

�

� �

�

Network Function Virtualization

�

� �

�

�

� �

�

Network Function Virtualization

Concepts and Applicability in 5G Networks

Ying Zhang

�

� �

�

This edition first published 2018
© 2018 John Wiley & Sons, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system, or transmitted, in any form or by any means, electronic, mechanical,
photocopying, recording or otherwise, except as permitted by law. Advice on how to
obtain permission to reuse material from this title is available at
http://www.wiley.com/go/permissions.

The right of Ying Zhang to be identified as the author of this work has been asserted in
accordance with law.

Registered Offices
John Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030, USA

Editorial Office
111 River Street, Hoboken, NJ 07030, USA

For details of our global editorial offices, customer services, and more information
about Wiley products visit us at www.wiley.com.

Wiley also publishes its books in a variety of electronic formats and by
print-on-demand. Some content that appears in standard print versions of this book
may not be available in other formats.

Limit of Liability/Disclaimer of Warranty
The publisher and the authors make no representations or warranties with respect to
the accuracy or completeness of the contents of this work and specifically disclaim all
warranties; including without limitation any implied warranties of fitness for a
particular purpose. This work is sold with the understanding that the publisher is not
engaged in rendering professional services. The advice and strategies contained herein
may not be suitable for every situation. In view of on-going research, equipment
modifications, changes in governmental regulations, and the constant flow of
information relating to the use of experimental reagents, equipment, and devices, the
reader is urged to review and evaluate the information provided in the package insert
or instructions for each chemical, piece of equipment, reagent, or device for, among
other things, any changes in the instructions or indication of usage and for added
warnings and precautions. The fact that an organization or website is referred to in this
work as a citation and/or potential source of further information does not mean that
the author or the publisher endorses the information the organization or website may
provide or recommendations it may make. Further, readers should be aware that
websites listed in this work may have changed or disappeared between when this
works was written and when it is read. No warranty may be created or extended by any
promotional statements for this work. Neither the publisher nor the author shall be
liable for any damages arising here from.

Library of Congress Cataloging-in-Publication Data applied for

ISBN: 9781119390602

Cover design by Wiley
Cover image: © oxign/Gettyimages

Set in 10/12pt WarnockPro by SPi Global, Chennai, India

Printed in the United States of America

10 9 8 7 6 5 4 3 2 1

�

� �

�

v

Contents

List of Figures ix
List of Tables xii
Preface xiii
List of Abbreviation and Acronyms xv

1 Introduction 1
1.1 Cloud-Enabled 5G: SDN and NFV 3
1.1.1 Benefits 6
1.1.2 Challenges 7
1.2 Supporting Technologies 8
1.2.1 Cloud Computing 8
1.2.2 Network Virtualization 9
1.2.3 Network Functions Virtualization 9
1.2.4 Software-Defined Networking 10
1.3 Outline of Chapters 10

2 Virtualization and Cloud Computing 13
2.1 Cloud Computing 13
2.1.1 Architecture 13
2.1.2 Types of Clouds 15
2.1.3 Challenges 16
2.2 Host Virtualization 18
2.2.1 Overview 18
2.2.1.1 Benefits 19
2.2.1.2 Use Cases 19
2.2.2 Virtualization Techniques 20
2.2.2.1 Hardware-Level Virtualization 20
2.2.2.2 Other Virtualization Techniques 21

�

� �

�

vi Contents

2.2.3 Containers 21
2.3 Network Virtualization 22
2.3.1 Overlay Networks 24
2.3.2 Virtual Private Network 24
2.3.3 Virtual Sharing Networks 27
2.3.4 Switch-Based SDN Virtualization 29
2.3.5 Host-Based Network Virtualization 31
2.4 Wireless Virtualization 32
2.5 Summary 36

3 Network Function Virtualization 37
3.1 NFV Architecture 38
3.2 NFV Use Cases and Examples 42
3.3 NFV Challenges 45
3.4 NFV Orchestration 46
3.4.1 NFV Performance Characterization 47
3.4.2 NFV Performance Improvements 49
3.5 NF Modeling 50
3.5.1 Source-Code-Based Modeling 52
3.5.1.1 Background 52
3.5.1.2 Modeling Example 53
3.5.1.3 Models 55
3.5.1.4 Model Extraction Overview 56
3.5.2 Black Box Modeling 58
3.5.3 Modeling Applications 60
3.6 VNF Placement 61
3.7 Summary 65

4 Software-Defined Networks Principles and
Applications 67

4.1 SDN Overview 68
4.1.1 Motivations 68
4.1.2 Architecture 69
4.1.2.1 Separation of Control and Data Plane 69
4.1.2.2 Northbound Open APIs 71
4.1.2.3 Southbound Control/Data Plane Protocol 71
4.1.2.4 Applications 72
4.1.3 Use Cases 72
4.2 SDN Controller 73
4.2.1 Controller Deployment Choices 75

�

� �

�

Contents vii

4.2.2 Apps on SDN Controller 77
4.3 SDN Data Plane 78
4.4 SDN Management 80
4.4.1 Anomaly Detection 80
4.4.2 Network Measurement 82
4.4.3 Failure Recovery 84
4.4.4 Controller Placement 86
4.4.4.1 A Special Study: Controller to Switch Connectivity 89
4.4.4.2 Node Versus Link Failure 94
4.4.4.3 Downstream Versus Upstream Nodes 95
4.5 SDN Security Attack Prevention 96
4.5.1 SENSS Architecture 98
4.5.2 SENSS Uses 100
4.5.2.1 DDoS 100
4.5.2.2 Prefix Hijacking 101
4.6 SDN Traffic Engineering 101
4.6.1 TE Architecture and Solution Overview 103
4.6.1.1 Hierarchical Control Structure 103
4.6.1.2 Control Node Design 104
4.6.1.3 Scalability Benefit 105
4.6.2 Design Challenges 105
4.6.3 TE Solution Overview 106
4.7 Summary 107

5 SDN and NFV in 5G 109
5.1 5G Overview 110
5.1.1 Architecture 110
5.2 Service Function Chaining 112
5.2.1 OpenFlow-Based SFC Solution 114
5.2.1.1 Represent Directions with Port Types 118
5.2.1.2 Realize Policies with Multiple Forwarding Tables 119
5.2.1.3 Handle Dynamics with the Microflow Table 120
5.2.1.4 Encode Service Chaining with Metadata 121
5.2.1.5 Summary of Dataplane Functions 122
5.2.2 SFC Monitoring 122
5.2.2.1 Handling Multiple Monitoring Tasks 125
5.2.3 Optical SFC 126
5.2.3.1 Service Placement in Optical NFV 129
5.2.4 Verification of Service Function Chaining 132
5.3 Core Network Functions Virtualization: vEPC 135

�

� �

�

viii Contents

5.3.1 Existing Solutions Problems 137
5.3.2 Virtualization and Cloud-Assisted PC 138
5.4 Virtualized Customer Premises Equipment 141
5.4.1 Requirements 142
5.4.2 Design 144
5.5 Summary 146

6 Open Source and Research Activities 147
6.1 Open Source Initiatives 148
6.1.1 OpenStack 148
6.1.2 OpenDayLight 150
6.1.3 OPNFV 152
6.1.4 CORD: Central Office Re-architected as a

Data Center 154
6.2 NFV Research Problems 155
6.3 Summary 156

References 157

Index 167

�

� �

�

ix

List of Figures

Figure 2.1 Cloud computing architecture. 14
Figure 2.2 Virtual machine architectures. 20
Figure 2.3 Docker container architectures. 22
Figure 2.4 VPN illustration. 25
Figure 2.5 Switch-based SDN virtualization. 30
Figure 2.6 Host-based SDN virtualization. 31
Figure 3.1 NFV architecture in cloud computing stacks. 40
Figure 3.2 ETSI NFV reference architecture. 40
Figure 3.3 OPNFV architecture. 42
Figure 3.4 VNF performance characterization. 48
Figure 3.5 NF model overview. 51
Figure 3.6 Load balancer code and a slice (bold and

bold italics). 54
Figure 3.7 Model. 56
Figure 3.8 Source-code-based NF modeling method.

(a) Step 1: slice program; (b) Step 2: execution
paths; (c) Step 3: fill in model; (d) Step 4: Models
of LB(hash) and cache. 57

Figure 3.9 Black box NF modeling method. 59
Figure 3.10 VNF placement system overview. 63
Figure 4.1 SDN architecture. 70
Figure 4.2 SDN components and examples. 70

�

� �

�

x List of Figures

Figure 4.3 SDN comparison. 71
Figure 4.4 Inter-data center WAN: a use case of SDN. 73
Figure 4.5 SDN controller overview. 74
Figure 4.6 Example of SDN NIB. 75
Figure 4.7 OpenFlow overview. 79
Figure 4.8 Adaptive SDN anomaly detection framework. 82
Figure 4.9 Conditional SDN measurement overview. 84
Figure 4.10 SDN checkpoint system. 87
Figure 4.11 Example of controller and switch connection. 88
Figure 4.12 Example of Internet2 network protection. 90
Figure 4.13 Example of Fat-tree network protection. 90
Figure 4.14 Protection against link and node failures. 93
Figure 4.15 SENSS architecture. 98
Figure 4.16 SdnTE network architecture. 104
Figure 5.1 5G architecture. 111
Figure 5.2 SFC in telecom network. 113
Figure 5.3 SFC framework. 113
Figure 5.4 Static and dynamic SFC examples. 114
Figure 5.5 OpenFlow-based SFC solution. 116
Figure 5.6 Illustration of port direction. 118
Figure 5.7 Multiple tables and metadata. 119
Figure 5.8 Data path lookup diagram. 123
Figure 5.9 Example to show service chain reachability. 124
Figure 5.10 Example to show monitor points for multiple

service chains. 125
Figure 5.11 Optical service function chaining framework. 128
Figure 5.12 Optical service function chaining placement

problem. (a) NF placement 1 (better) and
(b) NF placement 2. 130

Figure 5.13 Model used for SFC verification. 134
Figure 5.14 Stateful forwarding graph for SFC verification. 134

�

� �

�

List of Figures xi

Figure 5.15 Virtualized PC and SDN routing. 140
Figure 5.16 Virtualized CPE. 144
Figure 6.1 OpenStack architecture. 149
Figure 6.2 OpenDayLight. 151
Figure 6.3 OPNFV project overview. 153
Figure 6.4 CORD architecture. 154

�

� �

�

xii

List of Tables

Table 2.1 Cloud computing: benefits and risks. 17
Table 2.2 Layer 2 VPNs: advantages and disadvantages. 27
Table 2.3 Layer 3 VPNs: advantages and disadvantages. 28
Table 2.4 Router versus switch. 28
Table 3.1 Types of VNFs and examples. 39
Table 4.1 SENSS messages from the customer to the

provider and replies/actions by the provider. 99
Table 5.1 Cellular technology evolution. 112

�

� �

�

xiii

Preface

Because of the emergence of user-friendly smartphones and the
advances in cellular data network technologies, the volume of data
traffic carried by cellular networks has been experiencing a phe-
nomenal rise. One large cellular operator has reported a growth of
8000% of cellular data traffic over the past 4 years [1], and it grows to
10.8 exabytes/month by 2016, an 18-fold increase over 2011.

To meet the constantly increasing traffic demands while maintain-
ing or improving average revenue per user (ARPU), operators are
always seeking new ways to reduce their operational expenditure
(OPEX) and capital expenditure (CAPEX). One way to improve the
cost-effectiveness of infrastructure is to introduce the concepts of
scalable infrastructure and elastic capacity on demand, using virtual-
ization and cloud computing, which have become the cornerstones of
many successful large-scale IT infrastructure management.

Thanks to their successful deployment in Internet companies such
as Google and Amazon, emerging cloud computing technologies have
started to be borrowed and deployed in the telecom network, in the
form of software-defined networking (SDN) and network functions vir-
tualization (NFV). The SDN design introduces a separation between
the control and forwarding components of the network. Among the
use cases of such architecture are the access/aggregation domain
of carrier-grade networks, mobile backhaul, cloud computing, and
multilayer (e.g., Internet Protocol (IP), Ethernet, Optical Transmis-
sion Network (OTN), and wavelength division multiplexing (WDM))
support, all of which are among the main building blocks of today’s
network infrastructure. Unlike the traditional network architecture,
which integrates both forwarding (data) and control planes on the
same box, SDN decouples these two and runs the control plane

�

� �

�

xiv Preface

on servers that might be in different physical locations from the
forwarding elements (switches). It allows making the forwarding
platform simple and bringing network’s intelligence into a number of
controllers that oversee the switches. Tight coupling of forwarding
and control planes in the traditional architecture usually results in
overly complicated control plane and complex network management
and is known to create a large burden and high bearer to new proto-
cols and technology developments. Despite the rapid improvements
in line speeds, port densities, and performance, the network control
plane mechanisms have advanced at a much slower pace. Thus, with
the adoption of SDN, the network becomes more programmable and
agile. While SDN covers the revolution of routers and switches in the
network, NFV handles other boxes in the network that performs more
complex packet processing. NFV calls for the virtualization of net-
work functions (NFs) currently provided by legacy middleboxes and
gateways. Using virtualization and cloud technologies, NFV allows
legacy NFs offered by specialized equipment to run in software on
generic hardware. It makes it possible to deploy virtualized network
functions in high-performance commodity servers of operator’s data
center, with the great flexibility to spin on/off the services on demand.

Thanks to their promising benefits in flexibility and cost savings,
today, both the wireline and wireless cellular networks have shifted
to virtualization and cloud technologies, from both research and
industry point of view. With the fast-growing traffic demand, the
next-generation cellular network, that is, 5G cellular communications
system, has heavily replied on the cloud technologies, NFV, and SDN.
The 5G cellular network is expected to be commercialized by 2020.
These technologies have been expected to impact different parts of
cellular networks ranging from radio access network (RAN) all the
way to the core network.

The main motivation for offering this book stems from the obser-
vation that, at present there is no systematic source of information
about the cloud technologies’ usage in the cellular network, as well
as the interplay of different technologies, the discussion of different
design choices, and its impact on our future cellular network. In addi-
tion to providing the latest advances in this area, we also discuss sev-
eral research topics that have been studied in the academic in these
fields. By bringing the basic concepts and their practical deployment
scenarios together, we believe that there is tremendous potential on
facilitating a more complete understanding of the entire space.

�

� �

�

xv

List of Abbreviation and Acronyms

3GPP Third-generation partnership project
ARPU Average revenue per user
BRAS Broadband remote access server
BS Base station
BSS Business support system
BTS Base transceiver station
CAPEX Capital Expenditure
CPU Central processing unit
C-RAN Cloud RAN
DC Data center
DPI Deep packet inspection
D-RoF Digital radio over fiber
DSL Digital subscriber line
eNB evolved NodeB
eNodeB E-UTRAN NodeB
EPC Evolved packet core
ETSI European Telecommunications Standards Institute
eUTRAN evolved UTRAN
GGSN Gateway GPRS support node
GPRS General packet radio service
GSM Global system for mobile communications
GTP GPRS tunneling protocol
HSPA High-speed packet access
HTTP Hypertext transfer protocol
IaaS Infrastructure as a Service
IDS Intrusion detection systems
IMS IP multimedia subsystem
InP Infrastructure provider

�

� �

�

xvi List of Abbreviation and Acronyms

IoT Internet of things
I/O Input/Output
IP Internet protocol
ISP Internet service provider
IT Information technology
L1 Layer 1
L1VPN Layer 1 VPN
L2TP Layer Two tunneling protocol
L2VPN Layer 2 VPN
L3VPN Layer 3 VPN
LAN Local area network
LTE Long term evolution
LTE-A LTE-Advanced
M2M Machine-to-Machine
MAC Media access control
MANO Management and network orchestration
MIMO Multiple input multiple output
MME Mobility management entity
MSC Mobile services switching centre
MWC Mobile World Congress
NAT Network address translation
NEP Network equipment provider
NF Network functions
NFV Network functions virtualization
NFVI Network functions virtualization infrastructure
NIC Network interface card
NV Network virtualization
O&M Operations and maintenance
OPEX Operational Expenditure
OSPF Open shortest path first
OSS Operational support system
OTN Optical transmission network
P2P Peer-to-Peer
PaaS Platform-as-a-Service
PDCP Packet data convergence protocol
PE Provider edge
PGW Packet data networks gateway
PON Passive optical network
POP point of presence
PSTN Public switched telephone network

�

� �

�

List of Abbreviation and Acronyms xvii

QoE Quality of Experience
QoS Quality of Service
ODL OpenDayLight
RAN Radio access networks
RNC Radio network controller
RRC Radio resource control
SaaS Software-as-a-Service
SDN Software defined networking
SGSN Serving GPRS support node
SGW Serving gateway
SLA Service-level agreement
SONET Synchronous optical networking
SP Service provider
SSL Secure sockets layer
TCO Total cost of ownership
UE User equipment
UTRAN Universal terrestrial radio access
vEPC virtualized EPC
VIM Virtualized infrastructure management
vIMS virtualized IMS
VLAN Virtual area network
VLR Visitor location register
VNF virtual network functions
vNIC virtualized NIC
VoIP Voice over IP
VPN Virtual private network
VSN Virtual sharing network
WAN Wide area network
WiFi Wireless fidelity
XaaS X-as-a-Service

�

� �

�

�

� �

�

1

1

Introduction

Internet has truly become the service of the digitized society now
and delivers a broad range of services such as banking, e-commerce,
social networking, media, content storage, and much more. Currently,
there is a strong trend to penetrate coverage and usage of Internet by
going mobile. The usage by individual is steadily increasing both in
time of use and bandwidth demand of application in use. Still there
is 80% of the global population that lacks access to Internet. Clearly,
the technologies building Internet need to evolve in order to facilitate
the steady growth by cost-efficient and sustainable means. Moreover,
it is commonly recognized in the technical literature that the Internet
has constraints in terms of mobility, quality of service, security, and
scalability (e.g., due to IP address starvation and semantic overloading
of IP addresses) even if patches exist for fixing any particular problem.

Over the past decades, the telecommunications industry has
migrated from legacy telephony networks to telephony networks
based on an IP network. This shift allows the mobile network oper-
ators to leverage the high bandwidth, multiplexing, innovative
products, and services that have been long deployed and tested in IP
network and then stimulates a new wave of revenue generation. Since
the emergence of cellular data networks, the volume of data traffic
carried by cellular networks has been growing continuously due to the
innovation of mobile devices, mobile applications, the rapid increase
in subscriber size, and cellular communication bandwidth. The trend
of cellular data growth will continue to accelerate as technology and
application availabilities further improve. Indeed, in 2009, mobile data
traffic exceeded mobile voice traffic for the first time [2, 3], starting
the new paradigm of mobile networks. The dominant usage of mobile
network has shifted from low bandwidth voice and messaging traffic

Network Function Virtualization: Concepts and Applicability in 5G Networks, First Edition. Ying Zhang.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

�

� �

�

2 1 Introduction

to a diverse type of data traffic, ranging from web browsing, video
streaming, and even online gaming. Existing report [4] has shown
that the mobile data traffic is increasing at a rate of 60% per year. By
the end of 2016, mobile traffic has surpassed the traffic generated in
the wireline network [5, 6]. It is predicted that by the year of 2018, the
yearly IP traffic globally will be 64 times of that in 2005.

The demand on mobile network infrastructure will be further
increased as the market of Internet of things (IoT) grows. IoT
devices and their applications that function without direct human
intervention are rapidly becoming an integral part of our lives. IoT
devices and applications have wide use cases in a variety of areas,
including telehealth, shipping and logistics, utility and environmental
monitoring, industrial automation, and asset tracking. It is predicted
to be 25 billion devices – including fixed/mobile personal devices and
IoT devices – connected to IP networks [5] by the year of 2020 with a
seven trillion dollar market value. The Machine-to-Machine (M2M)
communications will generate 80% more data than the human directly
generated data in the year of 2018. The prosperity of IoT industry
requires great support of the wide area wireless communication
infrastructure, in particular, the cellular data networks.

To cope with the explosive cellular data volume growth and best
serve their customers, cellular network operators need to design and
manage cellular core network architectures accordingly. There are two
main challenges that the cellular network faces. The first challenge is
the increasing cost of network operation. While the most advanced
cellular technologies today is the 4G technology such as long term
evolution (LTE). However, the coexistence of multiple generations of
cellular networks is unavoidable today. This is because the subscribers
may gradually upgrade their devices over the years. Thus, the operators
need to support multiple technologies over a long period of time and
manage multiple networks simultaneously. The operational cost may
not be covered by the revenue growth. The second challenge is the
high demand of network capacity expansion. Many techniques have
been proposed to expand the cellular network capacity such as multi-
antenna technologies and Wi-Fi offloading architecture. Adding spec-
trum and deploying small/femto cells have also been used together to
further expand the network capacity, which is, however, expensive and
not easy to deploy. Moreover, the changes of infrastructure still cannot
keep up with the exponential growth of traffic demand.

�

� �

�

1.1 Cloud-Enabled 5G: SDN and NFV 3

The current cellular infrastructure is not capable of addressing the
explosive need of data demand. The main reason is that the resource is
configured and allocated in a rather static manner. The resources are
not utilized in an efficient way. The traffic demand, however, are highly
dynamic, exhibiting a time-of-day phenomenon [5, 6]. Flash crowds
happen often due to popular events. To fundamentally meet the traffic
demand, blindly increasing the network capacity is not enough. We
need to find ways to better utilize existing capacity.

The traditional business model of cellular carriers was based on
revenues for telephony. The Internet was an over-the-top service,
priced by online minutes or data volumes during the late 1990s. This
has changed completely to a flat-rate-based model for Internet access,
and operators deploy broadband networks to cover demands of the
digital society, struggling to return revenues needed to deploy even
higher speed networks. Governance and regulations have further
limited profitability of operators. In order to increase revenues,
operators are deploying a number of service-centric networks on
top of the broadband infrastructure such as IPTV, demanding new
functionality of carrier network. On the cost side, carrier operators
would like to reduce the capital and operational cost significantly.
In the following, we discuss the opportunities of leveraging existing
cloud technologies for better resource utilization. We will review the
related technologies and then outline the rest of this book.

1.1 Cloud-Enabled 5G: SDN and NFV

The Internet has successfully been growing for more than 20 years;
the growth in demand has so far been met by introducing even larger
and larger routers. This has been beneficial and to scale in public
networks. However, in order to meet today’s steadily growing demand
for Internet access and other packet-based services, there is a present
need to deploy more efficient packet networks also within metro
and aggregation network domain. The attempt to copy the approach
from the coarsely populated, but large core network sites and migrate
to metro and aggregation network sites may not be the most cost
optimal approach. It may be time now to split the router architecture
in similar ways as was done in the traditional mobile core network,
in order to penetrate the highly dense metro/aggregation networks.

�

� �

�

4 1 Introduction

Splitting the router control and forwarding plane forms the initial
idea of software-defined networking (SDN).

The initial idea was born to decouple the routing intelligence
software from simple forwarding hardware allowing, particularly for
academic research networks and test beds, fast prototyping and eval-
uation of new control theories and algorithms [7]. It was part of the
Clean Slate Internet Design initiative of Stanford University [8]. The
target is to develop a system that is amenable to high-performance
and low-cost implementations and capable of supporting a broad
range of research, can isolate experimental traffic from production,
and is consistent with vendors’ need for closed platforms.

The key technical idea of SDN is to provide an open control interface
to the operating system of the network device without compromising
the details of the implementation, an important business aspect
for equipment manufacturers. This is enabled by support of Open-
Flow [8] in the operating system and is based on the Ternary Content
Addressable Memory (TCAM)-based flow tables, most routers and
switches make use of. In a classical router or switch, the fast packet
forwarding data path and the high-level routing decisions in the
control path occur on the same device. An OpenFlow-enabled switch
separates these two functions. The data path portion still resides in
the switch, while high-level routing decisions are moved to a flow
controller, typically a standard server. The OpenFlow Switch and
Controller communicate via the OpenFlow protocol, which defines
operation and management (OAM) messages.

Besides this technical view, this split design will enable a cost
reduction and new market opportunities by the basic principle of
modularization. This is of high importance for supporting flexible
network innovations because the development cycles of hardware and
software components are extremely different, and the modularization
supports a decoupling of the innovations from a market perspective.
The right layering approach will enable high market volumes for
specific modules (software or hardware).

The introduction of the SDN concept into real networks would
have a profound impact on the way in which networks are built and
operated. In order to understand and evaluate the practical implica-
tions of the general concept, it would be beneficial to first test it in
research networks. Feedback from the experimental implementation
will be crucial in improving the overall concept and allow taking

�

� �

�

1.1 Cloud-Enabled 5G: SDN and NFV 5

the concept to further applications in networking. First trials are
currently under way in selected US universities, which focus on the
easy management and reconfiguration of research networks, for
example, for applications in the field of Clean Slate research.

While SDN brings innovative evolution to network routers and
switches, the network comprises other types of devices besides routers
and switches. Network operators enforce network policies using a
combination of switches and network functions (NF). Policies may be
complex, such as ensuring that unauthorized users are prevented from
accessing sensitive servers or malicious traffic is eliminated from the
network. To do this, an operator could use a stateful firewall to ensure
that only traffic initiated from within the network is permitted and in
doing so protect users from malicious traffic. Indeed, today’s networks
heavily rely on a wide spectrum of NFs. The diversity and complexity
of NFs have been further expanded as the proliferation of wireless
devices and mobile applications. NFs offer a variety of valuable
benefits, ranging from improving security (e.g., firewalls, intrusion
detection systems, and deep packet inspection), improving perfor-
mance (e.g., proxies, caches) and reducing bandwidth costs (e.g., WAN
optimizers, video transcoder). However, despite their benefits, NFs
come with high infrastructure and management costs. One important
reason is their complex and specialized processing. As a direct result
of this complexity, configuration errors are common – configuration
errors comprise as much as 65% of the network outages [9]. Other
reasons of their complexity come from the lack of standardized man-
agement tools across different devices and vendors. Moreover, there
is a need to consider policy interactions between these appliances and
other network infrastructure, which cannot be easily troubleshot.

To facilitate programmability and flexibility of NFs, in 2012, oper-
ators initiated a new concept, called network functions virtualization
(NFV) within the European Telecommunications Standards Institute
(ETSI) consortium [10]. Instead of building NFs in the form of propri-
etary hardware boxes, NFV calls for the virtualization of them. Using
virtualization and cloud technologies, it allows legacy NFs to be flex-
ibly deployed in the form of software on commodity servers. Sharing
the same spirit of splitting the router’s control plane from forwarding
plane, the decoupling of NF software from the hardware facilitates a
faster pace for innovations and shorter development cycles, and result
in shorter time to market of new services.

�

� �

�

6 1 Introduction

1.1.1 Benefits

One important benefit of the SDN and NFV is the potential to open
new business opportunities in network architecture, related systems,
and hardware. Today, when a new network protocol or network
application is invented, the entire industry needs to go through
the tedious standardization process by established organizations
such as the Internet Engineering Task Force (IETF), International
Telecommunication Union (ITU), and Institute of Electrical and
Electronics Engineers (IEEE), to name but a few. After the standard-
ization process, the development cycle and extensive testing activities
may last 18–24 months, ensuring the performance, reliability, and
interoperability with other equipments. While the seamless inter-
connectivity plays an important role in the success of the Internet
and its applications, however, the long duration of standardization
process and development cycle has made today’s networks difficult
to change. This is particularly true for research and innovations
related to test and validate novel networking approaches, for example,
new or revised routing or forwarding schemes. Such modifications
currently require the close collaboration between operators and
system manufactures, and hence demand substantial resources in
terms of time and manpower.

The essence behind SDN and NFV is the decoupling of function-
ality. Such decoupling offers the opportunity to change the current
limitations. In SDN, modifications to the control plane can be inde-
pendently done, while the switching hardware remain unaltered. In
NFV, the separation of software and hardware of NFs allows each part
to grow and innovate independently. The modularity design choice in
SDN and NFV comes with a number of economic advantages, espe-
cially in the following areas:

• Lowering the entry barriers for control plane product and switching
plane gears

• Independent resource/budget allocation of each module
• Providing high extensibility because each module has clear interface

with the rest
• Enabling rapid prototyping, instead of waiting for every component

to be ready
• Allowing new players to enter the market. There are mutual bene-

fits to both traditional equipment vendors and network operators,
enabling small players to grow

�

� �

�

1.1 Cloud-Enabled 5G: SDN and NFV 7

• Increasing the speed of innovation. One key obstacle to any network
innovation deployment is the incremental deployability and incen-
tives for the first movers. Seamless interoperability usually slows
down the deployment process and decreases the incentives for first
adopters. With the modular design, first movers can gain techno-
logical advantages more easily when deploying new networks and
services.

1.1.2 Challenges

While SDN and NFV have great potentials as discussed earlier, apply-
ing them in production networks faces several key challenges.

• Scalability: The SDN and NFV architectures need to scale to sup-
port millions of subscribers, increasing traffic demand and future
growth. It needs to be able to meet the necessity of adding more con-
trollers, switches, and NFs to a network. There is a potential need
for a hierarchy of control components, or a chain of NFs, and might
take a peer-to-peer approach to further expand the scalability.

• Performance: Carrier network has high requirement on perfor-
mance than enterprise or data center networks. The links are
usually tens to hundreds of Gigabits per second capacity. The cus-
tomers’ perceived performance should meet the predefined service
level agreement (SLA). In SDN, how to deal with the response time
of the controller considering the need to configure flows and how
to provide sufficient bandwidth using a combination of gears are
important questions to be answered. In NFV, how to control and
reduce the additional overhead introduced by traversing several
NFs and how to hide the overhead of virtualization techniques are
critical to meeting the performance requirement.

• Openness: One of the key questions to enable openness is at what
level of abstraction should be defined for different interfaces. The
trade-offs between modularity and extensibility need to be care-
fully examined. For example, how one can add additional features
to interfaces without affecting other parts of the system.

• Internetworking and interoperability: On the one hand, the network
will gradually change. Seamlessly interconnecting SDN/NFV net-
works with traditional legacy networks is critical to its deployment.
The devices supporting the new technologies should be able to com-
municate with legacy devices using traditional protocols, and the
performance should not be compromised in this process.

�

� �

�

8 1 Introduction

• Sustainability: Energy efficiency has drawn significant attentions in
the carrier network recently, both for the sake of reducing cost and
for meeting the governance regulation requirements. The ability to
switch off functionality and hardware, which is currently not in use,
and how to make most efficient use of available processing capabil-
ities are the key enablers to an energy-efficient network.

• Resiliency: In evaluating a network design, the network resilience
is an important factor, as a failure of a few milliseconds may eas-
ily result in terabyte data losses on high-speed links. In traditional
networks, where both control and data packets are transmitted on
the same link, the control and data information are equally affected
when a failure happens. In the SDN and NFV deployment, we need
to come up with strategies to handle individual components’ fail-
ures and to perform failure recovery to meet the carrier grade’s five
nines availability requirement.

1.2 Supporting Technologies

In this section, we briefly highlight the high-level ideas of related
technologies. We will go into details of each of them in the rest of
this book.

1.2.1 Cloud Computing

Cloud computing is transforming the way people use computers and
how application services are run. While it has been widely used as
the platform of choice for many web services, it is also becoming the
hosting platform of network services. Virtualization is the key under-
lying technology enabling cloud providers to host services for a large
number of customers. With virtualization, the physical resources
and the applications are loosely coupled. The cloud customer is
able to dynamically provision infrastructure to meet the current
demand by leasing resources from the cloud infrastructure provider.
On the other hand, the cloud provider can leverage economies of
scale to provide dynamic, on-demand infrastructure in the best
cost-effective manner. Using virtualization techniques [11], multiple
virtual machines from different customers share the same physical
servers. This is called multitenancy, which allows independent
customers to lease resources from the cloud provider. Virtualization
initially started with host virtualization, such as virtual machines

�

� �

�

1.2 Supporting Technologies 9

(VMs) or container. Later, the same concept has been extended to
network virtualization, network functions virtualization (NFV), and
so on. These technologies move the networking industry from today’s
manual configuration to more automated and scalable solutions. They
are complementary approaches that solve different subsets of network
mobility problem. SDN and NVF are among other initiatives to move
from the traditional cellular infrastructure toward a cloud-based
infrastructure across multiple areas including radio access network,
core network, backhaul, and operational/business support systems
(OSS/BSS). We elaborate them more as follows.

1.2.2 Network Virtualization

Network virtualization gives each customer tenant its own network
topology and control over the flow of its traffic. For sharing computing
resources, people have been widely used the virtual machine as the
standard abstraction. For network virtualization, however, the right
abstraction is still a subject of ongoing debate. There are a diverse
set of solutions, which differ in the level of concrete details they
expose to the individual tenants. In the widely used Amazon EC2, the
network is abstracted in the simplest form. All of a tenant’s virtual
machines are connected with each other using best effort network
fabric. VMware [12] offers a simple “one big switch” abstraction,
where different rules such as access control or traffic engineering
can be programmed by the tenants. The rules are implemented at
the network edge (in the virtual switches inside the host operating
systems). As more applications move to the cloud, providers must
go beyond simple sharing of network bandwidth to support a wider
range of abstractions. Recently, SDN has become a natural platform
for network virtualization, thanks to the standard interface between
controller applications and switch forwarding tables. However, sup-
porting a large number of tenants with different topologies and
controller applications raises scalability challenges.

1.2.3 Network Functions Virtualization

Network Functions Virtualization is a recent trend prompted by
technology availability that makes high-performance packet pro-
cessing now possible on commodity systems reasonably well, and
service providers’ desire for virtualization of network functions such
as routers, firewalls, network address translation (NAT), and so on

�

� �

�

10 1 Introduction

to avoid vendor lock-in and ability to choose virtualized network
functions from different vendors as per the requirements. NFV not
only allows service providers the ability to compose network functions
but also the elasticity to flex compute and storage resources required
by different VNFs depending on the traffic patterns and distributions.
It provides a new way to design, deploy, and manage network services.
It decouples the network functions from purpose-built hardware, so
they can run in software. Most of the current focus in this space has
been on virtualizing more and more network functions and cloud-like
orchestration systems for managing deployed VNFs.

1.2.4 Software-Defined Networking

SDN is a new approach to designing, building, and managing net-
works, which enables the separation of the network’s control plane
and data plane, which makes it easier to optimize each. SDN has
the potential to make significant improvements to service request
response times, security, and reliability.

In SDN, the controllers collect information from switches, and com-
pute and distribute the appropriate forwarding decisions to switches.
Controllers and switches use a protocol to communicate and exchange
information. An example of such protocol is OpenFlow [13], which
provides an open and standard method for a switch to communicate
with a controller, and has drawn significant interests from both aca-
demic and industry.

In summary, NV, NFV, and SDN each provide a software-based
approach to networking, in order to make networks more scalable
and innovative. Hence, some common beliefs guide the development
of each. For example, they each aim to move functionality to software,
use general-purpose hardware in lieu of purpose-built hardware, and
support more efficient network services. Nevertheless, note that SDN,
NV, and NFV are independent, though mutually beneficial.

1.3 Outline of Chapters

This book is divided into five chapters and provides information on
the different technologies that have been examined in the design of
5G next-generation networks.

In Chapter 1, we introduce the background of carrier networks,
the challenges of cellular network operations, and the requirements

�

� �

�

1.3 Outline of Chapters 11

for future network moving into cloud. We discuss the advantages of
considering SDN and NFV in the telecom communication networks.
We also outline the developing technology that are relevant to 5G
cloudification design.

Chapter 2 reviews various wired network virtualization technolo-
gies and wireless virtualization. It then studies the state of the art
in cloud computing, the service models, and its relationship with
communication networks.

In Chapter 3, we provide a survey of the existing NFV technologies.
We first present its motivation, use cases, and architecture. We then
focus on its key use case, the service function chaining, and the tech-
niques and algorithms.

In Chapter 4, we provide a review of the SDN technology and
business drivers, describe the high-level SDN architecture and
principles, and give three scenarios of its use cases in mobile access
aggregation networks and the cloud networks. Furthermore, we
provide discussions on the design implementation considerations
of SDN in the mobile networks and the cloud, in comparison with
traditional networks.

In Chapter 5, we review the case studies of NFV in the next-
generation 5G network. In particular, we discuss several use cases of
SDN and NFV in the packet core network and in customer premise
equipment (mobile edge networks). In both case studies, we discuss
the challenges and the opportunities.

The main objective of Chapter 6 is to set the stage of existing
activities in the industry from both standardization and open source
consortium point of view. The standards movement drives the future
implementation and use cases of these technologies. Given telecom
industry has traditionally taken the route of standardization followed
by implementation, IETF, ETSI, and third generation partnership
project (3GPP) play an important role in the future design of SDN
and NFV. On the other hand, leveraging the experience of other appli-
cation services, more and more network services are moving toward
open source contribution approach to accelerate the functionality
development cycle. Recently, there are open source communities
formed in the network service area. In this chapter, we summarize
their activities, relationships, limitations, and future directions.

�

� �

�

�

� �

�

13

2

Virtualization and Cloud Computing

2.1 Cloud Computing

Cloud computing has become a widely used computing model to
support cost-effective and efficient data processing using commodity
servers. Cloud computing makes effective use of distributed environ-
ments for tackling large-scale computation problems on vast data
set. There are multiple challenges with cloud computing, such as vir-
tualization, isolation, performance, scalability, privacy, and security.
In this section, we first provide an overview of the architecture of
cloud computing. Then, we will go deeper into various virtualization
technologies and focus on the network virtualization.

2.1.1 Architecture

Public cloud providers use an on-demand, pay-as-you-go model of
compute and storage infrastructure as well as platform services. Ama-
zon Web Services (AWS) led the early cloud computing revolution,
beginning with their S3 service in 2006. Their services have been
adopted by companies large and small, from backups and archival
storage in S3, to compute in EC2, Virtual Private Clouds, IAM autho-
rization and authentication, and RDS managed databases, to name a
few. For customers, these services are easy to add, easy to consume,
and can lead to a sprawling, poorly documented infrastructure.

Cloud computing can be viewed as a layering architecture, as shown
in Figure 2.1.

Network Function Virtualization: Concepts and Applicability in 5G Networks, First Edition. Ying Zhang.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

�

� �

�

14 2 Virtualization and Cloud Computing

Hardware as a service

(CPU, memory, disk, network)

Infrastructure as a service (IaaS)

(VM)

Platform as a service (PaaS)

(software frameworks, storage)

Software as a service (SaaS)

(applications)

Figure 2.1 Cloud computing architecture.

• The hardware layer includes the physical resources in the cloud,
that is, the hosting facilities, servers, switches, routers, hardware
middleboxes, and power and cooling support. The Hardware-
as-a-Service (HaaS) model means buying IT hardware or portions
of data centers as a pay-as-you-go subscription service. Similar to
other cloud computing layers, it shares the benefit of dynamically
scaling up and down as the demand changes. The hardware is
typically in the form of data centers, which consist of thousands of
servers in racks. The HaaS provider needs to handle various hard-
ware management issues such as configurations, fault tolerance,
backup powers, and regular maintenance.

• The infrastructure layer is also known as the virtualization layer. The
Infrastructure-as-a-Service (IaaS) provides computing resources as
a service. Virtualization is an elegant and transparent way to enable
time sharing and resource sharing on the common hardware. It
allows customers to pay as they grow. By decoupling the hardware
from the upper layer, it also helps make innovation faster and
reduce the go-to-market time.

• The platform layer includes the operating system and application
frameworks (e.g., Java framework) and other system components
(e.g., data base and file system). Many popular cloud services
operate at this level. For example, Microsoft Azure [14], Google
AppEngine [15], and Amazon S3 [16] offer APIs for implementing
typical web services.

• The Software-as-a-Service (SaaS) model means that the provider
offers software on the common platform as well as the under-
lying database. Many traditional software companies (e.g., IBM,
Microsoft, and Oracle) and the new players (e.g., Salesforce) are
moving into this category. Cloud applications can automatically
scale as the demand changes.

�

� �

�

2.1 Cloud Computing 15

The layering architecture of cloud computing provides more modular
design compared to traditional compute model. Resources are drawn
whenever is needed on demand to fulfill a specific task. Unneeded
resources can be relinquished, and the allocated resource is revoked
after the job is done. Depending on the business model, cloud can
be categorized to be private cloud where the data and processes are
managed within the organization; public cloud where the resources
and applications are provided/managed by a third-party off-site
provider; and hybrid cloud where both internal and external cloud
providers exist.

2.1.2 Types of Clouds

Originally synonymous with public clouds, today cloud computing
breaks down into three primary forms: public, private, and hybrid
clouds.1 Each type has its own use cases and comes with its advantages
and disadvantages.

Public cloud is the most recognizable form of cloud computing to
many consumers. In a public cloud, resources are provided as a ser-
vice in a virtualized environment, constructed using a pool of shared
physical resources, and accessible over the Internet, typically on a
pay-as-you-use model. These clouds are more suited to companies
that need to test and develop application code and bring a service
to market quickly, need incremental capacity, have less regulatory
hurdles to overcome, are doing collaborative projects, or are looking
to outsource part of their IT requirements. Despite their proliferation,
a number of concerns have arisen about public clouds, including
security, privacy, and interoperability. What is more, when internal
computing resources are already available, exclusive use of public
clouds means wasting prior investments. For these reasons, private
and hybrid clouds have emerged, to make the environments secure
and affordable.

Private clouds, can be defined in contrast to public clouds. While
a public cloud provides services to multiple clients, using a shared
infrastructure, a private cloud, as the name suggests, ring-fence the
pool of resources, creating a distinct cloud platform that can be
accessed only by a single organization. Hence, in a private cloud,
services and infrastructure are maintained on a private network.

1 Some add a fourth type of cloud, called community cloud [17]. It refers to an
infrastructure that is shared by multiple organizations and supports a specific
community. The health-care industry is an example of an industry that is employing
the community cloud concept.

�

� �

�

16 2 Virtualization and Cloud Computing

Private clouds offer the highest level of security and control. On the
other hand, they require the organization to purchase and main-
tain its own infrastructure and software, which reduces the cost
efficiency. Besides, they require a high level of engagement from
both management and IT departments to virtualize the business
environment. Such a cloud is suited to businesses that have highly
critical applications, must comply with strict regulations, or must
conform to strict security and data privacy issues.

A hybrid cloud comprises both private and public cloud services.
Hence, it is suited to companies that want the ability to move between
them to get the best of both worlds. For example, an organization
may run applications primarily on a private cloud but rely on a public
cloud to accommodate spikes in usage. Likewise, an organization
can maximize efficiency by employing public cloud services for
nonsensitive operations while relying on a private cloud only when
it is necessary. Meanwhile, they need to ensure that all platforms
are seamlessly integrated. Hybrid clouds are particularly well suited
for E-commerce since their sites must respond to fluctuating traffic
on a daily and seasonal basis. On the downside, the organization
has to keep track of multiple different security platforms and ensure
that they can communicate with each other. Regardless of its draw-
backs, the hybrid cloud appears to be the best option for many
organizations.

In Table 2.1, we enlist the main benefits and risks associated with
each type of clouds. Understandably, security is one of the main issues
in cloud computing. There are many obstacles as well as opportuni-
ties for cloud computing. Availability and security are among the main
concerns [19, 20].

2.1.3 Challenges

Being a disruptive technology, cloud computing has gained significant
momentum in the past decade. However, it still faces several chal-
lenges with regard to performance, security, privacy, and interoper-
ability. In the following, we discuss the challenges from these aspects:

• Guaranteed performance: Compared to the dedicated resource
allocation in traditional compute model, cloud computing dynam-
ically allocates resources on demand. While this is a key feature
that enables multiplexing and elasticity, it also introduces serious
concern on the application perceived performance. To provide

�

� �

�

2.1 Cloud Computing 17

Table 2.1 Cloud computing: benefits and risks.

Cloud type Benefits Drawbacks

Public • Low investment in the short
run (pay-as-you-use)

• Highly scalable
• Quicker service to market

• Security: multitenancy and
transfers over the Internet
[18]

• Privacy and reliability [18]
Private • More control and reliability

• Higher security
• Higher performance

• Higher cost: heavy invest in
hardware, administration
and maintenance

• Must comply with strict
regulations

Hybrid • Operational flexibility: can
leverage both public and
private cloud

• Scalability: run bursty
workloads on the public
cloud

• Cost-effective

• Security, privacy and
integrity concerns

guaranteed performance, not only the compute resources (e.g.,
CPU and memory) should be allocated sufficiently, but also the
networking resources (e.g., bandwidth and low latency) should
be satisfied. Many existing cloud platform uses virtualization to
provide isolated compute resources. However, the networking is
still shared in a best effort manner across all the tenants, which
can become a severe bottleneck when the network is congested.
In addition, sharing the same physical server may also introduce
additional delay due to context switching. The provider needs to
have ways to monitor applications’ performance so that the service-
level agreement (SLA) can be met.

• Security and privacy: Data integrity and security is a big challenge
for cloud platforms, especially for public cloud providers. Cus-
tomers’ data are competitive assets, and it is sensitive. Encrypting
everything in the cloud will introduce additional overhead and may
create inconvenience for security monitoring applications.

• Fault tolerance: Upon failure, the cloud platform needs to minimize
the disruption to the applications and services. Most cloud plat-
form uses seamless migration techniques such as VM migration to
restart the application on another physical instance. However, cer-
tain infrastructure failures, for example, top-of-rack switch failure,

�

� �

�

18 2 Virtualization and Cloud Computing

power outage, router failure, or even entire data center failure, are
hard to bypass.

• Resource management: One of the most attractive features of
cloud computing is the ability to acquire and release resources
dynamically as the demand changes. The cloud provider needs
automated resource management methods to effectively allocate
and relinquish resources while minimizing the operational cost. To
achieve that, the operators need tools to accurately monitor the
SLAs with low overhead. Upon resource contention, they need to
be able to sponge new resources and rebalance the demand across
all available resources. Mapping the SLAs to low-level resources
(CPUs and memory) is itself a challenging problem. Multiple types
of resources may be dependent and thus a simple linear mapping
may not be sufficient.

• Interoperability: Many companies have their own private cloud and
would like to migrate to public cloud gradually. Some applications
may need to use public cloud resources when the private cloud’s
resource is insufficient. Cloud applications may need to run on
multiple cloud platforms simultaneously for geo-distribution and
performance purposes. All these scenarios require cloud platforms
and applications to be interoperable in order to support seamless
migration.

2.2 Host Virtualization

Virtualization is a technique that abstracts out the low-level details of
physical hardware and provides a simple, virtualized interface to the
high-level applications. A virtual machine (VM) usually refers to a vir-
tualized server. Virtualization is the key enabler of cloud computing.
It provides the capability of sharing the server clusters as a pool of
computing resources and the capability of dynamically mapping vir-
tual resource to customers and applications. In this section, we review
a few existing host virtualization techniques.

2.2.1 Overview

As early as 1960s, the concept of virtual machine has been introduced
by IBM for providing concurrent access to the server. Each VM
provides an abstract interface and an illusion of accessing the physical

�

� �

�

2.2 Host Virtualization 19

server directly and mutually exclusive to other users. This concept
nicely enables time sharing and multiplexing on expensive physical
resources and thus reduces the operational cost.

2.2.1.1 Benefits
The first important benefit brought by virtualization is the isolation.
An application may contain bugs, which could interfere with other
applications running on the same system. Most malwares operate like
that to cause other applications’ crash, compromise other applications,
and steal sensitive information. Placing these applications in isolation
with others can help improve the stability and security guarantee of
the entire system. The second benefit of virtualization comes from
performance. VMs provide exclusive access to the resources and thus
have better performance guarantees than on a shared infrastructure.
Traditional multiuser system provides sharing at the user level. In the
user-level sharing, different applications compete on the computation
resources, memory, network, and disk I/O.

2.2.1.2 Use Cases
There are multiple usage of VMs beyond cloud computing.

• Using VMs as sandboxes for testing and security purposes: VMs are
useful to provide a secure and isolated environment for running
untrusted applications. The isolation property provided by VM can
prevent the malicious code from accessing underlying operating
system resources or accessing other VMs’ data and code. It is often
used as sandbox to analyze the malware and provide signatures for
future patching. It is also used for running suspicious or third-party
less trustworthy applications.

• Multiple operating environments: On the same physical server, it
can provide multiple operating systems simultaneously to support
diverse application needs. One physical server can run both Linux
and Windows Operating Sysytems (OSes) without interfering with
each other.

• Hiding hardware details: Hardware is evolving and a hardware
change may result in problems/crashes in the application software.
The VM interface hides the hardware details and thus hardware
upgrades can be transparent to applications. It can also provide
virtualized hardware primitives such as virtual network interface
cards (NICs), virtual either adapters, and switches.

�

� �

�

20 2 Virtualization and Cloud Computing

• Application migration: On the one hand, it can be used to consol-
idate workload from the underutilized servers together to reduce
energy cost. On the other hand, it can move applications to newer
hardware servers with minimum disruption through live VM migra-
tion technique.

2.2.2 Virtualization Techniques

Virtualization is essentially a mapping and emulating process. It maps
the virtual resource to native hardware resource and then uses the lat-
ter for computation. According to where the mapping occurs, we will
first explain the widely used hardware-level virtualization and then
cover other layers’ virtualization as well.

2.2.2.1 Hardware-Level Virtualization
Figure 2.2 shows two widely used virtualization architectures. The
most important component in this architecture is called virtual
machine monitor (VMM). VMM uses software to emulate the vir-
tualized processor, I/O, memory, storage, and so on. It can support
multiple VM instances simultaneously. Each VM has its application
and OS layer, just as a normal compute model. The OS passes the
instructions to the VMM for execution. On the left side, the VMM is a
software layer sitting on the bare metal hardware. So this architecture
is also called as stand-alone VM implementation. In the right side
of Figure 2.2, the VMM runs as an application on the host OS. It
can utilize the host OS’s functionality such as memory management,
process scheduling, and hardware drivers. Both architectures have
been widely used in many virtualization products.

Virtual machine 1

Guest operating
system

Applications

Virtual machine n

Guest operating
system

Applications

Virtual machine monitor (VMM)

Hardware

Virtual machine 1

Guest operating
system

Applications

Virtual machine n

Guest operating
system

Applications

Virtual machine monitor (VMM)

Hardware

Host operating system

Standalone VMM Hosted VMM

Figure 2.2 Virtual machine architectures.

�

� �

�

2.2 Host Virtualization 21

The possibility of virtualization needs the support from the com-
puter architecture level: the privileged instructions must trap so that
the guest VM’s privileged execution will be sent to VMM. The VMM
will coordinate the scheduling of execution across VMs; either the
instruction is executed on the native hardware or an emulated result is
returned. VMM is in complete control of the entire system resource.

2.2.2.2 Other Virtualization Techniques
While the hardware virtualization is the fundamental building block
to the cloud computing, there are other types of virtualizations. One
of the well-known ones is the java virtual machine (JVM), which pro-
vides virtualization abstraction at the programming language level. As
a platform-independent language, Java has a backend interpreter that
performs platform-dependent translations. Programs run on the JVM
platform are compiled to standardized portable binary format in the
form of class files. The binary is executed by the JVM runtime, which
emulates the JVM instructions.

2.2.3 Containers

Containers are a game changer in the virtualization space. Starting
a new virtualization cannot get easier than this. Containers are easy
to use, fast, and ensure real software portability. Each container has
all its required runtime dependencies and configurations. Contain-
ers that run on the same engine share the same Linux kernel of the
host server and are executed by Docker engine rather than hypervisor.
Containers are much smaller in terms of size than virtual machine and
have shorter start-up time. Therefore, Docker containers are consid-
ered as the agile and lightweight solution. While the lightweight OS
solutions have existed for a few years, Docket container [21] is the
one that leads to the mass adoption and the hype around containiza-
tion. Docker container was initially designed as a Go language building
runtime. Today, the Open Container Initiative builds the ecosystem
around Docker container. Recently, a container standardization is dis-
cussed, and a runtime implementation is produced, called runC [22].

Figure 2.3 shows the architecture of container. Compared to the
traditional VM architecture in Figure 2.2, the container does not have
the per VM guest OS, which is usually tens of gigabytes. Each VM
instance has a full guest OS image in addition to the binaries and
libraries needed for the applications. It usually leads to high memory

�

� �

�

22 2 Virtualization and Cloud Computing

Libraries

Apps

Hardware

Host operating system

Apps Apps

Libraries

Apps Apps Apps
Figure 2.3 Docker container
architectures.

and disk utilization and thus a slow start-up time. In contrast, in
container, each application runs as an isolated process in user space
on the host operating system, sharing kernel with other containers.
Each application is usually on the order of megabytes, which is of
much lighter weight. Therefore, container is a much more portable
and efficient solution than VM. The resource isolation benefits are
still provided by the host OS. Thus, container is a much lightweight
virtualization concept.

The main technologies behind container are namespace, control
group, and union file system (UFS). Each container runs a set of
namespaces, which provides the isolation. Each container can only
access its own namespaces. The control group is used to set up access
control to hardware resources for each container. The UFS provides
lightweight and fast layering, which is the building block of container.
Docker container builds on top of these techniques into the container
format in the form of libcontainer. In addition, Docker also supports
traditional Linux container LXC.

The entire Docker stack in a clustered dockerized environment con-
tains five major layers: Cluster Manager layer, Node (or host) layer in
the cluster, Docker Demon layer that runs on each node, Contain-
ers layer created by the Docker Demon, and Applications layer that
contains applications run on each container. Different Docker cluster
managers are structured in different forms, for example, on Swarm, the
containers are part of its structure, but on Kubernetes, there is only a
Pod that represents a set of containers, and the user can control the
Docker containers just through the cluster Pods.

2.3 Network Virtualization

Network virtualization refers to the technology that enables partition-
ing or aggregating a collection of network resources and presenting
them to various users in a way that each user experiences an isolated

�

� �

�

2.3 Network Virtualization 23

and unique view of the physical network [23–25]. The abstraction of
network resources may include fundamental resources (i.e., links and
nodes) or derived resources (topologies) [23]. This technology may vir-
tualize a network device (e.g., a router or NIC) a link (physical channel,
data path, etc.), or a network.

With the advent of software-defined networking architectures
and usage within virtualized cloud systems, the separation of vir-
tual networking from the physical underlying resources pose new
challenges. Most modern data center virtual network technologies
use a tunneling system to emulate a network as an overlay onto
a physical network infrastructure. Examples of these virtual net-
works include VXLAN and NVGRE. An end host’s network traffic
is admitted from the Virtual Tunnel End Point (VTEP) into the
tunneling system (the virtual network). The tunneling system usually
is agnostic to the endpoints. It usually uses a simple forwarding
strategy in the physical network infrastructure, such as shortest path
routing, to allow packets in the tunnel to reach their intended VTEP.
The network policy and access control are usually performed at
the virtual network layer. The mappings between the hosts and the
VTEPs are maintained either in a centralized manner or distributedly
shared across VTEPs. Such information can be maintained on edge
switches or end host virtual switches, depending on different types of
virtual networks. The routing and management of physical network
is disjoint from the virtual networks. It is usually maintained by a
different administrative domain. The physical network’s configuration
is usually more stable. This separation enables parallel management
of different layers. Different policies can be applied without conflicts.
However, because of the separation, the events, state changes, and
faults on the physical network cannot be conveyed to the virtual
network in real time, and vice versa. Network traffic on the virtual
network is not provided with enhanced services that are typically
available from the physical network. In addition, classic FCAPS (Fault/
Configuration/Accounting/Performance/Security) network manage-
ment services are not interrelated between the virtual and physical
domains.

For example, overlay tunnel end points that initiate very large flows
onto the virtual network overlay have no awareness of the underlying
network topology and cannot optimally route the data flow or provide
quality of service (QoS) for differential treatment and, therefore, may
cause congestion that could otherwise be avoided. A further example

�

� �

�

24 2 Virtualization and Cloud Computing

is troubleshooting in the event of a link failure on the physical network
that affects an overlay tunnel carrying virtual network traffic. With-
out a federation between control systems, it becomes very difficult for
administrators of the virtual network system to troubleshoot or detect
the root cause of the issue.

In this section, we review different network virtualization technolo-
gies, discuss their pros and cons, and highlight the recent develop-
ments that are relevant to the SDN, NFV, and 5G.

2.3.1 Overlay Networks

An overlay network2 is a logical network that runs independently on
top a physical network (underlay). Overlay networks do not cause
any changes to the underlying network. Peer-to-peer (P2P) networks,
virtual private networks (VPNs), and voice over IP (VoIP) services
such as Skype are examples of overlay networks [24–26]. Today, most
overlay networks run on top of the public Internet, while the Internet
itself began as an overlay running over the physical infrastructure of
the public switched telephone network (PSTN). The Internet started
by connecting a series of computers via the phone lines to share files
and information between governmental offices and research agencies.
Adding to the underlying voice-based telecommunications network,
the Internet layer allowed data packets transmission across the public
telephone system, without changing it.

P2P networks are an important class of overlay networks [27];
they use standard Internet protocols to prioritize data transmission
between two or more remote computers in order to create direct
connections to remote computers, for file sharing. P2P networks use
the physical network’s topology but outsource data prioritization and
workload to software settings and memory allocation.

Although there are various implementations of overlays at different
layers of the network stack, most of them have been implemented in
the application layer on top of IP, and thus, they are restricted to the
inherent limitations of the existing Internet.

2.3.2 Virtual Private Network

VPN provides private connectivity across different geographically
separated sites. The sites can be offices of the same company that

2 Here, the network refers to a telecommunication or computer network.

�

� �

�

2.3 Network Virtualization 25

spread across the country or around the globe. For these companies
to expand their private network beyond their immediate geographic
area, one needs a fast and reliable communication network among
their offices. The traditional VPN is using the leased lines on top of
a wide area network (WAN). A WAN could very well be the public
Internet because of its reliability, performance, and security. A private
WAN can be expensive because leased lines can be expensive. More-
over, leased lines are not viable for employees to access the corporate
network wherever needed, for example, from home, from the road, or
from other organizations.

A VPN is an assembly of two or more private networks or individual
users that uses secured tunnels over a public telecommunication
infrastructure, such as the Internet, for connection. A VPN is com-
monly used to provide distributed offices or individual users with
secure access to their organization’s network. VPN services enable
remote access to the company Intranet at low cost, which enables
the realization of mobile workforce. The VPN architecture supports
a reliable authentication mechanism to provide easy access to the
Intranet from anywhere anytime. The Intranet is accessible as long
as the user has access to any edge media, including modems, ISDN,
cable modems, DSL, fiber, Wi-Fi, and cellular wireless. The high-level
architecture and process is shown in Figure 2.4.

There are multiple types of VPN services, depending on its
implementation.

• Link layer VPN : Link layer technologies such as frame relay and
Asynchronous Transfer Mode (ATM) can be used to implement

Customer

network
Provider network B

B
BD

D

Encapsulated

packet

A

Figure 2.4 VPN illustration.

�

� �

�

26 2 Virtualization and Cloud Computing

the VPN if the underlying network is based on the link layer tech-
nologies. The VPN is implemented using virtual circuits at the link
layer. The frame relay frames or ATM cells are switched across nodes
belonging to the virtual network. Virtual circuits are much cheaper
than dedicated links and they are reconfigurable. The virtual circuits
also have the advantage of providing SLAs.

• MPLS VPN : Multiprotocol Label Switching (MPLS) is a widely used
protocol for VPN in the core network. Compared to the link layer
VPN, MPLS VPN is much more scalable because they are based on
connectionless architecture. Each customer site requires a customer
edge router connected to a provider edge router in the provider
network. MPLS also has advantages of providing performance QoS
guarantees. Using Layer 3 routing protocols, for example, Border
Gateway Protocol (BGP), the MPLS labels are distributed across all
the customer and provider edge routers. Each IP packet is pushed
with an MPLS label. The intermediate routers have a forwarding
table that matches the label to a specific output forwarding port.
The underlying infrastructure only performs the forwarding based
on the label. The mapping between label and the original IP packet
is maintained at the edge. MPLS is usually referred to Layer 2.5,
between the link layer and the network layer.

• IP VPN : IP-based VPN is implemented at the network layer either
by tunneling or by network layer encryption. A tunnel connects
two points of a VPN across the shared network infrastructure. The
network layer packets leaving a VPN node at one end of the tunnel
are appended with an outer IP header with the destination address
of the other end of the tunnel. The packets are then routed based on
the outer IP address through the shared network infrastructure
to the other end. The outer IP header is popped at the remote
VPN node and the original packet is forwarded afterward. The
tunneling method can encapsulate multiple protocol types on the
same infrastructure. A disadvantage of the tunneling method is the
management of a large number of tunnels. The network layer VPN
can also use stronger secure encryption method, such as IPSec.
IPSec can encrypt and encapsulate the original IP packet at the
same time.

Based on the layer at which the VPN service provider’s interchange
VPN reachability information with customer sites, VPNs cam also
be classified into three types: Layer 1 VPN (L1VPN), Layer 2 VPN

�

� �

�

2.3 Network Virtualization 27

(L2VPN), and Layer 3 VPN (L3VPN) [23, 24, 28, 29]. While L1VPN
technology is under development, the other two technologies are
mature and have been widely deployed. Also, based on their network-
ing requirements, enterprises can connect their corporate locations
together in many different ways. These networking services can
typically be viewed from three perspectives, which are demarcation
point (or enterprise/service provider hand-off), the local loop (or
access circuit), and the service core. Choosing Layer 2 or Layer 3 VPN
will make a different impact on these three network service [30].

In an L2VPN, the service provider’s network is virtualized as a
Layer 2 switch, whereas it is virtualized as a Layer 3 router in an
L3VPN [23]. In the former, the customer sites are responsible for
building their own routing infrastructure. Put differently, in an
L3VPN, the service provider participates in the customer’s Layer 3
routing, while in an L2VPN it interconnects customer sites using
Layer 2 technology.

As listed in Tables 2.2 and 2.3, both Layer 2 and Layer 3 services
have their advantages and disadvantages. These are basically related
to the differences of router and switch in computer networking; some
of them are highlighted in Table 2.4.

2.3.3 Virtual Sharing Networks

VPNs and overlays are not the only types of virtual networks
implemented so far; there exist other networks that do not fall into
these two categories. Virtual local area networks (Virtual LANs) are

Table 2.2 Layer 2 VPNs: advantages and disadvantages.

Advantages
Highly flexible, granular, and scalable bandwidth
Transparent interface – no router hardware investment is required
Low latency – switched as opposed to routed
Ease of deployment – no configuration required for new sites
Enterprises have complete control over their own routing

Disadvantages
Layer 2 networks are susceptible to broadcast storms – due to no router hardware
No visibility from the service provider – monitoring services can be difficult
Extra administrative overhead of IP allocations – because of flat subnet

�

� �

�

28 2 Virtualization and Cloud Computing

Table 2.3 Layer 3 VPNs: advantages and disadvantages.

Advantages
Extremely scalable for fast deployment
Readiness for voice and data convergence
“Any to any” connectivity – a shorter hop count between two local sites
Enterprises leverage the service provider’s technical expertise for routing

Disadvantages
Increased costs – due to requiring customer router hardware
Class of service and quality of service usually incur additional fees
IP addressing modifications would have to be submitted to the service provider

Table 2.4 Router versus switch.

Router Switch

Definition Connects two or more
networks together and
forwards packets between
them

Connects many devices
together on a network;
more advanced than a hub

OSI layer Network layer (L3) devices Data link or network layer
(L2 or L3)

Data form Packet Frame and packet
Address used for
data transmission

IP address MAC address

Table Stores IP addresses in
routing table

A network switch stores
MAC addresses in a
lookup table

Transmission type At initial level broadcast;
then unicast and multicast

First broadcast; then
unicast and multicast

Function Directs data in a network.
Passes data between home
computers, and between
computers and the modem

Allow to connect multiple
device and port can be
managed; VLAN can
create security also can
apply

Speed 1–10 Mbps (wireless)
100 Mbps (wired)

10/100 Mbps, 1 Gbps

�

� �

�

2.3 Network Virtualization 29

examples of these networks. While properly segmenting multiple
network instances, such technologies commonly support sharing of
physical resources among them. The term virtual sharing networks
(VSNs) has recently been suggested for these types of networks [23].

Originally defined as a network of computers located within the
same area, today LANs are identified by a single broadcast domain
in which the information broadcasted by a user is received by every
other user on that LAN while it is prevented from leaving the LAN
using a router. The formation of broadcast domains in LANs depends
on the physical connection of the devices in the network. Virtual
LANs (VLANs) were developed to allow a network manager to
logically segment a LAN into different broadcast domains. Thus,
VLANs share a same physical LAN infrastructure, but they belong to
different broadcast domains. Since it is a logical, rather than a physical,
segmentation, it does not require the workstations to be physically
located together. They can be on different floors of a building, or
even in different buildings. Further, broadcast domain in a VLAN can
be defined without using routers; instead, bridging software is used
to define which workstations belong to the broadcast domain, and
routers are only used to communicate between two VLANs.

The sharing and segmentation concept of the VLAN can be gener-
alized to a broader set of networks, collectively called (VSNs). The key
requirement for such networks is to share a physical infrastructure
while being properly segmented [23]. For example, a large corporate
may have different networks with specific permission for guests,
employees, and administrators, yet all sharing the same access points,
switches, router, and servers.

2.3.4 Switch-Based SDN Virtualization

Network virtualization enables multiple logical networks to share the
same underlying physical network infrastructure in an isolated man-
ner. Each logical network can have different addressing and forward-
ing schemes. The isolation and abstraction can be implemented at the
switch level or the host level. First, we introduce the mechanism of
implementing it at the network switch level using SDN. The advantage
of this approach is that it does not rely on support from the end hosts.
Once deployed, it can be used to support a large number of end hosts
simultaneously. It also does not rely on specialized functionalities on
the hardware, which then can be deployed on commodity switches.

�

� �

�

30 2 Virtualization and Cloud Computing

There are multiple requirements to support network virtualization.

• Autonomous management: Each virtual network administrator has
his own view of the topology and can freely define any routing
scheme on top of it. The virtual network topology consists of nodes,
links, and the connectivity between them. It can choose to use
shortest path routing, multipath routing, or any customized routing
mechanism. Inside the virtual network, any form of forwarding
methods can be used, for example, Layer 2, Layer 3, MPLS, and
Openflow.

• Isolation: For security and independence concern, the network visu-
alization infrastructure should provide isolation to different cus-
tomers. On the one hand, each virtual network should have separate
routing entries. Failures or misconfiguration on one customer net-
work may not affect other virtual networks.

• Performance: Each customer network can specify the amount of
guaranteed bandwidth they want on each link. The underlying
network should provide the capability of bandwidth division across
multiple networks on each physical link.

One way to provide virtual network is at the switch level using
SDN architecture. The seminal work in this category is Flowvi-
sor [31]. Figure 2.5 shows the general architecture of this type of
approaches. Each virtual network runs their own SDN controller,
which can be called as user-level controller. The user controller has a
northbound interface to accept the customer network’s management
input. It presents an abstracted topology to the user. Below the
user controller, it employs an infrastructure-level controller that
translates the user-level Openflow rules to the OF rules on the actual
physical switches. To provide isolation, each switch can have multiple

User 1’s

controller

User 2’s

controller

Other

SDN App

Infrastructure SDN Controller

Translator Forwarding

Figure 2.5 Switch-
based SDN
virtualization.

�

� �

�

2.3 Network Virtualization 31

virtual tables to host the rules for different customer networks. This
infrastructure controller essentially translates the virtual layer rules to
the physical layer rules. Thus, it provides one level of abstraction, that
is, the virtual layer is independent of the physical layer. If there is any
change in the physical layer, the translation layer can hide the changes
to the virtual layer. The user controller requires no modification and
acts as if it was communicating directly with the physical switches.
Since we will introduce SDN in more details in later sections, we keep
the description here at a high level for now.

2.3.5 Host-Based Network Virtualization

Another way to implement network virtualization is using a host-
oriented approach. Given the wide deployment and success of server
virtualization techniques, this approach relies on the virtual switch
in the hypervisor to control the forwarding behavior so as to provide
an abstraction for virtual network. Among the work in this area,
VMWare’s NVP system [32] has been widely used in practice in a
scalable manner. This approach is usually used in a multitenant data
center, where a large set of physical hosts connected by a physical
network under one administrative domain. Each host runs multiple
VMs on the hypervisor, which has a virtual switch to handle the
forwarding from and to these VMs. The notion of network hypervisor
is then built using these distributed virtual switches. The network
hypervisor provides an abstraction of control plane to the tenants.
The tenants can use this control plane to define logical network
elements such as logical switches and their forwarding rules. The
sequence of logical elements forms a logical data plane. This logical
data path is translated into rules and implemented in the software
virtual switch. Figure 2.6 shows the architecture; there are essentially
three segments in the network path: source hypervisor, tunneling,
and destination hypervisor. There is a tunnel between any pair of
hosts in the physical network; any typical tunneling protocol can be

Ingress

point

Logical

Hop 1

Logical

Hop 2

Logical

Hop n
End-to-end

tunneling
Egress

point

Source virtual switch
Destination

virtual

switch

Tunnel

Figure 2.6 Host-based SDN virtualization.

�

� �

�

32 2 Virtualization and Cloud Computing

used as long as the intermediate switches support it. For example,
MPLS or GRE tunneling are good choices. Thus, the underlying
network only needs to perform routing based on destination address,
which is no different than ordinary IP networks. The logical data
path is completely implemented in source virtual switch. The source
virtual switch usually has multiple tables for the controller to install
different logical hops. The destination VM decapsulates the packet
and forwards it to the right VM according to the inner packet header.

While the design is simple, the main challenges for this design
include the data path performance, the ease of management, and the
scalability. Managing all pair tunneling itself is a challenging. Because
the entire data path is implemented in the source virtual switch, the
virtual switch’s rule space management is also a key factor to the
overall performance. Finally, providing a declarative management
interface for the tenants’ to flexibly specify their topology and policy
is important for its deployment.

2.4 Wireless Virtualization

As a natural extension of wired network virtualization, wireless net-
works virtualization is motivated by the observed benefits of that in
wired networks. However, while virtualization of wired networks and
computing systems has become a trend, much less virtualization has
occurred in infrastructure-based wireless networks [33]. Yet, the idea
of virtualizing wireless access has recently attracted substantial atten-
tion in both academia and industry. It is one of the frontier research
areas in computer science [23, 33, 34].

Wireless virtualization may refer to wireless access virtualization,
wireless infrastructure virtualization, wireless network virtualization,
or even mobile network virtualization [23, 34]. It is about the abstrac-
tion and sharing of wireless resources and wireless network devices
among multiple users while keeping them isolated. Wireless resources
may include low-level PHY resources (e.g., frequency, time, and space)
or wireless equipment (e.g., a base station (BS)3), a network device
(e.g., a router), a network, or a client hardware (e.g., wireless NIC).

3 A single physical BS can be abstracted to support multiple mobile operators and
allow individual control of each RAN by having a separate vBS configured for each
operator.

�

� �

�

2.4 Wireless Virtualization 33

Thus, similar to wired network virtualization, wireless network
virtualization software may reproduce logical channel and logical
RAN (L1) in addition to logical switches and logical routers (L2–L3).

The motivations for virtualizing wireless networks are very similar,
but not limited, to those of wired networks. First, as an extension of
wired network virtualization, wireless virtualization can potentially
enable separation of traffic to increase flexibility (e.g., in terms of QoS),
improve security, and facilitate manageability of networks. Powerful
network management mechanisms are particularly important in
emerging heterogeneous networks. Second, it has a great potential to
increase the utilization of wireless networks. This is important from
both infrastructure and spectrum virtualization points of view. The
former opens up the doors for the concept of IaaS so that one operator
can use its own or other operator’s underutilized equipment (e.g., BSs
on the outskirts) in the congested sites, for example, in downtown.
Spectrum virtualization can also provide better utilization; it may even
bring more gain and is more valuable as spectrum is a scarce resource.
Third, by decoupling the logical and physical infrastructures, wireless
virtualization promotes mobile virtual network operators (MVNOs4).
This allows decoupling operators from the cost of infrastructure
ownership (capital and operation expenditures). Fourth, wireless
virtualization provides easier migration to newer products and will
likely support the emergence of new services. Last but not the least, it
is a key enabler for cloud radio access network, which is expected to
help operators reduce TCO and become greener.

Depending on the type of the resources being virtualized and the
objective of virtualization, three different generic frameworks can be
identified for wireless virtualization [34]:

1) Flow-based virtualization deals with the isolation, schedul-
ing, management, and service differentiation between traffic
flows, streams of data sharing a common signature. It is inspired
by the flow-based SDN and network virtualization but in the
realm of wireless networks and technologies. Thus, it requires
wireless-specific functionalities such as the radio resource blocks
scheduler to support QoS and SLA over the traffic flows.

4 MVNOs [35] are a new breed of wireless network operators who may not own the
wireless infrastructure or spectrum, but give a virtual appearance of owning a wireless
network. Basically, MVNOs resell the services of big operators, usually lower prices
and with more flexible plans. Virgin Mobile is an example for MVNO.

�

� �

�

34 2 Virtualization and Cloud Computing

2) Protocol-based virtualization allows to isolate, customize,
and manage multiple wireless protocol stacks on a single radio
hardware, which is not possible in flow-based virtualization.
This means that MAC and PHY resources are being virtualized.
Consequently, each tenant can have their own MAC and PHY
configuration parameters while such a differentiation is not possi-
ble in a flow-based virtualization. The wireless NIC5 virtualization
[38, 39] where IEEE 802.11 is virtualized by means of the 802.11
wireless NIC, falls into this category.

3) RF frontend and spectrum-based virtualization is the deepest
level of virtualization that focuses on the abstraction and dynamic
allocation of the spectrum. Also, it decouples the RF frontend from
the protocols and allows a single frontend to be used by multiple
virtual nodes or a single user to use multiple virtual frontends. The
spectrum allocation in the spectrum-based virtualization differs
from that of the flow-based virtualization for its broader scope
and potential to use noncontiguous bands as well as the spectrum
allocated to different standards.

As noted, the depth of virtualization is different in these three
frameworks and they are complementary to each other. From an
implementation perspective, the flow-based virtualization is the
most feasible approach with immediate benefits. It connects virtual
resources and provides a more flexible and efficient traffic manage-
ment. In all three cases, a flow-based virtualization is required to
integrate the data. However, in the flow-based approach, the depth of
virtualization is not sufficient for more advanced wireless communi-
cation techniques, such as the coordinated multipoint transmission
and reception [34, 40, 41].

As a potential enabler for future radio access network, wireless vir-
tualization is gaining increasing attention. However, virtualization of
wireless networks, especially efficient spectrum Virtualization, is far

5 By means of a wireless NIC, which is basically a Wi-Fi card, a computer workstation
can be configured to act as an 802.11 access point. As a result, 802.11 virtualization
techniques can be applied to the 802.11 wireless NIC. Virtualization of WLAN, known
as VirtualWiFi (previously MultiNet [36, 37]), is a relatively old technology. It abstracts
a single WLAN card as multiple virtual WLAN cards, each to connect to a different
wireless network. Therefore, it allows a user to simultaneously connect his machine to
multiple wireless networks using a single WLAN card.

�

� �

�

2.4 Wireless Virtualization 35

more complicated than that of a wired network. It faces some unique
challenges that are not seen in wired networks and data centers.
Virtualization of the wireless link is the biggest challenge in this
domain [34, 42, 43]. Some other key issues in wireless virtualization
are as follows:

• Isolation: Isolation is necessary to guarantee that each operator
can make independent decision on their resources [44]. Also, since
resources are shared in a virtualized environment, there must be
effective techniques for ensuring that the resource usage of one
user has little impact on others. In wired networks, this may only
occur when every user is not provided with distinct resources,
mainly due to resources insufficiency. Overprovisioning can solve
the issue in such cases. It is not, however, a viable solution in
wireless virtualization because spectrum, the key wireless resource,
is scarce. To fulfill such requirements, sophisticated dynamic
resource partitioning and sharing models are required.

• Network management: Wireless networks are composed of vari-
ous radio access technologies (RATs), for example, 3G, 4G, and
Wi-Fi. Similarly, a single wireless device is capable of accessing to
multi-RAT. In such a multi-RAT environment, resource sharing is
not straightforward. In contrast to network virtualization technolo-
gies that are mainly based on Ethernet, wireless virtualization must
penetrate deeper into the MAC and PHY layers. Further, even in
a single RAT environment, slicing and sharing is not easy because
wireless channels are very dynamic in nature and an efficient slicing
may require dynamic or cognitive spectrum sharing methods
[45]. Hence, dynamic network virtualization algorithms must be
considered.

• Interference: Wireless networks are highly prone to interference and
their performance is limited by that. Interference is out there, par-
ticularly, in dense, urban area. This must be considered in slicing
radio resources since it is not easy to isolate and disjoint subspaces.
Especially, in a multi-RAT environment, if different spectrum bands
of various RATs are shared and abstracted together, interference
becomes even a bigger issue because interference between differ-
ent RAT needs to be taken into account too. For example, a slice
from Wi-Fi unlicensed spectrum could be assigned to an LTE user,
causing unforeseen interference between LTE and Wi-Fi networks.

�

� �

�

36 2 Virtualization and Cloud Computing

• Latency: [44] Current wireless standards impose very strict latency,
in order to meet real-time application’s requirement [46]. This man-
dates 5–15 ms round-trip latency in Layer 1 and Layer 2 of today’s
wireless standards and will be more stringent in the next generation
(5G) [47].

There are also other concerns such as synchronization, jitter [48],
and security [49].

2.5 Summary

Cloud computing has received significant momentum in the past
decade and has been widely used in today’s IT environment. Virtu-
alization is the key technology that enables cloud computing. Host
virtualizations such as VMs or containers have been extensively stud-
ied and widely deployed. From network virtualization’s perspective,
the traditional overlay network using encapsulation and tunneling is
one type of virtual network. VPN is a form of popular virtual network
for security applications. Recently, SDN has become another way to
implement network virtualization. For example, one can define the
virtual networks in the flow tables of the SDN switches. On the other
hand, wireless virtualization has received a lot of momentum lately.
The SDN approach brings the ability to do flexible traffic engineering
and to gather more intelligence and statistics from the infrastructure.

�

� �

�

37

3

Network Function Virtualization

Network function virtualization (NFV) represents a significant trans-
formation for telecommunications/service provider networks, driven
by the goals of reducing cost, increasing flexibility, and providing per-
sonalized services [10]. It is rapidly emerging as the de facto approach
operators will use to deploy their networks. The promise of NFV will
play out over the next several years, and several challenges need to
be addressed to make that happen. Telcos have transitioned most of
their communications to standard IP networks and are now starting
to migrate most of their computing to industry standard servers. NFV
leverages on cloud computing principles to change the way NFs such
as gateways and middleboxes are offered. Different from today’s tight
coupling between the NF software and dedicated hardware, the loosely
coupled software and hardware in NFV can reduce the upgrade cost
and increase the innovation flexibility. In addition, with the advent of
5G technology, there is a push toward developing novel real-time ser-
vices in the areas of mobile payment, augmented reality, autonomous
driving, and Internet of things (IoT) [10].

Typical network functions (e.g., server load balancing (SLB), and
firewalling) in large-scale enterprise networks today are generally
provided on large vendor-proprietary devices. These are complex to
operate and manage, expensive to procure and maintain, and are
typically very underutilized. They also do not lend themselves to easy
automation since, because they are proprietary appliance based, their
application programming interfaces (APIs) are vendor-specific, mak-
ing them difficult to integrate into a high-level non-vendor-specific
orchestration platform. Efforts to alleviate this complexity through
flexible network routing techniques such as SDN have led to only a
partial fix, as the physical switch devices controlled via SDN/OF lack

Network Function Virtualization: Concepts and Applicability in 5G Networks, First Edition. Ying Zhang.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

�

� �

�

38 3 Network Function Virtualization

the intelligence to make decisions based on OSI Layers 5–7 and so
are not able to deliver the higher level services provided by the load
balancers and firewalls.

In NFV environments, monolithic complex network functions run-
ning on specialized hardware are decomposed into smaller functional
units and dynamically orchestrated onto a virtualized cloud and edge
infrastructure. These network functions include both control plane
processing, such as telco equipments for signaling, authentication,
and data plane processing, such as normal routing, access control,
and quality of service (QoS). These network functions run as software
in a virtual machine (VM), which is also called virtualized network
function (VNF). Running as VMs among a large number of TOR
switches in the data center allows these functions to scale on demand.
It then helps reduce the operational cost for the telecom operators.
It also has the potential to reduce the growth of appliance sprawl,
particularly in multitenant data centers (DCs), providing power,
space, and cooling savings for a more efficient and greener data
center. A highly agile routing instructions that direct network packets
through a sequence of VNFs is called service function chaining (SFC),
which we will discuss more in later chapters. In this chapter, we focus
on the basic building blocks of NFV.

3.1 NFV Architecture

To meet the increasing traffic demands while maintaining or
improving average revenue per user (ARPU), network operators are
constantly seeking new ways to reduce their OPEX and CAPEX.
To this end, the concept of NFV was initiated within the European
Telecommunications Standards Institute (ETSI) consortium [50].
NFV allows legacy NFs offered by specialized equipment to run in
software on generic hardware. The key driving technologies behind
that is cloud computing and virtualization. NFV makes it possible
to deploy VNFs in high-performance commodity servers in an
operator’s data center, with great flexibility to spin on/off the VNFs
on demand. The agility has brought NFV increased popularity by
network operators because it can achieve high resource utilization.
In addition, by decoupling the NF software from the hardware,
NFV will facilitate a faster pace for innovations and result in shorter
service development cycles. In summary, NFV has great potential in
CAPEX/OPEX savings and ARPU increasing.

�

� �

�

3.1 NFV Architecture 39

NFV covers a wide spectrum of middleboxes such as firewalls,
deep packet inspection (DPI), intrusion detection system (IDS),
network address translation (NAT), and wide area network (WAN)
accelerators. It also covers a variety of network nodes such as broad-
band remote access servers data network gateways (S-GW/P-GW),
mobility management entity (MME), home subscriber server (HSS),
and virtual IP multimedia subsystem (vIMS) for virtual evolved packet
core (vEPC). These are the critical devices in the mobile broadband
and cellular networks. Table 3.1 shows a taxonomy of different types
of VNFs and their representative examples. These services range
from traditional telecom devices to security appliances. In the trend
of microservices, the VNFs will become small and modular. New
services can be built by composing multiple microservices together in
a flexible way.

The objective of NFV is to separate software that defines the VNF
from hardware and generic software that creates a generic hosting net-
work functions virtualization infrastructure (NFVI), which executes
the VNF. The VNFs and the NFVI are then separated from each other.
Compared to the cloud architecture described in the previous chapter,
the NFV architecture’s mapping can be shown in Figure 3.1. The NFVI
maps to both the hardware and infrastructure layer. The VNFs map to
the software as a service layer.

In the past 5 years, NFV has grown from research proposal to real
deployment. There have been various industry activities to make it
prosper. The ETSI consortium has published the NFV architecture
documents and has formed various working groups to study the design

Table 3.1 Types of VNFs and examples.

Edge devices vCPE, IP Edge, BRAS
Gateway functions IPsec, SSL, NAT
NGN signaling IMS, VoIP, HSS
Application optimization CDN, cache, video transcoder, HTTP

header enrichment
Performance improvements Load balancer
Service assurance SLA monitoring, testing
Mobile network equipments HLR, SBC, MME, SGSN, GGSN, RNC,

eNodeB
Security functions DPI, Anomaly detection, Firewall, IDS, IPS

�

� �

�

40 3 Network Function Virtualization

Hardware as a service

(CPU, memory, disk, network)

Infrastructure as a Service (IaaS)

(VM)

Platform as a Service (PaaS)

(software frameworks, storage)

Software as a Service (SaaS)

(applications)

NFVI

VNF1 VNF2 VNFn

Figure 3.1 NFV architecture in cloud computing stacks.

OSS/BSS

VNFs

NFVI

VNF1 VNF2 VNFn

EMS1 EMS2 EMSn

Virtual

compute

Virtual

storage

Virtual

network

Virtualization layer

Physical resources

Compute Storage Network

Orchestration

VNF manager

Virtualized

infrastructure

manager

Service, VNF, infrastructure description

NFV

management and

orchestration

Figure 3.2 ETSI NFV reference architecture.

of different aspects of NFV. Figure 3.2 shows the ETSI NFV reference
architecture [50]. It includes the following components:

• NFVI: The NFVI provides the technology platform with a common
execution platform for a variety of VNFs. It consists of a distributed
set of NFVI nodes in various locations to support the locality
and latency requirements of the different use cases. NFVI can
be categorized into three domains: the compute and storage
domain, the hypervisor domain, and the infrastructure network
domain. The compute domain refers to the computing hardware in
Figure 3.2. The hypervisor domain includes both virtual computing
and virtualization layer. The infrastructure network domain refers
to the virtual networks as well as the network hardware.

�

� �

�

3.1 NFV Architecture 41

• NFV orchestrator: The objective of NFV is to separate the VNFs
from the infrastructure, and this includes their management.
This management and orchestration block is often complex and
composed of great many distributed component parts. On the one
hand, it handles the network-wide orchestration and management
of NFV resources. It is an integral and essential part of the NFV
framework and is specified within the GS NFV management and
network orchestration (MANO) documentation. On the other
hand, it is used to realize the NFV service topology on NFVI.

• VNF manager(s): It is responsible for VNF life cycle management,
including VNF creation, resource allocation, migration, and termi-
nation.

• Virtualized infrastructure manager(s): It is responsible for control-
ling and managing the computing, storage, and network resources,
as well as their virtualization.

• OSS: Similar to OSS in traditional cellular network infrastructure,
the main role of OSS in NFV is supporting the comprehensive
management and operations functions.

• EMS: It performs the typical FCAPS functionality for a VNF. The
current element manager functionality needs to be adapted for the
virtualized environment.

NFV is tightly related to various new technologies, including the
network virtualization, SDN, and cloud computing. In the next 5
years, NFV will continue to grow and will have a wide deployment
in telecom networks. For example, AT&T has announced Domain
2.0 project, which will fundamentally transform their infrastructure
using NFV and SDN technologies in the next 5 years. NFV will also
have broad applicability in large enterprise networks to reduce their
CAPEX and OPEX. We discuss four key technologies of cloud com-
puting that are used in NFVI. The first one is on-demand, self-service,
meaning that the operators can easily allocate resources such as server
time, storage, and network. The second feature is a flexible and board
network access, meaning that any VNF can route traffic to another
VNF freely if needed. The third feature is resource pooling. Within
a single NFVI point of presence (PoP), one type of VNF may need
to deploy on multiple instances. To support dynamically changing
resource allocation, VNFs can be deployed on a pool of available
resources. The last feature is rapid elasticity for the sake of load surge,
failover, and power optimization.

�

� �

�

42 3 Network Function Virtualization

Or-Vi

VN-NF

OSS/BSS

VNFs

NFVI

VNF1 VNF2 VNFn

EMS1 EMS2 EMSn

Virtual

compute

Virtual

storage

Virtual

network

Virtualization layer

Physical resources

Compute Storage Network

Vi-Vnfm

Nf-Vi

Ve-Vnfm

Se-Ma

Os-Ma

Or-Vnfm

Orchestration

VNF manager

Virtualized

infrastructure

manager

Service, VNF, infrastructure description

NFV

management and

orchestration

Figure 3.3 OPNFV architecture.

The open-source community OPNFV has been growing and push-
ing the open-source development of the NFV infrastructure. One
open-source NFV activity is called OPNFV [13]. Figure 3.3 shows
the OPNFV architecture. It provides the best carrier-grade NFVI,
virtualized infrastructure management (VIM), and APIs to other NFV
elements. It forms the basic infrastructure required for VNFs and
MANO components.

3.2 NFV Use Cases and Examples

ETSI working group has defined a few use cases for NFV in [10]. In
total, there are nine use cases. We introduce the high-level description
of each use case as follows. More discussions related to telecom and
5G use cases are covered in later sections.

1) NFV Infrastructure as a Service (IaaS): Due to the geographic
distribution needs and cost reduction benefits, there is a need for
operators to run their network functions on the infrastructure that
belong to service providers. For example, instead of deploying its
own infrastructure in Europe, a US carrier can choose to deploy
its VNFs on a European network service provider’s NFVI. In this
model, the latter is offering its NFVI as a service.

�

� �

�

3.2 NFV Use Cases and Examples 43

2) Virtual network function as a service: Purchasing and maintaining
their own dedicated network service appliances may be too expen-
sive for some small enterprises. Today, the enterprises usually have
to buy a multifunction access gateway, which is hard to upgrade or
maintain. NFV allows them to purchase functions whenever and
wherever needed as a pay-as-you-use model.

3) Virtual network Platform as a Service (PaaS): Service provider
today already provides various virtual private network services to
their customers. Enterprises need to deploy virtual network to
connect their remote offices and employees in a seamless manner.
With NFV, the virtual network platform includes not only the
routing and switching gear but also various network functions,
which can provide additional security and QoS to the enterprise
network.

4) VNF forwarding graphs: A VNF forwarding graph refers to a
pipeline of VNFs that traffic should traverse through. It is also
known as SFC. The pipeline can provide a flexible and config-
urable set of services to a given traffic aggregate. With the VFN
forwarding graph, the customer can choose any combination of
the services according to the policies from tenants, applications,
and networks.

5) Virtualization of mobile core network and IMS: Mobile core
network needs resource elasticity to accommodate unforeseen
demand surge or unpredicted failures. For example, when disaster
occurs, the mobile core network faces tremendously increasing
calls with reduced resources. Moreover, most mobile network
consists of many geographically distributed areas, that is, PoPs or
central offices. Virtualizing the core network facilities such as EPC
or IP multimedia subsystem (IMS) can increase the capacity of a
mobile core network dynamically.

6) Virtualization of mobile base stations: In recent years, the virtual-
ization of radio access network has been proposed and drawn sig-
nificant attention. After virtualizing base stations, multiple service
providers can share the same physical resource so that the coverage
and resource utilization are both increased.

7) Virtualization of home environment: The residential gateway or
home gateway is another place where traditional network services
are deployed as dedicated hardware. When upgrading the home
gateway, often a new hardware needs to be shipped together with

�

� �

�

44 3 Network Function Virtualization

manual installation. Debugging is challenging as the end users do
not have the expertise and knowledge to perform troubleshooting.
Typical network services in a home environment include parental
control, DPI, firewall, and so on. With NFV, the gateway can simply
be a forwarding device while other complex functions can be run
in the providers’ data center. This can help reduce the operational
overhead and ease the management tasks.

8) Virtualization of CDN : Content delivery network (CDN) hosts
massive amount of objects, ranging from web to video, in a
distributed manner. The demand of the CDN storage can increase
drastically with the content’s popularity, such as flash crowd. A
popular program’s live streaming can put large pressure on both
the CDN and the network. Today, CDNs are more and more
tightly integrated with the service provider’s network given the
latter’s wide geographic distribution and service-level agreement
(SLA) provided. Virtualizing the CDN nodes and deploy them in
the cloud can provide resource elasticity as demand changes.

9) Fixed access network functions virtualization: The main fixed line
access network technologies today are based on digital subscriber
line (DSL), for example, VDSL or FTTdp. These technologies
require a dedicated electric system to be deployed on the street
close to home. These devices are usually expensive as they need
to tolerate all sorts of extreme environmental conditions. Access
network functions virtualization can greatly simplify these remote
devices.

Among all these use cases, 1–4 are in the cloud computing area, 5
and 6 are in the area of mobile computing, 7 is for data center, and the
last two are in the area of residential and access networks. Together
they demonstrate the wide usage of NFV in today’s network.

Virtualizing NFs could potentially offer many benefits including, but
not limited to, the following:

• Reduced equipment costs and reduced power consumption through
consolidating equipment and exploiting the economies of scale of
the IT industry.

• Increased speed of time to market by minimizing the typical
network operator cycle of innovation. Economies of scale required
covering investments in hardware-based functionality are no longer
applicable for software-based development, making feasible other
modes of feature evolution. NFV should enable network operators
to significantly reduce the maturation cycle.

�

� �

�

3.3 NFV Challenges 45

• Availability of network appliance multiversion and multitenancy,
which allows the use of a single platform for different applications,
users, and tenants. This allows network operators to share resources
across services and across different customer bases.

• Targeted service introduction based on geography or customer sets
is possible. Services can be rapidly scaled up/down as required.

• Enables a wide variety of ecosystems and encourages openness. It
opens the virtual appliance market to pure software entrants, small
players, and academia, encouraging more innovation to bring new
services and new revenue streams quickly at much lower risk.

3.3 NFV Challenges

Carrier-grade properties: The telecom service providers have high
requirement on the performance, scalability, fault tolerance, and secu-
rity on the solutions.

• Efficiency: The NFV platform should provide the tight NF SLAs
on performance or availability, identical to the SLAs offered with
dedicated services. For example, the SLA may specify the average
delay, bandwidth, and the availability for all the services provided
to one customer. To support the SLA compliance, the platform
should closely monitor the performance for each customer and
dynamically adapt the resources to meet the SLAs.

• Scalability: The platform should support a large number of VNFs
and scale as the number of subscribers/applications/traffic volume
grow. The ability to offer a per-customer selection of NFs could
potentially lead to the creation of new offerings and hence new
ways for operators to monetize their networks.

• Reliability: The platform should abide by NFV reliability require-
ments. Service availability, as defined by NFV, refers to the
end-to-end service availability that includes all the elements in the
end-to-end service (VNFs and infrastructure components).

Elasticity: Building on top of the virtualization technology, an NFV
platform should be able to leverage the benefit of running instances
in the cloud: multiplexing and dynamical scaling. For multiplexing, it
allows the same NF instance to serve multiple end users in order to
maximize the resource utilization of the NF. On the other hand, for
dynamical scaling, when the demand changes, the network operators
should be able to dynamically increase/decrease the number and/or

�

� �

�

46 3 Network Function Virtualization

size of each NF type to accommodate the changing demands. This, in
turn, will allow the telecom service providers to offer their customers
with the “pay as you grow” business models and avoid provisioning for
peak traffic. It should support subscriber-based, application-based,
device-based, and operator-specific policies simultaneously. More-
over, adding or removing new NFs should be easily manageable by
the network operator, without requiring the physical presence of
technicians on the site or having the enterprise customers involved.
It should also be possible to accurately monitor and reroute network
traffic as defined by policy.

Openness: Aligned with the Open NFV strategy in the HP NFV
business unit, the NFV framework should be capable of accommodat-
ing a wide range of NFs in a nonintrusive manner. It should support
open-source-based and standard solutions as much as possible, mean-
ing that the NFs should be implemented, deployed, and managed by
operators, enterprises, or third-party software vendors.

3.4 NFV Orchestration

NFV management and orchestration component, that is, MANO, is
an integral piece of NFV architecture and a critical component to the
success of NFV. It is responsible in managing all the resources for NFV
framework; not just the networking resource but also the compute and
storage resources. According to ETSI’s MANO working group, it con-
tains three key components: the NFV orchestrator, VNF manager, and
virtualized infrastructure manager (VIM).

• NFV orchestrator is responsible for the installation and preparation
for new services, which is also called the network service onboard-
ing process. It handles the entire life cycle of the new network ser-
vice, including resource allocation, validation, and authorization.
While the VNF manager handles the life cycle of each VNF instance,
the NFV orchestrator operates at a higher level. Its functionality
includes registering a network service in the catalog, and onboard-
ing the network service, instantiating the network service, scaling
up/down, managing VNF forwarding graph related to the network
service, and finally terminating the service.

• VNF manager, as the name indicates, handles the life cycle of
each VNF instance. It includes the configuration, preparation,

�

� �

�

3.4 NFV Orchestration 47

and running of the VNF instance, monitoring its healthiness and
interacting with other MANO components on behalf of the VNFs.
The actual tasks of VNF manager include the following: instantiate
a VNF, monitor its resource utilization, scale up/down the VNF,
update or upgrade, and finally terminate the VNF and release all its
resources.

• VIM controls and manages the NFVI components, to better
accommodate the need for various network services. For com-
pute resource, it manages the physical resources and the virtual
resources, for example, servers, VMs, CPUs, and memories.
For networking, it controls the network devices, links, routing,
addressing, and QoS.

There are various open-source activities on MANO development.
SDN controller is considered an integral part of MANO to control
the network resources. Besides the three main components, there are
other aspects such as fault tolerance, policy management, security and
privacy. In the following, we discuss two interesting problems in the
NFV orchestration area.

3.4.1 NFV Performance Characterization

Before deploying VNF to the production network, the service provider
needs to extensively test and validate the VNFs given the high require-
ment on availability and performance. However, today there is no way
for the service provider to prevent or detect the performance degra-
dation caused by third-party VNFs. Similar to other applications, the
underlying hardware server characteristics have a deep impact on
the performance. Parameters such as processor architecture, clock
rate, memory channels and speed, memory latency, and bandwidth of
interprocessor buses have a strong impact on the performance of the
specific application or VNF running on that HW. In NFV, we need to
allocate resources to not only one single server but multiple servers.
Scaling to a huge number of devices, connections, and services is
indeed a challenge. Every component of the system will need to scale
up and scale down with demand variations. This is necessary for
efficient operation and obtaining the cost savings required. But, how
much resources to give to each VNF? Answering this question is not
easy. Different VNFs may have different requirements on compute
and network resources. For example, while firewalls are bounded by
network throughput others such as load balancer may be bounded

�

� �

�

48 3 Network Function Virtualization

by network and compute for session state management. Providing
additional CPU to an I/O bound VNF is not helpful.

Characterizing various VNFs and understanding how they scale
with different kinds of resources is a key step toward answering the
above questions. Research has been proposed to develop tools to
determine the virtualization setups and configuration options to
optimize VNF performance and automatically scale the VNF resource
allocation with workload [51]. One difficulty is that there is a large
number of configuration knobs and hardware settings, for example,
CPU pinning, c-states, and memory interleaving; they are all available
in NFV deployments. We develop efficient search algorithms for
this. This type of performance characterization tool can significantly
improve the onboarding process, giving more confidence to the net-
work operators to support this area. It can help NFV infrastructure
providers to better understand, control, and manage the VNFs.

Benchmarking the VNF’s network and compute performance
in real NFV deployment is important for the resource allocation.
Figure 3.4 shows a typical VNF performance characterization pro-
cess. The testing is performed for each configuration. Different
virtualization technologies, such as Intel DPDK, SR-IOV, and VT-d,
are configured depending on the scenarios. Tests are done with
different VM placement and configurations. VMs may be deployed
on the same hosts or across hosts, both have different impact on
the real performance. Within each server, different core scheduling

OSS/BSS

VNFs

NFVI

VNF1 VNF2 VNFn

EMS1 EMS2 EMSn

Virtual

compute

Virtual

storage

Virtual

network

Virtualization layer

Physical resources

Compute Storage Network

Orchestration

VNF manager

Virtualized

infrastructure

manager

Service, VNF, infrastructure description

NFV management

and orchestration

VFN throughput

and load monitor

VFN workload

generator

Virtualization

templates

Performance

characterization and

analysis measurements

1

2

3

4

2
2

Figure 3.4 VNF performance characterization.

�

� �

�

3.4 NFV Orchestration 49

algorithms can be tried, such as core pinning and adaptive core
scheduling. Different deployment scenarios can also be a configurable
option, for example, deploying on a single powerful VM or on mul-
tiple VMs. Finally, to reveal the actual performance that one will
experience in the real network, we need to test with different network
traffic, not only using plain dummy traffic to test throughput but also
application-aware traffic.

3.4.2 NFV Performance Improvements

Telcos have transitioned most of their communications to standard
IP networks and are now starting to migrate most of their computing
to industry standard servers. In addition, with the advent of 5G
technology, there is a push toward developing novel real-time services
in the areas of augmented reality, autonomous driving, and IoT. In
NFV environments, monolithic complex network functions running
on specialized hardware are decomposed into smaller functional
units and dynamically orchestrated onto a virtualized cloud and edge
infrastructure. These network functions include both control plane
processing (signaling, authentication, etc.) and data plane processing
(routing, firewalling, etc.) and are encapsulated in a VM as a VNF.
Service chaining defines routing instructions that direct network
packets through a pipeline of VNFs. A core component of the NFV
infrastructure is a highly agile network that enables efficient and
dynamic service chaining.

While the NFV transformation is under way, another trend is
the move toward using large pools of compact, power-efficient
compute nodes/SoCs that are integrated with large stores of fast
persistent memory and custom high-speed interconnects. These
computing architectures span from rack scale to datacenter scale and
are expected to impose unprecedented scale, bandwidth, and latency
requirements on future data center networks. This architecture is
usually composed of a large number of nodes; each node is composed
of a tightly coupled set of processor cores and some local memory.
Each node acts like a traditional computer and it has its own operating
system. All the nodes are connected using a high-speed memory
fabric, called next-generation memory interconnect (NGMI). Such a
memory fabric with high bandwidth and low latency could be used to
speed up internal communications of NFV applications and expedite
the packet passing between VNFs. It has a large pool of CPUs and
memory and enables a flexible binding of memory to CPU. This can

�

� �

�

50 3 Network Function Virtualization

provide better load adaptation, where computing can be dynamically
reconfigured to scale up or down based on the network traffic load
and patterns seen in telco networks.

3.5 NF Modeling

Given the widespread deployment of proprietary network functions
(NFs), many network management functions (e.g., testing, policy com-
pliance, and vendor interoperability) need accurate models of NFs to
ensure correctness and reliability. However, due to their proprietary
and complex nature, there is a lack of standardized behavior model of
these NFs. In the following, we review existing NF models and survey
several approaches to generate NF models.

In the NFV architecture, each NF is often viewed as a black box that
processes traffic arbitrarily. However, as more NFs are developed by
diverse vendors and deployed in richer scenarios, the “box” view of
NFs has already hindered its more advanced application and devel-
opment. For example, if NFs are viewed as boxes without knowing
its internal logic, there is no way to reason about their forwarding
behaviors; thus, NFV operators cannot troubleshoot if they are
misbehaving and cannot verify network-wide policy compliance such
as reachability. Knowing NF’s behavior can also help monitor the
policy compliance by generating meaningful testing traces. Thus,
having a forwarding model of individual NF that describes its internal
forwarding logic is important for NFV network management tasks.

Figure 3.5 shows the important role that NF models play in the whole
NFV ecosystem. NF models connect NFV applications and NF imple-
mentation. On the one hand, from NFV operators’ view, several appli-
cations on top of NFV platforms are based on NF models. For example,
when an operator needs to generate test traces for deployed NFs, the
operator needs to assume NFs’ behaviors (i.e., model) to completely
cover the test space; when the operator verifies network-wide proper-
ties (e.g., reachability), whether a flow gets through an NF needs to be
inferred from the NF model.

Existing works usually build NF models according to their
application scenarios, so that the models are tailored specific to their
applications and not generic. They fall into two categories. The first
category aims to build models used for network management tasks
(e.g., testing, traffic engineering, and migration), and the second
one focuses on improving NF software, including its performance,

�

� �

�

3.5 NF Modeling 51

VerificationTesting Traffic engineering

Automata Boolean logic NF language

Models for

NF standardization

NF

implementation

NFV management

applications

NF vendors

NFV operators

Figure 3.5 NF model overview.

reliability, and robustness. The representative modeling approaches
are as follows:

• High-level box view: In most existing NFV platforms and NF
performance optimization solutions, an NF is viewed as a black
box with traffic traversing it, but the NF’s internal logic is not
differentiated. In practice, an NF is implemented as a VM with
the NF software running inside it, the VM is deployed on general
servers, allowing traffic to be routed through. This coarse-grained
view only supports simple operations: NF bootup, migration,
suspension, and destruction.
OpenNF [52] takes one step further; it recognizes an NF as some
running logic plus a state blob. The state blob can be created/
destroyed/moved between NF instances and encoded/decoded by
NFs. This abstraction allows more flexible flow-level operations
(i.e., flow migration between NF instances), but is still limited to
flow management only. Following the requirements to identify the
state blob, StateAlyzr [53] proposes an approach to identify state
variable in NF programs. It basically uses some NF-specific features
(e.g., program structure, packet libraries), and leverages program
slicing techniques to find out state variables. This work provides an
approach to analyze NFs but does not go further in NF modeling.

• Manually generated models: A set of works view NFs as deter-
ministic finite automata (DFA). For example, BUZZ [54] uses
DFA to represent each NF in the network, finds possible violation

�

� �

�

52 3 Network Function Virtualization

states in each DFA, and use a network-wide model to generate
traces (that may trigger the violation) for testing. In another
example, SFC-Checker [55] also views NFs as DFAs; it mainly
answers a question, given a network with NFs and a series of
packet traces, whether there is a risk of violations (unexpected
reachability/unreachability). The DFAs in these works are manually
generated and directly used to replace the NFs, which implies
possible incompleteness.

• Modeling language design: SymNet [56] proposes a symbolic
execution-friendly language to remove these two features for NF
programming. Both works aim to develop NF programs that can
be symbolic executed so that program bugs can be found out
early during the development. These two approaches provide new
ways to model NFs but still require programmers to writing NF
programs.

3.5.1 Source-Code-Based Modeling

One way to perform modeling is to leverage recent advances in code
analysis techniques. Wu et al. [57] analyzes the source code of a
given network function to automatically generate an abstract packet
forwarding model. It is built on top of the following code analysis
methods.

3.5.1.1 Background

Program slicing
A program slice is a minimum set of statements in a given program
that lead to certain behaviors. The behavior is expressed as the values
of variables in a certain statement. Program slicing has been shown to
be useful for program debugging, parallelization, and integration [58].

The basic methodology to get a program slice is to analyze the
dependency between program statements. Within one statement
in a given program, the value of the left-hand-side (LHS) variable
depends on that of the right-hand-side (RHS) variables; and between
statements, the value of an RHS variable in a statement depends on the
preceding statements where that variable is on the LHS. This depen-
dency analysis results in a “static” program slice where all statements in
that slice might lead to the final behavior. A “dynamic” program slice is
all statements that really lead to the final behavior, which requires exe-
cution analysis based on actual variable values [59]. Several research

�

� �

�

3.5 NF Modeling 53

projects have improved program slicing techniques – for example,
interprocedure slicing and system dependency analysis [60, 61].

Symbolic execution
Symbolic execution is another program analysis approach that sub-
stitutes one or several program variables by symbolic values. As the
program runs, whenever a branch instruction is met, the program is
forked and both branches proceed. The program state variables and
path constraints are kept by each path individually. At the end of a
path’s execution, concrete values of symbolic variables are computed
according to the path constraints [62, 63].

Symbolic execution can exercise all possible execution paths, but
path explosion can happen with a large code base. Various efforts have
made symbolic execution practical in NF verification. To reduce the
branching factor (number of branches at each branch instruction),
Dobrescu and Argyraki [64] and SymNet [56] propose to write NF
programs in a style with bounded loops and data structures, and
BUZZ [54] constrains the number and scope of symbolic variables.

NF state analysis
OpenNF [52] is a flow state management framework that enables joint
control with SDN and NFV frameworks. An important issue when
integrating existing NFs into OpenNF is to identify state variables in
NF programs. StateAlyzer [53] defines features of state variables in
an NF program, leveraging several program analysis techniques (e.g.,
program slicing, system dependency analysis) to identify them. These
features are listed as follows:
• Persistent: The variable has a lifetime longer than the packet

processing loop.
• Top level: The variable is actually used during packet processing.
• Updateable: The variable’s value is updated during packet process-

ing, that is, usually an LHS variable.
• Output-impacting: The variable impact variables in the packet out-

put function.
These features and categorization of variables are used for code anal-
ysis to generate the NF models.

3.5.1.2 Modeling Example
We use a Layer-4 load balancer as an example of the NF source code
and illustrate how the above techniques can be used to synthesize

�

� �

�

54 3 Network Function Virtualization

Figure 3.6 Load balancer code and a slice (bold and bold italics).

NF models. Figure 3.6 is its implementation based on the model in [65].
The high-level logic of the code is as follows. Inbound packets that
have the IP addresses/ports of clients and the load balancer would be
mapped to the IP address/ports of the load balancer and servers. If
an inbound packet is a new flow never seen before, one of the backend
servers is picked for the mapping and the mapping is stored; otherwise,

�

� �

�

3.5 NF Modeling 55

the mapping is read from the dictionary and used for the address/port
translation. For the outbound packets, the packets of existing flows
would have address/port translation in the same way, but outbound
packets of a nonexisting flow would be dropped (i.e., only inbound
packets can initiate address/port translation mapping).

From reading this code, we gain important insights about NFs.
First, different configurations can lead to different program behaviors.
For example, the variable “mode” is used to configure how a backend
server is selected for a new flow, and it can be either round-robin
or random hash. Some existing NF models [65] fail to capture this
detail. Second, state variables are dynamically updated as packets are
processed. It causes the action on packets to be different at runtime.
In this example, whether a flow’s 4-tuple is stored in the dictionary is
a state that causes the actions on the flow’s first packet and that on
the remaining packets to be different. Third, NF programs naturally
have two key pieces of logic, that is, packet processing and state
management. Thus, we could use program analysis to refactor the
code and identify the minimum set of statements that capture such
forwarding logic. For example, in Figure 3.6, the bold and bold italics
lines are a (dynamic) program slice where the load balancer relays the
first packet of a flow. This small code snippet captures the forwarding
behavior of this NF. Identifying this snippet automatically from the
original code would improve the efficiency of manual analysis and
automatic verification.

Refactoring the logic in an NF program could benefit NF veri-
fication in many ways. For example, finding out the state update
logic helps to build a finite state machine (FSM) of that box; in the
network-wide, assembling FSMs of multiple NFs can help to find
out the network-wide invariant violation. In addition, refactoring NF
logic helps to minimize the number of statements that would lead
to a certain behavior (e.g., packet corruption, unexpected drop), and
this minimization not only eases manually program analysis but also
speeds up other automated program analysis solutions (e.g., symbolic
execution).

3.5.1.3 Models
Referring to various existing NF models [54–56, 65–67] and the cur-
rent hardware programmability [68–70], we adopt an OpenFlow-like
model with a stateful data plane extension. The abstract model is
expressed as tables in Figure 3.7, and each table describes the packet
processing logic under a certain configuration (e.g., c1 in the figure).

�

� �

�

56 3 Network Function Virtualization

Match Action
Flow State Flow State

(,) (,) (,)

… … … …

Configuration =

Configuration =

(,) (,) (,)

Figure 3.7 Model.

Each entry in the table represents certain processing logic and consists
of match and action fields. As a stateful data plane, the match/action
fields operate on both flows and state variables. The match is executed
on flows and states, and the action not only forwards packets (with
possible transformation) but also triggers state transition.

In table c1 in Figure 3.7, if an incoming packet matches a flow
pattern f1, the internal state is in s1 and a predicate P(f1, s1) is satisfied,
then the packet is sent out with possible transformation F𝑤d(f1, s1)
and the internal state is transited to Upd(f1, s1). In our running
example code, each frontend incoming packet would be checked to
determine whether the flow was seen before (in the address/port
translation mapping), which is the predicate of flow and states in the
match field; the first packet of each new flow triggers address and port
translation (stored in a dictionary), which is a state transition; and
sendp() is an action on packets.

3.5.1.4 Model Extraction Overview
In the following, we sketch a white box modeling approach based on
our existing work. In this approach, we assume that the source code of
the NF program is known and propose a modeling framework called
Lancet. An NF program is assumed to have a processing loop and
packet input/output functions, and an NF model is predefined like a
stateful match action table. This work is published as NFactor [57]. The
process is shown in Figure 3.8. It takes three steps as follows:

1) It first conducts backward slicing from packet output function to
get packet slice and from state variable assignment statements to
get state slice.

2) It then symbolically executes the union of both slices and get mul-
tiple execution paths. For scalability, we need to constrain the value
of some variables.

�

� �

�

3.5 NF Modeling 57

Match Action
Flow State Flow State

Sym. Exec.Verification

Exec. Path 1

Exec. Path 2

Step 3: Fill in model

Step 1: Slice program Step 2: Execution paths

(a) (b)

(c) (d)

Packet slice

State slice

Program Exec. Path 1Program

Exec. Path 2

Models of LB(hash) and cache

LB

Cache

Match Action
Flow State Flow State

– –

–
–

–

Figure 3.8 Source-code-based NF modeling method. (a) Step 1: slice program; (b)
Step 2: execution paths; (c) Step 3: fill in model; (d) Step 4: Models of LB(hash) and
cache.

3) Finally, each path is filled into the stateful match action table as
a row, conditional statements about packets/states are put into
flow/state fields of match column, and intersection of an execution
path with packet/state slice is put into flow/state fields of action
column.

This approach gives an accurate model but is constrained by the
prerequisites that source code is known. Figure 3.8(d) shows the
modeling results of running NFactor on a load balancer HAProxy [71]
and a cache server WWWOFFLE [72]. The logic in the match action
table is described in SNAP language for abbreviation. HAProxy
is a load balancer and configured in hash mode, and it randomly
chooses one of its backend servers to forward the incoming requests.
WWWOFFLE is a cache. When it observes a request for the first
time, it forwards the request to the server; when a response is back,
it records the content of the response and forwards it to its client
side; and when the cache observes a request whose response appears
before, it immediately replies the client with the response without
forwarding the request to the server.

�

� �

�

58 3 Network Function Virtualization

3.5.2 Black Box Modeling

The abovementioned method may not be always applicable as NF
vendors may not be willing to share source code. We explore the
approach of automatically synthesizing NF models from black box
observations. Black box synthesis of NF models, if viable, can faith-
fully match the observed input/output behavior without needing
access to the source code. It has several natural advantages: (1) the
approach is faithful to input/output behavior (e.g., states need to be
manifested in handling traffic) and (2) additionally, does not rely on
having the source code of NFs, and thus operators can extract models
without vendor support. Such black box inference can further be
complementary to approaches that rely on code analysis.

We formulate black box NF model synthesis as an “active learning”
problem of inferring the FSM model that represents the NF behav-
ior. Having thus formulated the problem, we can leverage the seminal
work of Dana Angluin in developing a polynomial-time algorithm for
learning a DFA by adaptively injecting test queries to infer the hidden
states and transitions [73]. Specifically, the NF (with a given configu-
ration) is the DFA to be inferred and we adaptively generate test traffic
to exercise the NF’s (unknown) state space.

While active learning via Angluin’s algorithm is a good starting
point, there are key domain-specific challenges that arise in applying
it for NF model synthesis. The first challenge relates to the complex
configurations of NFs that can have a large number of rules of varying
types. However, Angluin’s algorithm can only learn a model for a con-
crete instance and it is fundamentally infeasible to exhaustively run it
for every possible configuration instance. Thus, we need ways to gen-
erate extensible models for arbitrary configurations. Second, even for a
given configuration command, the space of possible packet sequences
and packet-header combinations can be prohibitively large. Finally, NF
actions can be complex and diverse; for example, the behavior of differ-
ent NFs may depend on specific header fields or manifest at different
granularities of traffic aggregation (e.g., packet vs flow vs connection),
and NFs may modify traffic to complicate model inference.

We view a whole NF instance as a black box and probe its internal
logic by sending packets/requests to it and observing its reactions.
We build a system that takes the packet space (filtered by related
header fields) as input, interacts with the black box NF, and leverage
an active learning algorithm proposed by Dana Angluin to generate

�

� �

�

3.5 NF Modeling 59

a DFA model. The main idea of Angluin’s algorithm is to iteratively
assume a DFA model, compare the DFA with the NF, and refine
the DFA until no difference is found between the DFA and the NF.
Alembic has limitations on completeness (constrained by the learning
algorithm), but it is suitable for the scenarios where NF source code
is not known (e.g., proprietary NFs).

For example, we use the black box modeling tool to model a stateful
firewall pfSense and get results in Figure 3.9. If the firewall is config-
ured with an “accept” rule between the trusted zone and untrusted
zone, it allows an outgoing SYN to “punch a hole”, and all following
incoming/outgoing traffic of that flow is allowed; without outgoing
SYN, all traffic is dropped. If the firewall is configured with a “deny”
rule, all traffic is simply dropped.

The outcome of our white box and black box approaches are
interchangeable. Transforming a SMAT to a DFA takes two steps:
first, extract the state space from the state fields in the match column
and the action column; second, each row in the SMAT represents a
state transition (or edge) in DFA, and the flow fields in match/action
columns represent input and output of that edge. Reversely, to trans-
form a DFA to a SMAT, each state transition consists of start/end
states and input/output, which can be exactly mapped to the state
fields and flow fields in SMAT.

Angluin’s algorithm

Probe Detect

Packet space

Black box NF

DFA

Figure 3.9 Black box NF modeling method.

�

� �

�

60 3 Network Function Virtualization

3.5.3 Modeling Applications

With an accurate NF model, several NFV applications can be designed
and developed. We list the example applications: NF program genera-
tion, stateful network verification, and network policy composition.

Verifying correctness of a network’s configurations ahead of its
actual deployment can avoid runtime errors. There a several stateless
or stateful network verification solutions [55, 67, 74, 75] aiming to
verify network properties such as reachability and isolation. Our
model provides the NF model to support these solutions.

We use SFC-Checker [55] as an example. SFC-Checker models each
NF as a DFA and composes NF DFAs in a network to check reachabil-
ity. Thus, we transform the model into DFA as the foundation to apply
SFC-Checker.

In this section, we use examples of IDS and load balancer to illustrate
the modeling process. It induces NF programs [76, 77] to the abstract
models in Figure 3.8.
• An IDS is configured with a list of denied flows “DENY,” and

flows not in this list are allowed by default. An IDS has no
output-impacting states.

• A load balancer in round-robin mode forwards new flows to one of
the backend servers pointed by an internal state “index.” And the
index increased circularly for each new flow.
To generate a DFA, one needs to decide the state space and the state

transition. Each entry in the model can express a state transition as
follows.

s transit(f,s)
fwd(f,s)

The packet processing logic takes f as input and outputs forward(f,s)
and the states transit from s to transit(f,s).

However, the state space needs to be in proper granularity. Too fine
a granularity would cause a state space explosion. For example, a cache
can have 2cache_size possible values, which is not practical to verify.
While too coarse a granularity cannot guarantee the correctness
or efficiency of verification. For example, the state “idx=*” in load
balancer can be used to represent any states but is not useful to
identify the exact next hops.

Therefore, we propose to refine each entry to the granularity of
possible next hops. For example, if the load balancer has two backend

�

� �

�

3.6 VNF Placement 61

servers configured, then the state-matching field is refined to two
states “idx=0” and “idx=1” to indicate two possible next hops.

Thus, we can transform the model to DFAs (as is shown in
Figure 3.8). Next, we can leverage SFC-Checker [55] to check the
end-to-end reachability, and the result is shown in the evaluation
section.

Model-based NF programming is the reverse process of model
generation. To generate an NF program from a match action table,
the program first contains a loop starting with packet input function.
Each row in the match action table is transformed to a branch in
the program. The branch has the conjunction (AND) of the state
and flow fields in the match column as its condition statements and
performs the state/flow statements in action column. This program
can be viewed as a microservice with the same functionality with the
NF, focusing on the logic of NFs. The challenge in model-based NF
programming is to guarantee other program requirements, including
performance, isolation, and providing management API.

The DFA model of NFs lays the foundation of several stateful
network verification solutions. While we list two existing DFA-based
solutions in previous sections, there are still challenges in stateful
network verifications. For example, how to guarantee the complete-
ness and soundness of the verification? How to efficiently verify large
networks with frequent changes? We are abstracting and solving these
problems based on DFA theory.

NF models can also be used in service policy composition. When
deploying a network-wide policy composed by several NFs, there may
be conflicts between NFs. For example, deploying a cache and a fire-
wall in different orders would lead to different results, for example, one
client’s content may be cached and provided to another client, which
was intended to be blocked by the firewall. NF models can be used
to determine this order in service policy composition; the operator
models the input/output of each NF when chaining them, so that the
end-to-end requirements can be guaranteed.

3.6 VNF Placement

VNF placement problem entails choosing where to place instances of
VNFs on servers in a physical network in order to accommodate the
traffic for a set of service chains. A few examples of VNFs are firewall

�

� �

�

62 3 Network Function Virtualization

services, intrusion detection, caches, and proxies. Each service chain
is a stream of network packets flowing through a sequence of VNFs
at a certain rate. Network traffic for a given service chain must visit
the chain’s sequence of VNFs in the specified order. In the VNF place-
ment problem, one must place (possibly multiple) instances of each
VNF on servers and choose the route(s) for each service chain in such
a way that the physical network can accommodate the traffic for all
service chains or, if not all can be accommodated, the highest prior-
ity service chains. The traffic for a given service chain may be split
among multiple paths in the network when multiple instances of a spe-
cific VNF are used. Moreover, the network onto which we are placing
VNFs may have heterogeneous server types, such that one server type
may be more efficient at running a given VNF than others. Server het-
erogeneity must be taken into account when choosing where to place
VNF instances. VNF placement is a challenging combinatorial prob-
lem because it involves a large number of discrete placement decisions.
This class of decision problem is known to be NP Hard.

The VNF placement problem resembles that of virtual network
embedding (VNE), in which one must determine how to place a set
of virtual networks onto a physical substrate network. In one respect,
each service chain in a VNF placement problem can be viewed as a
virtual network to be mapped onto a physical network. However, VNF
placement differs in that each node (VNF) in a virtual network can
be mapped to multiple instances that are placed on different nodes in
the physical network. VNE approaches do not address how to map
each VNF into instances. VNF placement combines the problems
of mapping service chains into virtual networks and then maps the
resulting virtual networks into the physical network.

There are multiple objectives when placing VNFs. A service provider
may want to host VNFs on as few servers as possible in order to min-
imize operating costs and leave open servers for future VNF needs.
At the same time, he may want to ensure low network latency for his
customers. These two objectives are in direct conflict, in that the for-
mer involves concentrating traffic in the network, whereas the latter
implies spreading traffic out to avoid network congestion.

In the following, we introduce a work that uses a mixed integer pro-
gramming (MIP) model that explicitly captures the effect of network
traffic on latency while maintaining a linear model; we minimize the
maximum utilization over resources in the network. Minimizing the

�

� �

�

3.6 VNF Placement 63

worst-case utilization avoids the situation in which a small number of
congested resources induce outsized delays on network traffic.

While MIP can compute optimal solution, it cannot scale to a large
size of network. We overcome this challenge by having a two-step
process. As illustrated in Figure 3.10, we first propose a fast, scalable
round-robin heuristic for VNF placement, which generates an initial
VNF placement solution. This initial result is then fed to the MIP
to help speed up the search process. Secondly, our MIP algorithm
balances the competing objectives of minimizing congestion-induced
latency and minimizing the number of servers used. It minimizes
a weighted combination of two metrics: (1) the number of servers
used to host VNF instances and (2) the maximum utilization over
network resources, which we use as an approximation for latency. The
optimization method generates multiple VNF placement solutions
for different relative weightings of the two objectives, thereby gener-
ating solutions along the efficient frontier of number of servers and
maximum resource utilization.

We present the model and the optimization formulation as follows:

• Model parameters:
– N : The set of all nodes in the network (servers and switches)
– L ⊂ N : The set of servers, which are leaves in the tree network
– V : The set of VNF types. Instances of these VNF types must to

be assigned to servers in the physical network in order to accom-
modate service chains

– C: The set of service chains to be mapped to the network
– 𝛽 ∈ [0, 1]: A parameter representing the relative weight between

two metrics, number of servers used and maximum utilization,
in the objective function.

Heuristic

solution

HeuristicInput

data

Optimization

method

Expected latency

computation
Present results to user

Series of solutions along

efficient frontier of

expected latency and

number of machines used

Series of solutions along

efficient frontier of max

resource utilization and

number of machines used

Max

utilization

Nodes

Expected

latency

Nodes

Figure 3.10 VNF placement system overview.

�

� �

�

64 3 Network Function Virtualization

• Decision variables: The decision variables describe the assignment
of VNF instances to leaf nodes, the mapping of each service chain
to one or more paths in the network, the volume of flow for each
chain along each of its paths, the rate of traffic into each node, and
performance metrics associated with the solution.
– x𝑣,l ∈ {0, 1} indicates whether an instance of VNF type 𝑣 is placed

on leaf l.
– yc

i,l ∈ [0, 1] is the fraction of traffic for the ith function in service
chain c that is served by leaf node l.

– zc
i,k,l ∈ [0, 1] is the fraction of traffic going from the ith to (i + 1)st

function in service chain c that travels from leaf node k to leaf
node l.

– bk ≥ 0 is the total traffic rate in packets per second into node
k ∈ N .

– 𝜌 is the maximum node utilization over all nodes in the network.
• Constraints: The MIP’s constraints ensure that flow for each service

chain is conserved at each node, that the solution does not use more
than the available network resources, and that the maximum utiliza-
tion metric is measured.

• Model objectives: The objective is to minimize a weighted combina-
tion of the number of nodes utilized and the maximum utilization
over all nodes in the network.

𝑤 = (1 − 𝛽)𝜌 + 𝛽
1
|L|

∑
𝑣∈V ,l∈L

x𝑣,l (3.1)

When 𝛽 = 0, the objective reduces to minimizing the maximum
utilization over all nodes in the network. This choice of objective
has the effect of distributing the traffic as uniformly as possible in
order to reduce the highest utilization over all nodes. If instead 𝛽 = 1,
the objective becomes minimizing the total number of nodes used
to host VNFs. A placement that minimizes the number of VNFs
tends to concentrate traffic in part of the network, leaving other
network resources unused. Solving the MIP over a range of 𝛽 ∈ [0, 1]
yields a set of solutions that represent different trade-offs between
performance and server usage.
• Solution procedure: We solve the MIP multiple times for different

values of 𝛽 in the range [0, 1] to produce a set of solutions along
the efficient frontier of maximum node utilization versus number
of servers. As 𝛽 increases, the solutions favor decreasing the maxi-
mum utilization 𝜌 over minimizing the number of nodes used. The

�

� �

�

3.7 Summary 65

heuristic solution is used as a starting solution for the first MIP,
which helps speed its execution. Then, for each new value of 𝛽, the
preceding solution can be used as a starting point.

3.7 Summary

In this chapter, we introduce the NFV overview. We first present the
NFV architecture proposed by ETSI and its relationship with cloud
computing. We then present its use cases in telecom network. We dis-
cuss the challenges in virtualizing the NFs and using them in telecom
network. Finally, we further explain the difficulties and problems in
deploying NFV in reality, in terms of measurement, characterization,
and modeling.

�

� �

�

�

� �

�

67

4

Software-Defined Networks Principles
and Applications

Software-defined networking (SDN) is growing as a solution in
dynamic environments where customers need to adapt to new
protocols and standards. Different protocols such as OpenFlow have
arisen in order to facilitate the implementation and deployment of
SDN-enabled networks. Customers are looking for a programmable
interface where they can program Ethernet chips to meet their custom
needs; with hard-coded silicon and protocol-dependent interfaces,
the adaption of new protocols requires several years to develop,
implement, test, and deploy. However, customers are also looking to
insert SDN vertically in the data path, allowing the SDN application
to coexist and function together in addition to traditional forwarding,
also facilitate adoption, or solve specific networking challenges.

SDN enables centralized, programmatic, and fine-grained control of
network flows, based on a global view of the network state. A logically
centralized SDN controller runs SDN applications targeting impor-
tant network functions such as load balancing/traffic engineering,
quality of service (QoS), and fast failure recovery. The SDN controller
programs flow rules in the forwarding tables of SDN-enabled network
devices, typically using the OpenFlow protocol. As a basic technology,
SDN can enable dynamic control and routing in many network
environments. For example, modern enterprise networks use SDN
applications to provide QoS to latency-sensitive or bandwidth-hungry
applications. It can enhance visualization and network troubleshoot-
ing. Cloud computing environments use SDN to provide network
virtualization capabilities. And finally, NFV infrastructures use SDN
to provide dynamic traffic steering, virtual network function (VNF)
load balancing, and service function chaining. In this section, we

Network Function Virtualization: Concepts and Applicability in 5G Networks, First Edition. Ying Zhang.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

�

� �

�

68 4 Software-Defined Networks Principles and Applications

focus on the basic concepts and development of SDN itself, and in the
following section, we will focus on the service function chaining, that
is, the use case of both SDN and NFV.

4.1 SDN Overview

The significant increases in users, devices, applications, and traffic
have imposed new challenges to the service providers to reduce the
total cost of ownership (TCO) and improve average revenue per
user (ARPU) and customer retention. The SDN paradigm arose to
solve some of these new challenges. SDN decouples the control and
forwarding planes. so that each plane can independently scale in order
to reduce TCO. SDN provides a set of open APIs so that network
programmability has been introduced. New services and innovation
can be enabled. With the flexibility in network control, SDN has been
used to provide network virtualization for resource optimization.
The OpenFlow concept enables intelligent flow management. In this
section, we provide an overview of the SDN technology and business
drivers and describe the high-level SDN architecture and principles.
We discuss a few scenarios of its use cases in mobile access aggrega-
tion networks and the cloud networks. We further introduce more
details in SDN controller and data plane protocols.

4.1.1 Motivations

From the business perspective, the main motivation of SDN in
service provider networks is those challenges operators face. The
three-dimensional business drivers are TCO reduction, increased
ARPU, and improved customer retention. These three dimensions
are connected and they are important factors determining the
way networks are architected and designed. While mapping these
business drivers to technology drivers, scaling and virtualization are
primarily required to address reducing TCO, while service velocity
and innovation is required to address increasing ARPU and customer
retention.

From the technical perspective, the motivation can be elaborated in
three aspects.

First, it can help scale the control and data plane independently.
Given the business driver of SDN is for the network to catch up with

�

� �

�

4.1 SDN Overview 69

the demand. Independent scaling can help with accommodating the
bandwidth growth. Bandwidth growth comes from different types
of applications. For example, the dominant traffic video applications
have a need for scaling data plane. But the machine-to-machine appli-
cations or VoIP traffic calls for scaling control plane. These different
types of traffic in next-generation networks would pose independent
scaling of control and data plane to meet next-generation traffic
growth and demands.

Second, it can help improve the service velocity and innovation. It
is imperative that network can be programmable for service providers
to use network as a platform to expand their service models to include
third-party applications. This helps expand the current business mod-
els. Rapid development and deployment of not only in-house services
but also third-party applications from other content providers is
important for the variety and quality of new network services.

Third, it can enable flexible and efficient network virtualization.
When operating different network services, for example, virtual pri-
vate networks (VPNs), video network, service providers usually
deploy an overlay network for each type of network. For example, they
have one network for wireline application, another one for wireless,
and another for business applications. As we move toward converged
networks, the goal is to design one network for many services by
slicing this physical network into multiple virtual networks, one for
each type of application.

4.1.2 Architecture

Given the significant interest because of the key drivers, an increas-
ing amount of attention has been raised on SDN. However, until now,
there has been no consensus on the principles and concepts of SDN.
In the following, we take the initiative to summarize the key aspects of
SDN from service providers’ perspectives and the four main concepts
that describe the SDN in service provider networks. Figure 4.1 illus-
trates the overview architecture and four concepts. Figure 4.2 shows
the components in each layer in an SDN architecture.

4.1.2.1 Separation of Control and Data Plane
The separation and centralization of the control plane software from
the packet-forwarding data plane is one of the core principles of SDN.
This differs from the traditional distributed system architecture in

�

� �

�

70 4 Software-Defined Networks Principles and Applications

Centralized control plane

Data plane network

Northbound open API

A
p

p
lic

a
ti
o

n
s

Figure 4.1 SDN architecture.

Controller

VirtualizationFlowVisor
FlowVisor

console

ApplicationsLAVI

Broadcom

Ref. Switch
NetFPGA

OpenFlow

switches

Monitoring tools

Open vSwitch

HP, IBM, NEC,

Pronto, Juniper..

and many more PCEngine

WiFi AP
OpenWRT

Software

Ref. Switch

...

...

FloodLight

n-CastingENVI (GUI)

openseeroflopsoftrace

TremaBeaconNOX

Figure 4.2 SDN components and examples.

which the control plane software is distributed across all the data
plane devices in the network. Figure 4.3 shows the transition from
today’s integrated box view to the separation view. In this design, the
centralized control enables deployment of new services and applica-
tions that are not possible or are very difficult in traditional distributed
networks. The deployment of new services is much faster compared to
upgrading a whole networking device as it is done by current vendors.
The separation of control and data planes enables independent and
parallel optimizations of the two planes. We envision that this path

�

� �

�

4.1 SDN Overview 71

App App App

Network operating

system

Simple forwarding
hardware

Specialized
forwarding
hardware

SSSSpeci lii lii liiali dddzed

Control software

Simple forwarding
hardware

Simple forwarding
hardware

Simple forwarding
hardware

Specialized
forwarding
hardware

Specialized
forwarding
hardware

Specialized
forwarding
hardware

Control software

Control software

Control software
Southbound interface

Figure 4.3 SDN comparison.

will lead to highly specialized and cost-effective high-performance
packet-forwarding data plane devices and control plane servers, thus
reducing the CAPEX of service providers significantly. And finally,
since network information, applications, and services are concen-
trated at a centralized location in SDN, operations such as network
orchestration and monitoring become much easier and cost-effective
by avoiding individual software upgrades at multiple device locations
prevalent in current distributed networks.

4.1.2.2 Northbound Open APIs
Open APIs enable developers to exploit the centrally available network
information and the mechanisms to securely program the underlying
network resources [78]. They not only enable rapid development and
deployment of both in-house and third-party applications and services
but also provide a standard mechanism to interface with the network.

4.1.2.3 Southbound Control/Data Plane Protocol
A secure and extensible control plane signaling protocol is an impor-
tant component for the success of SDN. It should enable efficient and
flexible control of network resources by the centralized control plane.
OpenFlow [13] is a well-known control plane signaling protocol that
is standardized and increasingly being made extensible and flexible.
There are other southbound protocols such as OVSDB, which is more
backward compatible with existing protocols.

�

� �

�

72 4 Software-Defined Networks Principles and Applications

4.1.2.4 Applications
Multiple applications can be built across the control and data plane,
such as network virtualization, QoS, service function chaining, and
resilience. For example, SDN can be used to implement virtualization,
where virtualization of resources is required at the control plane, con-
trol channel, and the data plane levels.

4.1.3 Use Cases

We discuss two important use cases of SDN: access/aggregation
domains of public telecommunication networks and data center
networks. Access/aggregation network domains include mobile-
backhaul, where the virtualization principle of SDN could play a
critical role in isolating different service groups and establishing a
shared infrastructure that could be used by multiple operators. On the
other hand, using SDN in data center can improve load balancing and
dynamic resource allocation (hence, increased network and server
utilization) and the support of session/server migration through
dynamic coordination and switch configuration. The decoupling
principle of SDN could provide the possibility to develop data-center
solutions based on commodity switches instead of typically high-end
expensive commercial equipments. We will discuss more about the
mobile network use case in a later chapter, so we focus on its data
center use cases here.

Data centers are an important area of interest for service providers.
Applications such as “cloud bursting” are bringing together private
and public data centers like never before. Distributed data centers
have been widely used in today’s large-scale enterprise networks,
such as Google B4 network [79]. In such scenarios, the inter-data
center wide area network (WAN) providers become a very important
component in efficient and cost-effective connectivity and operation
of distributed data centers. Figure 4.4 illustrates this. The static
provisioning mechanisms used currently by operators to provision
resources on the WAN will not only degrade the performance of
distributed data centers but also increase the cost of operation. Thus,
it is necessary that the inter-data center WAN evolves into a network-
ing resource that can be allocated and provisioned with the same
agility and flexibility that is possible within data centers. SDN is a very
good candidate to enable such agile and flexible WAN operations the
data center operators are expecting. Centralized control of the WAN

�

� �

�

4.2 SDN Controller 73

Intra-DC WAN

(SDN network)

DC1

DC2

DC3

DC4

Figure 4.4 Inter-data center WAN: a use case of SDN.

using an SDN controller provides its northbound Open API to enable
intelligent traffic engineering and complex policy management. It not
only provides a single unified control of the WAN resources but also
enables on-demand provisioning of network resources for multiple
clients based on their policies and SLAs, in a seamless fashion.

Another advantage of a centralized SDN controller in the inter-data
center WAN is that it facilitates unified control along with data center
resources. Data center operators are increasingly demanding a sin-
gle unified mechanism to manage all the data centers in their domain
instead of a separate, distributed management. SDN on the WAN is
one of the mechanisms to achieve this.

4.2 SDN Controller

There are multiple SDN controllers in the industry today, supporting
different deployment scenarios, each of which has pros and cons. The
network controller provides a uniform and centralized programmatic
interface to the entire network. It provides the ability to observe and
control a network. On the northbound, it provides to the applications
the network information base (NIB) with the network’s observations
such as nodes, links, topology, and statistics. Applications use this state
to make management decisions. The controller software runs on com-
modity servers, which consists of multiple controller processes and
provides a single consistent view.

Figure 4.5 shows an overview of the controller. On the south-
bound, controller installs instructions to switches. These forwarding

�

� �

�

74 4 Software-Defined Networks Principles and Applications

Orchestration layer

BGP

Protocols Applications Libraries

OpenFlow speaker

OpenFlow-enabled hardware

Customer/operator

portal
BSS/OSS

BFD

VRRP

Other
gateway
protocols

Statistics OVS-DB

NetConf

OF-Config

NetFlow

Topology

viewer

Debugger

High

availability

Figure 4.5 SDN
controller overview.

instructions should be independent of the particular switch hardware
and should support the flow-level control granularity. The controller
provides high-level names and their bindings in the network view
allows any application to convert a high-level name into low-level
addresses. This high-level view is provided to the applications.
Vertically, an SDN controller should contain three components: the
protocol handler that deals with traditional network protocols, the
set of applications that makes use of its network information, and
the libraries that support various southbound interfaces. On top of
the SDN controller, network orchestration tools, operational support
system (OSS)/business support system (BSS), and other customized
tools can be built.

When an incoming packet matches a flow entry at a switch, the
switch updates the appropriate counters and applies the correspond-
ing actions. If the packet does not match a flow entry, it is forwarded
to a controller process. Controllers use these flow initiations and
other forwarded traffic to construct the network view and determine
where to forward. Besides packet-in event, the SDN controller also
handles other network changes, such as link failure, node failure, and
routing changes.

�

� �

�

4.2 SDN Controller 75

1 n

1 n

1

2

Host

Network Node Port

Forwarding

engine

Forwarding

table
Link

Figure 4.6 Example of SDN NIB.

One critical piece of all SDN controller is the NIB. It is a graph of all
network entities, including switches, ports, interfaces, and links. The
northbound applications read and manipulate the network through
NIB. Each entity in the NIB is a key value pair. Examples of these
network entities can be hosts, nodes, ports, network, and so on. NIB
serves as a database to the applications. Thus, normal DB operations
such as query, create, delete, access attributes, configuration, and
pull are supported. Figure 4.6 shows an example of the NIB. Host,
forwarding engine, and network are all nodes. Each node can contain
multiple ports (shown as dashed line, and n means n ports). Each link
has two ports.

4.2.1 Controller Deployment Choices

One of the main requirements for a centralized SDN controller to be
deployed in a production network is its scalability and high availability.
We propose that the key requirements for SDN scalability is that the
centralized SDN controller can maintain high performance and avail-
ability with increasing network sizes, network events, and unexpected
network failures. We focus our discussions on the controller scalability
as follows.

To improve the controller scalability, a common practice is to
deploy multiple controllers either for load balancing purposes or for
backup purposes. According to different purposes, we can employ
different models to provide a more scalable design. In the following,
we discuss three different models for scalability and high availability
for centralized SDN controllers: hot-standby model, distributed
network information base, and a hybrid model. The last model
incorporates important aspects of the previous two models. We argue
the third model is more appropriate for complex network scenarios
with carrier-grade scalability requirements.

�

� �

�

76 4 Software-Defined Networks Principles and Applications

Hot-standby model: This is similar to the current high availability
solution for off-the-shelf router and switches. In this model, a master
controller is protected by a hot-standby model. The standby instance
will take over the network control upon failure of the master con-
troller. The advantage of this model is its simplicity. However, it may
encounter performance bottleneck when the number of switches and
the communication messages grow significantly.

Distributed NIB: It employs a distributed system’s concept, which
is widely used in today’s SDN solutions. In this model, the network
controller is a cluster of controllers. Each of the controllers control a
different part of the network. The network information is replicated
across multiple controllers for high availability and scalability. This
model is designed for large network with hundreds or even thousands
of switches. The disadvantage is the communication overheads
between controllers. With a careful design communication protocol,
the drawbacks could be overcome. Some widely used SDN controller
implementations, such as ONIX [80] or ONOS [81], belong to this
model.

Hybrid model: This is a combination of the previous two models
where the network information is replicated for high availability. In
particular, controllers are grouped into the clusters. In each cluster,
there is a master controller plus a hot-standby instance to handle the
failure scenarios. It is organized in a hierarchical manner so that the
scalability is guaranteed. This model is used in large-scale deployment,
such as in AT&T’s network.

One important question is how to distribute these data across multi-
ple controller instance in a distributed system. Multiple techniques can
be used to scale the controller. First, we can partition the data across
multiple instances. Each instance can control a subset of switches and
forwarding rules. Second, we can employ a hierarchy design. We can
use zoom in and zoom out across different aggregation levels. Third,
we can choose different consistency models for different data types.
For example, network topology requires high accuracy at any given
time, thus we should use strong consistency to it. But the network mea-
surement data may not be as critical and can tolerate delay, so a weak
consistency may suffice. For strong consistency, we can use traditional
DB transactions. For weak consistency, we can use distributed hash
table (DHT).

�

� �

�

4.2 SDN Controller 77

4.2.2 Apps on SDN Controller

The SDN architecture consists of application, control, and infrastruc-
ture layers. The interface between the application and control layers
is how applications inform the network of their policy requirements.
Examples of policy requirements are as follows: a security application
may need all of an infected hosts a traffic redirected to a remedia-
tion server; a QoS application may need voice traffic delivered within
a specified latency; and a troubleshooting application may need a copy
of specific communication sent to a network administrator’s protocol
analyzer. Implementing their policies by writing low-level, prioritized
flow table rules through a controller pass-through interface into the
switches in the network has several problems.

• Correctness: When multiple SDN applications operate on the same
network, the flow table rules written by these applications can con-
flict and cause the network and applications to fail to operate cor-
rectly. Since OpenFlow rules are prioritized, and only the first to
match is executed, only one of the applications, the one that used
the higher priority, will have their rules correctly enforced.

• Coupling: When an SDN application directly writes flow table
rules, it must first comprehend the network design and infras-
tructure capabilities. In addition, an SDN controller may be using
a mix of traditional protocols in a hybrid SDN network, along
with OpenFlow. In this commonly occurring case, the application
must understand the network design and technologies in use to
successfully program rules into the network. If the controller is
updated, or reconfigured, it may change the network design or
set of technologies used and the application must also change its
rules accordingly. This coupling between application and network
design and infrastructure capabilities result in dependencies
across application and controller product releases and version
incompatibilities, complicating SDN network management by
customers.

• Ecosystem: When SDN applications need to comprehend the
network design and infrastructure capabilities, the applications
are more complicated and the people required to write them must
have knowledge of networking technology and operation. These
factors make it hard to write SDN applications, resulting in slow

�

� �

�

78 4 Software-Defined Networks Principles and Applications

application development, sparse application offerings, a small SDN
ecosystem, and limited value proposition for customers.

The fundamental problem facing such a deployment is that each app
has its own objectives and may conflict with other apps over proposed
changes to shared network infrastructure. These conflicts include
competing for limited switch resources such as flow table entries,
competing for network bandwidth, or powering on/off network
devices. Addressing this problem poses a threefold challenge: (1)
resource conflicts are dynamic and cannot always be determined a
priori; (2) choice of how to resolve a conflict directly impacts global
network objectives; (3) conflicts might actually be avoidable, and
alternative allocations not initially expressed by apps may allow both
intended requests to be satisfied.

There has been a lot of research in this space in SDN controller
debugging, policy management, and conflict resolution. Statesman
[82] automatically merges nonconflicting changes and relies on
manually tuned priorities to resolve conflicts. OpenDaylight Network
Intent Composition (NIC) [83] allow users and operators to describe
high-level policy/intent rather than low-level device instructions. One
recent approach is to explicitly model the policy of each SDN App
and then use game theory approach to resolve conflicts [84]. It com-
prises a programming framework for SDN Apps and a configurable
coordinator that detects and mediates these conflicts on behalf of the
SDN controller.

4.3 SDN Data Plane

OpenFlow was initially proposed to decouple the routing intelligence
(software) from simple forwarding (hardware) allowing, particularly
for academic research networks and test beds, fast prototyping and
evaluation of new control methods and algorithms.

OpenFlow provides an open control interface to the operating
system of the network device without compromising the details of the
implementation. This guarantees the business benefits for equipment
manufacturers so that it will be more likely to be adopted by the
industry. OpenFlow needs the support from the operating system. It
is based on the ternary content addressable memory (TCAM)-based
flow tables. In a classical router or switch, the fast packet-forwarding

�

� �

�

4.3 SDN Data Plane 79

(data path) and the high-level routing decisions (control path) colocate
on the same device. An OpenFlow-enabled switch separates these
two functions. The data path portion still resides in the switch, but
high-level routing decisions are moved to a flow controller, typically
a standard server. The OpenFlow switch and controller communicate
via the OpenFlow protocol, which defines operation and management
(OAM) messages.

Figure 4.7 shows the basic component in the initial OpenFlow
design. Later OpenFlow has evolved to other more complex struc-
tures such as multiple tables. The match field can match any packet
headers, for example, Ethernet address, IP headers, or MPLS header
fields. The typical actions can be forward, modify, and drop. Each
entry is associated with a counter for collecting statistics purposes.
Similar to routing or access control rules, each rule has a priority.
When multiple rules match the same packet, the one with higher
priority is selected. Finally, each rule has an expiration time. This is
for preventing outdated rules. Once the time out is reached, the rule
is removed by the switch.

With OpenFlow rules, each packet matches a specified header, the
counters are updated, and the appropriate actions taken. If a packet
matches multiple flow entries, the entry with the highest priority is
chosen. An entry’s header fields can contain wildcard values, meaning
that it can match any value in the corresponding position. It is a
TCAM-like match to flows. The basic set of OpenFlow actions are

L4
dport

L4
sport

IP
Prot

When to delete the entry

of packet/bytes processed by the rule

What order to process the rule

IP
ToS

Time outPriorityCounterActionMatch

IP
Dst

IP
Src

Eth
type

MAC
dst

MAC
src

VLAN
pcp

VLAN
ID

1. Forward packet to zero or more ports

2. Encapsulate and forward to controller

3. Send to normal processing pipeline

4. Modify fields

Switch
Port

Figure 4.7 OpenFlow overview.

�

� �

�

80 4 Software-Defined Networks Principles and Applications

forward as default, forward out through a defined interface, deny,
forward to a controller, and modify various packet header fields.

The messages can be initiated by the controller, by the switch, or by
either of them.

• Controller-to-Switch:
– The Send-packet message instructs the switch to send packet out

of a specific port on a switch.
– The Flow-mod message tells the switch to add/delete/modify

flows in the flow table.
– The Read-state message is used to collect statistics about flow

table, ports, and individual flows.
– Features is sent by controller when a switch connects to find out

the features supported by a switch.
– Configuration is to set and query configuration parameters in the

switch.
• Switch-to-Controller:

– The Packet-in message sends all packets that do not have a match-
ing rule to controller.

– The Flow-removed message is sent whenever a flow rule expires.
– The Port-status is sent to the controller whenever a port config-

uration or state changes.
– The Error is sent whenever an error occurs.

• Both directions:
– Hello message is sent at connection startup stage to bootstrap the

devices.
– Echo is sent periodically to indicate latency, bandwidth, or liveli-

ness of the connection between controller and switches.
– Vendor message is sent for extensions.

4.4 SDN Management

Besides the basic network control and forwarding, SDN can enable
new features in other network management area. In this section, we
discuss three areas: measurement, failure recovery, and security.

4.4.1 Anomaly Detection

Network flow counting is essential to many network management
applications, ranging from network planning, routing optimization,

�

� �

�

4.4 SDN Management 81

customer accounting, and anomaly detection. Today, statistics of
traffic flows are reported by the routers to the centralized management
system. Thus, the impact of network measurement on the network
must be minimized. For example, an aggressive monitoring may result
in artificial bottlenecks in the network. With too passive a scheme,
it may miss important events. Thus, the key challenge is to strike a
careful balance between effectiveness (supporting a wide range of
applications with accurate statistics) and efficiency (intruding low
overhead and cost). Among all the network management applications,
from the security perspective, one important question to be answered
is how to count flows to provide sufficient information for the network
anomaly detection?

Existing attempts to achieve a better overhead/accuracy balance is
through traffic sampling [85], that is, a router selectively records pack-
ets or flows randomly with a preconfigured sampling rate. The thinned
traffic is then fed as input to anomaly detection. While being widely
deployed as they are simple to implement with low CPU power and
memory requirements, studies have shown it to be inaccurate, as it is
likely to miss small flows entirely.

The network flow measurement should provide a more flexible and
more interactive interface to the anomaly detectors so that the set of
flows collected can be dynamically adjusted according to the findings
of anomaly detector immediately. There are twofold benefits of such
interfaces. On the one hand, the anomaly detector can instruct the
flow collection module to provide finer-granularity data once there is
a suspicion of attacks, so that the anomaly can be identified sooner.
On the other hand, it can inform to collect coarser-grained flow data
both spatially and temporally when there is no sign of attacks such
that the traffic monitoring load is reduced. Therefore, this adaptive
interface can simultaneously improve the accuracy and reduce the
overhead.

SDN has two key features that enable the design of a flexible flow
counting API for anomaly detection. On the one hand, SDN breaks
the tight bindings between forwarding and counting. One can install
separate wildcard rules on OpenFlow (OF) switches purely for moni-
toring purposes, which offers tremendous flexibility in defining the set
of packets to count. On the other hand, thanks to the simple interface
between control and forwarding plane, one can easily adjust the ele-
ments to count, by simply updating the counting rules. This property
makes real-time adaptive counting possible.

�

� �

�

82 4 Software-Defined Networks Principles and Applications

DoS detector Other anomaly
detectorsEntropy profiling

SDN adaptive anomaly detector

Rule installation Adaptive rule update Data preparation

In
p
u
t
d
a
ta

R
u
le

s

C
o
u
n
tin

g

S
ta

ts

Figure 4.8 Adaptive SDN anomaly detection framework.

One idea proposed recently is to propose an adaptive flow collec-
tion method for anomaly detection in SDN [86]. Benefiting from the
nature of SDN, it is programmable, allowing flexible specification of
the spatial and temporal properties of counting units (or aggregates).
Figure 4.8 shows the key idea of this approach. On the northbound,
it provides input to different types of anomaly detectors such as DoS
detector, traffic analysis using entropy profiling to detect abnormal dis-
tributions, and many other types. On the southbound, it instructs the
switches to collect statistics in the entire flow space. It contains three
components: the first and the most important component provides the
adaptive zooming in the flow space and determines the set of rules to
be installed. After that, the second component determines where the
rules are to be installed in the network-wide in order to minimize the
space taken on the switch flow tables. Finally, the third component pre-
pares the data for anomaly detection applications, which will use these
data. It anecdotes the data with the corresponding spatial/temporal
aggregation information, which describes the accuracy of the data.

4.4.2 Network Measurement

In data center and Internet service provider (ISP) networks where
operators own the entire network, monitoring on each device (i.e.,
a host or switch) should no longer be treated separately. To fully

�

� �

�

4.4 SDN Management 83

leverage the different views of traffic and different capabilities in mon-
itoring different flow properties across devices, it becomes important
to run coordinated measurements across different devices. For
example, an ingress switch is a better place to measure per source
traffic, while an egress is better at measuring per destination traffic.
A host can monitor packet losses by collecting TCP-level statistics or
packet-level traces, while switches can more easily measure the traffic
through a network path.

Both hosts and switches have resource constraints when run-
ning these measurement tasks. Hosts need to devote most of their
resources to the revenue-generating applications, leaving fewer pro-
cessing resources for measurement. Switches have limited memory to
store measurement data from all flows.

Temporal coordination of measurement across devices can signifi-
cantly reduce measurement overhead. For example, we only need to
start monitoring the per-flow volume at every hop of a path when we
observe end-to-end anomalies at hosts (e.g., unexpected large flows,
unexpected packet losses). Another example is diagnosing equal cost
multi-path (ECMP) hashing problems. Rather than continuously mon-
itoring all the flows at all the ECMP paths, we only need to start mon-
itoring the flows whose traffic across any of the paths becomes large.

Given the resource limitations at individual hosts and switches,
instead of monitoring all the flows all the time, we observe the
benefits of coordinating these devices to monitor the right flows at
the right time. We call this temporal coordination [87]. With temporal
coordination, we can leverage limited resources at hosts and switches
to only capture the important flows of interest. For this, we need
monitors that decide when and which flows to monitor and watchers
that collect information for the selected flows at the right time.
We now give a few examples highlighting the benefits of temporal
coordination.

We discuss one potential solution of the temporal correlation that
can be enabled by SDN as follows. Figure 4.9 describes one such
temporal correlation measurement system. It configures two key
types of components for each monitoring task: the monitors that
capture network events, select related flows, and send the information
to the watchers that will collect flow-level statistics for the selected
flows. To ensure high monitoring accuracy and reduce the memory
usage, it is important to coordinate the monitors and watchers in a
timely fashion. We can develop coordination algorithms that allow

�

� �

�

84 4 Software-Defined Networks Principles and Applications

SDN-based conditional

measurement module

Monitor

Monitor

Watcher

Watcher

Temporal coordination

Reporting statisticsConfigurations

Figure 4.9 Conditional SDN measurement overview.

the monitors to make the best use of their limited memory based on
the information from the selectors. Since the monitors and watchers
may be located in different devices, we introduce packet tagging and
explicit messaging to ensure the efficient communication between
the monitors and watchers ensuring high monitoring accuracy with
low bandwidth overhead. To support the maximum number of
monitoring tasks in a network of devices with limited memory, we
can use optimization techniques to identify the best locations of
monitors and watchers by considering the relation between monitors
and watchers and the latency constraint between them.

4.4.3 Failure Recovery

The susceptibility to failures is always a key factor for the prosperity of
any network technologies. In the past, despite that many efforts have
been put to add reliability and high availability to networking systems,
its performance can still be severely impacted by hardware failures,
software bugs, and configuration errors. Parallel to the efforts in devel-
oping new debugging tools, another approach is to improve on the
support for recovery from errors, assuming that errors are inevitable.

�

� �

�

4.4 SDN Management 85

Checkpointing is a common and powerful approach to recover
from transient errors in servers and distributed systems. In general,
a system periodically records its state during normal operation and
stores it in nonvolatile storage that is, checkpointing. Upon failure,
it is restored to a previous state and restarts the execution from this
intermediate state, that is, rollback process, thereby reducing the lost
computation. This technique is especially useful for long-running
applications such as scientific computing and telecom applications,
where restarting from the beginning can be costly. Besides host-level
process migration and debugging, it can be used for error recovery
in distributed systems, where a collection of application processes
are checkpointed distributively, and a globally consistent state can be
restored. Checkpoints can also be used for debugging and root cause
analysis.

Despite its usefulness, checkpointing and rollback are rarely used in
networking infrastructure for the following reasons. First, the network
interacts with the outside world constantly, that is, receiving packets
and sending them out, the outside world cannot be rolled back. Sec-
ond, traditional checkpoint-recovery mechanism assumes a fail-stop
system, that is, upon any fault or failure, the process or system termi-
nates. This assumption does not always hold true in networking. For
example, a loop may exist for a nonnegligible amount of time before
it is detected, even if it is hurting the performance. Third, the net-
work equipments and applications are mostly as black boxes to the
operators, making it impossible to instrument and reason. Fourth, the
network state can be very huge, making the storage of checkpoints
costly. Thus, in traditional network, the fault recovery process is still
error-prone and notoriously hard.

SDN may make checkpointing and rollback feasible, thanks to its
three key properties: simple abstraction, network wide visibility, and
direct control. The network can be viewed as a distributed collection
of switches managed by a logically centralized control programs with
a global network view. The controller reads and writes directly into
flow tables on each switch in the form of rules through a standard API
OpenFlow. Each rule contains a matching field and a set of actions.
Exploiting these properties of SDN, in this work, we explore a scalable
way to perform checkpointing and rollback framework in networks for
fault recovery.

To recover from fault in a network, three principal steps are
involved: detecting a fault, containing it, and rolling the nodes of the

�

� �

�

86 4 Software-Defined Networks Principles and Applications

network back to a certain checkpoint. SDN can be used to allow the
entire network state to roll back to a consistent global state, to mitigate
the impact of faults. The network state includes both the controller
states and the forwarding tables in all the switches in the network. To
enable fast and independent recovery from switches, we support that
each switch independently performs checkpoint.

Figure 4.10 shows the solution overview of this approach. First,
checkpointing the switch means taking snapshots of the flow tables
in each switch. Since the rules are installed by the controller, the
straightforward way is to let the controller keep track of the set
of rules installed on each switch and then consider it as a part of
the controller state. However, somewhat surprisingly, we found
that most of the existing controllers maintain a copy of the flow
tables for the switches, mainly because of the concerns of space and
overhead. Instead, we can take a distributed approach. Each switch
is responsible for checkpointing its own state. For rollback recovery,
some coordination between the controller and the switches can be
used to select a network-wide consistent set of previously collected
checkpoints and roll each switch back to the checkpoint selected for
that switch. Second, controller checkpoint is similar to checkpoint of
any type of user-level process. That is, a checkpoint of the controller
includes the controller process’s address space and the state of its
registers. For recovery, the new process is spawned, which initializes
its address space from the checkpoint file and resets its registers.
It is achieved by adding a piece of code, called checkpointer, being
compiled or linked with the controller transparently.

4.4.4 Controller Placement

In evaluating a network design, the network resilience is an important
factor, as a failure of a few milliseconds may easily result in terabyte
data losses on high-speed links. In traditional networks, where both
control and data packets are transmitted on the same link, the con-
trol and data information are equally affected when a failure happens.
The existing work on the network resilience analysis have therefore
assumed an in-band control model, meaning that the control plane and
data plane have the same resilience properties. However, this model is
not applicable to split-architecture networks. On one hand, the control
packets in split-architecture networks can be transmitted on different

�

� �

�

4.4 SDN Management 87

Switch

checkpoint

coordinator

Controller

checkpoint

SDN controller

Figure 4.10 SDN checkpoint system.

paths from the data packet (or even on a separate network). Therefore,
the reliability of the control plane in these networks is no longer linked
with that of the forwarding plane. On the other hand, disconnection
between controller and the forwarding planes in the split architec-
ture could disable the forwarding plane: when a switch is disconnected
from its control plane, it cannot receive any instructions on how to
forward new flows and becomes practically offline.

In the following, we illustrate the reliability of SDN in an example in
Figure 4.11, which consists of seven OpenFlow switches and two con-
trollers. For simplicity of illustration, we assume fixed binding between
controller and switches, which is the shortest path between the switch
and its closest controller. Another assumption is the static binding
between controller and the switch, for example, C1 is the assigned con-
troller for S3. S3 can only be controlled by C1 even if it is also reachable
by C2. In this example, we assume that there is a separate link between
two controllers C1 and C2 to exchange the network states between
them. Each controller uses the same infrastructure (network) to reach
the OpenFlow switches. For instance, S7 goes through S3 and S1 to
reach the controller C1, marked as dotted line. We also assume fixed

�

� �

�

88 4 Software-Defined Networks Principles and Applications

Controller

S1

S2

S3
S4

S5

S6

S7

C1 C2

Switch

IP1 HTTP Forward to Port 1 S5

Figure 4.11 Example of controller and switch connection.

routing has been set up. The subscripts denote the flow entries in each
switch. An entry on S4 is programmed by C1 to match any HTTP flow
from IP1 and forward to port 1 connected to S7.

If the link between S4 and S5 fails, connections between any of the
switches S1, S3, or S4 to any of the switches S2, S5, S6, or S7 would
be interrupted. If the link between S1 and controller C1 fails, then
until a backup path is built and used, S1 will lose its connection to
its controller. Assuming that in this case the switch invalidates all its
entries, and then S1 cannot reach any other switch in the network,
until it reconnects to its controller. This is like S1 itself is failed for a
period of time.

The types of failures in SDN can be categorized into three types:
• Link failure: A link failure indicates that traffic traversing the link

can no longer be transferred over the link. The failure can be either
of a link between two switches or of a link between one controller
and the switch it connects to. We assume network links fail inde-
pendently.

• Switch failure: A switch failure indicates that the corresponding
node is unable to originate, respond, or forward any packet.
Switch failures can be caused by software bugs, hardware failures,
misconfigurations, and so on. Again, we assume network nodes fail
independently.

• Special case – connectivity loss between switch and controller: A
switch may lose connectivity to its controller due to failures on

�

� �

�

4.4 SDN Management 89

the intermediate links or nodes along the path. In this invention,
we assume that whenever a switch cannot reach its controller, the
switch will discard all the packets on the forwarding plane, even
though the path on the forwarding plane is still valid. Therefore,
this can be considered as a special case of switch failure.

4.4.4.1 A Special Study: Controller to Switch Connectivity
In the following, we illustrate the reliability issue using a specific prob-
lem. We focus on the controller placement problem given the distribu-
tion of forwarding plane switches. We consider that control platform
consists of a set of commodity servers connecting to one or more of the
switches. Therefore, the control plane and data plane are in the same
network domain.

The connectivity to the controller is extremely important for the
OpenFlow network reliability. We define the reliability of controller
to data plane as the average likelihood of loss of connectivity between
the controller and any of the OpenFlow switches.

In the following, we discuss three aspects of the connectivity
between controller and the switches.

Routing between controller and switches
For a given controller location, the controller can construct any
desired routing tree, for example, a routing tree that maximizes the
protection of the network against component failures or a routing tree
that optimizes the performance based on any desired metrics. One of
the popular routing method is the shortest path routing constructed
by intra-domain routing protocols such as open shortest path first
(OSPF). The main problem with the shortest-path routing policy is
that it does not consider the network resilience (protection) factor.
To maximize the routing, one can develop an algorithm with the
objective of constructing a shortest-path tree. Among all possible
shortest-path trees, we can find the one that results in best resilience
compared to other shortest-path trees.

The effect of protection depends on both on the selection of the pri-
mary paths and the choice of the controller location. To get a sense
of how these two factors affect the protection metrics in an SDN, we
make some calculations in two example networks, with the topology
of Internet2 [88] network in Figure 4.12 and a typical Fat-tree like data
center network in Figure 4.13.

Figure 4.12 shows the Internet2 topology with 10 nodes and
13 edges. Here we illustrate two examples of controller selection,

�

� �

�

90 4 Software-Defined Networks Principles and Applications

1

2

3

4

5

6

7
8910

Controller

Unprotected

1

2

3

4

5

6

7
8910

Tree of primary paths

Edges

Figure 4.12 Example of Internet2 network protection.

1 2 3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

1 2 3 4

5 6

7 8

9 10

11 12

13 14

15 16

17 18

19 20

Controller

Unprotected

Tree of primary paths

Edges

Figure 4.13 Example of Fat-tree network protection.

deploying controller on node 2 and node 3. The location of the
controller is shown in rectangular box. For each controller deploy-
ment, we compute the shortest path tree to all other nodes (switches),
rooted in the controller. The primary paths in the tree are shown in
solid lines. For each switch, we compute its backup path. The nodes
without any protection are shown in circles. In this example, we

�

� �

�

4.4 SDN Management 91

observe that the upper case is a better solution, since only two nodes
are unprotected. In particular, node 5 is protected by node 8 in the
upper figure but not in the bottom figure since it is the parent of node
8 in the primary path.

OpenFlow type of SDN also raises a large amount of interests
in enterprise and data center networks. Figure 4.13 shows another
example in Fat-tree like data center networks, containing 20 nodes
and 32 links. Similarly, we illustrate two scenarios, deploying con-
troller on node 1 and node 7. We construct the two shortest path
trees rooted from the controller. Interestingly, we found that node 7 is
a much better location for controller compared to node 1. This is very
counterintuitive, as node 1 as the core nodes in the Fat-tree structure
were expected to be more resilient. When node 1 is the controller, 10
nodes are unprotected, including all the leaf nodes. With node 7 as the
controller, only three nodes are unprotected. For example, node 11 is
protected by node 9 when its parent in the primary path (node 10) fails.

From these two examples, we observe that first, the controller’s loca-
tion does have large impact on the number of protected nodes in the
network and second, the selection of controller’s location can be quite
counterintuitive. These observations motivate us to investigate a sys-
tematic approach of controller placement to maximize the protection
in the split architecture network.

Deploying multiple controllers
Next, we consider the problem of deploying multiple controllers in
the network. The problem can be formulated as following. Given a
network graph, with node representing network’s switches and edge
representing network’s links (which are assumed to be bidirectional),
the objective is to pick a subset of the nodes, among all candidate
nodes and colocate controllers with switches in these nodes so
that the total failure likelihood is minimized. Once these nodes are
selected, a solution to assign switches to controllers is also needed to
achieve maximum resilience. The problem can be solved as a graph
partitioning or clustering problem. The details are described in [89].
Two algorithms are proposed for SDN with multiple controllers. It
is shown that the choices of controller locations do have significant
impact on the entire SDN reliability.

In SDN, the best resilient scenario is that each switch has a precon-
figured backup path to the controller. The backup path can be used
to reconnect to the controller if any failure is detected on the pri-
mary path. Such rerouting behavior requires no intervention from the

�

� �

�

92 4 Software-Defined Networks Principles and Applications

controller and no changes to the other switches in the network. In the
following, we describe our design choices and the protection metrics
in detail.

With the high requirements on network reliability, we need a
mechanism to improve the resilience of the connectivity between
the controller and the switches in a split architecture network. The
mechanism should meet the following requirements:

• The protection should resume the forwarding after a failure as
soon as possible. The existing IGP protocols such as OSPF and
IS-IS typically take several seconds to converge, which cannot meet
the sub-50 ms level of failure recovery time. One option is to rely
on the controller to detect the failures in switches or links using
some implicit mechanisms, for example, when hello messages are
not received by the controller from a switch. This method will
introduce a large delay in the network for failure detection and
service restoration.

• The decision of protection should be made locally and indepen-
dently. Different from traditional network, the forwarding element
does not have a complete topology of the network. It only receives
forwarding rules from the controller. When losing the connectiv-
ity to the controller, the switch has to make the decision of failover
independently without any instructions from the controller. In other
words, there will only be a local change in the outgoing interface of
the affected switch. All other connections in the network will remain
intact.

• We should keep the forwarding element, that is, the switch, as sim-
ple as possible.

We denote a network of switches by a graph G = (V ,E), where V
is the set of nodes (switches) in the network and E the set of bidirec-
tional edges (links) between nodes. With this given topology, we want
to know at which node the controller should be deployed.

Our first assumption is that the network controller is in the same
physical network as the switches. That is, we want to use the existing
infrastructure of the network (i.e., existing links and switches) to con-
nect the controller to all the switches in the network, as opposed to
using a separate infrastructure (by adding new links and switches in
the network) to connect the controller to the switches.

�

� �

�

4.4 SDN Management 93

A cost is associated with each link based on which the shortest path
routes between any two nodes are calculated. We assume that the cost
on each link applies to both directions of the link.

We assume that there is no load balancing on the control traffic sent
between the switches and the controller. Therefore, each node has only
one path to reach the controller. In other words, the control traffic is
sent from/to the controller over a tree, rooted at the controller, which
we will refer to by controller routing tree. This routing tree covers all
the nodes in the network and a subset of the edges. We assume that
the same routing tree will be used for communications between the
controller and the switches in both directions.

With a given controller location, different routing mechanisms could
be used to form different routing trees. Figure 4.14 shows a network
and its controller routing tree. In this figure, the dashed lines show all
links in the network, and the solid lines show the links used in the con-
troller routing tree. Each node can reach the controller by sending its
control traffic along the paths in the controller routing tree. We assume
that both directions of each link have the same cost and therefore, they
are symmetric.

In the controller routing tree T , node u is an upstream node of
node 𝑣 if there is a path in T from node 𝑣 to node u toward the

Controller

S1 S2 S3

S4 S5 S6

S7

Figure 4.14 Protection against link and node failures.

�

� �

�

94 4 Software-Defined Networks Principles and Applications

controller. Node u is called a downstream node of node 𝑣 if there is a
path in T from node u to node 𝑣 toward the controller. In the network
depicted in Figure 4.14, for example, node S3 is an upstream node of
nodes S6 and S7, and these two nodes are downstream nodes of node
S3. In the controller routing tree, a node’s parent is its immediate
upstream node and a node’s children are its immediate downstream
nodes. Because of the assumed tree structure, each node has only one
immediate upstream node in T .

4.4.4.2 Node Versus Link Failure
With a given controller location and controller routing tree T , consider
node a and its immediate upstream node b. We say node a is pro-
tected against the failure of its outgoing link (a, b) if there exists node
c ∈ V \{a, b} with the following properties:

1) (a, c) is in G (i.e., there is a link between nodes a and c in the net-
work).

2) Node c is not a downstream node of node a in T .

The second condition guarantees that a loop will not be created as a
result of connecting node a to node c.

If the above conditions are met, then link (a, c) could be assigned as
the backup link for link (a, b), and this backup link could be preconfig-
ured in node a. As soon as node a detects a failure in link (a, b), it will
immediately change its route to the controller by changing the primary
link (a, b) to the secondary link (a, c).

We say that node a is also protected against the failure of its imme-
diate upstream node if node c satisfies another condition in addition
to the above ones.

3) Node c is not a downstream node of node b in T .

This condition guarantees that the control traffic of node c toward
the controller will not pass through node b (which is assumed to have
failed). Again, as soon as node a detects a failure in node b, it switches
its outgoing link over from (a, b) to (a, c).

In the network shown in Figure 4.14, for example,

• Switches S1, S2, and S7, are not locally protected, that is, if their out-
going links (or upstream nodes) fail, no backup links can be chosen
and preconfigured to be used.

�

� �

�

4.4 SDN Management 95

• Switch S4 is protected against its output link failure, that is, if link
(S4, S2) fails, link (S4, S5) could be used instead. However, S4 is not
protected against its immediate upstream node (S2) failure. Because
the backup path (S4, S5, S2, controller) will pass through S2.

• Switch S6 is protected against both its outgoing link and its immedi-
ate upstream node failures: If link (S6,S3) or node S3 fails, the control
traffic of S3 will be sent over link (S6,S5) and it will not pass through
node S3.

Depending on how critical or frequent link failures are versus node
failures in the network, the network operator could assign different
costs to these two kinds of failures, for example, cost 𝛼 for node failure
and cost 𝛽 for link failure. For example, 𝛼 = 𝛽 could be interpreted and
used for scenarios where link and node failures are equally likely – or
when it is equally important to protect the network against both kinds
of failures. This way, the cost of not having protection at a node could
be evaluated at 𝛼 + 𝛽 if the node is not protected at all, at 𝛼 if it is pro-
tected only against its outgoing link failure, and at zero if it is protected
against the upstream node failure as well. For those switches directly
connected to the controller, the upstream node protection cannot be
defined (as the immediate upstream node is the controller). For those
nodes, therefore, the assigned cost is zero if they are protected against
their outgoing link failure and is 𝛼 + 𝛽 otherwise.

4.4.4.3 Downstream Versus Upstream Nodes
In this work, we assume that the traditional failure management tools
are deployed in the split-architecture network, that is, there is no
extended signaling mechanism for a node to inform its downstream
nodes of a failure. Therefore, if a switch is disconnected from the
controller (i.e., if there is no backup path programmed in the switch),
then all its downstream nodes will also be disconnected, even if
they are themselves locally protected against their outgoing links or
immediate upstream nodes failures. This means that in evaluating
networks resiliency, more weights should be assigned to nodes closer
to the controller (which is the root of the controller routing tree).
More precisely, the weight of each node should also be proportional
to the number of its downstream nodes.

In Figure 4.14, for example, failure of the link between S2 and the
controller results in the disconnection of all S1, S2, S4, and S5 from the

�

� �

�

96 4 Software-Defined Networks Principles and Applications

controller. This failure costs four times more compared to when the
link (S1, S2) fails, which only disconnects S1 from the controller.

Implementation of protection using OpenFlow
Our proposal can be applied to any implementation of the split archi-
tecture. The forwarding table in an OpenFlow switch, for example, is
populated with entries consisting of a rule defining matches for fields
in packet headers, a set of actions associated with the flow match,
and a collection of statistics on the flow. The OpenFlow specification
version 1.1 introduces a method for allowing a single flow-match trig-
ger forwarding on more than one port of the switch. Fast failover is
one of such methods. Using this method, the switch executes the first,
that is, live action set. Each action set is associated with a special port
that controls its liveliness. OpenFlow’s fast failover method enables
the switch to change forwarding without requiring a round trip to the
controller.

4.5 SDN Security Attack Prevention

Network attacks have long been an important problem and have
attracted a lot of research in academic and commercial sector. With
a rapidly growing number of critical as well as business applications
deployed on the Internet today, network attacks have both become
more lucrative for the attackers and more damaging to the victims.
The implications of network attacks on the victim can be huge. For
example, a distributed denial-of-service (DDoS) can overwhelm the
victim and make it unable to handle its regular business. A large-
volume DDoS attack can further cause collateral damage to traffic
that shares links with the victim’s traffic, leading to large traffic drops,
BGP session interruptions, and routing interruptions [90]. Besides
the data plane attacks, control plane misconfigurations and attacks
on the interdomain routing protocol BGP can have dire implications
for victim networks. For example, the prefix-hijacking attack injects
and propagates false routes to the Internet, causing victim’s traffic to
be redirected to the attacker networks for sniffing, modification, or
dropping [91]. Traffic sniffing and modification are very difficult to
detect and mitigate, and create huge security and privacy issues for
the victim, while blackholing severely affects online businesses and
critical infrastructures.

�

� �

�

4.5 SDN Security Attack Prevention 97

Many solutions have been proposed to detect and mitigate indi-
vidual attacks. For example, in DDoS realm, many victim-deployed
or ISP-deployed DDoS defenses, overlay-based DDoS defenses [92],
and content replication to sustain high-volume attacks have been
proposed and deployed. In routing realm, detection approaches that
monitor live BGP data feeds and conduct data plane probing have
been proposed to diagnose prefix-hijacking attacks.

But ultimately, traffic flows, attacks, and their routes are the results
of actions of multiple networks, each following its individual interests
and priorities. Thus, while many attack instances can be handled by the
victim and its local ISP, there will always exist attacks that cannot be
diagnosed or mitigated without help from remote networks, which are
involved in sourcing or carrying traffic to the victim. Today’s Internet
lacks such wide-scale, general service for automated inter-ISP collab-
oration on security problem diagnosis and mitigation.

There have been numerous research works on inter-ISP collabora-
tion for attack diagnosis and mitigation, such as collaborative DDoS
defenses, (Defense-by-Offense, Internet traceback [93], pushback
[94], DefCOM [95]), collaborative spoofing defenses (Packet Pass-
ports [96], Hash-based traceback [93], core-based traffic filtering)
collaborative worm defenses, and collaborative routing defenses.
However, most proposals are still not deployed today because (1)
most of the proposals only focus on detection or mitigation of one
attack type or variant; (2) some solutions require complex changes
of the data plane or new router functionality, which are difficult to
achieve; and (3) some solutions do not create proper incentives for
ISPs to collaborate with each other.

Inspired by SDN, which provides a simple interface (flow-based
rules) to facilitate the advancement of networking protocols, we pro-
pose Software dEfiNed Security Service (SENSS), a generic interface
for Internet attack diagnosis and mitigation. SENSS has three key
features as follows:

1) Victim-oriented: The victim of a security attack has the most
incentive to detect and mitigate the attacks. The victim also has the
most knowledge about the problems it is experiencing, the traffic it
sees, and the help it needs to diagnose and remedy problems. Our
proposed service enables this victim to directly request security
services from multiple remote ISPs. For security and privacy
reasons, we design mechanisms for victims to only have visibility

�

� �

�

98 4 Software-Defined Networks Principles and Applications

ISP

Victim

(2) Query

(4) Control

SENSS
program

(3) Reply
SENSS server

(1) IntitiateISP
ISP IDS

Figure 4.15 SENSS architecture.

and control of their own traffic, that is, the traffic that carries
either source or destination IPs from the victim’s address space.

2) Simple detection/mitigation interface from an ISP: We define a
simple interface for victims to request services from ISPs, such
as statistics gathering, traffic filtering, rerouting, or QoS guaran-
tees. The interface is both expressive to support the detection/
mitigation of a variety of attacks (e.g., prefix hijacking, DDoS), and
easy to implement in today’s ISPs.

3) Programmable attack detection and mitigation across ISPs: With
the simple interface provided by ISPs, victims can easily program
their own attack detection and mitigation solutions across ASes.
As shown in Figure 4.15, a victim can first query multiple ISPs to
trace back the attack, identify the best locations for remediation,
and then issue commands for ISPs to take mitigation actions (e.g.,
filtering the traffic, guaranteeing bandwidth or rerouting).

End networks have every incentive to use SENSS, since they receive
much needed help and they pay only when they use the service. SENSS
is economically appealing for ISPs because they can charge the victims
for the services they provide.

Our service is not a panacea but a long-missing piece in a set of secu-
rity solutions. It is coarser grained and simpler than many single-point
solutions; in fact, it is complementary to them and meant to be invoked
when single-point solutions cannot handle the attack.

4.5.1 SENSS Architecture

The SENSS service exposes an interface at each deploying ISP that
enables remote victim networks to query this ISP about their mission
traffic – traffic that carries either source or destination IPs from
the victim’s prefixes – and to request filtering services, bandwidth

�

� �

�

4.5 SDN Security Attack Prevention 99

guarantees, or route modifications. The ISP authenticates these
requests, processes them, and implements them by setting up rules
in its OpenFlow switches. In case of queries, the ISP returns the
requested information to the remote customer network. This reply is
also protected through cryptographic means to ensure authenticity
and freshness. Let us denote by SENSS ISP an ISP that deploys SENSS.
We use the same definition of flow as does OpenFlow and we define
a tag to be a unique identifier of an AS that neighbors an ISP that
deploys SENSS. A traffic aggregate is a combination of flow, tag, and
direction (IN or OUT) fields.

Table 4.1 defines SENSS messages from the customer (victim net-
work) to the provider (SENSS ISP) and replies or actions taken by the
provider. A traffic query asks about the distribution of traffic across
ASes that neighbor with a SENSS ISP. It specifies the traffic aggre-
gate of interest and the duration of observation. The ISP returns the
list of packets or bytes sent by or sent to each neighbor. This helps
SENSS customer trace back its traffic and identify best points to deploy
mitigation.

• Route query asks a SENSS ISP about the best route it has to the cus-
tomer’s prefix. The provider replies with a full AS path. This enables
the customer to diagnose route detour attacks and blackholing and
to mitigate them. The victim networks can also ask the SENSS ISP

Table 4.1 SENSS messages from the customer to the provider and replies/actions
by the provider.

Message Fields Reply/action

Traffic query Aggregate, duration A list of <tag, #bytes or #packets,
direction> for the aggregate

Route query Prefix AS paths from the provider to the
prefix

Traffic filter Aggregate Filter all traffic matching the
aggregate

Bandwidth guarantee Aggregate, bw Guarantee bandwidth bw for
traffic matching the aggregate

Route demotion Prefix, <path> Demote route to prefix that has
specified AS path segment

Route modification Prefix, <path1>,
<path2>

Modify the false AS path segment
to the correct one

�

� �

�

100 4 Software-Defined Networks Principles and Applications

to filter, guarantee bandwidth, demote routes, or modify routes
for its traffic (see Table 4.1 for details).

• Traffic filter message asks a SENSS ISP to filter all traffic that
matches the aggregate specification. A Bandwidth guarantee
message asks a SENSS ISP to guarantee the requested bandwidth
to the traffic that matches the aggregate specification. A Route
demotion message asks a SENSS ISP to demote all routes to the
specified prefix that contain the specified AS path segment.

• Route modification message asks a SENSS provider to adopt the AS
path from the message to the specified prefix. For security, all mes-
sages between the victims and SENSS ISPs are encrypted, signed,
and timestamped. Further, a SENSS ISP verifies, using RPKI, that
the customer is authorized to control traffic and routes for a given
IP prefix. This ensures that networks can only influence traffic that
flows to or from them.

SENSS is well aligned with ISP’s interests and capabilities: the infor-
mation and services exposed by SENSS interfaces are similar to those
that today’s ISPs already perform for their direct customers. SENSS
automates this manual process and extends it to remote customers,
while securing communications against fabrication, replay, or redirec-
tion. SENSS is robust in handling uncooperative participants, or direct
attacks on itself.

4.5.2 SENSS Uses

We now briefly discuss we can detect and mitigate a variety of DDoS
and routing attacks with SENSS.

4.5.2.1 DDoS
For those DDoS attacks where we can identify TCP/IP header-level
signatures, we can easily use traffic filter at remote ISPs to drop the
traffic close to attack sources. However, sometimes, a victim may not
be able to devise a useful signature, when the attack traffic are spoofed
with randomized flow fields. To detect such DDoS attacks, during peri-
ods of no attack, a SENSS customer may occasionally use traffic query
to SENSS ISPs for the amount of traffic they receive from their neigh-
bors and route to this customer. That way the customer gains visibility
into most commonly used Internet paths by its mission traffic. During
a DDoS attack without signature, the SENSS customer (i.e., the victim)
issues a similar traffic query. It then compares the traffic distributions

�

� �

�

4.6 SDN Traffic Engineering 101

before and during the attack and identifies upstream ISPs that have
previously routed little traffic to the victim but now route a lot. These
ISPs are likely routing mostly attack traffic, and SENSS customer issues
traffic filter messages to those to mitigate the attack. We evaluated
SENSS with real CDN traffic, DDoS attacks, and Internet topology,
and find that with only 30 deployed ISPs, we can already eliminate 94%
of the attack traffic.

4.5.2.2 Prefix Hijacking
It is easy to use SENSS for the blackhole-based prefix hijacking where
an attacker announces the victim’s prefixes and drops the traffic.
The victim uses route query to detect the bogus route and uses route
demotion to reduce the false route’s propagation. The interception
attack is harder to detect because an attacker transparently intercepts
the victim’s traffic by creating arbitrarily shorter AS path in the
BGP announcement. SENSS can detect this attack by identifying
the conflicts in control and data plane, using route query to obtain
control plane routing information and using hop-by-hop traffic query
to obtain data plane path. To detect the inconsistency, the victim
may obtain the control plane routing information from one of the
ASes using route query. Next, it verifies the data plane path via the
traffic query hop-by-hop from the victim to the attacker, where each
SENSS ISP replies with the upstream ISPs for victim’s traffic. Once
an inconsistency is detected, the victim may ask a set of SENSS ISPs
to perform mitigation, that is, use route modification to change the
false path segment in the BGP updates to the true data plane path.
From the simulation with real traffic traces and Internet topology, we
show that with only 18 SENSS ISPs to help mitigate the attack, we can
correct 82% of the polluted ASes.

4.6 SDN Traffic Engineering

To optimize network costs, performance, and throughput, network
operators need to carefully engineer their network traffic. SDN
enhances traffic engineering (TE) by offering programmability and
global control over the forwarding plane. Recently, service providers
have designed centralized TE applications on the SDN controller
(e.g., Google’s B4 [97] and BwE [98]) to globally compute and enforce
optimal paths and bandwidth allocations for all flows in their network.

�

� �

�

102 4 Software-Defined Networks Principles and Applications

At first sight, it seems these solutions can be adapted to manage traffic
in ISP networks. However, a closer inspection reveals they fall short
in satisfying scalability requirements of ISP networks.

These SDN-driven TE systems are designed to manage data center
(DC) interconnects with at most tens of nodes (e.g., Microsoft’s
SWAN [99]). However, large ISP networks can consist of tens of thou-
sands of forwarding devices. Therefore, global flow optimizations,
which are built based on linear programming (LP), can have millions
of constraints and variables. This easily makes the existing centralized
TE intractable because of its exponential worst-case complexity [100].
Adding more compute resources to the TE application does not fun-
damentally address the scalability challenge given the rapid growth of
the network size. Having multiple SDN controllers (e.g., ONOS [81])
does not by itself reduce the TE complexity because the flow opti-
mization finally is assigned to a single instance, needing to process
the entire TE states (e.g., topology, traffic matrices, constraints).

To address these issues, we present a software-defined TE solution,
called SdnTE, that can scale to manage traffic in very ISP networks.
SdnTE enables ISPs to execute TE rapidly and frequently using a logi-
cally centralized software in their network. At its heart, SdnTE sacri-
fices a small amount of network throughput compared to the global,
optimal TE techniques to substantially accelerate the TE computation
by several orders of magnitude (e.g., from hours to seconds). SdnTE
enables ISPs to quickly respond to unexpected changes in traffic pat-
terns (e.g., unpredictable rush hours), and thus highly utilize their net-
work resources. In more detail, SdnTE builds up a hierarchical control
plane for ISPs and designs a novel recursive, distributed TE applica-
tion on it. For TE scalability, SdnTE systematically partitions the global
TE task throughout hierarchy by creating a logical TE region for each
control node in the hierarchy. Each node is responsible for optimizing
flows in its region using linear optimization, while coordinating with
its parent and children indirectly.

Historically, the recursive topology aggregation and hierarchy tech-
niques have been used to minimize the routing table size in routing
protocols (e.g., PNNI [101], Nimrod [102]) in different network
technologies. These designs are limited to the distributed link-state
or source-based routing protocols and cannot be leveraged for global
flow optimization. Hierarchical SDN controllers have been used to
scale other network applications (e.g., mobility [103]), not on the
centralized TE problem. In the presence of recursive abstractions, it is

�

� �

�

4.6 SDN Traffic Engineering 103

not straightforward to have the LP-based hierarchical TE generate
feasible results, and efficiently and highly utilize network resources.
For the same reason, enforcing TE results with minimal forwarding
states in the data plane is challenging.

4.6.1 TE Architecture and Solution Overview

Consider a software-defined ISP network consisting of thousands of
programmables switches distributed throughout a large geographical
area (continent or country). In this network, many flows are generated
between access switches (from home routers or peering points).
Considering the ISP size, a global, optimal flow optimization can be
very slow in practice (easily taking hours) and can lead to tremendous
forwarding states. Our goal is to design a scalable control and data
plane TE solution for the ISP networks that can simultaneously reduce
the TE time (to orders of seconds) and shrink forwarding tables. We
begin with an overview on the architecture, its design challenges, and
our solutions.

4.6.1.1 Hierarchical Control Structure
For TE scalability, we build a hierarchical control logic for the net-
work to break the global TE problem into smaller pieces. As shown
in Figure 4.16a, our TE control logic consists of a set of TE control
nodes (cNode) organized in a logical tree structure. The root cNode
(e.g., cN7) is at the top and leaf cNodes (e.g., cN1–4) are at the bot-
tom. Each cNode is a piece of software and solves a small part of the
global TE problem. To benefit from locality, cNodes can be distributed
among PoPs close to the switches. To systematically distribute the TE
load and states (i.e., variables, constraints) among cNodes, we recur-
sively and automatically construct an abstract region for each of them:
the TE framework partitions the physical data plane (level 1) into a set
of logical TE regions (e.g., regions 1–4) based on factors defined by the
ISP (e.g., traffic patterns). Each leaf region is assigned to a leaf cNode
that constructs an abstract view of its region and then presents it to its
parent. Then each level-2 cNode (e.g., cN5–6) fetches its logical region
topology from the children, and then abstracts it for its parent. Recur-
sively, the process creates increasingly more simplified topologies until
the root cNode (e.g., CN7) forms its abstract region. In this process,
each cNode hides the detailed topology of its region and constructs a
single switch for its parent called SdnTE Switch (hSwitch). A hSwitch

�

� �

�

104 4 Software-Defined Networks Principles and Applications

Region 7

Region 6

Level 1
Level 2

Level 3

HS5

HS1 HS2

S1

Region 5

Region 1 Region 2 Region 3 Region 4

cN5

cN1 cN2 cN3 cN4

cN6

cN7

Control nodes (cNodes) HiRE/physical switch

Abstraction

App (AbsApp)

Optimization

App (OptApp)
TE enforcer

App (EnfApp)

Basic services

Parent cNode

a) Hierarchical control logic structure

(b) Control node (cNode) design

1:
 F

lo
w

s
 a

n
d

 l
o

g
ic

a
l

fa
b

ri
c

s

2: T
E

 re
s
u

lts

S2 S3 S4

Figure 4.16 SdnTE network architecture.

is a new software abstraction over a physical/logical switch topology.
In Figure 4.16, switches in region 2 are abstracted as hSwitch HS2 in
region 5. hSwitch ports are logical, each corresponding to one or more
border switch ports in the constituent physical topology.

4.6.1.2 Control Node Design
The software architecture of cNodes are illustrated in Figure 4.16
that consists of three applications: Abstraction App (AbsApp), Flow
optimization App (OptApp), and TE enforcer App (EnfApp). AbsApp
is responsible for communicating with the parent cNode by building
and through the abstract hSwitch. TEOpt makes local TE decisions
for flows appearing in its region. Although SdnTE is flexible to
support different TE techniques (e.g., greedy, linear, and nonlinear),
we focus on a designing multipath flow optimization using LP: TEOpt
iteratively collects flow requests in the next interval from its region

�

� �

�

4.6 SDN Traffic Engineering 105

(i.e., set ⟨source, sink, volume⟩s), and takes constraints, and objective
function as other inputs. Then, it determines multiple paths for
each flow (e.g., k-shortest paths) and computes locally optimized
bandwidth allocations to them on their paths. The TE results (paths
and bandwidth allocations) are enforced and implemented in the
region using EnfApp.

4.6.1.3 Scalability Benefit
Intuitively, SdnTE can scale global flow optimizations, having expo-
nential worst-case complexities [100]. It can distribute flows among
regions, and then semiglobally run TE in a recursive-parallel manner
from the root region to the leaf regions. At a given level, cNodes can
perform their TE on small set of flows in a small search space in par-
allel. Recursively, this is followed by parallel TE in the level as follows.
In Figure 4.16, cN7’s TE is followed by that of cN5 and cN6 in parallel
and then parallelism among cN1–4.

4.6.2 Design Challenges

A close inspection reveals our design of SdnTE has a few challenges.
In the literature, there are hierarchical routing mechanisms (e.g.,
PNNI [101] and Nimrod [102]) in recursively aggregated networks.
However, these systems do not provide solutions to our design
challenges because SdnTE is a centralized, multipath TE solution in
the SDN environment. In contrast, they are distributed, single-path
routing protocols in nonprogrammable networks. These systems
do not optimize flows, mostly deal with the path computation, and
at best are equipped with simple circuit reservation mechanisms.
Compared to them, SdnTE is challenging as it needs to semiglobally
plan flows based on the ISP-selected objective functions such that
network resources are highly utilized. In particular, these routing
systems are inefficient from TE aspects. In general, poor network
utilization, circuit reservation failures, and congestion are inherent to
them. We now elaborate on the SdnTE challenges.

Challenge #1 – optimized TE in the presence of recursive abstrac-
tions: In the flat SDN, a single TE application has full control on
switches, flows, and traffic; it can compute globally optimized paths
and bandwidth allocations by running linear flow optimizations
(e.g., [99, 104]). For TE scalability, SdnTE exposes a partial and

�

� �

�

106 4 Software-Defined Networks Principles and Applications

abstract region to each cNode and distribute flows among regions.
The design of SdnTE can easily lead to inefficient and infeasible
paths and bandwidth allocations when TE is recursively computed
from the root.

Recursively, when a cNode learns its parent flows engineered
over the abstract hSwitch, it locally makes TE decisions to distribute
them in its region.

Challenge #2 – efficient TE enforcement without direct data plane
control: In the flat SDN, the TE application can easily enforce
the TE results by establishing tunnels for each flow between its
endpoints. In SdnTE, there is no cNode with full visibility and
control on all switches. In fact, multiple cNodes might make partial
TE decisions on flows recursively. Mappings partial TE results in
regions to the physical data plane without full topology visibility
is not only challenging but also can cause tremendous forward-
ing states (switch rules or packet instructions) in the physical
data plane.

In SDN, the TE application has full control over the data plane
switches, it can implement TE results by programming switches
with tunnels (e.g., MPLS tunnels) for scalability (e.g., [97, 99]).
In SdnTE, when the TE is computed from the root, multiple
cNodes might make partial TE decisions on the same flow from its
source to sink. Each cNode splits it into multiple tunnels, allocates
bandwidth on them, and then programs its local hSwitches. In
SdnTE, scalable mappings of partial tunnels in logical regions to the
physical data plane without global topology visibility is challenging.
Unfortunately, existing solutions either lead to high header over-
head and throughput loss (e.g., label stacking in PNNI [101] and
HSDN [105]), or result in the flow table explosion in SDN switches
(e.g., label swapping in SoftMoW [103]).

4.6.3 TE Solution Overview

In response to the above issues, we enhance SdnTE with two set of
procedures propagating necessary information between hierarchical
regions. In each TE epoch (iteration), they run in a recursive fashion
in the hierarchy. We first provide an overview and delve into the details
in the later sections.

• Bottom-up recursion: In SdnTE, each TE epoch starts with smart
assignment of flow requests to cNodes to efficiently distribute the

�

� �

�

4.7 Summary 107

TE load. This is accompanied by providing some hints to cNodes
regarding the physical topology to allow them efficiently participate
in the global TE. Starting from the leaf level, recursively upward,
each cNode (through AbsApp) collects flow requests from its
region. Then, it makes local decision on whether or not offload
some of the flows its parent region through the abstract hSwitch.
Also, it associates a logical fabric to the abstract hSwitch and sends
it to the parent. A fabric is a compact, dynamic representation of
performance and resources in the cNode’s region. However, it is
more than a fixed and lossy graph built from the physical topology
(e.g., PNNI [101]). In fact, it is computed based on the cNode’s local
flows and objective function as well as its parent’s behavior in the
past. The bottom-up procedure stops when the root cNode learns
its flows and fabrics.

• Top-down recursion: In SdnTE, each TE epoch finishes with com-
puting TE results and enforcing them in the physical data plane.
Recursively downward, each cNode through AbsApp (except root)
receives some flow requests on the abstract hSwitch from its parent
when after the TE in the upper-level region. Considering the local
hSwitch’s fabrics, each cNode’s OptApp computes multiple paths
for each of its local and parent flows on its abstract topology. Then
it allocates bandwidth to them by running a linear program. Finally,
each cNode’s EnfApp programs its region to split flows based on the
TE results into multiple label-based tunnels (e.g., MPLS) between
its endpoints. Each cNode locally minimizes the forwarding states
that needs to be pushed into its local hSwitchs or child regions. For
this purpose, EnfApp intelligently swaps and stacks tunnel labels in
the packets. The top-down procedure finishes when leaf cNodes run
their TE and program the physical switches.

4.7 Summary

SDN architecture introduces a separation between the control and
forwarding components of the network. Among the use cases of
such architecture are the access/aggregation domain of carrier-grade
networks, mobile backhaul, data center networks, and cloud infras-
tructure, all of which are among the main building blocks of today’s
network infrastructure. Therefore, proper design, management, and
performance optimization of these networks are of great importance.

�

� �

�

108 4 Software-Defined Networks Principles and Applications

In this chapter, we first provide an overview of the design principles
and building blocks of the SDN architecture. We discuss the use cases,
the challenges, and its business impact. Then, we dive into more details
of SDN controller and SDN data plane separately. Finally, we conclude
with introducing a few interesting and novel applications that SDN
enables.

�

� �

�

109

5

SDN and NFV in 5G

Mobile network operators are looking for cheaper and more efficient
ways to connect subscribers/devices to their networks by search-
ing for creative ways to minimize network traffic and latency.
Next-generation 5G mobile networks will steer mobile network
operators toward software-defined networks (SDN), agnostic net-
work access, mobile edge computing, and 5G network slicing where
grouped subscribers or machine-to-Machine (M2M) and Internet
of things (IoT) devices are serviced by separate, virtualized core
networks. Next-generation 5G mobile networks will merge IT and
Cloud concepts into mobile core networks methods for accessing
subscriber information in order to reduce data latency and network
backhaul. Mobile edge computing will position network applications,
service applications, and subscriber profiles on the network edge in
close proximity to the subscriber/device in order for 5G networks to
accomplish their goals, thus making services and profile as mobile as
the subscriber and device.

In a 5G network, the edge locality is called an anchor point where
network access and service processing is performed in an evolved
packet core (EPC) network deployed on an SDN. An anchor point
can be defined for a specific network slice of common subscriber’s
devices. Anchor switches provide network traffic routing between
SDN anchor points. In contrast to 5G networks, 2G/3G/4G networks
are generally organized as geographical regions serviced out of a
regional data center. This regional data center may use one or more
EPC SDNs similar to a 5G anchor point to service subscribers/devices
in that region.

Network Function Virtualization: Concepts and Applicability in 5G Networks, First Edition. Ying Zhang.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

�

� �

�

110 5 SDN and NFV in 5G

In this chapter, we first present the 5G overview and its relation with
SDN/NFV. Then, we discuss service function chaining (SFC) in detail,
which is a key concept in 5G deployment, and later present the virtu-
alization usage in 5G: virtualized EPC.

5.1 5G Overview

As the next-generation mobile network, 5G is proposed when the
number of user equipment (UE) and the surge in bandwidth has
significantly increased. There are several objectives that 5G network
is designed for, as follows:

• Supporting massive amount of connected devices: With the deploy-
ment and evolution of IoT, it is predicted that by 2010, there would
be 50 billion Internet-connected devices. These types of devices
have a wide range, including mobile phone, smart TVs, tractors,
robots, sensors, and wearable devices.

• Achieving ultralow latency: The future mobile network should sup-
port real-time communications across devices. Many IoT devices
such as medical equipments require very low latency in communi-
cation due to its critical importance.

• Efficiently utilizing spectrums: Currently, the spectrum channel is
often underutilized. It is necessary to develop techniques to increase
the utilization of the precious resources.

• Catching up with bandwidth and data rate increases: Bandwidth
surge and applications with high data rate have been a major chal-
lenge to today’s mobile network. This is the number one priority that
5G network should address.

• Providing seamless connectivity across technologies: Multiple radio
technologies will coexist, and the future network should support
seamless migration and roaming across technologies.

5.1.1 Architecture

To meet these requirements, the 5G employs a two-tier hierarchical
structure with both the macrocell base station (MBS) and the small cell
base station (SBS). Figure 5.1 shows the high-level picture of 5G. The
smallest unit of coverage is constructed by various SBSs, examples of
which include femtocell and picocell. The MBS oversees a set of SBSs
that are located close by. For example, a building can be connected

�

� �

�

5.1 5G Overview 111

SBS

SBS SBS

SBS

SBS

SBS

Figure 5.1 5G architecture.

by an SBS, and the SBS connects to an MBS in the region. Another
example is having an SBS in the train so that all the UEs are connected
to the internal SBS and will not need to deal with the frequent han-
dovers due to fast moving of the train.

This two-tier hierarchy is the fundamental design of 5G network.
It is deployed as a process of network densification. On the one hand,
the number of antennas for each US and MBS increases. On the
other hand, the density of base stations also increases. The main
advantages of having SBS include the following: (1) high data rate and
efficient spectrum usage; (2) reducing energy consumption; (3) SBS is
a cost-effective solution; (4) the SBS is often plug and play and thus
easy to manage; (5) reducing congestion on the MBS since SBS can
offload the UEs; and (6) improving handoff performance because the
SBS can handle handoff on behalf of its connected UEs.

The SBS can be connected to core network from the backhaul tech-
nologies. Typical backhaul technologies include wired optical fiber,
wireless point to multipoint, and wireless point to point using bidi-
rectional links. The SBS and MBS communicate with each other. The
network management can be achieved by a centralized management
device or using distributed method or the hybrid approach.

Table 5.1 shows the evolution of cellular networks in the past half
a century. Compared to the previous generations, 5G network has
much higher data bandwidth and has heavily utilized cloud-related
technologies in its core network, such that it can better keep up with
the demand and resource elasticity.

Since this book is related to SDN and NFV’s usage in 5G network, in
the following, we will focus on the core network of 5G and present how
these new technologies can be used in the 5G core network. Among

�

� �

�

112 5 SDN and NFV in 5G

Table 5.1 Cellular technology evolution.

Mobile
network 1G 2G 3G 4G 5G

Deployment
time

1970 1980 1990 2000 2014

Data rate 2 kbps 64 kbps 2 Mbps 200 Mbps >1 Gbps
Technology Analog Digital Broadband,

CDMA, IP
IP, LAN,
WAN, WLAN

4G+

Multiplexing FDMA TDMA CDMA CDMA CDMA
Core
network

PSTN PSTN Packet
network

Internet Cloud, SDN,
NFV

the use cases, an important one is SFC, which chains multiple network
functions together. We will start with the SFC discussion and then fol-
lowed by the other use cases in 5G context.

5.2 Service Function Chaining

SFC enables the creation of composite (network) services that consists
of an ordered set of service functions (SFs), which must be applied to
packets and/or frames selected as a result of classification. SFs are net-
work functions responsible for specific treatment of received packets.
Today, these SFs are commonly performed by middle boxes. Some typ-
ical SFs are network address translation, firewall, malware detection,
lawful intercept, load balancing, accounting and policy functions, traf-
fic policing, and so on. In server environments, SFs are virtualized to
operate in virtual machines (VMs) or containers. The implementation
of a single SF can use a set of virtual or physical machines. Examples
of SFC in telecom network are shown in Figure 5.2.

Services are constructed as sequences of SFs forming chains. These
SFCs are an abstract view of a service that specifies the set of required
SFs and the order in which they must be executed. A service forward-
ing graph is used to represent these SFCs where the nodes of the graph
represent SFs. Each node of a graph can be part of one or many abstract
SFCs. A single SF can appear one or more times in a given SFC. A given
SFC may start at the origination point of the forwarding graph or at
any subsequent node in the forwarding graph. SFs can also perform

�

� �

�

5.2 Service Function Chaining 113

UE

UE

UE

UE

FTTH

xDSL

3GPP

CATV

OLTS

BNG

P-GW

CMTS

Cat 1 Cat 2 Cat 3

Access

services

Service

functions

NAT

DPI

FW

LB

TCP-Opt.

Hdr.Enr

Video-Opt

Other application

platforms, for

example IMS

Internet

MWD
Parental

Cntrl

LI

Figure 5.2 SFC in telecom network.

Service

classifier SFF

SFFSF forwarder

SFC proxy

SFC aware SF

SFC unaware SF

SFP

SFP

SFC encapsulation

Underlying infrastructure
compute, network, storage

(virtualized)

SFC mgmt and control plane

SFC orchestrator

Policy engine

VNF manager

SFC/SDN controller

Virtual infrastructure Mgr

Figure 5.3 SFC framework.

branching in the service forwarding graph. It is also possible to have
multiple termination points in an SFC.

There are four main components to the SFC architecture as
illustrated in Figure 5.3. The main components are the service clas-
sification function (SCF), the chain termination function (CTF), the
service function forwarder (SFF), and the SF. The SCF is responsible
for determining the appropriate starting chain for processing each
packet, encapsulating the service packets received at the classifier,
and forwarding the encapsulated packets to the first SFF.

The SCF may be a very simple function (i.e., every packet received on
port 1 will be processed by a particular chain) or may be very complex
(i.e., use deep packet inspection to make the chain decision based on
the progress of the application). We called the former static service
chain and the latter dynamic service chain. Two examples of static
service chain and dynamic service chain are shown in Figure 5.4.

�

� �

�

114 5 SDN and NFV in 5G

A

B

LB

Malicious

Normal

NAT FW

FW

IDS

IDS

Storage

Storage

Campus

Campus

Dynamic

Static

Figure 5.4 Static and dynamic SFC examples.

The SFF is the mechanism used to forward packets along the
chaining path to the SF. Logically, the SFF forms a switching layer
above the existing virtual networking layers. The SFs are elements
that perform specific functions on the packets. SFs are different from
applications since they perform intermediate or middle operations
on packets rather than terminating functions. An SF may be a
chain-aware SF or a chain-unaware SF. Chain-aware SFs are capable
of processing and forwarding using chain-specific encapsulations and
forwarding rules. The CTF is responsible for decapsulating the packet
and sending it along to the destination. CTFs may perform forward-
ing based on the identity of the chain used to process the packet,
addresses within the packet, or meta-data associated with the packet.

5.2.1 OpenFlow-Based SFC Solution

Recently, there have been some efforts on how to steer traffic to
provide inline service chaining. These mechanisms are designed to
explicitly insert the inline services on the path between the endpoints,
or explicitly route traffic through different middleboxes according
to the policies. Simple [106] proposes an SDN framework to route
traffic through a flexible set of service chains while balancing the
load across network functions. FlowTags [107] can support dynamic
service chaining. In this section, we summarize various solutions as
follows:

• Single box running multiple services: This approach consolidates all
inline services into a single box and hence avoids the need for deal-
ing with inline service chaining configuration of the middleboxes.
The operator adds new services by adding additional service cards

�

� �

�

5.2 Service Function Chaining 115

to its router or gateway. This approach cannot satisfy the openness
requirement as it is hard to integrate existing third-party service
appliances. This solution also suffers from a scalability issue as the
number of services and the aggregated bandwidth is limited by the
router’s capacity. The number of slots in chassis is also limited.

• Statically configured service chains: The second approach is to
configure one or more static service chains where each service is
configured to send traffic to the next service in its chain. A router
classifies incoming traffic and forwards it to services at the head
of each chain based on the result of the classification. However,
this approach does not support the definition of policies in a
centralized manner and instead requires that each service to be
configured to classify and steer traffic to the appropriate next
service. This approach requires a large amount of service-specific
configuration and is error prone. It lacks flexibility as it does not
support the steering of traffic on a per subscriber basis and limits
the different service chains that can be configured. Getting around
these limitations would require additional configuration on each
service to classify and steer traffic.

• Policy-based routing: A third approach is to use a router using
policy-based routing and for each service to be configured to return
traffic back to the router after processing it. The router classifies
traffic after each service hop and forwards it to the appropriate
service based on the result of the classification. However, it suffers
from scalability issues as traffic is forced through the router after
every service. The router must be able to handle N times the
incoming traffic line rate to support a chain with N + 1 services.

• Policy-aware switching layer: Recently, it is proposed to use a
policy-aware switching layer for data centers, which explicitly
forwards traffic through different sequences of middleboxes. Each
policy needs to be translated into a set of low-level forwarding rules
on all the relevant switches. Often SDN is used for programming
these policies. We will elaborate more next.

The components of StEERING [108] are shown in Figure 5.5. Our
system uses a logically centralized OpenFlow-based controller to
manage both switches and middleboxes. The black solid line and grey
solid line in Figure 5.5 show two different service paths: the black
line traversing multiple NFs and the grey line bypassing those NFs.
In our design, the service paths are unidirectional, that is, different

�

� �

�

116 5 SDN and NFV in 5G

Internet

OpenFlow(OF) protocol

SFC service protocol

Traffic bypass

Traffic steering

Services can notify the controller with flow resolution events.

The controller can act on these based on predefined policies

and push updates rules to the OF switches

The controller translates the policies into rules that are

pushed to the OF Switches

OF switches on the perimeter classify incoming traffic

and steer it towards the next service in the chain

Inner network forwards traffic between perimeter

OF switches using efficient L2 switching

Services and access node (BNG, router) are

located on the perimeter of the service network.

They connect to the network through OF switches

DPI

FW

SFC controller

Cache

Virus scan

Figure 5.5 OpenFlow-based SFC solution.

service paths are specified for upstream and downstream traffic. The
black solid line in this figure shows a service path for the upstream
traffic through virus scan, DPI, and content cache. The grey solid
line shows a service path that bypasses all the services. StEERING
architecture uses two different types of switches. The Perimeter OF
Switches are placed on the perimeter of the service delivery network.
These switches will classify the incoming traffic and steer it toward
the next service in the chain. These are the switches to which services
or gateway nodes are connected. The inner switches will forward the
traffic using efficient L2 switching. These switches are only connected
to other switches. These switches may or may not be OF switches.

Traffic steering is a two-step process. The first step classifies incom-
ing packets and assigns them a service path based on predefined sub-
scriber and application. The second step forwards packets to a next
service based on its current position along its assigned service path.
This two-step traffic steering process only needs to be performed once
between any two border routers, regardless of the number of switches
that connects them.

We define two types of traffic steering functionalities as follows,
depending on the information needed for identifying the steering
policies.

Basic traffic steering is based only on the Layer 3 and Layer 4
(L3–L4) headers, without any deeper inspection of packets. The
policy is derived from subscriber and application policies. It does
not involve any per-flow forwarding rules or state. Rather, it involves

�

� �

�

5.2 Service Function Chaining 117

setting up forwarding rules a priori, which are derived from
configuration and can apply to an aggregate of many flows (e.g., all
flows to a particular IP address block and/or port number). Basic
traffic steering includes per-subscriber and application configuration,
so that different services may be applied according to individual
subscriber preferences, as well as the other L3–L4 criteria described
earlier. Service chains defined by the basic traffic steering mechanism
are in effect starting from the first packet of a flow (e.g., TCP SYN
packet). Therefore, services that are bypassed using basic steering do
not see this first packet.

Complex traffic steering is based on installing per-flow forwarding
rules dynamically, in response to the first few packets of the flow being
processed by the service. This implies the possibility of using deep
packet inspection to analyze L5–L7 flow contents. Allowing more
granular control over traffic flows based on higher-level application
information, such as URLs, is a key advantage of complex steering.
These per-flow rules are installed by the OF controller in response
to notifications from an inline service such as DPI. Since these rules
are installed reactively rather than a priori, and especially since TCP
flow contents are not available for inspection by DPI until after
the three-way handshake, the first packets of a flow will traverse a
different initial service chain before a final service chain is established
for that flow. So, any services that are only bypassed via complex
steering will see the first packet.

The inline services may (optionally) notify the OF controller that cer-
tain content or metrics have been identified via the StEERING Service
Protocol, shown as the grey dotted lines in Figure 5.5. For instance,
once DPI has recognized or resolved a flow, it can send a notification
to the OF controller.

The data plane (forwarding) can be easily configured and scale as the
number of subscriber/application combination grows. The controller
programs switches with the rules on how to forward each packet. For-
warding decisions are made based on Layer 2 to Layer 4 contents of
packets as well as the ingress port. The key challenge to achieve scala-
bility is to avoid exponential growth (rule explosion) of the forwarding
rules installed in each switch. We make three design choices to reduce
the amount of state on each switch: defining port types to indicate
directions, using multiple tables to decompose multidimensional poli-
cies, and introducing a new metadata type to encode service paths.

�

� �

�

118 5 SDN and NFV in 5G

5.2.1.1 Represent Directions with Port Types
We define two types of ports on perimeter switches: node ports and
transit ports. Node ports are connected to services and gateway nodes
(BNG, GGSN, routers). Transit ports are connected to other perimeter
switches or to inner network switches.

Figure 5.6 shows an example of a service delivery network based on
the StEERING architecture. Switches OF1, OF2, and OF3 are perime-
ter switches. Switch SW1 is an inner switch. The black/grey ports on
the switches are node ports and the white ports are transit ports.

Incoming traffic, either coming in from a gateway node or coming
back from a service, always enters the service delivery network via a
perimeter switch and through a node port. Packets coming in through
node ports are steered toward the next node (service or gateway) in
their assigned service paths. Packets arriving on transit ports are sim-
ply forwarded using their destination MAC address.

All packets traversing the steering network are considered to be
traveling either upstream or downstream. Each node port in the steer-
ing network is either facing upstream or downstream. In Figure 5.6,
downstream-facing ports are colored grey and upstream-facing ports
are colored black. All packets that arrive on a downstream-facing
port are traveling upstream, and vice versa. Packets arriving on
transit ports may be traveling in either direction. In this case, the
direction is known based on the destination MAC address, which
will correspond to either an upstream-facing or downstream-facing
service or router port.

OF1 OF3

S1 S4

S2 S3

OF2

Internet
0 1 2 3 0 1 2 3

0 1 2 3 4

R1 R2SW1

Upstream facing port

Downstream facing port

Transit port

Other remote

networks

Figure 5.6 Illustration of port direction.

�

� �

�

5.2 Service Function Chaining 119

5.2.1.2 Realize Policies with Multiple Forwarding Tables
In theory, a single TCAM-like table could be used to specify the
required functionality, as in OpenFlow 1.0 or pswitch. However,
this would not be a scalable solution because it would involve the
cross-product of subscribers, applications, and ports. Using indirec-
tion and multiple tables, we separate this into multiple steps, resulting
in linear scaling of each table.

Six mandatory tables are used in each OF switch, as shown in rect-
angular in Figure 5.7. We introduce each table as follows.

The first table is the direction table. It uses the ingress port as the
key, and serves two purposes: to determine whether the packet arrived
on a node port or a transit port, and in which direction the packet is
headed.

The key for the MAC table is the packet’s destination MAC address.
Based on the contents of this table, the packet will either be transmit-
ted to a directly connected service or router on a node port, forwarded
out to another transit port, or dropped.

The next table is the subscriber table. It is used to get a subscriber’s
default service set for the current direction. The key is the direction bit
together with the subscriber’s IP address. The subscriber’s IP address
comes from either the source or destination IP address fields, depend-
ing on the direction. This can be a longest-prefix match (LPM) table.
If there is a miss in this table, the default action is to drop the packet.

Following the subscriber table is the application table. In this
context, “application” refers to the remote communication endpoint,
for example, web servers, as identified by the IP address, protocol,
and port number. It is used to modify the subscriber’s default service
set according to any static L3–L4 application policies. Wildcards, pre-
fixes, and ranges are permitted in this table. Based on this information,
specific services can be excluded from the service set or added to it.

MAC

table

Application

table

Path status

table
Subscriber

table
Direction

table

Next dst

table
Incoming

packet

Microflow

table

Virus scan DPI Content cache

Metadata

service set

[011010]

64 bits

1 bit for direction
1 bit for one service

Figure 5.7 Multiple tables and metadata.

�

� �

�

120 5 SDN and NFV in 5G

If there is a miss in this table, the packet is not dropped and the service
set is not modified.

The path status table follows the application table or Microflow
table (will be described in the following section). Its purpose is to
determine which services in the service set have already been applied.
This is important because a packet may traverse the same perimeter
switch multiple times, and it should be treated differently each time.
The ingress port is sufficient to provide this information. If this table
is reached, it means that the packet has arrived on a node port,
connected directly to a service or router. The ingress port then tells us
which service was just applied, if any, and it also tells us the direction.
There is a global ordering of services in each direction (they may or
may not be the exact reverse of each other). Based on the direction
and the previous service, the service set is modified to exclude the
previous service and all other services that precede it.

The final table along the node port path is the next destination table.
It uses the direction and the service set as a key. This is a TCAM-like
table, with arbitrary bitmasks and rule priorities. Based on the direc-
tion bit, it essentially scans the bits in the service set according to the
global service ordering in that direction. The first or highest-priority
service it finds will be the next destination. If the service set is empty,
the next destination will be either the upstream or downstream router,
depending on the direction bit. The next destination may be connected
to the current switch or another one. If the destination is connected to
a different switch, then the destination MAC address is set to the value
corresponding to that service or router and the packet is transmitted
out through an appropriate transit port. If the destination is directly
connected, then the MAC addresses are updated as needed and the
packet is transmitted out to the corresponding node port.

5.2.1.3 Handle Dynamics with the Microflow Table
The Microflow table is added to handle dynamically generated rules.
We assume that operators have static policies for the subscribers and
applications. Therefore, the subscriber table and the application table
can be programmed with static rules. But in real time, operators may
want to add policies dynamically, or add more specific policies, or
higher priority policies. Moreover, policies may be added according
to the results of another middlebox, for example, DPI. We add the
Microflow table to accommodate such dynamics.

�

� �

�

5.2 Service Function Chaining 121

If there is a hit in the direction table, the next table to be consulted
will be the Microflow table. The key for this table is the direction
bit together with the 5-tuples (source and destination IP address,
IP protocol field, and TCP/UDP source and destination port) of the
packet. The table contains exact-match entries used for selective
complex steering of specific TCP/UDP flows. If there is a hit in this
table, the next two lookups will be skipped. Thus, the rules in the
Microflow table have higher priority than the rules in the subscriber
and application tables.

5.2.1.4 Encode Service Chaining with Metadata
Metadata is used in OpenFlow 1.1 to communicate the information
among different tables and associated actions [109]. There are two
types of metadata required in data paths. Some part of metadata is
used as lookup action in further tables and some metadata is required
by actions. Intermediate results from one table are communicated
to other tables using some metadata, which can be used as part of a
subsequent lookup key or be further modified later.

We introduce two new types of metadata, the direction bit that rep-
resents the direction of the flow and the set of inline services to be
applied for the flow under process, called service set. This service set is
encoded as a bit vector, one bit for each possible service. More sophis-
ticated encodings can be used to enable more advanced features such
as load balancing over multiple service instances. OpenFlow 1.1 sup-
ports 64-bit metadata field [109]. This requires one bit for the direction
and leaves up to 63 bits for encoding the service set, allowing a max-
imum of 63 distinct services. The format of the metadata is shown in
Figure 5.7, together with an example. The metadata field can be applied
with arbitrary mask and is updated as follows:

ne𝑤 meta = (old meta&¬mask)||(𝑣alue&mask) (5.1)

The 𝑣alue are the bits to be set and the mask is used to select these
bits, which can be arbitrary 64 bit numbers.

The first bit indicates whether it is upstream (0) or downstream
(1). The following N-bit vector defines the service set, encoding for
N number of services. The encoding in this example specifies that
this packet should traverse the virus scan, DPI, and content cache. In
the data path, this metadata is set, then modified, and finally used to
search for the next service to be applied to this packet.

�

� �

�

122 5 SDN and NFV in 5G

5.2.1.5 Summary of Dataplane Functions
Figure 5.8 depicts the details of the forwarding steps in the data path.
When a packet arrives, using its input port, a lookup in the direction
table determines if this packet needs to be classified at this hop or
should be just transmitted to the next hop. If it is the latter, the packet
is sent out according to its MAC address by performing a lookup in
the MAC table. If a classification is needed at this hop to determine its
service sets, then lookups are performed at the Microflow, subscriber,
and application tables. Each table can independently operate on the
service set. The lookup keys are specified in the brackets below the
table names in the figure. According to the bits set in the service set,
the path status table determines which services have already been tra-
versed, and what is the next service in the chain. Finally, the packet is
set with the right MAC address in the next destination table and sent
out to the corresponding output port.

5.2.2 SFC Monitoring

Regardless of what mechanism is used to implement the service chain-
ing, one important problem is how to verify that the path has been
correctly installed. The goal is to prove that packets of a given flow
have traversed the expected path. Existing reachability measurement
includes ping and traceroute to measure the reachability from a source
to a destination. Ping triggers ICMP replies and traceroute triggers
ICMP TTL expiration messages on the routers along the path. Both
methods do not require two-end control. There has been ping and
traceroute at different protocol layers, for example, MPLS ping.

However, as stated earlier, the traditional ping/traceroute method is
not suitable for the inline service setting. In traditional network, the
loss of ping/traceroute packets indicates the path problem. However,
in our setting, the ping/traceroute packet may not be recognized by the
service (middlebox) in the middle of the path, and thus got dropped.
Thus, we cannot simply say the symptom of lost measurement packets
is due to the path reachability problem. Therefore, we need a different
method to measure the path reachability for inline service chaining.

We define the reachability problem of inline service chaining as fol-
lows. Assuming that a flow f traverses service chain (S1, S2, and S3) in
order, the network topology is shown in Figure 5.9. In this example,
the services are connected to switches F1, F2, and F3, respectively.
The flow enters from the ingress switch F0 and exits the network from

�

� �

�

5.2 Service Function Chaining 123

set dir

direction

table

[in_port]

microflow

table

[dir, sip, dip, proto, sport, dport]

subscriber

table

[dir, sub_ip]

dir == up?

application

table

[dir, app_ip, proto, app_port]

path status

table

[in_port]

next destination

table

[dir, serv_set]

mac

table

[dmac]

sub_ip = sip

app_ip = dip

app_port = dport

sub_ip = dip

app_ip = sip

app_port = sport

miss

hit

hit

miss

yesno

set serv_set

drop

miss

hit

hit

miss

modify serv_set

drop

miss

hit

drop

miss

drop

miss

forward

forward

modify serv_set

hit

hit

set

serv_set

ABBREVIATIONS:

in_port: ingress port

dmac: destination MAC address

sip: source IP address

dip: destination IP address

proto: IP protocol field

sport: source TCP/UDP port

dport: destination TCP/UDP port

dir: direction of traffic

serv_set: inline service set

sub_ip: subscriber IP address

app_ip: application IP address

app_port: application port

NOTE: "forward" means output to

a port and possibly modify source

and destination MAC addresses

Figure 5.8 Data path lookup diagram.

�

� �

�

124 5 SDN and NFV in 5G

F0

Controller

F1

F2 F3

F4
Service

path

Figure 5.9 Example to show service chain reachability.

egress switch F4. The goal is to test that flow f has traversed the path
(F0 − F1 − S1 − F1 − F2 − S2 − F2 − F3 − S3 − F3 − F4). The reach-
ability implies three dimensions as follows:

1) The service path is set up correctly; the traffic traverses service S1,
S2, and S3 in this order.

2) There is no failure at the forwarding path, that is, switches F0–F4
function correctly to forward the packets.

3) There is no failure in the services, that is, services S1–S3 are alive
and send/receive packets correctly.

What it does not imply is that services S1–S3 perform the right
action to the packet. That is, we do not test if the service is functioning
correctly, since this highly depends on the service logic and the
knowledge of the service.

From the description above, we can see that some services may dis-
card packets as a part of their functions, for example, firewalls to stop
flows, rate limiters to drop packets, which may require more careful
interpretation to the monitoring results. We propose that the moni-
toring system analysis module should be aware of the functional logic
of each service and take this into consideration when interpreting the
results.

Similarly, it is possible that some services modify the packet
header fields, such as NAT. If the controller can accurately know the
modification, it can create a mapping of the flows before and after a

�

� �

�

5.2 Service Function Chaining 125

service and still capture the packets for the same flow. If not, then the
controller can use a combination of packet headers and payloads as
the key to capture packets.

5.2.2.1 Handling Multiple Monitoring Tasks
In the second step, we tested that the chain has been implemented
correctly. In the third step, we need to continuously monitor the chain
to make sure there is no failure in any component of the network.

Our key idea is that in this step, we do not need to monitor after
every service in the chain in the second step. Instead, we can monitor
a small number of points in the service chain, or even just monitor the
two ends of a service chain. For example, as shown in Figure 5.10, there
are two service chains, the grey one and the black one.

We define a monitor point to be the point where we install mirroring
rules. Figure 5.10 shows a set of example monitor points in grey circles.
With monitor points of A and B, we can ensure if there is any failure
in any of the services or switches in this part of chain segment. Thus,
given this set of monitor points A–E, if any failure occurs in service S1,
we can detect a reachability failure from monitor point B. If any failure
occurs in service S2 and S3, we will detect it from both monitor C and
monitor E. If we observe that both C and E are affected, but B is not
affected, then it suggests likely that either S2 or S3, or any of forward-
ing elements along this path segment fails. This example shows that

F0

Controller

F1

F2 F3

F4
Service

pathA

B

C

D E

Service chains

Monitor point

Figure 5.10 Example to show monitor points for multiple service chains.

�

� �

�

126 5 SDN and NFV in 5G

Algorithm 1 Monitor point selection algorithm
procedure Select_Monitor_Points(P,G)

create a bipartite graph N with two sets of nodes for all elements in
P and G
for each flow p ∈ P do

for each element f ∈ p do
add edge f → p

end for
end for
Sort element f ∈ N according to its out degree
for each element f ∈ N do

select f to be a monitor point, remove p
if p ∈ N = ∅ then

break;
end if

end for

the paths for multiple service chains may overlap, and we can select a
subset of the points in the path to monitor, in order to reduce the load
for continuous monitoring.

The problem is defined as follows. A service chain is defined as a
sequence of forwarding switches and the services, for example,

p0=F0,F1,S1,F2,S2,F3,S3,F4,
p1=F1,F2,S2,F3,S3,F5.

Given multiple service chains, P=p0,p1, …, pk, we need to select a
minimum number of monitor points so that all the path segments are
covered.

Our key idea is to create a bipartite graph by mapping each monitor
point candidates to the service chain it can cover. Then, the monitor
points are sorted according to the out degree (the number of service
chains it can monitor). We finally greedily select the monitor points
until all the services are covered. The detailed algorithm is shown in
Algorithm 1.

5.2.3 Optical SFC

Optical communications have already enabled terabits-level high-
speed transmission. One promising technology is the dense
wavelength-division multiplexing (DWDM). It allows a single

�

� �

�

5.2 Service Function Chaining 127

fiber to carry tens of wavelength channels simultaneously, offering
huge transmission capacity and spectrum efficiency. On the other
hand, reconfigurable wavelength switching devices have already been
widely deployed in long-haul and metro transport networks, providing
reconfiguration on layer-0 lightpath topologies. We argue that optics
can be used in today’s DCs to the end-of-rack switches, the top-of-rack
switches, as well as the servers. Although switching in the optical
domain may have less agility than the packet-based approaches, it is
suitable for the dynamic level required by service chains consisting of
high-capacity core NFs and use of traffic aggregation.

We propose that optical technology can be used to support traf-
fic steering. In the following, we present a packet/optical hybrid DC
architecture, which enables steering large aggregated flows in an opti-
cal steering domain. Figure 5.11 illustrates an overview of the pro-
posed architecture. The centralized OSS/BSS module interfaces with
an SDN controller and a cloud/NFV manager.

The cloud manager is responsible for cloud resource allocation and
automating the provisioning of VMs for VNFs. It also includes an NFV
management module that handles instantiation of the required VNFs
while ensuring correctness of configuration.

The SDN controller can be a part of the cloud management subsys-
tem or a separate entity. The SDN controller and cloud/NFV manager
perform resource provisioning. On the southbound interface, the SDN
controller uses optical circuit switching to control the network ele-
ments. This interface can be realized using OpenFlow v. 1.4, which has
an extension for optical circuit configuration.

To perform service chaining, the OSS/BSS module needs to request
VNFs and network resources and the policies for resource allocation.
The SDN controller performs network-resource allocation by relying
on a path computation entity that could be integrated with the SDN
controller.

The data center contains both an optical steering domain and a
packet steering domain. The optical steering domain conducts traffic
steering for large aggregated flows. The entry point is an ROADM,
which either forwards a wavelength flow to the optical domain or
sends it to the packet domain for fine-grained processing. After a
wavelength flow has gone through the needed VNFs, it is steered back
to the ROADM. The flow is controlled to route either back to the
packet domain for fine-grained processing, or forward to the optical
domain for high-capacity optical processing.

�

� �

�

P1
P2
P3
P4
P5

Optical steering domain

WSS1

In

Out

Pod

…

Operator’s

access/metro

Internet
Optical steering domain

Pod 1 Pod 2 Pod n

Mux

SDN controller Cloud manager

WSS2 WSS3

P1
P2
P3
P4
P5

P1
P2
P3
P4
P5

Operator’s DC/cloud

Figure 5.11 Optical service function chaining framework.

�

� �

�

5.2 Service Function Chaining 129

5.2.3.1 Service Placement in Optical NFV
As shown above, optical switching and packet switching can be jointly
employed to simultaneously address the efficiency and the flexibility
requirements of VNF chaining. Optical switching serves as the “back-
bone” of a DC network to steer large flows to pods in the form of wave-
length. Upon arrival to the pod, the flow is converted to packet traffic,
and steered across the servers where the needed VNFs are hosted. The
flow will need to be converted back to wavelength after it has been
processed by all the needed VNFs in that given pod. For each pod
the traffic of a given VNF chain visits, an O/E/O conversion is needed
between the pod and the optical steering domain. Note that for small
flows, it could be more efficient to go through their service chain in a
pure packet form, for example, a parallel packet steering domain that
handles small flows.

The data plane of the referenced architecture consists of an opera-
tor’s access/metro networks, and an operator’s DC/cloud. Traffic flows
destined to the same set of core VNFs are aggregated before they are
routed to the DC/cloud. This process is based on the operator’s pol-
icy and prior packet classification using deep packet inspection. Con-
ventional packet technologies can be employed, for example, multi-
protocol label switching (MPLS) or an OpenFlow-based scheme with
packet rules defined. The aggregated flow is then converted by tunable
transceivers into a wavelength flow following the wavelength division
multiplexing (WDM) standard. Multiple wavelength flows can be mul-
tiplexed into the same fiber for transmission efficiency.

O/E/O conversion is an expensive and power-intensive process
that often calls for minimization in traffic engineering and network
resource planning problems. In the referenced architecture, given
sufficient resources, it is desirable to instantiate all the VNFs of an
NF chain within a single pod. This strategy will avoid unnecessary
flow traversals in the optical steering domain. In addition, resource
allocation within a single pod can help reduce the complexity of
resource orchestration in both the DC network and pods’ resources.
However, in reality, it may not always be possible to provision an
entire NF chain within a single pod due to resource constraints. In
a trace published by Google [5], the required resources may include
computation, storage, networking, and so on. When an NF chain
has to visit multiple pods, VNF placement will affect the number of
required O/E/O conversions.

Figure 5.12 shows an example of two different VNF placements
for three NF chains. Placement 1 is better because all the NFs of NF

�

� �

�

130 5 SDN and NFV in 5G

Pod1(3)

NF1 (2)

Pod2(2)

NF chain

1

2

3

Network functions (unified CPU resources)

Pod3(4) Pod4(3)

NF4 (1) NF5 (1) –

–NF6 (3) NF7 (1)

NF2 (2) NF3 (1)

Pod1(3) Pod2(2)

NF chain

1

2

3

Network functions (unified CPU resources)

Pod3(4) Pod4(3)

NF5 (1) –

–NF7 (1)

NF3 (1)NF1 (2)

NF4 (1)

NF6 (3)

NF2 (2)

Figure 5.12 Optical service function chaining placement problem. (a) NF
placement 1 (better) and (b) NF placement 2.

Chain 3 are placed in Pod3, while NF Chain 3 in Placement 2 needs
to visit two pods, resulting in one more O/E/O conversion. This
simple example shows how VNF placement can minimize O/E/O
conversions. The problem of VNF placement can be stated as follows.

Each NF chain has a set of VNFs to be placed in a number of pods.
The VNFs of the same chain placed in the same pod form a placement
group. Eventually, the VNF set is partitioned into one or multiple
placement groups. The optimization objective is to minimize the total
number of placement groups for all the NF chains, respecting the
resource constraints.

A placement group of an NF chain corresponds to a pod the NF
chain needs to visit, and thus one O/E/O conversion is needed. We
make the assumption that a single VNF will never be split into more
than one pod. We also assume sufficient pods, such that all the NF
chains can be accommodated. A variant of this problem can be mini-
mizing NF blocking given a constraint on the number of pods, which
will be investigated in our future study. One drawback of minimiz-
ing O/E/O conversions is that it may limit the freedom of the cloud
manager to choose a specific pod for an NF chain (e.g., for affinity
requirement). Such cases can be addressed by adding specific extra

�

� �

�

5.2 Service Function Chaining 131

Algorithm 2 Optical NFV Placement algorithm
procedure Place(PodList, ChainList, NFList

create a bipartite graph N with two sets of nodes for all elements in
P and G
for each NF chain c in ChainList do

Initiate an empty pod list PodListc.
Sort the NFs needed by c in a descending order by resource
demand

end for
for each unprocessed NF n of c do

Set flag=false
Sort PodListc in an ascending order by available resource and
select the first pod p
if p has enough resources for n then

provision n by p and set flag=true
else

go to the next pod p in PodListc
end if
if flag=false then

add the most-available-resource pod pm of PodList to PodListc.
Provision n by pm.

end if
end for
In PodList, select pod pa with the least resources consumed by NFs
provisioned in Step 3, and pod pb with the most available resources.
Move all the NFs of pa to pb if resources allow and continue on 4a,
otherwise end the algorithm.

constraint or by simply having the operator manually assign VNFs for
the chain in question.

According to the problem statement above, we formulate the prob-
lem of NF placement as integer linear programming (ILP). Since the
ILP formulation has only binary variables, it becomes binary integer
programming (BIP). In this formulation, we assume integrity of NF,
that is, an NF cannot be split into more than one pod.

However, the BIP-based solution does not scale with the size of the
input (e.g., C, M, and N); therefore, we design a heuristic algorithm for
computation efficiency, shown in Algorithm 2. Similar to BIP, Algo-
rithm 2 takes CPU as the most limiting resource and may conduct

�

� �

�

132 5 SDN and NFV in 5G

additional checks to ensure no violation of other resource constraints.
Due to the space limitation, we do not include this part in Algorithm 2.
The high-level idea of Algorithm 1 is, VNF placement for chain c fol-
lows a “best-fit” strategy, that is, for each NF chain c, the required NFs
are first sorted by their resource demand in a descending order. Next,
each time the algorithm selects an unplaced NF of chain c with the
highest resource demand, and places it to the pod in PodListc with the
least (but sufficient) CPU resources. PodListc is initialized as an empty
list for NF chain c, and records all the pods used by c. If PodListc is
empty, or no such pod can be found in PodListc, the algorithm selects
the pod with the most resources from the entire pod list PodList, add
it to PodListc, and repeat VNF placement in Step 3. In this study, we
assume sufficient pods to avoid NF blocking. A variant of the problem
can be minimizing the block ratio of NF placement, given a limited
number of pods. In Step 3, as pod usage is optimized per NF chain
basis, this does not automatically lead to minimization of overall pod
number. Therefore, we introduce Step 4, which conducts an additional
optimization to consolidate pods for all NF chains.

5.2.4 Verification of Service Function Chaining

The traditional approach to detecting configuration errors is to apply
network verification. Unfortunately, current network verification
techniques focus on verifying the flow table rules in Layer 2 and
Layer 3 devices against basic invariants such as loop freeness and no
blackholing [74, 110]. These approaches assume a simple stateless
forwarding model where the action solely depends on a match on
the header fields of each packet. However, many NFs are stateful; the
handling of a packet depends not only on the current packet but also
on previously encountered packets, in some cases, on the content of
packets. For example, a firewall, discussed earlier, allows packets from
external hosts only if it has previously seen an outgoing packet from
internal host for that connection.

One way to extend verification to NFs is using test packets to probe
the NF and determine the set of invariants that are satisfied or vio-
lated given the NF’s current state. These active probing techniques can
detect problems after they are deployed, but we still need static veri-
fication to capture the problems before the deployment. In addition,
these techniques require access to the source code but, due to propri-
etary reasons, most NFs are closed source. An alternate approach is

�

� �

�

5.2 Service Function Chaining 133

not to rely on the source code. Further, to enable Telcos to continue to
provide carrier-grade high availability and reliability, it will be crucial
to verify the correctness of NFs and service chains before deployment
and not after.

Performing verification for NFs and their service chains introduces
several interesting challenges. First, NFs maintain state about each
flow and perform different actions based on the states. The states
also vary largely depending on the type of NF being verified. Existing
verification tools fail to support it because they are built on the
OpenFlow type of forwarding abstraction, where all packets of a flow
are handled the same using a match-action rule. Instead, stateful SFC
verification requires a new forwarding abstraction to consider the
disparate state for individual flows (or connections).

Second, while verifying the functionality of one NF is tractable,
networks consist of many NFs that are chained together. To verify a
service chain, a framework must verify not just one NF but all NFs and
switches that the flows will traverse: essentially, verifying the entire
network. While verifying stateless network devices is already challeng-
ing [74, 110], adding stateful devices further complicates the problem.
Thus, care must be taken to ensure that verification includes accurate
and scalable algorithms that can be applied to realistic networks.

It is the simple switch forwarding abstraction, for example, Open-
Flow, that makes the data plane verification feasible [110] as it hides the
complexity in control plane and represents a unified interface to the
verification. In the context of NFV, unfortunately there is no such sim-
ple abstraction to capture the data plane behavior of an NF. Inspired
by the OpenFlow match-action abstraction, we can use a new NF for-
warding abstraction. It comprises of two parts: a match-action table
and a state machine. The state machine is a natural representation of
stateful processes. The nodes in the state machine are the states each
NF maintains, and the edges capture the conditions that trigger state
transitions. The table contains match-action rules: matching on both
the packet header and the internal states, performing the action on
packets, and changing the internal states. Illustration of the stateful
table is shown in Figure 5.13. Use expert knowledge or by talking with
network operators, we can determine the state machines for the NFs.

We observe that all existing verification tools build some form of for-
warding graphs from the rules and then perform reachability checks
on this graph [110], as graph traversal algorithms are efficient and scal-
able. However, this approach is insufficient for our problem because

�

� �

�

134 5 SDN and NFV in 5G

State Match Action

NEW

WAIT

ESTNF

documentation

NF

configuration

NF

testing/analysis

Expert

knowledge

Figure 5.13 Model used for SFC verification.

the forwarding graphs only capture the forwarding behavior of the
network but not the state transitions of the NFs. On the one hand,
receiving and forwarding a packet may trigger the NF’s state transition.
On the other hand, the state changes may affect the forwarding behav-
ior of subsequent packets of the same flow. Thus, naturally we should
combine them in order to correctly verify the stateful network behav-
ior. We can use a stateful forwarding graph (SFG) that encodes both
the state transitions and forwarding behavior. We develop an algo-
rithm that automatically generates the SFG from our NF tables and
FSMs. Figure 5.14 shows an example for the SFG. In an SFG, each node
is denoted as ⟨H,D, S⟩, representing any packet in the packet header
space H arriving at a network device (switch or NF) D, when the net-
work device is in a particular state S.

H4, SW2

H1, SW1

H1, FW NEW/WAIT EST

Timeout

TCPEstablish

“Active”

state

“Inactive”

state

H1, SW2

NEW/WAIT EST

Timeout

TCPEstablish

H1, SW0

Figure 5.14 Stateful forwarding graph for SFC verification.

�

� �

�

5.3 Core Network Functions Virtualization: vEPC 135

An edge pointing from one node ⟨H1,D1, S1⟩ to another ⟨H2,D2, S2⟩
means when a packet in H1 arrives at D1 with state S1, it will be
modified to H2 and forwarded to a device D2 at state S2. If the device
D1 does not modify the packet header, then H1 is equal to H2. If the
packet H1 does not trigger the state transition, then S1 is equal to
S2. Figure 5.14 shows an example of a path of packets H1 traversing
through D0, D1, and D2.

Essentially, an SFG edge can represent one of two events: (1) a
packet is modified and forwarded to next hop or dropped; (2) a device
is changing its state to the next state. Accordingly, we use two different
types of edges to represent the different events.

Using the SFG, we develop a verification algorithm that is capable of
verifying the dynamic and stateful behavior of the network. The veri-
fication leverages the structure of our NF abstract model, namely due
to the use of state machine, for each flow the NF will be in one and only
one state at any given time. Essentially, only one node in an NF’s state
will be active. By activating different nodes (corresponding to different
states of an NF) during the verification process, we are able to verify
different forwarding scenarios across NFs and states.

5.3 Core Network Functions Virtualization:
vEPC

The 3G packet core (PC) network consist of three interacting
domains: core network (CN), 3G PC terrestrial radio access network
(UTRAN), and UE. The main function of the core network is to
provide switching, routing, and transit for user traffic. Core network
also contains the databases and network management functions. It is
the common packet core network for GSM/GPRS, WCDMA/HSPA,
and non-3GPP mobile networks. The packet core system is used for
transmitting IP packets.

The core network is divided into circuit- and packet-switched
domains. Some of the circuit-switched elements are mobile switching
center (MSC), visitor location register (VLR), and gateway MSC.
Packet-switched elements are SGSN and GGSN. Some network ele-
ments such as EIR, HLR, VLR, and AUC are shared by both domains.

The architecture of the core network may change when new services
and features are introduced. Number portability database (NPDB)
will be used to enable user to change the network while keeping their

�

� �

�

136 5 SDN and NFV in 5G

old phone number. Gateway location register (GLR) may be used to
optimize the subscriber handling between network boundaries. The
primary functions of the packet core with respect to mobile wireless
networking are mobility management and QoS. These functions are
not typically provided in a fixed broadband network, but they are
crucial for wireless networks. Mobility management is necessary to
ensure packet network connectivity when a wireless terminal moves
from one base station to another. QoS is necessary because, unlike
fixed networks, the wireless link is severely constrained in how much
bandwidth it can provide to the terminal, so the bandwidth needs to
be managed more tightly than in fixed networks in order to provide
the user with an acceptable quality of service.

The signaling for implementing the mobility management and QoS
functions is provided by the GPRS tunneling protocol (GTP). GTP has
two components:

• GTP-C: A control plane protocol that supports establishment of
tunnels for mobility management and bearers for QoS management
that matches wired backhaul and packet core QoS to radio link QoS.

• GTP-U : A data plane protocol used for implementing tunnels
between network elements that act as routers. There are two
versions of GTP-C protocol, that is, GTP version 1 (GTPv1-C
and GTPv1-U) and GTP version 2-C (designed for LTE). In this
invention, we focus on GTPv1 and the 3G PC-based system.

Network services are considered end to end; this means from a ter-
minal equipment to another. An end-to-end service may have a certain
QoS that is provided for the user of a network service. It is the user that
decides whether he/she is satisfied with the provided QoS or not. To
realize a certain network, QoS service with clearly defined characteris-
tics and functionality is to be set up from the source to the destination
of a service. In addition to the QoS parameters, each bearer has an
associated GTP tunnel. A GTP tunnel consists of the IP address of
the tunnel endpoint nodes (radio base station, SGSN, and GGSN),
a source and destination UDP port, and a tunnel endpoint identifier
(TEID). GTP tunnels are unidirectional, so each bearer is associated
with two TEIDs, one for the uplink and one for the downlink tunnel.
One set of GTP tunnels (uplink and downlink) extends between the
radio base station and the SGSN, and one set extends between the
SGSN and the GGSN. The UDP destination port number for GTP-U

�

� �

�

5.3 Core Network Functions Virtualization: vEPC 137

is 2152, while the destination port number for GTP-C is 2123. The
source port number is dynamically allocated by the sending node.

5.3.1 Existing Solutions Problems

The 3GPP standards do not specify how the packet core should be
implemented; they only specify the network entities (SGSN, etc.),
the functions each network entity should provide, and the interfaces
and protocols by which the network entities communicate. Most
implementations of the packet core use servers or pools of servers
dedicated to a specific network entity. For example, a pool of servers
may be set up to host SGSNs. When additional signaling demand
requires extra capacity, an additional SGSN instance is started on
the server pool, but when demand is low for the SGSN and high for,
for example, the HSS, the HSS servers will be busy while the SGSN
servers may remain underutilized. In addition, server pools that are
underutilized will still consume power and require cooling even
though they are essentially not doing any useful work. This results in
an additional expense to the operator.

An increasing trend in mobile networks is for managed services
companies to build and run mobile operator networks, while the
mobile operator itself handles marketing, billing, and customer
relations. Mobile operator-managed service companies may have
contracts with multiple competing operators in a single geographic
region. A mobile operator has a reasonable expectation that the
signaling and data traffic for their network is kept private and that
isolation is maintained between the traffic for their network and
for that of their competitors, even though their network and their
competitors’ networks may be managed by the same managed
service companies. The implementation technology described earlier
requires the managed services company to maintain a completely
separate server pool and physical signaling network for each mobile
operator under contract. The result is that there is a large duplication
of underutilized server capacity, in addition to additional power and
cooling requirements, between the operators.

The packet core architecture also contains little flexibility for
specialized treatment of user flows. Although the architecture does
provide support for QoS, other sorts of treatment involving mid-
dleboxes, for example, specialized deep packet inspection or data

�

� �

�

138 5 SDN and NFV in 5G

caching for transcoding or augmented reality applications, is difficult
to support with the current PC architecture. Almost all such applica-
tions require the packet flows to exit through the GGSN, thereby being
detunneled from GTP, and be processed within the wired network.

5.3.2 Virtualization and Cloud-Assisted PC

The basic concept of bringing virtualization and cloud to PC is to
split the control plane and the data plane for the PC network entities
and to implement the control plane by deploying the EPC control
plane entities in a cloud computing facility, while the data plane is
implemented by a distributed collection of OpenFlow switches. The
OpenFlow protocol is used to connect the two, with enhancements
to support GTP routing, while the PC already has a split between
the data and control plane, in the sense that the HLR, HSS, AuC are
pure control plane. The EPC architecture assumes a standard routed
IP network for transport on top of which the mobile network entities
and protocols are implemented.

The split proposed in this document is instead at the level of IP rout-
ing and MAC switching. Instead of using L2 routing and L3 internal
gateway protocols to distribute IP routing and managing Ethernet and
IP routing as a collection of distributed control entities, this docu-
ment proposes centralizing L2 and L3 routing management in a cloud
facility and controlling the routing from the cloud using OpenFlow.
The standard 3G PC control plane entities, SGSN, GGSN, HSS, HLR,
AuC, VLR, EIR, SMS-IWMSC, SMS-GMSC, and SLF are deployed
in the cloud. The data plane consists of standard OpenFlow switches
with enhancements as needed for routing GTP packets, rather than IP
routers and Ethernet switches. At a minimum, the data plane travers-
ing through the SGSN and GGSN and the packet routing part of the
NodeB in the E-UTRAN require OpenFlow enhancements for GTP
routing. Additional enhancements for GTP routing may be needed on
other switches within the 3G PC depending on how much fine-grained
control over the routing an operator requires.

The packet core control plane parts of the gateways for GTP-C
communications, that is, the parts that handle GTP signaling, are
implemented in the cloud as part of the OpenFlow controller. The
control plane entities and the OpenFlow controller are packaged
as VMs. The API between the OpenFlow control and the control
plane entities is a remote procedure call (R3G PC) interface. This
implementation technology is favorable for scalable management of

�

� �

�

5.3 Core Network Functions Virtualization: vEPC 139

the control plane entities within the cloud, since it allows execution
of the control plane entities and the controller to be managed sepa-
rately according to demand. The cloud manager monitors the CPU
utilization of the 3G PC control plane entities and the control plane
traffic between the PC control plane entities within the cloud. It also
monitors the control plane traffic between the UEs and NodeBs,
which do not have control plane entities in the cloud, and the PC
control plane entities. If the 3G PC control plane entities begin to
exhibit signs of overloading, such as utilizing too much CPU time,
or queuing up too much traffic, the overloaded control plane entity
requests that the cloud manager start up a new VM to handle the load.
The cloud manager also provides reliability and failover by restarting
a VM for a particular control plane function if any of the PC control
plane entities should crash, collecting diagnostic data, saving any core
files of the failed PC control plane entity, and informing the system
administrators that a failure occurred. The control plane entities
maintain the same protocol interface between themselves as in the
standard 3GPP 3G PC architecture.

The OpenFlow control plane, shown here as a gray dotted line,
manages the routing and switching configuration in the network. The
OpenFlow control plane connects the SGSNs, the standard OpenFlow
switches, and the GGSN to the OpenFlow controller in the cloud. The
physical implementation of the OpenFlow control plane may be as a
completely separate physical network, or it may be a virtual network
running on the same physical network as the data plane, implemented
with a prioritized VLAN or with an MPLS label-switched path or
even with a GRE or other IP tunnel. The OpenFlow control plane
can, in principle, use the same physical control plane paths as the
GTP-C and other mobile network signaling. The SGSN-Ds and the
GGSN-Ds act as OpenFlow GTP-extended gateways, encapsulating
and decapsulating packets using the OpenFlow GTP extensions.

The NodeBs have no control plane entities in the cloud because the
RAN signaling required between the RNC and the NodeB includes
radio parameters, and not just IP routing parameters. Therefore, there
is no OpenFlow control plane connection between the OpenFlow con-
troller in the cloud and the NodeBs. The NodeBs can, however, act as
OpenFlow GTP-extended gateways by implementing a local control to
data plane connection using OpenFlow. This allows the packet switch-
ing side of the NodeBs to utilize the same OpenFlow GTP switching
extensions as the packet gateways.

�

� �

�

140 5 SDN and NFV in 5G

The operation of the PC cloud works as follows. The UE, NodeB,
SGSN, and GGSN signal to the HLR, HSS, AuC, SMS-GMSC using
the standard EPC protocols, to establish, modify, and delete GTP
tunnels. This signaling triggers procedure calls with the OpenFlow
controller to modify the routing in the EPC as requested. The Open-
Flow controller configures the standard OpenFlow switches, the
Openflow SGSN, and GGSN module with flow rules and actions to
enable the routing requested by the control plane entities. Details of
this configuration are described in the following section.

Figure 5.15 illustrates how PC peering and differential routing for
specialized service treatment are implemented. These flow rules steer
GTP flows to particular locations. The operator, in this case, peers its
PC with two other fixed operators. Routing through each peering point
is handled by the respective GGSN1-D and GGSN2-D. The bottom
two lines with arrow shows traffic from a UE that needs to be routed
to either one or another peering operator. The flow rules and actions to
distinguish which peering point the traffic should traverse are installed
in the OpenFlow switches and gateways by the OpenFlow controller.
The OpenFlow controller calculates these flow rules and actions based
on the routing tables it maintains for outside traffic, and the source
and destination of the packets, as well as by any specialized forwarding
treatment required for DSCP marked packets.

The top line with arrow shows an example of a UE that is obtaining
content from an external source. The content is originally not formu-
lated for the UE’s screen, so the OpenFlow controller has installed flow

P-GW

S-GW

Cloud

manager

Transcoding

appliance

SDN

controller

Figure 5.15 Virtualized PC and SDN routing.

�

� �

�

5.4 Virtualized Customer Premises Equipment 141

rules and actions on the GGSN1, SGSN-D, and the OpenFlow switches
to route the flow through a transcoding application in the cloud. The
transcoding application reformats the content so that it will fit on the
UE’s screen. MSC requests the specialized treatment at the time the
UE sets up its session with the external content source via the IP mul-
timedia subsystem (IMS) or another signaling protocol.

5.4 Virtualized Customer Premises Equipment

Virtualizing and cloudifying the customer premises equipment
(CPE) of enterprises and SMBs is an important NFV use-case. In
practice, most existing vCPE PoCs and deployments are overlaid
on a distributed physical network topology with relatively static
and inefficient resource placement. The current focus has been on
connectivity and functionality, rather than performance and agility.

The static resource placement and cumbersome deployment are a
result of the need to provide high SLAs on top of resources and tools
that were not planned to do so. For example, existing overlay solu-
tions are not aware of the underlay network and its limitations and
are hence vulnerable to reduced service levels due to traffic dynam-
ics. In addition, cloud provisioning was designed with compute opti-
mization in mind, whereas VNFs are often bandwidth- rather than
compute-constrained. Finally, the industry has not yet come up with
NFV-specific SLA monitoring and verification tools that would give
customers the assurances and make them trust the lean and dynamic
distributed systems with carrying production size loads.

Cloudification of the vCPE solution brings three important
advantages:

• Cost-effective management and agility: By cloudifying vCPE, we
decouple provisioning and VNF onboarding, which is complex and
slow today, due to the local provisioning of the physical enterprise
site. This semimanual provisioning may be frequent and dependent
on many access network factors, including changing demands of
the enterprise. In the cloudified solution, the vCPE capacity of all
the enterprise sites is in the distributed carrier cloud, for example,
the provider point of presence (POP) sites.

• High performance at scale: By cloudifying vCPE, we only need
to orchestrate resources per POP for the average demand of the

�

� �

�

142 5 SDN and NFV in 5G

enterprise sites connected to that POP. This includes also Internet
peering capacity and related NAT functions. We also do not need
to explicitly orchestrate for geo redundant vCPE capacity. This can
lead to significant (some estimates are up to 4×) savings in vCPE
resources.

• High availability: By cloudifying vCPE, we can have faster recovery
from vCPE failures. Traffic to failed components is distributed to
cloudified resources avoiding sharp hits and potential domino col-
lapses in case of POP or rack failures.

To achieve the goals of cloudification with scalable, dynamic, and
efficient operations, we must have the following:

• Network underlay awareness: If the demand is randomly distributed
to the POP overlay edges, without the knowledge of the underlay,
congestion and packet loss could occur, resulting in SLA violations.
This happens in the normal course of mapping enterprise flows to
vCPE resources and Internet peering, and it is true when remapping
enterprise flows in case of failures.

• SLA verification: By cloudifying and dynamically mapping traffic
to resources, we gain savings and decoupled manageability, but we
now have to prove per flow that we still meet the enterprise SLA
just as well as with static local provisioning. Per-flow SLA and con-
nectivity verification can also trigger additional VM provisioning
without interrupting services.

• Resource defragmentation: As we decouple orchestration and
the system is running, events will trigger additional allocations,
extended service chains, and compensation for blade or CPU
failures. But because of cloudification, we can constantly run in
the background proceeds that reallocate vCPEs in dense hardware
configuration, gracefully ramping down fragmented VNFs till
they are “garbage collected” freeing hardware for further dense
orchestration.

5.4.1 Requirements

The design of our vCPE platform is based on a set of key requirements
we identified by analyzing current SLA structure and management
models as well as SMEs common pain points. Our approach highlights
elasticity, flexibility, efficiency, scalability, reliability, and openness as
critical components to support the goals of NFV.

�

� �

�

5.4 Virtualized Customer Premises Equipment 143

• Elasticity: Building on top of NFV, vCPE should be able to leverage
the benefit of running instances in the cloud: multiplexing and
dynamical scaling. For multiplexing, it allows the same NF instance
to serve multiple end users in order to maximize the resource
utilization of the NF. On the other hand, for dynamical scaling,
when the demand changes, the network operators should be able
to dynamically increase/decrease the number and/or size of each
NF type to accommodate the changing demands. This in turn will
allow the enterprise customer to benefit from pay-as-you-grow
business models and avoid provisioning for peak traffic.

• Flexibility: The vCPE platform should support subscriber-based,
application-based, device-based, and operator-specific policies
simultaneously. Moreover, adding or removing new NFs should
be easily manageable by the network operator, without requiring
physical presence of technicians on the site or having the enterprise
customers involved. It should also be possible to accurately moni-
tor and reroute network traffic as defined by policy. The platform
should allow NFs to be implemented, deployed, and managed by
operators, enterprises, or third-party software vendors.

• Efficiency: The vCPE should provide the tight NF service-level agree-
ments (SLAs) on performance or availability, identical to the SLAs
offered with dedicated services. For example, the SLA may specify
the average delay, bandwidth, and the availability for all the services
provided to one customer. To support the SLA compliance, the plat-
form should closely monitor the performance for each customer and
dynamically adapt the resources to meet the SLAs.

• Scalability: The vCPE framework should support a large number
of rules and scale as the number of subscribers/applications/traffic
volume grows. The ability to offer a per-customer selection of NFs
could potentially lead to the creation of new offerings and hence
new ways for operators to monetize their networks.

• Reliability: The vCPE framework should abide by NFV reliability
requirements. Service availability as defined by NFV refers to the
end-to-end service availability that includes all the elements in the
end-to-end service (VNFs and infrastructure components) with the
exception of the end-user terminal.

• Openness: The final issue is ensuring that the vCPE framework
should be capable of accommodating a wide range of NFs in a
nonintrusive manner. The vCPE should support open-source-based
and standard solutions as much as possible.

�

� �

�

144 5 SDN and NFV in 5G

5.4.2 Design

In the vCPE architecture, an SME is connected to the Internet
via a lightweight CPE also called SDN-based CPE. Most features
typically found on a CPE, such as NAT, DHCP, and a firewall/security
gateway, are moved to VMs in the operator’s cloud. The lightweight
SDN-based CPE only retains the basic connectivity service, while
being programmable via SDN.

In the operator’s cloud, VMs and physical resources (storage,
compute) are configured via a cloud controller (CC), while network
configuration is managed by an SDN controller. Finally, a moderator
node/application provides a higher level of abstraction over the
cloud and network controllers. Through the moderator, enterprises
can select their desired services and configure service chaining
policies. The enterprise’s IT personnel can access the moderator
through a secured dashboard with a user-friendly graphical interface.
Figure 5.16 shows these components and their interactions, which are
further described as follows.

• The customer portal: Through the customer portal, an enterprise
administrator configures and manages enterprise policies, services,
and network infrastructure. Each enterprise gets its own virtual
infrastructure. VMs are launched for each enterprise and are not
shared between enterprises. The first step is to register the vCPE

Moderator

Cloud controller

SDN controller

SDN-based

CPE IP edge Gateway

Customer portal

Remote web

servers

VNF

vSwitch

HyperV

VNF

vSwitch

HyperV

VNF

vSwitch

HyperV

Figure 5.16 Virtualized CPE.

�

� �

�

5.4 Virtualized Customer Premises Equipment 145

along with its name, IP block, subnets, and so on. Then, through
the same portal, the enterprise specifies how the traffic should be
mapped and steered across the VNFs (i.e., the service chaining
policies).

• The moderator presents services and selected service chains to the
enterprise customer, and abstracts away most details of resource
allocation for VMs and network configuration. Each enterprise has
a catalog of available services. Services can be deployed and chained
in arbitrary order in both upstream and downstream directions.

• The CC is a typical cloud controller (e.g., OpenStack) augmented
with support for flow networks (i.e., flow network extensions added
to the neutron). The moderator translates the list of services and
their connectivity into information about VMs, vSwitches, and links
that the CC can understand. The CC receives the customer’s net-
work architecture and policy specifications, akin to a fine-grained
SLA. It translates the SLA into a list of requirements in terms of
dedicated VMs, storage, different types of network appliances and
business applications, and dedicated links between those. Next, it
maps a constructed virtual topology onto the network abstraction
provided by the SC (SDN controller). Based on SC feedback, the
CC proceeds to create and configure the customer infrastructure
(i.e., instantiate VMs, virtual switches). The CC informs the SC of
the placement of specific network entities, such as virtual switches.

• The SDN controller (SC) is responsible for managing and pro-
visioning the enterprise network topology, by mapping network
requirements to the selected set of physical and virtual network
resources (including customer’s CPE). Such configuration is done
using a combination of different southbound plug-ins, such as
OpenFlow, OVSDB, or NetConf. The SC is an SDN controller with
a developed application for vCPE service chaining. Some of the
extensions require changes to the external interfaces of the SDN
controller. The main extensions for vCPE include service chaining,
connectivity monitoring, location optimization, and network con-
figuration. Service chaining provided the APIs for orchestrator to
create service chaining rules per enterprise. Location optimization
and connectivity monitoring provide APIs to detect network
congestion and connectivity failures. This information is necessary
to enforce network SLAs. Network configuration provides the
orchestrator the possibility to engineer service chaining networks

�

� �

�

146 5 SDN and NFV in 5G

in many different ways. The SC will also inform the CC of optimal
locations to instantiate and interconnect VMs. It also notifies of
link congestion or failure, in order to trigger VM migrations and
network reconfiguration.

• The SDN-based CPE and vSwitch is a lightweight version of
legacy CPE with most NFs stripped out. The virtual switch is a
software-based OpenFlow switch such as Open vSwitch. The VNFs
execute in VMs on top of a hypervisor that is hosted on a server.
Multiple virtual services can share the resources of the same server.
We assume that one instance of a vSwitch is included in each
server for handling the communication between multiple VMs
running on the servers within the data center. Both SDN-based
CPE and vSwitch are programmable by SDN to support the vCPE
applications including service chaining.

5.5 Summary

In this chapter, we start with 5G overview. Then, we present the SFC
and its several aspects, which is a key use case of SDN and NFV in
5G. We then discuss the SDN and NFV’s use cases in the 5G network
as two case studies. In particular, we first discuss their usage scenarios
and challenges in the packet core network. Next, we discuss their usage
in the edge of the telecom network, in the form of customer premise
equipment. Both use cases have been widely studied and are going to
deployment in the real world.

�

� �

�

147

6

Open Source and Research Activities

Network functions virtualization (NFV) has fundamentally changed
the way telecom services are invented and deployed today. In the past,
network equipment providers (NEPs) used to sell both the hardware
and software. With NFV, the two can be sold separately. Network
functions run as software on standardized IT servers. Such separation
creates a more open environment for new services to be innovated. It
allows communications service providers (CSPs) to be more agile and
creative in delivering services, while lowering the cost of development
and rollout.

Given the promising features that NFV can provide, CSPs are
eager to try out and deploy NFVs in a faster pace. Given this trend,
CSPs, NEPs, and NF vendors come together and form open source
consortium to expedite this process using a collaborative manner.
Open source projects such as OpenStack and OpenDayLight (ODL)
are formed. It will encourage greater collaboration among the industry
participants. In such open source projects, the basic technologies can
be shared across the industry via the upstream projects. Companies
can focus on higher-value functions and system integration, which
leveraging the nondifferential functions from open source effort
from both the CSP and the NEP’s perspectives. For the NEPs, they
do not need to spend huge time and development resources on the
undifferentiated hardware and infrastructure layer, which can be
handled by standardized IT and open source software, but instead
focusing on their specific network function. The CSPs can leverage
the higher-quality code from open source for their infrastructure.

Open source efforts is critical for NFV’s growth because it can
provide a solid code base for the basic functionalities so that it
enables rapid innovation of new services. Traditionally, open source

Network Function Virtualization: Concepts and Applicability in 5G Networks, First Edition. Ying Zhang.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

�

� �

�

148 6 Open Source and Research Activities

has been widely used in the IT environment but not the telecom
communication community. Thus, it will be disruptive to every party
in the value chain. But on the other hand, it benefits all industry
participants as it uses the collective intelligence of the ecosystem to
solve the new NFV challenges, which is a critical step toward the NFV
transformation.

In this chapter, we introduce various open source initiatives and
their focus. For each project, we will start with its goals and scopes,
followed by their structure, drivers, and current status.

6.1 Open Source Initiatives

Open source frees the CSPs and NEPs from the development of
baseline features that act as the platform upon which everyone can
innovate. Many research and survey has shown that CSPs are willing
to deploy open source solutions and engage in the open source
projects. In the IT industry, there is a long tradition on open source
projects, such as Linux and Kernel-based Virtual Machine (KVM). In
NFV, several open source projects are developed, each of which has a
different focus. They use the same open source model, that is, having
a single upstream code base. Contributors include CSPs, NEPs, and
NF vendors, each of whom contribute to the common code base in
the areas of their specific expertise. Together, they can provide a wide
spectrum of the projects. Usually by employing this model, the open
source project can leverage a large set of great developers and thus
has better quality of code. In this section, we present five different
open source activities in the area of Software-defined networking
(SDN), NFV, and their usage in telecom networks.

6.1.1 OpenStack

OpenStack is open source cloud computing software that provides
infrastructure as a service cloud deployment for public and private
cloud [111]. It was started in 2010, when rooted from the NASA’s
Nebula platform and Rackspace’s Cloud Files platform. It is written in
python and all of the code for OpenStack is freely available under the
Apache 2.0 license. Currently, the projects are managed by OpenStack
foundation.

The OpenStack architecture is shown in Figure 6.1. It is organized
to cover the three main components in cloud computing: compute,

�

� �

�

6.1 Open Source Initiatives 149

Compute

(Nova)

Storage

(Swift)

Networking

(Neutron)

Openstack

dashboard

(Horizon)

Openstack shared services

App1

Cinder Keystone Celometer

...

...

App2 Appn

Figure 6.1 OpenStack architecture.

storage, and networking. Besides, dashboard projects are important
as they provide administrative interfaces. Their compute component
provisions VMs to provide scalable computation resources. The
storage component uses objects storage for storing VM images and
instances. The networking component provides network services
for inter-VM and external network connectivities. Each component
and management projects have their own codenames. Examples of
some important ones are also shown in Figure 6.1. We highlight some
important points of each project as follows:

• Nova is the main core part of OpenStack essential for IaaS. It is
responsible for running virtual servers. It is used to host and manage
cloud computing systems.

• Swift allows the OpenStack users to store or retrieve files. It stores
data in the form of virtual containers, which is based on Rackspace’s
Cloud Files.

• Neutron is responsible for communication between interface
devices, which are managed by other OpenStack services. It
provides connectivity as a service to the users.

• Keystone is responsible for handling authentication and authoriza-
tion in OpenStack. It maintains and manages the rules for users
of different levels such as operator, admin, and tenants. Keystone
provides authorization token for logging into virtual machines and
manages the privileges of users for various services.

�

� �

�

150 6 Open Source and Research Activities

• Horizon provides web-based interface to the users to interact with
all the OpenStack services, such as managing images, object storage
for volumes, and compute for VMs.

• Clinder is the block storage service. It provides a persistent stor-
age for virtual machines in the form of volumes. These volumes are
attached with the running instance and act as persistent storage for
data storage.

• Celiometer is responsible for various monitoring and metering
functionalities.

6.1.2 OpenDayLight

ODL [112] is a collaborative open source project for developing a
Java-based open source SDN controller. It is hosted by The Linux
Foundation. There are over 50 active members participating in con-
tribution, ranging from NEP, CSP to customers. They can contribute
with new initiatives and submit new feature requests to the technical
stressing community of ODL.

The ODL architecture is developed based on the Open Services
Gateway Imitative (OSGi) framework. Its loosely coupled modular
design allows different modules to be constructed independently.
Figure 6.2 shows its architectural design. It contains three layers: the
top layer is the network applications, the middle layer is the platform
controller layer, and the bottom layer is the network elements. The
platform controller layer is the essential piece to the controller.
It provides the northbound APIs to the applications. This layer is
designed modularly. It contains the following three key components:

• The base network service functions gather all the important
information and statistics about the network. It includes topology
manager that stores the topology, the statistics manager that
collects statistical information from managed switches, the for-
warding rule manager that handles rule installation and updates,
the inventory manager that maintains database of discovered
switches, and finally, the host tracker that tracks the location of end
hosts in the entire network.

• The platform network service functions perform various network-
ing tasks that serve as service to others. For example, the Affinity
metadata service allows application to define certain workloads. The
virtual tenant network manager creates and manages multi-tenant
virtual network. The L2 switch function provides Layer 2 switching

�

� �

�

“HELIUM”

LEGEND

DLUX
VTN

Coordinator

Base Network Service Functions

Topology

Manager

GBP Renderers

OVSDB NETCONF SNBI LISP BGP PCEP SNMP Plugin20C
Southbound Interfaces

& Protocol Plugins

Data Place Elements

(Virtual Switches, Physical

Device Interfaces)

Additional Virtual &

Physical Devices

Open

vSwitches

OpenFlow Enabled

Devices

PCMM/COPS

Stats

Manager

Switch

Manager
FRM

Host

Tracker

OpenStack Service

AAA - AuthN Filter

OpenDaylight APIs (REST)

GBP

Service
SFC AAA

DOCSIS

Abstraction

Controller

Platform

SDNI

Aggregator

SNBI

Service

LISP

Service

OVSDB

Neutron

VTN

Manager

Service Abstraction Layer (SAL)

(Plugin Manager, Capability Abstractions, Flow Programming, Inventory, etc.)

Plugin20C
L2

Switch

OpenStack

Neutron

AAA: Authentication, Authorization & Accounting
AuthN: Authentication
BGP: Border Gateway Protocol
COPS: Common Open Policy Service
DLUX: OpenDaylight User Experience
DDoS: Distributed Denial Of Service
DOCSIS: Data Over Cable Service Interface Specification
FRM: Forwarding Rules Manager
GBP: Group Based Policy
LISP: Locator/Identifier Separation Protocol

OVSDB: Open vSwitch DataBase Protocol
PCEP: Path Computation Element Communication Protocol
PCMM: Packet Cable MultiMedia
Plugin2OC: Plugin To OpenContrail
SDNI: SDN Interface (Cross-Controller Federation)
SFC: Service Function Chaining
SNBI: Secure Network Bootstrapping Infrastructure
SNMP: Simple Network Management Protocol
TTP: Table Type Patterns
VTN: Virtual Tenant Network

SDNI

Wrapper

DDoS

Protection

Network Applications

Orchestrations & Services

OpenFlow

1.0 1.3 TTP

Figure 6.2 OpenDayLight.

�

� �

�

152 6 Open Source and Research Activities

functionalities. The previously mentioned service function chaining
functionality is also in this category.

• The service abstraction layer enables ODL to support multiple
southbound protocols and provide a uniform set of services to
other modules. The device discovery service is provided to form
the network topology.
Finally, we would like to highlight that ODL uses a modeling lan-

guage to formally develop and manage various network elements. It
uses the yet another next generation (YANG) data modeling language
to model network elements, configuration, network states, and so on.
It can also be used to model services, protocols, policies, and tenants. It
defines data models in modules so that data can be imported/exported
between them.

6.1.3 OPNFV

Open platform for NFV (OPNFV) is an open source project that
intends to provide an open source platform for deploying NFV
solutions [113]. Its goal is to promote interoperable NFV solutions
and to create code for NFV implementations. If each NFV vendor
implements its own NFV solution, then the interoperability as an
industry will be very challenging. More specifically, the goals of
OPNFV can be summarized as follows:
• Developing an integrated and tested open source platform that can

be used to build NFV functionality, accelerating the introduction of
new products and services.

• Including participation of leading end users to validate OPNFV
meets the needs of user community.

• Contributing to and participating in relevant open source projects
that will be leveraged in the OPNFV platform; ensure consistency,
performance, and interoperability among open source components.

• Establishing an ecosystem for NFV solutions based on open stan-
dards and software.

• And finally, promoting OPNFV as the preferred open reference
platform.
The initial scope of OPNFV is to provide NFV infrastructure (NFVI),

virtualized infrastructure management (VIM), and APIs to other NFV
elements, which together form the basic infrastructure required for
virtualized network functions (VNFs) and management and network
orchestration (MANO) components.

�

� �

�

6.1 Open Source Initiatives 153

The OPNFV project focuses on the NFVI layer: the NFVI and
VIM layer. NFVI provides basic access to compute, storage, and
network resource from the hypervisor and SDN. The VIM manages
VNF images and deploys them in the virtualized environment. Dif-
ferent from the previous open source projects, OPNFV collaborates
closely with other open source projects. For VIM, its main upstream
project is OpenStack. For its network controller and virtualization
infrastructure, its main upstream is ODL. It uses KVM and Xen for
the virtualization and hypervisor. Its data plane acceleration uses
Data Plane Development Kit (DPDK), another open source project
led by Intel. Its first release includes several projects, covering areas
of automation, fault tolerance, carrier-grade performance improve-
ments, and network management tools. The details and project
outlines are shown in Figure 6.3.

OPNFV works directly with upstream standards bodies such as
European Telecommunications Standards Institute (ETSI) and IETF.
It also directly works with upstream open source projects, including
ODL, OpenStack, KVM and Xen, and many others. It leverages
existing codebases so that it can move to integration in a faster pace.
It integrates existing open source components and identifies gaps to
create new code. Finally, it provides a point of integration, testing,
and performance optimization.

Its main organization includes a Business Board and Technical
Steering Committee (TSC) governance structure separates business
decisions from meritocratic and technical decisions. The board is
in charge of nontechnical issues such as auditing, financing, IP and
legal, and marketing. The TSC is in charge of projects that drive code
development, testing, integration, and reference platform releases.
TSC sets technical directions and holds reviews for all the projects.

Automation Fault

Test

performance
Development

integration

Copper Doctor
Multisite

FastPath

IPv6

Carrier grade

HA for VNF

SFC/VNF FG

vSwitch perf

function test

DPA

VNF function

Tools

Parser

OPNFV platform

bootstrap
Openstack CephLINUX

KVM/

QEMU
OVS

opendaylight

opencontrail

KVM/ d li ht

Deployment tools

Oscar / Fuel / Foreman / Salt stack

Continuous integration (octopus) – OPNFV manifests and scripts

Figure 6.3 OPNFV project overview.

�

� �

�

154 6 Open Source and Research Activities

6.1.4 CORD: Central Office Re-architected as a Data Center

Central Office Re-architected as a Data Center (CORD) is an
open source project led by the Open Network Lab (ON.Lab) and
AT&T [114]. Central offices are of various sizes, supporting a large
number of subscribers. Today, central offices have specialized hard-
ware and software to connect the backhaul networks to cellular
infrastructure. Typically, central offices contribute to high CAPEX
and OPEX, which can be significantly reduced through automation
and virtualization. CORD project aims to replace existing Telco
central office (CO) infrastructure with data center and cloud com-
ponents. It contains three key technologies: SDN, NFV, and Cloud.
In particular, it would like to use COTS servers and COTS switches
as the hardware, which is produced by the Open Compute Project
(OCP). From the software side, it uses the ONOS SDN controller. For
orchestration, it uses XOS, which is a framework for assembling and
composing services. It uses OpenStack to create and manage VMs
and virtual networks. Figure 6.4 shows its relationship with other
open source projects. ONOS is the network operating system that
manages the white box switches. It is a distributed SDN controller.
It is also a platform for network services that implement the key
CORD functions. Docker or OpenStack is used for virtualization
management. The implementation supports both VM and bare metal.

XOS

OpenStack,

docker
ONOS

Services

Control

applications

VMs Containers
Virtual

networks

Figure 6.4 CORD architecture.

�

� �

�

6.2 NFV Research Problems 155

CORD takes a two-step process to transform the central office. The
first step is at the individual device level. It changes the purpose-built
hardware devices to commodity hardware where those software can
run. This is essentially the NFV concept, which disaggregate and
separate software logic from dedicated hardware. The second step
in CORD is to provide a framework that can run those software in a
scalable manner, using cloud and virtualization technologies.

6.2 NFV Research Problems

In 2014, ETSI published a list of topics in NFV that needs further aca-
demic research. The advanced research are needed to bring NFV to the
next step for future development. We outline a few of these important
areas as follows:

• Security of the virtualized infrastructure for network functions:
When moving from dedicated integration box to a virtualized
environment, the virtualized infrastructure needs to be secured
in order to prevent attacks to the upper layer software. While
specialized hardware has high capability and thus is harder to
be attacked, the virtualization infrastructure may be vulnerable
to various exploits and DoS attacks. Making the infrastructure
secure requires further research on encryption, trust computing
hardware, attack detection, and prevention methods.

• Abstractions for networks and carrier-scale network services in
imperative and declarative languages: Network programming
language has received a lot of attention in the SDN world. In NFV,
programmability is rather limited so far. With the microservices
and more and more VNFs exposing northbound APIs, the pro-
grammability of NFV should be improved via designing flexible
and expressive languages.

• Impacts of data plane workloads on computer systems architectures:
As explained earlier, performance can be improved by exploring
shared memory, system on chip (SoC), advanced features in NIC,
and so on. Research should be conducted in this area to understand
the improvement of NFV from hardware perspective.

• Locality and latency in software implementations of large-scale net-
work services: Optimization can be done by exploring the locality of
requests. Moreover, various distributed protocols and consistency

�

� �

�

156 6 Open Source and Research Activities

mechanisms can be used to support a fully distributed NFV imple-
mentation.

• Re-architecting network functions to recognize availability of cloud
technology mechanisms for scalability and reliability: Some of the
network functions, for example, traditional 3GPP and telecom NFs,
are not easy to scale since they are not modular. It is important to
reconsider its design to fit the new cloud architecture.

• Evolution patterns to NFV, management of transition and hetero-
geneous scenarios: Since the network is going to be evolving grad-
ually, the NFV and the traditional platform will coexist and serve
the requests together. Supporting heterogeneous deployment from
the management perspective is important for the deployment and
evolvement of NFV in the real world.

• Portability mechanisms and management across NFVI realizations:
There could be multiple virtualization methods, multiple NFVIs,
and multiple MANO systems. How to support seamless migration
across different platforms is challenging.

• Tools for validating network services and automating their deploy-
ment and management: Telecom services usually have high require-
ment on performance and availability, usually requiring five nines of
availability. Thus, when deploying services in software, the monitor-
ing and validation is important, especially in face of failure, errors,
and human mistakes.

• Applying compositional patterns (network function chains) for
parallelism, control logic, performance, monitoring, and reliability
of network services: Service function chaining can integrate multiple
services together. When moving to microservices, that is, each
VNF has a unit and simple functionality, merging multiple services
together is going to be difficult. Careful design of ordering and
parallelism is critical to the performance and the correctness of the
entire service chain.

6.3 Summary

In this chapter, we review existing open source activities that are
related to SDN, NFV, and can be used in building 5G’s new require-
ments. These projects have wide participants from NEP, CSP, and
customers. They are the key enabler for the whole industry and
ecosystem.

�

� �

�

157

References

1 AT&T, “AT&T SXSWPress Release,”
2 “Global Mobile Network Traffic–A Summary of Recent

Trends,” GSMA Documents, 2011, [Online]. http://
www.gsma.com/spectrum/wp-content/uploads/2012/03/
analysysmasonpaperonglobalmobilenetworktrafficcorectedjuly11
.pdf (Accessed November 2016).

3 “Ericsson Mobility Report,” November 2012, [Online]. http://
www.ericsson.com/res/docs/2012/ericsson-mobility-report-
november-2012.pdf (Accessed November 2016).

4 “Ericsson Mobility Report,” June 2014, [Online]. http://www
.ericsson.com/res/docs/2014/ericsson-mobility-report-june-2014
.pdf (Accessed November 2016).

5 “The Zettabyte Era–Trends and Analysis,” June 2014.
[Online]. http://www.cisco.com/c/en/us/solutions/collateral/
serviceprovider/visual-networking-index-vni/VNI_
Hyperconnectivity_WP.html (Accessed November 2016).

6 “Cisco Visual Networking Index: Forecast and Methodology,
2013–2018,” June 2014. [Online]. http://www.cisco.com/c/
en/us/solutions/collateral/service-provider/ip-ngn-ip-next-
generationnetwork/white_paper_c11-481360.pdf (Accessed
November 2016).

7 R. Sherwood, G. Gibb, K.-K. Yap, G. Appenzeller, M. Casado,
N. McKeown, and G. Parulkar, “Can the production network be
the testbed?,” in Proceedings of the 9th USENIX Conference on
Operating Systems Design and Implementation, OSDI’10, 2010.

8 N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L.
Peterson, J. Rexford, S. Shenker, and J. Turner, “OpenFlow:
enabling innovation in campus networks,” ACM SIGCOMM

Network Function Virtualization: Concepts and Applicability in 5G Networks, First Edition. Ying Zhang.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

http://www.gsma.com/spectrum/wp-content/uploads/2012/03/analysysmasonpaperonglobalmobilenetworktrafficcorectedjuly11.pdf
http://www.gsma.com/spectrum/wp-content/uploads/2012/03/analysysmasonpaperonglobalmobilenetworktrafficcorectedjuly11.pdf
http://www.gsma.com/spectrum/wp-content/uploads/2012/03/analysysmasonpaperonglobalmobilenetworktrafficcorectedjuly11.pdf
http://www.gsma.com/spectrum/wp-content/uploads/2012/03/analysysmasonpaperonglobalmobilenetworktrafficcorectedjuly11.pdf
http://www.ericsson.com/res/docs/2012/ericsson-mobility-report-november-2012.pdf
http://www.ericsson.com/res/docs/2012/ericsson-mobility-report-november-2012.pdf
http://www.ericsson.com/res/docs/2012/ericsson-mobility-report-november-2012.pdf
http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-june-2014.pdf
http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-june-2014.pdf
http://www.ericsson.com/res/docs/2014/ericsson-mobility-report-june-2014.pdf
http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/serviceprovider/visual-networking-index-vni/VNI_Hyperconnectivity_WP.html
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generationnetwork/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generationnetwork/white_paper_c11-481360.pdf
http://www.cisco.com/c/en/us/solutions/collateral/service-provider/ip-ngn-ip-next-generationnetwork/white_paper_c11-481360.pdf

�

� �

�

158 References

Computer Communication Review, vol. 38, no. 2, pp. 69–74,
2008.

9 V. Sekar, N. Egi, S. Ratnasamy, M. K. Reiter, and G. Shi, “Design
and implementation of a consolidated middlebox architecture,” in
Proceedings of USENIX NSDI, 2012.

10 E. N. ISG, “Network Functions Virtualisation (NFV) Architectural
Framework,” ETSI GS NFV 002 V1.1.1, 2013.

11 “VMware Workstation,” [Online]. http://www.vmware.com/ca/en/
products/workstation (Accessed May 2016).

12 “Network Virtualization Platform,” [Online]. http://www.vmware
.com/products/nsx.html (Accessed May 2016).

13 [Online]. http://www.openflow.org/.
14 “Microsoft Azure,” azure.microsoft.com/.
15 “Google App Engine,” cloud.google.com/appengine.
16 “Amazon S3,” aws.amazon.com/s3.
17 R. Buyya, C. Vecchiola, and S. T. Selvi, Mastering Cloud Com-

puting: Foundations and Applications Programming. Morgan
Kaufmann, Elsevier, 2013.

18 K. Ren, C. Wang, Q. Wang, et al., “Security challenges for the
public cloud,” IEEE Internet Computing, vol. 16, no. 1, pp. 69–73,
2012.

19 M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. Katz, A.
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, et al.,
“A view of cloud computing,” Communications of the ACM, vol.
53, no. 4, pp. 50–58, 2010.

20 D. Zissis and D. Lekkas, “Addressing cloud computing security
issues,” Future Generation Computer Systems, vol. 28, no. 3,
pp. 583–592, 2012.

21 “Docker Container,” https://www.docker.com.
22 “runC,” https://github.com/opencontainers/runc (Accessed

July 19).
23 A. Wang, M. Iyer, R. Dutta, G. N. Rouskas, and I. Baldine, “Net-

work virtualization: technologies, perspectives, and frontiers,”
Journal of Lightwave Technology, vol. 31, no. 4, pp. 523–537,
2013.

24 N. M. K. Chowdhury and R. Boutaba, “Network virtualization:
state of the art and research challenges,” IEEE Communications
Magazine, vol. 47, no. 7, pp. 20–26, 2009.

25 N. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862–876, 2010.

http://www.vmware.com/ca/en/products/workstation
http://www.vmware.com/ca/en/products/workstation
http://www.vmware.com/products/nsx.html
http://www.vmware.com/products/nsx.html
http://www.openflow.org/
azure.microsoft.com/
cloud.google.com/appengine
aws.amazon.com/s3
https://www.docker.com
https://github.com/opencontainers/runc

�

� �

�

References 159

26 S. A. Baset and H. Schulzrinne, “An analysis of the skype
peer-to-peer internet telephony protocol,” arXiv preprint
cs/0412017 , 2004.

27 E. K. Lua, J. Crowcroft, M. Pias, R. Sharma, S. Lim, et al., “A sur-
vey and comparison of peer-to-peer overlay network schemes,”
IEEE Communications Surveys and Tutorials, vol. 7, no. 1–4,
pp. 72–93, 2005.

28 P. Knight and C. Lewis, “Layer 2 and 3 virtual private networks:
taxonomy, technology, and standardization efforts,” IEEE Com-
munications Magazine, vol. 42, no. 6, pp. 124–131, 2004.

29 T. Takeda, “Framework and requirements for layer 1 virtual
private networks,” 2007.

30 Alcatel-Lucent, “VPN Services: Layer 2 or Layer 3?,”
31 R. Sherwood, G. Gibb, K. Yap, G. Appenzeller, M. Casado, N.

McKeown, and G. Parulkar, “Flowvisor: a network virtualization
layer,” OpenFlow Switch Consortium, Tech. Rep., 2009.

32 T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda, B.
Fulton, I. Ganichev, J. Gross, N. Gude, P. Ingram, E. Jackson, A.
Lambeth, R. Lenglet, S.-H. Li, A. Padmanabhan, J. Pettit, B. Pfaff,
R. Ramanathan, S. Shenker, A. Shieh, J. Stribling, P. Thakkar,
D. Wendlandt, A. Yip, and R. Zhang, “Network virtualization in
multi-tenant datacenters,” in Proceedings of the 11th USENIX
Conference on Networked Systems Design and Implementation,
NSDI’14, 2014.

33 X. Wang, P. Krishnamurthy, and D. Tipper, “Wireless network
virtualization,” in International Conference on Computing,
Networking and Communications (ICNC), pp. 818–822, IEEE,
2013.

34 H. Wen, P. K. Tiwary, and T. Le-Ngoc, Wireless Virtualization.
Springer-Verlag, Berlin, 2013.

35 L. Doyle, J. Kibiłda, T. K. Forde, and L. DaSilva, “Spectrum with-
out bounds, networks without borders,” Proceedings of the IEEE,
vol. 102, no. 3, pp. 351–365, 2014.

36 R. Chandra and P. Bahl, “MultiNet: Connecting to multiple IEEE
802.11 networks using a single wireless card,” in Proceedings of
IEEE INFOCOM, vol. 2, pp. 882–893, 2004.

37 Microsoft Research, “Connecting to Multiple IEEE 802.11 Net-
works with One WiFi Card,” [Online]. http://research.microsoft
.com/en-us/um/redmond/projects/virtualwifi/ (Accessed August
2016).

http://research.microsoft.com/en-us/um/redmond/projects/virtualwifi/
http://research.microsoft.com/en-us/um/redmond/projects/virtualwifi/

�

� �

�

160 References

38 L. Xia, S. Kumar, X. Yang, P. Gopalakrishnan, Y. Liu, S.
Schoenberg, and X. Guo, “Virtual WiFi: bring virtualization
from wired to wireless,” in ACM SIGPLAN Notices, vol. 46,
pp. 181–192, ACM, 2011.

39 Y. Al-Hazmi and H. de Meer, “Virtualization of 802.11 interfaces
for wireless mesh networks,” in Proceedings of the 8th Interna-
tional Conference on Wireless On-demand Network Systems and
Services (WONS), pp. 44–51, 2011.

40 F. Boccardi, O. Aydin, U. Doetsch, T. Fahldieck, and H. Mayer,
“User-centric architectures: enabling CoMP via hardware virtu-
alization,” in Proceedings of IEEE International Symposium on
Personal Indoor and Mobile Radio Communications (PIMRC),
pp. 191–196, 2012.

41 D. Lee, H. Seo, B. Clerckx, E. Hardouin, D. Mazzarese, S. Nagata,
and K. Sayana, “Coordinated multipoint transmission and recep-
tion in LTE-advanced: deployment scenarios and operational
challenges,” IEEE Communications Magazine, vol. 50, no. 2,
pp. 148–155, 2012.

42 G. Smith, A. Chaturvedi, A. Mishra, and S. Banerjee, “Wireless
virtualization on commodity 802.11 hardware,” in Proceedings the
2nd ACM International Workshop on Wireless Network Testbeds,
Experimental Evaluation and Characterization, pp. 75–82, ACM,
2007.

43 A. Gudipati, D. Perry, L. E. Li, and S. Katti, “SoftRAN: Soft-
ware Defined Radio Access Network,” in Proceedings the 2nd
ACM SIGCOMM Workshop on Hot Topics in Software Defined
Networking, pp. 25–30, ACM, 2013.

44 S. Katti and L. E. Li, “RadioVisor: A Slicing Plane for Radio
Access Networks,” in Presented as Part of the Open Networking
Summit 2014 (ONS 2014), (Santa Clara, CA), USENIX, 2014.

45 K. Nakauchi, K. Ishizu, H. Murakami, A. Nakao, and H. Harada,
“AMPHIBIA: a cognitive virtualization platform for end-to-end
slicing,” in Proceedings of IEEE International Conference on
Communications (ICC), pp. 1–5, IEEE, 2011.

46 Z. Zhu, P. Gupta, Q. Wang, S. Kalyanaraman, Y. Lin, H. Franke,
and S. Sarangi, “Virtual base station pool: towards a wireless
network cloud for radio access networks,” in Proceedings of the
8th ACM International Conference on Computing Frontiers, p. 34,
ACM, 2011.

�

� �

�

References 161

47 J. G. Andrews, S. Buzzi, W. Choi, S. Hanly, A. Lozano, A. C.
Soong, and J. C. Zhang, “What will 5g be?,” arXiv preprint
arXiv:1405.2957 , 2014.

48 S. Singhal, G. Hadjichristofi, I. Seskar, and D. Raychaudhri,
“Evaluation of UML based wireless network virtualization,” in
Proceedings of the Next Generation Internet Networks, 2008.

49 M. Pearce, S. Zeadally, and R. Hunt, “Virtualization: issues, secu-
rity threats, and solutions,” ACM Computing Surveys, vol. 45, no.
2, p. 17, 2013.

50 “Network Functions Virtualisation,” [Online]. http://www.etsi
.org/technologies-clusters/technologies/nfv (Accessed November
2016).

51 L. Cao, P. Sharma, S. Fahmy, and V. Saxena, “NFV-VITAL: a
framework for characterizing the performance of virtual network
functions,” in IEEE SDN-NFV Conference, 2015.

52 A. Gember-Jacobson, R. Viswanathan, C. Prakash, R. Grandl,
J. Khalid, S. Das, and A. Akella, “OpenNF: Enabling innovation
in network function control,” in Proceedings of the 2014 ACM
Conference on SIGCOMM, SIGCOMM ’14, 2014.

53 J. Khalid, A. Gember-Jacobson, R. Michael, A. Abhashkumar,
and A. Akella, “Paving the way for NFV: simplifying middle-
box modifications using statealyzr,” in 13th USENIX Symposium
on Networked Systems Design and Implementation (NSDI 16),
pp. 239–253, 2016.

54 S. K. Fayaz, T. Yu, Y. Tobioka, S. Chaki, and V. Sekar, “Buzz:
Testing context-dependent policies in stateful networks,” in
Proceedings of USENIX NSDI, 2016.

55 B. Tschaen, Y. Zhang, T. Benson, S. Benerjee, J. Lee, and J.-M.
Kang, “SFC-checker: checking the correct forwarding behavior of
service function chaining,” in IEEE SDN-NFV Conference, 2016.

56 R. Stoenescu, M. Popovici, L. Negreanu, and C. Raiciu, “Symnet:
Scalable symbolic execution for modern networks,” in Proceed-
ings of ACM SIGCOMM, 2016.

57 W. Wu, Y. Zhang, and S. Banerjee, “Automatic synthesis of NF
models by program analysis,” in Proceedings of the 15th ACM
Workshop on Hot Topics in Networks, HotNets ’16, pp. 29–35,
2016.

58 M. Weiser, “Program slicing,” in Proceedings of the 5th Interna-
tional Conference on Software Engineering, pp. 439–449, IEEE
Press, 1981.

http://www.etsi.org/technologies-clusters/technologies/nfv
http://www.etsi.org/technologies-clusters/technologies/nfv

�

� �

�

162 References

59 H. Agrawal and J. R. Horgan, “Dynamic program slicing,” in
ACM SIGPLAN Notices, vol. 25, pp. 246–256, ACM, 1990.

60 S. Horwitz, T. Reps, and D. Binkley, “Interprocedural slicing
using dependence graphs,” ACM Transactions on Programming
Languages and Systems (TOPLAS), vol. 12, no. 1, pp. 26–60,
1990.

61 J. Ferrante, K. J. Ottenstein, and J. D. Warren, “The program
dependence graph and its use in optimization,” ACM Transac-
tions on Programming Languages and Systems (TOPLAS), vol. 9,
no. 3, pp. 319–349, 1987.

62 V. Chipounov, V. Kuznetsov, and G. Candea, “S2E: a platform for
in-vivo multi-path analysis of software systems,” ACM SIGPLAN
Notices, vol. 46, no. 3, pp. 265–278, 2011.

63 C. Cadar, D. Dunbar, D. R. Engler, et al., “KLEE: unassisted and
automatic generation of high-coverage tests for complex systems
programs,” in OSDI, vol. 8, pp. 209–224, 2008.

64 M. Dobrescu and K. Argyraki, “Software dataplane verification,”
in 11th USENIX Symposium on Networked Systems Design and
Implementation (NSDI 14), pp. 101–114, 2014.

65 D. Joseph and I. Stoica, “Modeling middleboxes,” IEEE Network -
The Magazine of Global Internetworking, 2008.

66 A. Panda, K. Argyraki, M. Sagiv, M. Schapira, and S. Shenker,
“New directions for network verification,” in LIPIcs-Leibniz
International Proceedings in Informatics, vol. 32, Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, 2015.

67 A. Panda, O. Lahav, K. Argyraki, M. Sagiv, and S. Shenker,
“Verifying reachability in networks with mutable datapaths,” in
Proceedings of USENIX NSDI, 2017.

68 S. Zhu, J. Bi, C. Sun, and C. Wu, “SDPA: Enhancing stateful for-
warding for software-defined networking,” in Proceedings of IEEE
ICNP, 2015.

69 M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan,
“Flow-level state transition as a new switch primitive for SDN,”
in Proceedings of the 2014 ACM Conference on SIGCOMM,
SIGCOMM ’14, 2014.

70 G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState:
programming platform-independent stateful openFlow applica-
tions inside the switch,” SIGCOMM Computer Communication
Review, vol. 44, pp. 44–51, 2014.

71 “http://www.haproxy.org/,”

http://www.haproxy.org/

�

� �

�

References 163

72 “http://www.gedanken.org.uk/software/wwwoffle/,”
73 D. Angluin, “Learning regular sets from queries and counterex-

amples,” Inf. Comput., vol. 75, pp. 87–106, 1987.
74 P. Kazemian, G. Varghese, and N. McKeown, “Header space anal-

ysis: static checking for networks,” in Proceedings of USENIX
NSDI, 2012.

75 H. Mai, A. Khurshid, R. Agarwal, M. Caesar, P. Godfrey, and S.
T. King, “Debugging the data plane with anteater,” ACM SIG-
COMM Computer Communication Review, vol. 41, pp. 290–301,
2011.

76 “https://www.inlab.de/balance.html,”
77 “Snort IDS Web page,” http://www.snort.org/.
78 M. Forzati, C. Larsen, and C. Mattsson, “Open access networks,

the Swedish experience,” in Proceedings of the 12th IEEE Inter-
national Conference on Transparent Optical Networks, pp. 1–4,
2010.

79 S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S.
Stuart, and A. Vahdat, “B4: experience with a globally-deployed
software defined WAN,” SIGCOMM Computer Communication
Review., vol. 43, no. 4, pp. 3–14,2013.

80 T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski,
M. Zhu, R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S.
Shenker, “Onix: a distributed control platform for large-scale
production networks,” in Proceedings of the 9th USENIX Confer-
ence on Operating Systems Design and Implementation, OSDI’10,
2010.

81 “http://onosproject.org/,”
82 P. Sun, R. Mahajan, J. Rexford, L. Yuan, M. Zhang, and A. Arefin,

“A network-state management service,” SIGCOMM Computer
Communication Review, vol. 44, pp. 563–574, 2014.

83 “Network Intent Composition,” https://wiki.opendaylight.org/
view/Network_Intent_Composition:Main.

84 A. AuYoung, Y. Ma, S. Banerjee, J. Lee, P. Sharma, Y. Turner,
C. Liang, and J. C. Mogul, “Democratic resolution of resource
conflicts between sdn control programs,” in Proceedings of the
10th ACM International on Conference on Emerging Networking
Experiments and Technologies, CoNEXT ’14, 2014.

85 T. Zseby, “Netflow,”

http://www.gedanken.org.uk/software/wwwoffle/
https://www.inlab.de/balance.html
http://www.snort.org/
http://onosproject.org/
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main
https://wiki.opendaylight.org/view/Network_Intent_Composition:Main

�

� �

�

164 References

86 Y. Zhang, “An adaptive flow counting method for anomaly
detection in SDN,” in Proceedings of the 9th ACM Confer-
ence on Emerging Networking Experiments and Technologies,
CoNEXT ’13, 2013.

87 X. Liu, M. Shirazipour, M. Yu, and Y. Zhang, “MOZART:
temporal coordination of measurement,” in Proceedings of the
Symposium on SDN Research, SOSR ’16, pp. 13:1–13:12, 2016.

88 http://www.internet2.edu/network/.
89 Y. Zhang, N. Beheshti, and M. Tatipamula, “On resilience of

split-architecture networks,” In Proceedings of IEEE GLOBECOM
2011 - Next Generation Networking Symposium, 2011.

90 The New York Times, “How the Cyberattack on Spamhaus
Unfolded,” http://www.nytimes.com/interactive/2013/03/30/
technology/how-the-cyberattack-on-spamhaus-unfolded.html.

91 “The new threat: Targeted internet traffic misdirection,” http://
research.dyn.com/2013/11/mitm-internet-hijacking/, 2014.

92 A. Keromytis, V. Misra, and D. Rubenstein, “SOS: an architecture
for mitigating DDoS attacks,” IEEE Journal on Selected Areas in
Communications, vol. 22, no. 1, pp. 176–188, 2004.

93 M. T. Goodrich, “Probabilistic packet marking for large-scale IP
traceback,” IEEE/ACM Transactions on Networking, vol. 16, pp.
15–24, 2008.

94 J. Ioannidis and S. M. Bellovin, “Pushback: Router-based defense
against ddos attacks,” in NDSS, 2002.

95 G. Oikonomou, J. Mirkovic, P. Reiher, and M. Robinson, “A
framework for a collaborative ddos defense,” in ACSAC ’06: Pro-
ceedings of the 22nd Annual Computer Security Applications
Conference, pp. 33–42, IEEE Computer Society, 2006.

96 X. Liu, X. Yang, D. Wetherall, and T. Anderson, “Efficient and
secure source authentication with packet passports,” in USENIX
SRUTI, 2006.

97 S. Jain, A. Kumar, S. Mandal, and J. Ong, “B4: experience with a
globally-deployed software defined WAN,” in Proceedings of ACM
SIGCOMM, 2013.

98 A. Kumar et al., “BwE: flexible, hierarchical bandwidth alloca-
tion for WAN distributed computing,” in Proceedings of ACM
SIGCOMM, 2015.

99 C.-Y. Hong et al., “Achieving high utilization with software-driven
WAN,” in Proceedings of ACM SIGCOMM, 2013.

http://www.internet2.edu/network/
http://www.nytimes.com/interactive/2013/03/30/technology/how-the-cyberattack-on-spamhaus-unfolded.html
http://www.nytimes.com/interactive/2013/03/30/technology/how-the-cyberattack-on-spamhaus-unfolded.html

�

� �

�

References 165

100 N. Megiddo, On the Complexity of Linear Programming. IBM
Thomas J. Watson Research Division, 1986.

101 T. A. Forum et al., “Private Network-Network Interface Specifica-
tion Version 1.0 (PNNI 1.0),” 1996.

102 I. Castineyra et al., “The Nimrod Routing Architecture,” in IETF,
RFC, 1992.

103 M. Moradi et al., “SoftMoW: recursive and reconfigurable cellular
WAN architecture,” in Proceedings of ACM CoNEXT , 2014.

104 H. H. Liu et al., “Traffic engineering with forward fault correc-
tion,” in Proceedings of ACM SIGCOMM, 2014.

105 L. Fang et al., “Hierarchical SDN for the hyper-scale,
hyper-elastic data center and cloud,” in Proceedings of ACM
SOSR, 2015.

106 Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu,
“Simple-fying middlebox policy enforcement using SDN,” in
Proceedings of the ACM SIGCOMM, SIGCOMM ’13, pp. 27–38,
2013.

107 S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul,
“Enforcing network-wide policies in the presence of dynamic
middlebox actions using flowtags,” in Proceedings of the USENIX
Conference on Networked Systems Design and Implementation,
pp. 533–546, 2014.

108 Y. Zhang, N. Beheshti, L. Beliveau, G. Lefebvre, R.
Manghirmalani, R. Mishra, R. Patneyt, M. Shirazipour, R.
Subrahmaniam, C. Truchan, and M. Tatipamula, “StEERING: a
software-defined networking for inline service chaining,” in Pro-
ceedings of IEEE International Conference on Network Protocols,
pp. 1–10, October 2013.

109 “OpenFlow 1.1.” http://www.openflow.org/wk/index.php/
OpenFlow_v1.1.

110 A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B. Godfrey,
“VeriFlow: verifying network-wide invariants in real time,” in
Proceedings of USENIX NSDI, 2013.

111 “Openstack,” https://www.openstack.org/.
112 “Opendaylight,” https://www.opendaylight.org.
113 “Opnfv,” https://www.opnfv.org/.
114 “Cord,” https://www.opencord.org/.

http://www.openflow.org/wk/index.php/OpenFlow_v1.1
http://www.openflow.org/wk/index.php/OpenFlow_v1.1
https://www.openstack.org/
https://www.opendaylight.org
https://www.opnfv.org/
https://www.opencord.org/

�

� �

�

�

� �

�

167

Index

a
Amazon Web Services (AWS) 13
anchor point 109
Angluin’s algorithm 58–59
anomaly detection, SDN 80–82
application programming interfaces

(APIs) 37
Asynchronous Transfer Mode (ATM)

25–26

b
base station (BS) 32, 43
basic traffic steering 116–117
binary integer programming (BIP) 131
black box model 58–59
broadcast domain 29

c
carrier-grade properties 45
cellular data growth 1
cellular technology evolution 111, 112
Central Office Re-architected as a Data

Center (CORD) 154–155
chain-aware service function 114
chain-unaware service function 114
cloud computing 8–9, 13

architecture 13–15
benefits and risks 16–17
challenges 16–18
network function virtualization (NFV)

39–40
types of 15–16

cloud-enabled 5G 3

network functions virtualization 5
benefits 6–7
challenges 7–8

software-defined networking
benefits 6–7
challenges 7–8
network routers and switches 5
technical idea of 4

communications service providers
(CSPs) 147

community cloud 15
complex traffic steering 117
consistency models 76
containers, virtualization 21–22
content delivery network (CDN) 44
controller, SDN

Apps on 77–78
components 74
connectivity loss 88
controller to switch connectivity

deploying multiple controllers
91–94

fat-tree network protection 89–90
Internet2 network protection

89–90
link and node failures 93
routing 89–91

correctness 77
coupling 77
distributed NIB 76
downstream vs. upstream nodes

94–95
ecosystem 77

Network Function Virtualization: Concepts and Applicability in 5G Networks, First Edition. Ying Zhang.
© 2018 John Wiley & Sons, Inc. Published 2018 by John Wiley & Sons, Inc.

�

� �

�

168 Index

controller, SDN (contd.)
hot-standby model 76
hybrid model 76
link failure 88
network information base (NIB) 75
node vs. link failure 94–95
overview of 73–74
and switch connection 87–88
switch failure 88

control node (cNode) design 104–105
control plane software 69–71
CORD project see Central Office

Re-architected as a Data Center
(CORD)

d
Data Plane Development Kit (DPDK)

153
data plane software

control and 69–71
software-defined networking

both directions 80
controller-to-switch 80
OpenFlow 78–79
switch-to-controller 80
ternary content addressable memory

78
data security and privacy 17
dense wavelength-division multiplexing

(DWDM) 126–127
deploying multiple controllers 91–94
deterministic finite automata (DFA) 59,

61
digital subscriber line (DSL) 44
distributed denial-of-service (DDoS)

96, 100–101
distributed hash table (DHT) 76
Docker containers 21–22
downstream vs. upstream nodes 94–95
dynamic network virtualization 35

e
European Telecommunications

Standards Institute (ETSI) 38,
40, 153

f
failure recovery, SDN 84–86
fat-tree network protection 89–90

Fault Configuration Accounting
Performance Security (FCAPS)
network 23

fault tolerance 17–18
5G mobile networks

advent of 37
anchor point 109
architecture 110–112
macrocell base station 110, 111
objectives 110
smallcell base station 110, 111

fixed access network function 44
flexible interface 81
flow-based virtualization 33–34
FlowTags 114
4G technology 2

g
Go language 21
guaranteed performance, cloud

computing 16–17

h
Hardware-as-a-Service (HaaS) 14
hardware-level virtualization 20–21
hierarchical control structure 103–104
high-level box view 51
host-based network virtualization

31–32
host operating system 20, 21
host virtualization

containers 21–22
hardware-level virtualization 20–21
java virtual machine (JVM) 21
overview 18–20

hot-standby model 76
hybrid cloud 16
hybrid model 76

i
infrastructure as a service (IaaS) 14, 42
infrastructure layer 14 see also

virtualization, layer
infrastructure-level controller 30–31
integer linear programming (ILP) 131
interactive interface 81
inter-data centers 72–73
Internet 1, 3

�

� �

�

Index 169

Internet layer 24
Internet2 network protection 89–90
Internet of things (IoT) devices 2
Internet service provider (ISP) 98
interoperability 18
IP multimedia subsystem (IMS) 43
IP network 1
IPSec 26

j
java virtual machine (JVM) 21

k
Kernel-based Virtual Machine (KVM)

148, 153

l
Layer 2 VPNs (L2VPN) 27
Layer 3 VPNs (L3VPN) 27–28
leased lines 25
link layer technologies 25–26
load balancer code 53–55

m
Machine-to-Machine (M2M)

communications 2
management and network orchestration

(MANO) 46, 47
middlebox networks 39
mixed integer programming (MIP) 63
mobile core network 43
mobile data traffic 2
mobile network infrastructure 2
mobile virtual network operators

(MVNOs) 33
modeling language design 52
multi protocol label switching (MPLS)

26
multitenancy 8

n
network densification process 111
network equipment providers (NEPs)

147
network function (NF) 5

application model 60–61
black box 58–59
high-level box view 51

manually generated models 51–52
modeling language design 52
overview of 50–51
source-code-based 56–57

(see also source-code-based
modeling)

state analysis 53
network function virtualization (NFV)

5
architecture 38–42
benefits 6–7, 44–45
challenges 7–8, 45–46
cloud architecture 39–40
description 9–10
NF modeling

applications 60–61
black box 58–59
source-code-based 52–57

open source projects 148
orchestration

characterization 47–49
improvements 49–50

research problems 155–156
use cases 42–45
VNF placement 61–65

network hypervisor 31
network information base (NIB)

employs distributed system 76
software-defined networking 75

network interface cards (NICs) 19, 34
network measurement, SDN 82–84
network traffic 23
network virtualization 9, 22

host-based 31–32
overlay networks 24
switch-based SDN 29–31
virtual private networks (VPNs)

24–27
virtual sharing networks (VSNs)

27–29
next-generation 5G mobile networks

see also service function chaining
(SFC)

anchor point 109
architecture 110–112
macrocell base station 110, 111
objectives 110
smallcell base station 110, 111

�

� �

�

170 Index

next-generation memory interconnect
(NGMI) 49

NF see network function (NF)
NFV see network function virtualization

(NFV)
NFV infrastructure (NFVI) 40
node vs. link failure 94–95

o
O/E/O conversion 129, 130
open APIs 71
Open Container Initiative 21
OpenDayLight (ODL) 147

architectural design 150, 151
base network service function 150
platform network service functions

150, 152
service abstraction layer 152
YANG modeling language 152

OpenFlow (OF)
component of 79
control plane 71
protection using 96
protocol 10
SDN data plane 78–79

OpenFlow-based SFC solution
data path lookup diagram 122, 123
dataplane functions 122
direction table 119
metadata 121
Microflow table 119–121
next destination table 120
node ports 118
path status table 120
policy-aware switching layer 115
policy-based routing 115
port direction, illustration of 118
single box running multiple services

114–115
statically configured service chains

115
StEERING components 115, 116
subscriber table 119
traffic steering process 116–117
transit ports 118

OpenFlow-enabled switch 4
Open platform for NFV (OPNFV)

architecture 42

Business Board 153
goals of 152
NFV infrastructure 152, 153
project overview 153
Technical Steering Committee (TSC)

153–154
virtualized infrastructure management

152, 153
Open Services Gateway Imitative (OSGi)

framework 150
Open source projects see OpenDayLight

(ODL); OpenStack
CORD project 154–155
Open platform for NFV 152–153

OpenStack 147
architecture 148–150
Celiometer 150
Clinder 150
description 148
Horizon 150
Keystone 149
Neutron 149
Nova 149
Swift 149

operational support systems (OSS) 41
operation and management (OAM)

messages 4
optical SFC

architecture 127, 128
dense wavelength-division

multiplexing 126–127
packet/optical hybrid DC architecture

127, 128
service placement, in Optical NFV

129–132
orchestration 46

improvements 49–50
management and network

orchestration 46–47
next-generation memory interconnect

49
NFV 41, 46
virtualized network function 47–48

overlay networks 24
overprovisioning 35

p
peer-to-peer (P2P) networks 24

�

� �

�

Index 171

physical network 23
platform as a service (PaaS) 43
prefix hijacking 101
private cloud 15–16
program slicing 52–53
protocol-based virtualization 34
public cloud 15
public switched telephone network

(PSTN) 24

q
quality of service (QoS) 23, 67

r
radio access technologies (RATs) 35
resource management 18
RF frontend 34
router vs. switch 27–28
routing networks 89–91
routing tree controller 93
runC 21

s
sandbox test, security 19
security attack prevention

detection/mitigation interface 98
distributed denial-of-service 96–97
programmable attack 98
software defined security service

(SENSS)
architecture 98
DDoS 100–101
messages 99
prefix hijacking 101
route modification 100
route query 99–100
traffic filter 100
traffic query 99

victim-oriented 97–98
service function chaining (SFC) 38

chain termination function 113, 114
framework 113
monitoring

inline service chaining 122, 124
monitor point selection algorithm

126
multiple service chains 125–126

OpenFlow-based solution (see
OpenFlow-based SFC solution)

optical SFC
architecture 127, 128
dense wavelength-division

multiplexing 126–127
packet/optical hybrid DC

architecture 127, 128
service placement, in Optical NFV

129–132
service classification function 113
service function forwarder 113, 114
static and dynamic service chain 113,

114
in telecom network 112, 113
verification of 132–135

service-level agreement (SLA) 7
content delivery network 44
guaranteed performance 17
NFV 45

SFC see service function chaining (SFC)
SFC-Checker 60
Software-as-a-Service (SaaS) 14
software-defined networking (SDN)

advent of 23
architecture 69–72
benefits 6–7
challenges 7–8
checkpoint system 86–87
components 79–80
controller

apps on 77–78
deployment 75–76

data plane 78–80
description 10
host-based 31
management

anomaly detection 80–82
controller placement 86–89
downstream vs. upstream nodes

95–96
failure recovery 84–86
network measurement 82–84
node vs. link failure 94–95
switch connectivity 89–94

management and network
orchestration 47

motivations 68–69

�

� �

�

172 Index

software-defined networking (SDN)
(contd.)

network routers and switches 5
security attack prevention

SENSS architecture 98–100
SENSS uses 100–101

switch-based 29–31
technical idea of 4
traffic engineering (TE)

design challenges 105–106
TE architecture 103–105
TE solution overview 106–107

use cases of 72–73
software defined security service (SENSS)

architecture 98
DDoS 100–101
messages 99
prefix hijacking 101
route modification 100
route query 99–100
traffic filter 100
traffic query 99

software-defined TE solution (SdnTE)
102–104

source-code-based modeling
extraction 56–57
load balancer code 53–55
models 55–56
NF state analysis 53
program slicing 52–53
symbolic execution 53

spectrum virtualization 34
stand-alone virtual machine 20
stateful forwarding graph (SFG), for SFC

verification 134, 135
switch-based SDN virtualization 29–31
switch connectivity, controller

deploying multiple controllers 91–94
fat-tree network protection 89–90
Internet2 network protection 89–90
link and node failures 93
routing 89–91

symbolic execution 53

t
ternary content addressable memory

(TCAM) 4, 78
3G PC control plane entities 138, 139

total cost of ownership (TCO) 68
traffic engineering (TE)

architecture
control node design 104–105
hierarchical control structure

103–104
scalability benefit 105

design challenges 105–106
software-defined TE solution 102
solution overview 106–107

traffic filter 100
traffic flow virtualization 33
traffic query 99, 100
traffic steering process 116–117

u
union file system (UFA) 22
user-level controller 30

v
virtual circuits 26
virtual home environment 43–44
virtualization

and cloud-assisted PC 138–141
host virtualization

containers 21–22
hardware-level virtualization

20–21
java virtual machine 21
overview 18–20

layer 14
network function virtualization (see

network function virtualization
(NFV))

network virtualization 9, 22
host-based 31–32
overlay networks 24
switch-based SDN 29–31
virtual private networks 24–27
virtual sharing networks 27–29

techniques 20–21
wireless virtualization 32

flow-based 33
interference 35
isolation 35
latency 36
network management 35
overprovisioning 35

�

� �

�

Index 173

protocol-based 34
spectrum-based 34
WLAN card 34

virtualized customer premises
equipment (vCPE)

advantages 141–142
design 144–146
efficiency 143
elasticity 143
flexibility 143
network underlay awareness 142
openness 143
reliability 143
requirements 142–143
resource defragmentation

142
scalability 143
SLA verification 142

virtualized infrastructure manager 41
virtualized network function (VNF)

forwarding graphs 43
management 41
manager 46–47
NFV characterization 47–48
placement problem 63

constraints 64
decision variables 64
mixed integer programming 63
model objectives 64
model parameters 63
solution procedure 64–65
virtual network embedding 62

platform as a service 43
as service 43
types of 39
virtual machine 38

virtualized PC and SDN routing 140
virtual local area networks (virtual LANs)

29
virtual machine(VM)

application migration 19
hiding hardware details 19
host virtualization 18
multiple operating environments 19
sandboxes 19

virtual machine monitor (VMM) 20–21
virtual network embedding (VNE) 62
virtual private networks (VPNs)

high-level architecture 25
IP-based 26
layer 2 VPNs 27
layer 3 VPNs 27–28
leased lines 25
link layer 25–26
multiprotocol label switching (MPLS)

26
wide area network (WAN) 25

virtual sharing networks (VSNs)
broadcast domain 29
virtual LANs 29

Virtual Tunnel End Point (VTEP) 23
VirtualWiFi 34
VMware 9
VNF see virtualized network function

(VNF)
voice over IP (VoIP) 24

w
wide area network (WAN)

25, 72
wireless NIC 34
wireless virtualization 32

flow-based 33
interference 35
isolation 35
latency 36
network management 35
overprovisioning 35
protocol-based 34
spectrum-based 34

WLAN cards 34

x
Xen 153

y
yet another next generation (YANG) data

modeling language 152

�

� �

�

WILEY END USER LICENSE AGREEMENT
Go to www.wiley.com/go/eula to access Wiley’s ebook EULA.

www.wiley.com/go/eula

	Cover
	Title Page
	Copyright
	Contents
	List of Figures
	List of Tables
	Preface
	List of Abbreviation and Acronyms
	Chapter 1 Introduction
	1.1 Cloud‐Enabled 5G: SDN and NFV
	1.1.1 Benefits
	1.1.2 Challenges

	1.2 Supporting Technologies
	1.2.1 Cloud Computing
	1.2.2 Network Virtualization
	1.2.3 Network Functions Virtualization
	1.2.4 Software‐Defined Networking

	1.3 Outline of Chapters

	Chapter 2 Virtualization and Cloud Computing
	2.1 Cloud Computing
	2.1.1 Architecture
	2.1.2 Types of Clouds
	2.1.3 Challenges

	2.2 Host Virtualization
	2.2.1 Overview
	2.2.1.1 Benefits
	2.2.1.2 Use Cases

	2.2.2 Virtualization Techniques
	2.2.2.1 Hardware‐Level Virtualization
	2.2.2.2 Other Virtualization Techniques

	2.2.3 Containers

	2.3 Network Virtualization
	2.3.1 Overlay Networks
	2.3.2 Virtual Private Network
	2.3.3 Virtual Sharing Networks
	2.3.4 Switch‐Based SDN Virtualization
	2.3.5 Host‐Based Network Virtualization

	2.4 Wireless Virtualization
	2.5 Summary

	Chapter 3 Network Function Virtualization
	3.1 NFV Architecture
	3.2 NFV Use Cases and Examples
	3.3 NFV Challenges
	3.4 NFV Orchestration
	3.4.1 NFV Performance Characterization
	3.4.2 NFV Performance Improvements

	3.5 NF Modeling
	3.5.1 Source‐Code‐Based Modeling
	3.5.1.1 Background
	3.5.1.2 Modeling Example
	3.5.1.3 Models
	3.5.1.4 Model Extraction Overview

	3.5.2 Black Box Modeling
	3.5.3 Modeling Applications

	3.6 VNF Placement
	3.7 Summary

	Chapter 4 Software‐Defined Networks Principles and Applications
	4.1 SDN Overview
	4.1.1 Motivations
	4.1.2 Architecture
	4.1.2.1 Separation of Control and Data Plane
	4.1.2.2 Northbound Open APIs
	4.1.2.3 Southbound Control/Data Plane Protocol
	4.1.2.4 Applications

	4.1.3 Use Cases

	4.2 SDN Controller
	4.2.1 Controller Deployment Choices
	4.2.2 Apps on SDN Controller

	4.3 SDN Data Plane
	4.4 SDN Management
	4.4.1 Anomaly Detection
	4.4.2 Network Measurement
	4.4.3 Failure Recovery
	4.4.4 Controller Placement
	4.4.4.1 A Special Study: Controller to Switch Connectivity
	4.4.4.2 Node Versus Link Failure
	4.4.4.3 Downstream Versus Upstream Nodes

	4.5 SDN Security Attack Prevention
	4.5.1 SENSS Architecture
	4.5.2 SENSS Uses
	4.5.2.1 DDoS
	4.5.2.2 Prefix Hijacking

	4.6 SDN Traffic Engineering
	4.6.1 TE Architecture and Solution Overview
	4.6.1.1 Hierarchical Control Structure
	4.6.1.2 Control Node Design
	4.6.1.3 Scalability Benefit

	4.6.2 Design Challenges
	4.6.3 TE Solution Overview

	4.7 Summary

	Chapter 5 SDN and NFV in 5G
	5.1 5G Overview
	5.1.1 Architecture

	5.2 Service Function Chaining
	5.2.1 OpenFlow‐Based SFC Solution
	5.2.1.1 Represent Directions with Port Types
	5.2.1.2 Realize Policies with Multiple Forwarding Tables
	5.2.1.3 Handle Dynamics with the Microflow Table
	5.2.1.4 Encode Service Chaining with Metadata
	5.2.1.5 Summary of Dataplane Functions

	5.2.2 SFC Monitoring
	5.2.2.1 Handling Multiple Monitoring Tasks

	5.2.3 Optical SFC
	5.2.3.1 Service Placement in Optical NFV

	5.2.4 Verification of Service Function Chaining

	5.3 Core Network Functions Virtualization: vEPC
	5.3.1 Existing Solutions Problems
	5.3.2 Virtualization and Cloud‐Assisted PC

	5.4 Virtualized Customer Premises Equipment
	5.4.1 Requirements
	5.4.2 Design

	5.5 Summary

	Chapter 6 Open Source and Research Activities
	6.1 Open Source Initiatives
	6.1.1 OpenStack
	6.1.2 OpenDayLight
	6.1.3 OPNFV
	6.1.4 CORD: Central Office Re‐architected as a Data Center

	6.2 NFV Research Problems
	6.3 Summary

	References
	Index
	EULA

