causes the input mask to fill from left to right instead of right to left.
\ Forces Access to display the character that immediately follows. This is the

same as surrounding a character in double quotation marks.
‘Literal text’ Surround any text that you want users to see in double quotation marks.
Password In Design view for tables or forms, setting the Input Mask property to Pass-

word creates a password entry box. When users type passwords in the box,
Access stores the characters but displays asterisks (*).

CH_11_Overview of MS-Access 2007_Final.indd 186 2/26/2014 3:49:00 PM

Overview of MS-Access 2007 | 187

Defining	a	Foreign	Key:	By	defining	a	foreign	key,	we	can	relate	two	tables.	Do	the	following	
to	define	a	foreign	key:

	 1.	 First,	create	the	parent	table	and	define	a	primary	key	in	this	table.
	 2.	 Create	a	child	 table	which	should	contain	 the	field	with	 the	same	data	 type	of	parent	

table’s	primary	key.
	 3.	 Select	database	tools	tab	from	show/hide	group	and	click	relationships.
	 4.	 Select	parent	and	child	tables.
	 5.	 Drag	parent	table’s	primary	key	to	the	related	field	of	child	table.
	 6.	 Click	OK.
	 7.	We	can	also	select	Cascade	option	while	defining	a	foreign	key.

11.5 | sOrting anD filtering reCOrDs in Ms-aCCess
Sorting Records:

	● MS-Access	automatically	sorts	records	by	the	value	in	primary	key	field.
	● We	can	sort	records	based	on	the	value	in	a	specific	field.
	● We	can	sort	up	to	255	characters.
	● Ascending	sort	order	arranges	text	values	in	alphabetical	order	(A	to	Z),	date/time	values	
from	earliest	to	latest,	number/currency	values	from	lowest	to	highest,	yes/no	values	are	
sorted	first	by	‘yes’	values	then	by	‘no’	values.
	● We	can	sort	memo	fields	using	first	255	characters.
	● Hyperlink	fields	can	be	sorted	by	the	text	to	display	(if	any)	or	the	address.
	● We	cannot	sort	OLE	object	or	attachment	fields.
	● We	can	sort	single	or	multiple	fields.

Sorting by a single field:
	● To	sort	by	a	single	field	in	datasheet	view,	click	within	the	field	you	want	to	sort	by;	and	
then	to	sort	by	a	single	field	on	the	‘home’	tab	in	the	‘sort	and	filter’	group,	do	any	of	the	
following:

	 i.	 Click	ascending/descending	command.
	 ii.	 Right	click	in	the	field	and	choose	sort	A	to	Z/Z	to	A	from	the	shortcut	menu.

	● To	restore	the	records	to	their	original	order,	on	the	‘home’	tab’s	sort	and	filter	group,	
click	the	‘clear	all	sorts’	command.

Sorting by two or more fields:
	● To	sort	by	more	than	one	field,	the	sorted	fields	must	be	adjacent	in	the	datasheet.
	● Sorting	done	from	left	to	right,	so	the	records	are	sorted	first	by	the	values	in	left	column.	
If	the	duplicate	values	appear	in	first	column,	sorting	is	performed	on	those	records	by	the	
values	in	the	next	column	to	the	right.	
	● If	columns	are	not	adjacent,	then	we	must	move	the	columns	before	sorting	the	records.
	● When	we	close	the	table	after	sorting	is	done,	access	asks	to	save	changes.	Click	yes	to	
save	changes	permanently.

CH_11_Overview of MS-Access 2007_Final.indd 187 2/26/2014 3:49:00 PM

188 | Chapter 11

Filtering Records:
	● When	we	want	to	see	only	certain	records	in	our	datasheet	or	form,	we	can	filter	out	the	
records	which	we	do	not	want	to	see.	The	filter	process	displays	only	those	records	that	
meet	the	criteria	(conditions).

	● Advantages	of	using	filter:	Filtering	 can	help	you	 save	 time	by	displaying	only	 those	
records	which	are	important	to	you	at	the	moment.
	● Filtering	does	not	remove	the	records	from	the	table;	 it	only	removes	them	from	your	
view	of	the	table.

	● Filter	can	display	result	of	a	condition	consisting	simple	and	complex	rules.
	● Difference	between	finding	records	and	filtering	records:	Table	11.8	shows	the	difference	
between	finding	and	filtering	records.
	● In	MS-Access,	there	are	four	ways	to	filter	records	depending	on	the	conditions	and	a	
particular	sorted	order.	These	are	as	follows:

	 1.	 Common	context	filters:	They	are	available	in	the	shortcut	menus	depending	on	the	
field	type.

	 2.	 Filter	by	selection:	 It	 leaves	only	 the	 records	with	 the	same	value	as	 the	one	you	
select	in	one	of	the	records	or	the	records	that	do	not	include	the	same	value.

	 3.	 Filter	by	form:	It	displays	records	with	the	criteria	entered	into	a	table.
	 4.	 Advanced	 filter/sort:	 It	 gives	 the	 capability	 of	 specifying	 a	 complex	 sort.	With	 a	

complex	sort,	we	can	sort	the	records	by	two	or	more	fields	using	different	orders—
ascending	or	descending.

	● Difference	between	removing	and	clearing	filters:	Table	11.9	shows	the	differences	be-
tween	Removing	and	Clearing	filters.

11.6 | Creating qUeries in Ms-aCCess
SQL	is	the	standard	command	set	that	allows	the	users	to	interact	with	the	relational	database	
management	 systems.	 (Some	examples	of	 relational	database	management	 systems	are	MS-
Access,	MS-SQL	Server,	DB2,	Oracle).	

table 11.8 |	 Difference	Between	Finding	and	Filtering	Records

finding records filtering records

When Access finds record, the cursor
moves to the record in a datasheet
and all the other records remain
on the screen.

Filter removes the records from the screen
which do not meet the condition and
displays only those records which you want
to see. But records remain in the table.

table 11.9 |	 Difference	Between	Removing	and	Clearing	Filters

removing filters Clearing filters

Removing a filter simply returns all
the records to the datasheet or form.

Clearing the filter erases the filter criteria.

We can reapply the filter later. We cannot reapply the filter without
reconstructing it.

CH_11_Overview of MS-Access 2007_Final.indd 188 2/26/2014 3:49:00 PM

Overview of MS-Access 2007 | 189

All	tasks	related	to	relational	data	management,	such	as	creating	tables,	querying	the	data-
base	for	information,	modifying	the	data	in	the	database,	deleting	them,	granting	access	to	users	
and	so	on,	can	be	easily	performed	using	SQL.	We	can	create	a	query	in	MS-Access	using	query	
design	view,	query	wizard	or	SQL	view.	To	create	a	query	using	query	wizard,	follow	the	steps	
as	given	below:

	 1.	 Create	the	necessary	tables.
	 2.	 Click	on	‘create’	tab.
	 3.	 Click	‘Query	wizard’	option	available	in	the	‘other’	group	on	the	ribbon.
	 4.	 As	per	the	requirement,	select	any	one	option	from	the	given	four	options—simple	query	

wizard,	crosstab	query	wizard,	find	duplicates	query	wizard	and	find	unmatched	query	
wizard.	

	 5.	 Select	tables	and	fields	which	you	want	to	see	in	the	result.
	 6.	 Click	finish	to	view	the	result.

To	create	a	query	using	query	design,	follow	the	steps	as	given	below:

	 1.	 Create	the	necessary	tables.
	 2.	 Click	on	‘create’	tab.
	 3.	 Click	‘Query	design’	option	available	in	the	‘other’	group	on	the	ribbon.
	 4.	 The	‘Show	table’	dialog	box	will	appear	on	the	screen.	Select	the	tables	and	click	close.
	 5.	 Select	the	fields	from	the	table	and	specify	the	criteria	in	the	design	pane	and	view	the	

result	using	datasheet	view	or	by	clicking	on	run	option.

We	can	write	any	select	statement	in	a	‘SQL	view’	of	Access.	To	write	a	query	in	SQL	view,	
follow	the	steps	as	given	below:

	 1.	 Create	the	necessary	tables.
	 2.	 Click	on	‘create’	tab.
	 3.	 Click	‘Query	design’	option	available	in	the	‘other’	group	on	the	ribbon.
	 4.	 The	‘Show	table’	dialog	box	will	appear	on	the	screen.	Click	close.
	 5.	 Right	click	on	‘query1’	and	select	‘SQL	view’.	Write	select	statement	in	the	window	and	

then	execute	the	query	using	‘run’	option	available	in	‘results’	group	of	‘Design’	tab.

Table	11.10	shows	the	differences	between	filter	and	query.

table 11.10 |	 Difference	between	Filter	and	Query

filter query

Filter is saved with a table. Query is a separate database object which
appears in the navigation pane.

To view the result of a filter, we must
open the table first.

There is no need to open a table first to view
the result because a query is an
independent object.

We can apply filter on a single table. We can create a query using multiple tables.

We cannot perform operations (insert,
update, delete) on data using a filter.

We can perform operations (insert, update,
delete) on fields using a query.

CH_11_Overview of MS-Access 2007_Final.indd 189 2/26/2014 3:49:01 PM

190 | Chapter 11

Types of Queries in MS-Access: There	are	four	categories	of	queries	in	MS-Access.
Select queries:	 It	 is	 the	most	common	category	and	 is	used	 to	 fetch	 records	 from	database	
tables.	We	can	create	three	types	of	select	queries	using	query	wizard.	

	 a.	 Simple	Select	query:	 It	displays	data	 from	one	or	more	 tables	grouped	or	sorted	 in	a	
specific	order.	To	create	a	simple	query,	follow	the	steps	as	given	below:

	 1.	 Click	on	create	→	query	wizard.
	 2.	 Select	simple	query	wizard	option	and	click	OK.
	 3.	 Select	table	and	fields	which	you	want	to	display	and	click	next.
	 4.	 Give	any	valid	name	to	a	query	and	click	finish.

	 b.	 Find	duplicate	query:	It	displays	all	records	with	duplicate	values	in	one	or	more	speci-
fied	fields.	To	create	‘find	duplicate	query’	follow	the	steps	as	given	below:

	 1.	 Click	on	create	→	query	wizard.
	 2.	 Select	find	duplicates	query	wizard	option	and	click	OK.
	 3.	 Select	table	from	which	you	want	to	find	duplicate	values	and	click	next.
	 4.	 Select	the	fields	which	may	contain	duplicate	values	and	click	next.
	 5.	 Select	the	fields	which	you	want	to	display	and	click	next.
	 6.	 Give	any	valid	name	to	a	query	and	click	finish.

	 c.	 Find	unmatched	query:	It	displays	records	in	one	table	that	have	no	related	records	in	
another	table.	To	create	a	find	unmatched	query,	follow	the	steps	given	below:

	 1.	 Click	on	create	→	query	wizard.
	 2.	 Select	find	unmatched	query	wizard	option	and	click	OK.
	 3.	 Select	table	from	which	you	want	to	display	fields	and	click	next.
	 4.	 Select	the	table	which	contains	related	field	and	click	next.
	 5.	 Select	the	matching	field	from	both	the	tables	and	click	next.
	 6.	 Select	the	fields	which	you	want	to	display	and	click	next.
	 7.	 Give	any	valid	name	to	a	query	and	click	finish.

Action queries:	They	are	used	to	insert,	update	or	delete	records	from/to	tables.	There	are	four	
types	of	action	queries	in	Access:	
 a.	Make	table	query:	It	is	used	to	create	a	new	table	out	of	data	from	one	or	more	tables.	To	

create	a	make	table	query	follow	the	steps	as	given	below:
	 1.	 Click	on	create	→	query	design.	
	 2.	 Select	the	table(s)	from	which	you	want	to	retrieve	records.
	 3.	 Click	on	design	 tab’s	query	 type	group	and	select	make-table	option.	MS-Access	

will	display	 the	make-table	dialog	box	and	asks	 for	 the	 target	 table	 in	which	you	
want	to	paste	records.	

	 4.	 Select	the	table	name	and	database	where	you	want	to	copy	your	records	and	click	OK.
	 5.	 Drag	fields	from	the	available	tables	and	write	criteria	if	any.
	 6.	 Click	on	‘Run’	option	given	in	the	results	group.

	 b.	 Append	query:	Add	a	group	of	records	from	one	or	more	tables	to	the	end	of	one	or	more	
other	tables.	To	create	an	append	query	follow	the	steps	as	given	below:

	 1.	 Click	 on	 create	 →	 query	 design.	 Select	 the	 table(s)	 from	 which	 you	 want	 to	
append	records.

	 2.	 Click	on	design	tab’s	query	type	group	and	select	append	option.	

CH_11_Overview of MS-Access 2007_Final.indd 190 2/26/2014 3:49:01 PM

Overview of MS-Access 2007 | 191

	 3.	 Select	the	table	name	in	which	you	want	to	append	records.
	 4.	 Select	fields	of	source	table	in	the	design	pane	and	select	related	fields	of	destination	

table	in	‘append	to’	cell.
	 5.	 Click	on	‘Run’	option	given	in	the	results	group.

	 c.	 Update	query:	Make	global	changes	to	a	group	of	records	in	one	or	more	tables.	To	cre-
ate	an	update	query	follow	the	steps	as	given	below:

	 1.	 Click	on	create	→ query	design.	Select	the	table(s)	which	you	want	to	update.
	 2.	 Click	on	design	tab’s	query	type	group	and	select	update	option.	
	 3.	 Select	fields	which	you	want	to	update	and	the	fields	on	which	you	want	to	put	condi-

tions.
	 4.	 Enter	the	new	values	of	fields	in	the	‘Update	to’	cell	and	field	conditions	in	the	‘cri-

teria’	cell.
	 5.	 Click	on	‘Run’	option	given	in	the	results	group.

	 d.	 Delete	query:	Remove	a	specific	group	of	records	from	one	or	more	tables.	To	create	a	
delete	query	follow	the	steps	as	given	below:

	 1.	 Click	on	create	→ query	design.	Select	the	table	from	which	you	want	to	delete	re-
cords.

	 2.	 Click	on	design	tab’s	query	type	group	and	select	delete	option.	
	 3.	 Select	fields	on	which	you	want	to	put	conditions.	
	 4.	 Enter	the	conditions	in	the	‘criteria’	cell.
	 5.	 Click	on	‘Run’	option	given	in	the	results	group.

Special purpose queries:	It	is	used	to	summarize	values	from	one	field	in	the	table,	grouped	in	
two	ways	or	automatically	fill	in	data	or	prompt	for	criteria.	
	 a.	 Parameterized	query:	Display	a	dialog	box	where	you	enter	 the	criteria	 for	 retrieving	

data	or	a	value	to	insert	into	a	field.	We	can	apply	parameters	to	other	types	of	queries	as	
well.	To	create	a	parameterized	query,	follow	the	steps	as	given	below:

	 1.	 Click	on	create	→ query	design	and	select	the	table.
	 2.	 Select	the	fields	which	you	want	to	see	in	the	result.
	 3.	 Click	on	the	field	for	which	you	want	to	set	parameter.
	 4.	Write	name	of	the	parameter	in	the	criteria.	The	parameter	name	should	be	enclosed	

within	the	square	brackets.
	 5.	 Click	on	parameter	in	the	‘show/hide’	group	and	define	the	parameter	in	the	avail-

able	window	by	specifying	its	datatype.
	 6.	 To	view	the	result	click	on	datasheet	view.	MS-Access	will	prompt	to	enter	the	pa-

rameter	value.	Give	parameter	value	and	click	OK.
	 b.	 Autolookup	query:	Special	select	queries	that	automatically	fill	in	certain	field	values	in	

a	new	record	in	one	or	more	tables.	To	create	an	autolookup	query,	follow	the	steps	as	
given	below:

	 1.	 Click	on	create	→ query	design	and	select	the	parent	and	child	table.
	 2.	 Select	related	field	from	the	child	table	and	other	fields	from	the	parent	table.
	 3.	 Click	on	datasheet	view	to	see	results.

	 c.	 Crosstab	query:	Calculate	a	sum	or	count	and	group	the	results	in	a	spreadsheet	format	
that	correlates	the	data	with	two	types	of	information.

CH_11_Overview of MS-Access 2007_Final.indd 191 2/26/2014 3:49:01 PM

192 | Chapter 11

table 11.11 |	 Predicates	Used	with	Select	Statement

predicate Meaning
Distinct To display unique values of fields. For example, Select distinct stdname from

student.
Top n To display n (any integer number) top most values. For example,

select top 10 stdno from student order by stdno desc.

table 11.12 |	 Wildcards

Wildcard Meaning

? Single character
Single digit (between 0-9)
* Many characters
[char/digit_list] Specify range of characters or digits for a single character

SQL-specific queries:	These	 are	 accessible	only	 through	SQL	statements.	All	queries	have	
SQL	statements	in	the	background,	but	SQL-specific	queries	are	constructed	with	the	program-
ming	language	instead	of	a	design	grid	like	other	types	of	queries.

 a.	 Union:	Combine	fields	from	one	or	more	tables	into	one	field	in	the	result.
	 b.	 Sub	query:	SQL	SELECT	or	other	server	statements	that	form	a	SELECT	query	within	

another	query.
	 c.	 Pass-through	query:	Send	instructions	directly	to	open	database	connectivity	(ODBC)	

databases	using	commands	specific	to	the	server.
	 d.	 Data	definition	query:	Create	or	change	database	objects	in	MS-Access,	SQL	server	or	

other	server	database.

Predicates:	Predicates	shown	in	Table	11.11	are	written	between	select	keyword	and	 list	of	
fields	as	per	the	requirement.	

Special Operators:	There	are	five	special	operators	available	with	select	statement:	1.	Like;	
2.	Is	Null;	3.	In;	4.	Exists;	and	5.	Between.

 1. Like:	It	is	written	after	where	clause	to	match	specific	pattern	in	a	text	or	string.	MS-
Access	allows	 the	 following	wildcards	 to	be	used	with	 the	 like	operator.	Table	11.12	
shows	the	wildcard	characters	which	could	be	used	with	select	statement	in	MS-Access.	
Here	are	some	examples	of	Like	operators:	

	● Display	names	of	the	student	in	which	first	letter	is	A	or	Z.
SELECT students’ details from student

 where stdname like ‘[A,Z]*’

	● Display	students’	details	containing	the	word	‘kan’.

SELECT * from student where stdname like ‘*kan*’

	● Display	students’	details	in	which	second	letter	is	a	digit.

SELECT * from student where bdate like ‘?#*’

	● Display	students’	details	in	which	first	letter	lies	between	0	and	9.

SELECT * from student where bdate like ‘[0-9]*’

CH_11_Overview of MS-Access 2007_Final.indd 192 2/26/2014 3:49:01 PM

Overview of MS-Access 2007 | 193

	● Display	students’	details	in	which	first	letter	does	not	lie	between	0	and	9.

SELECT * from student where bdate like ‘![0-9]*’

	 2.	 Is null:	 It	 is	needed	to	check	and	display	the	records	 in	which	specific	field	contains	
any	null	value	or	not.	For	example,	select * from student where stdname
is null.

	 3.	 In:	 It	 is	 written	 before	 the	 subquery	 (query	 written	 within	 the	 select	 statement)	 to	
check	 the	field	value	 lies	 in	specific	 list	of	values	or	 in	 list	of	values	selected	by	an-	
other	subquery.	The	subquery	will	be	executed	first;	and	based	on	 the	 result	 returned	
by	 a	 subquery,	 the	main	 query	will	 be	 executed.	 For	 example,	select * from
student where stdno in (select stdno from mark).

	 4.	Exists:	It	is	written	before	the	subquery	(query	written	within	the	select	statement)	to	
check	the	existence	of	records	returned	by	the	subquery.	It	will	return	true	if	the	subque-
ry	contains	any	record	else	returns	false	if	the	subquery	doesn’t	contain	any	record.	For	
example,	select * from student where exists(select * from mark).

	 5.	Between:	It	is	written	after	the	clause	to	check	the	field	value	lies	in	a	specific	range.	
The	upper	and	lower	values	are	also	included	in	the	range.	For	example,	select *
from student where stdno lies between 10 and 20.

Functions: Following	functions	are	available	in	MS-Access:

	 1.	Date and Time Functions: Table	11.13	shows	date	and	time	functions.
	 	 Some	examples:	You	can	write	the	following	select	queries	to	view	the	result	of	above	

functions.

	● Display	current	date	and	time,	only	current	date,	only	current	time.

 SELECT now (), date (), time () from student;

	● Display	use	of	datepart,	datediff	and	dateadd	functions.	

 SELECT datepart (‘d’, date ()) as ‘today’s date’,
 datepart (‘ww’, date ()) as ‘week no of the year’,
 datepart (‘y’, date ()) as ‘day of the year’,
 datepart (‘yyyy’, date()) as year_no,
 datepart (‘q’, date ()) as ‘quarter_no’ ,
 datepart (‘m’, date()) as ‘month of the year’,
 datepart (‘w’, date()) as ‘day of the week’,
 month (#12-12-2010#) as ‘month no’,
 year (#12-12-2010#) as ‘year no’,
 day (#12-12-2010#) as ‘day of the month’,
 weekday (#12-12-2010#) as ‘day of week’ ,
 datediff(‘d’, #12-12-2008#,#1-12-2010#)as ‘date difference’,
 datediff(‘m’, #12-12-2008#,#1-12-2010#)as ‘month difference’,
 datediff(‘yy yy’, #12-12-2008#,#1-12-2010#)as ‘year difference’,
 dateadd (‘d’,234, #12-12-2008#) as ‘Add no of days’,
 dateadd (‘yyyy’, 3,#12-12-2008#) as ‘Add no of years’,
 dateadd(‘m’,24,#12-12-2008#) as ‘Add no of months’ from student;

CH_11_Overview of MS-Access 2007_Final.indd 193 2/26/2014 3:49:01 PM

194 | Chapter 11

	○ Display	different	uses	of	a	format	function.
 SELECT format (‘shefali’, ‘>’) as ‘string in upper case’,
 format(‘Shefali’, <’) as ‘string in lower case’,
 format (date (), ‘d-mmmm-yyyy’),
 format (date (),‘long date’),
 format (time (),‘long time’),
 format (date (), ‘dd-mm-yyyy’),
 format (date (), ‘mmmm’),
 format (date (), ‘dddd’),
 format (date (), ‘yyyy’),
 format (time (), ‘hh’), format (time (), ‘ss’) ,
 format (time (), ‘n’),
 format (time (), ‘hh : n : ss am/pm’)
 from student;

	 2.	 String functions:	Table	11.14	shows	the	string	functions	of	MS-Access.

table 11.13 |	 Date	and	Time	Functions

function Meaning
Now () Current date and time
Date () Current date
Time () Current time
Datepart (‘partofdate’,dateexpression) Display any part from the specified date
Datediff (‘partofdate’,from_dateexpress-
ion, to_dateexpression)

Display difference of two dates as number of
days or number of months or number of years

Dateadd (‘partofdate’, duration,
dateexpression)

Add number of days, months or years
and returns date.

Day (dateexpression) Extracts day from the date
Weekday (dateexpression) Extracts week day number from the date
Month dateexpression () Extracts month number from the date
Year (dateexpression) Extracts year number from the date

table 11.14 |	 String	Functions

function Meaning

Ucase(stringexpression) Display string in capital letters.
Lcase(stringexpression) Display string in small letters.
Ltrim(stringexpression) Removes spaces from left side of the string.
Rtrim(stringexpression) Removes spaces from right side of the string.
Trim(stringexpression) Removes spaces from left and right side of the string.
Left(stringexpression,no._of_char) Display specific number of characters from left

side of the string.
Right(stringexpression,no._of_char) Display specific number of characters from right

side of the string.
Mid(stringexpression,start_
position,no._of_char)

Display specific number of characters from the
position specified.

Len(stringexpression) Display length of a string.

CH_11_Overview of MS-Access 2007_Final.indd 194 2/26/2014 3:49:01 PM

Overview of MS-Access 2007 | 195

Some	examples:	You	can	write	the	following	‘select’	queries	to	view	the	result	of	the	func-
tions	as	given	in	Table	11.14.

SELECT ucase(‘shefali’),
 lcase(‘SHEFELI’),
 ltrim(‘shefali’),
 rtrim(‘shefali’),
 trim(‘shefali’),

 left(‘shefali’, 4),
 right(‘shefali’, 4),
 mid(‘shefali’, 2, 3),

 len(‘shefali’)
 from student;

	 3.	Mathematical functions: Table	11.15	shows	the	mathematical	functions.
	 	 For	example:

SELECT round(34.57, 0),int(34.34), rnd() from student;

	 4.	Aggregate functions: These	functions	are	used	for	summary	or	collective	results.	Table	
11.16	shows	the	aggregate	functions.

Types of Joins: We	can	join	two	or	more	than	two	tables	to	retrieve	records	from	more	than	
one	table.	When	you	include	multiple	tables	in	a	query,	you	use	joins	to	help	you	get	the	results	
you	are	looking	for.	A	join	helps	a	query	return	only	the	records	from	each	table	you	want	to	
see	based	on	how	those	tables	are	related	to	other	tables	in	the	query.	Following	are	the	types	of	
joins	available	in	MS-Access:

	 1.	Equi Join:	When	we	join	two	or	more	than	two	tables	using	a	‘=’	sign,	then	the	type	
of	join	is	said	to	be	an	equi	join.	For	example,	select * from class, student
where class.classcode = student.classcode.

table 11.15 |	 Mathematical	Functions

function Meaning

Round (number,decimal_places) Rounds a number
Int (number) Displays only quotient part of a number

Rnd () Generates unique random numbers

table 11.16 |	 Aggregate	Functions

function Meaning

Count(fieldname) or count(*) Displays total no. of values or records
Max(fieldname) Displays maximum value from the list of values
Min(fieldname) Displays minimum value from the list of values

Avg(fieldname) Displays average values
Sum(fieldname) Displays sum of values

CH_11_Overview of MS-Access 2007_Final.indd 195 2/26/2014 3:49:01 PM

196 | Chapter 11

	 2.	 Inner Join:	Inner	joins	are	the	most	common	type	of	join.	They	tell	a	query	that	rows	
from	one	of	the	joined	tables	correspond	to	rows	in	the	other	table	on	the	basis	of	the	data	
in	the	joined	fields.	When	a	query	with	an	inner	join	is	executed,	only	those	rows	where	
common	values	exists	in	the	tables	which	are	joined	will	be	displayed	in	the	result.	Use	
an	inner	join	if	you	want	to	return	only	those	rows	from	both	tables	in	the	join	that	match	
on	the	joining	field.	For	example,	select * from class inner join student
on class.classcode = student.classcode.

	 3.	Left Outer Join:	Outer	joins	tell	a	query	that	although	some	of	the	rows	on	both	sides	
of	the	join	correspond	exactly,	the	query	should	include	all	of	the	rows	from	one	table,	
and	also	those	rows	from	the	other	table	that	share	a	common	value	on	both	sides	of	the	
join.	Outer	joins	can	be	left	outer	joins	or	can	be	right	outer	joins.	In	a	left	outer	join,	the	
query	includes	all	of	the	rows	from	the	first	table	in	the	SQL	statement	FROM	clause,	
and	only	those	rows	from	the	other	table	where	the	joining	field	contains	values	common	
to	both	tables.	For	example,	select * from class left join student on
class.classcode=student.classcode.

	 4.	Right Outer Join:	In	a	right	outer	join,	the	query	includes	all	of	the	rows	from	the	sec-
ond	table	in	the	SQL	statement	FROM	clause,	and	only	those	rows	from	the	other	table	
where	the	joining	field	contains	values	common	to	both	tables.	Use	an	outer	join	if	you	
want	all	of	the	rows	from	one	of	the	tables	in	the	join	to	be	included	in	your	results	and	
you	want	the	query	to	return	only	those	rows	from	the	other	table	that	match	the	first	
table	on	the	joining	field.	For	example,	select * from class right join
student on class.classcode = student.classcode.

	 5.	Cross Join:	When	join	criteria	is	not	being	specified	after	where	clause,	the	query	will	
display	Cartesian	product	of	selected	tables	and	this	type	of	join	is	said	to	be	cross	join.	
For	example,	select * from class, student.

	 6.	Multiple Join:	When	we	join	more	than	two	tables	in	a	single	query,	the	type	of	join	
is	said	to	be	multiple	join.	For	example,	select * from class, student,
mark where class.classcode = student.classcode and student.
stdno=mark.stdno.

	 7.	Union:	A	union	query	uses	the	UNION	operator	to	combine	the	results	of	two	or	more	
select	queries	and	combines	the	results	of	two	or	more	independent	queries	or	tables.	
When	we	use	union	keyword,	number	of	fields	in	both	the	queries	should	be	same	and	
datatype	of	corresponding	fields	should	match	with	one	another.	For	example,	select
classcode from class union and select classcode from student.

11.7 | Creating fOrMs in Ms-aCCess
Forms:	Forms	are	used	for	viewing	and	entering	data.	In	MS-Access,	we	can	design	a	form	
that	presents	data	in	a	way	that	makes	the	information	easy	to	understand,	enter	(add/insert)	and	
manage	(change).	There	are	three	views	available	using	which	we	can	view,	insert	or	change	
data	and	change	design	or	properties	of	a	form.	The	three	views	are:	Form	View,	Design	View,	
Layout	View.	

	● Form View:	We	can	navigate	the	records,	filter	the	records,	search	record	and	add,	delete	
or	edit/change	records	in	a	form	view.

CH_11_Overview of MS-Access 2007_Final.indd 196 2/26/2014 3:49:01 PM

Overview of MS-Access 2007 | 197

	● Design View:	We	can	change	the	design	or	layout	of	a	form;	set	properties	for	different	
controls	and	sections	of	a	form;	change	tab	orders;	set	default	properties	for	controls;	add	
calculated	fields	or	add	any	control	from	the	control	group	in	a	design	view.	

	● Layout View:	It	displays	layout	of	a	form.	We	cannot	enter	data	in	this	view.	We	cannot	
add	new	controls	on	a	form	using	this	view.

Types of Form: On	the	basis	of	table	or	query,	we	can	create	a	form	using	the	following	form	
structures:

	 1.	 Form:	It	is	a	form	structure	which	creates	a	simple	form.	To	create	this	type	of	form,	the	
steps	are:

	 a.	 Select	a	table	or	query	from	the	navigation	pane	for	which	you	want	to	create	a	form.
	 b.	 Click	the	‘Create’	tab.
	 c.	 Select	the	‘Form’	option	from	the	form	group.	

	 2.	 Split	form:	A	split	form	is	one	of	the	form	design	structure	which	offers	the	data	in	two	
views	at	the	same	time—the	form	layout	view	and	the	datasheet	view.	We	can	add,	delete	
or	edit	data	in	either	part	of	the	form.	Both	the	views	are	synchronized	as	the	changes	
made	in	one	view	are	reflected	in	 the	other	view.	To	create	a	form	using	‘Split	form’	
design	structure	the	steps	are:

	 a.	 Select	a	table	or	query	from	the	navigation		pane	for	which	you	want	to	create	a	form.
	 b.	 Click	the	‘Create’	tab.
	 c.	 Select	the	‘Split	Form’	option	from	the	form	group.

	 3.	Multiple	Items:	This	type	of	structure	displays	several	records	in	the	Layout	view.	To	
create	a	form	using	the	‘Multiple	Items’	design	structure,	the	steps	are:

	 a.	 Select	a	table	or	query	from	the	navigation	pane	for	which	you	want	to	create	a	form.
	 b.	 Click	the	‘Create’	tab.
	 c.	 Select	the	‘Multiple	Items’	option	from	the	form	group.	

	 4.	 Pivot	Chart:	It	provides	the	tools	to	create	a	graphical	analysis	of	the	data	in	a	table	or	
query.	It	can	be	used	to	add	chart	in	an	existing	form.

	 5.	 Blank	Form:	To	create	a	form	using	‘blank	form’	design	structure	the	steps	are:
	 a.	 Select	a	table	or	query	from	the	navigation	pane	for	which	you	want	to	create	a	form.
	 b.	 Click	the	‘Create’	tab.
	 c.	 	Select	‘blank	form’	option	from	the	form	group.	This	option	opens	an	empty	form	in	

the	Layout	View	with	the	field	List	pane	open	at	the	right	side.	To	add	fields	to	the	
form,	select	table	and	drag	the	fields	to	the	form	layout	or	we	can	set	‘recordsource’	
property	of	a	form	with	the	name	of	a	table.	Then	drag	required	controls	from	the	
‘controls’	group	and	bind	each	control	with	the	table’s	field	using	‘controlsource’	
property.	

	 6.	 Form	Wizard:	To	create	a	form	using	the	‘form	wizard’	design	structure	the	steps	are:
	 a.	 Select	a	table	or	query	from	the	navigation	pane	for	which	you	want	to	create	a	form.
	 b.	 Click	the	‘Create’	tab.
	 c.	 	Select	the	‘form	wizard’	option	from	the	‘more	forms’	option	from	the	form	group.	It	

takes	you	through	the	form	design	process	where	you	can	select	table/query,	layout,	
style	and	name	for	your	form.

CH_11_Overview of MS-Access 2007_Final.indd 197 2/26/2014 3:49:01 PM

198 | Chapter 11

There	are	four	layout	options	available	in	a	form	wizard.

	 1.	 Columnar:	It	arranges	all	the	fields	on	the	screen	in	one	or	more	columns,	depending	on	
the	number	and	size	of	the	fields.

	 2.	 Tabular:	It	places	all	the	data	from	one	record	in	a	line	across	the	form.
	 3.	 Datasheet:	It	is	similar	to	table’s	Datasheet	view.	This	style	is	used	for	subforms.
	 4.	 Justified:	The	fields	are	arranged	in	rows,	but	the	row	of	fields	is	wrapped	to	multiple	

lines	as	necessary.
	 5.	 Datasheet:	It	opens	the	table	or	query	that	is	the	basis	for	the	form	currently	selected	in	

the	navigation	pane	in	datasheet	view.
	 6.	 Modal	Dialog:	 It	 is	 used	 to	 create	 a	dialog	box	which	 is	 not	 based	on	 table	data	but	 it	

includes	user-interaction	controls	such	as	command	buttons,	option	groups	and	drop-down	
lists.

	 7.	 Pivot	Table:	It	summarizes	and	analyzes	data	and	builds	a	table.

Recordsource:	The	record	source	is	one	of	the	properties	of	every	form	and	report	which	pro-
vides	the	source	of	data	from	table,	query	or	an	SQL	statement.	We	can	set	or	change	the	record	
source	property	of	a	form	by	doing	the	following:

	 1.	 In	the	form	design	view,	click	the	form	selector.	Then	in	the	tools	group,	click	the	prop-
erty	sheet	command	or	right-click	the	selector	and	choose	properties	from	the	shortcut	
menu	or	click	F4.

	 2.	 Open	the	‘Data’	tab	and	click	the	down	arrow	in	the	recordsource	property	box.
	 3.	 Choose	the	record	source	from	the	drop-down	list	of	all	tables	and	queries	in	the	current	

database.

Form Sections: There	are	five	sections	of	a	form.

	 1.	 Detail:	It	contains	the	data.
	 2.	 Form	Header:	It	contains	information	to	show	at	the	top	of	the	screen.	For	example,	title,	

instructions,	etc.	This	information	is	printed	at	the	top	of	the	first	page.
	 3.	 Form	Footer:	It	contains	information	to	show	at	the	bottom	of	the	screen.	This	informa-

tion	is	printed	at	the	bottom	of	the	last	page.
	 4.	 Page	Header:	It	contains	information	to	show	at	the	top	of	each	page	when	the	form	is	

printed	or	previewed.	This	section	is	not	visible	in	Form	View.
	 5.	 Page	Footer:	It	contains	information	to	show	at	the	bottom	of	each	page	when	the	form	

is	printed	or	previewed.	This	section	is	not	visible	in	Form	View.

Property Tabs: There	are	five	tabs	available	in	the	property	sheet.

	 1.	 Format:	 It	 lists	all	 formatting	properties	of	particular	control	such	as	caption,	visible,	
back	colour,	back	style,	height,	width.

	 2.	 Data:	Properties	listed	in	this	tab	determines	what	data	is	displayed	and	how	form	han-
dles	the	data.	For	example,	controlsource,	filter,	and	sort	order,	etc.

	 3.	 Event:	 It	 specifies	what	 happens	when	 some	 event	 occurs.	 For	 example,	when	 form	
opens	or	closes,	etc.

	 4.	 Other:	It	includes	miscellaneous	properties	such	as	Popup	and	Modal.
	 5.	 All:	It	displays	complete	list	of	properties.

CH_11_Overview of MS-Access 2007_Final.indd 198 2/26/2014 3:49:01 PM

Overview of MS-Access 2007 | 199

	● Bound, Unbound and Calculated Controls:
	○ Bound	control:	The	control	which	gets	its	value	from	a	field	in	the	table	or	query	and	
as	data	changes,	the	value	of	the	control	changes.	
	○ Unbound	control:	The	control	which	has	no	tie	to	the	underlying	table	data	and	retains	
the	value	user	enters	is	called	an	unbound	control.
	○ Calculated	control:	The	control	which	gets	its	value	from	values	in	the	table	and	is	an	
expression	 containing	 functions	 and	operators	 that	 produces	 some	 result	 is	 called	 a	
calculated	control.

	● Set default properties for any control:	To	set	default	properties	for	any	control	follow	
the	steps	given	below:
	○ From	the	control	groups	given	in	the	Design	tab,	click	on	the	control	for	which	you	
want	to	set	the	default	properties.
	○ In	the	property	sheet	window,	you	will	get	the	selection	type:	Default	for	that	control.
	○ Set	the	properties	which	you	want	as	default	properties.	

	● To place a calculated control on a form which will display the age of a student:
	○ Select	textbox	control	from	the	controls	group.
	○ Open	property	sheet	for	that	textbox.
	○ Select	control	source	property	and	type	=datediff(‘yyyy’,birthdate,date())	in	that.

	● Controls available in ‘Controls’ group of MS-Access 2007:
	○ Textbox:	A	control	that	displays	field	data	from	tables,	queries	or	calculated	fields	is	
called	a	textbox.
	○ Label:	A	control	which	displays	descriptive	text,	such	as	titles,	captions	or	instructions	
is	called	a	label.	It	is	an	unbound	control.
	○ Command	Button:	A	control	which	initiates	an	action,	such	as	opening	a	linked	form,	
running	a	macro	or	calling	a	Visual	Basic	for	Application	(VBA)	procedure	is	called	a	
command	button.
	○ Combo	Box:	It	is	a	combination	box	which	combines	two	controls-drop	down	list	box	
and	check	box.	It	is	used	to	display	multiple	items.
	○ Check	Box:	It	displays	a	check	mark	in	a	small	box	if	the	underlying	field	is	yes.	The	
box	is	empty	if	the	value	is	‘no’.
	○ Option	button:	It	is	also	known	as	radio	button.	It	displays	a	black	dot	inside	a	circle	if	
the	value	in	the	underlying	field	is	yes.	The	circle	is	empty	if	the	value	is	‘no’.
	○ Toggle	button:	When	toggle	button	appears	selected,	the	value	in	the	underlying	field	is	
yes.	If	the	button	appears	raised,	the	value	is	‘no’.
	○ Option	Group:	It	provides	groups	of	Toggle	buttons,	Check	boxes	or	Option	buttons.
	○ Bound	object	frame:	It	displays	an	object	(e.g.,	image)	which	is	stored	in	the	field	of	
a	table.
	○ Unbound	object	frame:	It	 is	used	to	display	an	object	which	does	not	belong	to	any	
field	of	a	table.
	○ Image:	It	is	used	to	display	unbound	image.	For	example,	Logo	of	a	company.
	○ Line:	Used	to	draw	straight	line.	It	is	an	unbound	control.
	○ List	box:	A	control	that	displays	a	list	of	choices,	such	as	values	for	a	field	or	search	
criteria.

CH_11_Overview of MS-Access 2007_Final.indd 199 2/26/2014 3:49:01 PM

200 | Chapter 11

	○ Logo:	A	picture	to	be	used	as	a	logo	on	a	form	or	report.	It	is	usually	placed	in	the	form	
or	report	header.
	○ Page	break:	A	control	that	creates	a	form	with	more	than	one	page	or	causes	a	report	to	
move	on	the	next	printed	page.
	○ Rectangle:	It	is	used	to	draw	rectangle.	It	is	an	unbound	control.
	○ Subform/subreport:	A	 form	 or	 report	 contained	 within	 another	 form	 or	 report	 that	
shows	data	from	related	tables.
	○ Tab:	A	control	that	shows	a	multiple-page	form	with	tabs	at	the	top	of	each	page.

	● Hierarchical Form: Hierarchical	form	represents	1:M	(1	to	many)	type	of	relationship.	
It	consists	of	a	main	form	and	one	or	more	subforms.	The	main	form	shows	data	from	
records	on	the	‘one’	side	of	a	one-to-many	relationship	and	the	subforms	show	data	from	
records	on	the	‘many’	side.

Steps to create a hierarchical form: Following	 steps	 should	be	 followed	 to	 create	 a	
hierarchical	form:

	 1.	 Create	parent	table	and	child	table.
	 2.	 Set	relationship	between	parent	and	child	table	using	a	linked	field.
	 3.	 Start	form	wizard	and	select	parent	table.	In	the	first	dialog	box,	select	fields	which	

you	want	from	the	parent	table.
	 4.	 Then	select	child	table.	Select	fields	which	you	want	from	the	child	table.	Click	next.
	 5.	 The	second	dialog	box	asks	how	you	want	to	view	the	data,	i.e.,	which	records	you	

want	in	the	main	form	and	which	in	the	subform.	Click	next.
	 6.	 Select	the	option	‘form	with	subform’	and	click	next.	
	 7.	 Select	the	layout	(tabular	or	datasheet)	for	the	subform	and	click	next.
	 8.	 Choose	the	style	for	the	form	in	the	next	dialog	box	and	click	next.
	 9.	 In	the	final	dialog	box,	name	the	form	and	the	subform	and	click	finish.

	● Put a hyperlink on the form: To	put	a	hyperlink	on	the	form,	do	the	following:

	 1.	 Open	the	form	in	design	view.	On	the	create	 tab’s	controls	group,	click	the	insert	
hyperlink	command.

	 2.	 From	the	dialog	box,	select	the	filename	from	the	list	or	type	the	path	and	file	name.
	 3.	 If	you	want	to	open	an	object	from	the	current	database	then	click	on	bookmark	and	

select	the	object.	Click	OK.
	 4.	 Drag	the	hyperlink	control	to	the	position	you	want	in	the	form	design.

	● Set tab order of different controls on a form: To	set	tab	order	of	different	controls	on	
a	form	follow	the	steps	given	below:

	 1.	 Right	click	on	the	form.
	 2.	 Select	tab	order	option	from	the	pop-up	menu.
	 3.	 Adjust	controls	using	record	selector	available	in	the	tab	order	dialog	box.

	● Steps to give conditional formatting to any control:	We	can	specify	format	for	a	field	
for	specific	condition	by	setting	conditional	formatting.	To	create	conditional	formatting,	
select	the	control	on	a	form	and	right	click.	Then	select	the	option	conditional	formatting	
and	set	format	according	to	the	condition.

	● Steps to create multiple pages:	There	are	two	ways	to	create	a	multiple-page	form,	as:

CH_11_Overview of MS-Access 2007_Final.indd 200 2/26/2014 3:49:02 PM

Overview of MS-Access 2007 | 201

	 1.	 By	inserting	a	page-break	control:	Page	breaks	are	used	to	separate	the	form	horizon-
tally	into	two	or	more	pages.	To	insert	a	page	break	on	the	‘Design’	tab	in	the	‘controls’	
group,	click	the	‘page	break’	control	and	then	click	in	the	form	where	you	want	the	split.	

	 2.	 By	using	a	tab	control:	Tab	control	produces	multiple-page	tabbed	forms	that	combine	
all	the	pages	into	a	single	control.	Tab	controls	are	useful	for	presenting	grouped	infor-
mation	that	can	be	assembled	by	category.	A	tab	control	has	pages,	each	with	a	tab	of	its	
own.	Each	tab	page	can	contain	all	types	of	controls	such	as	text	boxes,	labels,	combo	
boxes.	To	create	a	tab	control	on	the	‘Design’	tab	in	the	‘controls’	group,	click	the	‘tab’	
control	and	then	click	in	the	form	where	you	want	it.	Then	add	controls	on	each	tab.	We	
can	rename	the	tab’s	name	by	double	clicking	it	or	by	changing	new	name	in	the	‘cap-
tion’	property	of	that	page.	To	add	or	remove	a	page	in	a	tab	control,	right	click	on	a	tab	
control	and	select	‘insert	page’	or	‘delete	page’	option.

11.8 | Creating repOrts in Ms-aCCess
Reports:	Reports	are	used	for	viewing	and	printing	data	in	some	specific	format.	There	are	four	
views	available	using	which	we	can	view,	insert	or	change	data	and	change	design	or	proper-
ties	of	a	report.	The	four	views	are:	Report	View,	Design	View,	Layout	View	and	Print	Preview.	

	 1.	 Report	View:	We	can	view	the	details	of	data,	but	can’t	change	or	insert	anything.	The	
report	will	be	available	as	read	only	in	this	view.

	 2.	 Design	View:	We	can	change	the	design	or	layout	of	a	report;	set	properties	for	different	
control	and	sections	of	a	report;	add	calculated	fields	or	add	any	control	from	the	control	
group	in	a	design	view.

	 3.	 Layout	View:	It	displays	layout	of	a	report.	We	can	add	some	controls	such	as	logo,	title,	
page	no.	and	date/time	in	this	view.	We	can	change	properties	of	existing	controls	of	a	
report	using	this	view.	

	 4.	 Print	Preview:	It	will	display	the	layout	of	a	report	and	shows	how	the	report	will	look	
when	it	will	be	printed.

Creating a Report: We	can	create	a	report	in	the	following	five	ways.	We	may	use

	● ‘Report’ option given in the ‘Reports’ group:	To	create	a	report	using	‘report’	option,	
the	steps	are:

	 a.	 Select	a	table	or	query	from	the	navigation	pane	for	which	you	want	to	create	a	report.
	 b.	 Click	‘Create’	tab	and	select	‘report’	option	from	the	reports	group.

	● ‘Report Wizard’ option given in the ‘Reports’ group:	To	create	a	report	using	‘report	
wizard’	design	structure,	the	steps	are:

	 a.	 Select	‘report	wizard’	option	from	the	‘reports’	group.	It	takes	you	through	the	report	
design	process	where	you	can	 select	 table/query,	 layout,	 style	and	name	 for	your	
report.

	 b.	 Select	table/query	using	which	you	want	to	create	a	report	and	select	fields	of	that	
report.

	 c.	 Click	next	and	select	the	filed/fields	on	which	you	want	to	group	the	records.	After	
selecting	the	field,	you	may	select	the	grouping	intervals	for	the	fields.	For	example,	

CH_11_Overview of MS-Access 2007_Final.indd 201 2/26/2014 3:49:02 PM

202 | Chapter 11

if	 the	field’s	data	 type	 is	number	 then	MS-Access	gives	you	 the	choice	for	no.	of	
intervals	(10s,	50s,	100s,	and	so	on.)	on	which	you	want	to	group	the	data.

	 d.	 Click	next.	Then	we	can	select	the	sorting	option	and	summary	option.
	 e.	 Click	next.	We	can	select	layout	(Stepped,	Outline	or	Block)	and	orientation	(Land-

scape	or	Portrait).
	 f.	 Click	next.	We	can	select	style	for	the	report	from	the	given	option.
	 g.	 Click	next	and	give	name	to	the	report	and	click	finish.

	● ‘Labels’ option given in the ‘Reports’ group:	To	create	a	report	of	label	type,	the	steps	
are:

	 a.	 Select	a	table/query	and	click	the	‘labels’	option	from	the	‘reports’	group.	
	 b.	 The	label	wizard	will	be	opened	where	you	need	to	select	‘label	type’	(sheet	feed	or	

continuous),	‘unit	of	measure’	[English	(it	will	display	label	size	in	inches)	or	Metric	
(it	will	display	label	size	in	millimeter]	and	click	Next.

	 c.	 Select	font	name,	size,	colour,	etc.,	and	click	Next.
	 d.	 Select	fields	which	you	want	to	display	on	a	label	and	click	Next.
	 e.	 Select	field	name	on	which	you	want	to	sort	your	labels	and	click	Next.
	 f.	 Give	name	to	this	report	and	click	Finish.

	● ‘Report Design’ option given in the ‘Reports’ group:	This	option	will	open	the	design	
view	of	a	report	where	we	can	paste	controls	and	bind	them	with	the	fields	manually	or	
drag	fields	from	the	window	‘field	list’.

	● ‘Blank Report’ option given in the ‘Reports’ group:	To	create	a	report	using	‘blank	
form’	design	structure,	the	steps	are:

	 a.	 Click	the	‘Create’	tab	and	select	the	‘blank	form’	option	from	the	reports	group.	
	 b.	 This	option	opens	an	empty	report	in	a	Layout	View	with	the	‘Field	List’	pane	open	

at	the	right	side.	To	add	fields	to	the	report,	select	table	and	drag	the	fields	to	the	re-
port	layout	or	we	can	set	‘recordsource’	property	of	a	report	with	the	name	of	a	table/
query.	Then	drag	required	controls	from	the	‘controls’	group	and	bind	each	control	
with	the	table’s	field	using	‘controlsource’	property.	

Report Sections:	There	are	seven	sections	of	a	report:

	● Detail:	It	contains	the	data.
	● Report	Header:	It	contains	information	to	show	at	the	top	of	the	screen.	For	example,	title,	
instructions,	etc.	This	information	is	printed	at	the	top	of	the	first	page.

	● Report	Footer:	It	contains	information	to	show	at	the	bottom	of	the	screen.	This	informa-
tion	is	printed	at	the	bottom	of	the	last	page.
	● Page	Header:	It	contains	information	to	show	at	the	top	of	each	page.	
	● Page	Footer:	It	contains	information	to	show	at	the	bottom	of	each	page.
	● Group	Header:	It	contains	information	to	show	at	the	top	of	a	particular	group.	For	each	
group,	individual	group	header	section	will	be	displayed.

	● Group	Footer:	It	contains	information	to	show	at	the	bottom	of	a	particular	group.	For	
each	group,	individual	group	footer	section	will	be	displayed.

Subreport: A	report	which	is	inserted	into	another	report	is	called	a	‘subreport’.	A	main	report	
can	include	as	many	subreports	and	subforms	as	necessary.	A	first	level	subreport	can	contain	

CH_11_Overview of MS-Access 2007_Final.indd 202 2/26/2014 3:49:02 PM

Overview of MS-Access 2007 | 203

another	subreport	or	a	subform.	If	the	first	level	is	a	subform,	it	can	contain	only	another	sub-
form,	not	a	subreport,	as	the	second	level.	We	can	use	the	subform/subreport	control	given	in	
the	create	tab’s	reports	group	to	create	a	new	subreport	in	the	current	report	design.	We	can	also	
use	the	subform/subreport	wizard	to	create	a	subreport.	To	create	a	subreport,	do	the	following:

	 1.	 Create	a	main	report.	Open	it	in	the	design	view.
	 2.	 Select	subform/subreport	control	from	the	controls	group	and	drag	it	into	the	main	re-

port’s	detail	section.
	 3.	MS-Access	will	open	the	wizard	and	ask	for	the	selection,	where	you	can	select	an	exist-

ing	report	as	the	subreport	or	create	a	new	one	using	an	existing	table	or	query.
	 4.	 Choose	use	existing	tables	and	queries	to	create	the	new	subreport	and	click	Next.
	 5.	 Select	fields	from	the	list	of	fields	which	you	want	to	place	in	a	subreport.
	 6.	 Select	 the	linked	field	using	which	you	want	to	relate	records	of	main	report	and	sub	

report.	Click	Next.
	 7.	 Give	any	name	to	the	subreport	and	click	on	finish.

Parameterized Report: To	create	a	parameterized	report,	go	with	the	following	steps:

	 1.	 Create	a	parameterized	query	using	a	query	design	command	or	using	an	SQL	view.
	 2.	 Save	the	query.
	 3.	 Select	report	wizard	from	the	create	tab’s	reports	group	and	select	the	saved	parameter-

ized	query	in	the	dialog	box.
	 4.	 Select	fields	which	you	want	to	see	in	the	report	and	click	Next.
	 5.	 Select	grouping	(if	any)	and	click	Next.
	 6.	 Select	sorting	fields	(if	any)	and	click	Next.
	 7.	 Select	layout	and	orientation	and	click	Next.
	 8.	 Select	style	and	click	next.	Save	the	report	by	giving	appropriate	name	and	click	finish.

To print parameters in the report header, do the following:

	 1.	 On	the	Design	tab’s	controls	group,	click	the	text	box	and	place	the	control	in	the	Report	
Header	section.

	 2.	 Double	click	the	text	box	control	to	open	the	property	sheet	and	enter	the	expression	in	
the	control	source	property	box.	When	expression	is	entered,	write	the	message	(text)	in	
double	quotation	marks	and	parameters	in	square	brackets.

	 3.	 To	concatenate	parameters	and	message	(text),	use	‘&’	character.	For	example,	if	the	
parameter	name	is	‘enter	student	number’,	 then	it	should	be	enclosed	within	square	
brackets.	If	the	message	is	‘Details	of	student	number’,	then	it	should	be	enclosed	in	
double	quotation	marks	and,	 then	both	should	be	concatenated	using	 ‘&’	character.	
Therefore,	the	final	expression	in	the	control	source	property	of	a	text	box	will	be	=	
‘Details	of	student	number:	’&	[enter	student	number]

 Adding groups or sorts in the report: To	add	any	group	in	the	report,	do	the	following:

	 1.	 Select	the	design	tab.	Click	the	‘group	and	sort’	option	given	in	the	‘grouping	and	totals’	
group.	The	‘grouping,	sort	and	totals’	window	will	be	available	below	the	report	window.

	 2.	 Click	on	the	‘Add	a	group’	in	that	window.	Select	field	name	on	which	you	want	to	group	
your	records.	Group	will	be	available	in	that	window	with	some	options	which	we	can	
set	as	per	our	requirement.	Using	these	options,	we	can	set	sorting	order,	can	apply	

CH_11_Overview of MS-Access 2007_Final.indd 203 2/26/2014 3:49:02 PM

204 | Chapter 11

aggregate	function	on	the	data,	can	set	title	for	the	group,	can	select	option	to	hide/show	
group	header/footer,	and	can	select	the	printing	position	for	the	group.	

	 3.	We	can	group	the	data	on	some	part	of	a	field	also,	 i.e.,	you	may	select	 the	grouping	
intervals	for	the	fields.	For	example,	if	the	field’s	data	type	is	number,	then	MS-Access	
gives	you	the	choice	for	no.	of	intervals	(10s,	50s,	100s,	and	so	on)	on	which	you	want	to	
group	the	data.	If	the	field’s	data	type	is	text,	then	MS-Access	gives	you	the	choice,	such	
as	by	entire	value,	by	first	character,	by	first	two	characters	or	we	can	set	the	number		
of	characters	using	custom	option.	If	the	field’s	data	type	is	date/time,	then	MS-Access	
gives	you	the	choice	such	as	by	entire	value,	by	day,	by	week,	by	month,	by	quarter,	by	
year,	or	we	can	set	any	number	for	hour,	minute	and	second.	

	 4.	 To	set	the	caption	of	an	aggregate	function,	select	the	textbox	and	right	click.	Select	the	
option	‘Set	caption’.

	 5.	 Similarly,	we	can	click	on	‘Add	a	sort’	in	grouping,	sort	and	totals	window.	Select	field	
name	on	which	you	want	to	sort	your	records.

Printing serial numbers on a report: To	display	serial	numbers	or	line	numbers	in	a	report	
which	does	not	contain	any	group,	do	the	following:

	 1.	 Add	a	calculated	text	box	control	to	the	detail	section	at	the	required	position.
	 2.	 Remove	the	label	of	the	text	box	and	set	the	control	source	property	of	a	text	box=1.
	 3.	 Set	the	running	sum	property	of	a	textbox	to	Over	All.
	 4.	 If	you	want	to	restart	the	serial	numbers	for	a	new	group,	then	set	the	running	sum	prop-

erty	of	a	textbox	to	Over	Group.

Exporting a report: To	export	the	report,	click	on	external	data	and	select	any	option	from	the	
‘export’	group.	We	can	export	the	report	as	following	files:	

	 1.	Word	file	[(It	will	save	the	file	with	.rtf	(rich	text	format)	extension.]
	 2.	 Text	file	(It	will	save	the	file	with	.txt	extension.)
	 3.	 Snapshot	Viewer	file	(It	will	save	the	file	with	.snp	extension.	This	file	will	keep	report	

formatting	as	it	is.)
	 4.	 HTML	file	(It	will	save	the	file	with	.html	extension.)
	 5.	 XML	file	(It	will	save	the	file	with	.xml	extension.)
	 6.	 Save	report	in	another	database.

After	selecting	the	option,	choose	path	where	you	want	to	store	your	report	and	give	file	name.	
If	you	want	to	save	the	steps	of	export,	then	select	the	option	‘save	export	steps’	and	click	on	
Finish.

Removing duplicate values or repeating values: When	we	group	our	data,	the	data	are	re-
peated	for	the	grouped	column.	To	display	the	group	detail	only	once,	we	can	shift	the	textbox	
of	grouped	field	in	the	group	header	section	or	we	can	set	‘hide	duplicates’	format	property	with	
the	value	‘yes’	of	a	textbox	on	which	grouping	is	done.	

Creating a chart: A	chart	is	composed	of	elements,	some	of	which	relate	to	the	data,	while	oth-
ers	relate	to	the	structure	of	the	chart	itself.	Following	are	the	main	elements	of	a	standard	chart:

	● Category	(x)	axis:	It	is	the	horizontal	line	at	the	bottom	of	the	chart	that	usually	identifies	
the	data	in	the	chart.	For	example,	when	you	plot	class-wise	total	number	of	students,	the	
class	name	appears	on	the	Category	(x)	axis.

CH_11_Overview of MS-Access 2007_Final.indd 204 2/26/2014 3:49:02 PM

Overview of MS-Access 2007 | 205

	● Value	(y)	axis:	The	vertical	line	that	measures	the	values	in	the	chart	data.	For	example,	
when	you	plot	class	wise	total	number	of	students,	the	total	number	of	students	appears	
on	the	Value	(y)	axis.

	● Z	axis:	It	is	optional.	It	appears	in	3D	charts,	and	also	measures	values.	
	● Series:	A	group	of	related	data	values	from	one	field	in	the	underlying	record	source.	For	
example,	in	a	class-wise	total	number	of	students,	each	class’s	total	number	of	students	
would	 represent	one	of	 the	 series	values.	The	values	are	grouped	 together	 in	one	cat-
egory—the	classid.	

	● Titles:	Explain	the	purpose	and	scope	of	the	chart.	Titles	are	optional	and	can	appear	at	
the	top	of	the	chart	and	by	each	axis.

	● Tick	marks:	Short	lines	that	appear	on	the	axes	to	mark	evenly	spaced	segments.	They	
help	you	to	read	values	and	determine	the	scale	of	the	chart.
	● Gridlines:	Horizontal	or	vertical	lines	that	appear	across	or	up	and	down	the	chart	at	the	
tick	marks.

	● Scale:	Defines	the	range	of	values	in	the	chart	and	the	increments	marked	by	tick	marks	
on	the	axes.
	● Slice:	It	can	be	defined	as	a	wedge	of	a	single	field	in	a	pie	chart	which	represents	the	
relative	value	of	one	data	point	with	respect	to	the	whole.
	● Data	markers:	The	elements	that	show	the	value	of	the	data.	For	example,	bars,	columns,	
slices	of	a	pie	chart,	etc.
	● Data	labels:	The	actual	values	that	can	be	displayed	above	or	near	the	data	markers.
	● Legend:	The	list	that	identifies	the	members	of	a	series	of	data	values.	

To	create	a	chart,	open	a	report	and	select	‘insert	chart’	control	from	‘controls’	group	and	paste	
it	on	a	report.	A	chart	wizard	will	be	available	where	we	can	specify	the	field	which	should	be	
displayed	on	x-axis,	the	value	to	be	displayed	on	y-axis,	chart	type,	chart	title,	etc.

11.9 | Creating MaCrOs anD sWitChbOarD
Macro:	A	macro	is	a	list	of	one	or	more	actions	that	work	together	to	carry	out	a	particular	task	
in	response	to	an	event.	Each	action	carries	out	a	particular	operation.	We	can	create	the	list	of	
actions	in	the	order	in	which	we	want	them	to	execute.	We	can	also	specify	other	details	of	the	
action	called,	‘argument’	which	provide	additional	 information	such	as	which	form	to	open,	
or	how	to	filter	the	records	to	be	displayed.	We	can	also	set	conditions,	under	which	the	macro	
action	to	be	performed	such	as	to	display	a	message	box	if	a	field	contains	a	certain	value,	or	is	
blank.	The	macro	action	runs	only	if	the	condition	evaluates	to	True.	If	the	condition	is	False,	
the	action	is	skipped.	Then,	if	another	action	is	in	the	macro,	it	is	executed.	If	not,	the	macro	
stops.	To	run	a	macro,	we	can	assign	it	to	the	event	property	of	a	form,	report,	report	section	or	
control.	When	the	event	occurs,	a	macro	automatically	executes,	beginning	with	the	first	action	
in	the	list.	For	example,	a	macro	that	opens	a	form	and	moves	to	a	blank	record	for	data	entry	
can	be	assigned	to	the	‘on	click’	event	property	of	a	command	button	in	a	dialog	box	or	another	
form.	When	we	click	the	button,	the	macro	executes.

Types of Macros:	There	are	two	types	of	macros:	(i)	Standalone	macro;	(ii)	Embedded	macro.	
The	difference	between	standalone	and	embedded	macro	is	provided	inTable	11.17.

CH_11_Overview of MS-Access 2007_Final.indd 205 2/26/2014 3:49:02 PM

206 | Chapter 11

table 11.17 |	 Differences	Between	Standalone	and	Embedded	Macros

standalone Macro embedded Macro

Standalone macros are individual Access
objects which we can create by clicking on
macros group.

Embedded macros are created within forms
or reports for the specific control.

Standalone macros listed in the Navigation
Pane.

Embedded macros are not listed in the
Navigation Pane.

We can re-use Standalone macros. We cannot re-use embedded macros.

We can debug Standalone macros. We cannot debug embedded macros.

We can save standalone macro with some
name as they are individual Access objects.

We cannot save embedded macro with some
name as they belong to specific control of a
specific form or report.

Steps to create a Standalone Macro:

	 1.	 On	 the	Create	 tab’s	Other	group,	click	 the	Macro	drop	down	box	and	select	Macro	
option.	

	 2.	 The	Macro	window	will	be	opened	with	three	columns	named	Action,	Arguments	and	
Comment.	We	can	select	the	action,	set	arguments	and	write	comments	for	that	action.	

	 3.	 To	add	conditions	for	the	actions,	in	design	tab’s	show/hide	group,	select	the	option	con-
ditions.	Fourth	column	conditions	will	be	available	in	the	macro	window	where	we	can	
specify	condition	for	the	particular	action.	If	the	condition	is	true	then	only	the	related	
action	is	being	executed.

	 4.	 Save	the	macro	with	some	name.	The	macro	will	be	available	in	the	navigation	pane.

We	can	assign	this	macro	to	the	event	property	of	a	form,	report,	report	section	or	control.	

Steps to create an Embedded Macro:

	 1.	 Open	 the	 form	 or	 report	 and	 select	 the	 control	 for	which	we	want	 the	macro.	Open	
property	sheet	of	that	control	and	click	on	event	property	tab.	Choose	the	event’s	builder	
dialog	box	by	clicking	…	(ellipsis)	for	which	you	want	to	define	macro.

	 2.	 The	Macro	window	will	be	opened	with	three	columns	named	Action,	Arguments	and	
Comment.	We	can	select	the	action,	set	arguments	and	write	comments	for	that	action.	

	 3.	 To	add	conditions	for	the	actions,	in	design	tab’s	show/hide	group,	select	the	option	con-
ditions.	Fourth	column	conditions	will	be	available	in	the	macro	window	where	we	can	
specify	condition	for	the	particular	action.	If	the	condition	is	true,	then	only	the	related	
action	is	being	executed.

Different columns of a Macro sheet: There	are	five	columns	available	in	the	macro	sheet.

	● Condition:	The	condition	can	be	specified	for	a	particular	action.	The	macro	action	runs	
if	the	condition	evaluates	to	true,	otherwise	the	action	is	skipped.	The	condition	column	
will	be	available	when	we	click	on	‘condition’	option	given	on	the	show/hide	group	of	
design	tab.	A	condition	applies	only	to	the	action	on	the	same	row	in	the	macro	sheet.	If	
the	condition	is	not	met,	the	next	action	is	executed.	To	continue	the	condition	to	the	next	
action,	enter	an	ellipsis	(…)	in	the	condition	column	of	the	next	row.	We	can	apply	the	
condition	to	several	sequential	actions.	Some	examples	of	conditions	are:

CH_11_Overview of MS-Access 2007_Final.indd 206 2/26/2014 3:49:02 PM

Overview of MS-Access 2007 | 207

table 11.18 |	 Examples	of	Conditions

expression returns true if

[state]=‘Gujarat’ Value of the control state is ‘Gujarat’

Not Isnull ([stdname]) Stdname does not contain null

Forms![student]![birthdate]>date () Birthdate control of student form contains future date.

	● Action:	Each	action	carries	out	one	particular	operation	of	a	macro	such	as	moving	among	
record	in	a	form,	playing	sounds,	displaying	message	boxes,	etc.	If	a	particular	action	is	
not	listed	in	the	action	drop	down	list	box,	then	click	on	design	tab’s	show/hide	group	and	
select	‘show	all	actions’	command.
	● Argument:	Argument	specifies	the	details	of	an	action	which	provides	additional	infor-
mation	such	as	which	form	to	open	or	how	to	filter	the	records	to	be	displayed.

	● Comment:	We	can	write	description	for	a	particular	action	in	this	column.
	● Macro:	It	is	used	when	we	want	to	define	a	macro	group.	The	macro	column	will	be	avail-
able	when	we	click	on	‘macro	names’	option	given	on	the	show/hide	group	of	design	tab.

Testing and Debugging a Macro:
	● After	creating	a	macro,	we	can	run	it	to	see	if	it	gives	correct	output	or	not.	We	have	a	
choice	of	running	the	complete	macro	at	once	or	stepping	through	the	macro	one	action	at	
a	time.	If	an	error	occurs	in	the	macro	or	we	don’t	get	the	expected	results,	we	can	use	the	
single	step	method	of	running	the	macro	to	see	what	went	wrong.	We	can	run	the	macro	
either	by	double	clicking	it	in	a	navigation	pane	or	by	right	clicking	the	macro	name	and	
by	choosing	run	from	the	shortcut	menu.

	● If	the	error	occurs	during	the	operation,	MS-Access	displays	an	error	message	explaining	
the	reason	for	the	error.	Read	the	message	and	click	OK	to	open	the	Action	Failed	dialog	
box.	It	will	show	the	error	number	and	other	details	such	as	condition,	action	name	and	
arguments.	Select	‘stop	all	macros’	option	to	stop	execution.	After	that	correct	the	prob-
lem	and	run	the	macro	again.

	● Stepping	through	a	macro:	To	debug	the	macro	step	by	step,	click	on	‘single	step’	com-
mand	given	in	the	tools	group	and	click	the	run	command	to	carry	out	the	actions	one	by	
one.	In	Macro	single	step	dialog	box,	the	following	three	options	are	available:

	 1.	 Step	(default):	If	we	click	on	step,	it	will	move	to	the	next	action.	It	will	show	outputs	
after	each	step	if	there	is	no	error.

	 2.	 Stop	All	Macros:	It	stops	macro	execution.
	 3.	 Continue:	If	we	click	on	continue,	it	stops	single	step	mode	and	runs	the	rest	of	the	

macro	without	stopping.	It	will	show	the	final	output	if	there	is	no	error.

Common uses of a macro:

	 1.	 Displaying	a	message	box:	Using	the	‘msgbox’	action	we	can	display	warnings,	alerts	or	
other	information.	It	is	one	of	the	most	useful	macro	actions	when	interacting	with	the	user.	

	 2.	 Validating	data:	We	ensure	that	valid	data	is	entered	in	a	form	by	specifying	a	valida-
tion	rule	for	the	control	 in	the	form	by	setting	record	and	field	validation	rules	in	the	
underlying	table	design.	For	more	complex	data	validation,	we	use	a	macro	or	an	event	
procedure	to	specify	the	rule.	

CH_11_Overview of MS-Access 2007_Final.indd 207 2/26/2014 3:49:02 PM

208 | Chapter 11

	 3.	 Filtering	records:	We	can	create	a	macro	to	limit	the	records	we	want	to	print	by	adding	
a	Where	condition	to	the	OpenReport	action.	We	can	also	set	filters	for	forms.

	 4.	 Setting	values	and	properties:	‘Set	value’	is	a	useful	macro	action	that	sets	the	value	of	a	
field,	control	or	property	of	a	form,	a	form	datasheet	or	a	report.	We	can	also	set	property	
of	a	control	at	run	time.

	 5.	 Changing	the	flow	of	operations:	We	can	control	the	flow	of	operations	by	adding	condi-
tions	that	determine	whether	a	macro	action	is	carried	out.	If	the	condition	evaluates	to	
True,	the	corresponding	action	takes	place.	We	can	add	the	msgbox	function	to	a	macro	
condition	to	let	the	user	decide	which	action	to	carry	out.

Nested Macro: If	we	want	to	run	one	macro	from	another	macro,	‘RunMacro’	action	is	used	
and	‘macro	name’	argument	should	be	set	to	the	name	of	the	macro	that	we	want	to	run.	With	
this	RunMacro	action,	we	can	 repeat	 the	macro	many	 times.	The	RunMacro	action	has	 two	
arguments	in	addition	to	the	Macro	Name:

	 1.	 Repeat	Count:	It	specifies	the	maximum	number	of	times	the	macro	is	to	run.
	 2.	 Repeat	Expression:	It	contains	an	expression	that	evaluates	to	true	(–1)	or	false	(0).	The	

expression	 is	 evaluated	 each	 time	 the	RunMacro	 action	 occurs.	When	 it	 evaluates	 to	
False,	the	called	macro	stops.	
	○ The	Repeat	Count	and	Repeat	Expression	arguments	work	 together	 to	specify	how	
many	times	the	macro	runs.
	○ If	both	are	blank,	the	macro	runs	only	once.
	○ If	Repeat	Count	contains	a	number,	but	the	Repeat	Expression	is	blank,	the	macro	runs	
the	specified	number	of	times.
	○ If	the	Repeat	Count	is	blank,	but	the	Repeat	Expression	contains	an	expression,	the	
macro	runs	until	the	expression	evaluates	to	False.
	○ If	both	arguments	contain	entries,	 the	macro	 runs	 the	specified	number	of	 times	or	
until	the	expression	evaluates	to	False,	whichever	occurs	first.

When	the	called	macro	is	finished,	Access	returns	to	the	calling	macro	and	runs	the	next	action	
after	RunMacro.

Create a Macro Group:	If	we	create	several	macros	that	apply	to	controls	on	the	same	form	
or	report,	we	can	group	them	together	as	one	file.	Using	macro	groups	offers	two	advantages:

	 1.	 It	reduces	the	no.	of	macro	names	in	the	Navigation	Pane.
	 2.	We	can	find	all	the	macros	for	a	single	form	or	report	in	one	place,	where	they	are	easy	

to	edit,	if	necessary.
	○ Steps	to	create	a	macro	group:

	 	 1.	 	Open	the	macro	sheet	and	in	the	show/hide	group,	click	the	Macro	Names	com-
mand	to	display	the	Macro	Name	column.

	 	 2.	 	Add	a	macro	to	the	sheet	and	enter	a	name	for	it	in	the	Macro	Name	column	of	the	
first	row	of	the	macro.

	 	 3.	 Add	the	rest	of	the	actions	to	the	macro.	
	 	 4.	 	To	add	another	macro,	enter	the	macro	name	in	the	Macro	Name	column	and	add	

actions	that	you	want	to	occur.
	 	 5.	 	After	adding	all	the	macros	to	the	group,	close	and	save	it	as	usual	with	the	group	

name.

CH_11_Overview of MS-Access 2007_Final.indd 208 2/26/2014 3:49:02 PM

Overview of MS-Access 2007 | 209

To	assign	macro	from	a	macro	group	to	an	event	property	of	any	control,	select	a	specific	mac-
rogroupname.macroname	from	the	drop	down	list	box.	

‘Autokeys’ Macro group:	We	can	create	a	special	macro	group	named	‘autokeys’,	in	which	we	
can	assign	an	action	or	a	set	of	actions	to	a	specific	key	or	key	combination.	These	work	as	the	
shortcut	key	that	we	can	use	to	carry	out	a	ribbon	command.	Pressing	a	key	or	combination	of	
keys	carries	out	the	action	that	we	specify.	We	can	add	as	many	individual	macros	to	the	group	
as	we	need,	each	one	named	with	the	key	or	key	combination	that	runs	it.	The	following	table	
shows	a	list	of	valid	Autokeys	key	combinations.	The	carat	symbol	(^)	represents	CTRL	and	
the	plus	sign	(+)	represents	SHIFT.	Function	keys	and	other	key	names	are	enclosed	in	curly	
brackets	({}).	Table	11.19	shows	examples	of	some	autokeys.

A	database	can	have	only	one	autokeys	named	macro.

‘Autoexec’ Macro: We	can	create	a	special	macro	that	runs	when	we	first	open	a	database.	
The	‘autoexec’	macro	can	carry	out	actions	such	as	opening	a	form	for	data	entry,	displaying	
a	message	box	prompting	the	user	to	enter	his/her	name	or	playing	a	sound	greeting.	To	create	
‘autoexec’	macro,	create	the	macro	with	the	actions	that	we	want	to	carry	out	at	start	up	and	
save	it	with	the	name	‘autoexec’.	A	database	can	have	only	one	autoexec	named	macro.

Steps to protect the database with a password:

	 1.	 Click	Microsoft	Office	button	and	click	Open.
	 2.	 Locate	and	select	the	database	in	the	open	dialog	box.	Then	click	the	Open	down	arrow	

and	choose	Open	Exclusive	from	the	drop-down	list.
	 3.	With	 the	database	open,	on	 the	Database	Tools	 tab’s	Database	Tools	group,	click	 the	

Encrypt	with	Password	command.
	 4.	 In	the	Set	Database	Password	dialog	box,	enter	the	password	and	press	TAB.	Enter	the	

password	again	to	verify	it.
	 5.	 Click	OK.

table 11.19 |	 Examples	of	Autokeys

Key Combination examples of Macro name

CTRL with any letter or number key ^A, ^4

Any function key {F1}

CTRL with any function key ^{f1}

SHIFT with any function key +{f1}

INS {INSERT}

CTRL with INS ^{INSERT}

SHIFT with INS +{INSERT}

DEL {DELETE} or {DEL}

CTRL-DEL ^{DELETE} or ^{DEL}

SHIFT-DEL +{DELETE} or +{DEL}

CH_11_Overview of MS-Access 2007_Final.indd 209 2/26/2014 3:49:02 PM

210 | Chapter 11

Steps to remove the password from the database:

	 1.	 Click	Microsoft	Office	button	and	click	open.
	 2.	 Locate	and	select	the	database	in	the	open	dialog	box.	Then	click	the	Open	down	arrow	

and	choose	Open	Exclusive	from	the	drop-down	list.
	 3.	With	 the	database	open,	on	 the	Database	Tools	 tab’s	Database	Tools	group,	click	 the	

‘Decrypt	database’	command.
	 4.	 In	the	Unset	Database	Password	dialog	box,	enter	the	password	and	verify	it.
	 5.	 Click	OK.

Switchboard:	A	switchboard	system	for	a	database	consists	of	a	hierarchical	arrangement	of	
switchboard	pages,	including	a	main	switchboard	page	that	usually	branches	out	to	two	or	more	
subordinate	pages.	Each	page	consists	of	a	set	of	items	with	commands	that	carry	out	a	specified	
activity.	Most	items	also	include	an	argument	that	specifies	which	form	to	open,	which	report	
to	preview,	which	macro	to	run,	etc.

To create a switchboard, do the following:

	 1.	 Click	the	switchboard	manager	given	on	the	database	tools	tab’s	database	tools	group.
	 2.	 The	first	switchboard	manager	dialog	box	starts	with	the	mandatory	default	main	switch-

board	page.	We	can	rename	the	main	switchboard	page.
	 3.	 Then	we	can	add	new	switchboard	pages	by	clicking	on	‘new’	option.
	 4.	 After	creating	all	 the	pages,	we	can	 link	 these	pages	with	other	switchboard.	To	 link	

pages	with	main	switchboard,	double	click	the	main	switchboard	and	add	the	created	
pages	to	link	with	main	switchboard.

	 5.	 Similarly,	we	can	double	click	on	any	other	switchboard	page	and	add	items	which	we	
want	to	link	with	that	page.

	 6.	 At	the	last	level,	we	can	put	pages	to	open	form	in	edit	or	add	mode,	to	open	report,	run	
any	macro	or	code,	exit	from	the	application,	go	to	a	particular	switchboard,	etc.

 After	creating	a	switchboard	we	can	change	its	formatting	by	opening	it	into	design	view	
because	switchboard	is	created	as	a	form.

To	open	the	switchboard,	when	we	start	a	database,	do	the	following:

	 1.	 Click	on	MS	Office	Access	button.
	 2.	 Click	on	‘Access	Options’	button.
	 3.	 Select	‘Current	Database’	option.
	 4.	 Select	switchboard	from	the	‘Display	form’	drop	down	list	box.

Difference between switchboard and navigation pane: Table	 11.20	 shows	 the	 difference	
between	navigation	pane	and	switchboard.

Creating Documentation:	 To	 create	 a	 documentation,	 for	 any	MS-Access	 object	 do	 the	
following.	

	 1.	 Click	on	Database	Tools	and	select	‘Database	Documenter’	from	the	‘Analyze’	group.
	 2.	 The	Documenter	dialog	box	will	be	opened	where	you	can	select	the	object	type	such	as	

forms,	reports,	macros.
	 3.	 After	selecting	object	type,	the	object	names	of	that	type	will	be	available	in	the	list.

CH_11_Overview of MS-Access 2007_Final.indd 210 2/26/2014 3:49:02 PM

Overview of MS-Access 2007 | 211

table 11.20 |	 Switchboard	vs.	Navigation	Pane

navigation pane switchboard

It is always available, even when closed. We can close it.
All the objects are available to view. We can restrict/limit the objects to view by

creating a specific activity.
We can’t hide the object’s design view. We can hide the object’s design view and

hence restrict the user to change the design.
We can’t hide navigation pane when ob-
ject is open.

We can hide switchboard when object is open.

	 4.	 Select	the	object	name	for	which	you	want	to	prepare	the	documentation.	If	you	want	to	
create	documentation	for	more	than	one	object	then	you	may	select	many	objects	from	
the	list.

	 5.	 Click	OK.
	 6.	 The	documentation	will	be	created	as	a	report	and	you	cannot	save	it	or	change	it.
	 7.	 You	may	take	the	printout	of	that	report	or	export	it	as	a	word,	text,	XML,	HTML,	or	

Snapshot	Viewer	file.	

SUMMARY
	● MS-Access	is	a	Relational	Database	System.
	● We	can	create	tables,	queries,	forms,	reports,	macros,	etc.,	in	Access.
	● Tables	can	be	created	using	design	view	and	datasheet	view.
	● Records	can	be	inserted	in	a	table	only	using	datasheet	view.
	● Access	is	case	insensitive.
	● Blanks	are	allowed	in	the	field	names	in	Access,	but	when	it	 is	retrieved,	 it	should	be	
enclosed	within	square	brackets.

	● There	are	some	templates	available	to	create	a	table,	which	can	also	be	modified.
	● When	we	open	Access,	there	is	a	pane	available	on	left	side,	which	is	called	navigation	
pane.	It	contains	all	user-defined	objects	such	as	tables,	queries,	forms,	reports,	macros.		
We	can	minimize	navigation	pane,	but	cannot	close	it.

	● Different	10	data	 types	such	as	 text,	memo,	number,	date/time,	currency,	autonumber,	
yes/no,	OLE	object,	hyperlink	and	attachment	are	available	in	Access.
	● Most	of	the	data	types,	except	Number	fields	with	the	Replication	ID	property,	enabled	
OLE	Object	fields	and	attachment	could	be	converted	into	any	other	data	type.
	● Each	field	data	type	has	some	properties.
	● We	can	Filter	and	sort	records	in	Access.
	● Filter	removes	the	records	from	the	screen	which	do	not	meet	the	condition	and	displays	
only	those	records	which	you	want	to	see.	But	records	remain	in	the	table.

	● There	are	four	ways	to	filter	records—Common	context	filters,	Filter	by	selection,	Filter	
by	form	and	Advanced	filter/sort.
	● We	can	create	a	query	in	MS-Access	using	query	design	view,	query	wizard	or	SQL	view.
	● Forms	are	used	for	viewing	and	entering	data.	We	can	create	various	types	of	forms	in	
Access	such	as	split	form,	multiple	items,	pivot	chart.

CH_11_Overview of MS-Access 2007_Final.indd 211 2/26/2014 3:49:02 PM

212 | Chapter 11

	● The	data	can	be	retrieved	from	the	table,	query	or	other	form	and	displayed	on	the	form.	
For	that,	the	recordsource	property	of	the	form	should	be	set	with	the	name	of	table,	query	
or	existing	form.
	● To	display	data	in	each	field	of	the	form,	the	controlsource	property	should	be	set	with	
the	field	name.

	● There	are	five	form	sections—Detail,	Form	Header,	Form	Footer,	Page	Header	and	Page	
Footer.

	● Form	or	report	contains	five	property	tabs—Format,	Data,	Event,	Other	and	All.
	● There	are	three	types	of	controls	which	could	be	kept	on	the	form	or	report—Bound	con-
trol,	Unbound	control	and	Calculated	control.
	● We	can	set	default	property	for	any	of	the	control.
	● Some	controls	available	 in	 the	 ‘controls’	group	of	Access	are—Textbox,	Label,	Com-
mand	Button,	Combo	Box,	Check	Box,	Option	Button,	Toggle	Button,	Option	Group,	
Bound	object	frame,	Unbound	object	frame,	Image,	Line,	List	box,	Logo,	Page	break,	
Rectangle,	Subform/subreport	and	Tab.
	● Hierarchical	form	represents	1:M	(1	to	many)	type	of	relationship.	It	consists	of	a	main	
form	and	one	or	more	subforms.	The	main	form	shows	data	from	records	on	the	‘one’	
side	 of	 a	 one-to-many	 relationship	 and	 the	 subforms	 show	 data	 from	 records	 on	 the	
‘many’	side.

	● We	can	put	a	hyperlink	on	the	form,	set	tab	order	of	controls,	apply	conditional	format-
ting	and	create	multiple	pages.

	● Reports	are	used	for	viewing	and	printing	data	in	some	specific	format.	There	are	four	
views	available—Design	View,	Layout	View,	Print	Preview	and	Report	View.	
	● There	are	seven	sections	of	a	report—Detail,	Report	Header,	Report	Footer,	Page	Header,	
Page	Footer,	Group	Header	and	Group	Footer.

	● We	can	create	subreport	within	the	main	report.
	● Also,	parameterized	report	can	be	generated	by	using	parameterized	query	as	a	record-
source	property	of	a	report.

	● We	can	export	report	as	a	word	file,	text	file,	Snapshot	Viewer	file,	HTML	file,	XML	file	
or	Save	report	in	another	database.

	● We	can	also	create	charts	in	Access.
	● A	macro	is	a	list	of	one	or	more	actions	that	work	together	to	carry	out	a	particular	task	
in	response	to	an	event.

	● There	are	two	types	of	macros:		Standalone	macro	and		Embedded	macro.	
	● Standalone	macros	 are	 individual	Access	 objects	which	we	 can	 create	 by	 clicking	on	
Macros	group.
	● Embedded	macros	are	created	within	forms	or	reports	for	the	specific	control.
	● Macro	run	within	another	macro	is	known	as	nested	macro.	
	● A	database	can	have	only	one	autokeys	and	autoexec	macro.
	● Autokeys	macro	is	used	to	define	shortcut	keys	for	actions.
	● Autoexec	macro	is	executed	automatically	when	we	open	the	database	within	which	it	is	
defined.

	● We	can	assign	password	to	the	database	to	protect	it.	To	assign	a	password,	the	database	
should	be	opened	in	exclusive	mode.

CH_11_Overview of MS-Access 2007_Final.indd 212 2/26/2014 3:49:02 PM

Overview of MS-Access 2007 | 213

ExErcisEs

	 1.	Write	steps	to	create	a	new	database	in	MS-Access.	What	is	the	extension	of	an	Access	
database?	How	we	can	create	a	copy	of	existing	Access	database?

	 2.	Which	views	are	available	in	MS-Access	to	create	a	table?	What	is	the	difference	be-
tween	Design	View	and	Datasheet	View?

	 3.	 List	and	explain	data	types	of	MS-Access	along	with	the	size	options.
	 4.	What	is	the	usefulness	of	Lookup?	Write	steps	to	create	a	Lookup	Column?	
	 5.	What	is	a	navigation	pane?
	 6.	Write	steps	to	assign	a	primary	key	and	foreign	key	in	the	table.
	 7.	Write	rules	to	give	names	to	field	or	a	table	in	MS-Access.
	 8.	What	is	sub	datasheet?
	 9.	Write	steps	to	create	a	database	using	database	templates?	Which	templates	are	available	

in	MS-Access	2007?
	 10.	 Discuss	field	properties	of	‘Text’	data	type.
	 11.	Which	field	sizes	are	available	with	the	‘Number’	data	type?	Write	the	storage	capacity	

of	each.
	 12.	Which	formatting	symbols	can	be	used	with	all	data	types?	Write	significance	of	each.
	 13.	 List	all	‘date/time’	formats	with	examples.
	 14.	Which	data	types	can	be	converted	into	other	data	types?	
	 15.	 Fill	in	the	blanks.

	 i.	 The	extension	of	MS-Access	2007	database	is	__________.
	 ii.	 A	character	_________	causes	the	input	mask	to	fill	numbers	from	left	to	right	in-

stead	of	from	right	to	left.
	 iii.	 A	 character	 ___________	 forces	MS-Access	 to	 display	 the	 character	 that	 imme-

diately	 follows	 this	 character,	 which	 is	 same	 as	 enclosing	 a	 character	 in	 double	
quotation	marks.

	 iv.	 A	character	_________	will	display	all	characters	that	follow	this	character	in	upper-
case.

	 v.	 To	enter	the	value	079-26467760,	the	input	mask	property	of	a	field	should	be	set	
with	__________.

	 vi.	 To	 enter	 the	 value	 (206)	 555-TELE,	 the	 input	mask	 property	 should	 be	 set	with	
___________.

	 vii.	 To	enter	the	date	in	dd-mm-yyyy	(e.g.,	30-Oct-2010)	format,	the	input	mask	property	
should	be	set	with	_________.

	 viii.	 To	display	the	positive	values	in	green	colour,	negative	values	in	red	colour	and	zeros	
in	blue	colour,	the	format	property	of	a	field	should	be	set	with	____________.

	 ix.	 If	we	click	on	Create	→	Table	then	table	will	be	opened	in	___________	view.
	 x.	Maximum	_________	characters	are	allowed	in	field	name.
	 xi.	 __________	character	is	not	allowed	at	the	first	position	in	field	name.
	 xii.	 Duplicate	and	Null	values	are	not	allowed	in	a	__________	key.
	 xiii.	 Processed	data	are	called	_______________.

	 16.	Write	a	brief	note	on	sorting.
	 17.	 State	the	difference	between	finding	records	and	filtering	records.

CH_11_Overview of MS-Access 2007_Final.indd 213 2/26/2014 3:49:02 PM

214 | Chapter 11

	 18.	Which	are	the	four	ways	to	filter	records?	Define	each.
	 19.	What	is	the	difference	between	removing	and	clearing	a	filter?
	 20.	 Differentiate	between	Filter	and	Query.
	 21.	 Discuss	three	types	of	select	queries	(Simple	select	query,	Find	duplicate	query	and	Find	

unmatched	query)	available	in	MS-Access.
	 22.	 Discuss	three	types	of	special	purpose	queries	(parameter	query,	Autolookup	query	and	

Crosstab	query)	available	in	MS-Access.
	 23.	 Discuss	Action	 queries	 (Update	 query,	Append	 query,	Delete	 and	Make	 table	 query)	

available	in	MS-Access.
	 24.	Which	 are	 the	 four	 types	 of	 SQL-specific	 queries	 (Union	 query,	 Pass-through	query,	

Data-definition	query	and	Subquery)?	Define	all.
	 25.	Write	steps	to	create	a	query	using	query	wizard	option.
	 26.	Write	steps	to	create	a	query	using	query	design	option.
	 27.	 In	query	design	view,	when	you	move	out	of	the	criteria	cell	after	entering	the	expression,	

Access	automatically	parses	the	expression	and	inserts	characters	to	complete	the	syntax:

	 i.	 ________	around	field	names		
	 ii.	 _________	around	dates
	 iii.	 _______	around	text
	 iv.	 _________	before	a	calculated	field	expression

	 28.	 Fill	in	the	blanks.
	 i.	 The	 ________	process	 screens	 the	 records	 and	 displays	 only	 those	 that	meet	 the	

criteria.
	 ii.	 The	_______	is	a	set	of	conditions.
	 iii.	 Filter	by	________	leaves	only	the	records	with	the	same	value	as	the	one	you	select	

in	one	of	the	records	or	the	records	that	do	not	include	the	same	value.
	 iv.	 Filter	by	_______	screens	records	with	the	criteria	you	enter	into	a	table	skeleton.
	 v.	 _________	filters	are	not	available	for	yes/no,	OLE	object	or	attachment	fields.
	 vi.	 The	statement	‘When	we	apply	or	remove	a	filter	to/from	a	datasheet,	the	same	is	

applied	to	any	sub-datasheet	within	it’,	is	_________	(true/false).

	 29.	 Explain	 the	LIKE	operator	with	 all	 the	wildcards	 used	 to	 specify	 the	pattern.	Give	
examples	of	each.

	 30.	What	is	a	Recordsource?	How	can	we	set	Recordsource	for	the	Form?
	 31.	 Explain	different	design	controls	available	in	MS-Access	(Textbox,	Listbox,	Option	But-

ton,	etc.).	Also,	categorize	the	controls	as	bound	or	unbound	controls.
	 32.	Write	steps	to	create	a	new	form	using	Form/Split	Form/Multiple	Items/Datasheet	struc-

ture.
	 33.	Which	properties	should	be	set	to	select	a	record	set,	to	bind	any	control	with	the	data	

field,	allow	user	to	view	data	and	allow	user	to	edit	or	view	data?
	 34.	 Explain	 different	 sections	 (Detail,	 Form	header,	 Form	 footer,	 Page	 header	 and	Page	

footer)	of	Form.
	 35.	 Explain	procedure	to	create	a	hierarchical	form	from	related	tables.
	 36.	 How	many	sections	are	there	in	a	report?	Which	are	they?
	 37.	What	is	a	subreport?	Write	steps	to	create	subreport	or	hierarchical	report.

CH_11_Overview of MS-Access 2007_Final.indd 214 2/26/2014 3:49:03 PM

Overview of MS-Access 2007 | 215

	 38.	What	is	conditional	formatting?	List	steps	to	write	conditional	formatting	on	a	column.
	 39.	What	is	a	parameterized	report?	Write	steps	to	create	a	parameterized	report.	Write	steps	

to	print	parameters	in	the	report	header.
	 40.	Which	type	of	information	is	represented	by	Pivot	table	and	Pivot	chart?
	 41.	Which	are	the	two	types	of	macros?	Explain	both	types.
	 42.	What	is	a	macro	group?	Write	steps	to	refer	a	particular	macro	from	a	macro	group.
	 43.	What	is	a	switchboard?	Write	steps	to	create	a	switchboard	with	options	forms,	reports	

and	exit.
	 44.	 Differentiate	between	switchboard	and	navigation	pane.
	 45.	Write	steps	to	create	documentation	of	any	macro.
	 46.	 Tick	the	correct	answer.
	 i.	 The	_______________	property	changes	column	heading.
	 	 a.	 Field	size	 	 	 b.	 Caption	
	 	 c.	 Validation	rule	 	 d.	 Format	
	 ii.	 The	left	pane	MS-Access,	which	displays	all	the	objects,	is	known	as	______________.
	 	 a.	 Toolbar	 	 	 b.	 Ribbon
	 	 c.	 Navigation	pane	 	 d.	 Form	
	 iii.	Which	property	specifies	the	value	that	automatically	appears	when	new	record	is	

inserted?
	 	 a.	 Caption	 	 	 b.	 Default
	 	 c.	 Format	 	 	 d.	 Field	size
	 iv.	MS-Access	is	case	_____________for	field	names.
	 	 a.	 Sensitive	 	 	 b.	 Insensitive	
	 v.	We	can	enter	records	in	a	__________view.
	 	 a.	 design	 	 	 b.	 datasheet	
	 	 c.	 report	 	 	 d.	 print
	 vi.	 In	a	report,	page	header	and	page	footer	are	displayed	only	in	the	___________	view.
	 	 a.	 print	preview	 	 b.	 datasheet	
	 	 c.	 report	 	 	 d.	 layout	
	 vii.	 __________	are	used	for	entering	data.
	 	 a.	 Forms	 	 	 b.	 Reports	
	 	 c.	 Macros	 	 	 d.	 Modules	
	 viii.	Macro	which	is	created	within	another	macro	is	known	as	________macro.
	 	 a.	 Nested	 	 	 b.	 Embedded	
	 	 c.	 Linked	 	 	 d.	 Super	
	 ix.	 The	database	can	have	____________autoexec	macro.
	 	 a.	 Many	 	 	 b.	 Only	one
	 	 c.	 Two	 	 	 d.	 Three	
	 x.	 To	secure	the	database	with	a	password,	the	database	should	be	open	in	which	mode?
	 	 a.	 Read	only	 	 	 b.	 Exclusive	
	 	 c.	 Non	exclusive	 	 d.	 Write	

CH_11_Overview of MS-Access 2007_Final.indd 215 2/26/2014 3:49:03 PM

216 | Chapter 11

LAB ACTIVITIES
	 1.	Write	and	store	a	query	which	will	display	the	details	of	faculty	name,	faculty’s	birth	

date,	 subject	 name	 and	 number	 of	 lectures	 assigned.	Create	 a	 form	with	 appropriate	
headers	and	footers	to	display	the	details	from	this	stored	query.	Select	‘Justified’	Lay-
out	and	‘Concourse’	style	for	this	form.	Also	display	retirement	date	of	faculty	using	a	
calculated	control.	Display	logo	of	an	organization.

Faculty	(faculty ID,	facultyname,	birthdate,	photo,	gender)
																												Subject	(subject ID,	subjectname,	nooflectures)

	 2.	 Create	 a	 form	using	 split	 form	option	which	will	 display	 the	 details	 of	 colleges.	 Set	
appropriate	headers	and	 footers.	Put	command	buttons	 to	add	and	delete	 records	and	
to	close	the	form.	Format	the	form	properly.	Put	a	hyperlink	which	will	open	the	word	
document	named	 ‘conditionst.doc’.	Use	option	button	control	 to	 input	 registered	and	
combo	box	control	to	input	city	of	a	college.	Display	logo	of	an	organization.

College	(college ID,	collegename,	address,	city,	pincode,	registered,	photo)

	 3.	 Create	a	report	to	generate	I-cards	of	each	student	in	the	following	format	using	follow-
ing	tables:

																			Class(classcode,	classdesc)
Student	(stdno,	stdname,	classcode,	street_address,	area,	city,	pincode,

																				contact,	photo,	batch,	gender)

Excellent University
Famous Institute of Computer Applications

Well-known street of Ahmedabad

<class desc>: <student name>
<batch>

<street address>
<area>

<city>-<pincode>
<contact>

Date of issue: <current date>

	 4.	 Create	a	chart	which	will	show	category	of	stationary	on	x-axis	and	total	number	of	sta-
tioneries	of	particular	category	on	y-axis.	Format	the	graph	properly.

	 5.	 Create	 a	 hierarchical	 form	which	will	 allow	 to	 insert	 and	 edit	 details	 of	 stationeries	
category-wise.	Put	a	command	button	on	this	form	which	will	open	the	chart	created	in	
Ex.	no.	3.	The	chart	must	be	changed	if	we	change	records	throughout	the	form.

CH_11_Overview of MS-Access 2007_Final.indd 216 2/26/2014 3:49:03 PM

Overview of MS-Access 2007 | 217

	 6.	 Create	a	summary	report	which	will	display	annual	total	amount	of	sales,	average	amount	
of	sales,	maximum	order	amount	and	minimum	order	amount.	Also	display	overall	total	
amount	of	sales,	average	amount	of	sales,	maximum	order	amount	and	minimum	order	
amount.

	 7.	 Create	a	report	which	will	take	from	date	and	to	date	as	an	input	and	will	display	details	
of	item	wise	sales	with	summary.

																														Item	(itemcode,	itemname,	price,	unit_of_measurement)
Order	(orderno,	orderdate,	customerno,	total_order_amt)

																													 Sold_items	(orderno, itemno,	qty,	total_amt)	
																													Customer	(custno,	custname)

	 8.	 Create	a	report	with	suitable	headers	and	footers	which	will	display	sales	report	of	each	
area	of	each	region	of	each	zone.	Display	salesman’s	name	only	once	for	each	item	sold	
by	him.	If	total	sales	amount	of	any	salesman	exceeds `1000000.00,	then	display	it	in	
bold,	italic	and	14-size	coloured	font.

																												Tables:	zone	(zone_no,	zone_name)
																												region	(region_code,	region_name,	zone_no)
																												area	(area_no,	area_name,	region_no)
																												salesman	(salesman_no,	salesman_name,	area_no)

sales	(salesman_no, itemno,	total_qty_sold,	total_amount)
																												item	(itemno,	itemname)

Company logo

Zone-wise detailed Sales Report

Zone: ________ Date: ________
									Region:	_________
																						Area:	___________
																															Salesman	Name								Item	name														Amount	(in `)	
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																						Area:	___________
																															Salesman	Name								Item	name														Amount	(in `)	
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------

CH_11_Overview of MS-Access 2007_Final.indd 217 2/26/2014 3:49:03 PM

218 | Chapter 11

									Region:	_________
																						Area:	___________
																															Salesman	Name								Item	name														Amount	(in `)	
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																						Area:	___________
																															Salesman	Name								Item	name														Amount	(in `)	
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
						Zone: ________
									Region:	_________
																						Area:	___________
																															Salesman	Name								Item	name														Amount	(in `)	
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																						Area:	___________
																															Salesman	Name								Item	name														Amount	(in `)	
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
																															-------------------								-------------														--------------------
	 9.	 Create	a	hierarchical	report	which	will	display	list	of	customers	and	details	of	orders	of	

those	customers.	Display	serial	numbers	with	each	record	of	order	and	with	each	record	
of	a	customer.	Display	total	number	of	customers	and	total	number	of	orders	given	by	
each	customer.	Display	count	of	orders	in	blue	colour	for	the	highest	count.	Don’t	show	
duplicate	values	in	any	column	within	a	group.

																																		Customer	(custno,	custname)
Order	(orderno,	custno,	orderdate,	total_order_amt)	

	 10.	 Create	a	main	report	which	contains	details	of	different	categories	of	stationeries.	Em-
bed	a	subreport	which	contains	details	of	stationeries	of	particular	category	and	details	
of	faculty	members	to	whom	that	stationary	is	issued.	Display	serial	numbers	with	each	
record,	count	of	 total	categories,	count	of	 total	no.	of	stationeries	within	the	category	
and	count	of	total	no.	of	faculty	members	to	whom	particular	stationary	is	issued.	Put	a	
command	button	to	close	the	report.	

Category

Categoryid Categoryname

C1 Paper
C2 Storage device
C3 File

CH_11_Overview of MS-Access 2007_Final.indd 218 2/26/2014 3:49:03 PM

Overview of MS-Access 2007 | 219

stationery

stat iD stat name Cat iD
S1 Ruled C1
S2 Blank C1
S5 Pen Drive C2
S6 Spring C3

issued to

faculty iD stat iD issued Date quantity
F1 S5 11-09-2005 25
F2 S7 12-9-2001 2

	 11.	 Create	a	parameterized	report	which	will	display	I-card	of	user-entered	roll	no.	Display	
inputted	roll	number	with	proper	message	in	the	report	header.

	 12.	 Create	a	report	which	will	generate	certificates	for	each	participant	with	the	following	
details.	Tables:	student	(stdno,	name,	classcode,	gender)

																								 	class	(classcode,	classdesc)
																								 	event	(eventID,	eventname)

	 participant	(stdno, classID, eventide, participant_name,	gender)
																								 	winner	(eventID, stdno,	classID,	position)	

	 	 Display	the	last	 line	‘He/she	stood	________	in	the	event’	 if	and	only	if	 the	value	of	
‘position’	field	is	not	null.

ABC Institute of Computer Applications

Talent	Evening	2012

Certificate
 This is to certify that Mr/Ms _______________________ of class _____________ has
 participated in the event _________________ in the talent evening organized by ABC
 Institute of Computer Applications on 12th December, 2012. He/She stood __________
 in the event.

	 13.	 Create	a	standalone	macro	to	close	the	specified	report.	Embed	this	macro	into	the	click	
event	of	a	command	button	which	is	placed	on	the	report	which	you	want	to	close	after	
viewing.

	 14.	 Put	a	command	button	in	the	student	form,	and	create	an	embedded	macro	for	the	click	
event	of	this	command	button	which	will	open	the	report	of	student	details	for	student	
names	which	starts	with	letter	‘a’.

CH_11_Overview of MS-Access 2007_Final.indd 219 2/26/2014 3:49:03 PM

220 | Chapter 11

	 15.	 Put	a	command	button	in	the	student	form	and	create	an	embedded	macro	for	the	click	
event	of	this	command	button	which	will	open	the	report	of	student	details	for	student	
numbers	between	1	and	10.

	 16.	 Create	a	stand-alone	macro	named	‘search_report’	which	contains	two	actions	‘naviga-
teto’	and	‘selectobject’	to	search	the	specified	object	from	the	navigation	pane.

	 17.	 Create	a	blank	form.	Set	the	‘unload’	event	of	this	form	with	the	macro	created	in	Ex.	13.
	 18.	 Create	a	stand-alone	macro	which	contains	two	actions	‘openreport’	and	‘setproperty’.	

Open	the	report	which	contains	student	details	using	‘openreport’	action.	Add	a	condi-
tion	in	the	condition	column	which	will	check	whether	student	name	is	null	or	not.	If	the	
student	name	is	not	null,	then	using	‘setproperty’	action	set	the	forecolour	property	of	a	
student	name	textbox	to	red	colour.

	 19.	 Create	a	stand-alone	macro	named	check_stdno	which	will	check	whether	the	entered	
student	number	lies	in	a	specific	range	or	not.	Write	a	condition	in	the	condition	sheet	
of	a	macro	to	check	the	entered	stdno	in	a	‘student’	form	is	≥100	or	not.	If	the	number	
is	≥100,	then	display	the	message	using	a	message	box	that	‘The	number	is	invalid…
please	enter	the	number	between	1	and	99’.	Bind	the	macro	with	the	‘on	lost	focus’	event	
property	of	stdno	textbox.

	 20.	 Create	a	stand-alone	macro	named	check_stdname	which	will	check	whether	the	entered	
student	name	is	null	or	not.	Write	a	condition	in	the	condition	sheet	of	a	macro	to	check	
the	entered	stdname	in	a	‘student’	form.	If	the	name	is	null,	then	display	the	message	
using	a	message	box	that	‘The	name	can’t	be	null…	please	enter	the	valid	name’.	Bind	
the	macro	with	the	‘on	lost	focus’	event	property	of	stdname	textbox.

	 21.	 Create	 a	macro	group	named	check_marks_data	which	 contains	 three	macros	named	
chk_stdno	to	check	whether	the	stdno	<0,	chk_marks	to	check	marks	≥	100	and	chk_
classid	to	check	classcode	is	null	or	not.	Display	proper	messages	if	any	of	the	condition	
is	false.	Bind	the	proper	macro	from	the	created	macro	group	with	the	‘lost	focus’	event	
properties	of	stdno,	classcode	and	marks	controls	on	a	marks	form.

	 22.	 Create	 an	 autoexec	macro	which	will	 display	 the	message	welcome	 to	my	database!	
When	the	user	opens	the	database,	set	password	to	open	the	database.

	 23.	 Create	a	switchboard	which	will	display	the	following	hierarchy:

Forms

Reports

Summary chart

Exit

Main
menu

Student

Class

Close

Class-wise list
of students

I-cards

close

CH_11_Overview of MS-Access 2007_Final.indd 220 2/26/2014 3:49:03 PM

CHAPTER
12

Overview of Oracle

•	 Understanding	Oracle	as	a	relational	database.
•	 Knowing	commands	of	Oracle	Database	10g	Express	Edition.
•	 Learning	how	to	manage	users,	roles	and	privileges.

Chapter ObjeCtives

12.1 | OraCle as an rDbMs
Oracle	is	a	relational	database	management	system	(RDBMS)	which	also	supports	object-	
oriented	features.

It	allows	creating	tables	and	setting	relationships	between	tables.	Users	can	write	stored	pro-
cedures	and	functions	with	the	use	of	PL/SQL.	Automatic	transaction	support	is	provided	by	
Oracle.	It	allows	developing	applications	which	can	run	on	the	internet.	Backup	and	recovery	
features	are	available	in	Oracle.

12.2 | lOgging intO OraCle
Oracle	provides	‘Oracle	Database	10g	Express	Edition	(Oracle	Database	10g	XE)’	which	can	
be	downloaded	for	free	to	use.	After	logging	into	it,	user	can	execute	all	SQL	and	PL/SQL	state-
ments.	When	installing	Oracle	Database	10g	XE,	the	default	user	named	‘system’	is	created	
with	administrator’s	rights.	At	the	time	of	installation,	user	has	to	provide	password	for	‘system’	
user.	On	completion	of	installation,	user	can	log	in	using	username	‘system’	and	the	password	
(which	is	specified	during	installation).	

After	installation,	user	can	open	Oracle	Database	10g	XE	in	the	Windows	operating	system	
by	following	the	steps	given	below.

	 1.	 Click	on	Start.
 2. Select Programs → Oracle Database 10g XE → Select Go To Database Home Page.
 3. The	 login	 form	will	 be	displayed	 in	which	 enter	 user	 name	 ‘system’	 and	password	

which	you	have	given	at	the	time	of	installation.	Let	us assume	that	the	password	given	

CH_12_Overview of Oracle_Final.indd 221 2/26/2014 3:50:08 PM

222 | Chapter 12

during	installation	for	‘system’	user	is	‘admin’.	The	window	will	look	as	specified	in	
Figure	12.1.

After	successful	login,	the	window	given	in	Figure	12.2	will	appear.	Here, user can select
SQL SQL commands Enter command to type any SQL or PL/SQL statements. After typ-
ing the statement, it can be executed by selecting and clicking on ‘Run’ button. The output will
be displayed in the window given below the command window. It will look as the snapshot
shown in Figure 12.3.

To	logout	from	the	Oracle,	click	on	‘Logout’	link	given	on	the	right	side	top	of	the	command	
window.	The	written	statements	or	commands	can	be	saved	using	‘save’	option.

The	‘system’	user	has	administrator’s	rights	which	allow	him/her	to	create	other	databases,	
users,	roles,	etc.

12.3 | COMManD suMMary Of OraCle Database 10g Xe
After	logging	into	the	Oracle	Database	10g	XE,	there	are	main	five	options	available.	These	are	as:

 1. Administration:	Using	this	option,	one	can	view	and	change	storage	and	memory	set-
tings,	create	new	users		and		manage	users	which	are	already	created,	monitor	sessions,	
operations	and	system	statistics,	view	details	about	current	database	and	change	his/her	
own	password.	Following	is	a	list	of	commands	which	is	available	when	we	click	on	the	
‘Administration’	option.

figure 12.1 |	 Login	Window	of	Oracle	Database	Express	Edition.

CH_12_Overview of Oracle_Final.indd 222 2/26/2014 3:50:09 PM

Overview of Oracle | 223

figure 12.2 |	 Oracle	Database	Express	Edition.

figure 12.3 |	 Writing	and	Executing	Command	in	Oracle	Database	Express	Edition.

CH_12_Overview of Oracle_Final.indd 223 2/26/2014 3:50:09 PM

224 | Chapter 12

	 i.	 Storage:	It	has	the	following	suboptions.
	 	 a.	 Storage	utilization:	This	option	shows	the	statistics	regarding	space	utilized.
	 	 b.	 View	tablespaces:	It	shows	details	of	tablespaces.
	 	 c. View	datafiles:	It	shows	details	of	datafiles.
	 	 	d.	 	Compact	storage:	It	gives	the	option	to	do	compact	storage	using	which	the	un-

used	free	space	in	the	database	can	be	recovered.	
	 	 e.	 View	logging	status:	It	shows	details	of	database	log	files.

	 ii.	Memory:	It	shows	the	following	options	related	to	memory.
	 	 a.	 	Memory	 utilization:	 It	 shows	 the	 memory	 allocation	 to	 System	 Global	 Area	

(SGA)	and	Program	Global	Area	(PGA).
	 	 b.	 	Manage	SGA:	It	shows	memory	allocation	to	the	components	of	SGA.	The	Sys-

tem	Global	Area	(SGA)	is	a	memory	area	that	contains	data	shared	between	all	
database	users	such	as	buffer	cache	and	a	shared	pool.

	 	 c.	 	Manage	PGA:	It	shows	memory	allocation	statistics	of	PGA.	The	Program	Global	
Area	(PGA)	is	a	memory	buffer	that	is	allocated	for	each	individual	database	ses-
sion	and	it	contains	session	specific	information.

	 iii.	 Database	users:	It	shows	the	following	options	using	which	we	can	create	and	man-
age	database	users.

	 	 a.	 Manage	users:	It	shows	all	the	users	of	database.
	 	 b.	 	Create	users:	New	users	can	be	created	by	assigning	roles	and	privileges	using	

this	option.	Also,	existing	user’s	privileges,	 role	and	other	 settings	can	also	be	
changed	using	this	option.

	 iv.	Monitor:	It	shows	the	following	options.
	 	 a.	 Sessions:	It	shows	user-wise	session	details.
	 	 b.	 	System	statistics:	It	shows	physical	and	logical	I/O	settings	statistics,	cursor	sta-

tistics,	transaction	statistics,	memory	statistics	and	time	statistics.
	 	 c.	 	Top	SQL:	It	shows	the	details	of	SQL	execution	in	a	specific	order	such	as	disk	

and	bugger	read	wise,	execution	wise,	CPU	time	wise,	etc.
	 	 	d.	 Long	operations:	It	shows	details	of	long	operations.

	 v.	 About	database:	It	shows	the	following	options.
	 	 a.	 Version:	It	shows	version	of	database.
	 	 b.	 Settings:	It	shows	settings	of	database.
	 	 c.	 	National	 language	 support:	 It	 shows	details	of	national	 language	 supported	by	

database.
	 	 	d.	 	CGI	environment:	Shows	details	of	CGI	environment	parameters	such	as	PL/SQL	

gateway,	request	and	server	protocol,	remote	user	name,	etc.	
	 	 e.	 Parameters:	It	shows	parameters	of	init.ora	file	and	their	values.

	 vi.	 Change	my	password:	Using	this	option,	user	can	change	his/her	password.
	 vii.	Manage	login	message:	User	can	set	login	message	which	is	to	be	displayed	on	the	login	

page.
	 viii.	Manage	HTTP	access:	It	is	used	to	control	HTTP	access	as	local	or	remote	for	the	exist-

ing	database.

CH_12_Overview of Oracle_Final.indd 224 2/26/2014 3:50:09 PM

Overview of Oracle | 225

 2. Object Browser:	It	is	used	to	create	and	browse	various	objects	such	as	tables,	views,	
types,	etc.	Following	is	a	list	of	commands	which	is	available	when	we	click	on	‘Object	
Browser’	option.

	 i.	 Create:	It	shows	the	following	options	using	which	user	can	create	and	manage	vari-
ous	objects	of	database.

	 	 a.	 Tables:	It	is	used	to	create	a	table.	
	 	 b.	 Views:	Used	to	create	a	view	from	base	table.
	 	 c.	 Indexes:	Used	to	create	an	index	on	table.
	 	 	d.	 	Sequences:	Used	 to	create	a	sequence	which	can	be	used	 to	auto	 increment	or	

decrement	value	of	any	column	of	a	table.
	 	 e.	 Types:	Used	to	create	a	type	which	is	equivalent	to	class.
	 	 	f.	 	Packages:	Used	to	create	a	package.	Package	is	a	combination	of	functions	and	

procedures.
	 	 	g.	 Procedures:	Used	to	create	a	procedure	which	is	a	named	PL/SQL	block.
	 	 	h.	 Functions:	Used	to	create	a	function	which	is	also	a	named	PL/SQL	block.
	 	 	i.	 	Triggers:	Used	to	create	trigger	on	any	table	which	is	fired	automatically	when	

any	manipulation	is	made	in	a	record	of	that	table.
	 	 	j.	 Database	links:	Used	to	create	database	link.
	 	 	k.	 	Materialized	views:	Used	to	create	a	view	which	is	stored	physically	in	the	data-

base.
	 	 	l.	 Synonyms:	Used	to	create	a	synonym	of	a	table	which	is	a	copy	of	table.

	 ii.	 Browse:	It	shows	the	following	options.
	 	 a.	 Tables:	Used	to	search	existing	tables.
	 	 b.	 Views:	Used	to	search	existing	views.
	 	 c.	 Indexes:	Used	to	search	existing	indexes.
	 	 d.	 Sequences:	Used	to	search	existing	sequences.
	 	 e.	 Types:	Used	to	search	existing	types.
	 	 f.	 Packages:	Used	to	search	existing	packages.
	 	 g.	 Procedures:	Used	to	search	existing	procedures.
	 	 h.	 Functions:	Used	to	search	existing	functions.
	 	 i.	 Triggers:	Used	to	search	existing	triggers.
	 	 j.	 Database	links:	Used	to	search	existing	database	links.
	 	 k.	 Materialized	views:	Used	to	search	existing	materialized	views.
	 	 l.	 Synonyms:	Used	to	search	existing	synonyms.

 3. SQL:	It	is	used	to	perform	SQL-related	tasks.	By	clicking	on	SQL,	it	shows	the	follow-
ing	options.

	 i.	 SQL	commands:	It	shows	the	following	option.
	 	 a.	 	Enter	command:	By	clicking	on	this	option,	a	window	opens	in	which	user	can	

write	and	execute	any	SQL	command	or	PL/SQL	block.	Also,	user	can	save	it	as	
SQL	file,	view	history,	etc.	

CH_12_Overview of Oracle_Final.indd 225 2/26/2014 3:50:09 PM

226 | Chapter 12

	 ii.	 SQL	scripts:	It	shows	the	following	options.
	 	 a.	 Create:	Used	to	create	or	download	SQL	script.
	 	 b.	 Upload:	Used	to	upload	the	existing	SQL	script.
	 	 c.	 View:	Used	to	view	the	existing	SQL	script.
	 	 d.	 Export:	Used	to	export	SQL	script	from	current	database	to	any	other	database.
	 	 e.	 	Import:	Used	to	import	SQL	script	from	any	other	database	into	the	existing	data-

base.
	 iii.	 Query	builder:	It	shows	the	following	options.
	 	 a.	 	Create:	It	is	used	to	create	and	execute	query	automatically	by	selecting	fields	and	

selecting	SELECT	clauses	from	the	drop	down	list	boxes.	It	is	just	like	wizard.		
	 	 b.	 View	saved	queries:	It	is	used	to	view	existing	queries.

 4. Utilities:	It	gives	the	utilities	such	as	load	or	unload	data,	generates	data	definition	com-
mands	from	the	existing	objects,	shows	object	reports,	etc.	When	we	click	‘Utilities’,	it	
gives	the	following	options.

	 i.	 Data	load/unload:	It	shows	the	following	options.
	 	 a.	 	Load:	Used	to	load	data	into	existing	or	new	table	from	the	text	file,	excel	sheet	or	

XML	file.
	 	 b.	 	Unload:	Used	to	unload	(here	it	means	copy)	data	from	existing	table	into	text	file	

or	XML	file.
	 	 c.	 Repository:	It	shows	the	status	of	loaded	text	data.
	 ii.	 Generate	DDL:	Used	to	generate	data	definition	command	of	any	existing	database	

object.	For	example,	if	we	want	to	create	table	syntax	of	any	existing	table,	then	the	
definition	(create	table	command)	of	that	table	will	be	generated	automatically	by	
selecting	that	table	from	the	list	of	existing	tables.

	 iii.	 Object	reports:	It	displays	reports	of	the	following	existing	database	objects.
	 	 a.	 Tables:	It	displays	the	following	options.

	● Columns:	Shows	table-wise	list	of	columns.
	● Comments:	Shows	comments	written	on	tables.
	● Constraints:	Shows	table	wise	constraints.
	● Statistics:	Shows	the	statistics	of	tables	such	as	when	the	table	last	analyzed,	etc.
	● Storage	sizes:	Shows	storage	size	of	existing	tables.
	● Exception	reports:	It	shows	the	following	options.

	○ No	indexes:	Displays	list	of	tables	without	indexes.
	○ No	primary	key:	Displays	list	of	tables	without	primary	key.
	○ Unindexed	foreign	keys:	Displays	list	of	tables	with	unindexed	foreign	keys.

	 	 b.	 PL/SQL:	It	shows	the	following	options.
	● Program	unit	arguments:	It	shows	details	of	package	arguments.
	● Program	unit	 line	counts:	 It	 shows	 total	 lines	 in	objects	 such	as	procedures,	
packages,	types,	triggers,	etc.
	● Search	source	code:	It	allows	searching	code	for	the	selected	object.

	 	 c.	 Security:	It	shows	the	following	options.
	● User	privileges:	It	shows	details	of	privileges	granted	to	each	user.
	● Role	privileges:	It	shows	details	of	roles	granted	to	each	user.
	● System	privileges:	It	shows	details	of	system	privileges.

CH_12_Overview of Oracle_Final.indd 226 2/26/2014 3:50:09 PM

Overview of Oracle | 227

	 	 d.	 All	objects:	It	shows	the	following	options.
	● All	objects:	It	shows	details	of	all	the	objects	created	within	the	database.
	● Invalid	objects:	It	shows	the	details	of	invalid	objects,	i.e.,	objects	which	are	not	
created	successfully	or	objects	which	are	created	with	some	errors.

	● Object	counts	by	type:	It	shows	total	no.	of	each	type	of	objects	created	within	
the	database.

	● Object	creation	calendar:	It	shows	names	and	types	of	objects	which	are	created	
or	modified	on	a	particular	date	in	the	calendar.

	 	 e.	 	Query	data	dictionary:	It	shows	all	the	views	and	their	description	which	describe	
the	metadata.

	 iv.	 Recycle	bin:	When	user	drops	any	table,	Oracle	does	not	remove	it,	but	renames	the	
table	and	keeps	it	in	the	Recycle	Bin.	The	dropped	object	can	be	recovered	later	from	
here.

 5. Application Builder:	 It	contains	some	sample	applications	which	user	can	run.	It	
also	allows	user	to	create	new	applications.	Application	builder	will	be	available	to	
only	those	users	who	have	admin	rights.	Application	builder	contains	the	following	
options.

	 i.	 Create	application:	It	shows	the	following	options.
	 	 a.	 Create	application:	Used	to	create	new	application.
	 	 b.	 	Create	from	spreadsheet:	Used	to	create	new	application	from	spreadsheet	(excel	

file)	data.
	 ii.	 View	application:	It	is	used	to	view	existing	applications.
	 iii.	 Demonstrations:	It	is	used	to	execute	sample	applications	which	are	already	avail-

able	in	Oracle.
	 iv.	 Application	administration:	It	shows	the	following	options.
	 	 a.	 Manage	services:	It	is	used	to	manage	services	such	as	sessions,	logs,	etc.
	 	 b.	 	Manage	application	Express	Edition	users:	It	is	used	to	create	and	view	users,	cre-

ate	and	view	groups	and	assign	user	to	a	specific	group.
	 	 c.	 	Monitor	activity:	It	is	used	to	monitor	different	activities	such	as	page	views,	ses-

sions	and	application	changes.
	 	 d.	 	Email	configuration:	It	is	used	to	change	email	settings	to	manage	email	logs	and	

email	queue.
	 	 e.	 	About	application	Express:	It	shows	the	details	such	as	current	user	name,	host	

schema	name,	time	of	last	DDL	executed,	etc.
	 v.	 Import:	It	shows	the	following	options.
	 	 a.	 	Application:	It	is	used	to	import	any	application	file	which	can	be	installed	after	it	

is	imported.
	 	 b.	 	Page:	It	is	used	to	import	any	Page	(same	as	application)	which	can	be	installed	

after	it	is	imported.
	 	 c.	 	Theme:	It	is	used	to	import	any	theme	file	which	can	be	installed	after	it	is	im-

ported.
	 	 d.	 	User	interface	defaults:	It	is	used	to	import	any	user	interface	defaults	which	can	

be	installed	after	it	is	imported.

CH_12_Overview of Oracle_Final.indd 227 2/26/2014 3:50:09 PM

228 | Chapter 12

	 vi.	 Export:	It	shows	the	following	options.
	 	 a.	 Application:	It	is	used	to	export	any	application	file	from	the	database.
	 	 b.	 	User	interface	defaults:	It	is	used	to	export	user	interface	defaults	from	the	data-

base.

12.4 | Database aDMinistratiOn

12.4.1 | Managing users

The	user	with	administrator’s	rights	can	create	new	users	and	update	the	existing	users.	To	cre-
ate	a	new	user,	one	has	to	login	as	SYS	or	SYSTEM	user.	Database	users	can	use	the	database	
and	can	perform	tasks	as	per	their	roles	or	privileges	assigned	to	them.	To	create	a	new	user,	the	
following	syntax	is	used:

CREATE USER <user_name>
IDENTIFIED {BY PASSWORD/EXTERNALLY/GLOBALLY
																																							AS ‘<directory_name>’
DEFAULT TABLESPACE <tablespace_name>
TEMPORARY TABLESPACE <tablespace_name>
QUOTA {<size>/UNLIMITED} ON <tablespace_name}
PROFILE <profile_name>
PASSWORD EXPIRE
ACCOUNT {LOCK/UNLOCK};

The	clauses	of	CREATE	USER	command	are	explained	below:

	 1.	CREATE USER:	After	CREATE	USER,	name	of	the	user	is	specified	which	should	be	
any	valid	name.

	 2.	 IDENTIFIED:	 It	 is	 a	 compulsory	 clause	 of	 CREATE	 USER	 command;	 all	 other	
clauses	are	optional.	There	are	three	options	which	we	can	specify	after	IDENTIFIED	
keyword.

	 i.	 BY	PASSWORD:	In	 this	clause,	 the	password	of	user	should	be	specified	within	
double	quotation	marks.	When	we	specify	this	option,	the	local	user	is	created.

	 ii.	 EXTERNALLY:	This	option	is	specified	to	create	an	external	user.	This	type	of	user	
is	authenticated	externally	(not	by	Oracle	database)	by	operating	system.	

	 iii.	 GLOBALLY	AS	‘<directory_name>’:	This	option	creates	a	global	user.	This	type	of	
user	should	be	authorized	by	the	enterprise	directory.

	 3.	DEFAULT TABLESPACE:	The	objects	which	will	be	created	by	this	user	will	also	be	
stored	in	the	tablespace	specified	after	this	clause.	If	this	clause	is	not	written,	the	objects	
created	by	this	user	will	be	stored	into	default	tablespace	of	the	database.

	 4.	TEMPORARY TABLESPACE:	The	user’s	temporary	segments	will	be	stored	into	
the	 tablespace	which	 is	 specified	 after	 this	 clause.	 If	 this	 clause	 is	 not	written,	 the	
temporary	 segments	 are	 stored	 into	 database’s	 default	 tablespace	 or	 into	 SYSTEM	
tablespace.

CH_12_Overview of Oracle_Final.indd 228 2/26/2014 3:50:09 PM

Overview of Oracle | 229

	 5.	QUOTA…ON:	This	clause	is	used	to	specify	amount	of	space	to	be	allocated	by	user	in	
the	specific	tablespace.	There	are	two	options	for	size—either	UNLIMITED	or	specify	
size	into	bytes.	After	ON	keyword,	tablespace	name	should	be	written.	We	can’t	specify	
this	clause	for	temporary	tablespace.	If	we	don’t	write	this	clause,	unlimited	quota	is	al-
located	to	user	for	the	tablespaces.

	 6.	PROFILE:	It	is	used	to	specify	the	profile	name	which	we	want	to	assign	to	user.	If	we	
don’t	specify	this	clause,	the	default	profile	will	be	assigned	to	user.

	 7.	PASSWORD EXPIRE:	It	causes	the	user’s	password	to	expire	immediately	after	user	
is	created	and	will	prompt	the	user	to	set	new	password	when	he/she	logs	in	to	the	data-
base.

	 8.	ACCOUNT:	 There	 are	 two	 options—LOCK	 or	 UNLOCK.	 If	 we	 don’t	 specify	 this	
clause,	the	default	setting	is	unlock.	If	we	specify	‘lock’	option,	the	user’s	account	will	
be	locked.

We	can	also	change	or	update	the	existing	user	by	writing	ALTER	USER	command.	The	clauses	
which	are	specified	in	the	CREATE	USER	command	are	used	in	this	command	also.	The	GRANT/
REVOKE	THROUGH	clause	is	additional	which	will	allow	user	to	connect	through	proxy	user.

To	drop	 the	existing	user,	 the	command	 is	DROP	USER	<user_name>.	Table	12.1	shows	
some	examples	to	create,	alter	and	drop	users	with	different	options.

If	we	want	 to	see	 the	details	of	a	particular	user,	 it	can	be	displayed	by	selecting	specific	
columns	or	all	columns	from	the	view	named	dba_users.	Following	is	a	command	which	will	
display	all	user	names	and	their	passwords	(in	encrypted	form)	of	current	database.

select username, password from dba_users;

Oracle	database	converts	and	stores	all	the	data	in	uppercase.	Therefore,	whenever	we	specify	
some	values	in	WHERE	condition,	it	must	be	written	in	uppercase.	The	following	command	
will	display	password	of	user	‘jisha’	in	encrypted	form.

select password from dba_users, where username=’JISHA’;

12.4.2 | Managing roles

Role	is	a	set	of	privileges	which	can	be	granted	to	users	or	other	roles.	When	any	role	is	cre-
ated,	it	doesn’t	contain	any	privilege.	The	privileges	can	be	granted	to	a	specific	role	by	using	
GRANT	statement.

Following	is	a	syntax	of	CREATE	ROLE.

CREATE ROLE <role_name> {NOT IDENTIFIED/
																				IDENTIFIED {BY <password>/USING
 <package_name>/EXTERNALLY/
 GLOBALLY}};

NOT	IDENTIFIED	shows	that	there	is	no	need	of	password	to	use	this	role.	It	is	authorized	
by	the	database	itself.	IDENTIFIED	shows	that	user	must	be	authorized	by	password	externally	
or	globally	or	using	some	packages.	Following	is	an	example.

CREATE ROLE newadmin NOT IDENTIFIED;

CH_12_Overview of Oracle_Final.indd 229 2/26/2014 3:50:09 PM

230 | Chapter 12

table 12.1 |	 Examples	of	CREATE	USER	command

example Meaning

create user shefali identified
by ‘mahadev’

It will create a local user named shefali with the
password ‘mahadev’.

create user shefali_ex identi-
fied externally;

It will create an external user named shefali_ex
who will be authenticated by operating system,
but the user name should match with the operat-
ing system’s user name.

create user jisha identified by
fairy default tablespace users
temporary tablespace temp quota
20m on system quota 10m on users
password expire account unlock;

The user name ‘jisha’ will be created with
password ‘fairy’ and with the specified settings.
Her password will be expired immediately after
user is created. When she will login with user
name ‘jisha’, Oracle will prompt to set new
password ‘jisha’. User’s default tablespace will
be ‘users’ and temporary tablespace will be
‘temp’. The user ‘jisha’ will get maximum 20MB
on ‘system’ tablespace and ‘10MB’ on
‘users’ tablespace.

create profile sheev_profile limit
failed_login_attempts 3
password_life_time 3
password_reuse_time 2
password_reuse_max 2
password_lock_time 1/24
password_grace_time 20;

create user harsheev identified

by champ profile sheev_profile;

When we want to assign profile to a user,
the profile should be created first before we
create a user. Here, sheev_profile has been
created by executing the command ‘CREATE
PROFILE’ with some parameters. Then, the user
name ‘harsheev’ is created.
note: After creating and assigning profile to
the user, the database initialization parameter
RESOURCE_LIMIT should be set to TRUE, other-
wise it will not be enforced.

alter user harsheev grant con-
nect through jisha;

It will change the current user ‘harsheev’ and will
allow him to connect with the database through
the user ‘jisha’.

alter user jisha identified by
elegant;

It will change the password of ‘jisha’ and set the
new password as ‘elegant’.

create user tybca009 identified
by tybca009;

The user name ‘tybca009’ will be created with
password ‘tybca009’.

drop user tybca009; And then it will be dropped.

After	 role	 is	created,	privileges	should	be	granted	 to	 the	 role	using	GRANT	statement	as	
following.

GRANT CREATE TABLE to newadmin;

This	statement	will	grant	privilege	to	create	a	table	to	the	role	newadmin.	Now,	the	user	can	
create	a	table	to	whom	this	newadmin	role	is	assigned.	

Role	can	be	assigned	to	the	user	using	GRANT	statement	as	following.

GRANT newadmin to jisha;

The	above	grant	statement	will	assign	newadmin	role	to	the	user	named	‘jisha’.

CH_12_Overview of Oracle_Final.indd 230 2/26/2014 3:50:09 PM

Overview of Oracle | 231

Many	privileges	can	be	assigned	together	to	a	specific	role.	For	example,

GRANT INSERT, UPDATE on student to newadmin;

The	privileges	can	also	be	granted	directly	to	the	users.	For	example,

GRANT create table to jisha, harsheev;

This	is	not	convenient	when	many	privileges	should	be	granted	to	selected	users	or	group	of	
users.	At	that	time,	roles	are	useful.

Following	are	advantages	of	role.

	 1.	Many	privileges	can	be	granted	to	a	role	and	then	the	common	role	can	be	granted	to	
many	users.

	 2.	 User	doesn’t	have	to	remember	which	roles	should	be	assigned	to	which	users.	
	 3.	 Also,	it	is	easy	to	revoke	the	set	of	privileges	which	are	assigned	to	a	role.

There	are	some	predefined	roles	in	Oracle	database	such	as	CONNECT,	DBA,	RESOURCE,	
EXP_FULL_DATABASE,	 etc.	These	 roles	 can	be	 assigned	 to	users	directly	using	GRANT	
statement.	For	example,	the	following	statement	will	grant	the	role	CONNECT	to	user	named	
‘harsheev’.

GRANT CONNECT to harsheev;

To	view	all	the	predefined	roles	and	roles	which	are	created	by	user,	the	data	dictionary	view	
dba_roles	is	used	as	follows.

SELECT * from dba_roles;

The	user	who	 is	 given	 the	 role	with	 the	ADMIN	OPTION	or	 given	 the	 system	privilege	
GRANT	ANY	ROLE	can	grant	role	to	users.

The	role	assigned	can	be	revoked	using	REVOKE	statement	as	following.	Execute	the	fol-
lowing	sequence	of	statements	to	create	a	user	and	a	role,	grant	a	role	to	the	user	and	revoke	a	
role	from	the	user.

create user harsheev identified by generous;
 create role newadmin;
 grant connect to newadmin;
 grant newadmin to harsheev;
 REVOKE newadmin from harsheev;

12.4.3 | Managing privileges

After	logging	into	the	database,	the	user	can	perform	only	those	tasks	for	which	he/she	is	given	
privileges.	Privileges	can	be	assigned	to	an	individual	user,	group	of	users	or	roles.	Role	is	a	
group	of	privileges.	We	can	assign	a	name	to	the	role.

There	are	two	types	of	privileges	in	Oracle:	System	privileges	and	Object	privileges.

	 1.	 System privilege: There	are	many	system	privileges	which	allow	user	to	perform	a	spe-
cific	database	operation.	The	user,	who	is	given	the	system	privilege	with	the	ADMIN	
OPTION	or	given	the	system	privilege	ANY	PRIVILEGE,	is	able	to	grant	privileges	to	
other	users	or	roles.	The	syntax	to	grant	system	privilege	is:

Grant <privilege_name> to <user_name>;

CH_12_Overview of Oracle_Final.indd 231 2/26/2014 3:50:09 PM

232 | Chapter 12

Following	grant	 statement	will	grant	 the	 system	privilege	 ‘create	user’	 to	 the	user	 ‘shefali’.	
After	having	this	privilege,	the	user	named	‘shefali’	can	create	new	users.

grant create user to shefali;

Many	privileges	can	be	assigned	together	as	following.

grant create any table, drop any table to shefali;

Similarly,	one	or	more	privileges	can	be	granted	to	many	users.	The	following	grant	state-
ment	will	grant	two	system	privileges	create	any	table	and	drop	any	table	to	two	users	—shefali	
and	jisha.

grant create any table, drop any table to shefali, jisha;

The	following	grant	statement	will	grant	all	privileges	to	user	shefali.

grant all privileges to shefali;

If	we	want	to	take	back	the	privilege	which	is	assigned	to	any	user,	then	REVOKE	statement	
is	used	as	following.

revoke all privileges from shefali;
revoke drop any table from jisha;

The	following	statement	will	grant	privilege	‘group	any	table’	to	role	newadmin.

grant drop any table to newadmin;

After	assigning	privilege	to	a	role,	a	role	can	be	assigned	to	user	as	following.

grant newadmin to jisha;

Role	and	privilege	can	be	assigned	together	to	a	user	as	following.	The	privilege	‘create	any	
table’	and	a	role	newadmin	is	granted	to	user	‘harsheev’.

grant create any table, newadmin to harsheev;

	 2.	Object privilege: Object	privileges	can	be	granted	to	user	and	role.	The	user	who	has	
created	any	object	can	grant	privilege	of	that	object	to	other	users.	Also,	the	user	who	has	
the	privilege	‘GRANT	ANY	OBJECT	PRIVILEGE’	can	grant	any	object	to	other	users	
or	the	user	who	was	granted	‘WITH	GRANT	OPTION’	on	object	can	grant	privilege	to	
use	that	object	to	other	users.	For	example,

 grant insert, select, delete on student to jisha, harsheev;

Here,	‘student’	is	a	table	which	is	an	object.	The	above	statement	will	allow	users	‘jisha’	and	
‘harsheev’	to	insert,	select	or	delete	records	to/from	table	‘student’.

grant all on student to jisha;

The	above	statement	will	grant	all	the	object	privileges	on	table	‘student’	to	the	user	‘jisha’.

grant insert(stdno), select, delete on student to jisha, harsheev;

The	above	statement	will	allow	user	‘jisha’	and	‘harsheev’	to	insert	value	only	in	the	field	
‘stdno’	of	‘student’	table	and	will	allow	to	‘delete’	and	‘select’	records	from/to	‘student’	table.

The	given	object	privileges	can	be	taken	back	from	the	user	by	using	‘REVOKE’	statement	
as	follows.	The	following	statement	will	revoke	the	object	privilege	SELECT	and	DELETE	on	
STUDENT	table	from	user	‘harsheev’.

Revoke delete, select on student from harsheev;

CH_12_Overview of Oracle_Final.indd 232 2/26/2014 3:50:09 PM

Overview of Oracle | 233

The	following	statement	will	grant	all	the	object	privileges	to	the	role	‘newadmin’.	

grant all on student to newadmin;

Later,	the	role	‘newadmin’	can	be	assigned	to	any	user	(e.g.,	‘harsheev’)	using	grant	state-
ment	as	the	following	one.	

grant newadmin to harsheev;

The	granted	role	can	be	revoked	using	REVOKE	statement.

SUMMARy
	● Oracle	Database	10g	XE	can	be	downloaded	free	from	the	internet	and	can	be	used	for	
writing	and	executing	SQL	queries	and	small	PL/SQL	blocks.	

	● User	has	to	provide	user	name	and	password	when	installing	Oracle.	The	same	user	name	
and	password	can	be	used	afterwards	to	work	in	Express	Edition	of	Oracle.	
	● Five	 components	 are	 available	 within	 Oracle	 XE	 which	 are	 Administration,	 Object	
Browser,	Utilities,	SQL	and	Application	Builder.	The	fifth	component	Application	Build-
er	is	available	only	if	the	user	had	admin	rights.

	● SQL	component	is	used	to	write	and	execute	queries	and	PL/SQL	blocks.
	● SYS	and	SYSTEM	users	can	create	new	users,	profiles	and	roles	using	create	user,	create	
profile	and	create	role	commands,	respectively.	
	● Using	‘grant’	command,	the	roles	and	privileges	can	be	assigned	to	users.	Using	‘revoke’	
command,	the	assigned	roles	and	privileges	can	be	withdrawn	from	the	users.	
	● There	are	two	types	of	privileges—system	and	object.

ExErcisEs

	 1.	 Explain	the	features	of	Oracle	as	a	relational	database	management	system.
	 2.	Write	steps	to	login	into	Oracle	10g	XE.
	 3.	Write	syntaxes	of	‘create	user’,	‘create	role’	and	‘create	profile’.	Explain	all	these	users	

with	examples.
	 4.	 Discuss	system	and	object	privileges.
	 5.	 List	advantages	of	creating	role.
	 6.	 Select	the	correct	answer	from	the	following	multiple	choices.
	 i.	 _________________	is	a	relational	database	management	system	which	also	supports	

object-oriented	features.
	 	 a.	 IMS	 	 	 b.	 Dbase
	 	 c.	 Oracle	 	 	 d. Sybase	
	 ii.	 Using	which	option,	one	can	view	and	change	storage	and	memory	settings,	create	

new	users	and	manage	users	in	Oracle	10g?
	 	 a.	 Administration	 	 b.	 Utilities
	 	 c.	 SQL	 	 	 d.	 Object	Browser

CH_12_Overview of Oracle_Final.indd 233 2/26/2014 3:50:09 PM

234 | Chapter 12

	 iii.	 Using	which	option,	one	can	create	and	browse	various	objects	such	as	tables,	views,	
types,	etc.,	in	Oracle	10g?

	 	 a.	 Administration	 	 	 b.	 Utilities
	 	 c.	 Application	Builder		 	 d.	 Object	Browser
	 iv.	 Using	which	option,	one	can	write	and	execute	queries	in	Oracle	10g?
	 	 a.	 Administration		 	 	 b.	 Utilities
	 	 c.	 SQL	 	 	 	 d.	 Object	Browser
	 v.	 Using	which	option,	one	can	create	and	browse	various	objects	such	as	tables,	views,	

types,	etc.,	in	Oracle	10g?
	 	 a.	 Administration	 	 	 b.	 Utilities
	 	 c.	 SQL	 	 	 	 d.	 Object	Browser
	 vi.	 Using	which	option,	one	can	load	or	unload	data,	generate	data	definition	commands	

from	the	existing	objects,	view	object	reports,	create	and	browse	various	objects	such	
as	tables,	views,	types,	etc.,	in	Oracle	10g?

	 	 a.	 Administration	 	 	 b.	 Utilities
	 	 c.	 SQL	 	 	 	 d.	 Object	Browser
	 vii.	 Using	which	option,	one	can	import	or	export	applications	to/from	Oracle	10g?
	 	 a.	 Administration		 	 	 b.	 Utilities
	 	 c.	 SQL	 	 	 	 d.	 Application	Builder

CH_12_Overview of Oracle_Final.indd 234 2/26/2014 3:50:09 PM

References and Bibliography

Book RefeRences
 1. C. J. Date, A. Kannan and S. Swamynathan, An Introduction to Database Systems,

Pearson Education, Eighth Edition, 2009.
 2. Abraham Silberschatz, Henry F. Korth and S. Sudarshan, Database System Concepts,

McGraw-Hill Education (Asia), Fifth Edition, 2006.
 3. Shio Kumar Singh, Database Systems Concepts, Designs and Application, Pearson

Education, Second Edition, 2011.
 4. Peter Rob and Carlos Coronel, Database Systems Design, Implementation and Manage-

ment, Thomson Learning-Course Technology, Seventh Edition, 2007.
 5. Patrick O’Neil and Elizabeth O’Neil, Database Principles, Programming and Perfor-

mance, Harcourt Asia Pte. Ltd., First Edition, 2001.
 6. Atul Kahate, Introduction to Database Management Systems, Pearson Education Pte.

Ltd., First Edition, 2004.
 7. Raghu Ramakrishnan and Johannes Gehrke, Database Management Systems, Tata

McGraw-Hill Education (Asia), Third Edition, 2003.
 8. Dr Arun Kumar R., John Kanagaraj and Richard Stroupe, Oracle Database 10g: Insider

Solutions, Pearson Education, First Edition, 2006.
 9. Sam Anahory and Dennis Murray, Data Warehousing in the Real World: A Practical

Guide for Building Decision Support Systems, Pearson Education Ltd., Eleventh Impres-
sion, 2012.

 10. John Kauffman, Brian Matsik and Kevin Spencer, Beginning SQL Programming, Shroff
Publishers and Distributors Pvt. Ltd., First Reprint, 2001.

 11. Pang-Ning Tan, Michael Steinbach and Vipin Kumar, Introduction to Data Mining,
Pearson Education Inc., Fourth Impression, 2009.

 12. Arun Pujari, Data Mining Techniques, Universities Press (India) Pvt. Ltd., Second
Edition, 2010.

 13. Jia Wei Han and Micheline Kamber, Data Mining Concepts and Techniques, Morgan
Kaufmann Publishers, Second Edition, 2006.

 14. Vikram Pudi and P. RadhaKrishna, Data Mining, Oxford University Press, First Edition,
2009.

 15. John L. Viescas and Jeff Conrad, Microsoft Office Access 2007 Inside Out, Prentice-Hall
of India Private Limited, First Edition, 2007.

 16. Virginia Andersen, The Complete Reference Microsoft Office Access 2007, Tata
McGraw-Hill Publishing Company Limited, Second Edition, 2008.

DBMS_References and Bibliography_Final.indd 235 2/26/2014 4:30:34 PM

236 | References and Bibliography

 17. Ivan Bayross, SQL, PL/SQL The Programming Language of ORACLE, BPB Publica-
tions, Third Edition, 2008.

 18. E-Book: Introduction to Database Systems, By: ITL Education Solutions Limited, Pub-
lisher: Pearson Education India, 2008, e-book ISBN-10: 81-3174-319-5; e-book ISBN-
13: 978-8-131-74319-5.

 19. E-book: Oracle Database Application Developer’s Guide-Fundamentals, 10g Release 2
(10.2), Oracle, 2005, By: Primary Author: Lance Ashdown; Contributing Authors: D.
Adams, M. Cowan, R. Moran, J. Melnick, E. Paapanen, J. Russell and R. Strohm.

ReseaRch PaPeRs/aRticles RefeRences
 1. E. F. Codd, Extending the Database Relational Model to Capture More Meaning, ACM

Transactions on Database Systems, Vol. 4, No. 4, December 1979, Pages 397–434.
 2. I-Min A. Chen, Richard Hull and Dennis Mcleod, An Execution Model for Limited Ambi-

guity Rules and Its Application to Derived-Data Update, ACM Transactions on Database
Systems, Vol. 20, No. 4, December 1995, Pages 365–413.

 3. William C. Mcgee, On User Criteria for Data Model Evaluation, ACM Transactions on
Database Systems, Vol. 1, No. 4, December 1976, Pages 370 –387.

 4. Feng Shao, Antal Novak and Jayavel Shanmugasundaram, Triggers over Nested Views
of Relational Data, ACM Transactions on Database Systems, Vol. 31, No. 3, September
2006, Pages 921–967.

 5. Stanley Y. W. Su, Herman Lam and Der Her Lo, Transformation of Data Traversals and
Operations in Application Programs to Account for Semantic Changes of Databases,
ACM Transactions on Database Systems, Vol. 6, No. 2, June 1981, Pages 255–294.

 6. Gad Ariav, A Temporally Oriented Data Model, ACM Transactions on Database
Systems, Vol. 11, No. 4, December 1986, Pages 499–527.

 7. Millist W. Vincent, Jixue Liu and Chengfei Liu, Strong Functional Dependencies and
Their Application to Normal Forms in XML, ACM Transactions on Database Systems,
Vol. 29, No. 3, September 2004, Pages 445–462.

 8. Martin Gogolla and Uwe Hohenstein, Towards a Semantic View of an Extended Entity-
Relationship Model, ACM Transactions on Database Systems, Vol. 16, No. 3, September
1991, Pages 369–416.

 9. D. S. Batory, T. Y. Leung and T. E. Wise, Implementation Concepts for an Extensible
Data Model and Data Language, ACM Transactions on Database Systems, Vol. 13, No.
3, September 1988, Pages 231–262.

 10. Antonio Albano, Luca Cardelli and Renzo Orsini, Galileo: A Strongly-Typed, Interactive
Conceptual Language, ACM Transactions on Database Systems, Vol. 10, No. 2, June
1985, Pages 230–260.

 11. Debabrata Dey, Veda C. Storey and Terence M. Barron, Improving Database Design
through the Analysis of Relationships, ACM Transactions on Database Systems, Vol. 24,
No. 4, December 1999, Pages 453–486.

 12. Eugene Wong, A Statistical Approach to Incomplete Information in Database Systems,
ACM Transactions on Database Systems, Vol. 7, No. 3, September 1982, Pages 470–488.

DBMS_References and Bibliography_Final.indd 236 2/26/2014 4:30:34 PM

References and Bibliography | 237

 13. Carlos A. Hurtado, Claudio Gutierrez and Alberto O. Mendelzon, Capturing Summariz-
ability with Integrity Constraints in OLAP, ACM Transactions on Database Systems,
Vol. 30, No. 3, September 2005, Pages 854–886.

 14. Yair Wand, Veda C. Storey and Ron Weber, An Ontological Analysis of the Relationship
Construct in Conceptual Modeling, ACM Transactions on Database Systems, Vol. 24,
No. 4, December 1999, Pages 494–528.

 15. Dennis Shasha and Tsong-Li Wang, Optimizing Equijoin Queries in Distributed Data-
bases Where Relations are t-lash Partitioned, ACM Transactions on Database Systems,
Vol. 16, No. 2, June 1991, Pages 279–308.

 16. Debabrata Dey and Sumit Sarkar, A Probabilistic Relational Model and Algebra, ACM
Transactions on Database Systems, Vol. 21, No. 3, September 1996, Pages 339–369.

 17. Gü Ltekin Ö Zsoyoǧ Lu, Ismail Sengö R Altingö Vde, Abdullah Al-Hamdani, Selma
Ays¸ E Ö Zel, Ö Zgü R Ulusoy and Zehra Meral Ö Zsoyoǧ Lu, Querying Web Metadata:
Native Score Management and Text Support in Databases, ACM Transactions on Data-
base Systems, Vol. 29, No. 4, December 2004, Pages 581–634.

 18. Laks V. S. Lakshmanan, Fereidoon Sadri and Subbu N. Subramanian, SchemaSQL—An
Extension to SQL for Multidatabase Interoperability, ACM Transactions on Database
Systems, Vol. 26, No. 4, December 2001, Pages 476–519.

 19. Luca Forlizzi, Ralf Haxtmut Güting, Enrico Nardelli and Markus Schneider, A Data
Model and Data Structures for Moving Objects Databases, ACM SIGMOD 2000 5/00
Dallas,

 20. Michael Stonebraker, Eugene Wong, Peter Kreps and Gerald Held, The Design and
Implementation of INGRES, ACM Transactions on Database Systems, Vol. 1, No. 3,
September 1976, Pages 189-222.

 21. Mcchael Stonebraket and Lawrence A Rowe, The Design Of Postgres, ACM 0-89791-
191-1/86/0500/0340.

 22. Tirthankar Lahiri, Amit Ganesh, Ron Weiss and Ashok Joshi , Fast-Start: Quick Fault
Recovery in Oracle, ACM SIGMOD 2001 May 21–24.

 23. Evaggelia Pitoura and Bharat Bhargava, A Framework for Providing Consistent and
Recoverable Agent-based Access to Heterogeneous Mobile Databases, SIGMOD
Record, Vol. 24, No. 3, September 1995.

 24. Krishna Kunchithapadam, Wei Zhang, Amit Ganesh and Niloy Mukherjee, Oracle
Database File System, SIGMOD’11, June 12–16, 2011, Athens, Greece.

 25. Jos Moreira and Ribeiro, Query Operations for Moving Objects Database Systems, 8th
ACM symposium on GIS 11/00 Washington, D. C., USA.

 26. Hyun Jin Moon and Carlo Zaniolo, Scalable Architecture and Query Optimization for
Transaction-time DBs with Evolving Schemas, SIGMOD’10, June 6–11, 2010, India-
napolis, Indiana, USA.

 27. Thomas Behr, Victor Teixeira de Almeida and Ralf Hartmut Güting, Representation of
Periodic Moving Objects in Databases, ACM-GIS’06, November 10–11, 2006.

 28. M. M. Astrahan, ht. W. Blasgen, D. D. Chamberlin, K. P. Eswaran, J. N. Gray, P. P. Griffiths,
W. F. King, R. A. Lorie, P. R. A. Jones, J. W. Mehl, G. R. Putzolu, I. L. Traiger, B. W. Wade
and V. Watson, System R: Relational Approach to Database Management, ACM Transac-
tions on Database Systems, Vol. 1, No. 2. June 1976, Pages 97–137.

DBMS_References and Bibliography_Final.indd 237 2/26/2014 4:30:34 PM

238 | References and Bibliography

 29. Jorge F Gana and Won Kim, Transaction Management in an Object-Oriented Database
System, ACM 0-89791-268-3/88/0006/0037.

 30. Ewing L. Lusk, Ross A. dverbeek, and Bruce Parrello, A Practical Design Methodology
for the Implementation of IMS Databases Using the Entity-Relationship Model, ACM
0-89791418-4/80/0500/0009.

 31. Bogdan Czejdo, Ramez Elmasri and Marek Rusinkiewicz, An Algebric Language for
Graphical Query Formulation Using an Extended Entity-Relationship Model, ACM
0-89791-218-7/87/0002-0154.

 32. Alexander Egyed, Automated Abstraction of Class Diagrams, ACM Transactions on
Software Engineering and Methodology, Vol. 11, No. 4, October 2002, Pages 449–491.

 33. Sudha Ram, Deriving Functional Dependencies from the Entity-Relationship Model,
Communications of the ACM, September 1995, Vol. 38, No. 9.

 34. Carol Chrisman and Barbara Beccue, Entity Relationship Models as a Tool for Data
Analysis and Design, ACM-O-89791-178-4/86/0002/0008.

 35. Antonio Badia, Entity-Relationship Modeling Revisited, SIGMOD Record, Vol. 33, No.
1, March 2004.

 36. Joseph Fong, Mapping Extended Entity Relationship Model to Object Modeling Tech-
nique, SIGMOD Record, Vol. 24, No. 3, September 1995.

 37. Victor M. Markowitz and Arie Shoshani, On the Correctness of Representing Extended
Entity-Relationship Structures in the Relational Model, ACM 0-89791-317-5/89/
ooO5/0430.

 38. Ramez Elmasri and Gio Wiederhold, Properties of Relationships and Their Representation,
National Computer Conference, 1980.

 39. James Rumbaugh, Relations as Semantic Constructs in an Object-Oriented Language,
OOPSLA’ 87 Proceedings October 4–8, 1987.

 40. Victor M. Markowitz and Arie Shoshani, Representing Extended Entity-Relationship
Structures in Relational Databases-A Modular Approach, ACM Transactions on Data-
base Systems, Vol. 17, No. 3, September 1992, Pages 423–464.

 41. Sikha Bagui, Rules for Migrating from ER and EER Diagrams to Object-Relationship
(OR) diagrams, 43rd ACM Southeast Conference, March 18–20, 2005.

 42. Peter Pin-Shan Chen, The entity-relationship model—A basis for the enterprise view of
data, National Computer Conference, 1977.

 43. Peter Pin-Shan Chen, The Entity-Relationship Model-Toward a Unified View of Data,
ACM Transactions on Database Systems, Vol. 1, No. 1. March 1976, Pages 9–36.

 44. Hafeez Osman, Dave R. Stikkolorum, Arjan van Zadelhoff, Michel R.V. Chaudron and
Niels Bohrweg, UML Class Diagram Simplification: What is in the developer’s Mind?,
EESSMOD’12, October 1–5, 2012.

 45. Fred J. Maryanski and Veda C. Storey, Understanding Semantic Relationships, VLDB
Journal, 2, 455–488 (1993).

 46. Kofi Apenyo, Using the Entity-Relationship Model to Teach the Relational Model, No. 2
June 1999, SIGCSE Bulletin.

 47. Michael Schrader, William Endress and Fred Richards, Understanding an OLAP Solu-
tion from Oracle, An Oracle White Paper, April 2008.

DBMS_References and Bibliography_Final.indd 238 2/26/2014 4:30:34 PM

References and Bibliography | 239

 48. John C. Peck, Distributed Database/File Systems, Introduction, ACM Computer Science
Conference-Agenda for Computing Research: The Challenge for Creativity, 1985 March
12–14.

 49. Toby J. Teorey, Distributed Database Design: A Practical Approach and Example,
SIGMOD RECORD, Vol. 18, No. 4, December, 1989.

 50. Carlos Ordonez, Javier García-García and Zhibo Chen, Measuring Referential Integrity
in Distributed Databases, CIMS’07, November 9, 2007.

 51. Ralf Hartmut Güting, An Introduction to Spatial Database Systems, Special Issue on
Spatial Database Systems of the VLDB Journal, Vol. 3, No. 4, October 1994.

 52. Z. Meral Ozsoyoglu and Li-Yan Yuan, A New Normal Form for Nested Relations, ACM
Transactions on Database Systems, Vol. 12, No. 1, March 1987.

 53. Ronald Fagin, A Normal Form for Relational Databases That is Based on Domains and
Keys, ACM Transactions on Database Systems, Vol. 6, No. 3, September 1981.

 54. Marcelo Arenas and Leonid Libkin, A Normal Form for XML Documents, ACM Trans-
actions on Database Systems, Vol. 29, No. 1, March 2004.

 55. P. A. Bernstein, J. R. Swenson and D. C. Tsichritzis, A Unified Approach to Functional
Dependencies and Relations.

 56. Tok-Wang Ling, Frank W. Tompa and Tiko Kameda, An Improved Third Normal Form
for Relational Databases, ACM Transactions on Database Systems, Vol. 6, No. 2,
June 1981.

 57. William Kerr, A Simple Guide to Five Normal Forms in Relational Database Theory,
Communications of the ACM February 1983, Vol. 26, No. 2.

 58. Don-Min Tsou and Patrick C. Fischer, Decomposition of a Relation Scheme into Boyce-
Codd Normal Form, ACM 0-89791-028-1/80/1000/0411.

 59. W. W. Armstrong and C. Delobel, Decompositions and Functional Dependencies in
Relations’, ACM Transactions on Database Systems, Vol. 5, No. 4, December 1980.

 60. Sven Hartmann, Markus Kirchberg and Sebastian Link, Design by Example for SQL
Table Definitions with Functional Dependencies, 24 June 2011, Springer–Verlag, 2011.

 61. Victor Vianu, Dynamic Functional Dependencies and Database Aging, Journal of the
Association for Computing Machinery, Vol. 34, No. 1, January 1987.

 62. K. V. S. V. N. Raju and Arun K. Majumdar, Fuzzy Functional Dependencies and Loss-
less Join Decomposition of Fuzzy Relational Database Systems, ACM Transactions on
Database Systems, Vol. 13, No. 2, June 1988.

 63. Dennis J. McLeod, High Level Domain Definition in a Relational Database System,
IBM Research Laboratory.

 64. William Kent, Limitations of Record-Based Information Models, ACM Transactions on
Database Systems, Vol. 4, No. 1, March 1979.

 65. Betty Salzberg, Third Normal Form Made Easy, SIGMOD RECORD, Vol. 15, No. 4,
December 1986.

 66. Ronald Fagin, Multivalued Dependencies and a New Normal Form for Relational Data-
bases, ACM Transactions on Database Systems, Vol. 2, No. 3, September 1977.

 67. Hugh Darwen, C. J. Date, Ronald Fagin, A Normal Form for Preventing Redundant
Tuples in Relational Databases, ICDT 2012, March 26–30, 2012.

DBMS_References and Bibliography_Final.indd 239 2/26/2014 4:30:34 PM

240 | References and Bibliography

 68. Margaret S. Wu, The Practical Need for Fourth Normal Form, ACM 0-89791-468-
61921000210019.

 69. Ronald Fagin, Normal Forms and Relational Database Operators, ACM 0-89791-001-
x/79/0500-0153.

 70. Zahir Tari, John Stokes and Stefano Spaccapietra, Object Normal Forms and Dependen-
cy Constraints for Object-Oriented Schemata, ACM Transactions on Database Systems,
Vol. 22, No. 4, December 1997.

 71. Catriel Beeri, On the Membership Problem for Functional and Multivalued Dependen-
cies in Relational Databases, ACM Transactions on Database Systems, Vol. 5, No. 3,
September 1980.

 72. C. J. Date and Ronald Fagin, Simple Conditions for Guaranteeing Higher Normal Forms
in Relational Databases, ACM Transactions on Database Systems, Vol. 17, No. 3, Sep-
tember 1992.

 73. Philip A. Bernstein, Synthesizing Third Normal Form Relations from Functional Depen-
dencies, ACM Transactions on Database Systems, Vol. 1. No. 4, December 1976.

 74. Gang Luo, Jeffrey F. Naughton, Curt J. Ellmann and Michael W. Watzke, Locking Proto-
cols for Materialized Aggregate Join Views, Proceedings of the 29th VLDB Conference,
Berlin, Germany, 2003.

 75. Wen-Syan Li, K. Sel¸cuk Candan, Kyoji Hirata and Yoshinori Hara, Supporting Efficient
Multimedia Database Exploration, The VLDB Journal (2001) 9: 312–326 / Digital Object
Identifier (DOI), 10.1007/s007780100040.

 76. Edmond Lau and Samuel Madden, An Integrated Approach to Recovery and High Avail-
ability in an Updatable, Distributed Data Warehouse, VLDB ‘06, September 1215,
2006.

 77. Jeffrey Fischer and Rupak Majumdar, Ensuring Consistency in Long Running Transac-
tions, ASE ’07, November 5–9, 2007, ACM, 978-1-59593-882-4/07/0011.

 78. Alexander Thomasian, Concurrency Control: Methods, Performance, and Analysis,
ACM Computing Surveys, Vol. 30, No. 1, March 1998.

 79. Shahidul Islam Khan and Dr. A. S. M. Latiful Hoque, A New Technique for Database
Fragmentation in Distributed Systems, International Journal of Computer Applications
(0975–8887), Vol. 5, No. 9, August 2010.

 80. Hiiko Schuldt, Gustavo Alonso, Catriel Beeri and Hans-Jö RG Schek, Atomicity and
Isolation for Transactional Processes, ACM Transactions on Database Systems, Vol. 27,
No. 1, March 2002.

 81. Arpita Mathur, Mridul Mathur, Pallavi Upadhyay and Arpita Mathur et al., Cloud Based
Distributed Databases: The Future Ahead, International Journal on Computer Science
and Engineering (IJCSE), ISSN: 0975-3397, Vol. 3, No. 6, June 2011.

 82. Sharad Mehrotra, Henry F. Korth and Avi Silberschatz, Concurrency Control in Hierar-
chical Multidatabase systems, The VLDB Journal (1997).

 83. Jean-Pierre Briot, Rachid Guerraoui and Laus-Peter Lo¨ Hr, Concurrency and Distribu-
tion in Object-Oriented Programming, ACM Computing Surveys, Vol. 30, No. 3, Sep-
tember 1998.

DBMS_References and Bibliography_Final.indd 240 2/26/2014 4:30:34 PM

References and Bibliography | 241

WeB RefeRences
 1. http://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm
 2. http://docs.oracle.com/cd/E11882_01/server.112/e25789/transact.htm
 3. http://lsirwww.epfl.ch/courses/iis/2009ss/slides/slides-11-Transactions.pdf
 4. http://docs.oracle.com/cd/A57673_01/DOC/server/doc/SPS73/chap22.htm
 5. http://docs.oracle.com/cd/B12037_01/network.101/b10777/protdata.htm
 6. http://www.inf.unibz.it/dis/teaching/DDB/ln/ddb02.pdf
 7. http://docs.oracle.com/cd/B12037_01/network.101/b10777/protdata.htm
 8. http://www.oracle.com/us/solutions/business-intelligence/064300.pdf
 9. http://link.springer.com/chapter/10.1007%2F978-1-4302-0528-9_12#page-1
 10. http://www.peterindia.net/MultimediaDatabase.html
 11. http://www.cs.cf.ac.uk/Dave/Multimedia/node141.html
 12. http://docs.oracle.com/cd/B28359_01/appdev.111/b28415/ch_intr.htm
 13. http://dna.fernuni-hagen.de/Lehre-offen/Kurse/1675/KE1.pdf
 14. http://blog.safaribooksonline.com/2012/08/17/moving-to-nosql-databases/
 15. http://nosql-database.org/
 16. http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041

.pdf
 17. http://www.10gen.com/nosql
 18. http://www.ehow.com/info_10069998_spatial-databases.html
 19. http://en.wikipedia.org/wiki/Data_mining
 20. http://www.rdatamining.com/resources/tools
 21. http://docs.oracle.com/cd/B19306_01/appdev.102/b14261/sqloperations.htm#BABJIHCC

DBMS_References and Bibliography_Final.indd 241 2/26/2014 4:30:34 PM

http://docs.oracle.com/cd/B19306_01/server.102/b14220/consist.htm
http://docs.oracle.com/cd/E11882_01/server.112/e25789/transact.htm
http://lsirwww.epfl.ch/courses/iis/2009ss/slides/slides-11-Transactions.pdf
http://docs.oracle.com/cd/A57673_01/DOC/server/doc/SPS73/chap22.htm
http://docs.oracle.com/cd/B12037_01/network.101/b10777/protdata.htm
http://www.inf.unibz.it/dis/teaching/DDB/ln/ddb02.pdf
http://docs.oracle.com/cd/B12037_01/network.101/b10777/protdata.htm
http://www.oracle.com/us/solutions/business-intelligence/064300.pdf
http://link.springer.com/chapter/10.1007%2F978-1-4302-0528-9_12#page-1
http://www.peterindia.net/MultimediaDatabase.html
http://www.cs.cf.ac.uk/Dave/Multimedia/node141.html
http://docs.oracle.com/cd/B28359_01/appdev.111/b28415/ch_intr.htm
http://dna.fernuni-hagen.de/Lehre-offen/Kurse/1675/KE1.pdf
http://blog.safaribooksonline.com/2012/08/17/moving-to-nosql-databases/
http://nosql-database.org/
http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf
http://www.10gen.com/nosql
http://www.ehow.com/info_10069998_spatial-databases.html
http://en.wikipedia.org/wiki/Data_mining
http://www.rdatamining.com/resources/tools
http://docs.oracle.com/cd/B19306_01/appdev.102/b14261/sqloperations.htm#BABJIHCC
http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf

A

aggregate functions, 118–119
Avg(field_name), 119
Count(*) or count(field_name), 118–119
Max(field_name), 119
Min(field_name), 119
Sum(field_name), 119

agile development, 176
alternate keys, 46–47
alter table in Oracle, 113–114
ANSI/SPARC architecture of database, 33
application developer, 7
application failure, 160
application program, 5
application programmer, 7
architecture of database, 33–35

conceptual level, 34
External–Conceptual mapping, 35
external level, 33
internal level, 33
internal schema, 35
internal view, 35

ARMiner, 175
atomicity, 151
attribute (column), 27, 60–61
authentication, 161

B

backup of data, 160
bar charts, 4
binary relation, 42
binary relationship, 66
Boyce–Codd Normal Form (BCNF), 96–98

C

candidate key, 46–47
cardinality of relation, 42
Cartesian product, 51–52
cell, 53
centralized database management system, 165

advantages, 165
disadvantages, 165

centralized processing, 166
Character-based User Interface (CUI), 13
characteristic of an entity, 27

check constraint, 126
checkpoints, 160–161
Chen’s semantic model, 59, 61

attribute symbols, 63
class diagram, 76
clauses of SELECT statement, 115–118
COBOL, 12
COBOL (Common Business-Oriented Language), 19
Codd, Edgar F., 20, 41, 53
‘COMMIT’ command, 149
composite attribute, 62
composite key, 44–46
concurrent execution of transactions, 155–158
conversion functions

To_char, 122
To_date, 122
To_number, 122
To_timestamp, 122

co-related sub query, 129
create table in Oracle, 112–113
cross join, 127
Crow’s Foot semantic model, 59
cube, 129–131
cursor attributes, 141
cursors of PL/SQL block, 139–142

D

data, 1–2
constraints and, 5
in database, 8, 10–11
operational, 6

database, 5–6
ANSI/SPARC architecture of, 33
architecture of, 33–35
characteristics, 14–15
components of, 6–11
language, 54
limitations, 15–16
need for, 12

Database Administrator, 35
database administrator, 8
database design, 54
database designer, 8
database languages, 35–36
database life cycle (DBLC), 54

Index

DBMS_Index_Final.indd 243 3/4/2014 10:45:00 AM

244 | Index

database management, 11
database management system, 11

difference between file-based management
system and, 15

database triggers, 161
data control language (DCL), 35–36
data definition commands, 112–114
Data Definition Language (DDL), 34
data definition language (DDL), 35
data dependence, 36
data dictionary, 54
data independence, 36
data loading, 54
data maintenance, 54
data manipulation commands, 114–115
Data Manipulation Language (DML), 34
data manipulation language (DML), 35
data mining, 174
data models

evolution of, 19–21
hierarchical, 21–26
network, 26–27
object-oriented, 30–32
relational, 27–30

Data Sub Language (DSL), 34
data transfer (conversion), 54
data warehouse, 174
date and time functions

Add_months, 120
Extract, 120
Last_day, 121
Months_between, 120
Next_day, 121
Sysdate and current_date, 119
Systimestamp, 120–121

deadlocks, 157–159
default constraint, 126
degree of relation, 42
delete operation, 54
dependencies, 83–88

full functional, 86
functional, 83–84
join, 87, 100–101
multi-valued, 87, 98–99
partial, 86, 92
transitive, 87

dependent segment, 21
derived attribute, 62
determinant, 84
difference, 50–51
distributed data, 176

distributed database management system
(DDBMS), 165

advantages, 170
application processor, 169
client-server architecture, 167
communication network, 167, 169
components, 169
data manager, 169
disadvantages, 170
distributed processing, 169–170
fragments (parts), 166
heterogeneous, 168–169
homogeneous, 167–168
replication, 166
transaction processor, 169

distributed processing, 166
distribution independence, 54
domain-key normal form (DKNF), 103
domain of an attribute, 42

E

email_address attribute, 43
end-users, 7
entities, 5–6, 41

identifying, 60–63
entity integrity rule, 48–49
entity occurrence, 27, 42
entity-relationship model, 21
entity-relationship model (E-R model), 59

converting into relational model, 73–74
example, 68–72
extended, 72–73
terminologies, 62

equi join, 127
External–Conceptual mapping, 35

F

field-level constraint, 125
file-based data management system, 12–14

difference between database management
system and, 15

first normal form, 88, 90
foreign key, 47–48, 125–126, 187
FORTRAN (Formula Translation), 19
Fourth Generation Language (4GL), 111
FoxPro, 13
fragments of database, 158
full functional dependency, 85–86
full outer join, 127
functional dependency, 83–84

DBMS_Index_Final.indd 244 3/4/2014 10:45:00 AM

Index | 245

G

Gem-Stone, 20
gender attribute, 43
generalization of subclasses, 76
GeoDa, 175
GIS (Geographical Information System), 176
graph store NoSQL databases, 176
GROUP BY clause, 118
guaranteed access rule, 53

H

hardware, 8
heterogeneous databases, 174
heterogeneous distributed database, 168–169
hierarchical data model, 21–26
homogeneous distributed database, 167–168

I

IBM DB2 Everyplace, 173
inconsistent data, 10
inconsistent state, 151
information, 2–4

representation of, 4
Information Management System (IMS), 19
information rule, 53
inner joins, 127
insert operation, 54
INSERT statement, 149
integrated data, 10
Integrated Data Store (IDS), 19
integrity independence, 54
integrity rules

entity integrity rule, 48–49
referential integrity rule, 49

intersection, 50
intersect operator, 128
‘is a’ relationship, 73

J

join dependency, 87, 100–101
join operator, 53

K

key, 44
alternate, 46–47
attribute, 44, 70
candidate, 46–47
composite, 44–46
foreign, 47–48
primary, 44
secondary, 48

super, 46
surrogate, 48
unique, 47

key attribute/identifier, 62
key-document pair, 176
Knowledge Discovery in Database (KDD), 174

L

lab activities, 216–220
layman user, 7
left outer join, 127
location-based moving object database, 176
lock conversion of data, 157
lock downgrade of data, 157
lock escalation of data, 157–158
logical database, 5–6
logical data independence, 54
lossless decomposition, 101–102

M

macros of MS Access, 181, 205–210
‘autoexec,’ 209
autokeys macro group, 209
columns of a macro sheet, 206–207
embedded, 206
macro group, 208–209
nested, 208
to protect the database with a password,

209–210
running a, 205
standalone, 206
testing and debugging a macro, 207
uses of, 207–208

mandatory participation in relationship, 67
many-to-many relationship

managing, 68
unary, 65

many-to-many unary relationship, 65
mathematical functions

Mod, 122
Power, 122
Round, 122
Sqrt, 122

media crash, 160
metadata, 5, 54
Microsoft SQL Server Analysis, 172
Microsoft SQL Server Analysis Services, 175
Microsoft SQL server CE, 173
minus operator, 128
M:N ternary relationship, 66
mobile application, 173

DBMS_Index_Final.indd 245 3/4/2014 10:45:00 AM

246 | Index

mobile database
fixed client-fixed host architecture, 173
for light-weighted devices, 173
mobile client-fixed host architecture, 172–173
mobile client-mobile host architecture, 173

moving object databases, 176
MS Access

action queries, 190–191
adding groups or sorts in the report, 203–204
aggregate functions, 195
as an RDBMS, 180
append query, 190–191
autolookup query, 191
chart, creating, 204–205
creating database and tables, 181–183
cross join, 196
crosstab query, 191
data types, 183–187
date and time functions, 193–194
delete query, 191
difference between Design view and

Datasheet view, 182
duplicate query, 190
elements of, 180–181
equi join, 195
exporting a report, 204
field naming convention, 181
filtering records, 188
foreign key, 187
format property, 184
formats for the Date/Time Data Type, 186
forms, 181
forms, creating, 196–201
inner join, 196
input mask characters, 184, 186
left outer join, 196
macros, 181, 205–210
mathematical functions, 195
modules, 181
multiple join, 196
Navigation Pane, 183
‘number’ field properties, 184
parameterized query, 191
parameterized report, creating, 203
predicates, 192
printing serial numbers on a report, 204
print parameters in the report header, 203
queries, creating, 188–196
query, 180–181
query using query wizard, 189
removing duplicate values or repeating values, 204

reports, 181
reports, creating, 201–205
‘report wizard’ option, 201–202
right outer join, 196
sections of a report, 202
select queries, 190
select query, 190
select statement, 189
sorting by single field, 187
sorting by two or more field, 187
sorting records, 187
special operators, 192–193
SQL-specific queries, 191–192
string functions, 194–195
subreports and subforms, 202–203
switchboard system for, 210–211
‘text’ field properties, 185
union query, 196
unmatched query, 190
update query, 191
wildcards, 192

MS-Access, 20
MS-SQL Server, 20
multidimensional database, 172
multimedia databases, 174
multiple join, 127
multi-user database, 165
multi-valued attribute, 62
multi-valued dependency, 87, 98–99
MySQL, 175

N

naive user, 7
n-ary relation, 42
N-ary relationship, 66
natural join, 127
nested normal form (NNF), 103
nested query, 128
network data model, 26–27

advantages, 27
disadvantages, 27
Member record, 26
Owner record, 26

non-equi join, 127
nonloss decomposition, 101–102
non-redundant data, 10
non-subversion rule, 54
normalization

Boyce–Codd Normal Form (BCNF), 96–98
defined, 83
examples, 103–108

DBMS_Index_Final.indd 246 3/4/2014 10:45:00 AM

Index | 247

first normal form, 88
lossless decomposition, 101–102
need for, 82–83
nonloss decomposition, 101–102
second normal form, 88–93
tables, 102–103
third normal form, 94–96
types of dependencies, 83–88, 98–101

NoSQL database, 176–177
not null constraint, 126
null, 44
null values, 53–54

O

O2, 20
ObjectDesign, 20
Objectivity, 20
object modelling, 75

class diagram, 76
generalization, 76
specialization, 76
subclass, 75–76
superclass, 75–76

object-oriented database, 174
object-oriented data model

advantages, 32
disadvantages, 33

object-oriented data models, 30–32
object-oriented programming languages, 20
object relational DBMS, 20
OLAP (On-Line Analytical Processing) engine, 174
one-to-many unary relationship, 65
one-to-one unary relationship, 65
On-Line Analytical Processing (OLAP), 172
open source database, 175
open source database management systems, 11
open source tools, 175
operational data, 6
optional participation in relationship, 67
Oracle Lite, 173
Oracle Multimedia, 174
Oracle RDBMS, 32, 221. see also transactions

block, 138–139
cursors, 139–142
database backup and recovery, 159–161
functions, 143–144
11g OLAP, 172
Hyperion Essbase, 172
logging into, 221–222
Oracle Database 10g XE, 222–228
packages, 145

privileges, managing, 231–233
procedures, 142–143
roles, managing, 229–231
triggers, 144–145
users, managing, 228–229

ordering, 118
outer joins, 127–128

P

package body, 145
package declaration, 145
partial dependency, 86, 92
participation in relationship, 66–67

mandatory, 67
optional, 67

physical database, 6
physical data independence, 54
PostgreSQL, 175
primary key, 44, 46, 125
Procedural Language/Structured Query Language

(PL/SQL)
attributes, 141
block of, 138–139
cursor attributes, 141
cursor for Loop, 141
cursors, 139–142
explicit cursors, 140
functions, 143–144
implicit cursors, 139–140
packages, 145
procedures, 142–143
%rowtype, 141
triggers, 144–145
%type, 141
FOR UPDATE clause, 142
WHERE CURRENT OF clause, 142

programmer, 7
programming languages, 8
project operator, 52–53

Q

Query Language, 7

R

RapidMiner, 175
real-time physical database, 5
redundant (duplicate/repetitive) data, 82, 93
referential integrity rule, 49
related data, 2
related entity occurrences, 21
relation, 20, 41

DBMS_Index_Final.indd 247 3/4/2014 10:45:00 AM

248 | Index

relational database management systems
(RDBMS), 20, 111

comparison between traditional terminology, 44
Oracle, 32
terminology, 41–44
twelve rules of relational database, 53–54

relational data model, 20, 27–30
advantages, 30
disadvantages, 30

relational set operators, 50–52
relationship

binary, 66
between the entities, 71
identifying, 63
‘is a,’ 73
many-to-many unary, 65
M:N ternary, 66
N-ary, 66
one-to-many unary, 65
one-to-one unary, 65
participation, 66–67
strong, 68
ternary, 66
types of, 63–66
unary, 65–66
weak, 68

retrieval operators, 52–53
right outer join, 128
‘ROLLBACK’ command, 149
rollup, 129
root segment, 21
row level triggers, 144–145

S

secondary key, 48
second normal form, 88–93
segment, 21
select operator, 52
SELECT query, 128–129
SELECT statement, 111

clauses of, 115–118
DISTINCT clause, 116
GROUP BY clause, 117
HAVING clause, 117
optional clauses of, 117–118
ORDER BY clause, 117–118
WHERE clause, 116–118

SELELCT keyword, 116
self join, 128
semantic models, 59
shared/exclusive lock of data, 157

simple join, 127
single-user database, 165
single-valued attribute, 62
sixth normal form, 103
Software programmer, 7
spatial (pictorial/image) database, 175–176
specialization of subclasses, 76
special operators in SQL, 123–124

IS NULL, 123
AND operator, 123–124
IN operator, 123
OR operator, 123–124

SQL Anywhere, 173
SQLite, 173
statement level triggers, 144
stored data, 2
string functions

concat, 122
initcap, 121
length, 121
lower, 121
ltrim, 121
rtrim, 122
substr, 121
trim, 122
upper, 121

structural dependence, 36
structural independence, 36
structured data, storing, 176
Structured Query Language (SQL), 8, 34–35, 111

aggregate functions, 118–119
conversion functions, 122
crosstab, 131
cube, 129–131
date and time functions, 119–121
decode function, 131–132
join and set operators, 127–128
mathematical functions, 122
rollup, 129
special operators, 123–124
sub-query, 128–129
types of constraints, 125–127

student_ID field, 42
student_name field, 42
subclass, 75–76
subquery, 123–124
superclass, 75–76
super key, 46
surrogate key, 48
switchboard system for a database, 210–211

DBMS_Index_Final.indd 248 3/4/2014 10:45:01 AM

Index | 249

creating a documentation, 210–211
difference between navigation pane and, 210–211

syntax, 112–113
Sysdate and current_date

string functions, 121
system catalog (data dictionary), 33

maintenance, 54
system crash, 160
System Requirements Specification

(SRS) Document, 54

T

table-level constraint, 125
Temporal Structured Query Language

(TSQL2), 176
ternary relation, 42
ternary relationship, 66
third normal form, 94–96
transaction control language (TCL), 36
transaction manager, 149
transactions

authorization and, 161
checkpoints, 160–161
concurrent execution of, 155–158
consistency property, 153
database backup and recovery, 159–161
database integrity and, 161
database triggers, 161
deadlocks, chances of, 157–159
definition, 148–151
dirty property, 154
durability property, 154
inconsistent retrieval, problem of, 156
integrity and, 161
isolation property, 153–154
lock conversion of data, 157
lock downgrade of data, 157
lock escalation of data, 157–158
lost update, problem of, 156

non-repeatable read property, 154
phantom read property, 154
properties, 152–154
‘read committed’ isolation levels, 156
read committed property, 154
read only, 156
read uncommitted property, 154
repeatable read property, 154
running or active state, 155
serializable property, 154
shared/exclusive lock of data, 157
states, 155
successfully completed state, 155
two-phase commit during, 158
uncommitted data, problem of, 156
unsuccessfully completed state, 155

transitive dependency, 87
tuple of an entity, 27, 41
twelve rules of relational database, 53–54

U

unary relation, 42
unary relationship, 65–66
union, 50
union operator, 128
unique constraint, 126
unique key, 47
unstructured data, storing, 176
updatable view, rule for, 54
update operation, 54
user, 6–8

V

Versant, 20

W

weak relationship, 68
Weka, 175
Wide-column NoSQL database, 177

DBMS_Index_Final.indd 249 3/4/2014 10:45:01 AM

	Cover
	Copyright Page
	Contents
	Foreword
	Preface
	Acknowledgements
	About the Author
	Chapter 1 Basics of Database
	1.1 Introduction
	1.2 Data and Information
	1.2.1 Data
	1.2.2 Information

	1.3 Database
	1.3.1 Components of Database System

	1.4 Database Management
	1.5 Database Management System
	1.6 Need for a Database
	1.7 File-based Data Management System
	1.8 Characteristics, or Features, or Advantages of Database Systems
	1.9 Limitations of Database
	Summary

	Chapter 2 Data Models and Architecture of DBMS
	2.1 Evolution of Data Models
	2.2 Hierarchical Data Model
	2.3 Network Data Model
	2.4 Relational Data Model
	2.5 Object-oriented Data Model
	2.6 Object-relational Data Model
	2.7 Three Level Architecture of Database
	2.8 Database Languages
	2.9 Data and Structural Independence
	Summary

	Chapter 3 Relational Database Management System
	3.1 Introduction
	3.2 RDBMS Terminology
	3.3 Various Types of Keys
	3.4 Integrity Rules
	3.5 Relational Set Operators
	3.6 Retrieval Operators
	3.7 CODD’s Twelve Rules of Relational Database
	Database Life Cycle
	Data Dictionary
	Summary

	Chapter 4 Developing Entity-Relationship Diagram
	4.1 Introduction
	4.2 Identifying Entities
	4.3 Identifying Relationships
	4.4 Types of Relationships
	4.5 Relationship Participation
	4.6 Strong and Weak Relationship
	4.7 Managing Many-to-many Relationship
	4.8 Example of E-R Model
	4.9 Extended E-R Model
	4.10 Converting E-R Model into Relational Model
	4.11 Object Modelling
	4.11.1 Subclass and Superclass
	4.11.2 Specialization and Generalization
	4.11.3 Class Diagram

	Summary

	Chapter 5 Normalization
	5.1 Introduction
	5.2 Need for Normalization
	5.3 Types of Dependencies
	5.4 First Normal Form
	5.5 Second Normal Form
	5.6 Third Normal Form
	5.7 Boyce-Codd Normal Form
	5.8 Multi-valued Dependency
	5.9 Join Dependency
	5.10 Lossless and Lossy Decompositions
	5.11 Normalizing Tables
	5.12 Examples
	Summary

	Chapter 6 Managing Data Using Structured Query Language (SQL)
	6.1 Introduction
	6.2 Data Definition Commands
	6.3 Data Manipulation Commands
	6.4 SELECT Statement and Its Clauses
	6.5 Aggregate Functions
	6.6 Date and Time Functions
	6.7 String Functions
	6.8 Conversion Functions
	6.9 Mathematical Functions
	6.10 Special Operators
	6.11 Types of Constraints
	6.12 Types of Join and Set Operators
	6.13 Sub-query
	6.14 Advances SQL Roll-up, Cube, Crosstab
	Summary

	Chapter 7 Introduction to PL/SQL
	7.1 Introduction
	7.2 Block of PL/SQL in Oracle
	7.3 Cursors in Oracle
	7.4 Procedures in Oracle
	7.5 Functions in Oracle
	7.6 Triggers in Oracle
	7.7 Overview of Packages in Oracle
	Summary

	Chapter 8 Transaction Management in Database
	8.1 Introduction
	8.2 Definition of Transaction
	8.3 Properties of Transaction
	8.4 States of Transaction
	8.5 Concurrency Control Using Locks
	8.6 Deadlocks
	8.7 Database Backup and Recovery
	8.8 Security, Integrity and Authorization
	Summary

	Chapter 9 Centralized and Distributed Database Management System
	9.1 Introduction
	9.2 Types of Databases
	9.3 Centralized Database Management System vs. Distributed Database Management System
	9.4 DDBMS Components
	9.5 Distributed Processing
	9.6 DDBMS Advantages and Disadvantages
	Summary

	Chapter 10 Advancement in Databases
	10.1 Multidimensional Database
	10.2 Mobile Databases
	10.3 Multimedia Databases
	10.4 Data Warehousing and Data Mining
	10.5 Open Source Database
	10.6 Spatial Databases
	10.7 Moving Object Databases
	10.8 NoSQL Database
	Summary

	Chapter 11 Overview of MS-Access 2007
	11.1 MS-Access as an RDBMS
	11.2 Elements of MS-Access
	11.3 Creating Database and Tables
	11.4 Data Types of MS-Access
	11.5 Sorting and Filtering Records in MS-Access
	11.6 Creating Queries in MS-Access
	11.7 Creating Forms in MS-Access
	11.8 Creating Reports in MS-Access
	11.9 Creating Macros and Switchboard
	Summary

	Chapter 12 Overview of Oracle
	12.1 Oracle as an RDBMS
	12.2 Logging into Oracle
	12.3 Command Summary of Oracle Database 10g XE
	12.4 Database Administration
	12.4.1 Managing Users
	12.4.2 Managing Roles
	12.4.3 Managing Privileges

	Summary

	References and Bibliography
	Index

