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Foreword - 1

Cryptography and networking are topics that have gathered much momentum in recent days. To unravel 
the hidden has always been a fascination for mankind. Hacking, which is a streak of such fascination, 
is a big threat to the digital world. Cryptography is as old as hacking and its importance in today’s 
world grows by leaps and bounds with each passing day. Prolific development in this interesting field 
has attracted academic attention and its versatility has made it mandatory for the younger technocrats 
to gain a fair exposure to the subject. 

This book consists of 16 chapters, which give a holistic understanding towards the thrust area. The 
first 10 chapters focus on cryptography techniques and algorithms and the next 6 chapters discuss 
the applications of cryptography techniques in computer networks. The book starts with the wake of 
cryptography and the pioneer ideas in the field dating back to sixteenth century and makes agile strides 
towards contemporary topics of interest in this exciting field. I record my appreciation of the authors 
for their meticulous work, which is a significant contribution towards the growth of the field. 

Dr A. Vadivel 

Associate Professor

Department of Computer Applications

National Institute of Technology

Tiruchirappalli
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Foreword - 2

The book Cryptography and Network Security integrates insights about modern cryptography 
techniques and their underlying mathematical foundations. This is evident from the rich literature 
on mathematical illustrations and applications of the various layers of network, as detailed in the 
book. Anyone interested in security protocol development in the sensitive application domain would 
find Cryptography and Network Security unique in its methodology and would be enlightened by its 
contents. Discussions on classical encryption techniques, advanced encryption standard, public key 
cryptography, elliptic curve cryptography, digital signature algorithms and authentication applications, 
network security, IP security and application layer security are the major highlights of the book. The 
book is a repository of wonderful examples and programming exercises in Java based on the learning 
experience of the authors themselves and the influence of their students and peers on them. 

This book ends with a complete glossary and references related to security and authentication. The 
security exemplars described in the book are inspirational and reveal that gifted individuals can make 
a difference in the security world. Cryptography and Network Security provides a roadmap to chan-
nel and learn authentication schemes and security standards and is indeed a treasure for gifted young 
students, faculty and the research scholars. Teachers will find this volume a gold mine of effective 
classroom strategies that could be used to develop the selected domain. The authors have done a com-
mendable job of making complex concepts accessible to any kind of reader. 

Dr A. Kannan

Professor and Head  
Department of Information Science and Technology  

College of Engineering – Guindy Campus  
Anna University  

Chennai
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Preface

Today, most people are already familiar with security related concepts due to the availability of 
ubiquitous technology and exposure to the Internet. Digital marketing trends reflect the use of many 
cryptographic and network security related concepts in day-to-day activities. This aspect motivated 
us to bring technical knowledge to common people who are interested in knowing the internal 
functionality of online transactions. 

This book delineates the essential and underlying principles of cryptography and network security 
for non-specialist readers also. It targets readers who are interested in an elaborate description about 
the subject and balances theory with sound practical approaches. We strongly believe that this book 
will help the readers to realise what happens technically in real-time online transaction scenarios. 

The book would also be useful for experts since during the writing process, unknown technical 
concepts have been retrofit for the benefit of known users and vice versa. The pedagogy followed in the 
book induces an interest in the reader to explore more about the subject. The beginning portion of the 
book explains basic concepts clearly for the first-time learners without intimidating them. A literature 
survey made by our research team concluded that there is a need for a new cryptographic text book to 
discuss recent advancements in this field. Hence, this book was written from the reader’s perspective 
and highly supported to notify recent versions of protocols and latest terminologies. Such notifications 
have been presented in an easy adoptable way. In addition, one of the book’s strengths is that it inter-
prets leading edge concepts using an approach easily accessible to the reader.

This book offers an excellent introduction to the field of cryptography and network security concepts 
because of its comprehensive and precise structure. We encourage the reader to read all chapters of 
the book to understand the topics in their entirety. At the same time, the book can also be used as a 
textbook at the graduate and post-graduate level since it covers both fundamental theory and new 
technologies. It covers almost all technical concepts of cryptography and network security step by step 
covering all of them to the requisite detail. The necessary backgrounds to illustrate the principles are 
presented in a well-organised manner. In addition, Java implementations of almost all cryptographic 
algorithms are laid out in the book.

The book discusses the broad spectrum of cryptography and network security in a distributed technical 
environment by analysing the basics of the subject such as mathematics of modern cryptography, authen-
tication techniques, etc. while also delving into examples that suit the present-day working environment. 
Materials for the book were collected from various academic and non-academic technical experts and 
collated to showcase important recent advances in the area of cryptography and network security. 



xxii  Preface

ORgAnISATIOn OF THE BOOK

This book plays a dual role as reference book and text book. The readers are graduate, post-graduate 
students and technical experts. This section offers an overview and suggestions to derive the best out 
of this book. 

Chapter 1 provides an insight into the fundamental ideas about cryptography and it needs to be read 
first by beginners. This chapter discusses various security trends, services and several types of attacks 
on network security recorded in literature. It may not be necessary for the subject experts to go through 
this chapter.

Chapter 2 ensures a fair degree of mathematical knowledge, and its application in cryptographic 
field. It provides some discussions on basic number theory and solutions for congruence, which are 
necessary for the analytics of cryptographic algorithms. The upcoming chapters build on one another 
to provide a comprehensive understanding of the subject.

Chapter 3 elucidates the conventional encryption model, substitution and transposition techniques, 
which are useful to learn about modern ciphers. Essential illustration and examples are provided for 
the underlying concepts.

Chapter 4 concentrates on Data Encryption Standard (DES) and discusses it as simplified DES. 
Further, it presents the strength of DES and its different modes of operation.

Chapter 5 discusses secure block cipher and stream cipher techniques with Double DES and Triple 
DES principles.

Chapter 6 outlines the structure of AES and its working principles. This chapter also analyses AES 
key expansion algorithm with exercises.

Chapter 7 explores public key cryptography with asymmetric key algorithm RSA. The chapter gives 
technical explanation of RSA algorithm and its attacks with several examples.

Chapter 8 deals with key management and key distribution and provides a proper explanation of the 
Diffie–Hellman key exchange algorithm. Implementation of secure multicast key management based 
on GCD is also illustrated in this chapter.

Chapter 9 provides details about elliptic curve cryptography.

Chapter 10 focuses on authentication techniques that prevent misuse of resources. This chapter 
describes about message authentication code, standard hash functions like MD hash family, Whirlpool 
and SHA. In addition, it also reviews the importance of hash value and its vital role in security aspect. 
Message digest creation steps of individual hash functions are illustrated with block diagrams.

Chapter 11 expounds on the use of various digital signature schemes. It elaborates on how the digital 
signature is designed, signed and verified with worked-out examples. Techniques, attacks and applica-
tions of digital signatures are also mentioned. Key generation of DSA is explained in detail with java 
code implementation.
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Chapter 12 reveals authentication applications and describes how Kerberos achieves centralised 
authentication with its two versions. X.509 authentication service explains the scope of public key 
cryptography and digital signatures for security.

Chapter 13 enumerates the methods of protecting web applications in the Application Layer of ISO/
OSI model and analyses security methods that control malicious attacks and protect against unauthor-
ised access. The chapter also presents a case study of PGP and S/MIME.

Chapter 14 is centred on Secure Sockets Layer (SSL) and Transport Layer Security (TLS) and their 
practical application in E-com. The necessity to create a secure link between two machines for Web 
applications in the transport layer is spelt out with detailed architecture. 

Chapter 15 examines IP security architecture, which ensures private and secure communication 
with the support of cryptographic security services. The benefits of integrating IP security are also 
explained.

Chapter 16 takes a close look at the necessity for protecting the system from unauthorised access, 
concentrating on various levels such as password management, program, operating system, network 
and database. At each level, the occurrence of different threats and the preventive measures to overcome 
those threats are detailed.

Appendix carries the frequently asked university questions and answers.

Index is included at the end of the book.

This book inspires readers with technical fun. We hope the reader can feel the soul of scientific art 
in this book. Thank you for participating in our technical ride.

S. Bose

P. Vijayakumar
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Cryptography
1

chapter

1.1 Overview Of CryptOgraphy

The term ‘cryptography’ is derived from two Greek words, namely crypto and graphy. In Greek lan-
guage, crypto means secret and graphy means writing. Cryptography is the science of secret  writing 
that provides various techniques to protect information that is present in an unreadable format. This 
 unreadable format can be converted into readable format only by the intended recipients.  Advanced 
cryptography provides various techniques based on number theoretic approach and computer  science 
and hence advanced cryptography techniques are virtually unbreakable. This book discusses about 
 various cryptographic and advanced cryptographic techniques. Cryptographic techniques and 
 protocols are used in a wide range of applications such as secure electronic transactions, secure  audio/
video broadcasting and secure video conferences. In secure electronic transactions, cryptographic 
techniques are used to protect E-mail messages, credit card information and other sensitive informa-
tion. In secure audio/video broadcasting, the service provider sends the requested audio/video data to 
subscribers in a secure way. Only the authorized subscribers are allowed to view the multimedia data. 
Similarly, it is used in video conferences to allow multi-party communication, where, one user speaks 
and the remaining users view the communicated data in a secure way.

These secure applications are heavily dependent on various cryptographic services, namely 
 confidentiality, authentication and data integrity. Based on these cryptographic services, the 
 cryptographic techniques and protocols are classified into four main regions and are as follows:

 • Symmetric encryption: Symmetric encryption is an encryption technique in which identical 
cryptographic key is used for both encrypting and decrypting the information. This key, in prac-
tice, must be secret between the sender and the receiver to maintain the secrecy of the information.

 • Asymmetric encryption: Asymmetric encryption is an encryption technique where two keys are 
used as a pair. Among these two keys, one key is used for encryption and the other key is used for 
decryption of information. In the pair of keys, if the sender uses any one key to encrypt a message, 
the receiver should use another key to decrypt the message.

 • Data integrity techniques: These techniques are used to protect information from alteration dur-
ing the transmission. Data integrity techniques assure to maintain the accuracy and consistency of 
information over its entire life cycle.

 • Authentication protocols: These are designed based on the use of cryptographic techniques to 
authenticate the identity of the sender. These protocols allow only the valid users to access the 
resources located on a server.

http://en.wikipedia.org/wiki/Computer_science
http://www.webopedia.com/TERM/E/e_mail.htm


2  Cryptography and Network Security

Even though there are so many cryptographic techniques and protocols available in the literature 
for providing various security services, security threats are still prevalent. The security attack is an 
internal act that breaks the security procedures or guidelines, regulations and requirements during 
the transmission of information from the sender to the receiver. The following are some examples of 
security attacks:

 1. The sensitive information transmitted from the sender to the receiver should be protected from 
disclosure. An intruder, who is unauthorized, can read the information by monitoring the trans-
mission of information and capture a copy of information during its transmission. This attack 
is called information disclosure.

 2. When a higher authority transmits a message to user A (authorized receiver), another user B 
(intruder) may intercept the message and can modify the contents of the message. After modi-
fying it, the user B can forward the message to user A, as if the message comes from the higher 
authority. This is called tampering attack.

 3. Instead of intercepting a message, user B can construct a message on its own desire and can 
transmit that message to user A as if it had come from the higher authority. The user A receives 
the message as it is coming from the higher authority. This is called spoofing attack.

 4. An intruder can send unwanted messages continuously to the destination and hence suppresses 
the communication channel between the sender and the receiver. This attack is called denial of 
service (DoS).

 5. User A sends a message to user C (authorized receiver). Later, user A can deny the message 
transmission that was sent to user C. Likewise, the recipient C can also deny the transmission 
that the message was not received. This attack is called repudiation.

Although there are many possible types of security attacks in the transmission network, network se-
curity has many countermeasures to detect, prevent and correct security violations during the trans-
mission of information. Table 1.1 shows various countermeasures that are used to detect, prevent and 
correct these attacks.

Table 1.1 Attacks and countermeasures

Sl. No. Attack Countermeasures

1. Information disclosure ✓ Use strong authorization.

✓ Use strong encryption.

✓ Use strong key distribution scheme to exchange key.

✓ Do not store secrets (for example, passwords) in plain text.

2. Tampering ✓ Use hashing techniques.

✓ Use digital signatures.

✓ Use strong authorization.

3. Spoofing ✓ Use strong authentication.

✓  Avoid sharing of secrets and credentials along with the message.

4. Denial of service ✓ Use resource and bandwidth regulation techniques.

✓ Validate and filter the input that comes from various users.

5. Repudiation ✓ Use digital signatures.
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1.2 SeCurity trendS

Security is viewed as an important contest among hackers (who try to break the security) and security 
people (who provide security for the system). Therefore, it is desirable to know the emerging trends 
of security in order to be able to think about countermeasures and to avoid the hackers from breaking 
them. Security trends help to measure the security issues that are relevant to computer and networks. 
Based on the issues, we classify them into computer security and network security. Computer security 
is the process of protecting the computing systems and computer resources from unauthorized users. 
Similarly, network security is the process of protecting the network resources and transmitted informa-
tion from unauthorized users. Computer security and network security are more essential for users who 
want to make their system free from hackers; otherwise the system would be compromised by hackers. 
The unprotected computer and communication link can be compromised by performing the following 
tasks within few seconds after connecting it to the Internet [1].

 1. The system is used to steal passwords and documentation keystrokes.

 2. The intruder may introduce attacks such as tampering attack, information disclosure attack, 
spoofing attack and DoS attack in the communication link.

 3. The system sends phishing and spam E-mails.

 4. The intruder can collect and send E-mail addresses and passwords.

 5. The intruder can access restricted personal information on your computer. 

 6. The system distributes porn movies and child pornography illegal.

 7. The system can hide programs that introduce attacks on other computer systems.

 8. The intruder may slow down the entire network by generating large volumes of unnecessary 
traffic into the communication link.

Confidentiality, integrity and availability (CIA) are the three security trends that are used as heart 
of the network and computer security to protect computing systems, computer resources and network 
resources from unauthorized access, use, disclosure, disruption and modification [2]. Figure 1.1 shows 
CIA security trends.

Confidentiality

Integrity

Availability

Figure 1.1 CIA security trends 

 • Confidentiality: This term encompasses the following two interrelated concepts: 

–  Data confidentiality: It is a security service that protects the confidential information by pre-
venting the unauthorized users from accessing it.

–  Privacy: It promises that an individual is free from secret surveillance of personal information 
to be disclosed.
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 • Integrity: This term encompasses the following two interrelated concepts:

–  Data integrity: It ensures that protected information is not changed by unauthorized  users. 
The information and programs are modified only by the authorized entities. 

–  System integrity: It promises that a system performs its intended function without any  degradation 
due to changes or disruptions in its internal or external environments.

 • Availability: It assures that the system works in time to perform its designated or required func-
tion without denying the services to the authorized users.

the Challenges of network and Computer Security

The following are the challenges of network and computer security: 

 1. It is considered that confidentiality, authentication, non-repudiation and integrity are the major 
security requirements. But in practical cases, it is quite complex to meet those requirements.

 2. During the development of security mechanisms or algorithms for potential attacks, the attack-
ers look at the problem in a totally different way and succeed by designing efficient attacks 
using an unexpected weakness in the mechanism.

 3. One of the necessary challenges is that the place in which the security mechanism is to be imple-
mented is crucial. Moreover, the layer in which the security mechanism is to be implemented 
is also a critical challenge in order to increase the security level in the network applications.

 4. The secrecy of the transmitted information (e.g. an encryption key) depends on communica-
tion protocols. The behaviour of communication protocols may complicate for developing the 
security mechanisms. For example, proper functioning of the security mechanism requires 
time limits for data transmission. However, some of the protocols may introduce unpredictable 
delays and hence they would make time limits worthless.

 5. There is always a battle between a perpetrator who tries to find gaps and the designer who 
tries to fill the gaps in the computer and network security. The attacker always has a greater 
advantage to find a weakness, but the designer is required to find and eradicate all limitations 
to obtain perfect security.

 6. It is difficult to provide security requirements in today’s overloaded web environment. 

1.3  the Open SyStemS interCOnneCtiOn  

SeCurity arChiteCture

As known earlier, the open systems interconnection (OSI) security architecture consists of seven lay-
ers, namely physical layer, data link layer, network layer, transport layer, session layer, presentation 
layer and application layer. Among these seven layers, security is concerned only in the four layers 
namely, physical layer, network layer, transport layer and application layer. OSI security architecture is 
depicted in Figure 1.2. Application layer security mechanisms include electronic mail (S/MIME, PGP) 
security which is briefly explained in Chapter 13. 

Web security is focused on the transport layer that concentrates on SSL/TLS, HTTPS and SSH. 
Chapter  14 gives the comprehensive explanation about the transport layer security. Network layer 
security includes IP security and firewall (hardware) which are briefly explained in Chapter 15.  
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The system security focus on physical layer which includes malware identification and virus  
protection. The physical layer security is briefly explained in Chapter 16. 

The OSI security architecture is used for organizing the work of providing security. The  inter-
national telecommunication union (ITU) Telecommunication Standardization Sector  (ITU-T) 
Recommendation X.800 is a United Nations-sponsored agency that defines a systematic approach 
of security architecture for OSI. Since this architecture was enlarged as an international standard, 
it is based on its structured definition of services and mechanisms. Computer and communication 
sellers have enlarged security features for their products and services. Security mechanisms, security 
services and security attacks are focussed in OSI security architecture and these are briefly explained 
as follows:

 • Security mechanism: It is a process which is intended to detect, prevent and recover the stored/
transmitted information from the security attack.

 • Security service: It is a communication service that improves the security of the data processing 
systems and the information transfer as defined by ITU-T X.800 Recommendation. This service 
is designed to oppose security attacks, by using one or more security mechanisms.

 • Security attack: It is the process of breaking or compromising the security of the stored/transmit-
ted information without the knowledge of the sender and the receiver.

1.4 SeCurity attaCkS

The security attack is an attempt to break the security. There are two types of security attacks, namely 
passive attack and active attack. In passive attack, the attackers attempt to find out or use information 
from the system, without affecting the system resources. But in an active attack, an attacker tries to 
introduce unwanted data into the system as well as potentially change or modify the system resources 
or affect their operation.

1.4.1 passive attacks

In passive attacks, message transmissions are monitored by an adversary and thus the goal of the 
 opponent is to acquire or learn information that is being sent in the network channel. Hence, it compro-
mises confidentiality. There are two types of passive attacks. They are (1) release of message contents 
and (2) traffic analysis.

Application layer

Transport layer

Network layer

Physical layer System security, Firewall (Software) 

IP security, Firewall (Software/Hardware)

SSL/TLS, HTTPS and SSH

Electronic mail (S/MIME, PGP)

Figure 1.2 OSI security architecture
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 • Release of message contents 

  Figure 1.3 shows the process of release of message contents. In this attack, the sender sends sensi-
tive or confidential information to the receiver. But an opponent captures the message and hence 
learns the contents of these transmissions. Hence, confidentiality of the sensitive or confidential 
information is compromised.

Communication
media

Sender Receiver

Intruder

Read contents of message
from Sender to Receiver

Figure 1.3 Release of message contents

 • Traffic analysis

  Figure 1.4 shows the process of traffic analysis. In this attack, the messages are encrypted and 
cannot be decrypted by the intruder. So if the intruder captures the message, then he/she cannot 
obtain the message from the transmission. Since the message is encrypted in the sender side, an 
intruder tries to observe the pattern of the message. From the observation, an intruder could find 
out the location and identity of the communicating parties and also observe the frequency and 
length of messages being transmitted. By using this information, an intruder can guess the nature 
of the communication between the sender and receiver that took place.

Communication
media

Sender Receiver

Intruder

Observe pattern of message
from Sender to Receiver

Figure 1.4 Traffic analysis
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The detection of passive attacks is very hard compared to the detection of active attacks for the 
reason that they do not engage in the process of altering the transmitted data. Moreover, during  
the transmission of the messages, neither the sender nor the receiver knows that an intruder has  
read the messages in this attack. During transmission, passive attacks can be prevented by using 
strong encryption schemes. Therefore, it is better to prevent the passive attack rather than detecting it.

1.4.2 active attacks

Active attacks involve some modification of the system resources or the creation of false resources and 
hence affect their data transmission. So, active attacks compromise the integrity or availability feature. 
It can be subdivided into four categories: masquerade attack, replay attack, modification of messages 
attack and DoS attack.

 • Masquerade attack

  This attack takes place when one user pretends to be a different user to gain unauthorized access 
through legitimate access identification as shown in Figure 1.5. By using stolen passwords and 
logons, masquerade attacks can be performed.

Communication
media

Sender Receiver

Intruder

Message from intruder that
comes into view to be from
Sender

Figure 1.5 Masquerade attack

 • Replay attack

  Replay attack is also known as a playback attack in which a valid data is maliciously or  fraudulently 
retransmitted or delayed to produce an unauthorized effect as shown in Figure 1.6.
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Communication
media

Sender Receiver

Intruder

Capture message 
from Sender and later replay 
message to Receiver

Figure 1.6 Replay attack

 • Modification of messages attack

  In this attack, an intruder either modifies or alters some portion of a legitimate message and 
hence it produces an unauthorized effect as depicted in Figure 1.7. For example, the sender sends 
a message ‘please transfer $5000 into my account 3048976’ to the receiver. This message can be 
captured by an intruder and modified as ‘please transfer $5000 in to my account 1234567’. Af-
ter seeing this message, the receiver may transfer the amount $5000 in to the intruder’s account 
1234567 who is not an intended user.

Communication
media

Sender Receiver

Intruder

Message alteration
from Sender to Receiver

Figure 1.7 Modification of messages

 • Denial of service attack

  In this attack, an intruder may fix a specific target machine (server) and send some unwanted 
messages to that particular target machine in order to jam the communication media. Using this 
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approach, the attackers formulate the network resources to be busy to its rightful users. This kind 
of attack is shown in Figure 1.8.

Communication
media

Sender

Intruder

Server

Jam the services
provided by Server

Figure 1.8 DoS attack

1.5 SeCurity ServiCeS

Based on ITU-T X.800 Recommendation, security services are defined for the system resources and 
data transfers to provide a specific kind of protection. These services are also divided into five catego-
ries. Figure 1.9 shows the different categories of the security services [3].

Security 
Services

Authen-
tication

Data 
Integrity

Non-
repudiation 

Access 
Control

Data 
Confiden-

tiality

Figure 1.9 Categories of security services
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1.5.1 authentication

Authentication is a process through which a system verifies the identity of an entity that wishes to access 
it. The private and public computer networks use logon passwords for performing authentication. Based on 
the knowledge of the password, it is assumed to promise that the user is authorized. In the initial process, 
each user assigns a self-declared password for registration. Hence, for each subsequent use, the user must 
be familiar with and apply the previously declared password. The main drawback in this system is that 
passwords are often stolen, accidentally disclosed or forgotten. So, digital signatures are used nowadays 
for authentication purposes. There are two specific types of authentication services defined in X.800:

 • Peer entity authentication: In an association, if two entities are considered as peer entities, then 
they are in the same working environment or equivalent working environment of another system. 
Peer entity authentication is essential in two cases. The first case is the establishment of new con-
nection, or at the time of initiating a secure data transfer. In peer entity authentication, the initiator 
of connection transfers authentication credentials such as passwords or signatures to another peer 
entity in order to avoid masquerade and replay attacks.

 • Data origin authentication: In data origin authentication, the recipients are enabled to verify that 
messages are originated from the authenticated sender. However, data integrity is not ensured in 
this technique. This authentication technique is mainly used in E-mail systems.

1.5.2 access Control

In network security, access control is a security service which has the ability to control the user access 
to the system resources located on a server. This service provides the access rights in which it main-
tains the information such as, who can access the system resources, under what conditions the user en-
tities can access the system resources, and the list of the resources that the users are allowed to access.

1.5.3 data Confidentiality

Confidentiality conceals the transmitted information from intruder’s passive attacks. An intruder may 
disclose the contents of transmitting information by applying passive attacks. Hence, the transmitted 
information should be protected when two users communicate with each other over a period of time. 
The other important feature of confidentiality is the protection of information from the traffic flow 
analysis. Otherwise, an intruder can observe the source and destination, frequency, length and different 
aspects of the activity on a correspondence channel.

1.5.4 non-repudiation

Non-repudiation assures that the sender of the message cannot deny the transmitted message to the receiv-
er in the case of dispute or query. Thus, the receiver can prove that the sender is the one who had actually 
sent the message. Similarly, the sender can also prove that the receiver has actually received the message.

1.5.5 data integrity

Data integrity is the process that ensures that the data transmitted from the sender to the receiver is not 
altered or modified by an intruder. It provides the correctness of the transmitted data since this service 
protects the transmitted data from alteration during communication.
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key termS

Access control

Active attack

Authentication

Availability

Confidentiality

Data integrity

Denial of service

Intruder

Masquerade

Non-repudiation

Passive attack

Replay attack

Security attacks

Security services

Summary

 • In network security, access control is a security service which has the ability to control the user 
access to the system resources located on a server.

 • Active attacks involve some modification of the system resources or the creation of false  resources 
and hence affect their data transmission.

 • Authentication is a process through which a system verifies the identity of an entity that wishes 
to access it.

 • Availability assures that the system works in time to perform its designated or required function 
without denying the services to the authorized users.

 • Confidentiality conceals the transmitted information from intruder’s passive attacks.

 • Data integrity is the process that ensures that the data transmitted from the sender to the receiver 
is not altered or modified by an intruder.

 • Denial of service (DoS) is an attack in which an intruder may fix a specific target machine (server) 
and then may send some unwanted messages to that particular target machine in order to jam the 
communication media.

 • Masquerade attack takes place when one user makes belief to be a different user to gain unauthor-
ized access through legitimate access identification.

 • Non-repudiation assures that the sender of the message cannot deny the transmitted message to 
the receiver in the case of dispute or query.

 • In passive attacks, message transmissions are monitored by an adversary and thus the goal of the 
opponent is to acquire or learn information that is being sent in the network channel.

 • Replay attack is also known as a playback attack in which a valid data is maliciously or fraudu-
lently retransmitted or delayed to produce an unauthorized effect.

 • The security attack is an attempt to break the security.

 • Based on ITU-T X.800 Recommendation, security services is defined for the system resources 
and data transfers to provide a specific kind of protection.

review queStiOnS

 1. What is meant by passive attack?

 2. What is meant by active attack?
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 3. What is the difference between passive and active attacks?

 4. Give brief explanation about the OSI security architecture.

 5. List and briefly explain about different categories of the security services.

 6. List and briefly explain about various security attacks.

 7. What are the challenges of network and computer security?

 8. What is the difference between symmetric encryption and asymmetric encryption?

 9. Give some attacks and its corresponding countermeasures in cryptography.
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2.1 Basic NumBer Theory

Number theory is the process of learning the integers and the properties of objects made out of integers 
(for example, rational numbers) or generalizations of the integers. Number theory plays a vital role in 
the field of security, memory management, authentication and coding theory. Because, in many cryp-
tographic algorithms used in the field of security, authentication and coding theory, the messages are 
represented as integer numbers. These integer numbers are converted into some other format before 
sending it to receiver side. Fermat’s theorem provides a good example of the importance of the number 
theory. Fermat asked a question that, can prime p be written as the sum of two distinct squares? Yes 
and the answer is 13. Because, 13 can be written as (13 = 4 + 9, with 4 = 22 and 9 = 32) the sum of two 
distinct squares. However, the numbers 2 and 11 cannot be written as the sum of two distinct squares.

A prime p = 31415926535897932384626433832795028841 is also the sum of two distinct squares. 
Because, p = 36847587138599206042 + 42235624485179944052. How do we know that p is prime? 
To check this, we need to use the computer for the primality test and the two-square decomposition 
because computers can perform millions of operations per second. Even though we use computers, 
the computing load to perform this task is extremely high and hence it would take a long period to 
find such a large prime number. However, the process of finding primality test can be performed in a 
few seconds by using various algorithms available in number theory. Among the various algorithms, 
Fermat’s primality test is also one of the efficient method. All these algorithms are included in this 
chapter under the topic ‘Primality Testing Methods’. This chapter discusses about the overall view of 
the number theory.

2.1.1 Basic Notations

Given any two integers a and b, the quotient b/a may or may not be an integer. For example, 
30

5
6=  

and 
12

5
2 4= . . Number theory deals with the first approach, and determines the condition in which one 

can decide about divisibility of two integers. For example, when a ≠ 0 we say that a divides b if there 
is another integer k such that b = ka, where k is the quotient. Therefore, a divides b which is denoted 
as a|b if and only if b = ka.

Lemma: If a|b and a|c, then a|(b + c).

Proof: In order to prove the above lemma, we use a direct proof method. Consider the two integers 
p and q such that b = pa and c = qa.

Hence, b c pa qa a p q+ = + = +( )
Since p + q is an integer, we prove that a b c| +( ).
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Example 2.1:
Consider the values a b c= = =8 24 16, , . If a divides b and a divides c, prove that a also dives b c+( )  
for the given three values.

Solution

b

a
= =24

8
3

c

a
= =16

8
2

b c

a

+ = =40

8
5

2.1.2 congruence

One of the important concepts in number theory is congruences. So, this subsection gives an overview 
about congruence. Before discussing about congruence, let us know the meaning of equality principle. 
Two numbers are equal when neither is greater. For example, if x = 8 and y = 8, then we would say 
that x and y are equal. Similarly, x is congruent (≡) to y(mod n) if and only if (x – y) is a multiple of n. 
Therefore, two unequal numbers let us say x and y may be congruentially equal under the modulo di-
vison operation. Let x, y and n be integers with n not equal to zero. We say that x ≡ y(mod n) if (x – y) 
is a multiple of n or n | (x – y).

Examples 2.2:

 2.2.1 10 2 4≡ ( )mod , Because 
10 2

4

8

4
2

− = =

 2.2.2 38 3 5≡ ( )mod , Because 
38 3

5

35

5
7

− = =

 2.2.3 − ≡ ( )46 4 10mod , Because 
− − = − = −46 4

10

50

10
5

 2.2.4 38 6 5� mod ,( )  Because 
38 6

5

32

5
6 4

− = = .

Theorem 2.1

If x is congruent to y n,mod  then x n y nmod mod( ) = ( )

Example 2.3:
Find the result of 10 2 4≡ ( )mod

Solution
Substitute x, y, n in the congruential equation, x n y nmod mod( ) = ( )

10 4 2 4mod mod( ) = ( ), 2 = 2. Since LHS = RHS, 10 is congruent to 2 (mod 4).
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Theorem 2.2

Let n be a positive integer, if x y n≡ ( )mod  and z a n≡ ( )mod , then x z y a n+( ) ≡ +( )( )mod  and 
x z y a n×( ) ≡ ×( )( )mod .

Example 2.4:

7 2 5≡ ( )mod  and 11 1 5≡ ( )mod  then,

7 11 2 1 5+( ) ≡ +( )( )mod

Therefore, 18 3 5( ) ≡ ( )( ) ,mod  because 
18 3

5

15

5
3

− = =

Similarly, x z y a n×( ) ≡ ×( )( )mod  will also be true.

x z y a n n×( ) ≡ ×( )( ) = ×( ) ≡ ×( )( )mod mod7 11 2 1

77 2 5( ) ≡ ( )( )mod , because 
77 2

5

75

5
15

− = =

Let x, y and n be integers with n not equal to zero. We say that [(x mod n) + (y mod n)] mod n =  
(x + y) mod n.

Theorem 2.3

Let x, y and n be integers with n not equal to zero. We say that [(x mod n) – (y mod n)] mod n =  
(x – y) mod n.

Theorem 2.4

Let x, y and n be integers with n not equal to zero. We say that [(x mod n) × (y mod n)] mod n =  
(x × y) mod n.

Theorem 2.5

Example 2.5:
Find the results for Theorems 2.3, 2.4 and 2.5 using the values x = 11, y = 15 and n = 8.

Solution
 2.5.1 [(11 mod 8) + (15 mod 8)] mod 8 = 10 mod 8 = 2

  Similarly, (11 + 15) mod 8 = 26 mod 8 = 2
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 2.5.2 [(11 mod 8) – (15 mod 8)] mod 8 = –4 mod 8 = 4

  Similarly, (11 – 15) mod 8 = –4 mod 8 = 4

 2.5.3 [(11 mod 8) × (15 mod 8)] mod 8 = 21 mod 8 = 5

  Similarly, (11 × 15) mod 8 = 165 mod 8 = 5

2.1.3 modular exponentiation

Exponentiation is a type of operation where two elements are used in which one element is considered 
as a base element and another element is considered as an exponential element. For example, (xy) 
is an example of exponential operation where x is a base element and y is an exponential element. 
When y  is a positive integer, exponentiation is performed in a similar way to repeated multiplication 
is performed. Modular exponentiation is a type of exponentiation in which a modulo division opera-
tion is performed after performing an exponentiation operation. For example, (xy mod n), where n is 
an  integer number. The exponentiation is an important concept discussed in many cryptographic algo-
rithms such as RSA, Diffie–Hellman, Elgamal, etc.

Example 2.6:
Find the result of 290 mod 13.

Solution
Step 1: Split x and y into smaller parts using exponent rules as shown below:

 2 1390 mod  = 2 250 40×  
Step 2: Calculate mod n for each part

2 13 1125899906842624 13 450 mod mod= =

2 13 1099511627776 13 340 mod mod= =

Step 3: Use modular multiplication properties to combine these two parts, we have

 2 1390 mod =  2 2 1350 40×( )mod
 

 =  2 13 2 13 1350 40mod mod mod×( )  

 = 4 3 13 12 13 12×( ) = ( ) =mod mod  

memory efficient method

In order to reduce the computation complexity of modular exponentiation operation, a memory- 
efficient method can be used in most of the cryptographic algorithms in which modular exponentiation 
is used. This method also requires O(y) multiplications as that of the basic method explained above 
to perform a modular exponentiation operation where y is the exponent value. However, the numbers 
used in the calculations used for computing modular exponentiation are much smaller than the num-
bers used in the above method.

http://en.wikipedia.org/wiki/Multiplication
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Example 2.7:
Find the result of 2320 mod 29.

Table 2.1 shows the result of this problem. In this table, first column uses exponent y as the exponent 
value. The second column partial result (PR) indicates that it holds (PR). The third column is used to 
indicate the final result by performing a modulo division operation with respect to PR. In this table, 
initially we consider the exponent value as 2, for which PR and PR mod 29 values are computed.  After 
that, we have to take the exponent value as 3 for which the output of the previous exponent value 
is  given as the input. Therefore, the output of nth round is given as the input value to (n + 1)th round 
when calculating PR value. Therefore, this algorithm works faster than the previous exponentiation 
algorithm.

Table 2.1 Working example of memory-efficient algorithm

Exponent (exp) PR = (23exp–1 mod 29) × 23 PR mod 29

2 23 × 23 = 529 529 mod 29 = 7 

3 7 × 23 = 161 161 mod 29 = 16

4 16 × 23 = 368 368 mod 29 = 20

5 20 × 23 = 460 460 mod 29 = 25

6 25 × 23 = 575 575 mod 29 = 24

7 24 × 23 = 552 552 mod 29 = 1

8 1 × 23 = 23 23 mod 29 = 23

9 23 × 23 = 529 529 mod 29 = 7

10 7 × 23 = 161 161 mod 29 = 16

11 16 × 23 = 368 368 mod 29 = 20

12 20 × 23 = 460 460 mod 29 = 25

13 25 × 23 = 575 575 mod 29 = 24

14 24 × 23 = 552 552 mod 29 = 1

15 1 × 23 = 23 23 mod 29 = 23

16 23 × 23 = 529 529 mod 29 = 7

17 7 × 23 = 161 161 mod 29 = 16

18 16 × 23 = 368 368 mod 29 = 20

19 20 × 23 = 460 460 mod 29 = 25

20 25 × 23 = 575 575 mod 29 = 24
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This method of computing modular exponentiations can be formalized into an algorithm as shown in 
Algorithm 2.1.

Function Modular_exp (x, y, n)

Answer = 1

For i = 1 to y

Answer Answer mod= ×( )x n

Return Answer

Comments

//x is base, y is exponent and n is modulus

 Algorithm 2.1

Here, the value x is the base which is greater than 1, y is the exponent value and n is the modulo value.

Fast modular exponentiation algorithm

Fast modular exponentiation is an algorithm which is used to reduce the computation complexity 
further. The main advantage of this algorithm is that the execution time of this algorithm is O(log y), 
where y is the exponent value. The main idea of this method is that the exponent value y is represented 
in the form of binary bits. For example, if the exponent value y is 8, then this will be represented as  
y = 8 = 1000. This method of computing modular exponentiations can be formalized into an algorithm 
as given in Algorithm 2.2.

Function Modular_exp(x, y, n)

Answer = 1

While y >0

 if (y mod 2= =1)

 Answer Answer mod= ×( )x n
 

 
y y= >> 1

 x x x n= ×( )mod

Return Answer

Comments

//x is base, y is exponent and n is modulus

// Multiply only if the bit is 1

// 1-bit right shift operation

 Algorithm 2.2

In this algorithm, the exponent y is converted into binary bits by performing a modulo division operation 
(y mod 2). If the result of this modulo division operation is 1, then it will multiply the base value x with 
Answer and the result is modulo divided with n ((Answer × x) mod n). If the result is not equal to 1, then 
a 1-bit right shift operation is performed followed by squaring operation with respect to the base value x. 
Therefore, the fast exponentiation algorithm performs both multiplication and squaring operation.

Example 2.8:
Find the result of 5117 mod 19.

Step 1: Divide the exponent 117 into powers of 2 in order to convert them into binary format.

i.e., 117 1110101=  
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After converting it to binary format, start to read from the rightmost digit. Initially, take k = 0 and for each 
digit add 1 to k, and move left to take the next digit. If the digit is 1, we need to include a part for 2k, 
otherwise do not include that position.

 117 2 2 2 2 20 2 4 5 6= + + + +( )  
 117 1 4 16 32 64= + + + +  

 5 19 5 19 5 5 5 5 5 1117 1 4 16 32 64 1 4 16 32 64mod mod mod= = × × × ×( )+ + + +( ) 99  

Step 2: Calculate mod n of the powers of two ≤ y

 5 19 51 mod =  

 5 19 25 19 62 mod mod= =  

 
5 19 5 19 5 19 194 2 2mod mod mod mod= ×( )  

 = ×( ) = =6 6 19 36 19 17mod mod  

 5 19 5 19 5 19 1916 8 8( )mod mod mod mod= ×  

 
= ×( ) = =( )4 4 19 16 5 19 48mod since mod

 

 5 19 5 19 5 19 1932 16 16( )mod mod mod mod= ×  

 = ×( ) = =16 16 19 256 19 9mod mod  

 5 19 5 19 5 19 1964 32 32( )mod mod mod mod= ×  

 = × = =9 9 19 81 19 5mod mod  
Step 3: Use modular multiplication properties to combine the calculated mod n values

 
5 19 5 5 5 5 5 19117 1 4 16 32 64mod mod= × × × ×( )  

 = × × × ×( )5 19 5 19 5 19 5 19 5 191 4 16 32 64mod mod mod mod mod mod119

 = 5 17 16 9 5 19 61 200 19 1× × × ×( ) = =mod mod,  
Therefore, 5 19 1117 mod =

2.1.4 Greatest common Divisor computation

The greatest common divisor (GCD) of two or more integers is defined as the greatest positive integer 
that divides the numbers without a remainder. It is also called the highest common divisor (HCD), 
or highest common factor (HCF). For example, the GCD of 18 and 30 is 6. Because the integer 18 
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can be divided by {2, 3, 6, 9} and the integer 30 can be divided by {2, 3, 5, 6, 10, 15}. The greatest 
number that divides these two numbers is 6. If the GCD of any two numbers is 1, then these two num-
bers are relatively prime number or co-prime. For example, the GCD of (12, 13) = 1 and hence they 
are co-primes. When the given numbers are too larger numbers, for example, 512 bits or 1024 bits, 
then listing of all the divisors of the given numbers is a complicated task. Therefore, we have to use a 
computationally efficient method for computing the GCD value of large numbers. The GCDs can be 
computed by using various computationally efficient methods, namely prime factorizations, Euclid’s 
algorithm and extended Euclid’s algorithm.

2.1.4.1 Prime Factorizations

To compute GCD of any two numbers in prime factorization approach, we need to find prime factors of 
the two numbers. The prime factorization is also a method used in factoring algorithms. Prime factors 

of any number can be computed by dividing that number by all prime numbers starting from to2 n  
that exactly divides that number without giving remainder number. The following is an example for 
computing prime factors of a given number.

Example 2.9:
Find the prime factors of the number 7007

Step 1: Divide the given number 7007 by all prime numbers 2 3 5, , , ,… n  that produces an integer 
number.

Hence, the prime numbers 2, 3 and 5 cannot divide the given number exactly. So, 
7007

2

7007

3

7007

5
= =

≠ an integer number.

However, the prime numbers 7, 11 and 13 exactly divide the number 7007.

Hence, 
7007

7
1001

1001

7
143

143

11
13= = =, ,

 
Therefore, 7007 7 7 11 13= × × ×  

 7007 7 11 132= × ×  
After computing the prime factors, the prime factors are used in computing the GCD value by tak-

ing the common prime factors of the given two numbers. For example, to compute the GCD value of 
(78,120) we need to find the prime factors of (78, 120). In order to compute GCD value, the prime 
factors are computed in the initial step. To compute the prime factors, we can use the prime factoriza-
tion method as explained in Example 2.9. The prime factors of these two numbers are given below:

 78 2 3 13 2 3 131 1 1= × × = × ×   

 120 2 3 5 2 2 2 3 53 1 1= × × = × × × × . 

From the results of the prime factors of these two numbers, it is clear to see that 2 × 3 is common 
in both the numbers. Therefore, the GCD value of (78,120) = 2 × 3 = 6. The main limitation of this 
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method is that it is only feasible for small numbers since computing prime factorizations takes more 
running time. Moreover, a listing of all the prime factors of the given two numbers also takes more 
running time.

euclid’s algorithm

It was developed by the great Greek mathematician Euclid who was popularly referred to as the ‘Father 
of Geometry’ in about 300 BC for computing the GCD of two positive integers. It is a more efficient 
method than the prime factorization method that uses a division algorithm in combination with the 
observation that, the GCD of two numbers also divides their difference. The Euclid’s algorithm is given 
in Algorithm 2.3.

Function Euclid (x, y)

 A x B y;= =
 if B = 0 Return A = gcd (x, y)

 While B ≠ 0

 {

  C A B= %

  A B=
  B C=
 }

Return A

Comments

//x and y are given two numbers

// If B is 0, then GCD is A

// Find modulo division for the two numbers

 Algorithm 2.3

It is clear from the description of the Euclidean algorithm that if any one of the values is zero for the 
given two values, then GCD value is the other non-zero value. For example, if B = 0, then the algorithm 
returns A value is the GCD value (A = gcd(x, y)). Otherwise, divide the A value by the value of B and 
store the remainder value in the variable C. After that, a swapping operation is performed by assigning 
the value of B to A and C to B. This operation is repeated until B = 0.

Example 2.10:
Find the GCD of (78, 120) using Euclid’s Algorithm

A = 78 B = 120 C = 78 = 78% 120

A = 120 B = 78 C = 42 = 120% 78

A = 78 B = 42 C = 36 = 78% 42

A = 42 B = 36 C = 6 = 42% 36

A = 36 B = 6 C = 0 = 36% 6

A = 6 B = 0 Stop

Stop the process since B = 0. Therefore, GCD (78,120) = 6.

http://en.wikipedia.org/wiki/Division_algorithm
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Example 2.11:
Find the GCD of (12345,67890) using Euclid’s Algorithm

A = 12345 B = 67890 C = 12345 = 12345% 67890

A = 67890 B = 12345 C = 6165 = 67890% 12345

A = 12345 B = 6165 C = 15 = 12345% 6165

A = 6165 B = 15 C = 0 = 6165% 15

A = 15 B = 0 Stop

Stop the process since B = 0. Therefore, GCD (12345,67890) = 15

extended euclidean algorithm

Extended Euclidean Algorithm is an efficient method of finding the modular inverse of an integer. 
 Euclid’s algorithm can be extended to give not only d = gcd(a, b), but also used to find two numbers x

2
 

and y
2
 such that ( ) ( )a x b y d× + × =2 2 . What is the use of these extra numbers? Suppose we want to 

check whether our gcd program is correct and to check the correctness of the answer. One easy test is to 
simply check whether d divides a and d divides b. Clearly this is not a sufficient test since it only verifies 
that d is a common factor, not that it is the GCD value. In order to check d is the GCD value of a and b, 
we have to check two conditions. Firstly, we have to check whether d divides a and d divides b. Secondly, 
we have to check ( ) ( )a x b y d× + × =2 2 . If d satisfies these two conditions, then d is the GCD value of 
a and b. Algorithm 2.4 explains about the extended Euclidean algorithm. In this algorithm, the input 
numbers x and y are copied into a temporary variable and are treated as gcd gcda b x y, ,( ) = ( ). In each 
trial, r value is computed to swap the contents of the initial values of a and b. Similarly, x and y values 
are computed by using x x q x= − ×2 1( ) and y y q y= − ×2 1( ). These values are used to update the values 
x

2
 and y

2
 by performing a swapping operation. The same process is repeated until b ≠ 0 and finally the 

 algorithm returns the values ( , , )a x y2 2  as output. From the returned value, the value a is considered as d.

Function Extended-Euclid (x, y)

x x a x2 11 0= = =, , ;

y y b y2 10 1= = =, , ;

if b = 0  Return a x y= ( )( )gcd ,

if b =1  Return b x y= ( )( )gcd ,

While b ≠ 0

 q a b/= ⎢⎣ ⎥⎦
 r a q b= − ×( )
 x x q x= − ×2 1( )

 y y q y= − ×2 1( )

 x x x x a b2 1 1= =, , =
 y y y y b r2 1 1= =, , =
Return ( , , )a x y2 2

Comments

//x and y are given two numbers

// Variable initialization part

// No inverse

// Min integer function is used here to take the 
minimum value

 Algorithm 2.4
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Example 2.12:
Find the GCD of (4864, 3458) using extended Euclid’s algorithm.

Solution

q r x y a b x2 x1 y2 y1

  4864 3458 1 0 0 1

1 1406 1 −1 3458 1406 0 1 1 −1

2 646 −2 3 1406 646 1 −2 −1 3

2 114 5 −7 646 114 −2 5 3 −7

5 76 −27 38 114 76 5 −27 −7 38

1 38 32 −45 76 38 −27 32 38 −45

2 0 −91 128 38 0 32 −91 −45 128

We get gcd(a, b) = gcd(4864, 3458) = 38. Because 38 divides both the numbers (4864, 3458), it 
 satisfies the first condition. The answer can also be verified by using the equation (a × x

2
) + (b × y

2
) = d.  

Substitute the values, a = 4864, b = 3458, x
2
= 32 and y

2
= –45 in the equation (a × x

2
) + (b × y

2
) =  

(4864 × 32) + (3458 × (–45)) = ( ) + −( )155648 155610  = −( ) = =155648 155610 38 d.

Therefore, gcd 4864 3458 38,( ) =  since it satisfies both the conditions.

Example 2.13:
Find the GCD of (9,437) using extended Euclid’s algorithm.

Solution

q r x y a b x2 x1 y2 y1

  9 437 1 0 0 1

0 9 1 0 437 9 0 1 1 0

48 5 −48 1 9 5 1 −48 0 1

1 4 49 −1 5 4 −48 49 1 −1

1 1 −97 2 4 1 49 −97 −1 2

4 0 437 −9 1 0 −97 437 2 –9

We get gcd(a, b) = gcd(9,437) = 1. Because 1 is the one and only number that divides both the numbers 
(9,437), it satisfies the first condition. The answer can also be verified by using the equation (a × x

2
) +  

(b × y
2
) = d. Substitute the values, a = 9, b = 437, x

2
 = –97 and y

2
 = –2 in the equation (a × x

2
) +  

(b × y
2
) = (9 × (–97)) + (437 × (2)) = −( ) + ( ) = =873 874 1 d.

Therefore, gcd(9,437) = 1 since it satisfies both the conditions. In this case, the input numbers are said 
to be co-primes.
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Example 2.14:
Find the GCD of (9,195) using extended Euclid’s algorithm.

Solution

q r x y a b x2 x1 y2 y1

  9 195 1 0 0 1

0 9 1 0 195 9 0 1 1 0

21 6 −21 1 9 6 1 −21 0 1

1 3 22 −1 6 3 −21 22 1 −1

2 0 −65 3 3 0 22 −65 −1 3

We get gcd(a, b) = gcd(9,195) = 3. The answer can be verified by using the equation (a × x
2
) + 

(b × y
2
) = d. Substitute the values, a = 9, b = 195, x

2
 = 22 and y

2
 = –1 in the equation (a × x

2
) + (b × y

2
) =  

(9 × 22) + (195 × (–1)) = ( ) + −( )198 195 = −( ) = =198 195 3 d.

Therefore, gcd 9 195 3, .( ) =

Example 2.15:
Find the GCD of (9,195) using Extended Euclid’s Algorithm.

Solution

q r x y a b x2 x1 y2 y1

  16 10374 1 0 0 1

0 16 1 0 10374 16 0 1 1 0

648 6 −648 1 16 6 1 −648 0 1

2 4 1297 −2 6 4 −648 1297 1 −2

1 2 −1945 3 4 2 1297 −1945 −2 3

2 0 5187 −8 2 0 −1945 5187 3 −8

We get gcd(a, b) = gcd(16,10374) = 2. The answer can be verified by using the equation (a × x
2
)  

+ (b × y
2
) = d. Substitute the values, a = 16, b = 10374, x

2
 = –1945 and y

2
 = 3 in the equation (a × x

2
) 

+ (b × y
2
) = (16 × (–1945)) + (10374 × (3)) = −( ) + ( ) = =31120 31122 2 d.

Therefore, gcd 16 10374 2, .( ) =

2.2 chiNese remaiNDer Theorem

Let us assume that k k k kn1 2 3, , …  are pairwise relative prime positive numbers, and that a a a an1 2 3, , …  
are positive integers. Then, Chinese remainder theorem (CRT) states that the pair of congruences,
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 X a k≡ 1 1mod  

 X a k≡ 2 2mod  

 

.

.

.

 X a kn n≡ mod  

has a unique solution mod ∂ = ( )
=

∏g
i

n

ik
1

. To compute the unique solution, we need to compute the value 
as shown in Equation (1).

 X a M y
i

n

i i i g= ∂
=
∑

1

( )mod  (1)

where M
ki

g

i

=
∂

 and M y mod ki i i≡1  

CRT is used to find a common value from a system of congruences. For example, some quantity of 
mangos are available in a room. If the mangos are divided into groups consisting of three mangos in 
each group, then remaining two mangos are available. Similarly, if the mangos are divided into groups 
consisting of five mangos in each group, then remaining of three mangos are available. If the mangos 
are divided into groups consisting of seven mangos in each group, then remaining of two mangos are 
available. Finally, how many mangos are available in total in that room? For computing the answer 
to this puzzle, there are two approaches, namely trial-and-error-based approach (brute force method) 
and CRT-based approach. In brute force method, first we have to generate the system of congruences 
from the given puzzle. The first congruential equation that can be formed for the first constraint is X ≡ 
2(mod 3), where X is the amount of mangos, 2 is the remainder, and 3 is the group size. Similarly, other 
congruential equations that can be formed by using the same way. The remaining two congruential 
equations for the remaining two constraints are X ≡ 3(mod 5) and X ≡ 2(mod 7).

For computing the total amount of mangos by using the brute force method, we have to find the 
value of X that satisfies first congruential equation. Next, we have to find the value of X  that satisfies 
second congruential equation. Similarly, we have to find the value of X that satisfies third congru-
ential  equation. Finally, we have to find the intersection of the three sets to get the value of X that 
satisfies all the three congruences. The values of X that satisfies all the three congruences are given 
in three different sets.

 X ∈ …{ }5 8 11 14 17 20 26 29, , , , , , , ,23  

 X ∈ …{ }8 13 18 28 33 38 43 48, , , , , , , ,23  

 X ∈ …{ }9 16 30 37 44 51 58 65, , , , , , , ,23  

The intersection of these three sets is 23. One of the limitations of this approach is that, it is useful 
when the values of a

i
 and k

i
 are small. For slightly larger numbers, making this list is a complex task 

and also it would be an inefficient approach. Therefore, CRT is the suitable method for large numbers in 
order to compute the value of X. Example 2.16 uses the CRT approach for solving the above problem.
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Example 2.16:
Find the value of X from the system of congruences.

 X ≡ 2(mod 3) 
 X ≡ 3(mod 5) 
 X ≡ 2(mod 7) 

Solution

Let, ∂ = × × =g 3 5 7 105  

 M M Mg g g1 2 33 105 3 35 5 105 5 21 7 105 7 15= ∂ = = = ∂ = = = ∂ = =/ / , / / , / / .

Find the multiplicative inverse element of M
1
, M

2
 and M

3
.

Let y
1
 be the inverse element of M1

.

 1. 2 is an inverse element of M
1
 because .35 3 2mod =

  Because, . , .35 2 3 1 21× = =mod so y

 2. 1 is an inverse element of M y2 221 5 1= ( ) = =mod

 3. 1 is an inverse element of M y3 315 7 1= ( ) = =mod

Therefore, X a M y a M y a M y g≡ + +( ) ∂1 1 1 2 2 2 3 3 3 mod  
 ≡ × × + × × + × ×2 35 2 3 21 1 2 15 1  

 ≡ ( ) ≡ ( )233 105 23 105mod mod  

Example 2.17:
Find the X value using the CRT for the following:

 X ≡ 3(mod 5) 

 X ≡ 4(mod 6) 

 X ≡ 5(mod 7) 

Solution

 M1 5 6 7 5 210 5 42/ /= × ×( ) = =  

 / /M2 5 6 7 6 210 6 35= × ×( ) = =  

 M3 5 6 7 7 210 7 30/ /= × ×( ) = =  

Let y
1
 be the inverse element of M

1
 and to find y

1
 we have to use the following equation: M

1
y

1
 ≡ 1mod k

1

 M y y1 1 142 1≡ ×( ) ≡  
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If we substitute y
1
 value as 3, it will satisfy the condition 42 11×( ) ≡y . Because, 42 3 126 1 5×( ) ≡ ≡ .mod  

Hence, y1 3= .

Similarly, (35 × y
2
) ≡ (35 × 5) ≡ 1 mod 2. y

2
 = 5

y
3
 = 4. Because, (30 × 4)mod 7 = 1

To find the value of X:

 X a M y a M y a M y g≡ + +( ) ∂1 1 1 2 2 2 3 3 3 mod  

 ≡ × ×( ) + × ×( ) + × ×( )( )3 42 3 4 35 5 5 30 4 210mod  

 ≡ + +( )378 700 600 210mod  

 ≡1678 210mod  

 X ≡ 208  

CRT is mainly used in coding theory and cryptography. In coding theory, CRT is mainly used for 
detecting and correcting the errors occurred in the data by adding some redundant bits to the original 
data when the data is communicated through noisy channels. In cryptography, CRT is used for sharing 
a common secret value (key value) to a group of users called key distribution. Section 2.2.1 explains 
the method of distributing a common group key value to a group of users through secure multicasting 
key distribution using CRT.

2.2.1 secure multicasting using crT

In multicast communication, messages are sent from one sender to a group of members. Multi-
cast group formation and group communication are very common in the Internet scenario. This is 
 helpful for sending and exchanging private messages among group members. Moreover, multimedia 
 services such as pay-per-view, video conferences, sporting events, audio and video broadcasting are 
based on multicast communication where multimedia data are sent to a group of members. In order 
to form groups and to control the activities of a group, a leader in the group is necessary. In most 
of the multimedia group communication, a group centre (GC) or key server (KS) is responsible 
for  interacting with the group members and also to control them. In such a scenario, groups can be 
classified into static and dynamic groups. In static groups, membership of the group is predeter-
mined and does not change during the communication. Therefore, the static approach distributes an 
 unchanged group key to the members of the group when they join or leave from the multicast group. 
Moreover, they do not provide necessary solutions for changing the group key when the group mem-
bership changes which is not providing forward/backward secrecy. When a new member joins into 
the service, it is the responsibility of the KS to prevent new members from having access to previous 
data. This provides backward secrecy, in a secure multimedia communication. Similarly, when an 
existing group member leaves from any group, the GC should not allow the member to  access the 
future multicast communication which provides forward secrecy. The backward and forward secrecy 
can be achieved only through the use of dynamic group key management schemes. In order to pro-
vide forward and backward secrecy, the keys are frequently updated whenever a member joins or 
leaves the multicast service.
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In secure multicast communication using CRT, the KS initially selects a large prime number p and q, 
where p > q and q p≤ ⎡⎢ ⎤⎥4 . The value p helps in defining a multiplicative group z*

p
 and q is used to fix 

a threshold value to select the group key values. To understand the clear idea of multiplicative group 
z*

p
, we request the readers to refer Section 2.4.1 before reading this topic. Initially, the KS selects secret 

keys or private keys k
i
 from the multiplicative group z*

p
 for n number of users which will be given to 

users as they join into the multicast group. In the CRT-based scheme, we require that all the private 
keys selected from z*

p
 are pairwise relatively prime positive integers. Moreover, all the private keys 

should be much larger than the group key which is selected within the threshold value fixed by q. Next, 
KS executes the following steps in the KS initialization phase.

 1. Compute .∂ = ( )
=

∏g
i

n

ik
1

 2. Compute x
k

i ni

g=
∂

= …, , ,
i

where 1 2 3

 3. Compute y
i
 such that x y ki i i× ≡ 1mod

 4. Multiply all users x
i
 and y

i
 values and store them in the variables, vari i ix y= ×

 5. Compute the value μ = ∑
i

n

ivar

user initial Join

Whenever a new user u
i
 is authorized to join the dynamic multicast group for the first time, the KS 

sends a secret key k
i
 using a secure unicast which is known only to the user u

i
 and KS. Next, KS com-

putes the group key in the following way and broadcasts it to the users of the multicast group.

 (a) Initially, KS selects a random element k
g
 as a new group key within the range q.

 (b) Multiply the newly generated group key with the value m (computed in KS Initial set-up phase).

 γ μ= ×kg  

 (c) The KS broadcasts a single message γ  to the multicast group members. Upon receiving γ  
value from the KS, an authorized user u

i 
of the current group can obtain the new group key k

g 
 

by doing only one mod operation.

 γ mod k ki g=
  

The k
g
 obtained in this way must be equal to the k

g
 generated in step a) of user initial join phase. When 

i reaches n, KS executes its initial set-up phase to compute ∂g i, var and μ  for m number of users, 
where m n= ×δ . The value d is a constant value which may take values less than 5 depending upon the 
dynamic nature of the multicast group.

user Leave

Group key updating operation when a user leaves usually takes more computation time in most of the 
group key management protocol since the KS cannot use the old group key to encrypt the new group 
key value. When a new user joins the service, it is easy to communicate the new group key with the 
help of the old group key. Since the old group key is not known to the new user, the newly joining 
user cannot view the past communications. This provides backward secrecy. User leave operation is 
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completely different from user join operation. In user leave operation, when a user leaves the group, 
the KS must avoid the use of an old group key to encrypt a new group key. Since the old user knows 
the old group key, it is necessary to use each user’s secret key to perform a re-keying operation when 
a user departs from the services. In this key management scheme, the group key updating process is 
performed in a simplest way. When a user u

i
 leaves from the multicast group, KS has to perform the 

following steps.

 1. Subtract var
i
 from μ.  ′ = −μ μ vari

 2. Next, KS must select a new group key and it should be multiplied with ′μ  to form the rekeying 
message as shown below.

 
′ ′= ′ ×γ μkg  

 3. The updated group key value will be sent as a broadcast message to all the existing group 
members. The existing members of the multicast group can get the updated group key value 
k′

g
 by doing only one mod operation as shown in step (c) of user initial join process. From the 

received value, the user u
i
 cannot find the newly updated group key k′

g
 since his or her compo-

nent is not included in ′μ .

2.2.2 implementation of crT in JaVa

Line no. Java program to send a group key to a group of users using CRT

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

mport java.io.*;

import java.util.*;

import java.net.*;

import java.net.Socket;

import java.net.ServerSocket;

import java.lang.String;

import javax.swing.*;

import java.math.BigInteger;

public class chinese

{

public static void main(String args[]) throws Exception

{

String k,msg;

int n,count=0;

long igcd;

DataInputStream is=new DataInputStream(System.in);

DataInputStream is1=null,is2=null;

BigInteger gcd=new BigInteger(“0”);

BigInteger kg=new BigInteger(“1”);

System.out.println(“Enter the number of clients:\t”);

n=Integer.parseInt(is.readLine());

BigInteger [] key=new BigInteger[n];

BigInteger [] x=new BigInteger[n];
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Line no. Java program to send a group key to a group of users using CRT

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

BigInteger [] y=new BigInteger[n];

BigInteger [] pt=new BigInteger[n];

BigInteger xg=new BigInteger(“0”);

for(int j=0;j<key.length;j++)

 {

  System.out.println(“Enter the key”+(j+1)+”:\t”);

  k=is.readLine();

  key[j]=new BigInteger(k);

 }

System.out.println(“\n”);

for(int i=0;i<key.length;i++)

 {

  for(int j=1;j<key.length;j++)

  {

  if(i<j && i!=j)

  {

    gcd=findGCD(key[i],key[j]);

    igcd=gcd.intValue();

    if(igcd!=1)

     {

        System.out.println(“\nSORRY.... The keys values of the clients are not 
Relatively Prime.”);

       System.exit(0);

     }

  }

  }

 }

 for (int j = 0; j < key.length; j ++)

 {

  System.out.println(“key”+(j+1)+”=”+key[j]);

 }

 for (int j = 0; j < key.length; j ++)

 {

  kg=kg.multiply(key[j]);

 }

System.out.println(“Group key=”+kg);

System.out.println();

 for (int j = 0; j < key.length; j ++)

 {

  x[j]=kg.divide(key[j]);

  System.out.println(“x”+(j+1)+”=”+x[j]);

 }
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Line no. Java program to send a group key to a group of users using CRT

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

System.out.println();

for (int j = 0; j < key.length; j ++)

 {

  for (BigInteger i = BigInteger.valueOf(1);

  i.compareTo(BigInteger.ZERO) > 0;

  i = i.add(BigInteger.ONE))

  {

  y[j]=(x[j].multiply(i)).mod(key[j]);

  if (y[j].equals(BigInteger.ONE))  

  {

  y[j]=i;

  System.out.println(“y”+(j+1)+”=”+y[j]);

  i=BigInteger.valueOf(0);

  break;

  }

  }

 }          

System.out.println();

System.out.println(“Enter the message value to be sent:\t”);

k=is.readLine();

BigInteger m=new BigInteger(k);

System.out.println();

for (int j = 0; j < key.length; j ++)

 {

  BigInteger xg1=m.multiply(x[j].multiply(y[j]));

  xg=xg.add(xg1);

 }

System.out.println(“\nThe Cipher Text value is:”);

System.out.println(xg);

System.out.println();

for (int j = 0; j < key.length; j ++)

 {

  pt[j]=xg.mod(key[j]);

  System.out.println(“Plain Text for Client-”+(j+1)+”:\t”+pt[j]);

 }

}

private static BigInteger findGCD(BigInteger k1,BigInteger k2)

  {

 if(k2.equals(BigInteger.ZERO))

 {

   return k1;
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107

108

109

110

 }

 return findGCD(k2,k1.mod(k2));

  }

}

Output of the group key distribution program:

KS side output

Users side output
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In the above program, line numbers 27 to 32 are used to generate user’s private key at KS side. 
These private keys are informed to each user in a secure way in real-time applications. Line numbers 
34 to 49 are used to check whether these numbers are relatively prime numbers. Because in CRT, one 
of the important conditions is that all users private keys are relatively prime numbers. In line number 
57, each user’s private key is multiplied by using the method ‘multiply’ and is stored in a variable ‘kg’. 
The statements used from line numbers 61 to 65 are used to find the x

i
 values of each user. Line number 

73 is used to find the y
i
 values of each user. The x

i
 values and y

i
 values are multiplied and are stored in 

the variable ‘xg1’. In line number 91, the group key value to be communicated to a group of users is 
added to the variable ‘xg1’. Each user group can perform only one modulo division operation to take 
the group key by using the method ‘mod’ as given in line number 98.

2.3 FermaT’s aND euLer’s Theorem

Pierre de Fermat is a mathematician who stated this theorem in the year 1640.

Fermat’s Theorem

If p is a prime and p does not divide a which is a natural number, then a pp− ≡ ( )1 1 mod .

For example, ( )2 1 1110 ≡ mod  since 11 is a prime number and 11 does not divide 2. The Fermat’s 
theorem is mainly used to solve modular exoneration problems when the base is considered as a, 
moduli are considered as prime p and p should not divide a. It is also called Fermat’s little theorem or 
Fermat’s primality test and is a necessary but not a sufficient test for primality test. Primality test is a 
method which is used to test whether a whole number is a probable prime or not. These numbers are 
very important and are used in many cryptographic algorithms.

Example 2.18:
Compute the value of 210 mod 11.

 (210) ≡ 1 mod 11. Therefore, the result is 1. 

Example 2.19:
Compute the value of 2340 mod 11.

  
2 2 11 1 11 1340 10 34 34mod mod( ) ( ) =≡ ≡

 

 
since mod2 1 1110( )⎡⎣ ⎤⎦≡

 

Example 2.20:
Compute the value of 412345 mod 12343

 4 4 4 1234312345 12342 3≡ ( )× mod  ≡ 1 64 12343 64× ( ) ≡mod  
Fermat’s Theorem 1:
If p is a prime and p does not divide a, then ap ≡ a mod p

Fermat’s Theorem 2:
If p is a prime and p does not divide a, then ap–2 mod p ≡ a–1 mod p

http://en.wikipedia.org/wiki/Pierre_de_Fermat
http://mathworld.wolfram.com/Necessary.html
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euler’s Theorem

If n and a are co-prime positive integers, then a nnφ( ) ≡1mod . In this theorem, φ n n( ) = −1  if n is a 
prime number and φ n( ) is Euler’s phi function. Euler’s phi function is also called Euler’s totient func-
tion and hence it is named as Euler’s totient theorem or Euler’s theorem.

euler’s phi function φ(n):

Euler’s phi function φ n( )  returns the number of integers from 1 to n, that are relatively prime to n. The 
phi function φ n( )  is computed using various methods. They are given below.

 1. If n is a prime number, then φ n n( ) = −1.

 2. If n is a composite number, then

  2.1  Find the prime factors of that number and compute the phi function value as used in 
step 1. Otherwise,

  2.2  Find prime powers (pa) of the given number n. For computing the phi value of prime pow-

ers we have to use the formula p pa a−( )−1 .

Example 2.21:
Compute Euler’s totient function for the values 3, 8, 12, 60, and 7007.

 1. φ 3 3 1 2( ) = − =
 2. φ 8 2 2 2 2 2 8 4 43 3 3 1 3 2( ) = = − = − = − =−

 3. φ 12 4 3 2 3 2 2 3 1 42 2 1( ) = × = × = −( ) × −( ) =
 4. φ 60 4 15 2 3 5 2 2 4 162( ) = × = × ×( ) = × × =

 5. φ 7007 13 7 11 7 13 7 11 7 7 13 11 50402 2 1( ) = × × × = × × = −( ) × × =

Example 2.22:
Compute Euler’s totient value of 17640.

 φ φ17640 2 7 5 33 2 2( ) = × × ×( )  

  = −( )× −( )× −( )× −( )2 2 7 7 5 1 3 33 2 2 2  

  = × × × =4 42 4 6 4032  

Euler’s theorem uses modulo arithmetic and is an important key to RSA encryption and decryption. 
The following Java program explains the use of Euler’s totient function for multicast key distribution.

Line no. Java program to send a group key to a group of users using Euler’s totient function

1

2

3

4

Group Centre side

import java.util.*;

import java.lang.*;

import java.net.*;

import java.io.*;
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5

6

7

8

9 

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

import java.math.*;

import java.lang.Math.*;

class multiserver_t

{

static BigInteger zero=new BigInteger(“0”);

static BigInteger one=new BigInteger(“1”);

static BigInteger two=new BigInteger(“2”);

public static void main(String args[]) throws Exception

{

float t1=0,t3=0,t4=0;

DatagramPacket dp;

DatagramSocket ds=new DatagramSocket(2233);

BigInteger y,P,val,p_val=new BigInteger(“1”);

BigInteger x[]=new BigInteger[10];

BigInteger data,encrypt_data;

String senddata,senddata2;

int n=0;

Scanner scan=new Scanner(System.in);

Scanner scanint=new Scanner(System.in);

String temp;

System.out.println(“Enter the number of users : “);

n=scanint.nextInt();

y=new BigInteger(32,new Random());

senddata=””+y;

senddata=senddata.trim();

System.out.println(“Public key is : “+y);

ds.send(new DatagramPacket(senddata.getBytes(),senddata.length(),InetAddress.
getByName(“227.0.0.1”),1122));

data=new BigInteger(32,new Random());

System.out.println(“Goup Key is : “+data);

P=new BigInteger(“4216367982620161”);

for(int i=0;i<n;i++)

{

System.out.println(“Enter the private key of user”+i+” :”);

x[i]=new BigInteger(scan.nextLine().trim());

}

t3=System.nanoTime();

for(int i=0;i<n;i++)

{

val=y.modPow(x[i],P);

val=totient(val);
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46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

temp=”1”+val;

val=new BigInteger(temp.trim());

p_val=p_val.multiply(val);

}

encrypt_data=data.add(p_val);

t4=System.nanoTime();

System.out.println(“The Encrypted data:”+encrypt_data);

senddata=””+encrypt_data;

ds.send(new DatagramPacket(senddata.getBytes(),senddata.length(),InetAddress.
getByName(“227.0.0.1”),1122));

t1=System.nanoTime();

senddata2=””+t1;

ds.send(new DatagramPacket(senddata2.getBytes(),senddata2.length(),InetAddress.
getByName(“227.0.0.1”),1122));

System.out.println(“The Data sent to client at : “+t1+” nano sec”);

System.out.println(“Encrypted data length: “+senddata.length());

System.out.println(“Server Computation time : “+(t4-t3)+” nano sec”);

}

public static BigInteger totient(BigInteger a)

{

BigInteger b=a;

BigInteger temp=two;

BigInteger phi=a;

BigInteger factor[]=new BigInteger[20];

int i=0,j=0;

for(;temp.compareTo(b)<0;temp=temp.add(one))

{

if(b.isProbablePrime(2))

{

factor[i]=b;

i++;

break;

}

else if((b.mod(temp)).equals(zero))

{

if(i==0)

{

factor[i]=temp;

i++;

}

else if(!factor[i-1].equals(temp))
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87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

{

factor[i]=temp;

i++;

}

b=b.divide(temp);

temp=one;

}

}

for(j=0;j<i;j++)

{

phi=(phi.multiply((factor[j].subtract(one)))).divide(factor[j]);

}

return(phi);

}

}

User side

import java.util.Scanner;

import java.lang.Math;

import java.math.BigInteger;

import java.net.*;

class multiclient_t

{

static BigInteger zero=new BigInteger(“0”);

static BigInteger one=new BigInteger(“1”);

static BigInteger two=new BigInteger(“2”);

public static void main(String args[])throws Exception

{

float t1,t2,t3,t4;

MulticastSocket ds=new MulticastSocket(1122);

DatagramPacket dp;

byte b[]=new byte[1024];

byte b1[]=new byte[1024];

byte b2[]=new byte[1024];

String str;

InetAddress addr=InetAddress.getByName(“227.0.0.1”);

ds.joinGroup(addr);

BigInteger x,y,P,val=new BigInteger(“0”);

BigInteger data,decrypt_data;

Scanner scan=new Scanner(System.in);

String temp;
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25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

dp=new DatagramPacket(b2,1024);

ds.receive(dp);

y=new BigInteger(new String(dp.getData()).trim());

dp=new DatagramPacket(b,1024);

ds.receive(dp);

t2=System.nanoTime();

System.out.println(“The Received from server at: “+t2+” nano sec”);

str=new String(dp.getData());

System.out.println(“The Received Encrypted data:”+str.trim());

data=new BigInteger(str.trim());

P=new BigInteger(“4216367982620161”);

System.out.println(“Enter the private key”);

x=new BigInteger(scan.nextLine().trim());

t3=System.nanoTime();

val=y.modPow(x,P);

val=totient(val);

temp=”1”+val;

val=new BigInteger(temp.trim());

decrypt_data=data.mod(val);

t4=System.nanoTime();

System.out.println(“The Decypted data:”+decrypt_data);

dp=new DatagramPacket(b1,1024);

ds.receive(dp);

str=new String(dp.getData());

t1=Float.parseFloat(str.trim());

float td;

td=t2-t1;

if(td<0)

td=-td;

System.out.println(“The Time delay b/w Sender & Receiver is : “+td+” nano sec”);

System.out.println(“The Computation time for the client : “+(t4-t3)+ “nano sec”);

}

public static BigInteger totient(BigInteger a)

{

BigInteger b=a;

BigInteger temp=two;

BigInteger phi=a;

BigInteger factor[]=new BigInteger[20];

int i=0,j=0;

for(;temp.compareTo(b)<0;temp=temp.add(one))

{
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66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

if(b.isProbablePrime(2))

{

factor[i]=b;

i++;

break;

}

else if((b.mod(temp)).equals(zero))

{

if(i==0)

{

factor[i]=temp;

i++;

}

else if(!factor[i-1].equals(temp))

{

factor[i]=temp;

i++;

}

b=b.divide(temp);

temp=one;

}

}

for(j=0;j<i;j++)

{

phi=(phi.multiply((factor[j].subtract(one)))).divide(factor[j]);

}

return(phi);

}

}

Output of Euler’s Totient Function

Group Centre side output
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Line no. Java program to send a group key to a group of users using Euler’s totient function

User0 side output

User1 side output

In the above program, there are two programs, namely GC side and user side programs. The main use 
of this program is to send a common group key to a group of users. The key distribution module used 
in the GC side and key updating module used in the user side both uses Euler’s totient function. In the 
GC side program, the line numbers 42 to 49 are used to generate a common group key. During the 
group key computation, in line number 45 Euler’s totient value is computed and the result is stored 
in a temporary variable ‘val’. For computing the totient value, we define a function ‘totient (val)’ in 
both the GC and user side program. The totient function is implemented from line numbers 64 to 101. 
After computing the group key value, the group key is encrypted in line number 50. The encrypted 
group key is sent to a group of users in the GC side from line number 54 to 55. On the user’s side, 
the encrypted key value is received in line number 26. The received encrypted group key value is 
 decrypted in the user side in line number 43.

2.4 aLGeBraic sTrucTure

An arbitrary set with one or more  limited operation defined on it with certain axioms is called an 
algebraic structure. There are three types of algebraic structures, namely groups, rings and fields. 
Various operations performed on these algebraic structures are addition, subtraction, multiplication 
and division operations. Each operation takes any two elements from the defined algebraic structure 
as input and produces a third element as output which will also be available in the algebraic structure. 
For example, a and b are the two input values taken from any one of the algebraic structures. The input 
values can be added to produce an output element c by using commutative law (i.e. a + b = c). Accord-
ing to the principles used in algebraic structure, the resultant element c will also be available in the 



Mathematics of Modern Cryptography  41

algebraic structure from where the input values are taken. The complex algebraic structures are vector 
spaces, modules and algebras where multiple operations can be performed. Algebraic structures are 
mainly used in various cryptography algorithms to process with integer numbers. Figure 2.1 shows the 
classification of algebraic structures and the operations supported by each algebraic structure.

Groups (G) Rings (R) Fields (F)

Algebraic structures

Addition/Subtraction
(Or)

Multiplication/Division

Addition/Subtraction
and Multiplication

Addition/Subtraction
and Multiplication/

Division

Figure 2.1 Types of algebraic structures and their binary operations

The group supports addition/subtraction operation or multiplication/division operation. But it is not 
supporting both the addition and multiplication operations. There are two types of groups used in cryp-
tographic algorithms, namely additive group and multiplicative group. If the group supports addition 
operation in the encryption function and subtraction operation in the decryption function, then it is 
called an additive group. If the group supports multiplication operation in the encryption function and 
division operation in the decryption function, then it is called a multiplicative group. Ring supports 
addition/subtraction operation and also it supports the multiplication operation. Therefore, the ring 
supports two operations at a time. Field is the combination of the group and ring and it supports all the 
four types of binary operations such as addition, subtraction, multiplication and division operations. 
The following subsections explain about all the algebraic structures in detail.

2.4.1 Group

A group contains a set of elements denoted as G together with a binary operator * on G that satisfies 
the following axioms:

 1. Closure

 If a b G, ∈ , then a b*( )  also belongs to G. 

 2. Associative

 a b c a b c* * * *( )=( )  

 3. There exists an identity element e G∈  with the property that

 a e e a a* *= =  
 4. For each element a G∈ , there exists an inverse element a G− ∈1

 a a a a e* *
− −( ) = ( ) =1 1  
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The binary operation * in this definition may be any operation such as addition, subtraction, multi-
plication and division. Any group of elements with an operation that satisfies these four axioms forms a 
group. For example, the set of integers �  forms a group under the operation of addition. In particular, 
when addition operation is used in a group it is called an additive group. In the additive group, the ele-
ment 0 is an additive identity, and every integer has an additive inverse. For multiplicative group, a multi-
plication operation is used. In multiplicative group, the element 1 is used as a multiplicative identity and 
every integer of that group has a multiplicative inverse. For example, the set of non-zero real numbers �  
forms a group under the operation of multiplication. The group is an important algebraic structure used 
in many cryptographic algorithms. If a developer wants to develop a new encryption function that uses 
an addition operation, then an additive group can be used for that encryption function. If the encryption 
uses a multiplication operation in the encryption function used on the sender side and division operation 
to use it in the decryption function used on the receiver side, a multiplicative group can be used.

Groups can also be divided into two types, namely finite groups and infinite groups. The finite 
groups use a finite number of elements and it has a limit, for example n where n is a finite number. In 
infinite groups, the group can take an infinite number of elements starting from 0 to ∞. Most of the 
cryptographic algorithm uses finite groups. Therefore, this bookwork mainly focuses on discussing 
about finite groups by using a finite set of numbers.

Example 2.23:
Consider the group � n , where n = 10. Prove that the given group is an additive group.

Solution
Since n = 10, the group can have 10 elements. That is, �10 0 1 2 3 4 5 6 7 8 9= { }, , , , , , , , , . To prove that 
the given group is an additive group, we have to check whether it satisfies the following four axioms:

 1. Closure: Take a = 4, b = 9 ∈ G, then a +
n
 b = 3, which is also available in the group G and hence 

it satisfies the first axiom. (The symbol +
n
 denotes addition modulo operation where a modulo 

division operation is performed after performing an addition operation with respect to n = 10.)

 2. Associative: a b c a b cn n n n+ +( ) = +( ) + . To prove the associative property, consider 
a b c G= = = ∈4 9 6, , . If we substitute these values in associative property, it will give the 
 following result.

  L.H.S = a b cn n n n n+ +( ) = + +( ) = + =4 9 6 4 5 9

  R.H.S = a b cn n n n n+( ) + = +( ) + = + =4 9 6 3 6 9

  LHS = RHS and hence it satisfies the associative property also.

 3. There exists an identity element 0∈G  because

 4 0 0 4 4+ = + =n n  
 4. For each element a G∈ , there exists an inverse element a G− ∈1 . Take any element from  

Figure 2.2, for example, 4 which has the additive inverse 6 because 4 6 0 6 4+ = = +n n .

Therefore, the given group is an additive group because it satisfies all the four axioms of an additive 
group.
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Example 2.24:
Consider the group � n, where n = 10. Prove that the given group is a multiplicative group.

Solution
Since n =10, the group can have 10 elements. That is, �10 0 1 2 3 4 5 6 7 8 9= { }, , , , , , , , , . To prove that the 
given group is a multiplicative group, it should satisfy the following four axioms for non-zero elements 
to form a multiplicative group.

 1. Closure: Take ,a b G= = ∈4 9 , then a bn×( ) = 6,  which is also available in the group G and 
hence it satisfies the first axiom.

 2. Associative: a (b × c) = (a × b) × c. To prove the associative property, consider a = 4, b = 9,  
c = 6 ∈ G. If we substitute these values in associative property, it will give the following result.

  LHS = a b cn n n n n× ×( ) = × ×( ) = × =4 9 6 4 4 6

  RHS = a b cn n n n n×( )× = ×( )× = × =4 9 6 6 6 6

  LHS = RHS and hence it satisfies the associative property also.

 3. The identity element 1 ∈ G does not exist for any of the non-zero elements of the group. For 
example, the identity element is not generated in Figure 2.3 for the elements , , , ,2 4 5 6 8{ }.

 4. For some of the non-zero elements, there is no existence of a multiplicative inverse element
a G− ∈1 . For example, multiplicative inverse is not generated for the elements 2 4 5 6 8, , , ,{ }  
from Figure 2.3.

Therefore, the given group is not a multiplicative group because it does not satisfy the last two axioms 
to form a multiplicative group.

In the above example, the elements 2 4 5 6 8, , , ,{ }  are not producing multiplicative inverse because 
when any one of these elements is multiplied with another element and a modulo division opera-
tion is performed with respect to size of the group, it is not giving the result as 1. For example, 

4 10 11×( ) ≠−a ,mod  where a−1 is any element of the given group � n
. In most of the cryptographic 

0 1 2 3 4 5 6 7 8 9

0 0 

+n

0 0 0 0 0 0 0 0 0

1 1 2 3 4 5 6 7 8 9 0

2 2 3 4 5 6 7 8 9 0 1

3 3 4 5 6 7 8 9 0 1 2

4 4 5 6 7 8 9 0 1 2 3

5 5 6 7 8 9 0 1 2 3 4

6 6 7 8 9 0 1 2 3 4 5

7 7 8 9 0 1 2 3 4 5 6

8 8 9 0 1 2 3 4 5 6 7

9 9 0 1 2 3 4 5 6 7 8

Figure 2.2 Addition modulo 10
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 algorithms where a multiplication operation used in the encryption function, it should generate multi-
plicative inverse for all the elements of the group. If this condition is not satisfied, then the output value 
produced by the decryption function will not be equal to the input value supplied to the encryption 
function.

Consider, for example, we want to design an encryption and decryption function to be used in any 
one of the security-oriented applications. The encryption function is (x × y = z) and the decryption 

function is x
z

y
=

⎛

⎝
⎜

⎞

⎠
⎟ ,  where x is the plaintext, y is the key value selected from a multiplicative group 

and z is the ciphertext. To make further discussion about this concept, consider the multiplicative 
group � n ,  where n = 10 used in the above example. By using this multiplicative group, we shall do 
the encryption and decryption operation for the plaintext value x = 8 and the key value y = 5.

Encryption:

 x y z× = × = = =8 5 40 10 0mod  

Decryption:

 
plaintext plaintextx

z

y
( ) =

⎛

⎝
⎜

⎞

⎠
⎟ = ⎛

⎝⎜
⎞
⎠⎟

= ≠0

5
0

 

Therefore, the decryption function is not producing the actual plaintext which was given as the input 
in the encryption function. The main reason is that the given group is not a multiplicative group and 
hence it is not suitable for the cryptographic algorithms where multiplication operation is used in 
the encryption function and division operation is used in decryption function. Therefore, this type 
of additive group is suitable for the cryptographic algorithms where addition operation is used in the 
encryption function and subtraction operation is used in the decryption function (for example, Caesar 
cipher or shift cipher). In order to use multiplication operation in the encryption function side, we need 
to change the group in such a way that all the elements of the group should produce multiplicative 
inverse. For example, if the group �10 is changed as �7, then all the elements of the group will produce 
multiplicative inverse.

0 xn 1 2 3 4 5 6 7 8 9

0 0 0 0 0 0 0 0 0 0 0

1 0 1 2 3 4 5 6 7 8 9

2 0 2 4 6 8 0 2 4 6 8

3 0 3 6 9 2 5 8 1 4 7

4 0 4 8 2 6 0 4 8 2 6

5 0 5 0 5 0 5 0 5 0 5

6 0 6 2 8 4 0 6 2 8 4

7 0 7 4 1 8 5 2 9 6 3

8 0 8 6 4 2 0 8 6 4 2

9 0 9 8 7 6 5 4 3 2 1

Figure 2.3 Multiplication modulo 10
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The reason is that all the elements are relatively prime to order or size of the group 7. This type of 
group is called a prime group and is denoted as � p. The prime group is used in many cryptographic 
algorithms such as Diffie–Hellman and Elgamal cryptosystem, etc. Figure 2.4 shows an example of a 
prime group. It is very clear to see from Figure 2.4(b)) that all non-zero elements produce multiplica-
tive inverse and hence it forms a multiplicative group.

+
p
 0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

1 1 2 3 4 5 6 0 

2 2 3 4 5 6 0 1 

3 3 4 5 6 0 1 2

4 4 5 6 0 1 2 3 

5 5 6 0 1 2 3 4 

6 6 0 1 2 3 4 5

(a) Addition modulo 7   

 ×
p

0 1 2 3 4 5 6 

0 0 0 0 0 0 0 0 

1 0 1 2 3 4 5 6 

2 0 2 4 6 1 3 5 

3 0 3 6 2 5 1 4 

4 0 4 1 5 2 6 3 

5 0 5 3 1 6 4 2 

6 0 6 5 4 3 2 1 

(b) Multiplication modulo 7

Figure 2.4 Addition and multiplication operation performed on a prime group

2.4.2 ring

A ring R is a set of elements together with two binary operations addition (+) and multiplication (×) 
operations that satisfies the following axioms:

 1. If a, b ∈ R, then the sum (a + b) and the product (a × b) also belong to R.

 2. The addition operation is associative. That is, a b c a b c+ +( ) = +( ) + , where, a b c R, , ∈ .

 3. There exists an additive identity, denoted by the symbol 0. This element has the property that  
a + 0 = a, where a ∈ R.

 4. For each element a ∈ F, there is an element − a ∈ R, called the additive inverse of a, with the 
property that a + (–a) = 0.

 5. The addition operation is commutative. That is, a b b a+ = + ,  where ,a b R∈ .

 6. The multiplication operation is associative. That is, a b c a b c× ×( ) = ×( ) × , where a b c R, , ∈ .

 7. There exists a multiplicative identity, denoted by the symbol 1. This element has the property 
that a a× =1 , where a R∈ .

 8. For each element a R∈  other than 0, there exists an element a R− ∈1 , called the multiplicative 
inverse of a, with the property that a a× =−( )1 1.

 9. The multiplication operation distributes over the addition operation. That is, 
a b c a b a c× +( ) = ×( ) + ×( ), where , ,a b c R∈ .

A ring R is an Abelian group with respect to addition operation for the first four axioms. A ring which 
satisfies commutative property is called a commutative ring. If the ring R satisfies eighth axiom, then 
it is called a division ring. If the ring R is a commutative and division ring, then it is called a field. 
Figure 2.4 is an example of a ring and a field.
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2.4.3 Field

A field F is a set of elements together with two binary operations addition (+) and multiplication (×) 
operation that satisfies the following axioms:

 1. If a b F, ∈ , then the sum (a + b) and the product (a × b) also belong to F.

 2. The addition operation is associative. That is, a b c a b c+ +( ) = +( ) + , where a b c F, , ∈ .

 3. The addition operation is commutative. That is, a b b a+ = + ,  where ,a b F∈ .

 4. There exists an additive identity, denoted by the symbol 0. This element has the property that  
a + 0 = a, where a ∈ F.

 5. For each element a ∈ F, there is an element − a ∈ F, called the additive inverse of a, with the 
property that a + (–a) = 0.

 6. The multiplication operation is associative. That is, a b c a b c× ×( ) = ×( ) × , where a b c F, , ∈ .

 7. The multiplication operation is commutative. That is, a b b a× = × ,  where a b F, ∈ .

 8. There exists a multiplicative identity, denoted by the symbol 1. This element has the property 
that a × 1 = a, where a ∈ F.

 9. For each element a ∈ F other than 0, there exists an element a–1 ∈ F, called the multiplicative 
inverse of a, with the property that a × (a–1) = 1.

 10. The multiplication operation distributes over the addition operation. That is, a × (b + c) = 
(a × b) + (a × c),  where a, b, c ∈ F.

Example 2.25:
What is the value of x from the equation 3x + 4 ≡ 6(mod 7)?

Solution
Since 7 is used in the modulo division operation, it is considered as �7 , which is a finite field. The order 
of the field is 7. In order to solve this equation using elementary algebra, first we subtract 4 from both 
sides and get the result as given below:

 3 2 7x ≡ ( )mod  

From this, the value of x can be found by,

 x ≡ ⎛
⎝⎜

⎞
⎠⎟

( )1

3
2 7mod . 

The multiplicative inverse of the element 3 in �7 is 5,  which is taken from Figure 2.4(b)). It can also 
be computed by using the direct method as shown below:

 3 1 7 3× =mod  

 3 2 7 6× =mod  

 3 3 7 2× =mod  

 3 4 7 5× =mod  

 3 5 7 1× =mod  



Mathematics of Modern Cryptography  47

The value 3 is multiplied with the entire elements of the field and a modulo division operation is 
performed with respect to the order of the field. If the result becomes 1 for any of the operations, stop 
at this point and consider that element as a multiplicative inverse. In this case, the element 5 becomes 

a multiplicative inverse of 3 because 3 5 7 1× =mod . Substitute the value 5 in the place where 
1

3
⎛
⎝⎜

⎞
⎠⎟

  
is used.

This gives, x ≡ × ( )5 2 7mod . 

x ≡ ( )10 7mod

Therefore, x = 3. 

The field (F) is divided into two types, namely a finite field and an infinite field. Finite field is 
mainly used in cryptography to design a computationally efficient algorithm. Finite field is also called 
a Galois field (GF) that has a different structure than field structure. GF is used in many cryptographic 
 algorithms such as advanced encryption standard (AES) and elliptic curve cryptography (ECC). 
The order, or number of elements, of a finite field is represented in the form of (pn), where p is a prime 
number and n is a positive integer. For every prime number p and positive integer n, there exists a finite 
field with (pn)  elements. Another notation for a finite field is of the form GF(pn), where the GF repre-
sents a ‘Galois Field’. One important issue in the structure (pn) is that arithmetic operations modulo 
(pn) do not satisfy all the axioms of a field. Consider, for example, p = 2 and n = 8 and then the field will 
have the set of integers from 0 to 63. Therefore, the field will have 64 integer elements and the order 
of the field is 64. Since 64 is not a prime number, the set of integers is not a field. In order to make it 
to become a field, we have to choose a closest prime number to the size of field 64. The closest prime 
number of the order of the field 64 is 61. However, in this case the numbers 61, 62 and 63 are not used 
in the field and hence it is an inefficient way of using a field. Therefore, the GF is purely based on poly-
nomial equations. Hence, it is necessary to discuss about polynomial arithmetic before proceeding of 
GF in this section. To add any two polynomials, the terms must be combined. For instance, the addition 
of two polynomial equations 3x and 5x can be 8x by adding its terms. Likewise, 3x2y and 5x2y can be 
added to get 8x2y. However, 3x2y and 5x2y3 cannot be added together. The reason is that these two terms 
do not have the exact variables and the exact powers of those variables. The basic definitions used in 
polynomial equations are given below:

 • Polynomial: A polynomial in x is any expression which can be written as:

 a x a x a x an
n

n
n+ + + +−

−
1

1
1

1
0�  

  where a a a an n, ,−1 1 0…  are integers and a
n
 ≠ 0

 • Degree: The degree of a polynomial is the highest exponent of the polynomial.

 • Monomial: It is a polynomial with one term.

 • Binomial: It is a polynomial with two terms.

 • Trinomial: It is a polynomial with three terms.

 • Like terms: It means the same variable to the same power. For example, 2x2 and 3x2 are like terms 
because they have the same variable raised to the same power. However, 2x2 and 3x3 are not like 
terms because the powers are different.

http://en.wikipedia.org/wiki/Prime_number
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Example 2.26:
Add the two polynomial equations f x x x( ) = + +9 4 52  and g x x x( ) = + +5 3 32 .

Solution

f x g x x x x x x x( ) + ( ) = + + + + + = + +9 4 5 5 3 3 14 7 82 2 2

Example 2.27:
Subtract the two polynomial equations f x x x( ) = + +9 4 52  and g x x x( ) = + +5 3 32 .

Solution

f x g x x x x x( ) − ( ) = + + − + +( )9 4 5 5 3 32 2

 = + + − − − = + +9 4 5 5 3 3 4 22 2 2x x x x x x  

Example 2.28:
Multiply the two polynomial equations f x x x( ) = + +9 4 52  and g x x x( ) = + +5 3 32 .

Solution
To multiply polynomials, multiply each term in the first polynomial by each term in the second 
polynomial. In order to do this, we need to recall the product rule for exponents: For any integers 
m n a a am n m nand , .× = +

 f x g x x x x x( )× ( ) = + +( )× + +( )9 4 5 5 3 32 2  

 = + +( ) + + +( ) + + +( )45 27 27 20 12 12 25 15 154 3 2 3 2 2x x x x x x x x  

 = + + + +( )45 47 64 27 154 3 2x x x x  

In polynomial division, there are two types of polynomial division, namely simplification method 
and real division method. If there is a common factor both in the numerator (top) and denominator 
(bottom), then simplification method is used. Otherwise, real polynomial division is used. For exam-
ple, divide the polynomial 2x + 4 by using the constant polynomial 2. Here, we can use a  simplified 
method because there is a common factor 2 both in the numerator and denominator. Therefore, 
2 4

2

2

2

4

2
2

x x
x

+ = + = + .

Example 2.29:
Divide the polynomial 21x3 – 35x2 by using 7x.

Solution

 

21 35

7

21

7

35

7

3 2 3 2x x

x

x

x

x

x

− = −
 

 
= − = −3 5

3 5
3 2

2x

x

x

x
x x
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Example 2.30:
Divide the polynomial x2 – 9x – 10 by x + 1.

Solution
x – 10

x + 1       x2 – 9x –10

(–) x2(–) + 1x

         10x – 10

      (+) – 10x (+) – 10

0

2.4.4 Galois Fields

This subsection discusses about the way of performing arithmetic operations in the structure GF(pn). The 
addition and subtraction operations are performed by adding or subtracting two polynomials together, 
and reducing the result modulo the attribute p. In a finite field with the attribute p = 2, addition modulo 2 
is performed for addition operation and subtraction modulo 2 is performed for subtraction operation. 
This is very identical to performing XOR operation. Therefore, simple XOR operation can be used for 
performing addition and subtraction operations when p = 2 in the Galois field GF(2n). For example, 
addition/subtraction of given two polynomials f(x) = x2 + 1 and g(x) = x2 + x +1 taken from GF(23) is x.

Multiplication operation in a Galois field GF(2n) is performed by multiplication modulo an irreduc-
ible reducing polynomial used to define the Galois field GF(2n). During the multiplication operation 
performed in GF, a multiplication operation followed by a modulo division operation is performed 
using the irreducible polynomial as the divisor. Irreducible polynomial m(x) is a polynomial that has no 
divisors other than itself and 1; otherwise, it is called a reducible polynomial. A few examples of some 
irreducible polynomials of GF(2n) are x x x x x x x x, , , ,+ + + + + + +1 1 1 12 3 2 3 , x x4 3 1+ + , x x4 1+ + , 

x x5 2 1+ + , and x x x x8 4 3 1+ + + + . A few examples of reducible polynomials are ( )x2 , x x2 +( ), and  
(x3 + x2). Irreducible polynomial is used in GF(2n) because reducible polynomials are not generating 
the multiplicative inverse for any of the elements of GF(2n). Therefore, it is necessary to choose an 
irreducible polynomial in the cryptographic algorithms where multiplication operation is used in the 
encryption function and division operation is used in the decryption function. For example, multiply 
the given two polynomials f(x) = x2 + x and g(x) = x2 taken from the Galois field GF(23)  for the irreduc-
ible polynomial m(x) = x3 + x2 + 1.

 f x g x x x x x x( )× ( ) = + × = +( )2 2 4 3  

 = + +x x4 2 1  (since x x4 3+ mod m x( ) = x x4 3+ mod x x3 2 1+ + = x x4 2 1+ + )

 = x x x3 2 1×( ) + + (since x x x4 3= × ) 

 = x x x2 21 1+( )×( ) + +  (since x3 mod m x( ) = x3 mod x x3 2 1+ +( ) = x2 1+ )

 = x x x3 2+ + + 1 

 = x x x2 21+ + + + 1 (substitute x3  value as x2 1+ ) = x  

http://en.wikipedia.org/wiki/Equivalence_relation
http://en.wikipedia.org/wiki/Irreducible_polynomial
http://en.wikipedia.org/wiki/Irreducible_polynomial
http://en.wikipedia.org/wiki/Irreducible_polynomial
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Table 2.2 Polynomial arithmetic modulo (x3 + x2 + 1)

000 001 010 011 100 101 110 111

+ 0 1 x x + 1 x2 x2 + 1 x2 + x x2 + x + 1

000 0 0 1 x x + 1 x2 x2 + 1 x2 + x x2 + x + 1

001 1 1 0 x + 1 x x2 + 1 x2 x2 + x + 1 x2 + x

010 x x x + 1 0 1 x2 + x x2 + x + 1 x2 x2 + 1

011 x + 1 x + 1 x 1 0 x2 + x + 1 x2 + x x2 + 1 x2 

100 x2 x2 x2 + 1 x2 + x x2 + x + 1 0 1 x x + 1

101 x2 + 1 x2 + 1 x2 x2 + x + 1 x2 + x 1 0 x + 1 x

110 x2 + x x2 + x x2 + x + 1 x2 x2 + 1 x  x + 1 0 1

111 x2 + x + 1 x2 + x + 1 x2 + x x2 + 1 x2 x + 1 x 1 0

(a) Addition

000 001 010 011 100 101 110 111

× 0 1 x x + 1 x2 x2 + 1 x2 + x x2 + x + 1

000 0 0 0 0 0 0 0 0 0

001 1 0 1 x x + 1 x2 x2 + 1 x2 + x x2 + x + 1

010 x 0 x x2 x2 + x x2 + 1 x2 + x + 1 1 x + 1

011 x + 1 0 x + 1 x2 + x x2 + 1 1 x x2 + x + 1 x2

100 x2 0 x2 x2 + 1 1 x2 + x + 1 x + 1 x x2 + x

101 x2 + 1 0 x2 + 1 x2 + x + 1 x x + 1 x2 + x x2 1

110 x2 + x 0 x2 + x 1 x2 + x + 1 x x2 x + 1 x2 + 1

111 x2 + x + 1 0 x2 + x + 1 x2 + 1 x2 x2 + x 1 x2 + 1 x

(b) Multiplication

The arithmetic operations performed in GF (23) for the irreducible polynomial (x3 + x2 + 1) is shown in 
Table 2.2. Similar to the arithmetic operations performed in the algebraic structure GF(2k) which was 
discussed before, the Galois field GF(3k) uses the same way of performing the arithmetic operations 
with some changes are included. For example, the addition/subtraction is treated as performing an 
XOR operation in GF(2k). However, the addition/subtraction operation is performed in a different way 
in GF(3k). Because, it has three coefficients {0, 1, 2} and hence it is represented as , ,F3 0 1 2∈{ } . The 
irreducible polynomials of GF(32) are x2 + 1, x2 + 2, x2 + x + 1, x2 + x + 2, x2 + 2x + 1, and x2 + 2x + 2. 
To construct GF(3k) with any one of the irreducible polynomials, a set of elements with the degree 
of at most (k - 1) is used in the set. For example, GF(32) has group of 9 elements and they are of the 
form a

1
x + a

0
, where a a1 0 0 1 2, , , .∈{ }  These 9 elements are given as {0, 1, 2, x, x + 1, x + 2, 2x, 2x + 1, 
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2x + 2}. Consider the polynomial equations f x x g x x( ) ( ) ( ) ( )= + = +1 2and  chosen from GF(32). 
The addition of these polynomial equations can be performed in the following way:

 x x x+( ) + +( ) = +( )1 2 2 3 3mod  

 =2x  (Since, 3 mod 3 is zero) 

Similarly, all the elements of the group can be added. In order to perform multiplication in GF(32), 
an irreducible polynomial of degree 2

 
over GF(3) is required. This polynomial will be in the form of 

x2 + ax + b such that a b, , ,∈{ }0 1 2 . Therefore, we choose the irreducible polynomial x2 + 2x + 2 for 
our discussion.

Note:

It is to be noted that b ≠ 0.  (Otherwise, the polynomial would be x2 + ax which is a reducible 
 polynomial.)

To perform multiplication operation in GF(32) for the elements f(x) and g(x) the following steps 
can be used:

 1. Compute, c x f x g x( )= ( )× ( ) .mod3  If c(x) is one of the group of 9 elements of GF(32), then 
c(x) is the final answer of the multiplication.

 2. Else, perform d x c x x ax b( ) = ( ) + +( )mod 2

Example 2.31:
Let ( ) ( ), ( ) ( ),a x x b x x= + = +2 2 1  and the irreducible polynomial is ( ) ( ).x ax b x x2 2 2 2+ + = + +  
Multiply a(x) and b(x).

Solution

 c x a x b x x x( ) = ( )× ( ) = +( )× +( )2 2 1 3mod  

 
= + +( )2 5 2 32x x mod

 
 = 2 2 22x x+ +( ) which does not belong to the group of 9 elements. 

Therefore, d x c x x x( ) = ( ) + +( )mod 2 2 2  

 
= + +( )2 2 22x x mod x x x2 2 2 1+ +( ) = +  

The result x +( )1 is available in the set GF(32). Similarly, all other elements of the group can be 
 multiplied using this method. Table 2.3 shows the addition and multiplication of all the elements of the 
structure GF(32) with respect to the irreducible polynomial x x2 2 2+ + .

2.4.5 Legendre and Jacobi symbols

Efficiently solving quadratic equations over a finite field is a challenging task. There are many clas-
sical methods which are efficient for solving quadratic equations. However, the classical methods are 
not used for finite field. To solve this problem in an efficient method, Legendre proposed a method.  
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Before discussing about the definition of the Legendre symbol, it is necessary to give a short  
description about quadratic residue.

Table 2.3 Polynomial arithmetic modulo (x2 + 2x + 2)

0000 0001 0010 0011 0100 0101 0110 0111 1000

 +  0 1 2 x x + 1 x + 2 2x 2x + 1 2x + 2

0000  0  0 1 2 x x + 1 x + 2 2x 2x + 1 2x + 2

0001  1  1 2 0 x + 1 x + 2 x 2x + 1 2x + 2 2x

0010  2  2 0  1 x + 2 x x + 1 2x + 2 2x 2x + 1

0011 x x x + 1 x + 2 2x 2x + 1 2x + 2 0 1 2

0100 x + 1 x + 1 x + 2 x 2x + 1 2x + 2 2x 1 2 0

0101 x + 2 x + 2 x x + 1 2x + 2 2x 2x + 1 2 0 1

0110 2x 2x 2x + 1 2x + 2 0 1 2 x x + 1 x + 2

0111 2x + 1 2x + 1 2x + 2 2x 1 2 0 x + 1 x + 2 x

1000 2x + 2 2x + 2 2x 2x + 1 2 0 1 x + 2 x x + 1

(a) Addition

0000 0001 0010 0011 0100 0101 0110 0111 1000

 ×  0 1 2 x x + 1 x + 2 2x 2x + 1 2x + 2

0000  0  0  0  0  0  0  0  0  0  0

0001  1  0  1  2 x x + 1 x + 2 2x 2x + 1 2x + 2

0010  2  0  2  1 2x 2x + 2 2x + 1 x x + 2 x + 1

0011 x  0 x 2x x + 1 2x + 1 1 2x + 2 2 x + 2

0100 x + 1  0 x + 1 2x + 2 2x + 1 2 x x + 2 2x 1

0101 x + 2  0 x + 2 2x + 1 1 x 2x + 2 2 x + 1 2x

0110 2x  0 2x x 2x + 2 x + 2 2 x + 1 1 2x + 1

0111 2x + 1  0 2x + 1 x + 2 2 2x x + 1 1 2x + 2 x

1000 2x + 2  0 2x + 2 x + 1 x + 2 1 2x 2x + 1 x 2

(b) Multiplication

Quadratic Residue: Suppose p is an odd prime and a is an integer, a is defined to be a quadratic resi-

due modulo p, if a p! ≡ ( )0 mod  and the congruence y a p2 ≡ ( )mod  has a solution y Z p∈ . The value 

a is defined to be quadratic non-residue modulo p, if a p a! ≡ ( )0 mod  and  is not quadratic residue 
modulo p.
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Example 2.32:
What are the quadratic and non-quadratic residues of Z

11
?

Solution

 1 1 2 4 3 9 4 5 5 3 6 3 7 5 8 9 9 4 10 12 2 2 2 2 2 2 2 2 2≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ≡ ( ) ≡, , , , , , , , .and  

Therefore,

 • Quadratic residues modulo 11 are,

  , , , , .1 3 4 5 9and{ }
 • Quadratic non-residues modulo 11 are,

  , , , , , .2 4 6 7 8 10and{ }

Theorem 2.6: Let p be an odd prime. Then, a is a quadratic residue modulo p, If

a pp−( ) ≡ ( )1 2 1/ mod

Legendre Symbol: Suppose p is an odd prime. For any integer a, define the Legendre symbol 
a

p

⎡

⎣
⎢

⎤

⎦
⎥  by,

 a

p

a p
⎡

⎣
⎢

⎤

⎦
⎥ =

≡ ( ), mod

,

0 0

1

if 

if a is quadratic residue mod

,

p

p− −

⎧

⎨
⎪

⎩
⎪ 1 if a is a quadratic non residue mod

 

Jacobi Symbol:

It is convenient to extend the Legendre symbol 
a

p

⎡

⎣
⎢

⎤

⎦
⎥  to a symbol 

a

n
⎡
⎣⎢

⎤
⎦⎥
, where n is an arbitrary odd 

integer. This generalization is called the Jacobi symbol. Whenever n is an odd prime, we take 
a

p

⎡

⎣
⎢

⎤

⎦
⎥  

to be the Legendre symbol. Let a be an integer, then the Jacobi Symbol
a

n
⎡
⎣⎢

⎤
⎦⎥

 is defined to be,

a

n

a

pi

k

i

ei

⎡
⎣⎢

⎤
⎦⎥

=
⎡

⎣
⎢

⎤

⎦
⎥

=
∏

1

Example 2.33:
Consider the Jacobi symbol, 

6278

9975
⎡
⎣⎢

⎤
⎦⎥
.  The prime power factorization of 9975 is, 9975 3 5 7 192= × × × .

 6278

9975

6278

3

6278

5

6278

7

6278

1

2
⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

× ⎡
⎣⎢

⎤
⎦⎥

× ⎡
⎣⎢

⎤
⎦⎥

×
99

⎡
⎣⎢

⎤
⎦⎥

 

 = ⎡
⎣⎢

⎤
⎦⎥

× ⎡
⎣⎢

⎤
⎦⎥

× ⎡
⎣⎢

⎤
⎦⎥

= −( )× −( ) × −( )× −( ) =−2

3

6

7

8

19
1 1 1 1 1

2  
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2.4.6 continued Fraction

Continued fraction is used to express numbers and fractions. The continued fraction is an expression 
of the form,

r a
b

a
b

a
b

a

= +
+

+
+…

0
1

1
2

2
3

3 .

a
i
 and b

i
 are either rational (or) real numbers. If all b

i
 are ‘1’, then the continued fraction is called 

simple continued fraction. If the expression contains finite number of terms, then it is known as a 
finite continued fraction. Otherwise, it is called an infinite continued fraction. In a finite continued 
fraction, the iterative process of representing a number is terminated after finitely many steps by using 
an integer. In contrast, the iterative process is executed for an infinite number of steps in an infinite 
continued fraction. A simple continued fraction is of the form

 r a
a

a
a

= +
+

+
+….

0

1

2
3

1
1

1

 
For example, the continued fraction expression for the irrational number e = 2 71828183.  is as  follows:

 e = +
+

+
+….

2
1

1
1

1
1

2

 

Example 2.34:
Find the continued fraction of 

64

17
.

 
64

17
= 51 13

17

+  = 3 + 13

17  

 = 3 + 1

1
4

13
+

 

 = 3 + 1

1
1

3
1

4

+
+

 

Example 2.35:
Find the continued fraction of 

55

12
.

55

12
 = 4 + 7

12

http://en.wikipedia.org/wiki/Infinite_expression_(mathematics)
http://en.wikipedia.org/wiki/Infinite_expression_(mathematics)
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 = 4 + 
1

1
5

7
+

 

 = 4 + 1

1
1

1
2

5

+
+

 

 = 4 + 1

1
1

1
1

1
1

2
1

2

+
+

+
+

 

2.5 PrimaLiTy TesTiNG meThoDs

Primality testing method is a method to find and to prove whether the given number is a prime number 
or not. There are two types of algorithms, namely deterministic and probabilistic algorithms to check 
the primality of a given number. This section discusses about both deterministic and probabilistic types 
of algorithms. Depending upon the size of prime numbers, there are various methods used to find 
prime number in an efficient way. Primality testing is an important method because prime numbers are 
used in many cryptographic algorithms such as rivest, shamir and adleman (RSA), Diffie–Hellman and 
pretty good privacy (PGP).

2.5.1 Naive algorithm

Naive algorithm is used to divide the given input number p by all the integers starting from 2 to p −1. 
If any one of them is a divisor, then the input number p is not a prime. Otherwise, it is considered as a 
prime number. The naive algorithm is also called trial division. Algorithm 2.5 explains about the naive 
algorithm.

1. Pick any integer p that is greater than 2.

2. Try to divide p by all integers starting from 2 to the square root of p.

3. If p is divisible by any one of these integers, we can conclude that p is composite.

4. Else p is a prime number.

 Algorithm 2.5

If p is not prime, then it factors as p a b= × , in particular one of the numbers a or b must be at most p. 

Hence, we actually only need to do p⎢
⎣

⎥
⎦ −( )1  divisions (2, 3, 4, ... , p⎢

⎣
⎥
⎦ ) in order to test whether 

or not a number is prime. The main limitation of this approach is that all numbers must be tested up to 
the square root of p, which is a time-consuming process. Therefore, this is fast enough when a small 
number of integers are given as input to test for primality. But as the number of test cases grow, this 
algorithm proves to be very slow.
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Example 2.36:
Find the primality test for the number 100 using naive algorithm.

Solution

 1. Select the integers 2, 3, ... p⎢
⎣

⎥
⎦  (Square root of p).

 2. Divide the input number 100 by all integers starting from 2 to 10.

  Case 1: 
100

2
 = 50 (100 is divisible by 2). Therefore, 100 is not a prime number.

Example 2.37:
Find the primality test for the number 47 using naive algorithm.

Solution

 1. Select the integers 2, 3, … p⎢
⎣

⎥
⎦  (Square root of p).

 2. Divide the input number 47 by all integers starting from 2, 3, ..., 6.

  Case 1: 
47

2
= 23.33 (47 is not divisible by 2)

  Case 2: 
47

3
= 15.66 (47 is not divisible by 3)

  Case 3: 
47

4
= 11.75 (47 is not divisible by 4)

  Case 5: 
47

5
= 9.4 (47 is not divisible by 5)

  Case 6: 
47

6
= 7.8 (47 is not divisible by 6)

Therefore, 47 is a prime number.

2.5.2 sieve of eratosthenes method

For very small prime numbers, we can use the ‘Sieve of Eratosthenes’ method.  This method is best 
method for small numbers, say all those less than 10,000,000,000. Algorithm 2.6 explains about the 
Sieve of Eratosthenes method.

Step 1: List out all the integers that are less than or equal to n and greater than one.

Step 2: Find the square root of n.

Step 3: Remove all the multiples of all primes that are less than or equal to n.

Step 4: The numbers that are left remaining are the prime numbers.

 Algorithm 2.6
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Example 2.38:
Find all the prime numbers less than or equal to 100 using the Sieve of Eratosthenes method.

Step no. Action to be taken Output

1
List out all the integers that less 
than or equal to 100

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 
20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 
35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 
50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, 62, 63, 64, 
65, 66, 67, 68, 69, 70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 
80, 81, 82, 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 
95, 96, 97, 98, 99, 100

2 Square root of 100 is 10
Repeat the elimination process until reaching 11, which is 
larger than the square root of 100

3
Remove all the multiples of 2 
which is the first prime number.

2, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 
35, 37, 39, 41, 43, 45, 47, 49, 51, 53, 55, 57, 59, 61, 63, 65, 
67, 69, 71, 73, 75, 77, 79, 81, 83, 85, 87, 89, 91, 93, 95, 
97, 99

4
Remove all the multiples of 
3 which is the second prime 
number.

2, 3, 5, 7, 11, 13, 17, 19, 23, 25, 29, 31, 35, 37, 41, 43, 47, 
49, 53, 55, 59, 61, 65, 67, 71, 73, 77, 79, 83, 85, 89, 91, 
95, 97

5
Remove all the multiples of 
5 which is the third prime 
number.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 49, 53, 
59, 61, 67, 71, 73, 77, 79, 83, 89, 91, 97

6
Remove all the multiples of 
7 which is the fourth prime 
number.

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 
61, 67, 71, 73, 79, 83, 89, 97

Stop the process since the next prime number is 11. Therefore, the prime numbers less than 100 are 2, 
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97.

This method is so fast because there is no need to store a large list of primes on a computer. However, 
an efficient implementation is necessary to find them faster by avoiding the process of writing numbers 
in a storage area.

2.5.3 Fermat’s Primality Test

Fermat’s Theorem

If p is a prime and p does not divide a which is a natural number, then a pp− ≡ ( )1 1 mod .

For example, 2 1 1110 mod( ) ≡ since 11 is a prime number and 11 does not divide 2.
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Example 2.39:
Check that if the given number 12 is a prime number or not using Fermat’s theorem.

Solution
In order to find whether 12 is a prime number or not, we have to check a11 12mod  is equal to 1 or 
not, where a is 1 12≤ <a . If it is equal to 1, then it is called a prime number. Otherwise, it is called a 
composite number. Consider a = 5, Then 5 12 5 111 mod = ≠ . Therefore, the given number is not a prime 
number.

Fermat’s theorem is a powerful test for compositeness. For example, Given n > 1 and a > 1 calcu-
late an-1 mod n. If the result is not one modulo n, then n is a composite number. If the result is one 
modulo n, then n might be prime and hence n is called a weak probable prime base a. In 1891, Lucas 
turned Fermat’s Little Theorem into a practical primality test. Lucas’ test is strengthened by Kraitchik 
and Lehmer.

Theorem 2.7: Let  n > 1.   If for every prime factor q  of  n – 1 there is an integer  a  such that 

a nn− ≡ ( )1 1 mod  and a
n

q

−1

 is not 1 (mod n), then n is prime.

2.5.4 miller–rabin Primality Test

Rabin developed a new primality test called Miller–Rabin primality test. This test was based on 
 Miller’s idea. The Miller–Rabin primality test is a probabilistic algorithm like Solovay–Strassen and it 
relies on equality or a set of equalities. This test holds true only for the prime numbers which is a fast 
method of determining the primality of a given number by using a probabilistic method. This method 
is advantageous over all the other primality testing methods discussed earlier. Algorithm 2.7 explains 
about the Miller–Rabin primality test.

Function Miller Rabin (x)

 
x yw− = ( )1 2

Select a randomly in the range [2, (x – 1)]

 z a xy mod=

if z x≡ ( )1 mod  then Return prime

for i = 1 to w – 1

 {

 if z x≡ − ( )1 mod  then Return prime

 z z x= 2 mod

 }

Return composite

Comments

// x is the input number for primality test

// y is an odd number and 2 is the base

 Algorithm 2.7
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Example 2.40:
Find the primality test for the number 1729 using Miller–Rabin method.

Solution
Let number to be tested for primality x = 1729

As per the algorithm, (x – 1) = (1729 − 1) = 1728 = 26 × 27

where x w y= = =1729 6 27, , .

Let z ay= ( )mod1729

Let a z= =2 2 172927, mod  = 645

 b = 645 ≠ 1

Therefore, as per Miller–Rabin algorithm, the operation z z x= 2 mod  has to be done for 5 iterations 
since w = 6. If we do not get the answer of z = 1 or z = –1 in these five iterations, then the number can 
be concluded as a composite number.

Iteration 1: z = 6452 mod 1729 = 1065

Iteration 2: z = 10652 mod 1729 = 1

Since, we get the answer of z = 1 in second iteration itself, the number 1729 can be concluded as a 
prime number.

Example 2.41:
Find the primality test for the number 7 using Miller–Rabin method.

Solution
Let x = 7 (number to be tested for primality)

As per the algorithm, (x – 1) = (7 − 1) = 6 = 21 × 3

where x w y= = =7 1 3, , .

 z ay= ( )mod 7

Let a = 2 where 1 1≤ ≤ −( )a x

 z = 23 mod 7 = 1

Since the value of z = 1, as per Miller–Rabin algorithm 7 can be concluded as a prime number.

Example 2.42:
Find the primality test for the number 82 using Miller–Rabin method.

Solution
Let x = 82 (number to be tested for primality)

As per the algorithm, (82 − 1) = 81 = 33 × 3
where x w y= = =82 3 3, , .

 z ay= ( )mod82

Let a = 2, z = 23 mod 82 = 8 ≠ 1
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Since, the value of z ≠ 1, as per Miller–Rabin algorithm the operation z z x= 2 mod  has to be done for 
3 iterations. If we do not get the answer of z = 1 in all these three iterations, then the number can be 
concluded as a composite number.

Iteration 1: z = 82 mod 82 = 64

Iteration 2: z = 642 mod 82 = 78

Iteration 3: z = 782 mod 82 = 16

Since we do not get the value of z as 1 in all three iterations, the number 82 can be concluded as a 
composite number.

Example 2.43:
Find the primality test for the number 729 using Miller–Rabin method.

Solution
Let x = 729 (number to be tested for primality)

As per the algorithm, (729 − 1) = 728 = 23 × 91

where x = 729, w = 3, y = 91.

Let a z ay= = ( )3 729, mod

 z = 33 mod 729 = 27 ≠ 1

Therefore, the operation z z x= 2 mod  has to be done for 3 iterations. If we do not get the answer of 
z = 1 in all these three iterations, then the number can be concluded as a composite number.

Iteration 1: z = 272 mod 729 = 0 ≠ 1

Since we get the value of z as 0 in the first iteration, the preceding two iterations will also get the value 
of z as 0 only. Therefore 729 can be concluded as a composite number from the first iteration itself.

2.6 FacTorizaTioN

Factorization of a given positive integer n is the process of finding out positive integers x and y such 
that the product of x and y equals to n and also x and y are greater than 1. The values x and y are called 
factors (divisors) of n. Factorization can be performed for any positive integer greater than 1. If a num-
ber is not factored, then it is called a prime number. For example, a number n =10  can be factored 
into two positive integers x and y, where x = 5  and y = 2.  However, the number n =11  cannot be 
factored since it is a prime number. Factorization of a composite number does not necessarily produce 
unique results. For example, the number n = 60  can be factored as the product of the two composite 
numbers x =15  and y = 4. In the same way, the same number n = 60  can be factored as the product 
of the prime number x = 3  and the composite number y = 20  (because, 60 3 20= × ). Similarly, the 
same number n = 60  can also be factored as 60 5 12= × . But the prime factorization of a given number 
gives the same result. However, in prime factorization method, the output of factorization algorithm is 
to be checked to find whether it is a composite or prime number.
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2.6.1 Prime Factorization method

Prime factorization can be obtained for the above results by further factoring the factors that happen 
to be a composite number. For example, prime factorization of the number n = 60 contains three 
answers as shown in Figure 2.5 that are same. Therefore, from the first result n x y= × = ×15 4, the 
composite numbers 15 and 4 can be further factored into prime factors like 15 4 3 5 2 2× = × × × . In the 
same way, from the second result (60 3 20= × ), the composite number 20 can be factored as 5 2 2× × .  
So, 60 3 5 2 2= × × × , which is same as that of the previous result. Similarly, the third result 5 12 60× =  
can also factored as 5 12 5 3 2 2× = × × × . Figure 2.5 shows the diagrammatic representation of the 
working example for the number 60. Factoring a composite integer is a challenging problem and also 
it takes more computing power. In addition to this, composite numbers are not used in most of the 
cryptographic algorithms. There are many factorization algorithms to find factors or divisors of a given 
positive integer. Among the many factorization algorithms, this bookwork focuses on about prime 
factorization, trial division, Fermat’s factorization and Pollard’s rho method. Prime factorization is a 
method used to find the GCD and LCM (least common multiple) of the given two positive integers. 
Prime factorization is explained in Section 2.1.4. Remaining factoring methods are explained in this 
section.

2.6.2 Trial Division method

It is the simplest way of finding the factors or divisors of a given positive integer n. This method is a 
very similar method to Sieve of Eratosthenes method. This method divides the given number of all the 
integers that are greater than 1 and less than or equal to  n.

Algorithm 2.8 explains about the trial division method. In this algorithm, two while loops are used 
and hence it takes more computation complexity.

15 × 4

60

3 × 20 5 × 12

3 × 5 × 4 3 × 5 × 4 5 × 3 × 4

3 × 5 × 2 × 2 3 × 5 × 2 × 2 5 × 3 × 2 × 2

Figure 2.5 Prime factorization of the number 60
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Function Trialdivision (n)

 a = 2;

While a n≤( )
{

 While n amod =( )0

 {

  Return a

  n n a= / ;

 }

a a= +1;

}

Comments

//x is the given positive odd integer

// Execute it until reaching n .

// It returns the duplicate factors

// It returns distinctive factors

 Algorithm 2.8

Example 2.44:
Factor the number 105 by using trial division method.

Trial 1: a = 2, n =11, n amod mod= ≠105 2 0. So, increment a value by 1.

Trial 2: a = 3, n =11, n amod mod= =105 3 0. So, return the value 3 as a factor.

 n n a= = =/
105

3
35

 
 n amod mod= ≠35 3 0. So, increment a value by 1.

Trial 3: a = 4, n =11, n amod mod= ≠105 4 0. So, increment a value by 1.

Trial 4: a = 5, n =11, n amod mod= =105 5 0. So, return the value 5 as a factor.

 n n a= = =/
105

5
21

 
n amod mod= ≠21 5 0. So, increment a value by 1.

Trial 5: a = 6, n =11, n amod mod= ≠105 6 0. So, increment a  value by 1.

Trial 6: a = 7, n =11, n amod mod= =105 7 0. So, return the value 7 as a factor.

 n n a= = =/
105

7
15

 
 n amod mod= ≠15 7 0 . So, increment a  value by 1.

Trial 7: a = 8, n =11, n amod mod= ≠105 8 0. So, increment a  value by 1.

Trial 8: a = 9, n =11, n amod mod= ≠105 9 0 . So, increment a  value by 1.

Trial 9: a =10, n =11, n amod mod= ≠105 10 0. So, increment a  value by 1.

Trial 10: a =11, n =11, n amod mod= ≠105 11 0. Stop this process because, a n= =11.

Therefore, the factors are 3, 5 and 7.
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2.6.3 Fermat’s Factorization method

Fermat’s factorization method was developed by Pierre de Fermat. Fermat’s factorization method uses 
a piece of information that any number can be expressed as the difference between two squares. For 
example, the given positive integer n  can be expressed as a b+( )  and a b−( )  and also any one of the 

factors must not be 1. So, the number n can be written as n a b a b a b= +( )× −( ) = −2 2. This method is 
used to find the factors of a given positive odd integer only.

This method is a simple to implement, but it would be slower than trial division (worst case). 
 Algorithm 2.9 explains about the Fermat’s  factorization method. In this algorithm, b a n2 2= −  
( Be cause, n a b= −2 2 ) value is computed in each trial until b value becomes a perfect square value. 

Finally, this algorithm returns any one of the factor values after subtracting or adding b  value from 
the value of a.

Function Fermatfactor (n)

 a n= ⎢⎣ ⎥⎦ ;

 b a a n= ×( ) −
 While b ≠ square

 {

  a a= +1

  b a a n= ×( ) −
 }

Return a b or a b−( ) +( )

Comments

// n  is the given positive odd integer

// Execute it until b is not a square number

// It returns any one of the two factors

 Algorithm 2.9

Example 2.45:
Factor the number 105 by using Fermat’s factorization method.

n =105. a = n⎢⎣ ⎥⎦ = 105 10 2 11⎢⎣ ⎥⎦ = =. .

 b a a n= ×( ) − = − =121 105 16.

Since b is a square, it would return a b a b−( ) +( ).or  So, a b−( ) = − =11 4 7  and a b+( ) = 

11 + 4 = 15. Therefore, the numbers 7 and 15 are the factors of the given number n =105.

Example 2.46:
Factor the number 1575  by using Fermat’s factorization method.

          n =1575. a = n⎢⎣ ⎥⎦  = 1575 39 6 40⎢⎣ ⎥⎦ = =. .

 b a a n= ×( ) − = − =1600 1575 25

Since b is a square it would return a b a b−( ) +( )or . So, a b−( ) = − =40 5 35  and a b+( ) = 

40 + 5 = 45. Therefore, the numbers 35  and 45  are the factors of the given number n =1575.

http://en.wikipedia.org/wiki/Fermat
http://en.wikipedia.org/wiki/Integer_factorization
http://en.wikipedia.org/wiki/Pierre_de_Fermat
http://en.wikipedia.org/wiki/Fermat
http://en.wikipedia.org/wiki/Integer_factorization
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Example 2.47:
Factor the number 7373  by using Fermat’s factorization method.

First loop:      n = 7373. a  = n⎡⎢ ⎤⎥  = 7373 85 8 86⎡⎢ ⎤⎥ = ⎡ ⎤ =. .

b a a n= ×( ) − = − =7396 7373 23

Since b  is not a square number, next trial is to be executed.

Second loop: a a= + =1 87.

b a a n= ×( ) − = − =7569 7373 196

Since b is a square number, it would return a b−( ) = − =87 14 73  and a b+( ) = + =87 14 101. 

Therefore, the numbers 73  and 101  are the factors of the given number n = 7373.

2.6.4 Pollard’s rho method

This factorization method was developed by John Pollard in the year 1974. It was developed based on 
the two assumptions:

 1. Assume that there are two integers b  and c  such that divisor  divides b c−( )  but it does not 
divide by the given number n .

 2. It is clear to understand that divisor gcd= −( )( )b c n, . Since, divisor  divides b c−( ),  it can be 

written as b c d−( ) = ×divisor . Moreover, gcd b c n−( )( ) =, 1  or a factor of n  since b c−( )  is 
not divided by the given number n .

Algorithm 2.10 explains about the Pollard’s rho factorization method. In this algorithm, two functions 
are used, namely Factor and Pollard_rho. Among the two functions, the first function factor is used to 
find the factors of a given positive integer. The second function is used to implement Pollard rho factor-
ization method. Initially, the given input number is passed onto the main function ‘Factor’ which calls 
the subfunction Pollard_rho. In the subfunction Pollard_rho, the variables a b c b= = =1 2, ,  are ini-
tialized to compute the divisors. Two equations are declared and implemented in this subfuction. One 

equation is b b a n= +( )2 mod  and another equation is c ,= +( )c a n2 mod  which is executed twice in 

the subfunction. By using the computed values of b and c, the GCD value is computed to find any one 
of the divisors of a given number. The process is executed until the divisor equals to 1. This function 
returns the divisor value to the main function when any of the divisor is found where the first function 
factor is executed in a recursive procedure.
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Function Factor (n)

{

If n = =( )0  Return 0;

If (n is a prime) Return n;

divisor = Pollard_rho n( ) ;

Factor divisor( ) ;

Factor n / divisor( ) ;

}

Function Pollard_rho n( )
{

 a b c b= = =1 2, , ;

 if nmod 2 0= =( ) Return 2

 do

  {

  b b b n a n= ×[ ] +mod mod ;

  c c c n a n= ×[ ] +mod mod ;

  c c c n a n= ×[ ] +mod mod ;

  
divisor gcd= −( )( )b c n,

  } while divisor = =( )1

 Return divisor

}

Comments

// n  is the given input number

// Function call for Pollard_rho function

// Recursive call for the function ‘Factor’

// Variable initialization part

// b a2 +( )  is the function used for b

// Find the divisor value

 Algorithm 2.10

Example 2.48:
Find the factors of (60) using the Pollard’s rho method.

Solution

 a b c b= = =1 2, ,  

b c n Divisor Factor

2 2 60 30 2

2 2 30 15 2

5 2 15 5 3

— — 5 — 5
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Example 2.49:
Find the factors of 123456789( )  using the Pollard’s rho method.

Solution

 a b c b= = =1 2, ,  

Iteration b c n Divisor Factors

Initial 2 2 123456789 —

 1 5 26 123456789 3 3

 2 5 26 41152263 3 3

 3 5 26 13717421 1 —

 4 26 458330 13717421 1 —

 5 677 12999463 13717421 1 —

 6 458330 8774373 13717421 1 —

 7 11521128 4063858 13717421 1 —

 8 12999463 7705894 13717421 1 —

 9 4160848 1953546 13717421 1 —

10 8774373 8316694 13717421 1 —

11 6331527 7976682 13717421 1 —

12 4063858 11778077 13717421 1 —

13 3722846 6792151 13717421 1 —

14 7705894 5102324 13717421 1 —

15 7269177 3730346 13717421 1 —

16 1953546 10490000 13717421 1 —

17 4560286 8508279 13717421 1 —

18 8316694 1796643 13717421 1 —

19 6029074 11208961 13717421 1 —

20 7976682 5327511 13717421 1 —

21 7748464 5305326 13717421 1 —

22 11778077 10784004 13717421 1 —

23 12660557 5360627 13717421 1 —
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Iteration b c n Divisor Factors

24 6792151 10310288 13717421 1 —

25 9728124 13272581 13717421 1 —

26 5102324 4187816 13717421 1 —

27 6734180 3069449 13717421 1 —

28 3730346 871045 13717421 1 —

29 8155319 10241853 13717421 1 —

30 10490000 1220371 13717421 1 —

31 4979418 394254 13717421 1 —

32 8508279 11543185 13717421 1 —

33 2872752 13545697 13717421 1 —

34 1796643 9741518 13717421 1 —

35 11146835 9869822 13717421 1 —

36 11208961 12649411 13717421 1 —

37 12232428 5895185 13717421 1 —

38 5327511 9988491 13717421 1 —

39 599547 4643053 13717421 1 —

40 5305326 2542301 13717421 1 —

41 9599639 12574359 13717421 1 —

42 10784004 7688529 13717421 1 —

43 10820011 8577418 13717421 1 —

44 5360627 2942741 13717421 1 —

45 12080913 2184916 13717421 1 —

46 10310288 10702594 13717421 1 —

47 9431967 10317502 13717421 1 —

48 13272581 2949347 13717421 3607 3607

49 3607 3803
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Key Terms

Additive group

Algebraic structures

Backward secrecy

Chinese remainder theorem (CRT)

Commutative ring

Computation complexity

Congruence

Continued fraction

Euclid’s algorithm

Euler’s theorem

Exponentiation

Extended Euclidean algorithm

Factorization

Fast modular exponentiation

Fermat theorem

Fermat’s factorization

Fermat’s primality test

Fields

Finite continued fraction

Forward secrecy

Galois fields (GFs)

Greatest common divisor (GCD)

Group

Infinite continued fraction

Jacobi symbol

Legendre symbol

Miller–Rabin primality test

Modular exponentiation

Multicast

Multiplicative group

Naive algorithm

Pollard rho

Polynomial

Primality testing

Prime factorizations

Quadratic residue

Ring

Sieve of Eratosthenes

Trial division method

summary

 • In this chapter, we explained about the foundation of basic number theory and its branches. This 
concept is necessarily discussed in this chapter before explaining about cryptographic algorithms.

 • One of the important concepts in number theory is congruences. x  is congruent ≡( )  to y nmod( ) 
if and only if x y−( )  is a multiple of n.

 • Exponentiation  is a type of operation where two elements are used in which one element is 
 considered as base element and another element is considered as exponent element.

 • The GCD of two or more  integers is defined as the greatest positive integer that  divides  the 
numbers without a remainder. Among the various methods of GCD computation, the Euclid’s 
 algorithm is an efficient method.

 • The extended Euclidean algorithm  is an efficient method of finding the modular inverse of an 
 integer. The Euclid’s algorithm can be extended to give not only d gcd a b= ( ), , but also two 
 integers x

2
 and y

2
 such that a x b y d×( ) + ×( ) =2 2 .

 • The Chinese remainder theorem (CRT) is used to find a common value from a system of congru-
ences. CRT is mainly used in coding theory and cryptography.



Mathematics of Modern Cryptography  69

 • Fermat’s theorem is mainly used to solve modular exoneration problems when the base is consid-
ered as a, moduli are considered as prime p and p should not divide a.

 • Euler’s phi function φ n( )  returns the number of integers from 1 to n, that are relatively prime to n.

 • Cryptographic algorithms are mainly working on the basis of algebraic structures. An arbitrary set 
with one or more  limited operation defined on it with certain axioms is called an algebraic 
 structure.

 • Three types of algebraic structures, namely groups, rings and fields are discussed in this chapter.

 • A group is a set G  together with a binary operation * on G  that satisfies four axioms, namely 
closure, associative, identity and the inverse element.

 • The groups can also be divided into two types, namely finite groups and infinite groups. There are 
two types of groups used in cryptographic algorithms, namely additive group and multiplicative 
group.

 • A ring R is a set of elements together with two binary operations addition (+) and multiplication 
(×) operations that satisfies six axioms, namely closure, associative, commutative, multiplication 
operation distribute over the addition, identity and the inverse element. The ring is divided into 
two types, namely commutative ring and division ring.

 • A field F is a set of elements together with two binary operations addition (+) and multiplication 
(×) operation that satisfies six axioms, namely closure, associative, commutative, multiplication 
operation distribute over the addition, identity and the inverse element.

 • Field is of the form GF(pn), where the ‘GF’ represents a ‘Galois Field’. The addition and subtrac-
tion operations in GF(pn) are performed by adding or subtracting two polynomials together, and 
reducing the result modulo the attribute p.

 • Multiplication operation in a Galois field GF(2n) is performed by multiplication followed by a 
modulo division with respect to an  irreducible polynomial used to define the Galois field GF(2n).

 • Continued fraction is used to express numbers and fractions. If the expression contains a finite 
number of terms, then it is known as a finite continued fraction. Otherwise, it is called an infinite 
continued fraction.

 • Primality testing method is a method to find and to prove whether the given number is a prime 
number or not.

 • There are four types of primality testing methods, namely naive algorithm, Sieve of Eratosthe-
nes method, Fermat’s primality test and Miller–Rabin primality test. Among the four methods, 
Miller–Rabin primality test is an efficient method.

 • Factorization of a given positive integer n is the process of finding out positive integers x and y 
such that the product of x and y equals to n and also x and y are greater than 1.

 • The trial division method is the simplest way of finding the factors or divisors of a given positive 
integer n.

 • Fermat’s factorization method uses a piece of information that any number can be expressed as the 
difference between two squares such as n a b= −2 2.

 • Pollard rho is an efficient factorization method which was developed by John Pollard in the year 
1974.

http://en.wikipedia.org/wiki/Equivalence_relation
http://en.wikipedia.org/wiki/Irreducible_polynomial
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reView QuesTioNs

 1. Calculate 216 mod 123.

 2. Calculate 314 mod 30.

 3. Use the modular exponentiation algorithm to calculate 1519 mod 37.

 4. Find gcd(143, 227), gcd(8, 182), gcd(125, 87) using Euclidean method.

 5. Find the values of x
2
 and y

2
 from the given values (a, b) = (8, 182) by using extended Euclidean 

algorithm.

 6. Find the value of x
2
 and y

2
 from the given values (a, b) = (16, 10374) by using extended 

Euclidean algorithm.

 7. Find the x value for the equation x
2
 ≡ 1 (mod 35) using CRT.

 8. Find the x value for the system of congruences.

  x ≡ 3 4mod

  x ≡ 2 5mod

 9. Solve the system of simultaneous congruences.

  2 1 5x ≡ mod

  3 9 6x ≡ mod

  4 1 7x ≡ mod

  5 9 11x ≡ mod

 10. Compute Euler’s totient function for the value 1729.

 11. Find 4 1025 mod .

 12. Solve the value of 4 1333113334 mod .

 13. Solve the value of 4 1333126662 mod .

 14. How additions and multiplications are performed in GF(2n)? Explain in detail.

 15. Solve 
1411

317
⎛
⎝⎜

⎞
⎠⎟

 using Jacobi–Legendre symbol.

 16. Factor the numbers 12345 and 67890.



Classical Encryption 
Techniques

3
chapter

In this chapter, we shall cover some of the basic cryptographic algorithms that were used for providing 
a secure way of communicating the messages from one person to another person in the olden days. In 
these cryptographic algorithms, we assign numbers (or) algebraic elements to the given input message 
to be communicated between two persons. If the assigned numbers (or) algebraic values are in intel-
ligent form, then it is considered as plaintext which is also called clear text. This intelligible plaintext is 
converted into an unintelligible form called ciphertext. In order to convert the intelligible plaintext into 
the unintelligible ciphertext, an encryption function is used in the sender side. Similarly, a decryption 
function is used in the receiver side to find intelligible plaintext from the unintelligible ciphertext. The 
process of converting the intelligible plaintext into unintelligible ciphertext and back into intelligible 
plaintext is called cryptography. The cryptographic algorithms are divided into two types, namely 
secret key cryptography and public key cryptography, which are the two main ideas to perform encryp-
tion and decryption. This chapter discusses about secret key cryptography, which is also called sym-
metric key (single key) cryptography. Public key cryptography will be discussed in Chapter 7. Secret 
key cryptography is further divided into two types, namely substitution techniques and transposition 
techniques which are discussed in the later part of this chapter.

3.1 Conventional enCryption

Conventional encryption is a technique in which a single key is used to perform both encryption and 
decryption operation. The single key used to perform both encryption and decryption operation is 
called secret key or private key which should be known to both the sender and the receiver. The 
process of recovering the original, intelligible plaintext from unintelligible ciphertext without using 
the key value is called cryptanalysis. The combination of cryptography and cryptanalysis is called 
 cryptology. Modern encryption protocols will use two keys, namely private key (secret key) and public 
key. Among the two keys, any one of the keys can be used for performing encryption operation and the 
other key is used for performing the decryption operation. If the private key is used in the encryption 
side, then the public key of that private key will be used in the decryption side (vice versa). 

3.1.1 the Conventional encryption Model

In the conventional encryption model, there should be at least two parties to perform secure communi-
cation. Let us take the sender name as Alice and the receiver name as Bob. Alice wants to  communicate 
a message with Bob in a secure way. In order to do that, the original intelligible message called plain-
text is converted into an unintelligible message by Alice and is sent to Bob. To convert the plain-
text into ciphertext, the encryption operation takes two parameters as input. They are the original 
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 intelligible message (P) and a key (K). The key is some bits of information which is generated from a 
source called key generator. The key is generated independently of the plaintext and is used to convert 
intelligible message from the original unintelligible message (vice versa). The encryption algorithm 
uses an encryption function which will produce different ciphertext values for the same plaintext value 
using different key values. Figure 3.1 shows a conventional encryption model that consists of three 
components, namely the sender (Alice), the receiver (Bob) and the attacker (Eavesdropper). The main 
objective of this model is to enable Alice and Bob to communicate over an insecure channel in such a 
way that the attacker (Eavesdropper) should not understand the original plaintext.

Eavesdropper

Alice Encryption
algorithm

Key
generator

P PC

K

Secure channel

K

Decryption
algorithm

Bob

Figure 3.1 Conventional encryption model

Initially, Alice is generating the plaintext P and sends it to the encryption algorithm. The encryp-
tion algorithm uses an encryption function to convert the plaintext P into the ciphertext C using a key 
value K. After computing the ciphertext, Alice transmits it through insecure channel. At the receiver 
side (Bob), the ciphertext is converted back into the original plaintext using the same key with the help 
of a decryption algorithm. According to Kerckhoffs principle, the encryption method is assumed to be 
known to the attacker (Eavesdropper). However, both the sender and receiver keeps the key as secret. 
As shown in Figure 3.1, the plaintext P and the key K are given as input to the encryption algorithm to 
produce the ciphertext C and it can be represented as shown below: 

C E PK= ( )

where,

 P = plaintext

 K = encryption and decryption key

 E = encryption algorithm

 C = ciphertext
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At the receiver side, the ciphertext C and the key K are given as input to the decryption algorithm to 
produce the plaintext P and it can be represented as shown below:

P D C D E P PK K K= ( ) = ( )( ) =( )

where,

 D = decryption algorithm

During the transmission of the ciphertext, an attacker can capture the ciphertext and tries to perform 
the following actions:

 1. The attacker can find the original plaintext.

 2. The attacker can find the key from which he/she can read all messages that are encrypted with 
the same key in the future.

 3. Once the key is found, the attacker can modify the original plaintext into another message in 
such a way that Bob will believe that the message is coming from Alice.

 4. The attacker makes Bob to believe that Bob is communicating with Alice.

3.1.2 types of attacks

The attack is a way of breaking the security by finding the key value that depends on the encryption 
algorithm and some knowledge about the possible structure of the plaintext. The existing methods used 
for performing an attack depend on whether the ‘attacker’ has ciphertext alone, or pairs of plaintext 
and ciphertext, or a small amount of information about the plaintext. Based on the information avail-
able in the attacker side, an attack is classified into four types, namely, ciphertext-only known attack, 
known plaintext attack, chosen plaintext attack and chosen ciphertext attack. 

3.1.2.1 Ciphertext-only Known attack

In this attack, an attacker is known with only ciphertext C. From the known ciphertext value, the 
 attacker tries to find the key in order to deduce the original plaintext value P. An encryption algorithm 
is a better algorithm if the algorithm is computationally infeasible to break against ciphertext-only 
attack.

3.1.2.2 Known plaintext attack

In this attack, an attacker is known with small amount of information about the plaintext P. From the 
known plaintext and ciphertext, the attacker tries to find the key value.

3.1.2.3 Chosen plaintext attack

In this attack, an attacker is selecting some known plaintext and ciphertext pairs: (P
1
,   C

1
),  

(P
2
, C

2
), …, (P

n
, C

n
), where P

1
, P

2
, …, P

n
 are chosen plaintext values and C

1
, C

2
, …, C

n
 are chosen 

ciphertext values by the attacker. Based on this, when a new ciphertext C arrives, the attacker tries to 
find the original plaintext P with respect to the ciphertext C. If the original plaintext P is found, it is 
easy to find the key value.
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3.1.2.4 Chosen Ciphertext attack

In this attack, an attacker is selecting one or more known ciphertexts and sending them into the 
 decryption algorithm to obtain the resulting plaintexts. From these pairs of ciphertext and plaintext, 
the attacker can try to find the key value.

3.2 SubStitution teChniqueS

A substitution technique is a method which replaces (substitutes) each plaintext letter with another 
alphabetical letter. That is, each of the plaintext letter is substituted (replaced) by another cipher- 
 text letter. If the encryption algorithm processes only a single letter at a time to produce the ciphertext 
letter, it is called a simple substitution encryption algorithm (Caesar cipher). If a cipher operates on 
a group of plaintext letters, then it is called polyalphabetic substitution algorithm (Vigenere cipher).

3.2.1 Caesar Cipher (Z+
n)

This method was named after Julius Caesar who used it to secretly communicate with his generals. 
Caesar cipher is the simplest and well-known substitution encryption technique. It is also called shift 
cipher. Caesar cipher is based on the concept of the additive group (Zn

+) and hence it supports addi-
tion operation in the encryption function and subtraction operation in the decryption function. There-
fore, in this algorithm, the plaintext (p) and key value (K) are selected from (Zn

+). Here, each letter 
of the plaintext is replaced by a letter with some fixed number of positions down the alphabet based 
on the key value. Therefore, in Caesar cipher, we start at ‘0’ to represent the value of ‘a’ since this 
shift cipher uses additive group-based encryption function. If any cryptographic algorithm is based 
on multiplicative group, then ‘a’ value should be considered as 1. If n = 26, then p values are selected 
from 0 to 25 and K value can be anything from ( )Zn

+ . Therefore, p and K values range from 0 to 25 
( , )0 26 0 26≤ < ≤ <p K . For example, with a shift of three letters ‘a’ would be replaced by ‘D’, ‘b’ 
would become ‘E’ in such a way that all alphabet are encrypted. Moreover, all the letters are deemed 
circularly connected. In general, this can be summarized by defining an encryption and decryption 
functions as shown below.

Encryption function:

C = (p + K) mod 26

Decryption function:

p = (C − K) mod 26 

where C is the ciphertext.

 p is the plaintext.

 K is the key.

 p, K, C ∈Z26.

For simplicity, we use lower-case letters to represent plaintext and upper-case letters to represent 
ciphertext letters in this book. The main advantage of this algorithm is that, it is a simple algorithm and 
it is widely used one in modern secret-key encryption algorithms. The main limitation of this approach 
is that, it is easily breakable by brute force attack since it is a simple structure with 26 possible keys. 
The brute force attack is an attack that tries for all possible keys from 1 to (n − 1), where n is the 
group size. This algorithm is vulnerable to brute force attack because of the following three reasons.  

http://en.wikipedia.org/wiki/Caesar_cipher
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First, the key space is very small since n = 26 in (Zn
+). Second, we have to assume that the encryption 

and the decryption algorithms are known to attackers. Finally, the language of the plaintext and cipher-
text is known and easily recognizable.

Example 3.1: 
Encrypt the plaintext ‘security’ using the Caesar cipher method for the key value K = 3.

Solution
Encryption:

Plaintext = security Key = 3

plaintext (p):

Plaintext s e c u r i t y

Numeric notation 18 4 2 20 17 8 19 24

Ciphertext Encryption Encryption result Alphabetic notation

ciphertext (C
1
) (18 + 3) mod 26 21 V

ciphertext (C
2
) (4 + 3) mod 26 7 H

ciphertext (C
3
) (2 + 3) mod 26 5 F

ciphertext (C
4
) (20 + 3) mod 26 23 X

ciphertext (C
5
) (17 + 3) mod 26 20 U

ciphertext (C
6
) (8 + 3) mod 26 11 L

ciphertext (C
7
) (19 + 3) mod 26 22 W

ciphertext (C
8
) (24 + 3) mod 26 1 B

Ciphertext (C): VHFXULWB

Decryption:

ciphertext (C):

V H F X U L W B

21 7 5 23 20 11 22 1

Plaintext Decryption Decryption result Alphabetic notation

Plaintext (p
1
) (21 − 3) mod 26 18 s

Plaintext (p
2
) (7 − 3) mod 26 4 e

Plaintext (p
3
) (5 − 3) mod 26 2 c

Plaintext (p
4
) (23 − 3) mod 26 20 u

Plaintext (p
5
) (20 − 3) mod 26 17 r

Plaintext (p
6
) (11 − 3) mod 26 8 i

Plaintext (p
7
) (22 − 3) mod 26 19 t

Plaintext (p
8
) (1 − 3) mod 26 24 y

plaintext = security
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3.2.2 affine Cipher (Z*
n)

In Caesar cipher, plaintext messages are encrypted using an additive key. To increase the security level, 
we can include multiplicative parameter with an additive parameter for encrypting and decrypting the 
messages. Affine cipher is based on the concept of the multiplicative group (Zn

*) and hence it supports 
multiplication operation in the encryption function and division operation (multiplicative  inverse) in the 
decryption function. The readers who are not familiar with multiplicative group shall read  Section 2.4 
prior to this topic for analysis. The affine cipher is a type of substitution cipher, where each letter is 
encrypted and decrypted using a simple mathematical function. In the affine cipher, the letters of an 
alphabet of size n are corresponding to the integers of range 0 to (n – 1). Then, this algorithm uses 
multiplication and multiplicative inverse operations for encrypting and decrypting the messages. 

The encryption function can be summarized as shown below:

Y x n≡ α β+ ( )mod

where,

 n is the size of the alphabet (group size),

 a, b are the key values used in the cipher,

 x is the plaintext, 

 Y is the numerical value of the ciphertext.

The value of x is the numerical value of the given plaintext letter and (a, b ) are the whole num-
bers between 0 and 25. Note that affine cipher is neither an additive group nor a multiplicative group 
because the value of n is chosen as 26 which is not a prime number. Therefore, all the values of a 
cannot produce multiplicative inverse. Because a is multiplied with the plaintext x, there should be a 
multiplicative inverse element for a in the decryption side. This is not possible here since it is not a 
multiplicative group when n value is chosen as a composite number (n = 26). Therefore, we have to 
make it as an Euler group in such a way that all the values of a should produce a multiplicative inverse. 
In order to satisfy this condition, the value of a must be chosen such that a and n are co-primes and 
a is relatively prime to 26.

The decryption function used in the receiver side is summarized as shown below:

x Y n≡ ⎛
⎝⎜

⎞
⎠⎟

−( )1

α
β mod

In the decryption function, 
1

α
 is the multiplicative inverse of a with respect to n = 26. The multi-

plicative inverse of a exists if and only if a and n are co-primes. Hence, without the restriction on a, 
the decryption is not be possible. a and n are relatively prime if gcd(a, n) = 1. Some of the important 
conditions to be followed in affine cipher are given below:

 1. gcd(a, 26) = 1

 2. b = {0, 1, 2, …, 25}

 3. a = {1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25}

Thus, from the above three conditions, it can be concluded that the affine cipher’s key size is 312 
(because 12 26 312× = ). The value 12 represents that only 12 numbers (a) are relatively prime to n 
as shown in step 3 and 26 represents all the 26 numbers can be used as b. The main advantage of this 
algorithm is the increase in key size when compared to Caesar cipher since affine cipher involves 
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multiplication as an extra operation along addition operation. But the limitation is that it involves 
matching of frequently occurred ciphertext letters with frequently occurred plaintext letters. In addi-
tion to this, brute force attack is also possible to perform in affine cipher since the key size is only 312.

Example 3.2:
Encrypt the plaintext firewall using Affine cipher method for a = 9 and b = 2.

Solution
Encryption:

plaintext = firewall. 

y x (mod )≡ +9 2 26

Plaintext f i r e w a l l

Numeric notation 5 8 17 4 22 0 11 11

Ciphertext Encryption Encryption result Alphabetic notation

ciphertext (C
1
) (9 × 5) + 2 47 (mod 26) = 21 V

ciphertext (C
2
) (9 × 8) + 2 74 (mod 26) = 22 W

ciphertext (C
3
) (9 × 17) + 2 155 (mod 26) = 25 Z

ciphertext (C
4
) (9 × 4) + 2 38 (mod 26) = 12 M

ciphertext (C
5
) (9 × 22) + 2 200 (mod 26) = 18 S

ciphertext (C
6
) (9 × 0) + 2 2 (mod 26) = 2 C

ciphertext (C
7
) (9 × 11) + 2 101(mod 26) = 23 X

ciphertext (C
8
) (9 × 11) + 2 101(mod 26) = 23 X

ciphertext: VWZMSCXX

Decryption:

ciphertext = VWZMSCXX 

x Y n≡ ⎛
⎝⎜

⎞
⎠⎟

−( )1

α
β mod

x Y≡ ⎛
⎝⎜

⎞
⎠⎟

−( )1

9
2 26mod

x Y≡ ( ) −( )3 2 26mod

Ciphertext V W Z M S C X X

Numeric notation 21 22 25 12 18 2 23 23
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Plaintext Decryption Decryption result Alphabetic notation

Plaintext (p
1
) (3 × 21) + 20 83 (mod 26) = 5  f

Plaintext (p
2
) (3 × 22) + 20 86 (mod 26) = 8  i

Plaintext (p
3
) (3 × 25) + 20 95 (mod 26) = 17  r

Plaintext (p
4
) (3 × 12) + 20 56 (mod 26) = 4  e

Plaintext (p
5
) (3 × 18) + 20 74 (mod 26) = 22  w

Plaintext (p
6
) (3 × 2) + 20 26 (mod 26) = 0  a

Plaintext (p
7
) (3 × 23) + 20 89 (mod 26) = 11  l

Plaintext (p
8
) (3 × 23) + 20 89 (mod 26) = 11  l

Plaintext: firewall

3.2.3 playfair Cipher

Playfair cipher was invented by Charles Wheatstone in 1854, which was named after his friend  
Baron Playfair. This was widely used for many years in the US and the British military during the 
First World War. Playfair cipher is a polyalphabetic substitution algorithm. In playfair cipher, a pair of 
 letters known as digrams is encrypted into another digrams of ciphertext using a 5 × 5 matrix. First, the 
matrix is filled with letters of the keyword in a rowwise starting from left to right and top to  bottom. 
 After that, remaining cells are filled with the rest of alphabet in their natural order. Usually ‘i’ and 
‘j’ are filled within the same cell in order to place all alphabet in their respective cells (within 5 × 5 
 matrix). The reason is 5 × 5 matrix can have a maximum of 25 cells, which cannot store all the  alphabet 
since we have 26 alphabetical letters. If the letters ‘i’ and ‘j’ are already available in the key word, then 
any other two letters will be placed in one cell. For example, if the keyword is ‘Hijack’, then it is nec-
essary to place any two letters other than ‘i’ and ‘j’ in one cell in order to place all the 26 alphabet in a 
5 × 5 matrix. Note that, in Playfair cipher, the matrix is deemed circularly connected.

3.2.3.1 encryption

The following steps are executed in performing the encryption operation in Playfair cipher.

 1. If a letter is a repeated in a digram, insert a filler letter like ‘x’ in order to make no repetitions 
in the digram. For example, if the plaintext is ‘dollar’, it has to be converted into digram ‘do 
ll ar’. In this case, the letter ‘ll’ repeats in a digram which needs to be segregated by introduc-
ing a filler letter ‘x’. After introducing it, the digram would appear like ‘do lx la rx’ for which 
encryption operation is to be performed. 

 2. If both letters lie in the same row, then substitute each letter with the letter located to the right 
(wrapping back to start from the end). For example, if the input digram to the encryption algo-
rithm is ‘ar’, then it will be encrypted as ‘RM’ as shown in Table 3.1.

 3. If both letters lie in the same column, then substitute each letter with the letter underneath it 
(again wrapping to top from bottom). For example, ‘mu’ is encrypted as ‘CM’ as shown in 
Table 3.1.

 4. Otherwise, each letter is replaced by the one lying in its own row and the column of the other 
letter of the pair. For example, ‘hs’ is encrypted as ‘BP’, and ‘ea’ is encrypted ‘IM’ or ‘JM’  
(as desired).

http://www.scrabblefinder.com/word/hijacks/
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3.2.3.2 Decryption

The following steps are executed in performing the decryption operation in Playfair cipher.

 1. If both letters fall in the same row, then substitute each with the letter located to its left (wrap-
ping back to start from the end). For example, if the input digram to decryption algorithm is 
‘RM’, then it will be decrypted as ‘ar’ as shown in Table 3.1.

 2. If both letters fall in the same column, then substitute each with the letter on top of it (again 
wrapping to top from bottom). For example, ‘CM’ is decrypted as ‘mu’. 

 3. Otherwise, each letter is replaced by the letter lying in its own row and the column of the other 
letter of the pair. For example, ‘BP’ is decrypted as ‘hs’.

 4. After completing the decryption operation, remove the filler letter ‘x’ introduced during the 
encryption operation in order to produce the digram with repetition of letters.

The advantage of this algorithm is that, it has 26 × 26 = 676 diagrams for which it would need 676 
combinations to analyse. 

3.2.3.3 Cryptanalysis of the playfair

The Playfair cipher is vulnerable to known plaintext and known ciphertext attack. If the plaintext and 
ciphertext both are known, then it is easy to find the key. In some cases, ciphertext alone is known 
to a hacker. In that case, brute force attack can be performed by searching through the key space for 
matches between the standard frequency of occurrence of digrams and the known frequency of occur-
rence of digrams in the original plaintext message. For example, the frequently used digrams in the 
English language are TH, HE, AN can be compared with the frequency of occurrence of digrams in 
the original plaintext message.

Example 3.3: 
Encrypt and Decrypt the plaintext daddy using Playfair cipher for the key value monarchy.

Solution
Initially construct a 5 5×  matrix and fill it using the letters of the key monarchy. After filling it, fill 
the rest of the matrix with other alphabet in their natural order.

 Table 3.1 Playfair key matrix
m o n a r

c h y b d

e f g i/j k

l p q s t

u v w x z

The plaintext (daddy) needs to be converted into digrams. Hence, we should introduce the filler 
 letter ‘x’ between ‘d’ in the second digram since there is a repetition. Therefore, the digrams of the 
given plaintext are ‘da dx dy’.
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Encryption of the first digram (da) is = BR (because ‘da’ falls in different row and different column).

Encryption of the second digram (dx) is = BZ (because ‘dx’ falls in different row and different 
column).

Encryption of the third digram (dy) is = CB (because ‘dy’ falls in the same row).

dadxdy

BRBZCB

Decryption is performed in the reverse order.

Decryption of the first digram (BR) is = da (because ‘BR’ falls in different row and different column).

Decryption of the second digram (BZ) is = dx (because ‘BZ’ falls in different row and different 
column).

Decryption of the third digram (CB) is = dy (because ‘CB’ falls in the same row).

3.2.4 vigenere Cipher

The Vigenere cipher was developed by Blaise de Vigenere in the year 1596. Vigenere cipher is an 
 example of a polyalphabetic cipher. In this cipher, each plaintext letter is replaced by a ciphertext 
 letter from any one of many ciphertext alphabet. Since any letter may be replaced by any other letter 
of the alphabet, the frequency distribution is diffused here. Therefore, this cipher is suitable for lengthy 
 message and this cipher was regarded as unbreakable. Vigenere cipher uses a 26 × 26 table of alphabet 
as shown in Table 3.2 to which a plaintext letter is used to select a column and a key letter is used to 
select a row.

Table 3.2 Encryption using Vigenere tableau
Plaintext

A
B
C D E F G H I J K L M N O P Q R S T U V W X Y Z A B

E F G H I J K L M N O P Q R S T U V W X Y Z A B C D

H I J K L M N O P Q R S T U V W X Y Z A B C D E F G

B C

C D E F G H I J K L M N O P Q R S T U V W X Y Z A

D E F G H I J K L M N O P Q R S T U V W X Y Z A

B C D EF G H I J K L M N O P Q R S T U V W X Y Z A
B C D E FG H I J K L M N O P Q R S T U V W X Y Z A

B C D E F G HI J K L M N O P Q R S T U V W X Y Z A
B C D E F G H IJ K L M N O P Q R S T U V W X Y Z A

B C D E F G H I JK L M N O P Q R S T U V W X Y Z A
B C D E F G H I J KL M N O P Q R S T U V W X Y Z A

B C D E F G H I J K LM N O P Q R S T U V W X Y Z A
B C D E F G H I J K L MN O P Q R S T U V W X Y Z A

B C D E F G H I J K L M NO P Q R S T U V W X Y Z A
B C D E F G H I J K L M N OP Q R S T U V W X Y Z A

B C D E F G H I J K L M N O PQ R S T U V W X Y Z A
B C D E F G H I J K L M N O P QR S T U V W X Y Z A

B C D E F G H I J K L M N O P Q RS T U V W X Y Z A
B C D E F G H I J K L M N O P Q R ST U V W X Y Z A

B C D E F G H I J K L M N O P Q R S TU V W X Y Z A
B C D E F G H I J K L M N O P Q R S T UV W X Y Z A

B C D E F G H I J K L M N O P Q R S T U VW X Y Z A
B C D E F G H I J K L M N O P Q R S T U V WX Y Z A

B C D E F G H I J K L M N O P Q R S T U V W XY Z A
B C D E F G H I J K L M N O P Q R S T U V W X YZ A

B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Key
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Vigenere cipher selects a keyword of arbitrary length. This keyword is used as key to encrypt the 
plaintext. If the key is smaller than the plaintext, then the key is repeated to fill the whole length of  
the plaintext. Each ciphertext letter corresponds to the cell at the intersection of the plaintext of a 
 column and keyword of a particular row.

Example 3.4:
Encrypt and Decrypt the plaintext tobeornottobe using the Vigenere cipher for the key value Now.

Solution
Repeat the key till the end of the plaintext to cover the whole length of the plaintext since key size is 
smaller than plaintext size. After that, this can be encrypted using the principle of the Caesar cipher. 

3.2.4.1 encryption

The first character of the plaintext, t is encrypted by the character corresponding to the first character 
of the key, N. This means that the plaintext, t is encrypted using the key value 14 since the key letter is 
N by the Caesar cipher method. Hence, the ciphertext is computed by C = (p + K) mod 26 as used in 
the Caesar cipher method. Therefore, the first ciphertext letter is G (because, C = (19 + 14) = 33 mod 
26 = 7). The first ciphertext letter can also be computed by taking the intersection of two letters t and 
G as shown in Table 3.2. Similarly, other ciphertext letters are computed and the final result would 
 appear as shown below:

Key N O W N O W N O W N O W N

plaintext t o b e o r n o t t o b e

ciphertext G C X R C N A C P G C X R

3.2.4.2 Decryption

In the decryption side, key letter is used to locate the row. After locating the row, the plaintext value 
is obtained by locating a column value which is indicated by the ciphertext letter available in that par-
ticular row. The plaintext letter is at the top of that column. For example, in the key row ‘N’ and for 
the ciphertext letter ‘G’, the plaintext letter ‘t’ is located at the top. Similarly, other plaintext letters are 
computed and the final result is shown below:

Key N O W N O W N O W N O W N

ciphertext G C X R C N A C P G C X R

plaintext t o b e o r n o t t o b e

3.2.4.3 Cryptanalysis of the vigenere Cipher

The power of this cipher is that there are various ciphertext letters for every plaintext letter. Thus, the 
frequency distribution is obscured. However, this approach can also be broken by finding the length of 
the key. In Example 3.4, we have chosen a key, which is smaller than the plaintext. In that case, initial-
ly, an opponent considers that the ciphertext was encrypted using monoalphabetic substitution or Vige-
nere cipher technique. If monoalphabetic substitution is used, then the frequency distribution method 
can be applied. If the Vigenere cipher method is suspected, then determine the length of the key.  
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In order to find the length of the key, it is necessary to find identical sequences in the ciphertext. If two 
matching sequences of plaintext letters occur at some distance, then they generate identical ciphertext 
letter. From this, it is easy to find the length of the key. For example, the plaintext letters ‘tobe’ and 
‘tobe’ are separated by nine character positions. In both the cases, the plaintext letter ‘t’ is encrypted 
with the ciphertext letter ‘G’, ‘o’ is encrypted with the ciphertext letter ‘C’, ‘b’ by ‘X’ and so on. Thus, 
in both the cases, the ciphertext letters are ‘GCXR’ for the plaintext letters ‘tobe’. So, the distance 
between the two ciphertext letter sequence ‘GCXR’ is nine which makes the assumption that the key 
is either nine or three letters in length. 

If the key length is N, then the Vigenere cipher consists of N monoaplbabetic substitution ciphers. 
Thus, we can use the frequency distribution method to attack each of the monoaplbhabetic ciphers 
separately. If the key length is three as used in Example 3.4, then it will perform the encryption opera-
tion as we do in the Caesar ciphers using three key values over and over again. If the key length is one, 
then the Vigenere cipher will be identical to just using the Caesar cipher. Therefore, the security of the 
Vigenere cipher depends on the length of the key.

Example 3.5:
Encrypt the plaintext welcome to anna university using the Vigenere cipher for the key value security.

Solution

Key S E C U R I T Y S E C U R I T Y S E C U R I T

plaintext w e l c o m e t o a n n a u n i v e r s i t y

ciphertext O I N W F U X R G E P H R C G G N I T M Z B R

3.2.5 vernam one-time pad Cipher

First described by Frank Miller in 1882, the one-time pad was re-invented by Gilbert Vernam in 1917 and 
it was later improved by the US army Major Joseph Mauborgne. This cipher is made as secure by  using a 
random sequence of characters as the key value and hence it is unbreakable. This is also called one-time 
pad since the key is used only once for encrypting a message. This algorithm is unbreakable and more 
secure algorithm because the key is a random sequence of 0’s and 1’s of the same length as the message. 
The key used for performing encryption operation is used only once and it is destroyed immediately 
after sending the message. Therefore, different keys are used for different messages in this method. 
The encryption is performed by adding the key to the plaintext message mod 2. Hence, it is a bit-by-bit 
operation which is equal to XOR operation. During the decryption operation, the key is XOR’ed with 
the ciphertext value to produce the plaintext. The main advantage of this approach is that the encryption 
method is completely unbreakable for a ciphertext-only known attack. In addition to this, in most cases, 
a chosen plaintext or chosen ciphertext attack is also not possible.

The main limitations of this approach are given below:

 1. Generation of a truly random sequence of 0’s and 1’s is a difficult task.

 2. It requires a very long key. It is a computationally complex task to produce a long key and it 
would take more communication complexity to transmit it to the receiver side.

 3. Hence, it is only in limited use.
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Example 3.6:
Encrypt and decrypt the plaintext C using the Vernam one-time pad cipher for the key value 23.

Solution
Initially, convert the plaintext into ASCII value in turn convert the ASCII value into binary values.

Encryption:

The plaintext is: C

ASCII value of C: 67

Binary value of 67: 0110 0111 

Binary value of the key (23): 0010 0011

Encryption (XOR value): 0100 0100

The ciphertext is 0100 0100 = 44

plaintext C

ASCII value of plaintext 67

Binary value of plaintext 0110 0111 

Binary value of key (23) 0010 0011

Encryption (XOR value) 0100 0100

Ciphertext 0100 0100

Decryption:

During the decryption operation, it uses the same key to XOR the key with the ciphertext.

ciphertext 0100 0100 = 44

Ciphertext 0100 0100

Binary value of key (23) 0010 0011

Decryption (XOR value) 0110 0111 

Binary value of plaintext 0110 0111 

ASCII value of plaintext 67

Plaintext C

3.2.6 hill Cipher (Z *
n)

The Hill cipher was developed by Lester S. Hill in 1929. The Hill cipher was the first cipher which was 
purely based on the concept of linear algebra. The Hill cipher makes use of the multiplicative group  
(Zn

*)-based linear algebra and hence it supports matrix multiplication operation in the encryption 
side and inverse matrix multiplication in the decryption side. The Hill cipher is a polygraphic sub-
stitution cipher where a group of plaintext letters is converted into a group of ciphertext letters. For 
 converting a group of plaintext letters into a group of ciphertext letters, a key matrix is used. The size 
of the key matrix is (n × n), where n is number of plaintext letters in a group. If the plaintext letters are 
divided into 2-gram (digram) group, then the value of n = 2. Hence, a (2 × 2) matrix will be generated 
as a key matrix. If the plaintext letters are divided into 3-gram (trigram), then a (3 × 3) matrix will 
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be generated as a key matrix. In general, if the plaintext letters are divided into n-gram, then (n × n) 
 matrix will be generated. For representing the plaintext letters a–z, the plaintext letters are assigned 
with decimal values from the range of 0–25.

3.2.6.1 encryption

The encryption algorithm takes n  plaintext letters in a group and generates for them n  ciphertext 
letters. For generating n  ciphertext letters, n  linear equations are generated using the n n×  key value 

matrix and n  plaintext letters. If the plaintext letters are divided into 3-gram (trigram), then n = 3. 
In that case, the cipher can generate three linear equations using the formula shown below:

C p K= × mod 26

where, 

 C represents a group of ciphertext letters.

 p represents a group of plaintext letters.

 K is a key matrix.

 p K C Z, , ∈ 26.

This can be expressed in terms of column vectors and matrices for the n plaintext letters where  
n = 3 as shown below:

C

C

C

K K K

K K K

K K K

p

p
1

2

3

11 12 13

21 22 23

31 32 33

1

2

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

=
pp3

26

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

mod

C K p K p K p

C K p K p
1 11 1 12 2 13 3

2 21 1 22 2

26= × × ×
= × ×

(( ) ( ) ( )) mod

(( ) ( )

+ +
+ + (( )) mod

(( ) ( ) ( )) mod

K p

C K p K p K p
23 3

3 31 1 32 2 33 3

26

26

×
= × × ×+ +

3.2.6.2 Decryption

To perform the decryption operation, n ciphertext letters in a group are converted into n plaintext 
 letters by multiplying the inverse n n×  key matrix with n ciphertext letters. Hence, the inverse key 
matrix is needed to compute the plaintext letters during decryption operation. In order to compute the 
inverse matrix, determinant value is computed for the key matrix.

Let K be the key matrix. Let d be the determinant of K. We wish to find the inverse of K(K–1), such 
that K K I× =−( )1 26mod , where I is the identity matrix. The following formula is used to find (K–1) 
for the key matrix K.

K d K− −= ×1 1( ) ( )adj

where d d× =−1 1 26mod  and  adj( )K  is adjoint or adjugate of the key matrix.

Not that all square matrices have inverses and if a square matrix has an inverse, then it is called an 
invertible or a non-singular matrix. If a square matrix does not have an inverse matrix, then it is called 
a non-invertible or a singular matrix. This subsection explains the method to find the inverse of a given 
matrix which may be useful for the readers to understand the working principles of the Hill cipher.

http://www.mathwords.com/i/invertible_matrix.htm
http://www.mathwords.com/s/singular_matrix.htm
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Let the given matrix be A =
⎛
⎝⎜

⎞
⎠⎟

4 3

3 2
. The inverse of this matrix is A− =

−
−

⎛
⎝⎜

⎞
⎠⎟

1 2 3

3 4
 since 

A A I A A× =
⎛
⎝⎜

⎞
⎠⎟

×
−

−
⎛
⎝⎜

⎞
⎠⎟

=
⎛
⎝⎜

⎞
⎠⎟

= = ×− −1 14 3

3 2

2 3

3 4

1 0

0 1
. There are many ways to find the inverse of 

a given matrix. In this book, we have only explained a simplest way of finding the inverse matrix. 

If the input matrix is A
a b

c d
=

⎛
⎝⎜

⎞
⎠⎟
, then the inverse of this matrix can be found using the formula, 

A
A

d b

c a ad bc

d b

c a
− =

−
−

⎛
⎝⎜

⎞
⎠⎟

=
−

−
−

⎛
⎝⎜

⎞
⎠⎟

1 1 1

det ( )
.

For example, compute the inverse matrix of the given matrix A =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 2 3

0 1 4

5 6 0

.  In order to find the 

inverse matrix, first compute the determinant of A. the determinant of A is det A = 1(0 – 24) –2(0 – 20) 
+ 3 (0 – 5) = 1(−24) + 40 − 15 = −39 + 40 = 1. Second, find the transpose of the given input matrix.  

The transpose of the matrix is AT =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 0 5

2 1 6

3 4 0

. Finally, find the determinant of each of the 2 × 2 

minor matrices. The determinants of each of the 2 × 2 minor matrices are given below:

A11

1 6

4 0
24=

⎛
⎝⎜

⎞
⎠⎟

= − , A12

2 6

3 0
18=

⎛
⎝⎜

⎞
⎠⎟

= − , A13

2 1

3 4
5=

⎛
⎝⎜

⎞
⎠⎟

=

A21

0 5

4 0
20=

⎛
⎝⎜

⎞
⎠⎟

= − , A22

1 5

3 0
15=

⎛
⎝⎜

⎞
⎠⎟

= − , A23

1 0

3 4
4=

⎛
⎝⎜

⎞
⎠⎟

=

A31

0 5

1 6
5=

⎛
⎝⎜

⎞
⎠⎟

= − , A32

1 5

2 6
4=

⎛
⎝⎜

⎞
⎠⎟

= − , A33

1 0

2 1
1=

⎛
⎝⎜

⎞
⎠⎟

=

Place the results in to the transpose matrix AT  and multiply it with the corresponding symbols 

available in the matrix

+ − +
− + −
+ − +

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ . From this, it is easy to find the inverse matrix using the formula,

A
A

A− = ( )( ) =
−

− −
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

1 1 1

1

24 18 5

20 15 4

5 4 1
det

adj

 

= 
−

− −
−

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

24 18 5

20 15 4

5 4 1

.

Similar to this process, the inverse matrix is computed in the decryption side of the Hill cipher. 
Once the inverse matrix is found in the decryption side, the receiver can complete the decryption 
operation using the formula shown below:

p K C= ×−1 26mod
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where,

 C represents a group of ciphertext letters.

 p represents a group of plaintext letters.

 K–1 is the inverse key matrix and K Z− ∈1
26.

3.2.6.3 Cryptanalysis of hill Cipher

The Hill cipher hides 1-gram, 2-gram, …, n − 1-gram frequencies. Hence, it is strong against cipher-
text only known attacks. However, it can be broken with a known plaintext attack by knowing n-pairs 
of plaintext vector with ciphertext vectors. From this, it is easy to form a n n×  matrix as shown below:

X p p p

Y c c c
n

n

= …
= …

( )

( )
1 2

1 2

Once the plaintext and ciphertext values are known and it is placed in a vector format, from which, 
we can find the key value using the following relations:

Y = X × K mod 26

K = X–1 × Y mod 26

Thus, the key matrix can be computed using known plaintext attack.

Example 3.7
Encrypt and decrypt the plaintext cryptography using the Hill cipher for the key value  

3 10 20

20 9 17

9 4 17

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

Solution
plaintext = cryptography

Key = 

3 10 20

20 9 17

9 4 17

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

Encryption:

It is performed using the following formula:

C p K= × mod 26

c → 2, r → 17, y → 24, p → 15, t → 19, o → 14, g → 6, r → 17, a → 0, p → 15, h → 7, y → 24.

Consider, for example, the encryption algorithm process trigrams of plaintext letters at a time. 
Hence, process the first three plaintext letters ‘cry’:

C

C

C

1

2

3

3 10 20

20 9 17

9 4 17

2

17

24

656

60

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟= = 11

494

26

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mod
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C
1
 = 656 mod 26 = 6 = G

C
2
 = 601 mod 26 = 3 = D

C
3
 = 494 mod 26 = 0 = A

Next process the second trigram ‘pto’:

C

C

C

4

5

6

3 10 20

20 9 17

9 4 17

15

19

14

515

7

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟= = 009

449

26

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mod

C
4
 = 515 mod 26 = 21 = V

C
5
 = 709 mod 26 = 7 = H

C
6
 = 449 mod 26 = 7 = H

Next process the third trigram ‘gra’:

C

C

C

7

8

9

3 10 20

20 9 17

9 4 17

6

17

0

188

273

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟= =

1122

26

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mod

C
7
 = 188 mod 26 = 6 = G

C
8
 = 273 mod 26 = 13 = N

C
9
 = 122 mod 26 = 18 = S

Next process the fourth trigram ‘phy’: 

C

C

C

10

11

12

3 10 20

20 9 17

9 4 17

15

7

24

59⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= =
55

771

571

26

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mod

C
10

 = 595 mod 26 = 23 = X

C
11

 = 771 mod 26 = 17 = R

C
12

 = 571 mod 26 = 25 = Z

ciphertext = ‘GDAVHHGNSXRZ’

Decryption:

It is performed using the following formula:

p K C= ×−1 26mod

G → 6, D → 3, A → 0, V → 21, H → 7, H → 7, G → 6, N → 13, S → 18, X → 23, R → 17, Z → 25.

 K K K− = ( )1 1/ | | adj  

 

K =
⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

3 10 20

20 9 17

9 4 17

26mod
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K = = −( ) − −( ) + −( )

=−

3 10 20

20 9 17

9 4 17

3 153 68 10 340 153 20 80 81

1635

 

 adj K = 
85 90 10

187 129 349

1 78 173

− −
− −

− −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 

 K −1 = 1/−1635 

85 90 10

187 129 349

1 78 173

26

− −
− −

− −

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mod = 

11 22 14

7 9 21

17 0 3

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

 
Now, decryption can be performed using the inverse matrix computed above. First, decrypt the first 

ciphertext trigram ‘GDA’.

p

p

p

1

2

3

11 22 14

7 9 21

17 0 3

6

3

0

132

69

10

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟= =

22

26

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mod

 P c1 132 26 2= = =mod  

 P r2 69 26 17= = =mod  

 P y3 102 26 24= = =mod  
Next, decrypt the second ciphertext trigram ‘VHH’:

 

p

p

p

4

5

6

11 22 14

7 9 21

17 0 3

21

7

7

483

357

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟= =

3378

26

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mod

 

 P p4 483 26 15= = =mod  
 P t5 357 26 19= = =mod  

 P o6 378 26 14= = =mod  
Next, decrypt the third ciphertext trigram ‘GNS’:

 

p

p

p

7

8

9

11 22 14

7 9 21

17 0 3

6

13

18

604

53

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟= = 77

156

26

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mod

 

 P g7 604 26 6= = =mod  
 P r8 537 26 17= = =mod  

 P a9 156 26 0= = =mod  
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Next, decrypt the fourth ciphertext trigram ‘XRZ’:

p

p

p

10

11

12

11 22 14

7 9 21

17 0 3

23

17

25

9⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

= =
777

839

466

26

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ mod

 P p10 977 26 15= = =mod  

 P h11 839 26 7= = =mod  

 P y12 466 26 24= = =mod  
plaintext = ‘cryptography’.

3.3 tranSpoSition teChniqueS

Transposition techniques are permutation techniques where the plaintext letters are rearranged or per-
muted according to some given key sequence. Transposition techniques are insecure techniques and 
are limited in practical use. Transposition techniques are mainly divided into two types, namely, rail 
fence cipher and column transposition. 

3.3.1 rail Fence Cipher

The rail fence cipher is a type of the transposition techniques in which the plaintext letters are written 
in the alternating rows and then the message is read off in rows form during the encryption process. 
This technique is named as rail fence, because the plaintext is written downwards on successive ‘rails’ 
of a pretend ‘fence’. For example, the plaintext ‘cryptography’ can be written using two ‘rails’ as 
shown below:

C Y T G A H

R P O R P Y

After writing the plaintext letter in a rail fence format, the plaintext letters are read off in rowwise 
from the first row to the last row. The rails (row) may be taken off in either order to produce the cipher-
text. However, in this book, we take the first row first. Therefore, the ciphertext is ‘CYTGAHRPORPY’. 
The key used to perform encryption and decryption is the number of rails and the order in which they 
are taken off (two rails are used in the above example). During the decryption process, the ciphertext 
letters are written in alternate rows. Since, there are 12 letters available in the given example, the first 
6 letters are written in the first row and the remaining letters are written in the second row as shown 
below.

C Y T G A H

R P O R P Y

The plaintext can be obtained by reading the letters in rail format.

http://www.wikipedia.org/wiki/Rail_fence
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3.3.2 Column transposition

Column transposition is a technique in which the message is written in the form of a matrix, row-  
by-row procedure from top to bottom and left to right. After that, the message is read out again column 
by column depending on the given key value during the encryption process. The row and column size 
are fixed based on the number of letters available in the plaintext. For example, if there are 49 letters in 
the plaintext message, then a 7 × 7 matrix is to be declared to place all the 49 letters of the plaintext.

After placing the plaintext letters in a matrix, it is also necessary to select a keyword consists of num-
bers that should have a length equal to the number of columns. In many cases, the plaintext message can 
exactly fit in the rectangular matrix. If the message does not completely occupy the square matrix, then 
filler letter say ‘x’ can be introduced to fill the remaining cells of the matrix. Otherwise, a non-square 
matrix can be fixed to fill the letters of the plaintext. In the decryption process, the ciphertext is obtained 
by placing the ciphertext pairs in the correct column according to the key value specified and reading 
the letters in a row-by-row method. In this way, the plaintext letters are obtained in the receiver side.

Example 3.8:
Encrypt and decrypt the plaintext ‘cryptography’ using the column transposition method for the key 
value ‘3124’. 

Solution
Plaintext is ‘cryptography’ that contains 12 letters. Key = 3124.

Initially, construct a non-square matrix since the plaintext contains 12 letters and fill the plaintext 
letters top to bottom and left to right in a row-by-row procedure.

1 2 3 4

C R Y P

T O G R

A P H Y

During the encryption process, read off the plaintext letter in column-by-column method according 
to the order specified by the key value. Therefore, column value is read first, 1st column value is read 
next and so on.

 Ciphertext = YGHCTAPRYROP 

During the decryption process, divide the length of ciphertext by the length of the key to get the 
plaintext size.

 Value
Length of ciphertext

Length of the key
= = =

12

4
3  

Because, the value is 3, divide the ciphertext letters in a group of three letters. Therefore, the cipher-
text = YGH CTA PRY ROP. After that, place the ciphertext group in the right column specified by the 
key value. For example, first ciphertext pair ‘YGH’ is placed in the third column because first key value 
is 3. Next, place the second ciphertext pair ‘CTA’ in the first column since second key value is 1. This 
process is continued by placing all the ciphertext groups in various columns to get the same matrix as 
used in the encryption side. After completing this process, read off the letters in row-by-row procedure 
to get the entire plaintext letters. Hence, the plaintext value ‘cryptography’ is obtained.
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3.4 Steganography

Steganography is derived from the two Greek words ‘Steganos’ and ‘Graphie’ which mean ‘covered’ 
and ‘writing’, respectively. The steganography is a data hiding technique in which the content of an 
original message is being hidden in a carrier such that the variations that take place in the carrier are 
not visible. In steganography, the feasible carriers are text, image, audio, video and some other digitally 
representing codes which are used to hold the hidden information. In the case of cryptography, the 
sender encrypts the message using encryption key and transforms the data into a different form. Then, 
the encrypted data can be transformed to its original form only by the person who knows the decryption 
key. The main drawback of cryptography is that the existence of data is not hidden. Even though the 
encrypted message is unreadable, the attacker can decrypt the message in an infeasible amount of time. 
This drawback in cryptography is overcome by steganography in which the existence of hidden message 
is not detectable. The main advantage of steganography is that the transmission of messages from the 
sender to receiver is very difficult to discover by the attacker. The hidden information may be plaintext, 
ciphertext, image or anything that can be embedded in a bit stream. The carrier and the embedded mes-
sage are being combined to produce a stegano-carrier. In order to hide the information into the carrier, 
there is a need of a key termed as stegano key which is also secret information such as a password. For 
example, when secret information is hidden within a carrier image, the resulting product is a stegano-
image. A feasible formula for the steganography process may be represented as: 

carrier image + embedded plaintext + stegano key = stegano-image.

Figure 3.2 shows a steganography system in which the embedding function is represented as Em to 
which the embedded plaintext, the carrier image and the stegano key are given as inputs. The embedding 
function hides the plaintext message into the carrier image using stegano key. Thus, the stegano-image 
(carrier image with the hidden message) is generated by the embedded function and then transferred 
to the receiver. The receiver receives the stegano-image from which it extracts the embedded plaintext 
using extraction function represented as Ex in Figure 3.2. The extraction function uses the incoming 
stegano-image and the steagano key as inputs to obtain the embedded plaintext from the carrier image.

Sender

stegano key

Embedded plaintext

Carrier image

Ex
Stegano-image

Receiver

stegano key

Embedded plaintext

Carrier image

Em

Figure 3.2 Steganography system

3.4.1 Modern Steganography techniques

Some of the modern steganographic techinques are discussed as follows.

 • Masking and filtering: It is a technique in which the secret data are masked over the original data 
by changing the luminance of particular areas. In this technique, the message is embedded within 
the significant bits of the carrier image and also the carrier image manipulation does not affect the 
secret message.
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 • Algorithms and transformations: In this technique, the messages are hidden within the 
 mathematical functions. This technique is frequently used in compression algorithms.

 • Least significant bit (LSB) insertion: In this technique, the messages are hidden inside LSB of 
a picture’s pixel information. This technique is good when the carrier image file is bigger than the 
message file and also the carrier image should be in a grey scale. 

3.4.2 attacks on Steganography

Similar to cryptography, steganography algorithms can also be attacked by attackers using various 
attacks. There are different kinds of possible attacks in steganography, namely, compression attack, 
random tweaking attack, reformat attack.

 • Compression attack: It is the simplest attack. In this attack, the attackers try to compress the file. The 
attackers use compression algorithms to remove the extraneous information from a carrier image.

 • Random tweaking attack: In this attack, an attacker could simply make fine adjustments (tweaks) 
on the carrier image to make some modification in the original message in order to confuse the 
legitimated receiver.

 • Reformat attack: In this attack, an attacker can change the format of the file (BMP, GIF, JPEG). 
Using these different file formats, the attacker can make the legitimated receiver to deny the trans-
mission since there is a change in the file format.

3.4.3 applications

Some of the applications of steganography are listed as follows.

 • It is used to hide military secrets in a carrier source during transmission, because it is impossible 
to prove the existence of the military secrets inside the carrier.

 • Steganography is used to secure the plaintext during secret communication where strong cryptog-
raphy is impossible.

 • In steganography, the existence of confidential data is hidden from an adversary.

 • It is very difficult to detect the hidden data by the attacker.

3.5 linear FeeDbaCK ShiFt regiSterS

Linear feedback shift register (LFSR) is a shift register which is based on linear operation where the 
input bit is a linear function of its premature state. Exclusive-OR (XOR) function is the most com-
monly used linear function in LFSR. For n bit input, the LFSR typically has 2n – 1 states (a primitive 
form) which can be made to have 2n states by providing extended sequence logic. LFSR consists of 
fewer numbers of flip-flops to store bits and XOR gates to perform linear operation. Each flip-flop has 
a capability of storing one bit of information. Therefore, if a 4-bit LFSR is to be designed, then four 
flip-flops are required. Generally LFSR is divided into two types. The first type is external feedback 
LFSR and the second type is internal feedback LFSR. Both the internal and external feedback LFSR 
are better than counters because it requires few gates and has a higher clock frequency. LFSRs are 
used in many applications such as pseudo-noise sequences, generating pseudo-random numbers, fast 
digital counters and whitening sequences. Due to the repeating sequence of states, the LFSRs can also 
be used as clock dividers.
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Figure 3.3 shows the typical example of external feedback LFSR which consists of three boxes and 
each box represents a flip-flop in which a bit of information is stored. The bits stored in each flip-flop 
are denoted as S

M + i
, where 0 ≤ i ≤ 2n – 2 and n is the number of bits. The first bit is denoted as S

M
 in 

which M = 1 and second and third bits are denoted as S
M + 1

 and S
M + 2

, respectively. In this case, if the 
given input is of n-bits, then the external feedback LFSR can execute maximum of 2n – 1 clock cycles 
to produce various output bits. For each increment of a clock cycle, the bit in each flip-flop is shifted 
to the right side of flip-flop which is indicated using the arrow direction. After that, the shifted bit is 
XORed with previous bit value to produce the new output and it is denoted as ⊕ in Figure 3.3. In this 
example, this XOR operation is represented by a recurrence relation S

M + 3
 ≡ S

M + 1 
+ S

M
 (mod2).

 
Hence, 

if the initial values (S
1
, S

2
 and S

3
) are given, then the external feedback LFSR produces the subsequent 

bits in an effective manner. 

Feedback path

SM+2

XOR gate

SM+1 SM
Output

Figure 3.3 External feedback LFSR

Figure 3.4 shows the typical example of internal LFSR. The operation of both external and internal 
feedback LFSR is same. But the main differences between these two types are that the internal feed-
back LFSR has a higher clock frequency compared to external feedback LFSR. In both kinds of LFSR, 
the output of the feedback path is given to the input of first flip-flop. For performing XOR operation 
in both LFSR, one input is taken from the output of a flip-flop and the other input is taken from the 
feedback path. The most commonly used flip-flops in LFSR are D-flip-flops. In order to implement 
more complicated recurrences, it requires more registers and more XORs.

Output

Feedback path

SM+2

XOR gate

SM+1 SM

Figure 3.4 Internal feedback LFSR

3.5.1 linear recurrence relation

The linear recurrence relation of length M can be written as 

 S A S A S A SN M N N M N M+ + − + −≡ + + +0 1 1 1 1 2� ( )mod  
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In the linear recurrence relation, if the initial values S
1
, S

2
, …, S

M
 are specified, then the subsequent 

values of S
N
 can be generated from the initial sequence using recurrence relation. The coefficients A

0
, 

A
1
, …, A

M–1
 values can be either 1 or 0. If the coefficient is 0, then there is no connection from flip-flop 

output to an XOR gate for that particular coefficient. Connection is established for the coefficients 
whose values are 1. Consider, for example, the initial input sequence 11011 can be implemented using 
D-flip-flops as shown in Figure 3.5.

Output

D Q

CLK

D Q

CLK

D Q

CLK

D Q

CLK

1x4 1x3 0x2 1x1 1x0

Figure 3.5 Implementation of input sequence 11011 in LFSR

For the given input sequence 11011, the LFSR is designed for, which four flip-flops are required 
in order to store the first four initial bits (1101) and the last one bit is the output bit which is given to 
the input of the feedback path. The XOR gates are used to make the linear operations and hence the 
characteristic polynomial is defined by XOR operations. The characteristic polynomial p(x) = x4 + x3 + 
x1 + 1 is constructed from the input sequence 11011 in which the coefficient of x2 term is 0. Since the 
coefficient is 0 for x2, there is no connection established with the feedback path from the output of the 
second flip-flop. 

3.5.2 lFSr operation

The LFSR operation is briefly explained in this section by using the characteristic polynomial  
p(x) = xn + xn–1 + … + x1 + 1 in which n represents the degree of polynomial. When it is represented 
in polynomial, an LFSR must start in a non-zero state. Because it does not produce any pattern and it 
gets jammed when all are 0’s in that state. The characteristic polynomial of an LFSR that generates a 
maximum-length sequence is called a primitive polynomial. 

LFSR operation is depicted in Figure 3.6 in which S
M
, S

M–1
 … S

1 
are represented as flip-flops. 

Initially, the coefficient of xn is stored in the flip-flop S
M
. Similarly, the coefficient of xn–1 is stored in S

M–1 

and the coefficients of this polynomial are stored in corresponding flip-flops. Thus, the LFSR produces 
various states in the shift registers as shown in Table 3.3. In Table 3.3, Feedback 1 represents the feed-
back generated from the first clock cycle and Feedback 2 represents the second clock cycle. Similarly, 
(n – 1) clock cycles are generated for a polynomial whose degree is n.

SM SM–1 S2 S1 Output

Figure 3.6 LFSR operation
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 Table 3.3 Various states generated for the polynomial of degree n

SM SM−1 … S2 S1 Output

xn xn – 1 x2 x 1

Feedback 1 xn x3 x2 x

Feedback 2 Feedback 1 x4 x3 x2

. . .

. . … .

. . .

Feedback of (i – 1)th 

clock cycle
Feedback of (i – 2)th 

clock cycle
The value of S

1
 flip-flop 

from the previous state

Example 3.9:
Construct a LFSR corresponding to the input sequence S

1
S

2
S

3
S

4
 = 1100.

Solution
In this example, n = 4 and so the maximum required number of states without generating the repeated 
sequence is 24 − 1 = 15. In this case, the feedback for each cycle is equal to S

2
 ⊕ S

1
.
 
In the first clock cycle, 

the initial value is available in the four flip-flops as shown in Figure 3.7. Then, in the second clock cycle, 
the XOR operation is being performed between the bits in flip-flops S

2
 and S

1
. After that, the output of the 

XOR operation is given to the input of flip-flop S
4
 and the values in S

4
, S

3
 and S

2
 are shifted towards right to 

S
3
, S

2
 and S

1
 as shown in Table 3.4. Thus, the value in the flip-flop S

1
 is shifted towards the output. This pro-

cess is repeated up to 15 clock cycles. After that, the same sequences are repeated from the initial input 
sequence. Table 3.4 shows the subsequences generated from the initial sequence 1100. The third column 
output that consists of 1’s and 0’s are taken as the key for encrypting the plaintext to produce the ciphertext.

S4 S3 S2 S1 Output

Figure 3.7 LFSR based on the sequence 1100

 Table 3.4  The subsequences generated from the  
initial sequence 1100

Clock cycles States S4S3S2S1 Output

1 0011 –

2 0001 1

3 1000 1

4 0100 0

(continued)
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Clock cycles States S4S3S2S1 Output
5 0010 0
6 1001 0
7 1100 1
8 0110 0
9 1011 0
10 0101 1
11 1010 1
12 1101 0
13 1110 1
14 1111 0
15 0111 0

Line no. Java program for Caesar cipher

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

import java.util.Scanner;
class caesar
{
public static void main(String args[])
{

System.out.println(“enter the plaintxt”);
Scanner in=new Scanner(System.in);
String plaintxt=in.next();
String ciphertext=””;
int Key=3;
int num,cipher,cipher1,plain,plain1;
char letter;
String alpha = “abcdefghijklmnopqrstuvwxyz”;
for(int i=0;i<plaintxt.length();i++)
{
num = alpha.indexOf(plaintxt.charAt(i));
cipher1 = (num+Key);
cipher=cipher1%26;
letter = alpha.charAt(cipher);
ciphertext =ciphertext+letter;
}
System.out.println(“Ciphertext is:” + ciphertext);
String rplaintxt=””;
for(int i=0;i<ciphertext.length();i++)
{
num = alpha.indexOf(ciphertext.charAt(i));
plain1 = (num-Key);

 Table 3.4 (continued)
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Line no. Java program for Caesar cipher

28
29
30
31
32
33
34
35
36
37
38

if(plain1<0)
{
plain1=plain1+26;
}
plain=plain1%26;
letter = alpha.charAt(plain);
rplaintxt =rplaintxt+letter;
}
System.out.println(“Plaintext is:” + rplaintxt);
}

}
Output:

Explanation:

In the above program, the input (plaintext) is given by the user using scanner class which is specified 
in line number 7. Line number 10 denotes the key value as ‘3’ which is subjected to change. In line 
number 13, ‘alpha’ is declared as a string variable that contains 26 alphabet. Line numbers between 
15 and 21 are used for encryption. In the encryption block, index of each letter in plaintext is stored 
into ‘num’ variable with respect to alpha. Key value (3) and ‘num’ values are added and the result is 
stored in ‘cipher1’ variable. The ‘cipher1’ value is taken mod with 26 and the resultant value is stored 
in ‘cipher’ variable. In line number 19, corresponding character value for ‘cipher’ is stored in the vari-
able ‘letter’. Finally, all ‘letter’ variables are concatenated to form a ciphertext. Line numbers between 
24 and 35 are used for decryption. The index of each letter in ciphertext is again stored in ‘num’ vari-
able. Line number 27 is used to subtract the key value (3) from ‘num’ value and the value is assigned 
to ‘plain1’ variable. In line number 30, ‘plain1’ and ‘26’ are added and the result is stored in ‘plain1’ 
if and only if the value of plain1 is negative. In line number 32, modulus operation is performed for 
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‘plain1’ variable with respect to 26 and the resultant value is stored in ‘plain’ variable. In line number 
33, corresponding character value of ‘plain’ is stored in ‘letter’ variable. Finally, all ‘letter’ variables 
are concatenated to form the plaintext given by the user.

Line no. Java program for Affine cipher

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

import java.math.BigInteger;

import java.util.Scanner;

class affine

{

private static int alpha = 5;

private static int beta = 19;

private static int m = 26;

public static void main(String[] args) 

{

System.out.println(“Enter the plaintext”);

Scanner in=new Scanner(System.in);

 String input=in.next();

String cipher = encrypt(input);

String deciphered = decrypt(cipher);

System.out.println(“Entered plaintext:    “ + input);

System.out.println(“Encrypted text: “ + cipher);

System.out.println(“Decrypted text: “ + deciphered);

}

static String encrypt(String input) 

{

StringBuilder builder = new StringBuilder();

for (int in = 0; in <input.length(); in++) {

char character = input.charAt(in);

if (Character.isLetter(character)) {

character = (char) ((alpha * (character - ‘a’) + beta) % m + ‘a’);

}

builder.append(character);

}

return builder.toString();

}

static String decrypt(String input)
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32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

{

StringBuilder builder = new StringBuilder();

    // compute alpha^-1 aka “modular inverse”

BigInteger inverse = BigInteger.valueOf(alpha).modInverse(BigInteger.valueOf(m));

// perform actual decryption

for (int in = 0; in <input.length(); in++) {

char character = input.charAt(in);

if (Character.isLetter(character)) {

int decoded = inverse.intValue() * (character - ‘a’ - beta + m);

character = (char) (decoded % m + ‘a’);

}

builder.append(character);

}

return builder.toString();

}

}

Output:

Explanation:

In the above program, line numbers 5, 6 and 7 are used to assign the values for ‘alpha’, ‘beta’ and ‘m’, 
respectively. Line number 11 is used to get the plaintext from the user. Line numbers between 19 and 
26 are used for encrypting the plaintext. In line number 25, ‘alpha’ and input character values are 
multiplied and added to ‘beta’. In the resultant value of encryption, if the value exceeds 26, then the 
modulus operation with respect to 26 is performed. Line numbers between 32 and 42 define decryption 
block. In line number 40, inverse value for alpha with respect to 26 is taken and it is multiplied with 
the difference of ciphertext and beta to obtain the plaintext given by the user.
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Line no. Java program for Playfair cipher

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

import java.io.*;

class PlayFairDemo

{

String key=new String();

String key2=new String();

String text=new String();

char key_array[][]=new char[5][5];

public void keySetter(String k)

{

String str=new String();

boolean test=false;

str=str+k.charAt(0);

for(int i=1;i<k.length();i++)

{

for(int j=0;j<str.length();j++)

if(k.charAt(i)==str.charAt(j) || k.charAt(i)==’j’)

test=true;

if(!test)

str=str+k.charAt(i);

test=false;

}

key=str;

matrixBuilder(key);

}

public void matrixBuilder(String k)

{     

key2=key2+key;

boolean test=false;

char current;

for(int i=0;i<26;i++)

{

current=(char)(i+97);

for(int  j=0;j<key.length();j++)

if(current==’j’ || current==key.charAt(j))

test=true;

if(!test)
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Line no. Java program for Playfair cipher

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

key2=key2+current;

test=false;

}

System.out.println(key2);

for(int  i=0;i<5;i++)

for(int  j=0;j<5;j++)

key_array[i][j]=key2.charAt(i*5+j);

for(inti=0;i<5;i++)

{

for(int j=0;j<5;j++)

System.out.print(key_array[i][j]+” “);

System.out.println();

}

}

 public void stringConversion(String input)

{

String altered=new String();

altered=input.replace(‘j’,’i’);

for(int i=0;i<altered.length();i++)

if(i>0 &&altered.charAt(i)==altered.charAt(i-1))

altered=altered.substring(0,i)+’x’+altered.substring(i);

if((altered.length()%2)!=0)

altered=altered+’x’;

text=altered;

//System.out.println(text);

}

public int[] getDimensions(char letter)

{

int key[]=new int[2];

for (int i=0 ; i<5 ;i++)

for (int j=0 ; j<5 ; j++)

if(key_array[i][j] == letter)

{

key[0]=i;

key[1]=j;

break;

}
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Line no. Java program for Playfair cipher

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

return key;

}

public void Encrypt()

{

char a,b;

String Code=””;

int c[]=new int[2];

int d[]=new int[2];

for(int i=0;i<text.length();i=i+2)

{

a=text.charAt(i);

b=text.charAt(i+1);

c=getDimensions(a);

d=getDimensions(b);

if(c[0]==d[0])

{

if (c[1]<4)

c[1]++;

else

c[1]=0;

if(d[1]<4)

d[1]++;

else

d[1]=0;

}

else if(c[1]==d[1])

{

if (c[0]<4)

c[0]++;

else

c[0]=0;

if(d[0]<4)

d[0]++;

else

d[0]=0;

}
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Line no. Java program for Playfair cipher

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

else

{

Int temp=c[1];

c[1]=d[1];

d[1]=temp;

}

Code=Code+key_array[c[0]][c[1]]+key_array[d[0]][d[1]];

}

System.out.println(“Ciphertext:”+Code);

}

public void Decrypt()

{

char a,b;

String Code=””;

int c[]=new int[2];

int d[]=new int[2];

for(int i=0;i<text.length();i=i+2)

{

a=text.charAt(i);

b=text.charAt(i+1);

c=getDimensions(a);

d=getDimensions(b);

if(c[0]==d[0])

{

if (c[1]>0)

c[1]--;

else

c[1]=4;

if(d[1]>0)

d[1]--;

else

d[1]=4;

}

else if(c[1]==d[1])

{

if (c[0]>0)
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146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

c[0]--;

else

c[0]=4;

if(d[0]>0)

d[0]--;

else

d[0]=4;

}

else

{

int temp=c[1];

c[1]=d[1];

d[1]=temp;

}

Code=Code+key_array[c[0]][c[1]]+key_array[d[0]][d[1]];

}

System.out.println(“Plaintext:”+Code);

}

public static void main(String args[])throws IOException

{

String s1,s2,s3,s4,s5,s6;

int ch;

BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

PlayFairDemo p=new PlayFairDemo();

System.out.println(“Enter the key:”);

s4=br.readLine();

p.keySetter(s4);

do{

System.out.println(“Enter Your Choice:\n1.Encryption\n2.Decryption\n3.Exit”);

s=br.readLine();

} ch=Integer.valueOf(s).intValue();

switch(ch)

{

case 1 : System.out.println(“Enter the PlainText:”);

s2=br.readLine();

s2=s2.toLowerCase();
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Line no. Java program for Playfair cipher

182

183

184

185

186

187

188

189

190

191

192

193

194

195

p.stringConversion(s2);

p.Encrypt();

break;

case 2 : System.out.println(“Enter the CipherText:”);

s3=br.readLine();

s3=s3.toLowerCase();

p.stringConversion(s3);

p.Decrypt();

break;

case 3 : System.exit(0);

}

while(ch<3);

}

}

Output:
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Explanation:

In the above program, Line numbers between 4 and 6 are used for declaring string variables which are 
used in the program. Line numbers from 8 to 24 are used for setting the key value using the matrix 
builder function. In line number 47, the key value is displayed. Line numbers between 177 and 194 
make use of switch case where ‘encrypt’ and ‘decrypt’ functions are called when choices are selected 
as 1 and 2, respectively. Line numbers between 76 and 118 are used for encryption. In line number 117, 
encrypted text is displayed. Line numbers between 120 and 162 are used for decrypting the ciphertext. 
In line number 161, plaintext for respective ciphertext is displayed. 

Line no. Java program for Hill cipher 

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

import java.io.*;

import java.math.*;

import java.util.Scanner;

public class Hill_cipher

{

    public static void main(String[] args) throws IOException

  {

    int  i=0,temp;

    Scanner  in=new Scanner(System.in);

    Hill_cipher obj=new Hill_cipher();  

    double key[][]=new double[10][10];

    do

  {

        System.out.println(“\n Hill cipher.”);

        System.out.println(“\n 1.encrypt  \n 2.decrypt \n 3.exit”);

        System.out.println(“\n Enter your option”);

        temp=in.nextInt();

    if(temp==1)

    {

      System.out.println(“\n Enter the key matrix”);

      for(i=0;i<3;i++)

    {

        for(int j=0;j<3;j++)

         key[i][j]=in.nextDouble();

    }

     obj.encryption(key);

    }

    else if(temp==2)



Classical Encryption Techniques  107

Line no. Java program for Hill cipher 

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

    {

    obj.decryption(key);

    }

   }while(temp!=3);

}

    void encryption(double [][]k ) throws IOException

{

    int p[]=new int[300];

    int c[]=new int[300];

    int i=0,temp=0;

    BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

     Scanner  in=new Scanner(System.in);

     System.out.println(“ The key matrix is “);

     for(i=0;i<3;i++)

  {

     System.out.println(“ “);

      for(int j=0;j<3;j++)

      {

          temp=(int)k[i][j];

           System.out.print(  “   “+temp+” “ );

      }

           System.out.println(  “\n” );

}

     System.out.println(“enter plaintext”);

    String str=br.readLine();

     for( i=0;i<str.length();i++)

    {

        int c1=str.charAt(i);

         p[i]=(c1)-97;

    }

                i=0;int zz=0;

        for( int b=0;b<str.length()/3;b++)

        {

        for(int j=0;j<3;j++)

        {

        for(int x=0;x<3;x++)
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Line no. Java program for Hill cipher 

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

        {

        c[i]+=k[j][x]*p[x+zz];

        }i++;

        }

        zz+=3;

        }

        System.out.println(“Encrypted Text : “);

        for(int z=0;z<str.length();z++)

        System.out.print((char)((c[z]%26)+97));

}

    void decryption(double [][]a) throws IOException

 {

   int i,j,temp;

   double determinant=0;

  double[][] b={ {0,0,0}, {0,0,0}, {0,0,0} };

  System.out.println(“\nThe key matrix is\n”);

    for(i=0;i<3;i++)

  {

      System.out.println(“ “);

      for( j=0;j<3;j++)

      {

          temp= (int)a[i][j];

           System.out.print( “   “+temp+” “ );

      }

  }

      for(i=0;i<3;i++)

   {

      determinant = determinant +(a[0][i]*(a[1][(i+1)%3]*a[2][(i+2)%3] - a[1]
[(i+2)%3]*a[2][(i+1)%3]));

   }

      System.out.println( “\ndeterminant is  “+  determinant);

     BigInteger k = new BigDecimal(determinant).toBigInteger();

    if(k.compareTo(BigInteger.ZERO)<0)

    {

    k=k.abs();

    i=5;

    }
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Line no. Java program for Hill cipher 

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

     BigInteger var2=new BigInteger(“26”);

      BigInteger var3=k.modInverse(var2);

     if(i==5)

     {

         determinant=-(var3.doubleValue());

     }

   System.out.println( “\n inverse of determinant  is  “+  determinant);

   System.out.println(“\nThe matrix  inverse is\n”);

   for(i=0;i<3;i++)

   {

      for(j=0;j<3;j++)

       b[i][j]=( ( ( (a[(i+1)%3][(j+1)%3] * a[(i+2)%3][(j+2)%3]) - (a[(i+1)%3]
[(j+2)%3]*a[(i+2)%3][(j+1)%3]) )  ) * determinant );

   }

   for (i=1;i<3;i++)

   {

      for (j=0;j<i;j++)

      {

       double  tmp = b[i][j];

         b[i][j] = b[j][i];

         b[j][i] = tmp;

      }

   }

    for(i=0;i<3;i++)

    {

        for(j=0;j<3;j++)

        {

            BigInteger k1 = new BigDecimal(b[i][j]).toBigInteger();

            b[i][j] =k1.mod(var2).doubleValue();

        }

    }

   int temp2;

       for(i=0;i<3;i++)

   {

      System.out.println(“ “);

      for(j=0;j<3;j++)
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Line no. Java program for Hill cipher 

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

      {

        temp2= (int)b[i][j];

          System.out.print( “  “+ temp2 );

       }

    }

    int p[]=new int[300];

    int c[]=new int[300];

     int z=0;

    BufferedReader br=new BufferedReader(new InputStreamReader(System.in));

    System.out.println(“\nEnter ciphertext”);

    String str=br.readLine();

     for( i=0;i<str.length();i++)

    {

        int c1=str.charAt(i);

        p[i]=(c1)-97;

    }

       i=0;

        for( int b1=0;b1<str.length()/3;b1++)

        {

        for(j=0;j<3;j++)

        {

        for(int x=0;x<3;x++)

        {

        c[i]+=b[j][x]*p[x+z];

        }

        i++;

        }

        z+=3;

        }

        System.out.println(“Decrypted Text : “);

        for(z=0;z<str.length();z++)

        System.out.print((char)((c[z]%26)+97)); 

    }

}
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Line no. Java program for Hill cipher 

Output: 

Explanation:

In the above program, line number 10 denotes the object created for Hill cipher class. This object is 
mainly used to call the encryption and decryption functions. In line number 11, double array variable 
key[][] is declared which is used to get the key values in a matrix format. Line numbers between 12 
and 32 make use of do while loop where encryption and decryption functions are called based on the 
choice selected by the user. Line numbers between 43 and 51 display the key matrix received from 
the user. Line number 73 denotes the result of encryption obtained by multiplying key matrix and 
plaintext. Line numbers between 90 and 131 display the determinant value and the inverse of key 
matrix entered by the user. Line number 147 denotes the ciphertext for the respective plaintext. Line 
numbers between 155 and 166 denote the multiplication operation performed between inverse matrix 
and  ciphertext. Line number 169 displays the plaintext for corresponding ciphertext.

Line no. Java program for column transposition cipher 

1

2

3

4

5

6

7

8

import java.io.*;

 public class columntransposition

  {

 char arr[][],encrypt[][],decrypt[][],keya[],keytemp[];

 public void creatematrixE(String s,String key,int row,int column)

 {

arr=new char[row][column];

int k=0;
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Line no. Java program for column transposition cipher 

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

keya=key.toCharArray();

 for(int i=0;i<row;i++)

 {

 for(int j=0;j<column;j++)

 {

 if(k<s.length())

 {

arr[i][j]=s.charAt(k);

 k++;

 }

 else

 {

arr[i][j]=’ ‘;

 }

 }

 }

 }

 public void createkey(String key,int column)

 {

keytemp=key.toCharArray();

 for(int i=0;i<column-1;i++)

 {

 for(int j=i+1;j<column;j++)

 {

 if(keytemp[i]>keytemp[j])

 {

 char temp=keytemp[i];

keytemp[i]=keytemp[j];

keytemp[j]=temp;

 }

 }

 }

 }

 public void creatematrixD(String s,String key,int row,int column)

 {
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44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

arr=new char[row][column];

int k=0;

keya=key.toCharArray();

 for(int i=0;i<column;i++)

 {

 for(int j=0;j<row;j++)

 {

 if(k<s.length())

 {

arr[j][i]=s.charAt(k);

 k++;

 }

 else

 {

arr[j][i]=’ ‘;

 }

 }

 }

 }

 public void encrypt(int row,int column)

 {

 encrypt=new char[row][column];

 for(int i=0;i<column;i++)

 {

 for(int j=0;j<column;j++)

 {

 if(keya[i]==keytemp[j])

 {

 for(int k=0;k<row;k++)

 {

 encrypt[k][i]=arr[k][j];

 }

keytemp[j]=’?’;

 break;

 }

 }
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Line no. Java program for column transposition cipher 

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

 }

 }

 public void decrypt(int row,int column)

 {

 decrypt=new char[row][column];

 for(int i=0;i<column;i++)

 {

 for(int j=0;j<column;j++)

 {

 if(keya[j]==keytemp[i])

 {

 for(int k=0;k<row;k++)

 {

 decrypt[k][i]=arr[k][j];

 }

keya[j]=’?’;

 break;

 }

 }

 }

 }

 public void resultE(int row,int column,char arr[][])

 {

System.out.println(“Result:”);

 for(int i=0;i<column;i++)

 {

 for(int j=0;j<row;j++)

 {

System.out.print(arr[j][i]);

 }

 }

 }

 public void resultD(int row,int column,char arr[][])

 {

System.out.println(“Result:”);
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115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

 for(int i=0;i<row;i++)

 {

 for(int j=0;j<column;j++)

 {

System.out.print(arr[i][j]);

 }

 }

 }

 public static void main(String args[])throws IOException

 {

int row,column,choice;

do

{

Columntransposition obj=new columntransposition();

BufferedReader in=new BufferedReader(new InputStreamReader(System.in));

System.out.println(“\nMenu:\n1) Encryption\n2) Decryption\n”);

 choice=Integer.parseInt(in.readLine());

System.out.println(“Enter the string:”);

 String s=in.readLine();

System.out.println(“Enter the key:”);

 String key=in.readLine();

 row=s.length()/key.length();

 if(s.length()%key.length()!=0)

 row++;

 column=key.length();

 switch(choice)

 {

 case 1: 

obj.creatematrixE(s,key,row,column);

obj.createkey(key,column);

obj.encrypt(row,column);

obj.resultE(row,column,obj.encrypt);

 break;

 case 2:

obj.creatematrixD(s,key,row,column);

obj.createkey(key,column);
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151

152

153

154

155

156

157

obj.decrypt(row,column);

obj.resultD(row,column,obj.decrypt);

 break;

 }

 }while(choice!=2);

}

}

OUTPUT:

Explanation:

In the above program, line number 4 is used for declaring character array variables such as arr, encrypt, 
decrypt, keya, keytemp. Line number 128 represents column transposition class created with an object 
‘obj’. Line numbers between 133 and 135 take input text and key received from the user and their 
corresponding values are assigned to s value and key variables. In line number 136, input text length 
is divided by key length and its value is stored in row variable. In line number 139, key length value 
is assigned to the column variable. In line number 140, if the choice is 1, then case 1 gets invoked. 
In line number 143, creatematrixE is called by passing the arguments, namely s, key, row, column. The 
s value is stored in an array variable arr[][] in matrix format. In line number 144, createkey function 
is called by passing the arguments, namely, key, column. In line number 145, the encrypt function is 
called by passing variables of rows and columns. In line number 146, resultE function is called and 
the encrypted text is printed. In line number 151, ‘decrypt’ function is called and the decrypted value 
is stored in decrypt[][] array variable. Finally, line number 152 prints the decrypted value using result 
D function. 
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Key terMS

Affine cipher 

Arbitrary length 

ASCII value 

Caesar cipher

Ciphertext

Column transposition

Compression algorithms

Confidential data

Cryptanalysis 

Cryptography

D-Flip-flops 

Decryption

Determinant 

Embedding function 

Encryption

External feedback LFSR 

Extraction function 

Extraneous information

Feedback path

Filler letter

Flip-flop

Hidden message 

Higher clock frequency 

Hill cipher 

Identity matrix 

Image manipulation 

Internal feedback LFSR 

Inverse matrix 

Key

Key cryptosystem 

Key matrix 

Keyword

Linear-feedback shift register 

Linear algebra 

Linear recurrence relation

Luminance

Monoalphabetic substitution 

Multiplicative inverse 

Non-singular matrix 

Plaintext

Playfair cipher 

Polygraphic substitution 

Polygraphic substitution  

Premature state

Primitive polynomial

Public key cryptography 

Rail fence cipher

Rectangular matrix

Security

Square matrices 

Standard frequency distribution

Stegano-image

Steganography

Substitution techniques

Symmetric key cryptography

Transposition techniques

Two rails

Vigenere cipher

SuMMary

 • The process of converting the intelligible plaintext into unintelligible cipher text and back into 
intelligible plaintext is called cryptography.

 • The process of recovering the original, intelligible plaintext from unintelligible cipher text without 
using the key value is called cryptanalysis.

 • The combination of cryptography and cryptanalysis is called cryptology.

http://www.wikipedia.org/wiki/Rail_fence
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 • The key is some bits of information which is generated from a source called key generator.

 • A substitution technique is a method which replaces (substitutes) each plaintext letter with another 
alphabetical letter.

 • Caesar cipher is based on the concept of the additive group (Z+
n
) and hence it supports addition 

operation in the encryption function and subtraction operation in the decryption function.

 • Affine cipher is based on the concept of the multiplicative group (Z*
n 

) and hence it supports 
 multiplication operation in the encryption function and division operation (multiplicative inverse) 
in the decryption function.

 • In Playfair cipher, a pair of letters known as digrams is encrypted into another digrams of cipher 
text using a 5 × 5 matrix.

 • Vigenere cipher is an example of a polyalphabetic cipher. In this cipher, each plaintext letter is 
replaced by a cipher text letter from any one of many cipher text alphabet.

 • Vernam one-time pad cipher is used only once for encrypting a message. This algorithm is an 
unbreakable and a more secure algorithm because the key is a random sequence of 0’s and 1’s of 
the same length as the message. 

 • The Hill cipher makes use of the multiplicative group (Z*
n
)-based linear algebra and hence it sup-

ports matrix multiplication operation in the encryption side and inverse matrix multiplication  
in the decryption side.

 • The steganography is a data hiding technique in which the content of an original message is being 
hidden in a carrier such that the variations that take place in the carrier are not visible.

 • Steganography algorithms can also be attacked by attackers using various attacks. There are dif-
ferent kinds of possible attacks in steganography, namely, compression attack, random tweaking 
attack, reformat attack.

 • Linear-feedback shift register (LFSR) is a shift register which is based on linear operation where 
the input bit is a linear function of its premature state.

 • In the linear recurrence relation, if the initial values S
1
, S

2
, …, S

M
 are specified, then the subsequent 

values of S
N
 can be generated from the initial sequence using recurrence relation.

 • LFSR operation can be explained using the characteristic polynomial. When it is represented in a 

polynomial, an LFSR must start in a non-zero state. 

review queStionS

 1. Encrypt and decrypt the plaintext networks using the Caesar cipher method for the key  
value K = 7.

 2. Perform cryptanalysis over the given cipher text ‘LFDPHLVDZFRQTXHUHG’.

 3. Encrypt and decrypt the plaintext computer using Affine cipher method for a = 5 and b = 13.

 4. Suppose that K = (a, b) = (a, b) = (7, 3), encrypt and decrypt the word ‘HOT’ using affine 
cipher.

 5. Encrypt and decrypt the plaintext firewall using Playfair cipher for the key value ‘monarchy’.

 6. Perform encryption and decryption in the plaintext = balloon, key = MONARCHY using 
Playfair cipher.



Classical Encryption Techniques  119

 7. Encrypt and decrypt the plaintext tobeornottobe using the Vigenere cipher for the key value 
‘Can’.

 8. Encrypt and decrypt the plaintext V using the Vernam one-time pad cipher for the key  
value ‘18’.

 9. Encrypt and decrypt the plaintext cipher using the Hill cipher for the key value 

3 10 20

20 9 17

9 4 17

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟ .

 10. Break the following cipher. The plaintext is taken from a popular computer textbook, so ‘com-
puter’ is a probable word. The plaintext consists entirely of letters (no spaces). The cipher text 
is broken up into blocks of five characters, for readability.

aauan cvlre rurnn dltme aeepb ytust

 iceat npmey iicgo gorch srsoc

 nntii imiha oofpa gsivt tpsit lbolr otoex. 

 11. Construct a LFSR corresponding to the input sequence S
1
S

2
S

3
S

4
 = 1001.
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Data Encryption 
Standard

4
chapter

4.1 Simplified data encryption Standard

Simplified-data encryption standard (S-DES) was developed by Edward Schaefer as a teaching tool to 
understand data encryption standard (DES). S-DES is much similar to DES [1,2] in terms of  operations 
performed and operators used in the encryption and decryption process. Moreover, S-DES uses simple 
operations and hence this algorithm is not used for real-time applications when compared to DES algo-
rithm. In general, S-DES algorithm uses two basic operations for encryption as well as for decryption: 
substitution and permutation. In substitution technique, each element of the plaintext is substituted by 
another element. In permutation technique, the plaintext elements are rearranged/ permuted in some 
order. The S-DES supports two rounds of encryption and decryption processes. Figure 4.1 shows the 
overall architecture of S-DES algorithm.

8-bit plain
text

PP

Fn1

SP

Fn2

IPP

8-bit
Ciphertext

8-bit plain
text

IPP

Fn2

SP

Fn1

PP

8-bit
Ciphertext

Encryption Decryption

10-bit key

P10

LS-1

P8

LS-2

P8

K1K1

K2 K2

Key expansion

Figure 4.1 Overall architecture of S-DES
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The overall architecture of S-DES algorithm consists of three processes. The left-hand side process shows 
encryption process, the middle one shows the key expansion process and the right-hand side shows decryp-
tion process. In encryption process, the S-DES algorithm takes an 8-bit block of plaintext and encrypts it 
using a 10-bit key to produce an 8-bit block of ciphertext as output. In the key expansion process, two sub-
keys are produced for two different rounds of operation from a 10-bit key value. In the decryption process, 
an 8-bit block of ciphertext and the same 10-bit key are used to produce the original 8-bit block of plaintext.

4.1.1 S-deS encryption

The encryption process of S-DES works in five phases as shown below:

 1. Primary permutation (PP);

 2. Primary function (Fn
1
);

 3. Secondary permutation (SP)– swapping;

 4. Secondary function (Fn
2
); and

 5. Inverse primary permutation (IPP).

primary permutation

In PP, an 8-bit block of plaintext is taken as an input and then the input bits are permuted using a PP 
 function. At the end of this operation, all 8-bit of the plaintext are preserved by rearranging them in some 
order. In general, PP can be expressed as shown in Equation (4.1). Figure 4.2 gives an example for P

10
 table.

 P = PP (Plaintext) (4.1)

where P is the permuted output.
1 32 4 5 6 7 8 9 10

3 5 2 7 4 61 9 810

Figure 4.2 P10 Table

primary function

This is the first round function and is one of the important functions used in S-DES algorithm.  
Figure 4.4 shows the details of primary and secondary functions. The operations performed in the Fn

1
 

are explained as follows:

 • In the beginning, right-hand side (R
1
) of the permuted plaintext (4 bits) is given as an input to 

 expansion and permutation (EP
1
) function, thereby 4 bits are expanded to 8 bits. The EP

1
 opera-

tion can be expressed as shown in Equation (4.2). Figure 4.3 gives an example for EP
1
.

 EO = EP
1
(R

1
) (4.2)

where 

 EO – Expanded output 
   R

1
 – Right-hand side 4-bits

1 2 3 4

4 1 2 3 2 3 4 1

Figure 4.3 Expansion and permutation (EP1)

https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
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8 4
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8
84
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4
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2

4
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P4+

+

4

S1

S1

S2
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+

+
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SP

EP1

PP

8-bit plaintext

Figure 4.4 Detail structure of S-DES encryption

 • In the second stage of this function, an XOR operation is performed between EO value and the first 
sub-key K

1
 as shown in Equation (4.3).

 XOR EO K1 1= ⊕  (4.3)

 • After that, 8 bits obtained in this way are separated into two 4-bits and these separated bits are 
given as input to two S-boxes S

1
 and S

2
 respectively. S

1
 box will produce 2 bits and S

2
 box will 

produce 2 bits as outputs. Table 4.1 shows the two S-boxes used in the S-DES algorithm.

Table 4.1 S-boxes used in the S-DES
S

0

1 0 3 2

3 2 1 0

0 2 1 3

3 1 3 2   

S
1

0 1 2 3

2 0 1 3

3 0 1 0

2 1 0 3

 • The outputs of S
1
 box (OS

1
) and S

2
 box (OS

2
) are concatenated and are given as input to  permutation 

table (P
4
) as shown in Equation (4.4).

 PO P OS OS= 4 1 2( || )  (4.4)
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 • Finally, an XOR operation is performed between PO value and left hand side (L
1
) of the permuted 

plaintext (4 bits) value to produce SW
1
 as output. This operation is shown in  Equation (4.5).

 SW L PO1 1= ⊕  (4.5)

 • Finally the output of Fn
1 
is shown in Equation (4.6).

 Fn
1
 = L

1
 ⊕ (P

4
 (S-Box (K

1
 ⊕ EP

1
 (R

1
)))) (4.6)

Secondary permutation – Swapping

In the SP, 4-bit value of SW
1
 and right hand side 4-bit value of the permuted plaintext (R

1
) are swapped 

with each other to produce the swap output (SWO) of 8 bits as shown in Equation (4.7).

 ( ) Swap ( , )SWO SW R= 1 1  (4.7)

Secondary function

This is the second round function and is also an important function used in S-DES algorithm. The 
operations performed in this function are very similar to first round function. One of the differences 
between this function and the first round function is that a new sub-key K

2
 is passed as an input to this 

function. Remaining stages are same as shown in Figure 4.4. The entire process of the second round 
function can be written as shown in Equation (4.8).

 ( (Fn L P K EP R2 2 4 2= ⊕ ⊕S-Box ( ( ))))2 1  (4.8)

inverse primary permutation

In the IPP phase, 4 bits of Fn
2
 output and 4 bits of the right hand side input (R

2
) are concatenated and 

it is taken as an input to IPP. These input bits (8 bits) are permuted using the inverse (reverse) of PP 
function to produce the ciphertext. At the end of this operation all 8 bits are preserved by rearranging 
them in some order. In general, the IPP can be expressed as shown in Equation (4.9).

 Ciphertext (CT) = IPP (Fn
2
 || R

2
) (4.9)

The overall process of encryption can be summarized as shown in Equation (4.10).

 Ciphertext = IPP(Fn
2
 (SP(Fn

1
 (PP(Plaintext))))) (4.10)

4.1.2 Key expansion process

In S-DES algorithm, a 10-bit key is securely communicated between the sender and the receiver for 
encrypting and decrypting the messages. The encryption/decryption key expansion phase generates 
two 8-bit sub-keys from the 10-bit key value that are used in Fn

1 
and Fn

2
. Figure 4.5 shows the key 

expansion process. The process of encryption key generation is shown below:

 • At first, the 10-bit input key is permuted to some order which is expressed as P
10

.

 • After the permutation process, the 10-bit key separates into two 5-bit keys for which 1-bit left 
circular shift operations (LS

1
) are performed individually.

https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
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 • In this stage, the result of individual left circular shift (1-bit) operations is concatenated and it is 
given as input to permutation table (P

8
) which eliminates first two bits and permutes the remaining 

bits. Figure 4.6 shows the P
8
 table used for key expansion process.

1 2 3 4 5 6 7 8 9 10

6 3 7 4 98 5 10

Figure 4.6 P8 used for key expansion

 • Therefore, the 8 bits obtained as output from permutation table (P
8
) is called primary sub-key 

(K
1
). In general, primary key expansion can be expressed as shown in Equation (4.11).

 Primary key (( ))= ( )P PLS8 1 10 input key  (4.11)

 • In addition to this, the key expansion phase also generates another 8-bit key. For generating this 
key, the output of LS

1
 is taken as the input and it is given to 2 bits left circular shift operations (LS

2
) 

where left shift operations are performed individually for each 5 bits.

 • The result of individual left circular shift (2-bits) operations are concatenated and it is given as the 
input to permutation table (P

8
), which eliminates first two bits and permutes the remaining bits.

 • Finally, the 8-bit obtained as output from the permutation table (P
8
) is called secondary sub-key 

(K
2
). In general, secondary sub-key generation can be expressed as shown in Equation (4.12).

 Secondary key (= P LS LS8 2 (output of ))1  (4.12)

LS-1 LS-1

P8

P10

55

55

LS-2 LS-2

P8

8

5

8

5

10

K1

K2

Figure 4.5 Key expansion process of S-DES
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4.1.3 S-deS decryption

The third process shown in Figure 4.1 is decryption process. The decryption process of the S-DES also 
works through all the five phases used for the encryption process. However, in the decryption process, 
an 8-bit ciphertext is given as input to produce an 8-bit plaintext using the same 10-bit key value. One 
of the important differences between S-DES encryption and S-DES decryption is that the keys are used 
in reverse order. Therefore, the secondary key (K

2
) is given as a sub-key for the first round operation 

and primary key (K
1
) is given as a sub-key for the second round. The overall process of decryption can 

be summarized as shown in Equation (4.13).

 Plaintext = IPP(Fn
2
(SP(Fn

1
(PP(Ciphertext))))) (4.13)

Example 4.1:
Encrypt and decrypt the plaintext B4 (10110100) using S-DES for the key value 2CC (1011001100).

Solution
 Encryption process:

Plaintext 10110100

P 01111000

R
1

1000

EO 01000001

Primary key 11011100

XOR
1

10011101

PO 1010

SW
1

1101

SWO 11011000

R
2

1101

EO 11101011

Secondary key 11000001

XOR
2

00101010

PO 0000

SW
2

1000

SW
2
 || R

2
10001101

IPP (Ciphertext) 01010011

 Key generation process:

Key 1011001100

P
10

1001101010

LS-1 0011110100

P
8
 11011100 (Primary Key)

LS-2 (LS-1) 1110010010

P
8
 11000001 (Secondary Key)

https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
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 Decryption process:

Ciphertext 01010011

P 10001101

R
1

1101

EO 11101011

Secondary key 11000001

XOR
1

00101010

PO 0000

SW
1

1000

SWO 10001101

R
2

1000

EO 01000001

Primary key 11011100

XOR
2

10011101

PO 1010

SW
2

0111

SW
2
 || R

2
01111000

IPP (Plaintext) 10110100

4.2 data encryption Standard

In the year 1974, IBM designers submitted an algorithm to the national bureau of standards (NBS). 
Afterwards it was renamed by national institute of standards and technology (NIST) internally under 
the name LUCIFER to protect data during transmission and storage. The NBS evaluated this algorithm 
with the assistant of the national security agency (NSA). Based on the evaluation, they changed the 
LUCIFER algorithm and built a new algorithm as the DES on July 15, 1977 [3].

4.2.1 deS encryption and decryption

The DES is a symmetric block cipher that makes use of only one key for both encryption and  decryption 
operations. The term ‘symmetric’ is used since the same key is used for both encryption and decryp-
tion operations. The DES is a block cipher that encrypts a 64-bit block of plaintext using a 56-bit key 
to produce a 64-bit block of ciphertext. The key is presented as a 64-bit block from which an effective 
56-bit key is generated for encryption and decryption operations. In the 64-bit key value, every bits 
are parity bits used for parity checking which are discarded and contain no effect on DES’s secu-
rity. Figure 4.7 shows the DES encryption algorithm that consists of three processes. The  right-hand 

https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
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Figure 4.7 The DES algorithm for encryption operation
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side process shows the key expansion process and middle one shows the way in which plaintext is 
 processed. Finally, the left-hand side process shows the structure of a single round operation. The 
plaintext  processing starts with a 64-bit plaintext that consists of four stages that are given below:

 • Initial permutation (IP)

 • 16 rounds of operation

 • 32-bit swap

 • Inverse initial permutation

These four stages are applied to the plaintext for converting (tranforming) the plaintext into 
 ciphertext. These four stages are also used in the DES decryption operation in which the keys are 
in reverse order. The first stage IP is used to rearrange the plaintext bits into some confused format. 
The second stage consists of 16 rounds of operation in which simple substitution and permutation 
operations are performed. The third stage is a 32-bit swap where the left-hand and right-hand side 32 
bits are swapped. Finally, inverse initial permutation is used to perform the permutation operation 
which is the inverse of IP.

In the key generation process, a 64-bit key is given as the input to permuted choice-1 that removes 
any 8 bits from the given key value. This result is passed to permuted choice-2 through left circular 
shift from which a sub-key K

i
 is generated for each round. Totally, 16 sub-keys are generated for 16 

rounds of operations.

initial permutation

At first, an IP is performed on the entire 64-bit block of plaintext data based on the IP table shown in 
Table 4.2. During the IP, the bits are rearranged to form the ‘permuted input’. The permuted table out-
put is then split into two 32 bits sub-blocks, L

0
 and R

0
, which are then given as the input to first round 

among 16 rounds. In general, the input of each round is represented as L
i–1

 and R
i–1

 where the subscript 
i denotes the current round of operation.

Table 4.2 Initial permutation (IP)

58 50 42 34 26 18 10 2

60 52 44 36 28 20 12 4

62 54 46 38 30 22 14 6

64 56 48 40 32 24 9 8

57 49 41 33 25 17 11 1

59 51 43 35 27 19 13 3

61 53 45 37 29 21 15 5

63 55 47 39 31 23 17 7

16-rounds of operation

Each round is identical to all the 16 rounds and it mainly performs substitution and transposition 
 operations. To perform this, each round accepts an input which is represented as two 32-bit value L

i–1
 

and R
i–1

. Using these two 32-bit values, each round performs four transformations as given below:
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 • Expansion

 • XOR operation with the corresponding round sub-key

 • Substitution

 • Permutation

Initially, the right-hand side 32 bits (R
0
) of the permuted 64 bits is expanded into 48 bits using the 

expansion table (E-table). The E-table is shown in Table 4.3.

Table 4.3 Expansion table (E-table)

32 1 2 3 4 5

4 5 6 7 8 9

8 9 10 11 12 13

12 13 14 15 16 17

16 17 18 19 20 21

20 21 22 23 24 25

24 25 26 27 28 29

28 29 30 31 32 1

The expanded 48 bits are XOR-ed with a 48-bit sub-key value generated by the key genera-
tion process. The output produced by the XOR operation is given as input to S-box [4] as shown 
in Figure 4.8. The S-box consists of eight S-boxes and each S-box is represented as a 4 × 16 array 
matrix. Each S-box receives 6 bits as input and produces 4 bits as output. The outer two bits of the 
6-bit chunk are used to indicate the row index (0 to 3) of the S-box array and the inner four bits of 
the 6-bit chunk are used to indicate the column index (0 to 15) of the S-box array. For example, if an 
input to S

2 
(second S-Box) is ‘111011’, and then the input has outer bits ‘11’ and inner bits ‘1101’. 

In this input, the outer bits are used to locate the third row, and inner bits are used to select 13th 
column. The corresponding output produced by S

2
 would be ‘0101’ (= 5). So, the output of S-box is a 

4-bit chunk pointed by the row and column indices [5]. Table 4.4 shows the values of the all S-boxes.

S2 S3S1 S4 S5 S6 S7 S8

6 6 6 6 6 6 6 6

4 4 4 4 4 44 4

48

P-table

32

32

Figure 4.8 S-box substitutions
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 Table 4.4 S-boxes
S

1

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 14 4 13 1 2 15 11 8 3 10 6 12 5 9 0 7

1 0 15 7 4 14 2 13 1 10 6 12 11 9 5 3 8

2 4 1 14 8 13 6 2 11 15 12 9 7 3 10 5 0

3 15 12 8 2 4 9 1 7 5 11 3 14 10 0 6 13

S
2

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 15 1 8 14 6 11 3 4 9 7 2 13 12 0 5 10

1 3 13 4 7 15 2 8 14 12 0 1 10 6 9 11 5

2 0 14 7 11 10 4 13 1 5 8 12 6 9 3 2 15

3 13 8 10 1 3 15 4 2 11 6 7 12 0 5 14 9

S
3

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 10 0 9 14 6 3 15 5 1 13 12 7 11 4 2 8

1 13 7 0 9 3 4 6 10 2 8 5 14 12 11 15 1

2 13 6 4 9 8 15 3 0 11 1 2 12 5 10 14 7

3 1 10 13 0 6 9 8 7 4 15 14 3 11 5 2 12

S
4

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 7 13 14 3 0 6 9 10 1 2 8 5 11 12 4 15

1 13 8 11 5 6 15 0 3 4 7 2 12 1 10 14 9

2 10 6 9 0 12 11 7 13 15 1 3 14 5 2 8 4

3 3 15 0 6 10 1 13 8 9 4 5 11 12 7 2 14

S
5

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 2 12 4 1 7 10 11 6 8 5 3 15 13 0 14 9

1 14 11 2 12 4 7 13 1 5 0 15 10 3 9 8 6

2 4 2 1 11 10 13 7 8 15 9 12 5 6 3 0 14

3 11 8 12 7 1 14 2 13 6 15 0 9 10 4 5 3

S
6

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 12 1 10 15 9 2 6 8 0 13 3 4 14 7 5 11

1 10 15 4 2 7 12 9 5 6 1 13 14 0 11 3 8

2 9 14 15 5 2 8 12 3 7 0 4 10 1 13 11 6

3 4 3 2 12 9 5 15 10 11 14 1 7 6 0 8 13

(continued)
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S
7

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 4 11 2 14 15 0 8 13 3 12 9 7 5 10 6 1
1 13 0 11 7 4 9 1 10 14 3 5 12 2 15 8 6
2 1 4 11 13 12 3 7 14 10 15 6 8 0 5 9 2
3 6 11 13 8 1 4 10 7 9 5 0 15 14 2 3 12

S
8

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
0 13 2 8 4 6 15 11 1 10 9 3 14 5 0 12 7
1 1 15 13 8 10 3 7 4 12 5 6 11 0 14 9 2
2 7 11 4 1 9 12 14 2 0 6 10 13 15 3 5 8
3 2 1 14 7 4 10 8 13 15 12 9 0 3 5 6 11

Eight S-boxes produce a total of 32 bits which are given as the input to permutation table P to 
perform permutation operation to avoid a number of potential attacks [6]. Table 4.5 shows the P table. 
Therefore, in each round F

i
 (i = 1, 2, …, 16), L

i
 and R

i
 values are computed. In general, this can be 

represented as shown below:

L
i
 = R

i
 – 1

R
i
 = L

i – 1
 ⊕ F(R

i – 1
, K

i
)

where F is the round function and K
i
 is the sub-key.

 Table 4.5 Permutation (P)

16 7 20 21 29 12 28 17
1 15 23 26 5 18 31 10
2 8 24 14 32 27 3 9

19 13 30 6 22 11 4 25

32-bit Swapping

At the end of the 16th round, the 32-bit L
i
 and R

i
 output values are swapped to create the 64-bit  pre-output.

inverse initial permutation

Finally, the pre-output is given as the input to inverse initial permutation IP−1 as defined in Table 4.6, 
which is the inverse of the IP. The output of IP−1 table is the 64-bit ciphertext.

 Table 4.6 Inverse initial permutation (IP−1)

40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30

37 5 45 13 53 21 61 29

36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25

 Table 4.4 (continued)
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4.2.2 deS Key expansion

In the key expansion process, the 64-bit key is first given as the input to the permuted choice-1 
(PC-1) table which is used to remove eight bits from the given key and generates a 56-bit key.  
Table 4.7 shows the PC-1 table.

 Table 4.7 Permuted choice-1 (PC-1)

57 49 41 33 25 17 9

1 58 50 42 34 26 18

10 2 59 51 43 35 27

19 11 3 60 52 44 36

63 55 47 39 31 23 15

7 62 54 46 38 30 22

14 6 61 53 45 37 29

21 13 5 28 20 12 4

The 56-bit key is subdivided into two blocks of 28-bit keys. Every 28-bit block is given as the input 
to two left circular shift boxes which performs left circular shift operation according to the schedule 
of left circular shift defined in Table 4.8 for each round. The left circular shift operation is performed 
to produce a new key for each round. Because, a small change in the plaintext or the key should affect 
many bits in the ciphertext. This effect is called Avalanche effect.

 Table 4.8 Schedule of left shift

Round number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Bits rotated 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1

After performing left circular shift operation, the two 28-bit blocks are given as the input to the 
permuted choice-2 (PC-2) table to generate a 48-bit round sub-key for each round represented as 
K

i
  (different for each round), where ‘i’ in K

i
 denotes the current round of operation. Table 4.9 shows 

the PC-2 table which is used to remove eight bits from the 56-bit key to generate the 48-bit key after 
performing left circular shift operation. This 48-bit key value is used to perform XOR with the cor-
responding right-hand side input R

i
.

 Table 4.9 Permuted choice one (PC-2)

14 17 11 24 1 5 3 28

15 6 21 10 23 19 12 4

26 8 16 7 27 20 13 2

41 52 31 37 47 55 30 40

51 45 33 48 44 49 39 56

34 53 46 42 50 36 29 32
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4.2.3 deS decryption

In DES decryption, all the four stages that are used in the encryption operation are used. The main 
difference between the DES encryption and the DES decryption is that the sub-keys are supplied in 
reverse order. For example, the sub-key K

16 
is used as a key value to Round 1 to perform decryption, 

K
15

 is used in Round 2 and so on.

Example 4.2:
Encrypt the plaintext ‘0123456789ABCDFA’ for the key value ‘0123456789ABCDFA’ using the DES 
algorithm. During the encryption operation, toggle a single-bit position in the plaintext according to a 
given student roll number. Consider, for example, the roll number is seven and hence toggle the sev-
enth bit of the plaintext and calculate the ciphertext for a single round of operation.

Solution
Let us consider the given plaintext 0123456789ABCDFA. This plaintext contains 16 hexadecimal 
digits and 64 bits in the binary form. Therefore, the plaintext can be written as 000000010010001101
0001010110011110001001101010111100110111111010 in binary.

Let us consider the given roll number as seven. Hence, toggle the seventh bit position of the plaintext 
from 0 to 1. The new plaintext (M) can be written as

M = 0000001100100011010001010110011110001001101010111100110111111010. At first, an IP is 
performed on the entire 64-bit block of plaintext data based on the IP table shown in Table 4.2. After 
IP, plaintext (M

1
) can be written as

M1 = 1100110010000000010011000111111111110000101010101111000010101011.

The permuted table output is then split into two 32-bit sub-blocks, L
0
 and R

0
 which are then given as 

the input to first round among 16 rounds.

L0 = 11001100100000000100110001111111.

R0 = 11110000101010101111000010101011.

The right-hand side 32 bits (R
0
) is expanded into 48 bits (E) using the E-table as shown in Table 4.3.

E = 111110100001010101010101111101000001010101010111.

Let the given key = 0123456789ABCDFA. This key is also in a hexadecimal form, so the 64-bit binary 
form of the key (K) can be written as

K = 0000000100100011010001010110011110001001101010111100110111111010.

This 64-bit key is first given as the input to the permuted choice-1 (PC-1) table shown in Table 4.7, 
which is used to remove eight bits from the given key and generates a 56-bit key. Hence, the 56-bit 
key (K

1
) is

K1 = 11110000110011001010101010001010101001001100111100000000.

The resulting 56-bit key is then treated as two 28-bit quantities which are labelled as C
0
 and D

0
. These 

values are sent to left circular shift operation with respect to 1 or 2 bits governed by Table 4.8.
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C0 = 1111000011001100101010101000.

D0 = 1010101001001100111100000000.

After performing 1-bit left circular shift on two 28-bit quantities, the output is labelled as C
1
 and D

1
.

C1 = 1110000110011001010101010001.

D1 = 0101010010011001111000000001.

Therefore,

C1D1 = 11100001100110010101010100010101010010011001111000000001.

After performing left circular shift operation, the two 28-bit blocks are given as the input to PC-2 table 
as shown in Table 4.9 to generate a 48-bit round key (K

2
).

K2 = 000110110000001001100111100110110100100110100001.

This 48-bit key value is used to perform XOR operation with the corresponding right-hand side input E.

X = E ⊕ K2 = 111000010001010100110010011011110101110011110110.

The output produced by the XOR operation is given as input to S-box as shown in Figure 4.8.  
The S-box consists of eight S-boxes. Each S-box receives 6 bits as input and produces 4 bits as output. 
Table 4.4 shows the values of the all S-boxes. The output of XOR is divided into eight 6-bit quantities 
and is served as inputs to each S-box. The 32-bit output (S) from eight S-boxes can be written as

S = 00111100110000011001000101011101.

The 32-bit output from eight S-boxes is given as the input to permutation table P as shown in Table 4.5 
to perform permutation operation to avoid a number of potential attacks. The permuted output (PER)
can be written as

PER = 10101011000110010010101100110010.

After computing PER, calculate the input to round 2 as shown below:

R
1
 = L

0
 ⊕ PER

L
0 
= R

0

Hence,

R1 = L PER0 ⊕  = 01100111100110010110011101001101

Therefore, the 64-bit output is denoted as L R1 1.

L R1 1 = 1111000010101010111100001010101101100111100110010110011101001101

Hence, the output or ciphertext in hexadecimal form after round 1 can be written as

 L R F AAF AB D1 1 0 0 6799674=  
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4.3 Strength of deS

This section discusses about the security strength of the DES algorithm by considering the various 
attacks that can be performed on it.

4.3.1 Brute-force attack

DES has a weakness due to its shorter key length of 56 bits and thereby brute-force attack is easily per-
formed. In order to do that, an intruder has to connect many power machines in parallel and he/she has 
to perform a distributive exhaustive key search to find the key value. Using this key search, the intruder 
can find 50 million keys per second and hence the key can be found within 5 to 10 days. Nevertheless, 
by increasing the key lengths of DES to 112 bits in double DES and triple DES, brute-force attack has 
turned into more unfeasible. Thus, brute-force attack has become the most challenging task on double 
DES and triple DES. Apart from brute-force attack, the DES is vulnerable to two more attacks, namely 
differential cryptanalysis and linear cryptanalysis. In this part, we offer a short summary of the two 
attacks such as differential cryptanalysis and linear cryptanalysis.

4.3.2 differential cryptanalysis

Differential cryptanalysis is a kind of cryptanalysis which is mainly applied to block ciphers. In addi-
tion to that, this cryptanalysis is also applicable to cryptographic hash functions and stream ciphers. 
Eli Biham and Adi Shamir have demonstrated differential cryptanalysis against a number of hash func-
tions and encryption algorithm, including the DES around 1990s. Eli Biham and Shamir noted that 
differential cryptanalysis is very complex and difficult for DES but little alterations to the algorithm 
would produce it much more vulnerable [7]. The DES can be effectively broken using differential 
cryptanalysis in 247 trials by choosing 247 chosen plaintexts. Differential cryptanalysis is the first attack 
that can break DES in less than 257 trials. Differential cryptanalysis is concentrated a huge role in the 
design of the permutation P and the S-boxes.

differential cryptanalysis attack

The main idea behind differential cryptanalysis attack is to evaluate the differences in the ciphertext 
for properly selecting the pair of plaintext and hence obtain the information about the key. Hence, 
this attack is also known as chosen plaintext attack. Here, the XOR function is used to find the 
 difference between two blocks of bits since sub-key K

i
 of each round is XORed with R

i – 1
 after passing 

R
i – 1

 through E-table. The differential cryptanalysis uses XOR operation to remove some randomness 
introduced by the key. The differential cryptanalysis is possible when the chosen plaintext pairs are 
very large.

Let us consider a pair of plaintexts P and P
1
. The XOR between these two values denotes a specific 

value P
1
, i.e. P′ = P ⊕ P

1
. The plaintexts P and P

1
 are subdivided into two halves PL

i
, PR

i
 and P

1
L

i
, 

P
1
R

i
, respectively. To illustrate differential cryptanalysis, we have considered only three rounds of 

operation up to PL
4
 and PR

4
 ciphertext. Initially, the DES encryption algorithm starts with the plaintext 

PL
1
 and PR

1
. The DES encryption function is applied to PL

1
, PR

1 
and P

1
L

1
, P

1
R

1
 to generate PL

4
,
 
PR

4 

and P
1
L

4
, P

1
R

4 
as shown in Figure 4.9. From the figure, it is clear to understand the following things:

 PL PR4 3= and P L P R1 4 1 3=  
 PR PL f PR K2 1 1 2= ⊕ ( , )  
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 PL PR PL f PR K3 2 1 1 2= = ⊕ ( , )  
PR PL f PR K PL f PR K f PR K4 3 3 4 1 1 2 3 4= ⊕ = ⊕ ⊕( , ) ( , ) ( , )

PL1 PR1

+

f

PL2 PR2

+

f

PL3 PR3

+

f

PL4 PR4

K4

K3

P1L1 P1R1

+

f

P1L2 P1R2

+

f

P1L3 P1R3

+

f

P1L4 P1R4

K4

K3

K2K2

Figure 4.9 Three rounds of operation

Let us assume that

 PR P R1 1 1=  

PR PR P Ri i i′ = ⊕ 1  
and PL PL P Li i i′ = ⊕ 1

Therefore,

, ,f PR K f P R K1 2 1 1 2 0( )⊕ ( ) = and PR PR P R4 4 1 4′ = ⊕

PR PL f PR K f P R K4 1 3 4 1 3 4′ ′= ⊕ ⊕( , ) ( , )
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This can be rewritten as

 PR PL f PR K f P R K4 1 3 4 1 3 4′ ′⊕ = ⊕( , ) ( , )  

Since PL PR P L P R4 3 1 4 1 3= =and ,

 PR PL f PL K f P L K4 1 4 4 1 4 4′ ′⊕ = ⊕( , ) ( , )  

To calculate the key value, expand E(PL
4
) and E(P

1
L

4
) using the expansion table as shown below.

1 2 3 4 5 6

1 2 4 3 4 3 5 6

The S-box has four inputs where the first bit is used to represent the rows and the last three bits 
are used to represent the columns. The output of the S-box has three bits. For instance, let us consider 
an input 1100 where the first bit 1 represents the second row of the S-box and the last three bits 100 
represent the fourth column of the S-box.

S
1
-box

101 010 001 110 011 100 111 000

001 100 110 010 000 111 101 011

S
2
-box

100 000 110 101 111 001 011 010

101 011 000 111 110 010 001 100

The first and last three bits of E(L′
4
) are given as the input to two S-boxes, respectively. Here, E(L′

4 
) 

is considered as the input of the S-boxes and the first and last three bits of PR′
4
 ⊕ PL′

1
 represents the 

output of the S
1
 and S

2
 boxes, respectively. List out the pairs that generate the output (K

4
) of S

1
 and S

2
 

boxes. S
1
 produces the left K

4
 bits and S

2
 produces the right K

4
 bits. Then calculate the pair E(PL

4
) ⊕ 

K
4
, E(P

1
L

4
) ⊕ K

4
. Finally, work out all the possibilities of K

4
 until finding one possibility of K

4
.

Example 4.3:
The following is an exercise for differential cryptanalysis.

Solution
Let us consider the plaintext and the corresponding ciphertext after round 4. The plaintext is subdi-
vided into two parts PL

1
 and PR

1
.

PL PR1 1� = 000111011011

PL PR4 4� = 000011100101
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Consider another one message with PR P R1 1 1=

P L P R1 1 1 1� = 101110011011

P L P R1 4 1 4� = 100100011000

Using the expansion table, find

E PL( )4  = 00000011

E P L( )1 4  = 10101000

 PL PL P L1 1 1 1′ = ⊕  

 PR PR P R4 4 1 4
′ = ⊕  

 PL1 ′ = 101001 

 PR4
′ = 111101 

Then, find the S-boxes output = PR PL4 1′ ′⊕

 = 111101 ⊕ 101001 = 010100 

Hence, the output of S
1
 box is 010 and from S

2 
box is 100. S

1
 generates the output 010 for the pairs 

(1001, 0011), (0011, 1001). The first four bits of K
4 
can be calculated by E(PL

4
) ⊕ K

4
 = 0000 ⊕ K

4
. 

Therefore, the first four bits of K
4
 are in (1001, 0011). The output of S

2
 box is 100. S

2
 generates the 

output 100 for the pairs (1100, 0111), (0111, 1100). The last four bits of K
4
 can be calculated by  

E(PL
4
) ⊕ K

4
 = 0011 ⊕ K

4
. Therefore, the last four bits of K

4 
 are in (1111, 0100).

Similarly, repeat the steps for another plaintext.

PL PR1 1� = 010111011011

P L P R1 1 1 1� = 101110011011

Similar analysis can be performed to find that the first four bits of K
4 
 are in (1000, 0011) and the last 

four bits of K
4 
 are in (1011, 0100). By combining the previous and current information, it is concluded 

that the first four bits of K
4 
 are 0011 and the last four bits of K

4 
 are 0100. Hence, K = 00*001101 

because K
4
 starts with fourth bit of K. To find the third bit of K, first use 0 and encrypt the plaintext  

PL
1
 || PR

1
. If it did not produce the correct ciphertext, then the key will be 001001101 or else the key 

is 000001101.

4.3.3 linear cryptanalysis

In cryptography, there are two most widely used attacks on block ciphers: one is differential crypt-
analysis and the other is linear cryptanalysis. Linear cryptanalysis was invented by Mitsuru Matsui [8], 
which is a common form of cryptanalytic attack based on finding linear approximations to the action 
of a block cipher. In this attack, the key bits can be guessed by means of some collected plaintexts and 
corresponding ciphertexts. For example, some of the plaintext bits are XORed together and some of the 
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ciphertext bits are XORed. In this case, the XOR value of plaintext bits and ciphertext bits, produces 
the single bit, which is equal to the XOR of some key bits.

 P P C C K K1 2 1 2 1 2⊕ ⊕…⊕ ⊕ ⊕… = ⊕ ⊕…  

This is a linear equation which holds for some probability p. In an ideal cipher p = 1/2 if p ≠ 1/2, 
then this bias can be utilized. This cryptanalytic attack for constructing linear approximations is mainly 
concentrated in the S-boxes. In DES, S-boxes have six input bits and four output bits. There are 63  
(26 – 1) useful ways through which the input bits can be combined together using XOR and there are 
16 (24 – 1) useful ways through which the output bits can be combined together using XOR. For each 
S-box, the probability is evaluated for a randomly chosen input. Moreover, an input XOR combination 
equals some output XOR combination, if there is a linear relation with high enough bias between an 
inputs XOR combination and outputs XOR combination, and then linear approximations can be con-
structed. Linear approximations for the S-boxes must be combined together with the other operations 
such as key mixing and permutation in order to find the linear equations. From the linear equations, 
for each set of values of the key bits, count the number of times the approximation holds true over 
all the known plaintext–ciphertext pairs. It is accepted because the correct partial key will make the 
approximation to hold with a high bias.

4.4 modeS of operation

In DES algorithm, the key size is only 64 bits and hence it can encrypt only 64-bit plaintext at a time. 
To encrypt a plaintext message larger than 64 bits, it is necessary to divide the given message into  
64-bit block of data. Each 64-bit message can be encrypted using the same 64-bit key value using 
DES encryption operation. If bit size of the last block is smaller than the capacity of the current block 
size, then the last block of the bits must be padded so that all the bits are equal to the actual block size.  
To provide the facility of encrypting large amount of data using the DES algorithm in various applica-
tions, NIST developed five modes of operation for the DES algorithm in the year 1981. In these five 
modes of operation, a single block/stream operation is repeatedly applied to securely transform a large 
amount of data (e.g. 1024 bits) sent from Alice to Bob. Based on that, these five modes of operation 
are classified into block ciphers and stream ciphers. In block cipher modes of operation, the input mes-
sage is divided into n-number of blocks each consists of 64-bit data. All the n-number of blocks are 
encrypted using the same key value. In contrast to block cipher modes of operation, only one byte or 
bit is encrypted using the same key value in stream cipher modes of operation. In stream cipher modes 
of operation, padding is not required since they efficiently use the stream size. The modes of operation 
are categorized into five types as follows:

 1. Electronic code book (ECB) mode

 2. Cipher block chaining (CBC) mode

 3. Cipher feedback (CFB) mode

 4. Output feedback (OFB) mode

 5. Counter (CTR) mode.

Among these five types, ECB and CBC modes are used for block ciphers. CFB and OFB modes are 
used for stream ciphers. CTR mode is used for both block ciphers and stream ciphers.

http://en.wikipedia.org/wiki/Padding_%28cryptography%29
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Stream_cipher
http://en.wikipedia.org/wiki/Stream_cipher
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4.4.1 electronic code Book mode

In this method, the plaintext is divided into n blocks based on the size of the plaintext. The n blocks 
are represented into a set P as shown in Equation (4.14). Each block of the plaintext is independently 
encrypted with a common key (K) to produce different ciphertext for each plaintext as shown in Equa-
tion (4.15). Similarly, each block of the ciphertext can independently be decrypted with a common  
key (K) to produce original plaintext for each ciphertext value as shown in Equation (4.16).

 P P P P Pn= …{ , , , , }1 2 3  (4.14)

 C E Pi K i= ( )  (4.15)

 P D Ci K i= ( )  (4.16)

In this section, we use E to represent encryption operation and D to represent the decryption 
 operation. Figure 4.10 shows the encryption and decryption operations performed in ECB mode. Here, 
independent encryption of plaintext and independent decryption of ciphertext are performed.

(a) Encryption of ECB mode

(b) Decryption of ECB mode 

Decrypt Decrypt Decrypt. . .

K

C1 C2 Cn

P1 P2 Pn

Encrypt Encrypt Encrypt. . .

K

P1 P2 Pn

C1 C2 Cn

Figure 4.10 Encryption and decryption process of ECB mode

Algorithm 4.1 gives the procedure to perform encryption operation in ECB mode.

Function ECB-encrypt (K, P)

For i = 1 to n blocks

C
i
 = E

K
(P

i
)

Return C
i

Comments

// K is a common key value, P is the collection 
of plaintext blocks.

// Encryption of n plaintext blocks.

Algorithm 4.1
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The advantages and disadvantages of ECB are listed as follows:

advantages

 • ECB is simple in implementation.

 • Bit errors occurred by noisy channels only affect the respective block and they do not affect the 
other blocks.

 • In ECB mode, all blocks can be operated in parallel.

disadvantages

 • In ECB mode, two identical plaintext blocks occur at some distance will produce the same cipher-
text value thereby known plaintext attack is possible.

 • Security services are being compromised by the intruder using the known plaintext attack.

application

The ECB mode is used for communicating small messages from sender to receiver. For example, it can 
be used for communicating the DES key value from Alice side to Bob side.

4.4.2 cipher Block chaining mode

In this method, the plaintext is divided based on ECB method as shown in Equation (4.14). In the 
 beginning, an initialization vector (IV) denoted as C

0
 and first plaintext (P

1
) are XORed and then the 

resultant value is encrypted using a common key (K) to produce the first ciphertext (C
1
) as shown in 

Equation (4.17).

 C E C PK1 0 1= ( )⊕  (4.17)

For the next time, first ciphertext (C
1
) and second plaintext (P

2
) are XORed and then the resultant value 

is encrypted using a common key (K) to produce the second ciphertext (C
2
). In general, the encryption 

operation excluding the first block can be expressed as shown in Equation (4.18).

 ( )C E C Pi K i i= −1 ⊕  (4.18)

In the decryption operation of CBC mode, first (C
i
) is decrypted in following ways as shown below:

 D C D E C PK i K K i i( ) ( )( )= −1 ⊕  

 D C C PK i i i( ) = ( )−1 ⊕  

 C D C C C Pi K i i i i− − −( ) =1 1 1⊕ ⊕ ⊕( )  

Finally, the result of the decryption process is shown in Equation (4.19).

 P C D Ci i K i= ( )−1 ⊕  (4.19)

Figure 4.11 shows the encryption and decryption process performed in CBC mode. From the figure, 
it is very clear to understand that output of one block is supplied as one of the inputs to next block.
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(a) Encryption of CBC mode

(b) Decryption of CBC mode

. . .

K

P1 Pn

C1 C2 Cn

+ + +C0

Encrypt Encrypt Encrypt

P2

. . .+ + +C0

Decrypt Decrypt Decrypt

K

C1 C2 Cn

P1 P2 Pn

Figure 4.11 Encryption and decryption process of CBC mode

Algorithm 4.2 gives the procedure to perform encryption operations in CBC mode.

Function CBC-encrypt (C
0
, K, P)

If i = 1

C E C PK1 0 1= ( )⊕
Return C

1

For i = 2 to n blocks 
C E C Pi K i i= −( )1 ⊕
Return C

i

Comments

// C
0
 is the IV, K is the common key value, P is 

the collection of plaintext blocks.

// Encryption of the first plaintext block.

// Encryption of remaining (n – 1) plaintext 
blocks.

Algorithm 4.2
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4.4.3 cipher feedback mode

The CFB is a stream cipher where s bits (8 bits) are encrypted at a time. In CFB, an IV (C
0
) is stored 

in a shift register where shift part has (b – s)-bits and register part has only s bits. In DES, the size of 
a block b is 64 bits. From these 64 bits, the first 8 bits (S

S
) are XORed with plaintext (P

1
) to produce 

the ciphertext (C
1
). In general, the encryption and decryption operation for the first block of CFB can 

be expressed as shown in Equations (4.20) and (4.21). In these equations S denote selection function 
and s denotes stream size.

 C P S E CS K1 1 0= ⊕ ( ( ))  (4.20)

 P C S E CS K1 1 0= ⊕ ( ( ))  (4.21)

The encryption and decryption operation for the rest of the blocks of CFB can be expressed as shown 
in Equations (4.22) and (4.23).

 C P S E Ci i S K i= −⊕ ( ( ))1  (4.22)

 P C S E Ci i S K i= −⊕ ( ( ))1  (4.23)

Algorithm 4.3 gives the procedure to perform encryption operations in CBC mode.

Function CFB-encrypt (C
0
, K, P)

If i = 1

C P S E Cs K1 1 0= ⊕ ( ( ))

Return C
1

For i = 2 to n blocks

C P S E Ci i s K i= −⊕ ( ( ))1

Return C
i

Comments

// C0 
is the IV, K is the common key value, P is 

the collection of plaintext blocks.

// Encryption of the first plaintext block.

// Encryption of remaining (n – 1) plaintext 
blocks.

Algorithm 4.3

Figure 4.12 shows the encryption and decryption process performed in CFB mode. In this figure, 
the output of one block is fed as the input to the shift register of next block.

4.4.4 output feedback mode

Output feedback mode (OFB) operates in the same way as that of CFB mode. The main difference 
between OFB mode and CFB mode is that the selected 8 bits (S

S
) is supplied as input to the next round 

in OFB mode. Because, if any bit error occurs in a particular ciphertext, it will be propagated to all the 
remaining blocks in CFB. To avoid this problem, only the selected s bits of the output produced by the 
encryption of the previous round will be given as input to the next round in OFB. The encryption and 
decryption operation for the first round of OFB mode can be expressed as shown in Equations (4.20) 
and (4.21). The encryption and decryption operation for OFB mode, excluding the first round, can be 
expressed as shown in Equations (4.24) and (4.25).

 C P S E Oi i s K i+ +=1 1 ⊕ ( ( ))  (4.24)

 P C S E Oi i S K i+ +=1 1 ⊕ ( ( ))  (4.25)



Data Encryption Standard  145

(a) Encryption of CFB mode

(b) Decryption of CFB mode

. . .
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Cn-1(s-bits)

C1 (s-bits)
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P1 (s-bits)

b-s bits s bits
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s bits b-s bits
b-bit shift register

+

EncryptK

P2 (s-bits)

b-s bits s bits
b-bit shift register

s bits b-s bits
b-bit shift register
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EncryptK

Pn (s-bits)

+

b-s bits s bits
b-bit shift register

s bits b-s bits
b-bit shift register

. . .

+

C0

EncryptK EncryptK
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EncryptK
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Cn-1(s-bits)

b-s bits s bits
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b-s bits s bits
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b-bit shift register

s bits b-s bits
b-bit shift register

s bits b-s bits
b-bit shift register

Figure 4.12 Encryption and decryption process of CFB mode
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Figure 4.13 shows the encryption and decryption process performed in OFB mode. Here, the out-
put of selected 8 bits is fed as the input to the shift register of the next block. Algorithm 4.4 gives the 
procedure to perform encryption operations in CBC mode.

(a) Encryption of OFB mode

(b) Decryption of OFB mode

. ..

+

C0

EncryptK EncryptK
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Encrypt

b-s bits s bits
b-bit shift register

K

s bits b-s bits
b-bit shift register
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b-s bits s bits
b-bit shift register

b-sbits s bits
b-bit shift register

s s
s

s bits b-s bits
b-bit shift register

s bits b-s bits
b-bit shift register

. ..

+
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EncryptK EncryptK
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Encrypt
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P1 (s-bits)

s bits b-s bits
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b-s bits s bits
b-bit shift register

s s
s

s bits b-s bits
b-bit shift register

s bits b-s bits
b-bit shift register
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Figure 4.13 Encryption and decryption process of OFB mode
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Function OFB-encrypt (C
0
, K, P)

For i = 1 to n blocks

C P S E Oi i s K i+ +=1 1 ⊕ ( ( ))

Return C
i+1

Comments

// C
0
 is the IV, K is the common key value, P is 

the collection of plaintext blocks.

// Encryption of (n) plaintext blocks.

Algorithm 4.4

4.4.5 counter mode

In this mode, plaintext is divided into n blocks based on the size of the plaintext as shown in 
 Equation (4.14). This method uses the same key value and different counter values for each block of 
the plaintext. Initially, each counter value is encrypted using the key value K and the resulting value is 
XORed with the corresponding plaintext to produce the ciphertext value. The encryption and decryp-
tion of CTR mode can be expressed as shown in Equations (4.26) and (4.27).

 C P Ui i i= ⊕  (4.26)

 P C Ui i i= ⊕  (4.27)

where U E ii K= ( )Counter

Figure 4.14 shows the encryption and decryption process performed in CTR mode. Here, for each 
block, individual counters and a common key are used. Algorithm 4.5 gives the procedure to perform 
encryption operations in CTR mode.

(a) Encryption of CTR mode

(b) Decryption of CTR mode

. . .K
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+ +

Encrypt Encrypt
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Pn +

EncryptK

Cn

Counter 1 Counter 2 Counter n. . .

. . .
K

C2

P1

+ +

Encrypt Encrypt

C1

K

P2

Cn +

EncryptK

Pn

Counter 1 Counter 2 Counter n. . .
Figure 4.14 (continued) 
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(b) Decryption of CTR mode

. . .K
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Figure 4.14 Encryption and decryption process of CTR mode

Function CTR-encrypt (Counter, K, P)

For i = 1 to n blocks

U
i
 = E

K
(Counter i)

C
i = P

i
 ⊕ U

i

Return C
i

Comments

// Counter is the respective counter value for 
each blocks, K is the common key value, P is 
the collection of plaintext blocks.

// Encryption of counter value by a common key.

// Encryption of remaining n plaintext blocks.

Algorithm 4.5

Key termS
Avalanche effect

Block cipher

Brute-force attack

Chunk

Cipher block chaining (CBC) mode 

Cipher feedback (CFB) mode

Common key 

Counter (CTR) mode

Counter values

Cryptanalytic attack 

Data encryption standard (DES)

Differential cryptanalysis 

Electronic code book (ECB) mode 

Encryption key generation

Expansion table

Initialization vector (IV)

Inverse permutation

Key expansion

Key generation process

Left circular shift

https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
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Linear approximations

Linear cryptanalysis 

Output feedback (OFB) mode 

Parity checking

Permutation

Primary function

Round operation

S-DES

s bits

Secondary function

Shift register

Stream ciphers 

Sub-key

Substitution

Substitution boxes

Swapping

Symmetric block cipher

Summary

 • The S-DES algorithm that takes an 8-bit block of plaintext and encrypts is using a 10-bit key to 
produce an 8-bit block of the ciphertext as output.

 • The encryption/decryption of S-DES key expansion phase generates two 8-bit sub-keys from the 
10-bit key value that are used in primary and secondary functions.

 • In cryptography, a symmetric block cipher is a symmetric key-based deterministic algorithm 
operating on fixed-length groups of bits, called blocks.

 • Block ciphers are important basic components in the design of many cryptographic protocols, 
and are broadly used to execute the encryption of bulk data.

 • For encryption operation, substitution and permutation are the two main techniques used in most 
secret key algorithms. These techniques are used for a number of times in iterations called rounds.

 • There are two inputs to each round one is L
i
, R

i
 pair and the other is a 48-bit sub-key which is a 

shifted and constricted version of the original 56-bit key.

 • In the key expansion process, the given 32-bit input is expanded into 48 bits using the expansion 
table (E-table).

 • The data encryption standard (DES) is considered as a predominant symmetric-key algorithm 
for the encryption of electronic data in previous years. Due to its too small 56-bit key size, DES is 
now considered to be unsecure for many applications. Even though there are theoretical attacks, 
the algorithm is assumed to be practically secure in the form of triple DES.

 • In cryptography, the word chunk is used to represent a set of data.

 • The act of swapping two variables means that mutually exchanging the values of the variables. 
In DES, at the end of the 16th round, the 32 bits L

i 
and R

i 
output values are swapped to create the 

64-bit pre-output.

 • In the key generation process, a 64-bit key is given as the input to permuted choice-1 that  removes 
any 8 bits from the given key value.

 • The left circular shift is the operation in which the entries in a tuple are rearranged such that 
moving the first entry to the final position.

 • A small change in the plaintext or the key should affect many bits in the ciphertext and is called 
Avalanche effect.

https://www.google.co.in/search?biw=1600&bih=789&q=define+primary&sa=X&ei=EpvlU-ntMdTh8AXKnICgDg&ved=0CCUQ_SowAA
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 • In cryptography, potential attack is any effort to demolish, disclose, modify, prevent and gain 
unauthorized access against intended information and users.

 • In cryptography, a brute-force attack is used against any encrypted data. In this attack, the attack-
ers systematically check all possible key values until the correct one is found.

 • In cryptography, differential cryptanalysis is performed based on the chosen plaintexts meaning 
that the invader should be able to find ciphertexts from a set of chosen plaintexts.

 • Linear cryptanalysis is also a general form of cryptanalytic attack based on finding linear 
 approximations to the action of block ciphers. Due to the public knowledge of differential and lin-
ear cryptanalysis, the new designs are expected to be developing the algorithm which is resistant 
to these attacks, and many, including the advanced encryption standard which has been provided 
secure against the attack.

 • A stream cipher is a symmetric key cipher in which a cryptographic key is applied to each binary 
digit in a plaintext data stream to produce a ciphertext, one bit at a time.

 • For encryption operation, permutation is one of the main techniques used in most secret key 
algorithms. Permutation is a process of reordering of the bit positions into some confused format.

 • In cryptography, cryptanalytic attack is a kind of attack in which the cryptanalyst tries to decrypt 
new pieces of ciphertext without any additional information. The main aim for a cryptanalyst is to 
find out the secret key.

 • In mathematics, a linear approximation is a general function which is an approximation of a 
linear function.

 • To provide the facility of encrypting large amount of data using the DES algorithm in various 
 applications, NIST developed five modes of operation for the DES algorithm in the year 1981.

 • Electronic code book (ECB) and cipher block chaining (CBC) modes are used for block ciphers.

 • Cipher feedback (CFB) and output feedback (OFB) modes are used for stream ciphers.

 • Counter (CTR) mode is used for both block ciphers and stream ciphers.

 • In ECB mode, each block of the plaintext is independently encrypted with a common key (K) to 
produce different ciphertext for each plaintext.

 • In CBC mode, first ciphertext (C
1
) and second plaintext (P

2
) are XORed and then the resultant 

value is encrypted using a common key (K) to produce the second ciphertext (C
2
).

 • The CFB mode is a stream cipher where s bits (8 bits) are encrypted at a time.

 • In OFB mode, only the selected s bits of the output produced by the encryption of the previous 
round will be given as input to the next round.

 • In CTR mode, the same key value and different counter values are used for encrypting each block 
of the plaintext.

review QueStionS

 1. Write short notes on S-DES key generation process.

 2. Explain about S-DES encryption and decryption process in detail.

 3. What is the difference between a block cipher and a stream cipher?
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 4. What is the purpose of the S-boxes in DES?

 5. Consider a cipher composed of 16 rounds with an input bit block length of 64 bits and a key 
length of 64 bits. Input bits: 10101010 10101010 10101010 10101010 10101010 10101010 
10101010 10101010; Key bits: 00111011 00111000 10011000 00110111 00010101 00100000 
11110111 01011110. From the input bits and keys, find out the first eight round sub-keys.

 6. What is the total number of exclusive-or operations used in DES?

 7. What is the purpose of the permutation in DES?

 8. Explain about single round operation of DES in detail.

 9. How triple DES enhances performance compared to the original DES?

 10. Differentiate S-DES and DES.

 11. What is the difference between differential and linear cryptanalysis?

 12. What is meant by cryptanalytic attack?

 13. Explain about five modes of operations in detail.

 14. Differentiate CFB and OFB modes.
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chapter

5.1 Need for double deS aNd Triple deS

As per DES algorithm, the key size is constrained to only 56-bit thereby brute-force attack can be 
 easily performed in a simple manner. Moreover, linear and differential cryptanalysis illustrates that 
DES is not an efficient algorithm in terms of providing security to the given plaintext. Therefore, an 
 efficient algorithm was required in compensation with DES algorithm at that point of time to serve 
many  secure Internet protocols. To handle this type of scenario, double DES was introduced by the 
national institute of standards and technology (NIST). In double DES, two symmetric keys were used 
for encryption and decryption, however double DES also had some limitations. With regard to this 
context, triple DES was introduced in the year 1999 by a team led by Walter Tuchman who was work-
ing at IBM. Triple DES resolved all the limitations of double DES by using three symmetric keys as 
well as two symmetric keys. Moreover, triple DES is extensively used in many of the Internet protocols 
in today’s environment. A brief explanation of double DES and triple DES is given below.

5.2 double deS

Using DES twice in a row is called double DES. During encryption, double DES takes 64-bit plaintext 
and 112-bit key as inputs to produce 64-bit ciphertext as output. During decryption, DES encryption 
operation is performed in inverse by taking 64-bit ciphertext and 112-bit key as input to produce 
 64-bit plaintext as output. The encryption and decryption of double DES can be expressed as shown 
in  Equations (5.1) and (5.2).

 C E E Pk k= ( )( )
2 1

 (5.1)

 P D D Ck k= ( )( )
1 2

 (5.2)

where,

 Ek1
and Ek2

denote DES encryption using k
1
 (56-bit) and k

2
 (56-bit) keys.

 Dk1
and Dk2

denote DES decryption using k
1
 (56-bit) and k

2
 (56-bit) keys.

The encryption process of double can also be expressed diagrammatically as shown in Figure 5.1. 
From Figure 5.1, it is clear that an attacker must know 112-bit key for breaking double DES and 
thus double DES prevents brute-force attack to a greater extent. However, double DES can be easily 
attacked using meet-in-the-middle attack [1]. The attacking scenario of double DES using meet-in-the-
middle attack is briefly explained below.

http://everything2.com/title/DES
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5.2.1 Meet-in-the-Middle attack

This type of attack requires some known plaintext and ciphertext pairs. Therefore, plaintext P and 
the corresponding ciphertext C (obtained using double DES) are assumed in this type of attack. The 
objective of this attack is that, when pairs ( , )P C  and ( , )P C′ ′  are known, then the respective keys k

1
 

and k
2
 for encryption and decryption process can be found. Meet-in-the-middle attack finds the exact 

key values k
1
 and k

2
 and thus double DES becomes a weak algorithm.

5.2.2 attacking Scenario

By considering Equations (5.1) and (5.2), initially ( , )P C  and ( , )′ ′P C  are assumed. Now plaintext P  is 
encrypted with all 256  possible keys k

1
 and the results of encryption are stored in a storage area (table). 

Then, decrypt C using all 256  possible keys k
2
 and the results of decryption are stored in a storage 

area. After this process, for each result, check for a match as shown in Equation (5.3).

 E P D Ck k1 2
( ) = ( )  (5.3)

If there is match as shown in Equation (5.3), then try for another pair ( , )′ ′P C . Continue the same 
process as mentioned above. Finally, if there is also match for the new pair ( , )′ ′P C , then it can be con-
cluded that k

1
 and k

2
 are the actual keys that are used for double DES. The entire attacking scenario is 

clear in Table 5.1.

Example 5.1:
Assume the plaintext P  = 3, k

1
 = 7 and k

2
 = 9. Initially, perform encryption and decryption using 

multiplication and division operations. Finally, perform meet-in-the-middle attack for the plaintext, 
ciphertext pair.

Encryption:

X  = 3 × 7 = 21 

C = 21 × 9 = 189

Decryption:

X = 189/9 = 21

P = 21/7 = 3

Now let us assume that the intruder knows plaintext, ciphertext pair = (3,189)

X1 = DES Encryption (P, K1)

P = 64-bit plaintext

X2 = DES Encryption (X1, K2)

X2 = 64-bit ciphertext

(a) encryption

P = DES Decryption (X1, K1)

P = 64-bit plaintext 

X1 = DES Decryption (X2, K2)

X2 = 64-bit ciphertext 

(b) decryption

K1 = 64-bit Key

K2 = 64-bit Key

Figure 5.1 Double DES
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From Table 5.1, it is clear that the intermediate value gets matched for some k
1 
and k

2
 values with 

respect to the chosen plaintext, ciphertext pairs. Therefore, in this way, meet-in-the-middle attack can 
be performed for one pair of plaintext and ciphertext. In some cases, there will be a need for using 
two pairs of plaintext and ciphertext pairs also. Hence, 112-bit key (double DES) also provides same 
security as that of 56-bit key (DES).

5.3 Triple deS

The limitation of double DES is resolved using triple DES. The triple DES is an ANSI X9.17 and ISO 
8732 standard [2] that uses three symmetric keys as well as two symmetric keys. During encryption, 
the triple DES takes 64-bit plaintext and 112/168-bit key as inputs to produce 64-bit ciphertext as out-
put. During decryption, inverse DES operation is performed by taking 64-bit ciphertext and 112/168-
bit key as input to produce 64-bit plaintext as output. The triple DES encryption and decryption using 
three symmetric keys are shown in Equations (5.4) and (5.5).

 C E D E Pk k k= ( )( ){ }3 2 1
 (5.4)

Plaintext (P) Key 1 
(k1)

Intermediate 
ciphertext (X)

3 1 3

3 2 6

3 3 9

3 4 12

3 5 15

3 6 18

3 7 21

3 8 24

3 9 27

3 10 30

3 11 33

3 12 36

3 13 39

3 14 42

3 15 45

Intermediate 
ciphertext (X)

Key 2 
(k2)

Ciphertext 
(C)

189 1 189

94.5 2 189

63 3 189

47.25 4 189

37.8 5 189

31.5 6 189

27 7 189

23.625 8 189

21 9 189

18.9 10 189

17.1818 11 189

15.75 12 189

14.5384 13 189

13.5 14 189

12.6 15 189

Table 5.1 Meet-in-the-middle attack
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 P D E D Ck k k= ( )( ){ }1 2 3
 (5.5)

When three keys are used, the key size becomes 168 bits and therefore 2168 combinations are required 
for brute-force attack, which is an unfeasible process. Triple DES encryption and decryption with two 
symmetric keys are shown in Equations (5.6) and (5.7).

 C E D E Pk k k= ( )( ){ }1 2 1
 (5.6)

 P D E D Ck k k= ( )( ){ }1 2 1
 (5.7)

The entire structure of triple DES with three keys is shown in Figure 5.2. From Figure 5.2, it is evident 
that triple DES with three keys avoids man-in-the-middle attack even though known plaintext and 
ciphertext pairs are chosen. The reason is that three encryption/decryption processes are involved and 
hence intermediate value calculation becomes a tedious process and hence man-in-the-middle attack 
is not possible. The triple DES with two keys is shown in Figure 5.3. The triple DES is preserved from 
any of the practically known attacks [3]. Exclusively triple DES with three keys (168 bits) is used in 
some Internet applications such as PGP and S/MIME that provides greater security.

X1 = DES Encryption (P, K1)

P = 64-bit plaintext

X3 = DES Encryption (X2, K3)

X3 = 64-bit ciphertext
(a) encryption

P = DES Decryption (X1, K1)

P = 64-bit plaintext 

X2 = DES Decryption (X3, K3)

X2 = DES Decryption (X1, K2) X1 = DES Encryption (X2, K2)

X3 = 64-bit ciphertext 
(b) decryption

K1 = 64-bit key

K2 = 64-bit key

K3 = 64-bit key

Figure 5.2 Triple DES with three keys

P = 64-bit plaintext

X3 = DES Encryption (X2, K1)

X3 = 64-bit ciphertext
(a) encryption

P = DES Decryption (X1, K1)

P = 64-bit plaintext 

X2 = DES Decryption (X3, K1)

X2 = DES Decryption (X1, K2) X1 = DES Encryption (X2, K2)

X3 = 64-bit ciphertext 
(b) decryption

K2 = 64-bit key

X1 = DES Encryption (P, K1)
K1 = 64-bit key

Figure 5.3 Triple DES with two keys
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5.4 pSeudo raNdoM NuMber GeNeraTor

A pseudo random number generator (PRNG) is a function which is used to generate sequence random 
numbers using mathematical equation [4]. A PRNG is also known as a deterministic random bit gen-
erator (DRBG). A random number is a number which is generated based on some given input, whose 
outcome is impulsive, and it cannot be constantly reproduced. This random number is used as a key 
value in many cryptographic algorithms (RC-4, RSA, Diffie–Hellman, SSL, etc.) to perform encryp-
tion operation. The main purpose of generating the random numbers as the key value to perform 
 encryption in cryptography is to increase the security. Moreover, the random numbers are generated in 
key distribution and authentication schemes. In addition to above, the random numbers help in comput-
ing private and public keys in many public key cryptosystem such as RSA and Diffie–Hellman. Various 
PRNGs are linear feedback shift registers, linear congruential generators, and blum blum shub (BSS) 
generator. Among the various PRNGs, linear feedback shift registers start from an arbitrary starting 
state using a seed value as explained in Chapter 3. From that starting state, many random numbers are 
generated subsequently without repetition up to some value. After that, the numbers are repeated. If 
the period of repetition is long, then it will provide more security. For example, in linear feedback shift 
register, if n = 4,  then the maximum required number of states without repeating the random number 
is 24 – 1 = 15. The following explains linear congruential generators and BSS generator [5].

5.4.1 linear Congruential Generator

In this scheme, the sequence of random numbers is generated using the following equation:

 z az c nn n= − +( )1 mod  

where,

 n  is the modulus ( )n > 0

 a  is the multiplier ( )0 < <a n

 c  is a constant ( )0 ≤ <a n

 zn−1  is the initial seed value ( )0 1≤ <−z nn

In this equation, we have to give more importance in choosing the right values of n, a and c  in order 
to make the random numbers not to repeat for a long period. For example, if n a= =16 7,  and c = 0, 
then it will generate only the two values {7, 1}. Hence, the period of repetition is 2. If a = 1  and c = 1, 
then all the 14 values are continuously generated from 2 to 14. So, we have to generate the right values 
of a  and c  for creating a good random generator. One of the important limitations of this approach 
is that, it is easily breakable. If the attacker knows that the sender has used the linear congruential 
generator and any one of the random numbers is found, then all its subsequent random numbers can 
be easily found. Even if the parameters n, a and c are not known to the intruder, the attacker can guess 
the information about some random number to compute the future random numbers. Therefore, linear 
congruential generator is rarely used in cryptography applications.

5.4.2 blum blum Shub Generator

In this scheme, the encryption algorithm generates the random number as explained below:

 1. Generate two prime numbers p  and q. These two prime numbers are congruent to 3 mod 4.

 2. Next, compute n p q= × .
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 3. Choose a random integer z which in relatively prime to n.

 4. After that, set the initial seed key value z z n1
2= mod .

 5. Then, for each random bit, it computes ( )z z ni i= −1
2 mod .

 6. The BSS generates a sequence of random bits r
1
, r

2
…, where ri  is the least significant bit of .zi

The PRNG is different from true random number generator (TRNG). The Vernam one-time pad uses 
TRNG, whereas RC-4 uses PRNG. The difference between the PRNG and TRNG is that the PRNG 
generates a random number as output that many eventually repeat. But, the period of repetition is long 
in TRNG. In TRNG, equal number of 1’s and 0’s will be available in the output random value. This 
many not be possible in the PRNG. Figure 5.4 shows the differences between PRNG, pseudo random 
function (PRF) and TRNG.

In PRNG, the truly generated random value is completely determined by a relatively small set of 
initial values. This is referred as PRNG’s seed. In contrast to PRNG, a random string is given along 
with the seed value in PRF. In PRF, all the generated outputs appear as random values, regardless of 
how the input seed value is chosen.

5.5 rC4

RC4 is a stream cipher which was invented by Ron Rivest in the year 1987. RC4 means ‘Rivest   
Cipher 4’ and it is also known as ‘Ron’s Code 4’ [6]. The RC4 cipher is the most widely used stream 
cipher. It is used in various applications that encrypts and decrypts a bit or byte of data at a time. For 
example, if 10 bytes of a file is to be transmitted, then RC4 has to generate 10 key streams for encrypt-
ing the plaintext bytes. Moreover, it is used by important protocols such as SSL, TSL, WPA and WEP, 
etc. because of its simplicity and efficiency. The RC4 is an efficient algorithm because it is 5 times 
faster than DES, 15 times faster than triple DES and 50 times faster than RC2.

5.5.1 principle of rC4

The RC4 algorithm generates a pseudo random number which will be used as a key to encrypt the 
plaintext and to generate the corresponding ciphertext. The encryption and decryption are performed 
using an XOR operation in RC4. The major differences between the pseudo random number and true 

Seed

Pseudo random bit stream

(a) PRNG

Deterministic
algorithm

  

Pseudorandom value

(b) PRF

Deterministic
algorithm

Seed Context string 

  

Random bit stream

(c) TRNG

Conversion to
binary

Source of true randomness

Figure 5.4 PRNG, PRF and TRNG
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random number are discussed in Section 5.4. The pseudo random number is generated from a variable 
length key after performing the two algorithms, namely key scheduling algorithm (KSA) and pseudo 
random generation algorithm (PRGA). Among the two algorithms, KSA is used to generate the permu-
tation array. PRGA is used to generate a pseudo random number which will be used as a key stream. 
To implement these two algorithms, initially a 256-byte array S is declared that contains a permutation 
of these 256 bytes. Next, two indexes i and j are used to point the elements in the S array.

5.5.2 The Key-scheduling algorithm

In this algorithm, the S array is initialized. After that, the index values of S array are filled into S array. 
This process is shown in Figure 5.5.

After filling the values, the values in the S array are permuted. In order to permute the values, the 
following steps are executed in the KSA.

 • Compute j j S i i= + +[ ] [ ]key mod keylength

 • Swap S[i] and S[  j] 

 • Increment i

These steps are executed until the i value reaches 256. Algorithm 5.1 explains about the KSA.

Figure 5.6 shows the permutation process performed in the KSA.

 Algorithm 5.1

0 1 2 3S

0 1 2 3

254 255

254 255

Figure 5.5 Array initialization

Function KSA (key)

int i;

for i = 0 to 255

{

s[i] = i;
}

int j = 0;

for i = 0 to 255

{

j = ( j s i i+ +[ ] [ % ]key keylength ) %  256;

swap (s[i], s[j]);

}

Comments

// key  is the input used in KSA

// s[i] values initialization

// Permutation in s [i]

// Compute the new index for j value

// Swap the two values located in the index i 
and j 
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0 1 2 3S

0 1 2 3

254 255

254 255

S[ i ] s[ j ]

i j

0 1 2 3S

0 1 2 3

254 255

254 255

S[ j ] s[ i ]

i j

Step N + 1

Key

0 1 2 3
i % 

keylength keylength-1

– i = i + 1
– j = j + s[ i ] + key[i mod keylength]

0 1 2 3S

0 1 2 3

254 255

254 255

S[ i ] s[ j ]

i j

Figure 5.6 Permutation process

5.5.3 The pseudo random Generation algorithm

In this algorithm, the actual key stream is generated which could be used for performing encryption 
operation in the sender side. Algorithm 5.2 explains about the PRGA.

Figure 5.7 shows the key stream selection process used in the PRGA.

 Algorithm 5.2

Function PRGA ( )key

int i = j = 0;

while Generating Output:

{

i = ( )i +1 % 256;

j = ( [ ])j s i+ % 256;

swap (s i s j[ ], [ ]);

z = s [(s i s j[ ] [ ]+ )%256]

}

Return z

Comments

// i  and j  values initialization

// Compute new index for i  and j

// Swap the two values located in the index i  
and j

Return the output key stream z
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0 1 2 3S

0 1 2 3

254 255

254 255

S[ i ] S[ j ]

S[ i ] + S[ j ]%256 i j

keystream byte

Figure 5.7 Key stream selection process

5.5.4 encryption and decryption

Once the keystream has been generated successfully, the encryption of the plaintext can be performed by 
XORing the key stream and plaintext. Figure 5.8 shows the RC4 encryption operation performed using 
an XOR operation. Figure 5.9 shows the RC4 decryption operation performed using an XOR operation. 
The basic steps that are performed in the RC4 encryption are given below:

 1. Choose a secret key.
 2. Run the KSA to generate the initial permuted array.
 3. Run the PRGA to generate a key stream.
 4. Now the amount of key stream generated is equal to the amount of bytes for doing encryption 

operation.
 5. XOR with key stream with the plaintext data to generate the encrypted stream.

Plaintext

PRGA

KSA

Key

CiphertextXOR

z

Figure 5.8 RC4 encryption operation

Plaintext

PRGA

KSA

Key

Ciphertext XOR

z

Figure 5.9 RC4 decryption operation
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The basic steps that are performed in the RC4 decryption are given below:

 1. Use the same key that was used in the encryption operation.

 2. Generate a key stream by running the KSA and PRGA algorithms.

 3. XOR is the key stream with the ciphertext to generate the plaintext.

Example 5.2:
Generate a key stream using RC4 for a simple 4-byte example where S  = {0, 1, 2, 3}, key  =  
{1, 3, 5, 7} and i j= = 0.

Solution:
KSA Algorithm

First iteration (i  = 0, j = 0, S  = {0, 1, 2, 3}):

j  = ( [ ] [ ])j S i i+ + Key  = (0 + 0 + 1) = 1

Swap S i[ ]  with S j[ ] : S = {1, 0, 2, 3}

Second iteration (i  = 1, j  = 1, S  = {1, 0, 2, 3}):

j = ( [ ] [ ])j S i i+ + Key  = (1 + 0 + 3) = 0 (mod 4)

Swap S i[ ]  with S j[ ] : S  = {0, 1, 2, 3}

Third iteration (i  = 2, j  = 0, S  = {0, 1, 2, 3}):

j j S i i= + +( [ ] [ ])Key  = (0 + 2 + 5) = 7 mod 4 = 3
Swap S i[ ]  with S j[ ] : S  = {0, 1, 3, 2}

Fourth iteration (i  = 3, j  = 3, S  = {0, 1, 3, 2}):

j j S i i= + +( [ ] [ ])Key  = (3 + 2 + 7) = 0 (mod 4)

Swap S i[ ]  with S j[ ] : S  = {2, 1, 3, 0}

PRGA Algorithm

Reset i j= = 0, Recall S = {2, 1, 3, 0}

i i=  + 1 = 1

j j S i= + [ ]  = 0 + 1 = 1

Swap S i[ ]  and S j[ ]: S  = {2, 1, 3, 0}

Output z S S i S j= +[ [ ] [ ]] = S [2] = 3

5.6 rC5

RC5 was designed by Ronald Rivest in the year 1994. In RC5, RC stands for ‘Rivest Cipher’. RC5 is 
a fast symmetric block cipher that uses the same key for performing encryption and decryption opera-
tions [7]. RC5 is a fast symmetric block cipher because it uses computationally efficient operations 
which can be found in typical microprocessors. Therefore, RC5 is suitable for hardware and software 
implementations. RC5 cipher takes less memory and hence it may be easily implemented on smart 
cards or other devices that has a small amount of storage space. RC5 is easy to implement. In addi-
tion to this, RC5 focuses on data-dependent rotations in which one word of intermediate results is 

http://en.wikipedia.org/wiki/Ron_Rivest
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 cyclically rotated by an amount decided by the low-order bits of another intermediate result. The major 
strength of RC5 cipher relies on this data-dependent rotation. Finally, RC5 uses a variable length cryp-
tographic key and hence it provides high security.

5.6.1 principles of rC5

RC5 is a word-oriented cipher in which a w-bit word is given as input and a w-bit word is produced as 
output. RC5 is a block cipher where two-word input is given as plaintext block and two word ciphertext 
is produced as output block. The word should be greater than zero (w > 0). But, the actual choice for w is  
32 bits. Therefore, 64 bits is given as a plaintext block (because two words = 2 × 32 = 64 bits) and 64 
bits is produced as ciphertext block. The number of rounds ( )r  used in the RC5 is larger than DES and 
hence it provides a high level of security. The RC5 uses an expanded key table S  which is derived from 
the secret key. The size ( )t  of table S  also depends on the number of rounds ( )r . The table size t can be 
computed by t r= +2 1( ), which means that the table can store 34 words if r  value is 16. In addition to 
this, the RC5 has a variable length secret key K  specified by parameter b, where b defines the number 
of bytes in the secret key K. Here, b can take the values from 1 to 255. Based on these parameters, there 
are various types of RC5 algorithms. For example, RC5-32/16/10 has 32-bit words, 16 rounds, 10 byte 
secret key (80 bits) and an expanded key table that consists of 34 words (t r= +2 1( ) = 2 × 17 = 34).

Suppose, if the key size is changed in the above example and if it is RC5-32/16/17, then this will 
work like DES. Because, the input size, number of rounds and key size are same. Hence, the main 
purpose of replacing the DES algorithm by RC5 is that the input size, number of rounds and key size 
are dynamic which can be changed depending on the applications. For example, some applications may 
need high speed. For those applications, small r value can be selected. In some other applications such 
as key management, security is a major concern and speed is unimportant. In such kind of key manage-
ment applications, r value can be increased. Hence, r = 32 might be a good choice for key management 
application. Similarly, key size and word size can also be increased in key management applications.

RC5 cipher consists of three phases, namely key expansion, RC5 encryption and RC5 decryp-
tion algorithm. The key expansion phase is mainly used to expand the users secret key K and fill the 
expanded key array S. RC5 encryption algorithm encrypts the message using the expanded key array 
S and RC5 decryption algorithm decrypts the ciphertext using the array S.

5.6.2 rC5 Key expansion

The key expansion phase uses two magic constants to expand the users secret key K. It consists of three 
steps that are given below:

 • Converting the secret key

 • Initializing the array S

 • Mixing the secret key

These three steps are executed based on the magic constants defined for RC5. The two magic constants 
are defined using the following equations for a random word w.

Pw = Odd (( )e − 2 2w)

Qw = Odd (( )φ −1 2w)
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where e = 2.718281828459… (base of natural logarithms) and φ  = 1.618033988749… (golden  ratio). 
In the above equations, odd(x) gives the odd integer nearest to x. For example, if w = 16, then P16  

=
 
b

7
e

1
 

and Q16 = 9e
37

. Similarly, for various sizes of word w, different Pw  
and Qw 

values can be computed.

Converting the Secret Key

The first step in the key expansion phase is to copy the secret key K[ ]0  to K b[ ]−1  into another array 

L[ ]0  to [ ]L c −1 . In this array ( [ ])L i , the value c  represents the maximum number of words which can 

be computed by c
b

u
= , where u  is the number of bytes/words u

w
=⎛

⎝⎜
⎞
⎠⎟8

. If anything is unfilled, then 

that byte positions are filled as zero in the array L i[ ]. If b c= = 0, then the value of c  is filled with  

1 and L 0[ ] = 0. Algorithm 5.3 summarizes this process.

Function CSK()

c
b

u
= ⎢

⎣⎢
⎥
⎦⎥

max ( , )1

for i = b  down to 1

{

L
i

u
L

i

u
K i

⎡
⎣⎢

⎤
⎦⎥

= ⎡
⎣⎢

⎤
⎦⎥

⎛
⎝⎜

⎞
⎠⎟

+� 8 [ ] ;

}

Comments

// c  value calculation

// +  denotes Twos complement addition of 
words.

//  denotes left rotation of words.

x  y means left rotation of x by y bits.

initializing the array S

The second step in the key expansion process is to initialize the array S to a fixed pseudo random bit 
pattern using an arithmetic progression. This arithmetic progression is determined by two magic con-
stants Pw  and Qw.

 
This arithmetic progression will have a period up to 2w, since Qw  

is an odd
 
integer. 

Algorithm 5.4 is used to implement array initialization.

Function IA()

S Pw[ ]0 = ;

for i =1 to t −1

{

S i S i Qw[ ] [ ]= − +1 ;

}

Comments

// +  denotes Twos complement addition of 
words.

 Algorithm 5.4

 Algorithm 5.3
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Mixing the Secret Key

The third step in the key expansion phase is to mix the user’s secret key using the three steps defined in 
Algorithm 5.5 above the arrays S and L. This process is clearly explained in Algorithm 5.5.

Function MSK()

i j= = 0;

A B= = 0;

do 3 × maximum ( , )t c  times

{

A S i S i A B= = + +[ ] ( [ ] ) ;� 3

B L j L j A B A B= = + + +[ ] ( [ ] ) ( );�
i i= +( )1  mod ( )t ;

j j= +( )1  mod ( )c ;

}

Comments

// Initialization of i j A B, , and .

// Mixing operation is performed

5.6.3 rC5 encryption

RC5 encryption algorithm accepts two w − bit registers A  and B  as input plaintext block and the  expanded 
key array S[ ]0  to S t[ ]−1 . Using the input block A and B and the expanded key array, RC5 encryption 
algorithm performs the encryption operation. Algorithm 5.6 explains about RC5 encryption algorithm.

Function Encrypt ( , , [ ])A B S i

L A S0 0= + [ ];

R B S0 1= + [ ];

for i =1 to r

{

L L XOR R R S ii i i i= + ×− − −(( ) ) [ ];1 1 1 2�

R R XOR L L S ii i i i= + × +−(( ) ) [( ) ];1 2 1�
}

Comments

//Input block A  and B  and expanded key

// +  denotes Twos complement addition of 
words

// Encryption operation

//  denotes left rotation of words.

x  y means left rotation of x by y bits

 Algorithm 5.5

 Algorithm 5.6
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RC5 decryption algorithm uses two w-bit registers L
i
, and R

i
 as input ciphertext block and the  expanded 

key array S i[ ]. Using the input block L
i
, and R

i
 and the expanded key array, RC5 decryption algorithm 

performs the decryption operation. Algorithm 5.7 explains about RC5 decryption algorithm.

5.7 iNTerNaTioNal daTa eNCrypTioN alGoriThM

International data encryption algorithm, often abbreviated as IDEA, is a secure block encryption 
 algorithm which was designed successfully by Xuejia Lai and James L. Massey [8] of ETH-Zurich for 
the first time in the year 1991. The success of this algorithm is attributed to the use of simple algebraic 
structures. The original algorithm as described by the authors had few modifications and finally it was 
called IDEA. This algorithm permits the effective protection of the transmitted data from unauthorized 
access by the intruders probably. The main difference between DES and IDEA is that IDEA uses differ-
ent keys for encryption and decryption operation. However, the keys are related in a complex manner.

5.7.1 principles of idea

The algorithm works on 64-bit plaintext and ciphertext block. During the encryption, the 64-bit plaintext 
is divided into four sub-blocks with each sub-block size of 16 bits. The four sub-blocks are represented 
as P

1
, P

2
, P

3
 and P

4
, each of which consists of 16 bits. Each of the sub-block iterates through 8 rounds 

and a single output transformation phase. The eight rounds perform arithmetic and logical operations 
for necessary transformations. Moreover, the same sequences of arithmetic operations are repeated 
inside each sub-block. The initial step in the encryption process is to divide the 64-bit plaintext into 
four equally sized blocks and it will be given for round 1 input processing. The output of round 1 shall 
serve as the input of round 2. Similarly, the output of round 2 serves as the input of round 3, and so on. 
Finally, the output of round 8 is the input for the output transformation, in which the output is the 
result of 64-bit ciphertext. The basic structure of IDEA is shown in Figure 5.10. In this figure, each 
round is further divided into two parts, namely, IDEA odd round process and IDEA even round process. 

Function Encrypt (L R S ii i, , [ ])

for i = r  down to 1

{

R R S i L XORi i i− = − × +1 2 1(( [( ) ]) )�  Li;

L L S i R XOR Ri i i i− − −= − ×[ ]( )( )1 1 12 � ;

}

A L S= −0 0[ ] ;

B R S= −0 1[ ] ;

Comments

//Input block Li, 
and

 
Ri  

and S i[ ]

//Decryption operation

// Minus ( )−  denotes inverse operation of Twos 
complement addition.

//  denotes right rotation of words.

x  y means right rotation of x by y bits

5.6.4 rC5 decryption

 Algorithm 5.7
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Therefore, the entire 8 rounds of operations are represented as 16 rounds (2 × 8 = 16) plus one output 
transformation round. Since IDEA is a symmetric key algorithm, the algorithm uses the same key for 
encryption and decryption operations. The size of the key used in this algorithm is 128 bits. During 
the entire encryption operation, a total of 52 keys (round 1 to round 8 and output transformation 
phase) are used which is actually generated from a 128-bit key. In each round (round 1 to round 8), 
six subkeys are used wherein each subkey consists of 16 bits. However, the output transformation uses 
only 4 subkeys which are comparatively lesser than the input phase.

idea primitive operations

The basic operations in the input and output phase needed in the entire process are given in this section. 
Operations needed in the first 8 rounds are given as follows:

 1. Multiplication modulo 2 116 +
 2. Addition modulo 216

 3. Bitwise XOR.

64-bit input

Key expansion

128-bit key

Round 1

Round 2

Round 17

64-bit output

K1 K2 K3 K4

K5 K6

K49 K50 K51 K52

Figure 5.10 Basic Structure of IDEA
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The operations needed in the output transformation phase are given as follows:

 1. Multiplication module 2 116 +
 2. Addition modulo 216.

All the above-mentioned operations are performed on 16-bit sub-blocks. For simplicity, the multiplica-
tion modulo 2 116 +  is represented by ⊗ symbol, the addition modulo 216  is represented by + symbol 
and bitwise XOR will be represented by the traditional symbol ⊕.

5.7.2 Key expansion

Now, let us examine the key expansion for the encryption process. During the key expansion, first 8 
subkeys are generated from the 128-bit key value. For generating the remaining subkeys to be used in 
different rounds, a simple circular left shift operation is performed in the original key with respect to 25 
bits. For example, subkey K

1
 uses the first 16 bits of the original key, subkey K

2
 uses the next 16 bits, 

and so on till subkey K
8
. Hence, first eight subkeys (K

1
 to K

8
) are taken from the original key value and 

its size is 128 bits (16 × 8). This process is shown in Figure 5.11.

128-bit key

K1 K2 K3 K6K5K4 K7 K8

Figure 5.11 Generation of subkeys (K1 to K8)

For generating the remaining subkeys, start from the 25th bit, wrap up around the first 25 bits at the 
end, and take the 16-bit chunks. This process is repeated up to generating K

52
. This process is shown 

in Figure 5.12.

K9 K10 K11 K14K13K12 K16K15

128-bit key 128-bit key

Figure 5.12 Generation of remaining subkeys

5.7.3 idea encryption and decryption

IDEA encryption consists of two types of process, namely IDEA odd round process and IDEA even 
round process. The IDEA odd round process accepts four data blocks (P

1
, P

2
, P

3
 and P

4
) and four 

subkeys (K
1
, K

2
, K

3
 and K

4
) as input and produces four data blocks (P

1
, P

2
, P

3
 and P

4
) as partial output 

which will be used as the input to the next round. These four values are produced by performing multi-
plication modulo 2 116 + and addition modulo 216  operations. Figure 5.13 shows the way of processing 
the input in the IDEA odd round process. Figure 5.14 shows the way of processing the input in IDEA 
even round process. The IDEA even round process accepts four data blocks (P

1
, P

2
, P

3
 and P

4
) and two 
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subkeys (K
5
, K

6
) as input. Among the four data blocks, the first two data blocks (P

1
, P

2
) are XOR-ed 

together and the output is stored in Q
1
. Similarly, the next two data blocks (P

3
, P

4
) are XOR-ed together 

and the output is stored in Q
2
. These two values (Q

1
, Q

2
) and the two subkeys (K

5
, K

6
) are given as input 

to Mangler function. The Mangler function produces two outputs (Q
3
, Q

4
) from (Q

1
, Q

2
) and (K

5
, K

6
). 

The output produced by the Mangler function is defined as follows:

Q
3
 = ((K

5
 ⊗ Q

1
) + Q

2
) ⊗ K

6

 Q
4
 = (K

5
 ⊗ Q

1
) + Q

3 

The decryption operation is the same as the encryption process except that the subkeys are derived 
using a different algorithm. The main strength of IDEA algorithm is that IDEA uses a key whose size 
is two times greater than the key used in the DES. Thus, 2128  trials are needed to find the key using 
brute-force attack.

P1

P1

K1

P4

P4

K4

P2

P2

K2+

P3

P3

K3+

Figure 5.13 IDEA odd round process

+

Mangler
function

P1

P1

P2

P2

P3 P4

P4P3

Q1 Q2

K5

K6

Q3 Q4

+++

+ +

Figure 5.14 IDEA even round process
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5.8 blowfiSh eNCrypTioN

Blowfish was designed in the year 1993 by Bruce Schneier [9]. This technique was initiated to find 
an alternative for the existing algorithms like DES, AES and triple-DES by increasing the speed of 
encryption and decryption operations. The speed of the Blowfish cipher is increased by performing 
simple addition and XOR operations. The Blowfish is a fast and efficient symmetric block cipher, 
because it encrypts the plaintext data on large 32-bit microprocessors at a rate of 26 clock cycles per 
byte. The Blowfish cipher takes less memory, because it takes less than 5 K of memory for running 
encryption and decryption algorithms.

5.8.1 principles of blowfish

The Blowfish is a Feistel network block cipher that encrypts a 64-bit block of plaintext using a variable 
length key size of 448 bits. Since, the key length is of variable length, it can be in the range of 32 to 
448 bits. But, the default key size is 28 bits. The Blowfish cipher is very much suitable for the appli-
cations where keys are not changed frequently like password management and web applications. The 
Blowfish cipher consists of three phases, namely key expansion, Blowfish encryption phase and Blow-
fish decryption phase. During the key expansion phase, the user’s secret key is expanded into several 
subkey arrays to produce 4168 bytes. The Blowfish encryption algorithm encrypts the message using 
the subkeys and the Blowfish decryption algorithm decrypts the ciphertext using the same subkeys.

5.8.2 Key expansion

During the key expansion phase, the original key is broken into a set of subkeys, and thereby two arrays 
are used. They are P-array and S-box array. The P-array consists of 18 subkeys, where each subkey 
size is 32 bits. The S-box array contains 256 entries. In the S-box array, each S-box accepts 8 bits as 
input and produces 32 bits as output. In each round, one entry of the P-array is used. Subsequent to the 
final round, an XOR operation is performed with each half of the data block. To generate the subkeys, 
initialize the P-array and S-boxes with a fixed string. After the string initialization, first 32 bits of the 
P-array values are XORed with the key bits. For example, XOR the first 32 bits of key with P

1
 and 

XOR the second 32 bits of key with P
2
. This output is denoted as P

1
 and P

2
. After that, encrypt the new 

P
1
 and P

2
 with the modified subkeys and output is denoted as P

3
 and P

4
. Repeat this process for 521 

times in order to calculate the new subkeys for the P-array and the four S-boxes. If large number of 
subkeys need to be generated in the Blowfish cipher, these subkeys are computed before starting the 
encryption and decryption operations.

5.8.3 encryption and decryption

During the data encryption, a simple function is iterated for 16 times where each round performs a 
key-dependent permutation and a data-dependent substitution. All addition operations are performed 
as an XOR operation on 32-bit words. The Blowfish encryption splits the given input into two 32-bit 
halves. Each 32-bit input is further divided into four 8 bits, and uses them as input to the S-boxes. 
The outputs are XOR-ed and added using arithmetic modulo 232  to produce the final 32-bit output. 
The  basic structure of Blowfish encryption operation is shown in Figure 5.15. The basic structure of 
Blowfish function F is shown in Figure 5.16. Algorithm 5.8 explains about the Blowfish encryption 
algorithm. Blowfish decryption operation is exactly same as that of encryption operation except that 
P

1
, P

2
 … P

18
 are used in the reverse order.
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Plaintext

+ +

+

+

+

+

+

+

F

F

F

Ciphertext

P1

P18 P17

P16

P2

64

3232

32 32

64

13 more iterations

Figure 5.15 Blowfish encryption

Function Encryption (x
L
, x

R
)

for i  = 1 to 16

{

x
L
 = x

L
 ⊕ Pi

x
R
 = F(x

L
) ⊕ x

R

Swap (x
L
, x

R
)

}

x
R
 = x

R
 ⊕ P17

x
L
 = x

L
 ⊕ P18

Combine (x
L
, x

R
)

Comments

// Left side input x
L
 and right side input x

R

// XOR the value x
L
 with Pi

// Swap the two 32 bits

// Combine the output

S1-box S4-boxS3-boxS2-box

8 bits 8 bits8 bits8 bits

32 32
32

32
+

+

Figure 5.16 F function of Blowfish

The Blowfish function can be written as given as follows:

 F S S n S S= [ ] + [ ]( ) [ ]( ) + [ ]1 2
32

3 48 bits 8 bits mod 2 8 bits 8 bits modd 232  

 Algorithm 5.8
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5.9 CaST-128

CAST-128 is a symmetric block cipher algorithm that was developed by carlisle adams and  stafford 
tavares (CAST) in the year 1996 [10]. This algorithm is based on the CAST design procedure. The 
algorithm works on Feistel Network structure which has similar encryption and decryption operations 
and such network construction follows an iterative procedure. The input plaintext is 64-bit block in size 
and the key size varies from 40 to 128 bits depending on the target application. This algorithm uses 12 
rounds for key sizes up to 80 bits (i.e. 40, 48, 56, 64, 72 and 80 bits) and uses full 16 rounds for key 
sizes greater than 80 bits. Padding is necessary for the key sizes that are less than 128 bits. It uses eight 
substitution boxes (S-boxes) each with 256 entries in which S

1
 to S

4
 boxes are used for encryption and 

decryption process and S
5
 to S

8
 boxes are used for key scheduling.

5.9.1 CaST-128 algorithm

In CAST-128, the overall operation is similar to the data encryption standard (DES). The full encryp-
tion algorithm is described in Figure 5.17 and explained in the following four steps.

32 32
Plaintext

∧ F1

Km1

Kr1

L1 R1

Round 1

∧ F16

Km16

Kr16

L16 R16

Round 16

32 32
Ciphertext

Li–1 Ri–1

+

<<<

–

+

^

∧

Kri Kmi

Li Ri

32

32

32
32

32

32
32

32

32

32

8 8 8 8

32

5
32

D

S1 S2 S3 S4

Figure 5.17 CAST-128 encryption algorithm

In order to discuss the encryption algorithm of CAST-128, consider a 64-bit plaintext m
1
 … m

64
 

and a 128-bit key K = k
1
 … k

128
. To encrypt the 64-bit plaintext using 128-bit key, four steps are used. 

The four steps are key schedule, processing the plaintext, structure of round function and swapping. 
All the four steps are explained as follows:

http://en.wikipedia.org/wiki/Carlisle_Adams
http://en.wikipedia.org/wiki/Stafford_Tavares
http://en.wikipedia.org/wiki/Stafford_Tavares
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 1. Key schedule

  It is the process used to compute 16 pairs of subkeys {Km i
, Kr i

} from the 128-bit key. Each sub-
key size is 32 bits. In this process, totally 32 keys are computed. Among the 32 keys, 16 Km i

 key 
values and 16 Kr i

 key values are available. The first 16 keys (Km1
–Km16

) are used for ‘masking’ 
and are called masking keys. This set is denoted as K

m
 (m for ‘masking’). The remaining 16 

keys (Kr
17
–Kr32

)
 
are used for

 
‘rotation’ and are called rotation keys. In the rotation subkeys, the 

least significant 5 bits are used for the left circular shift operations and the remaining bits are 
useless bits. This set is denoted as K

r
 (r for ‘rotation’).

   CAST-128 has eight substitution boxes (S-boxes) [S
1
 – S

8
] in which the S-boxes S

1
, S

2
, S

3
, 

and S
4

are called round function S-boxes. These four S-boxes are used for encryption and 
decryption. The remaining four S-boxes (S

5
, S

6
, S

7
, and S

8
) are used for key schedule S-boxes 

to  generate the subkeys. Each S-box is represented as a 256  × 32 array matrix. Each S-box 
receives 8 bits as input and produces 32 bits as output. The 8-bit input is used to choose a par-
ticular row from the S-Box and the 32-bit value available in that row is produced as an output 
[11]. For instance, consider 128-bit key: a

0
a

1
a

2
a

3
a

4
a

5
a

6
a

7
a

8
a

9
a

A
a

B
a

C
a

D
a

E
a

F
, where a

0
 and a

F
 

stands for the least significant byte and the most significant byte, respectively. Let us assume 
that t

0
 … t

F
 be the intermediate (temporary) bytes. Let S

i
[] represents ith S-box and let ‘^’ repre-

sents XOR operation. From the given 128-bit key, the subkeys are formed as follows:

  t
0
t
1
t
2
t
3
 = a

0
a

1
a

2
a

3
 ^ S

5
[a

D
] ^ S

6
[a

F
] ^ S

7
[a

C
] ^ S

8
[a

E
] ^ S

7
[a

8
]

  t
4
t
5
t
6
t
7
 = a

8
a

9
a

A
a

B
 ^ S

5
[t

0
] ^ S

6
[t

2
] ^ S

7
[t

1
] ^ S

8
[t

3
] ^ S

8
[a

A
]

  t
8
t
9
t
A
t
B
 = a

C
a

D
a

E
a

F
 ^ S

5
[t

7
] ^ S

6
[t

6
] ^ S

7
[t

5
] ^ S

8
[t

4
] ^ S

5
[a

9
]

  t
C
t
D
t
E
t
F
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4
a

5
a

6
a

7
 ^ S

5
[t

A
] ^ S

6
[t

9
] ^ S

7
[t

B
] ^ S

8
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8
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6
[a

B
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5
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8
] ^ S

6
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9
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7
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7
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8
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5
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6
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5
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6
] ^ S

7
[a

8
] ^ S

8
[a

9
] ^ S

7
[a

3
]

  Km 8
 = S

5
[a

5
] ^ S

6
[a

4
] ^ S

7
[a

A
] ^ S

8
[a

B
] ^ S

8
[a

7
]

  t
0
t
1
t
2
t
3
 = a

0
a

1
a

2
a

3
 ^ S

5
[a

D
] ^ S

6
[a

F
] ^ S

7
[a

C
] ^ S

8
[a

E
] ^ S

7
[a

8
]

  t
4
t
5
t
6
t
7
 = a

8
a

9
a

A
a

B
 ^ S

5
[t

0
] ^ S

6
[t

2
] ^ S

7
[t

1
] ^ S

8
[t

3
] ^ S

8
[a

A
]

  t
8
t
9
t
A
t
B
 = a

C
a

D
a

E
a

F
 ^ S

5
[t

7
] ^ S

6
[t

6
] ^ S

7
[t

5
] ^ S

8
[t

4
] ^ S

5
[a

9
]

  t
C
t
D
t
E
t
F
 = a

4
a

5
a

6
a

7
 ^ S

5
[t

A
] ^ S

6
[t

9
] ^ S

7
[t

B
] ^ S

8
[t

8
] ^ S

6
[a

B
]

  Km 9
 = S

5
[t

3
] ^ S

6
[t

2
] ^ S

7
[t

C
] ^ S

8
[t

D
] ^ S

5
[t

9
]
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  Km10
 = S

5
[t

1
] ^ S

6
[t

0
] ^ S

7
[t

E
] ^ S

8
[t

F
] ^ S

6
[t

C
]

  Km11
 = S

5
[t

7
] ^ S

6
[t

6
] ^ S

7
[t

8
] ^ S

8
[t

9
] ^ S

7
[t

2
]

  Km12
 = S

5
[t

5
] ^ S

6
[t

4
] ^ S

7
[t

A
] ^ S

8
[t

B
] ^ S

8
[t

6
]

  a
0
a

1
a

2
a

3
 = t

8
t
9
t
A
t
B
 ^ S

5
[t

5
] ^ S

6
[t

7
] ^ S

7
[t

4
] ^ S

8
[t

6
] ^ S

7
[t

0
]

  a
4
a

5
a

6
a

7
 = t

0
t
1
t
2
t
3
 ^ S

5
[a

0
] ^ S

6
[a

2
] ^ S

7
[a

1
] ^ S

8
[a

3
] ^ S

8
[t

2
]

  a
8
a

9
a

A
a

B
 = t

4
t
5
t
6
t
7
 ^ S

5
[a

7
] ^ S

6
[a

6
] ^ S

7
[a

5
] ^ S

8
[a

4
] ^ S

5
[t

1
]

  a
C
a

D
a

E
a

F
 = t

C
t
D
t
E
t
F
 ^ S

5
[a

A
] ^ S

6
[a

9
] ^ S

7
[a

B
] ^ S

8
[a

8
] ^ S

6
[t

3
]

  Km13
 = S

5
[a

8
] ^ S

6
[a

9
] ^ S

7
[a

7
] ^ S

8
[a

6
] ^ S

5
[a

3
]

  Km14
 = S

5
[a

A
] ^ S

6
[a

B
] ^ S

7
[a

5
] ^ S

8
[a

4
] ^ S

6
[a

7
]

  Km15
 = S

5
[a

C
] ^ S

6
[a

D
] ^ S

7
[a

3
] ^ S

8
[a

2
] ^ S

7
[a

8
]

  Km16
 = S

5
[a

E
] ^ S

6
[a

F
] ^ S

7
[a

1
] ^ S

8
[a

0
] ^ S

8
[a

D
]

  The remaining Kr
17

– Kr32
 half is computed in the same way similar to the procedure explained 

above for the same 128-bit key ‘a
0
a

1
a

2
a

3
a

4
a

5
a

6
a

7
a

8
a

9
a

A
a

B
a

C
a

D
a

E
a

F
’.

 2. After generating the necessary subkeys, the plaintext is split into two 32-bit halves L
1
 = m

1
 … m

32
 

and R
1
 = m

33
 … m

64
.

 3. There are 16 rounds in the encryption algorithm that ranges from 1 to 16. Decryption also uses 
the same number of rounds, but the keys are used in reverse order. In each round, L

i
 and R

i 

values are calculated as given as follows:

  L
i
 = R

(i–1)

  R
i
 = L

(i–1)
 ^ f(R

(i–1)
, Km i

, Kr i
), where f is defined as a round function.

  There are three types of round functions that are defined for CAST-128. They are represented 
as Function Type 1, Function Type 2 and Function Type 3. These three types of round functions 
are used for different rounds, which are identified by the value of i. For example, Function 
type 1 is used for six rounds (i = 1, i = 4, i = 7, i = 10, i = 13, and i = 16). Here, i denotes the 
round number. Function type 1 is shown in Figure 5.18. Function type 1 is defined as follows:

  Function Type 1: D = ((Km i
+ Data<<< Kr i

))

 f = ((S
1
[D

1
] ^ S

2
[D

2
]) − S

3
[D

3
]) + S

4
[D

4
]) 

  where,

  Data is the input data,

  D
1
 to D

4
 are the most significant bytes from the least significant byte of D, respectively,

  S
1
, S

2
, S

3
, S

4
 are S-Box 1, 2, 3 and 4, respectively,

  ‘ + ’ and ‘ − ’ are modulo addition and subtraction, respectively,

  ‘ ^ ’ is bitwise exclusive OR,

  ‘ <<< ’ is a circular left shift operation.

  Function type 2 is shown in Figure 5.19. Function type 2 is used for the rounds 2, 5, 8, 11 and 
14. The operations performed in Function type 2 are summarized as follows:
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  Function Type 2: I = ((Km i
^ Data <<< Kr i

))

 f = ((S
1
[D

1
] − S

2
[D

2
]) + S

3
[D

3
]) ^S

4
[D

4
]) 

  Function type 3 is shown in Figure 5.20. Function type 3 is used for rounds 3, 6, 9, 12, and 15. 
The operations performed in Function type 3 are summarized as follows:

  Function Type 3: I = ((Km i
− Data <<< Kr i

))

 f = ((S
1
[D

1
] + S

2
[D

2
]) ^S

3
[D

3
]) − S

4
[D

4
]) 

 4. The final blocks L
16

, R
16

 are exchanged to get the ciphertext.

5.9.2 Strength of CaST

CAST-128 is a Feistel cipher that has 12 to 16 rounds of operation based on the key size. The  rotation 
keys are used to give intrinsic immunity to this algorithm to protect from linear and differential attacks. 
This algorithm also uses a mixture of four primitive operations, namely modulo addition, modulo 

Li–1 Ri–1
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∧
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Figure 5.18 Function type 1
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Figure 5.19 Function type 2
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subtraction, bitwise exclusive-OR and left circular shift operations in the round functions. The main 
purpose of using the XOR operation in this algorithm is that it has the property of self-invertible. 
Hence, separate XOR operations are not used for encryption and decryption operations. At last, the 
eight S-boxes used in the round function have a minimum non-linearity to provide confusion. This 
algorithm has a cryptographic strength in proportion to its key size and also has very fine encryption 
or decryption routine.

5.10 rC2

In cryptography, RC2 (Ron’s Code or Rivest Cipher) is a block cipher algorithm designed by Ron 
Rivest in the year 1987. At first, this algorithm is not accepted by the national security agency (NSA), 
and then the NSA proposed a couple of changes in RC2, which Rivest included. After additional 
 negotiations, this algorithm was approved in 1989. In RC2, the length of the given plaintext and the 
ciphertext is 64 bits and the key length varies from 8 to 1024 bits (1 to 128 bytes). The property of 
 effective key size is the important feature of RC2 in terms of flexibility offered to the user. There are 
two distinct sections to be used in RC2. First process is the key expansion process and the second 
 process is the encryption and decryption process.
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∧
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∧

Kri Kmi
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32
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32

32
32

32

32
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32
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32
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Figure 5.20 Function type 3

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Block_cipher
http://en.wikipedia.org/wiki/Ron_Rivest
http://en.wikipedia.org/wiki/Ron_Rivest
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5.10.1 Key expansion process

In the case of the key expansion process, two operations are applied that are byte operations and 16-bit 
word operations. For both operations, an array of A[•]  is used to store the sixty-four 16-bit round keys. 
Then a 64-bit plaintext is encrypted using the array A[•]. For 16-bit word operations, the locations of 
the buffer will be denoted as A A[ ], , [ ]0 63… , where each A i[ ]  is a 16-bit word. For byte operations, the 
array of locations of the buffer will be denoted as B B[ ], , [ ]0 127… , where each B i[ ] is an eight-bit byte. 
In this case, [ ] [ ] [ ]i B i B i= + × +2 256 2 1 .

Suppose a user selects U  bytes of key such that 1 128≤ ≤U . Hence, the key expansion procedure 
locates the U − byte key in the buffer locations from B B U[ ], , [ ].0 1… −  However, based on the value of 
U , the algorithm chooses a maximum effective key length in bits, denoted by U

1
. Based on the effective 

key length U
1
 in bits, the key expansion algorithm then derives the effective key length in bytes U

8
 and 

a mask U
M

 using the following equations.

 U U8 1 8= /  and 

 U U U

M
*mod= + −( )255 2 8 81 8  

For example, let us consider the key size U = 16  bits, hence the effective key length is U
1
 = 8 16*  = 

128. Therefore,

 U8 128 8 16/= =  and 

 UM
*mod –= +( )255 2 8 128 8 16  

 = −( )255 2 136 128mod  

 = 255 2 8( )mod  

 = 255 256mod  = 255  

 = 11111111  (binary format) 

 = 0 × ff  
Both the key expansion process and the encryption process rely on the usage of a substitution table 
called PITABLE (P[0], … , P[255]) was deduced from the expansion of π = 3.14159…. It is an array 
having the random permutation values range from 0, to 255. Table 5.2 shows the PITABLE in hexa-
decimal notation [12]:

Table 5.2 PITABLE

 0 1 2 3 4 5 6 7 8 9 a b c d e f

00 d9 78 f9 c4 19 dd b5 ed 28 e9 fd 79 4a a0 d8 9d

10 c6 7e 37 83 2b 76 53 8e 62 4c 64 88 44 8b fb a2

20 17 9a 59 f5 87 b3 4f 13 61 45 6d 8d 09 81 7d 32

30 bd 8f 40 eb 86 b7 7b 0b f0 95 21 22 5c 6b 4e 82

40 54 d6 65 93 ce 60 b2 1c 73 56 c0 14 a7 8c f1 dc

(continued)
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 0 1 2 3 4 5 6 7 8 9 a b c d e f

50 12 75 ca 1f 3b be e4 d1 42 3d d4 30 a3 3c b6 26

60 6f bf 0e da 46 69 07 57 27 f2 1d 9b bc 94 43 03

70 f8 11 c7 f6 90 ef 3e e7 06 c3 d5 2f c8 66 1e d7

80 08 e8 ea de 80 52 ee f7 84 aa 72 ac 35 4d 6a 2a

90 96 1a d2 71 5a 15 49 74 4b 9f d0 5e 04 18 a4 ec

a0 c2 e0 41 6e 0f 51 cb cc 24 91 af 50 a1 f4 70 39

b0 99 7c 3a 85 23 b8 b4 7a fc 02 36 5b 25 55 97 31

c0 2d 5d fa 98 e3 8a 92 ae 05 df 29 10 67 6c ba c9

d0 d3 00 e6 cf e1 9e a8 2c 63 16 01 3f 58 e2 89 a9

e0 0d 38 34 1b ab 33 ff b0 bb 48 0c 5f b9 b1 cd 2e

f0 c5 f3 db 47 e5 a5 9c 77 0a a6 20 68 fe 7f c1 ad

Key expansion algorithm

Algorithm 5.9 summarizes this process [12].

for i = U  to 127 do

{

B i P B i B i U[ ] [ [ ] [ ]]= − + −1
B U P B U UM[ ] [ [ ] ]128 8 128 8− = − and

}

for j = 127 −U  down to 0

{

 [ ] [ [ ] [ ]]B i P B i B i U= + ⊕ +1

}

Comments

// set B T B[ ] [ ]… 127

// set B B T[ ] [ ]0 127… −

 Algorithm 5.9

5.10.2 encryption algorithm

In the encryption process, there are rounds are used. One is named as a MIXING round and the other is 
named as a MASHING round. In the encryption process, 18 rounds of mixing and mashing operations 
are performed. The following primitive operations are used in the encryption algorithm.

 1. Sixteen-bit word addition which is performed modulo 232: +
 2. Bitwise exclusive-OR: ⊕

Table 5.2 (continued)
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 3. Bitwise complementation: ~

 4. Bitwise logical AND: &

 5. Left circular rotation: x <<< y

An input array of four 16-bit words W[0], W[1], W[2], W[3] is used to store the initial plaintext.

Mixing round

The mix operation is defined as follows. A mixing round consists of Mix W [ ],0  Mix W [ ],1  Mix W [ ]2
and Mix W [ ].3

 W i W i A j W i W i W i W i[ ] [ ] [ ] ( [ ] [ ]) ( [ ] [ ]and and= + + − − + ∼ − −1 2 1 3 ))  

 W W S i0 0[ ] = [ ] <<< [ ]  

 j j= + 1  

where s[0] =1, s[1] = 2, s[2] = 3 and s[3] = 5.

Example:

 W W A j W W W W[ ] [ ] [ ] ( [ ] [ ]) (~ [ ] [ ])0 0 3 2 3 1and and= + + +  

 W W0 0 1[ ] = [ ] <<<  

 j j= +1  

 W W A j W W W W[ ] [ ] [ ] ( [ ] [ ]) (~ [ ] [ ])1 1 0 3 0 2= + + +and and  

 W W[ ] [ ]1 1 2= <<<  
 j j= +1  

 W W A j W W W W[ ] [ ] [ ] ( [ ] [ ]) (~ [ ] [ ])2 2 1 0 1 3= + + +and and  

 W W[ ] [ ]2 2 3= <<<  

 j j= +1  

 W W A j W W W W[ ] [ ] [ ] ( [ ] [ ]) (~ [ ] [ ])3 3 2 1 2 0= + + + and  and  

 W W3 3 5[ ] = [ ] <<<  

 j j= +1  

Mashing round

The primitive ‘Mash W i[ ]’  operation is defined as follows. A mixing round consists of Mix W[0], 
Mix W[1], Mix W[2], Mix W[3].

 W i W i A W i[ ] [ ] [ [ ] ]= + −1 63 and  
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Example:

 W W A W[ ] [ ] [ [ ] ]0 0 3 63and= +  

 W W A W[ ] [ ] [ [ ] ]1 1 0 63and= +  

 W W A W[ ] [ ] [ [ ] ]2 2 1 63and= +  

 W W A W[ ] [ ] [ [ ] ]3 3 2 63and= +  

The whole encryption operation is explained as follows.

 1. Initialize words W W W W[ ], [ ], [ ], [ ]0 1 2 3  to have the 64-bit plaintext value.

 2. Expand the key so that words A A[ ], , [ ]0 63…  become defined.

 3. Initialize the value of j to zero.

 4. Execute five mixing rounds j =( )1 20 .to

 5. Execute one mashing round.

 6. Execute six mixing rounds j =( )21 44 .to

 7. Execute one mashing round.

 8. Execute five mixing rounds j =( )45 64 .to

Note that in RC2, each mixing round uses four key words [1], in such a way that each key word is used 
exactly once in the mixing round.

5.10.3 decryption operation

The decryption operation also uses the same primitive operations that are used in the encryp-
tion  operation. The decryption process is the reverse of encryption process. The ‘mix’ and ‘mash’ 
 operations of the encryption algorithm are reversed and are named as ‘r-mixing’ and ‘r-mashing’, 
respectively.

r-mixing round

The r-mix function is defined as follows:

 W i W i A j W i W i W i W i[ ] = [ ] − [ ] − −[ ] −[ ]( ) − −[ ]( ) −[and and1 2 1 3~ ]]( )  

 j = j – 1 

r-mashing round

The r-mash function is defined as follows:

 W i W i A W i[ ] [ ] [ [ ] ]= − −1 63 and  

The whole decryption operation is explained as follows.

 1. Initialize words W W W W0 1 2 3[ ] [ ], , [ ], [ ]  to have the 64-bit ciphertext value.

 2. Expand the key so that words A A[ ], , [ ]0 63…  become defined.
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 3. Initialize the value of j to 63.

 4. Execute five mixing rounds j =( )63 43 .to

 5. Execute one mashing round.

 6. Execute six mixing rounds j =( )42 19 .to

 7. Execute one mashing round.

 8. Execute five mixing rounds j =( )19 0 .to

Take down that each mixing round uses four key words, so that each key word is practised pre-
cisely once in a mixing round. RC2 is most vulnerable to a related-key attack by using 234 chosen 
plaintexts. In cryptography, a  related-key attack  is a kind of cryptanalysis  in which the attacker 
can monitor the function of a cipher by using numerous different keys whose values are initially 
unknown, but however some mathematical relationships connecting these different keys are known 
to the attacker.

8 Subkeys

Addition modulo

Algebraic structures

Array initialization

Bitwise Xor

Blowfish

Blowfish decryption

Blowfish encryption

Blum Blum Shub Generator

Brute-force attack

Data-dependent rotations

Decryption

DES

Deterministic random bit generator (DRBG)

Double DES

Encryption

Even round process

Fast symmetric block cipher

Feistel network

Function type

IDEA

Inverse DES

Key expansion

Key expansion process

Key schedule

Key scheduling algorithm (KSA)

Left shift operation

Linear Congruential Generators

Magic constants

Mangler function

Masking keys

Meet-in-the-middle attack

Multiplication modulo

Odd round process 

P-Array

PITABLE

Plaintext, ciphertext pair

Practically known attacks

PRNG’s seed

Pseudo random bit pattern

Pseudo random function (PRF)

Pseudo random generation algorithm (PRGA)

Pseudo random number generator (PRNG)

Random word

RC4

RC5

Key TerMS

http://en.wikipedia.org/wiki/Related-key_attack
http://en.wikipedia.org/wiki/Chosen_plaintext
http://en.wikipedia.org/wiki/Chosen_plaintext
http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Key_(cryptography)
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SuMMary

 • In double DES, two symmetric keys were used for encryption and decryption.

 • During encryption, double DES takes 64-bit plaintext and 112-bit key as inputs to produce 64-bit 
ciphertext as output.

 • During decryption, DES encryption operation is performed in inverse by taking 64-bit ciphertext 
and 112-bit key as input to produce 64-bit plaintext as output.

 • Meet-in-the-middle attack can be applied to double DES.

 • During encryption, the triple DES takes 64-bit plaintext and 112/168-bit key as inputs to produce 
64-bit ciphertext as output.

 • During decryption, inverse DES operation is performed by taking 64-bit ciphertext and  112/168-bit 
key as input to produce 64-bit plaintext as output.

 • A pseudo random number generator (PRNG) is a function which is used to generate sequence 
random numbers using mathematical equation.

 • A PRNG is also known as a deterministic random bit generator (DRBG).

 • Three types of PRNGs are linear feedback shift registers, linear congruential generators and Blum 
Blum Shub generator.

 • The Vernam one-time pad uses TRNG whereas RC-4 uses PRNG.

 • The difference between the PRNG and TRNG is that the PRNG generates a random number as 
output that many eventually repeat.

 • RC4 is a stream cipher which was invented by Ron Rivest in the year 1987.

 • RC4 is used by important protocols such as SSL, TSL, WPA and WEP, etc.

 • RC4 algorithm generates a pseudo random number which will be used as a key to encrypt the 
plaintext and to generate the corresponding ciphertext.

 • In RC4, the pseudo random number is generated from a variable length key after performing the 
two algorithms, namely KSA and PRGA.

 • Among the two algorithms, the KSA is used to generate the permutation array. The PRGA is used 
to generate a pseudo random number which will be used as a key stream.

 • Once the keystream has been generated successfully, the encryption of the plaintext can be 
 performed by XORing the key stream and plaintext.

Related-key attack

Rotation keys

Round functions

S-array

S-Box array

Single output transformation 

Subkeys

Triple DES

Variable length key

W-Bit registers

Word-oriented cipher

XOR Operation
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 • In RC4 decryption, use the same key that was used in the encryption operation.

 • RC5 is a fast symmetric block cipher that uses the same key for performing encryption and 
 decryption operations.

 • RC5 is a word-oriented cipher in which a w-bit word is given as input and a w bit is produced as 
output.

 • RC5 is suitable for hardware and software implementations and it takes less memory to imple-
ment on smart cards.

 • RC5 uses a variable length cryptographic key and hence it provides high security.

 • RC5 cipher consists of three phases, namely key expansion, RC5 encryption and RC5 decryption.

 • The key expansion phase is mainly used to expand the users secret key K and fill the expanded key 
array S.

 • The key expansion phase uses two magic constants to expand the users secret key K.

 • RC5 encryption algorithm encrypts the message using the expanded key array S and RC5 
 decryption algorithm decrypts the ciphertext using the array S.

 • RC5 encryption algorithm accepts two w-bit registers A and B as input plaintext block and the 
expanded key array S[ ]0  to S t[ ]−1 .

 • RC5 decryption algorithm uses two w-bit registers Li  
and

 
R

i
 as input ciphertext block and the 

expanded key array S i[ ].

 • IDEA permits the effective protection of the transmitted data from unauthorized access by the 
intruders probably.

 • The main difference between DES and IDEA is that IDEA uses different keys for encryption and 
decryption operation.

 • During the encryption, the 64-bit plaintext is divided into four sub-blocks with each sub-block 
size is 16 bits.

 • In IDEA, each of the sub-block iterates through 8 rounds and a single output transformation 
phase. The eight rounds perform arithmetic and logical operations for necessary transformations.

 • Operations needed in the first 8 rounds are multiplication modulo, addition modulo and bitwise 
XOR.

 • IDEA encryption consists of two types of process, namely IDEA odd round process and IDEA 
even round process.

 • Mangler function produces two outputs.

 • In the decryption of IDEA, the subkeys are derived using a different algorithm. Remaining opera-
tions are same similar to encryption.

 • Main strength of IDEA algorithm is that IDEA uses a key whose size is two times greater than the 
key used in the DES.

 • In IDEA, 2128 trials are needed to find the key using brute-force attack.

 • Blowfish was initiated to find an alternative for the existing algorithms like DES, AES and triple-
DES by increasing the speed of encryption and decryption operations.
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 • The Blowfish is a fast and efficient symmetric block cipher, because it encrypts the plaintext data 
on large 32-bit microprocessors at a rate of 26 clock cycles per byte.

 • The Blowfish cipher takes less memory, because it takes less than 5 K of memory for running 
 encryption and decryption algorithms.

 • Blowfish is a Feistel network block cipher that encrypts a 64-bit block of plaintext using a variable 
length key size of 448 bits.

 • Blowfish cipher is very much suitable for the applications where keys are not changed frequently 
like password management and web applications.

 • Blowfish cipher consists of three phases, namely key expansion, Blowfish encryption phase and 
Blowfish decryption phase.

 • During the key expansion phase, the original key is broken into a set of subkeys and thereby two 
arrays are used.

 • During the data encryption, a simple function is iterated for 16 times where each round performs 
a key-dependent permutation and a data-dependent substitution.

 • Blowfish decryption operation is exactly same as that of encryption operation except that P
1
,  

P
2
, …, P

18
 are used in the reverse order.

 • The Feistel network structure has similar  encryption  and  decryption  operations and such 
 network construction follows an iterative procedure.

 • The key schedule is the process used to compute 16 pairs of subkeys {Km i
, Kr i

} from the 128-bit key. 
Each subkey size is 32-bits. In this process, totally 32 keys are computed. Among the 32 keys,  
16 Km i

key values and 16 Kr i
key values are available.

 • In key schedule, the first 16 keys (Km1
– Km16

) are used for ‘masking’ and are called masking keys. 
This set is denoted as K

m
 (m for ‘masking’). The remaining 16 keys (Kr

17
– Kr32

)
 
are used for

 
‘rota-

tion’ and are called rotation keys. In the rotation subkeys, the least significant 5 bits are used for 
the left circular shift operations and the remaining bits are useless bits. This set is denoted as K

r
 

(r for ‘ rotation’).

 • There are three types of round functions that are defined for CAST-128. They are represented as 
Function Type 1, Function Type 2 and Function Type 3. These three types of round functions 
are used for different rounds, which are identified by the value of i.

 • Key expansion process and the encryption process rely on the usage of a substitution table called 
PITABLE (P[0], … , P[255]) was deduced from the expansion of π = 3.14159…. It is an array, 
 having the random permutation values range from 0 to 255.

 • In the case of the key expansion process, both byte operations and 16-bit word operations are 
 applied. For both operations, an array of A[•]  is used to store the sixty-four 16-bit round keys. 
Then a 64-bit plaintext is encrypted using the array A[•].

 • In cryptography, a related-key attack is a kind of cryptanalysis in which the attacker can  monitor 
the function of a cipher by using numerous different keys whose values are initially unknown, 
but however some mathematical relationships connecting these different keys are known to the 
 attacker.

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptanalysis
http://en.wikipedia.org/wiki/Cipher
http://en.wikipedia.org/wiki/Key_(cryptography)


Secure Block Cipher and Stream Cipher Technique  185

review QueSTioNS

 1. Explain about double DES encryption and decryption algorithm.

 2. Explain about triple DES encryption and decryption algorithm.

 3. What is meet-in-the-middle attack? Explain it with a suitable example.

 4. Differentiate DES and double DES.

 5. What is PRNG?

 6. Write short notes on linear congruential generator.

 7. Write Blum Blum Shub (BSS) generator algorithm. Give an example.

 8. Explain about RC4 key scheduling, encryption and decryption algorithms in detail.

 9. Generate a key stream using RC4 for a simple 4-byte example, where 8 = {0, 1, 2, 3}, Key  =  
{11, 13, 15, 17} and i j= = 0.

 10. Given short notes on RC5 key expansion process.

 11. Explain about RC5 encryption and decryption operation in detail.

 12. What are the advantages of RC5?

 13. What is IDEA? Explain in detail about IDEA encryption and decryption operations.

 14. Explain in detail about Blowfish encryption and decryption operations.

 15. Give a brief explanation about CAST-128 encryption algorithm.

 16. What are the different function types used in CAST-128 and give a brief explanation with 
 suitable diagrams?

 17. Explain the key scheduling process in CAST-128.

 18. Give brief notes about the strength of CAST-128.

 19. Draw and explain the pictorial representation of the CAST-128 encryption algorithm.

 20. What is the use of masking and rotation keys in the CAST-128 algorithm?

 21. Define PITABLE.

 22. Explain the key expansion process of RC2 in detail.

 23. Explain the encryption and decryption operations in a detailed manner.

 24. List out the steps involved in both encryption and decryption operations.

 25. What is related-key attack?
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6.1 AES IntroductIon (GF(2n))

All the symmetric encryption algorithms that we have studied so far have some problems with respect 
to security and efficiency, because some of the earlier encryption algorithms such as S-DES and DES 
can be broken easily using modern computers. The DES algorithm was broken in 4.5 months using 
distributed search in January 1997. Subsequently, it was broken in 15 days in 1998 using a high end 
system that costs about $250,000 [1]. In January 1999, it was broken in 22 hours and 15 minutes us-
ing a distributed search. Moreover, it was also not an efficient encryption algorithm since it was very 
slow to use it in various softwares as it was developed for old softwares and hardwares. To improve 
the security of DES algorithm, Triple DES algorithm was developed and it was used to provide secure 
data transmission in banking systems. However, triple DES also takes more computational complexity, 
since it performs three-time encryption operation on the sender side and three-time decryption opera-
tion on the receiver side. Therefore, it was required to develop a new secure and efficient encryption 
algorithm. 

In order to do that, the national institute of standards and technology (NIST) issued a call for 
proposal for designing a new cipher in January 1997. Many groups had submitted various ciphers. 
After several rounds of review, 15 ciphers were accepted in the first round of the review. This was 
narrowed down to 5 ciphers in the second round and these five selected ciphers are given in Table 6.1. 
These five ciphers were tested for speed and security and NIST has finally chosen an algorithm known 
as Rijndael. Rijndael was named because it was developed by two Belgian cryptographers Dr Joan 
Daemen and Dr Vincent Rijmen at the Electrical Engineering Department of Katholieke University 
in Leuven. 

Table 6.1 Five selected ciphers for the call for proposal by the NIST

Algorithm Developers

MARS IBM

RC 6 RSA Laboratories

Rijndael Joan Daemen and Vincent Rijmen

Serpent Ross Anderson, Eli Biham and Lars Knudsen

Twofish
Bruce Schneier, John Kelsey, Doug Whiting, David Wagner, Chris Hall 
and Niels Ferguson
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Rijndael was selected as advanced encryption standard (AES) in October 2000 because, 
Rijndael was the best algorithm in terms of security, cost, flexibility and simplicity of the algorithm. 
In November 2001, AES became a FIPS (Federal Information Processing Standards) standard. AES is 
making use of arithmetic operations based on Galois Filed that was discussed in Chapter 2. Those who 
are not familiar with Galois Filed, we advise them to read Chapter 2 before reading the AES algorithm. 
The AES algorithm is making use of GF(2n) structure in which n = 8.

6.2 WorkInG prIncIplE oF thE AES

AES is a symmetric cipher that uses the same key for both encryption and decryption process. 
However, AES differs from DES in a number of ways. First, AES is a block cipher process that can 
process a 128-bit block of plaintext at a time. But DES can process only 56 bits of plaintext. Second, 
AES uses a large 128-bit key size to perform encryption and decryption process. AES increases 
the key size to 128 bits, 192 bits and 256 bits. Depending on the three types of keys, three versions 
are used in AES. The three versions are AES-128, AES-192 and AES-256. However, DES uses only 
a 56-bit key to perform encryption and decryption processes. Third, AES cipher uses 10 rounds 
of operation for performing encryption and decryption processes. In each round, AES performs 
substitution and permutation operations. The number of rounds used in three versions of AES can 
differ. For example, AES-128 uses 10 rounds, AES-192 uses 12 rounds and AES-256 uses 14 rounds 
of operations. However, DES supports 16 rounds of operations which would slow down the speed of 
encryption and decryption processes. Fourth, AES is not using Feistel structure and hence entire data 
block is processed in a parallel way during each round. In contrast to this, DES uses Feistel structure. 
Therefore, the left-hand side of half of the plaintext block is used to modify the right-hand side of the 
plaintext block. Similarly, right-hand side of half of the plaintext block is used to modify the left-hand 
side of the plaintext block. Finally, in AES, all the transformations that are used in the encryption 
process will have the inverse transformations that are used in the decryption process. In DES, only the 
keys are in reverse order during the decryption process. 

6.3 AES EncryptIon And dEcryptIon

The AES is a symmetric cipher that encrypts a 128-bit block of plaintext using a 128-bit key value 
to produce a 128-bit ciphertext. To encrypt a 128-bit plaintext, AES uses 10 rounds of operations. 
The plaintext and ciphertext size are fixed to 128 bits. However, the key size can be changed to 192 bits 
or 256 bits. Accordingly, the number of rounds is increased to 12 rounds or 14 rounds. In each round, it 
performs four transformations, namely SubBytes(), ShiftRows(), MixColumns() and  AddRoundKey(). 
Among the four transformations, SubBytes() and MixColumns() are used to perform simple substitu-
tion operations. The ShiftRows() transformation is used to perform the permutation operation. These 
three transformations are used to provide confusion, diffusion and non-linearity during the encryption 
process. The AddRoundKey() transformation is used to perform the XOR operation in the encryption 
and decryption process. Similar to the substitution and transposition transformations performed in the 
encryption process, there are inverse transformations in the decryption process. The inverse transfor-
mations are InvSubBytes(), InvShiftRows() and InvMixColumns(). These three inverse transforma-
tions are the inverse of the SubBytes(), ShiftRows() and MixColumns() transformations. Therefore, in 
AES, each transformation used in the encryption process is easily reversible in the decryption process. 
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The AddRoundKey() transformation used in the encryption process is also a reversible transformation 
in the decryption side if the key is known. For example, the ciphertext C is obtained by XOR-ing the 
plaintext block with key K. This can be written as C p K= ⊕ . This operation is a reversible operation 
on the decryption side if the key K is known ( )C K p K K p⊕ = ⊕ ⊕ = . Table 6.2 shows the various 
transformations and symbols that are used in this algorithm.

Table 6.2 Transformations and symbols used in AES

Transformations and 
symbols Meaning

Encryption process side

SubBytes()
A simple byte-by-byte substitution operation is performed using substitution 
table (S-box).

ShiftRows() A permutation operation is performed using circular left shift operations. 

MixColumns()
It is a substitution operation that makes use of arithmetic over GF(28) to 
produce new columns.

Decryption process side

InvSubBytes() It is the inverse transformation of SubBytes()

InvShiftRows() It is the inverse transformation of ShiftRows()

InvMixColumns() It is the inverse of MixColumns() transformation

Key expansion process side

Rcon[] The round constant word array used in the key expansion process.

RotWord()
Rotate word function is used in the key expansion process that performs a 
circular rotation operation.

SubWord()
Substitute word function is used in the key expansion process that uses an 
S-box for each of the four bytes to produce an output word.

Operations performed in AES

AddRoundKey()
It performs simple bitwise XOR operation of the current plaintext/ciphertext 
block with an expanded key.

⊗ Multiplication of two polynomials in GF(28)

⊕ Exclusive-OR operation

Figure 6.1 shows the overall structure of the AES cipher that comprises three parts. The first part 
(left-hand side) shows the encryption process, second part (middle one) shows the key expansion 
process and third part (right-hand side) shows the decryption process. The input to the encryption and 
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Figure 6.1 Overall structure of the AES cipher
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decryption process is a single 128-bit block which is represented as a (4 × 4) square matrix that con-
sists of 16 cells. In each cell, one byte of the plaintext/ciphertext is placed. When the plaintext/cipher-
text is placed in the square matrix, the first four bytes are placed in the first column and the second four 
bytes are placed in the second column and so on. So, bytes are placed in column-by-column method. 
At each transformation of the encryption and decryption process, this square matrix is processed by 
copying the values into the state array. 

This process is shown in Figure 6.2. This state array value is modified in each transformation and 
state array is copied into an output matrix after the final transformation (Add round key). Similar to 
this, the 128-bit key is also as a represented as a (4 × 4) square matrix to fill the key value as bytes in 
the square matrix. From the initial matrix, four words are generated in each round and hence 44 words 
are generated in total for all the 11 rounds (1 initial round + 10 standard rounds). Each word W

i
 size is 

4 bytes (1 word = 4 bytes = 32 bits). To generate four words (128 bits) for each round of encryption and 
decryption process, a key expansion process is used. These four words are used as a subkey for each 
round to perform the encryption process. During the decryption process, the keys are used in reverse 
order as shown in the third part of Figure 6.1. 

SubBytes() and InvSubBytes() transformations

The SubBytes() transformation is a byte substitution that operates on each byte of the state array using 
a substitution box (S-box). The AES defines a 16 × 16 matrix for representing the S-box that consists 
of all the 256-byte values. Figure 6.3 shows the S-box and inverse S-box used for performing encryp-
tion and decryption process. The S-box and inverse S-box used in the SubBytes() and InvsubBytes() 
transformations are presented in hexadecimal format. Each input byte given to the S-box is mapped 
into a new byte in the following way: The leftmost 4 bits are used for selecting one of the row values 
from the S-box and the rightmost 4 bits are used for selecting a column value. These row and column 
values serve as indices to the S-box for selecting a unique byte value from the S-box. For example, if 
the input to the S-box is 75, then it will select the value which is located in the 7th row and 5th column 
which contains the value 9D. During the decryption process, the hexadecimal value 9D is used to select 
the value 75 from the inverse S-box defined for decryption process. The S-box is used to make the AES 
algorithm resistant against the differential and linear cryptanalysis and attacks. The following shows an 
example for SubBytes() transformation using S-box.

S S=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

′ =

5 4 05 85

84 43 5 3

6 0 90 86

92 0 3 13

4 6C A

D D

C B

A C

A D

gives

66 97

5 1 4 27

50 7 60 44

4 0 2 7

B

F A C

E

F E E D

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

in0 in4 in8 in12

in1 in5 in9 in13

in2 in6 in10 in14

in3 in7 in11 in15

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

s0,0 s0,1 s0,2 s0,3

s1,0 s1,1 s1,2 s1,3

s2,0 s2,1 s2,2 s2,3

s3,0 s3,1 s3,2 s3,3

out0 out4 out8 out12

out1 out5 out9 out13

out2 out6 out10 out14

out3 out7 out11 out15

Figure 6.2 State array input and output
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Y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 63 7C 77 7B F2 6B 6F C5 30 01 67 2B FE D7 AB 76
1 CA 82 C9 7D FA 59 47 F0 AD D4 A2 AF 9C A4 72 C0
2 B7 FD 93 26 36 3F F7 CC 34 A5 E5 F1 71 D8 31 15
3 04 C7 23 C3 18 96 05 9A 07 12 80 E2 EB 27 B2 75
4 09 83 2C 1A 1B 6E 5A A0 52 3B D6 B3 29 E3 2F 84
5 53 D1 00 ED 20 FC B1 5B 6A CB BE 39 4A 4C 58 CF
6 D0 EF AA FB 43 4D 33 85 45 F9 02 7F 50 3C 9F A8
7 51 A3 40 8F 92 9D 38 F5 BC B6 DA 21 10 FF F3 D2
8 CD 0C 13 EC 5F 97 44 17 C4 A7 7E 3D 64 5D 19 73
9 60 81 4F DC 22 2A 90 88 46 EE B8 14 DE 5E 0B DB
A E0 32 3A 0A 49 06 24 5C C2 D3 AC 62 91 95 E4 79
B E7 C8 37 6D 8D D5 4E A9 6C 56 F4 EA 65 7A AE 08
C BA 78 25 2E 1C A6 B4 C6 E8 DD 74 1F 4D BD 8B 8A
D 70 3E B5 66 48 03 F6 0E 61 35 57 B9 86 C1 1D 9E
E E1 F8 98 11 69 D9 8E 94 9B 1E 87 E9 CE 55 28 DF
F 8C A1 89 0D BF E6 42 68

(a) S-box

41 99 2D 0F B0 54 BB 16

Y
0 1 2 3 4 5 6 7 8 9 A B C D E F

x

0 52 09 6A D5 30 36 A5 38 BF 40 A3 9E 81 F3 D7 FB
1 7C E3 39 82 9B 2F FF 87 34 8E 43 44 C4 DE E9 CB
2 54 7B 94 32 A6 C2 23 3D EE 4C 95 0B 42 FA C3 4E
3 08 2E A1 66 28 D9 24 B2 76 5B A2 49 6D 8B D1 25
4 72 F8 F6 64 86 68 98 16 D4 A4 5C CC 5D 65 B6 92
5 6C 70 48 50 FD ED B9 DA 5E 15 46 57 A7 8D 9D 84
6 90 D8 AB 00 8C BC D3 0A F7 E4 58 05 B8 B3 45 06
7 D0 2C 1E 8F CA 3F 0F 02 C1 AF BD 03 01 13 8A 6B
8 3A 91 11 41 4F 67 DC EA 97 F2 CF CE F0 B4 E6 73
9 96 AC 74 22 E7 AD 35 85 E2 F9 37 E8 1C 75 DF 6E
A 47 F1 1A 71 1D 29 C5 89 6F B7 62 0E AA 18 BE 1B
B FC 56 3E 4B C6 D2 79 20 9A DB C0 FE 78 CD 5A F4
C 1F BD A8 33 88 07 C7 31 B1 12 10 59 27 80 EC 5F
D 60 51 7F A9 19 B5 4A 0D 2D E5 7A 9F 93 C9 9C EF
E A0 E0 3B 4D AE 2A F5 B0 C8 EB BB 3C 83 53 99 61
F 17 2B 04 7E BA 77 D6 26

(b) Inverse S-box

E1 69 14 63 55 21 0C 7D

Figure 6.3 S-box and inverse S-box

In this example, initially, the number 5C is given as input to SubBytes() transformation. So, the 
value located in 5th row and Cth column position is 4A. Similarly, the substitution is performed for all 
the remaining bytes.

Shiftrows() and InvShiftrows() transformations

In ShiftRows() transformation, rows in the state array are circularly left shifted with different offsets. 
Row 1 is not shifted. Row 2 is shifted by 1 byte, row 3 is shifted by 2 bytes, and row 4 is shifted by 3 
bytes. In InvShiftRows() transformation, rows in the state array are circularly right shifted. Figure 6.4 
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shows ShiftRows() transformation. The following shows an example for ShiftRows() transformation 
using S-box.
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Mixcolumns() and InvMixcolumns() transformation()

The Mixcolumns() transformation is basically a substitution that makes use of arithmetic operations 
over GF( )28  with an irreducible polynomial p x( ). There are 30 irreducible polynomials available 
for the algebraic structure GF( )28  as shown in Table 6.3. All these 30 irreducible polynomials can 
be used for different time intervals for sending different messages to improve the security level. The 
irreducible polynomial that is used for the AES algorithm is ( )p x x x x x= + + + +8 4 3 1.

Table 6.3 Irreducible polynomials that can be used for AES

Sl. No. String Polynomials {p (x)}

1. 1 0 0 0 1 1 1 0 1 x8 + x4 + x3 + x2 + 1 

2. 1 0 1 1 1 0 1 1 1 x8 + x6 + x5 + x4 + x2 + x1 + 1 

3. 1 1 1 1 1 0 0 1 1 x8 + x7 + x6 + x5 + x4 + x1 + 1 

4. 1 0 1 1 0 1 0 0 1 x8 + x6 + x5 + x3 + 1 

5. 1 1 0 1 1 1 1 0 1 x8 + x7 + x5 + x4 + x3 + x2 + 1 

6. 1 1 1 1 0 0 1 1 1 x8 + x7 + x6 + x5 + x2 + x1 + 1 

7. 1 0 0 1 0 1 0 1 1 x8 + x5 + x3 + x1 + 1 

8. 1 1 1 0 1 0 1 1 1 x8 + x7 + x6 + x4 + x2 + x1 + 1 

9. 1 0 1 1 0 0 1 0 1 x8 + x6 + x5 + x2 + 1 

a0 a4 a8 a12

a1 a5 a9 a13

a2 a6 a10 a14

a3 a7 a11 a15

No shift

One position left shift

Two positions left shift

Three positions left shift

a0 a4 a8 a12

a5 a9 a13 a1

a10 a14 a6

a15 a3 a7 a11

a2

Figure 6.4 ShiftRows() transformation

(continued )
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Sl. No. String Polynomials {p (x)}

10. 1 1 0 0 0 1 0 1 1 x8 + x7 + x3 + x1 + 1 

11. 1 0 1 1 0 0 0 1 1 x8 + x6 + x5 + x1 + 1 

12. 1 0 0 0 1 1 0 1 1 x8 + x4 + x3 + x1 + 1 

13. 1 0 0 1 1 1 1 1 1 x8 + x5 + x4 + x3 + x2 + x1 + 1 

14. 1 1 0 0 0 1 1 0 1 x8 + x7 + x3 + x2 + 1 

15. 1 0 0 1 0 1 1 0 1 x8 + x5 + x3 + x2 + 1 

16. 1 0 1 0 1 1 1 1 1 x8 + x6 + x4 + x3 + x2 + x1 + 1 

17. 1 1 1 1 1 1 0 0 1 x8 + x7 + x6 + x5 + x4 + x3 + 1 

18. 1 1 1 0 0 0 0 1 1 x8 + x7 + x6 + x1 + 1 

19. 1 0 0 1 1 1 0 0 1 x8 + x5 + x4 + x3 + 1 

20. 1 1 0 1 0 1 0 0 1 x8 + x7 + x5 + x3 + 1 

21. 1 1 0 0 0 0 1 1 1 x8 + x7 + x2 + x1 + 1 

22. 1 1 0 1 1 0 0 0 1 x8 + x7 + x5 + x4 + 1 

23. 1 0 1 0 0 1 1 0 1 x8 + x6 + x3 + x2 + 1 

24. 1 1 1 0 0 1 1 1 1 x8 + x7 + x6 + x3 + x2 + x1 + 1 

25. 1 1 1 0 1 1 1 0 1 x8 + x7 + x6 + x4 + x3 + x2 + 1 

26. 1 1 0 1 0 0 0 1 1 x8 + x7 + x5 + x1 + 1 

27. 1 1 1 1 1 0 1 0 1 x8 + x7 + x6 + x5 + x4 + x2 + 1 

28. 1 1 0 0 1 1 1 1 1 x8 + x7 + x4 + x3 + x2 + x1 + 1 

29. 1 0 1 1 1 1 0 1 1 x8 + x6 + x5 + x4 + x3 + x1 + 1 

30. 1 0 1 1 1 0 0 0 1 x8 + x6 + x5 + x4 + 1 

Each column is operated on individually in the Mixcolumns() transformation. While doing 
Mixcolumns() transformation, each byte of the state array value is modified into a new value. The 
transformation can be determined by performing a matrix multiplication based on GF( )28  with 
respect to a matrix defined for Mixcolumns() transformation. Each element of the product matrix 
is the sum of products of elements of one row and one column. In this case, the individual addi-
tions are  performed as XOR operation since operations are based on GF( )28 . The multiplication 
operation is performed in GF(28). The following matrix is defined for performing Mixcolumns() 
transformation in the  encryption process.

Table 6.3 (continued)



Advanced Encryption Standard (AES)  195

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

0 0 0 1 0 2⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⊗

S S S S, , , 00 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

,

, , , ,

, , , ,

, , , ,

S S S S

S S S S

S S S S

⎡

⎣

⎢
⎢
⎢
⎢
⎢⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=

S S S S

S S S S

S S

" " " "

" " " "

" "

, , , ,

, , , ,

,

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

2 0 2,, , ,

, , , ,

" "

" " " "
1 2 2 2 3

3 0 3 1 3 2 3 3

S S

S S S S

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

The following matrix is defined for performing InvMixcolumns() transformation in the decryption 
process. This matrix is the inverse of the matrix defined for Mixcolumns() transformation. 

0 0 0 09

09 0 0 0

0 09 0 0

0 0 09 0

0 0 0 1 0E B D

E B D

D E B

B D E

S S S⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⊗

" " ", , ,, ,

, , , ,

, , , ,

, ,

"

" " " "

" " " "

" "

2 0 3

1 0 1 1 1 2 1 3

2 0 2 1 2 2 2 3

3 0 3 1

S

S S S S

S S S S

S S SS S

S S S S

S S S S

" ", ,

, , , ,

, , , ,

3 2 3 3

0 0 0 1 0 2 0 3

1 0 1 1 1 2 1 3

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

=
SS S S S

S S S S
2 0 2 1 2 2 2 3

3 0 3 1 3 2 3 3

, , , ,

, , , ,

⎡

⎣

⎢
⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥
⎥

This matrix is the inverse of the matrix defined for Mixcolumns() transformation. One of the impor-
tant conditions to be satisfied by this matrix is that the multiplication of this matrix and the matrix used 
in the Mixcolumns() transformation is an identity matrix I as shown below.

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

0 0 0 09

09 0 0

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⊗

E B D

E BB D

D E B

B D E

0

0 09 0 0

0 0 09 0

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥⎥
⎥
⎥

Addroundkey()

In Addroundkey() transformation, the output produced by the mixcolumn() transformation is XOR-ed 
with the subkey value produced by the key expansion algorithm. For performing the XOR operation, 
first column of the output of the mixcolumn() transformation is XOR-ed with first column of subkey 
value. Similarly, a column-by-column XOR operation is performed. This can be represented as shown 
below:

Output of

the

MixColumns()

Subkey generated

by key

expa

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

⊕
nnsion

⎡

⎣

⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥

6.4 AES kEy ExpAnSIon AlGorIthM

The AES encryption and decryption uses a RoundKey in each round from the given 128-bit key value. 
For a 128-bit key value, totally 11 round keys are generated. Among the 11 keys, one key is used for 
the initial round, 9 for standard rounds and 1 for the final round. For generating 11 keys, initially the 
input key is copied into a (4 × 4) square matrix. In this matrix, the first four bytes are copied into first 
column and next four bytes are copied into next column as shown below:
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K
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K
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K
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K
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K
1
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K
9

K
13

K
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K
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K
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K
14

K
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K
7

K
11

K
15

From this matrix, four words (128 bits) are generated for each round and hence 44 words are 
 generated in total. Each word w[i] depends on the immediately preceding word, w[i − 1], and the word 
located four positions previous (w[i − 4]) to w[i]. Figure 6.5 shows AES key expansion algorithm.

As shown in the key expansion algorithm, first four words w[i] (0 ≤ i ≤ 3) are generated from the 
initial matrix. For the remaining words w[i] (4 ≤ i ≤ 43), the key expansion algorithm is  followed. 
For generating the words W i[ ]4 ×  (1 ≤ i ≤ 10), two transformations and an XOR operation are used. 
The two transformations are ShiftRows() and SubBytes(). In ShiftRows() transformation, one-byte 
circular left shift on a word is performed. In SubBytes() transformation, a simple substitution trans-
formation is performed using S-box. This result is XOR-ed with a round constant defined for each 
W i[ ]4 × . This round constant is 01 for W [ ]4 1× , and it is 02 for W [ ]4 2×  and so on. For  generating 
the round constant for [ ]i th  word, the value 02 is multiplied with its previous round constant value. 
This multiplication is performed on GF 28( ). For example, the round constant for W [ ]4 9×  is 
2 1 2 128 1 00011011 17 8 4 3⊗ = ⊗ = ⊗ = = + + + = =B x x x x x x B. Table 6.4 shows round constant for 
all the W i[ ]4 ×  values.

Table 6.4 Round constants

i 1 2 3 4 5 6 7 8 9 10

Rcon[i] 01 02 04 08 10 20 40 80 1B 36

KeyExpansion (byte key[16], word w[44])
{
word temp
for (i=0; i<4; i++) 

{         
w[i]=(key[4*i], key[4*i+1], key[4*i+2], (key[4*i+3]);
}  

for (i=4; i<44; i++)
{

temp=w[i-1];
if (i mod 4 = 0)

{              
temp=Subbytes(rotateword(temp))⊕Rcon[i/4];
}

w[i]= w[i-4]⊕temp;
}

}

Figure 6.5 Key expansion algorithm
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Consider an example of generating the word W [ ]4 1× . Initially, w[i − 1] is copied into the temporary 
variable (temp = w[i − 1] = w[3]). If the value stored in temp = [X

1
, X

2
, X

3
, X

4
], then it will be sup-

plied into rotateword() transformation which will rotate only one byte in the input as [X
2
, X

3
, X

4
, X

1
]. 

Then, a SubBytes() transformation is performed using S-box. Finally, the result will be XOR-ed with 
[01, 0, 0, 0] because round constant is 01 for W [ ]4 1× . 

6.5 AES ExErcISES BASEd on GF (28)

The following shows an example for MixColumns() transformation for the input matrix 

4 6 6 97

1 4 27 5

60 44 50 7

7 4 0 2

A D B

A C F

E

D F E E

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

 using GF 28( ).

02 03 01 01

01 02 03 01

01 01 02 03

03 01 01 02

4 6 6 97

1 4 2

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⊗

A D B

A C 77 5

60 44 50 7

7 4 0 2

7 68 0 1

7 35 34

13 3 7 68

5

F

E

D F E E

A F D

AF C

C C

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

EE F B7 1 46

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

First, multiply the first row of the MixColumns() matrix with the first column of the input matrix 
and perform an XOR operation to find the first byte in the resultant matrix. This is obtained as given 
below:

(02 ⊗ 4A) = x(x6 + x3 + x)

= x7 + x4 + x2

= 94

(03 ⊗ 1A) = (x + 1)(x4 + x3 +  x)

= x5 + x4 + x2 + x4 + x3 + x

= x5 + x3 + x2 + x

= 2E

(02 ⊗ 4A) = 95 = 1001 0100

(03 ⊗ 1A) = 2E = 0010 1110

(01 ⊗ 60) = 60 = 0110 0000

(01 ⊗ 7D) = 7D = 0111 1101 

⊕ = 1010 0111 = A7

Next, multiply the first row of the MixColumns() matrix with the second column of the input matrix 
and perform an XOR operation. 
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(02 ⊗ D6) = x(x7 + x6 + x4 + x2 + x)

= x8 + x7 + x5 + x3 + x2

= x4 + x3 + x + 1 + x7 + x5 + x3 + x2

= x7 + x5 + x4 + x2 + x + 1

(03 ⊗ 4C) = (x + 1)(x6 + x3 + x2)

= x7 + x4 + x3 + x6 + x3 + x2

= x7 + x6 + x3 + x2

XOR-Operation of the resultant values:

(02 ⊗ D6) = B7 = 1011 0111

(03 ⊗ 4C) = D4 = 1101 0100

(01 ⊗ 44) = 44 = 0100 0100

(01 ⊗ 4F) = 4F = 0100 1111 

⊕ = 0110 1000 = 68

Next, multiply the first row of the MixColumns() matrix with the third column of the input matrix to 
find the third value in the first row of the resulting matrix. 

(02 ⊗ 6B) = x(x6 + x5 + x3 + x + 1)

= x7 + x6 + x4 + x2 + x

(03 ⊗ 27)  = (x + 1)(x5 + x2 + x + 1)

= x6 + x3 + x2 + x + x5 + x2 + x + 1

= x6 + x5 + x3 + 1

XOR-Operation of the resultant values:

(02 ⊗ 6B) = D6 = 1101 0110

(03 ⊗ 27) = 69 = 0110 1001

(01 ⊗ 50) = 50 = 0101 0000

(01 ⊗ E0) = E0 = 110 0000 

⊕ = 0000 1111 = 0F

Next, multiply the first row of the MixColumns() matrix with the fourth column of the input matrix to 
find the fourth value in the first row of the resulting matrix. 

(02 ⊗ 97) = x(x7 + x4 + x2 + x + 1)

= x8 + x5 + x3 + x2 + x

= x4 + x3 + x + 1 + x5 + x3 + x2 + x

= x5 + x4 + x2 + 1

(03 ⊗ 5F) = (x + 1)(x6 + x4 + x3 + x2 + x + 1)

= x7 + x5 + x4 + x3 + x2 + x + x6 + x4 + x4 + x2 + x + 1

= x7 + x6 + x5 + 1
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XOR-Operation of the resultant values:

(02 ⊗ 97) = 35 = 0011 0101

(03 ⊗ 5F) = E1 = 1110 0001

(01 ⊗ E7) = E7 = 1110 0111

(01 ⊗ 2E) = 2E = 0010 1110

⊕ = 0001 1101 = 1D

Similarly, this process is followed for the multiplication of the second row of the MixColumns() matrix 
with all the four columns of the given input matrix.

(02 ⊗ 1A) = x(x4 + x3 + x)

= x5 + x4 + x3

(03 ⊗ 60) = (x + 1)(x6 + x5)

= x7 + x6 + x6 + x5

= x7 + x5

XOR-Operation of the resultant values:

(01 ⊗ 4A) = 4A = 0100 1010

(02 ⊗ 1A) = 38 = 0011 1000

(03 ⊗ 60) = A0 = 1010 0000

(01 ⊗ 7D) = 7D = 0111 1101 

⊕ = 1011 1111 = AF

(02 ⊗ 4C) = x(x6 + x3 + x + 1)

= x7 + x 4 + x2 + x

(03 ⊗ 44) = (x + 1)(x6 + x2)

= x7 + x3 + x6 + x2

= x7 + x6 + x3 + x2

XOR-Operation of the resultant values:

(01 ⊗ D6) = D6 = 1101 0110

(02 ⊗ 4C) = 96 = 1001 0110

(03 ⊗ 44) = CC = 1100 1100

(01 ⊗ 4F) = 4F = 0100 1111 

⊕ = 1100 0011 = C7

(02 ⊗ 27) = x(x5 + x2 + x + 1)

= x6 + x3 + x2 + x

(03 ⊗ 50) = (x + 1)(x6 + x4)

= x7 + x5 + x6 + x4  

= x7 + x6 + x5 + x4
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XOR-Operation of the resultant values:

(01 ⊗ 6B) = 6B = 0110 1011

(02 ⊗ 27) = 4E = 0100 1110

(03 ⊗ 50) = F0 = 1111 0000

(01 ⊗ E0) = E0 = 1110 0000

⊕ = 0011 0101 = 35

(02 ⊗ 5F) = x(x6 + x4 + x3 + x2 + x + 1)

= x7 + x5 + x4 + x3 + x2 + x

(03 ⊗ E7) = (x + 1)(x7 + x6 + x5 + x2 + x + 1)

= x4 + x3 + x + 1 + x7 + x6 + x3 + x2 + x + x7 + x6 + x5 + x2 + x + 1  

= x5 + x4 + x

XOR-Operation of the resultant values:

(01 ⊗ 97) = 97 = 1001 0111

(02 ⊗ 5F) = BF = 1011 1111

(03 ⊗ E7) = 32 = 0011 0010

(01⊗ 2E) = 2E = 0010 1110

⊕ = 0011 0100 = 34

(02 ⊗ 60) = x(x6 + x5 )

= x7 + x6

(03 ⊗ 7D) = (x + 1)(x6 + x5 + x4 + x3 + x2 + 1)

= (x7 + x6 + x5 + x4 + x3 + x + x6 + x5 + x4 + x3 + x2 + 1

= x7 + x2 + x + 1

(01 ⊗ 4A) = 4A = 0100 1010

(02 ⊗ 60) = C0 = 1100 0000

(03 ⊗ 7D) = 87 = 1000 0111

(01 ⊗ 1A) = 1A = 0001 1010 

⊕ = 0001 0011= 13

(02 ⊗ 44) = x(x6 + x2)

= x7 + x3

(03 ⊗ 4F) = (x = 1)(x6 + x3 + x2 + x + 1)

= x7 + x4 + x3 + x2 + x + x6 + x3 + x2 + x + 1

= x7 + x6 + x4 + 1
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XOR-Operation of the resultant values:

(01 ⊗ D6) = D6 = 1101 0110

(01 ⊗ 4C) = 4C = 0100 1100

(02 ⊗ 44) = 88 = 1000 1000

(03 ⊗ 4F) = D1 = 1101 0001

⊕ = 1100 0011 = C3

(03 ⊗ E0) = (x + 1)(x7 + x6 + x5)

= x4 + x3 + x + 1 + x7 + x6 + x7 + x6 + x5

= x5 + x3 + x + 1 + x4

(01 ⊗ 6B) = 6B = 0110 1011

(01 ⊗ 27) = 37 = 0011 0111

(02 ⊗ 50) = A0 = 1010 0000

(03 ⊗ E0) = 3B = 0011 1011

⊕ = 1100 0111 = C7

(02 ⊗ E7) = x(x7 + x6 + x5 + x2 + x + 1)

= x4 + x3 + x2 + 1 + x7 + x6 + x3 + x2 + x

= x7 + x6 + x4 + x

(01 ⊗ 97) = 97 = 1001 0111

(01 ⊗ 5F) = 5F = 0101 1111

(02 ⊗ E7) = D2 = 1101 0010

(03 ⊗ 2E) = 72 = 0111 0010

⊕ = 0110 1000 = 68

(03 ⊗ 4A) = (x + 1)(x6 + x3 + x)

= x7 + x4 + x2 + x6 + x3 + x

= x7 + x6 + x4 + x3 + x2 + x

(02 ⊗ 7D) = x(x6 + x5 + x4 + x3 + x2 + 1)

= x7 + x6 + x5 + x4 + x3 + x

(03 ⊗ 4A) = 97 = 1101 1110

(02 ⊗ 7D) = 5F = 1111 1010

(01 ⊗ 1A) = 1A = 0001 1010

(01 ⊗ 60) = 60 = 0110 0000

⊕ = 0101 1110 = 5E
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(03 ⊗ D6) = (x + 1)(x7 + x6 + x4 + x2 + x)

= x4 + x3 + x + 1 + x7 + x5 + x3 + x2 + x7 + x6 + x4 + x2 + x

= x6 + x5 + 1

(02 ⊗ 4F) = x(x6 + x3 + x2 + x + 1)

= x7 + x4 + x3 + x2 + x

(03 ⊗ D6) = 61 = 0110 0001

(01 ⊗ 4C) = 4C = 0100 1100

(01 ⊗ 44) = 44 = 0100 0100

(02 ⊗ 4F) = 9E = 1001 1110

⊕ = 1111 0111 = F7

(03 ⊗ 6B) = (x + 1)(x6 + x5 + x3 + x + 1)

= x7 + x6 + x4 + x2 + x + x6 + x5 + x3 + x + 1

= x7 + x5 + x4 + x3 + x2 + 1

(02 ⊗ E0) = x(x7 + x6 + x5)

= x4 + x3 + x + 1 + x6 + x5

= x6 + x5 + x4 + x3 + x + 1

(03 ⊗ 6B) = BD = 1011 1101

(01 ⊗ 27) = 27 = 0010 0111

(01 ⊗ 50) = 50 = 0101 0000

(02 ⊗ E0) = 7B = 0111 1011

⊕ = 1011 0001 = B1

(03 ⊗ 97) = (x + 1)(x7 + x4 + x2 + x + 1)

= x4 + x3 + x + 1 + x5 + x3 + x2 + x + x7 + x4 + x2 + x + 1

= x7 + x5 + x

(02 ⊗ 2E) = x(x5 + x3 + x2 + x)

= x6 + x4 + x3 + x2

OR-Operation of the resultant values:

(03 ⊗ 97) = A2 = 1010 0010

(02 ⊗ 2E) = 5C = 0101 1100

(01 ⊗ 5F) = 5F = 0101 1111

(01 ⊗ E7) = E7 = 1110 0111

⊕ = 0100 0110 = 46
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kEy tErMS

10 rounds of operation

AddRoundKey()

Advanced Encryption Standard (AES)

Circular left shift

FIPS (Federal Information Processing Standards)

Galois filed

InvMixColumns()

InvShiftRows()

InvSub-Bytes()

Irreducible polynomial

Key expansion

MixColumns()

Rcon[]

Rijndael

Rotateword()

RotWord()

ShiftRows()

Standard Rounds

Sub-Bytes()

SubWord()

SuMMAry

 • AES is making use of arithmetic operations based on Galois Filed GF(2n) structure in which n = 8.

 • AES is a symmetric cipher that uses the same key for both encryption and decryption process. 

 • AES is a symmetric cipher that encrypts a 128-bit block of plaintext using a 128-bit key value to 
produce a 128-bit cipher text. To encrypt a 128-bit plaintext, AES uses 10 rounds of operations. 

 • AES performs four transformations, namely SubBytes(), ShiftRows(), MixColumns() and 
AddRoundKey() in each round of the encryption process.

 • AES uses the inverse transformations InvSubBytes(), InvShiftRows() and InvMixColumns() in 
the decryption process.

 • Therefore, in AES, each transformation used in the encryption process is easily reversible in the 
decryption process.

 • The input to the encryption and decryption process is a single 128-bit block which is represented 
as a (4 × 4) square matrix that consists of 16 cells.

 • Similar to this, the 128-bit key is also as a represented as a (4 × 4) square matrix to fill the key 
value as bytes in the square matrix. From the initial matrix, four words are generated in each round 
and hence 44 words are generated in total for all the 11 rounds (1 initial round + 10 standard 
rounds).

 • These row and column values serve as indices to the S-box for selecting a unique byte value from 
the S-box.

 • In ShiftRows() transformation, rows in the state array are circularly left shifted with different 
offsets.

 • The irreducible polynomial that is used for the AES algorithm is p x x x x x( ) = + + + +8 4 3 1.

 • In Addroundkey() transformation, the output produced by the mixcolumn() transformation is 
XOR-ed with the subkey value produced by the key expansion algorithm.

 • For generating the round constant for[ith] word, the value 02 is multiplied with its previous round 
constant value. This multiplication is performed on GF 28( ).
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rEvIEW QuEStIonS

 1. Why NIST has selected Rijndael as the AES?

 2. What are the other four algorithms that were not selected?

 3. Write short description about ShiftRows() transformation that constitutes the second transfor-
mation in each round of AES.

 4. Write short description about MixColumns() transformation that constitutes the third transfor-
mation in each round of AES. Explain with an example.

 5. How many words of the key metrics are used for key expansion algorithm and how many words 
are generated from it in total?

 6. Let us consider the first four words of the key schedule are w
0
, w

1
, w

2
, w

3
. From this, how do we 

need to obtain the next four words w
4
, w

5
, w

6
, w

7
?

 7. Explain about AES encryption process with a neat diagram in detail.

 8. Explain about AES key expansion process.

rEFErEncES

 1. http://cs.ucsb.edu/~koc/cs178/docx/w04x-des.pdf

 2. http://csrc.nist.gov/archive/aes/rijndael/Rijndael-ammended.pdf
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7.1 IntroductIon to PublIc-Key cryPtosystem

All the encryption techniques are purely classified based on the concept of a key. A key is the founda-
tion for transmitting a message into an unintelligible message. Forty years before, only one key was 
used for performing both the encryption and decryption operations and it is called symmetric/private 
key cryptosystem [1]. After that, public-key cryptosystem was developed. The public-key cryptosys-
tem uses a pair of keys. Each pair consists of two keys, namely private key and public key. The pair 
is mathematically related to each other. The private key is kept as secret in the user’s storage space. 
The public key is publicly announced to all the users. The public-key cryptosystem is also called asym-
metric encryption technique, because the same key is not used to encrypt and decrypt the message. 
Instead, encryption and decryption operations are performed using different keys. 

Initially, each user generates a private key from which a public key is computed. After computing 
the public key, each user stores their public key in a public directory which is called as Certification 
Authority (CA). This process eliminates the need for sharing the secret key in advance as used in a 
secret key cryptosystem [2–3]. If any user wants to send a message to any other user, then the user has 
to download the intended recipient’s public key from the public directory. Then the sending user has 
to use this public key to encrypt the message and the encrypted message is sent to the recipient. When 
the recipient gets the message, he/she decrypt it with the recipient’s private key. In a public-key crypto-
system, both the keys can be used for performing encryption and decryption. If a message is encrypted 
with the recipient’s public key, then it must be decrypted with the recipient’s private key. This provides 
the cryptographic service, named as confidentiality. If a message is encrypted with the sender’s private 
key, then it must be decrypted with the sender’s public key. This provides the cryptographic service 
named as authentication.

Figure 7.1 shows the way in which the public-key cryptosystem is used for providing cryptographic 
service called confidentiality. In this figure, Alice (sender) creates a plaintext and encrypts it using 
the public key Kub( )  of Bob. This can be decrypted only by using the private key Krb( ) of Bob. 
Since Bob has his private key Krb( )  in his computer, no one can decrypt it other than Bob. Figure 7.2 
shows the way in which the public-key cryptosystem is used for providing cryptographic service called 
 authentication. In this figure, Alice (sender) creates a plaintext and encrypts it using the private key 
Kra( )  of Alice. This can be decrypted only by using the public key Kua( )  of Alice. In this case, every-

one can decrypt it because the public key of Alice is known to all. Hence, this method does not provide 
confidentiality, but it provides authentication. This method also provides digital signature since the 
message is encrypted using the sender’s private key. Here, Alice is digitally signing over a message to 
indicate that the message has come from Alice.
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Figure 7.1 Public-key cryptosystem with confidentiality
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Figure 7.2 Public-key cryptosystem with authentication

In some applications, the sender and receiver expect both the cryptographic services confidentiality 
and authentication. In such kind of applications, two encryption operations are performed on the 
sender side and two decryption operations are performed on the receiver side. Figure 7.3 shows an 
example of this case. In this figure, initially Alice is encrypting the plaintext using the private key ( )Kra  
of Alice. This provides authentication. The output of this encryption is denoted as ciphertext 1. The 
ciphertext 1 is given as input to the second encryption that makes use of the public key ( )Kub  of Bob. 
This provides confidentiality. In the receiver (Bob) side, Bob has to decrypt using the private key ( )Krb  
of Bob to get ciphertext 1. The ciphertext 1 can be decrypted using public key ( )Kua  of Alice. The 
main advantage of this method is that both confidentiality and authentication are provided. The main 
limitation of this approach is that computation complexity is increased because, double time encryp-
tion is performed in the sender and double time decryption is performed in the receiver.

The public-key cryptosystem is used to provide secure electronic communication over the 
Internet. Since the Internet is an open network, it is susceptible to a variety of security problems 
such as IP-spoofing, denial of service and man-in-the-middle attacks. In such an open network, when 
sending a message from one place to another in a secure way, the message should not be known to 
anyone other than the sender and receiver. This would provide confidentiality of the communication. 
Moreover, the message should not be modified during transmission in order to provide message integ-
rity. In addition to these two cryptographic services, the public-key cryptosystem also provides the 
cryptography services such as digital signature and non-repudiation. Table 7.1 gives the difference 
between public-key cryptosystem and private-key cryptosystem.
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Alice’s private
key (Kra)

Alice

Bob

Decryption
algorithm

Plaintext
Decryption
algorithm

Ciphertext 1
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Figure 7.3 Public-key cryptosystem with confidentiality authentication

Table 7.1 Difference between public and private-key cryptosystem

Sl. No. Public-key cryptosystem Private-key cryptosystem

1. It uses two keys, namely private key and public key. It uses a single key called secret key (private 
key).

2. It is infeasible to compute the private key from the 
public key of any user.

It is infeasible to compute the secret key.

3. During encryption, the receiver’s public key is used 
and receiver’s private key is used for performing 
decryption in order to provide confidentiality.

During encryption and decryption, the same 
secret key is used to provide confidentiality.

4. During encryption, the sender’s private key is used 
and sender’s public key is used for performing 
decryption in order to provide Authentication.

This cryptographic service is not supported by 
the secret key cryptosystem.

5. It provides the cryptographic services, namely, 
confidentiality, authentication, digital signature and 
non-repudiation.

It provides the cryptographic service, called 
confidentiality alone.

6. Key distribution (key exchange) process is easy to 
implement.

Key distribution (key exchange) process is 
difficult to implement.

7. It is based on mathematical functions. It is based on substitution and permutation 
operations.

8. RSA is an example of public-key cryptosystem. DES is an example of a private key 
cryptosystem.

9. It requires more processing power and hence it is 
slow.

It requires less processing power and hence it 
is faster.

10. It provides high security and is also difficult for 
implementation.

It provides low security and is also easy for 
implementation.
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From Table 7.1, it is clear to understand that public-key cryptosystem is a computationally expensive 
one. But it provides more security. In order to increase the security level, large-size key values are used. 
For example, 512 bits or 1024 bits is used in RSA and Elgamal public-key cryptosystem. However, 
the private key cryptosystem is less computationally expensive and hence it provides low security. 
Therefore, it is advised to combine the public and private-key cryptosystem together to form a new 
cryptosystem which is called hybrid cryptosystem. This hybrid cryptosystem is efficient in terms of 
speed and security. In the hybrid cryptosystem, a key-exchange algorithm is used to exchange a secret 
key using the public-key cryptosystem. After exchanging the key successfully, a private key (symmetric 
key) cryptosystem can be used for exchanging the messages securely. The hybrid cryptosystem is used 
in many places such as PGP and the SSL/TLS. It is also used in all the secure multimedia multicast 
applications such as video on demand, video broadcasting, Pay-TV, etc.

7.2 rsA AlgorIthm

Rivest, Shamir and Adleman [4] were a perfect team in developing a new public-key cryptosystem. 
Rivest is a computer scientist who has innovated new ideas in new places. Shamir was also a computer 
scientist who has an ability to focus on the core of a problem. Rivest and Shamir generated ideas for the 
one-way function that could be used in any of the public-key cryptosystems. Adleman was responsible 
for finding the flaws within the ideas of Rivest and Shamir, and he ensured that they were proceeding 
in the right direction. Rivest, Shamir and Adleman joined together and proposed RSA algorithm at 
MIT in the year 1977. Hence, RSA stands for Rivest, Shamir and Adleman. It was published as one 
of the first public-key cryptosystems in 1978. Since it is a public-key cryptosystem, the sender can 
use receivers public key for encrypting the message and the receiver can use receivers private key for 
decrypting the message. 

The RSA is a best known and widely used public-key scheme that uses large integers (1024 bits) as 
key values. It is a block cipher and hence it can encrypt and decrypt a block of letters at a time. It also 
provides high security since it relies on the difficulty to factor the large integers. The RSA algorithm 
consists of three phases, namely, key generation, encryption and decryption. In key generation phase, 
each user selects their public key from which they compute their corresponding private key. The public 
key is stored in a CA and private key is kept as secret. During the encryption phase, a block of plaintext 
letters is encrypted to produce ciphertext value, where each plaintext letter is converted into a suitable 
sequence of integers such that a = 1 and z = 26. Significant steps of key generation phase are briefly 
explained as follows: 

Step 1: Initialization

The sender (Alice) and the receiver (Bob) select two large prime numbers. Alice selects the prime 
numbers as pA  and qA. Bob selects prime numbers as pB and qB.

Step 2: Computation of n  value

After that, both the sender and the receiver compute nA and nB values as given below:

n p qA A A= ×

n p qB B B= ×

Here, nA and nB are used as the modulus for both the public and private keys.
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Step 3: Computes Euler’s totient function

Next, Alice and Bob compute Euler’s totient function of nA and nB  values as given below:

φ φ φn p q p qA A A A A( ) = ( )× ( ) = −( )× −( )1 1

φ φ φn p p p qB B B B B( ) = ( )× ( ) = −( )× −( )1 1  

Since pA, qA , pB  and qB are prime numbers, Euler’s totient function of these values is obtained by 
subtracting the respective prime numbers from one as shown above.

Step 4: Generation of Public keys

After computing these values, Alice and Bob generate their own public-key values eA and eB. When 
they generate the pubic key value, they should check two conditions given below:

 1. 1 < < ( )e nA Aφ

 2. gcd ,e nA Aφ ( )( ) = 1.

The value eB should also satisfy the above two conditions. 

Step 5: Generation of Private keys

After computing the public key, Alice and Bob compute their corresponding private key (dA ) and dB( ) 
as given below:

e d nA A A× ≡ ( )1modφ

Similarly,            e d nB B B× ≡ ( )1modφ

Step 6: Publish the public keys

After computing the private and public-key values, both the users publish their public-key values 
Ku e na A A= ( ),  and Ku e nb B B= ( ),  in a public directory.

Step 7: Make private key as secret

After publishing the public keys, each user keeps their own private key values Kr d na A A= ( ),  and 
Kr d nb B B= ( ),  as secret. 

encryption and decryption

To send a message in a secure way from Alice to Bob, intially Alice has to download the public-key 
value of Bob from the public directory. After getting the public key, she can encrypt the plaintext m  
by using the public-key value of Bob to produce a ciphertext. The encryption process is done as given 
below.

c m ne
B

B≡ mod

This cipher text value is sent to Bob. Bob can decrypt the ciphertext using his own secret key value d
B
. 

The decryption is done as given below.

m c nd
B

B≡ ( )mod

Thus, the plaintext m  is obtained.
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Proof of correctness:

m c nd
B

B≡ ( ) mod

m m ne d
B

B B≡ (( ) ) mod

m m ne d
B

B B≡ ×( ) mod

(Since, e d nB B B× ≡ 1 mod ( )).φ  This can be written as e d k nB B B× ≡ + ×1 ( ( ))φ

m m nk n
B

B≡ + ×( )( ( ))1 φ mod

m m m nn k
B

B≡ × ( )1 ( )φ mod

(using Fermat–Euler’s totient theorem m nn
B

Bφ ( ) mod = 1)

m m nk
B≡ ×{ }( )1 mod

m m≡

Figure 7.4 shows the diagrammatic representation of an RSA public-key cryptosystem. In this 
figure, Alice and Bob initially generate two prime numbers and compute a public and private key from 
those two prime numbers. After that, both the users store their public-key value in the CA. If Alice 

BobAlice

6

5

8

4

1. Alice and bob select two large prime numbers.
3

2

1
10

4
3

2

1

9

Public key of
alice & bob

CA

5

7

2. Alice and bob multiply prime numbers and then complete
    euler’s totient function.

3. Alice and bob select two different public key components. 

5. Alice and bob place their public key components in the CA.

6. Alice downloads the public key of bob from the CA.

7. Bob downloads the public key of alice from the CA.

8. Alice encrypts the message using the public key value of bob it.

9. Alice transmits the encrypted message to bob it.

10. Bob receives the message and decrypts it using bob’s
      private key.

4. Alice and bob compute private key components from
    their corresponding public key components. 

Figure 7.4 RSA public-key cryptosystem with confidentiality 
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wants to send a message to Bob in a secure way, the public key of Bob is to be downloaded from the 
CA. Using the public key, Alice can encrypt the message and the encrypted message can be sent to 
Bob. Bob can decrypt it using his own private key as shown in Figure 7.4. Table 7.2 gives the overall 
summary of RSA public-key cryptosystem. In this table, we have considered Alice as sender and Bob 
as receiver.

Example 7.1:
Encrypt the plaintext ‘security’ using the RSA algorithm for the values pB =  7, qB =  11 and 
eB = 13.

Solution
Encryption:

Plaintext = security 

Table 7.2 Summary of RSA algorithm

Key generation

Alice Bob

Select large prime numbers pA and qA Select large prime numbers pB and qB

Compute nA value as given below:
n p qA A A= ×

Compute nB value as given below:
n p qB B B= ×  

Alice computes Euler’s totient function for nA 
value as given below:

φ φ φn p qA A A( ) = ( ) × ( )
= −( )× −( )p qA A1 1

Bob computes Euler’s totient function for nB  
value as given below:

φ φ φn p qB B B( ) = ( )× ( )
= −( )× −( )p qB B1 1      

Select the public component eA such that 
1 < < ( )e nA Aφ  and gcd ,e nA Aφ ( )( ) = 1

Select the public component eB such that 
1 < < ( )e nB Bφ  and gcd ,e nB Bφ ( )( ) = 1

Compute private key (dA) as given below:
e d nA A A× ≡ ( )1modφ  

Compute private key (dB)  as given below:
e d nB B B× ≡ ( )1modφ

Storage of public-key values in certification authority (CA)

Alice sends eA to CA     CA     Bob sends eB to CA

Encryption and decryption

Alice Bob

Encrypt the message m using public-key value 
of Bob.

c m ne
B

B≡ ( ) mod

Decrypt the message m using private key value 
of Bob.

m c nd
B

B≡ ( ) mod
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plaintext (p) :

Plaintext s e c u r i t           y

Numeric notation 18 4 2 20 17 8 19 24

Ciphertext Encryption Encryption result

Ciphertext (C
1
) 1813 mod 77 46

Ciphertext (C
2
)   413 mod 77 77

Ciphertext (C
3
) 213  mod 77 30

Ciphertext (C
4
)   2013  mod 77 69

Ciphertext (C
5
)   1713 mod 77 7

Ciphertext (C
6
)   813 mod 77 50

Ciphertext (C
7
)  1913 mod 77 61

Ciphertext (C
8
)   2413 mod 77 52

Ciphertext (C): 46 77 30 69 7 50 61 52

Decryption:

Ciphertext (C): 46 77 30 69 7 50 61 52

Key generation in Bob side:

 1. n p qB B B= × = 7 × 11 = 77

 2. φ nB( ) =  p qB B−( )× −( )1 1  = (7 - 1) × (11 - 1) = 6 × 10 = 60

 3. eB = 13

 4. e d nB B B× ≡ 1 ( )modφ

  e d k nB B B× ≡ + ×1 ( ( ))φ

               d
k n

eB
B

B

=
+ ×1 ( ( ))φ

         dB = ((k × 60) + 1)/13

If k = 1, dB = 61/13 = 4.69

If k = 2, dB = 121/13 = 9.30

If k = 3, dB = 181/13 = 13.92

If k = 4, dB = 241/13 = 18.53

If k = 5, dB = 301/13 = 23.15
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If k = 6, d
B = 361/13 = 27.76

If k = 7, d
B = 421/13 = 32.38

If k = 8, d
B 

= ((8 × 60) + 1)/13 = 481/13 = 37

Plaintext Decryption Decryption result Alphabetic notation

Plaintext (p
1
) 4637  mod 77 18 s

Plaintext (p
2
) 5337 mod 77 4 e

Plaintext (p
3
) 3037 mod 77 2 c

Plaintext (p
4
) 6937  mod 77 20 u

Plaintext (p
5
) 7337  mod 77 17 r

Plaintext (p
6
) 5037  mod 77 8 i

Plaintext (p
7
) 6137  mod 77 19 t

Plaintext (p
8
) 5237  mod 77 24  y

plaintext = security

7.3 AttAcKs on rsA

There are three kinds of attacks that can be performed on the RSA algorithm. The three well-known 
attacks are brute-force attack, mathematical attack and timing attack [5].

7.3.1 brute-Force Attack

It is a trial-and-error method. In this attack, an intruder tries for all possible trials to find the private key 
of the receiver and to decrypt the ciphertext. If the size of private key (d

B
) 

 
is w bits, then the attacker 

has to use 2w  total number of trials. The time taken to derive d
B can be increased by choosing the large 

d
B
 for each user’s private key. In this algorithm, the size of d

B 
must be 512 bits or 1024 bits. Therefore, 

when large-size p
B
 and qB 

are used, it is not possible to find the value of d
B
. One of the limitations of 

choosing large size key is that computation complexity of RSA would increase.

7.3.2 mathematical Attack

This is an attack in which an intruder focuses on factoring the product of two prime numbers from 
which, the intruder will try to find the value of d

B
. This attack can be performed by computing the 

Euler’s totient value of n
B
 or factoring n

B
 into two prime numbers pB  and qB  to compute φ nB( ).

Let n p qB B B= × , where pB  and qB  are distinct odd primes and let eB be an integer which is rela-
tively prime to φ nB( ). Let dB  satisfy mode d nB B B× ≡ ( )1 φ  and 1 ≤ < ( )d nB Bφ . In this equation, the 
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intruder knows the value of e
B
 and the intruder can compute φ nB( ) from n

B
 since n

B
 is a public value. 

If these two values are known, then the attacker can compute d
B
 by substituting e

B
 and φ nB( ) in 

e d nB B B× ≡ ( )1modφ .

7.3.3 timing Attack

Timing attacks resemble to side channel attacks that utilize some vital information regarding time, 
power and sound, etc. This attack was introduced by Paul Kocher. It mainly depends on the running 
time of the decryption operation used in the RSA decryption algorithm. Here, the attacker infers the 
time for decryption by the receiver and thereby  essential ingredients of the private key of the receiver 
can be easily known by the attacker. Moreover, sometimes the original private key can also be known 
using this attack. Timing attack mainly depends on the size of data that is intended for decryption by 
the receiver. Timing attack creates a greater impact by destroying  the security of the entire system 
since the private key of the receiver is being exposed. Many public-key cryptographic algorithms can 
also be attacked using this timing attack. There are three possible countermeasures for this timing 
 attack that are listed below:

 1. Constant exponentiation time

 2. Random delay

 3. Blinding.

Among these three countermeasures, blinding is an effective method by which disclosure of the private 
key can be avoided. All these three countermeasures are briefly explained below:

Constant exponentiation time: In this countermeasure, the time taken for exponentiation calculation 
in the decryption side of the receiver is taken as a constant. On taking exponentiation calculation time 
as a constant value, the actual time for decryption would not be revealed to the attacker and thereby 
timing attack is prevented. But this countermeasure is not much efficient because of the reason that, 
the constant exponentiation calculation time can also be revealed to the attackers after a prolonged 
inspection on the decryption process and hence this becomes inefficient.

Random delay: In this countermeasure, a random delay is introduced while sending the message to 
the receiver. By introducing this random delay, the time predicted by the attacker during decryption 
would go wrong and hence an incorrect value would be resulted as a private key by the attackers. 
However, this countermeasure too has a drawback. The drawback is that, a series of random delays 
introduced by the senders is composed by the attackers based on which the time for decrypting the 
actual message becomes certain by the attackers. 

Blinding: This is  more efficient than all other countermeasures to avoid timing attack. In this counter-
measure, before performing the exponentiation operation, the message is  multiplied with a  constant 
and the result is corrected by multiplying with another constant. Thus, introducing two constants makes 
it much difficult for the attackers to guess the actual time of decryption and hence this countermeasure 
blinds the attackers. In addition to that, this countermeasure gives an uncertain inference to attackers 
in choosing the two constants in the analysis of timing attack. 
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7.4 JAVA ImPlementAtIon oF rsA

Line no. Java program for RSA encryption and decryption

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

Sender Side

import java.math.*;

import java.util.Scanner;

public class RSA_ALGM_ENCRYPT

{

    Scanner in= new Scanner (System.in);

public static void main(String args[])

    {

     RSA_ALGM_ENCRYPT rs = new RSA_ALGM_ENCRYPT();

BigInteger p=new 
BigInteger(“346787990223467890921557788904342267585547890253”);

BigInteger q=new BigInteger(“5734975898080672157634562457498057”);

BigInteger n= p.multiply(q);

BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));

BigInteger e=new BigInteger(“13”);

if (e.gcd(m).intValue()==1)

     {

rs.encrypt(e,n);

}

 }

void encrypt (BigInteger e , BigInteger n)

    {

System.out.println(“The n value is”+ n);

System.out.println(“Encryption process”);

System.out.println(“Enter the message  With in n value “);

BigInteger msg = in.nextBigInteger();

System.out.println(“The Cipher text is  “ + msg.modPow(e, n));

     }

}

Receiver Side

import java.math.BigInteger;

import java.util.Scanner;
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Line no. Java program for RSA encryption and decryption

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

public class RSA_ALGM_DECRYPT

{

public static void main (String ar[])

    {

BigInteger p=new 
BigInteger(“346787990223467890921557788904342267585547890253”);

BigInteger q=new BigInteger(“5734975898080672157634562457498057”);

BigInteger n= p.multiply(q);

BigInteger m = (p.subtract(BigInteger.ONE)).multiply(q.subtract(BigInteger.ONE));

BigInteger e=new BigInteger(“13”);

BigInteger d = e.modInverse(m);

System.out.println(“The p value is”+ p);

System.out.println(“The q value is” +q);

System.out.println(“The n value is”+ n);

System.out.println(“ The e value is” +e);

System.out.println(“ The d value is” +d);

Scanner in= new Scanner(System.in);

System.out.println(“Decryption process”);

System.out.println(“\nEnter the Cipher text”);

BigInteger cipher = in.nextBigInteger();

System.out.println(“The decrypted message is  “ + cipher.modPow(d, n));

}

}
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Line no. Java program for RSA encryption and decryption

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

OUTPUT:

Sender Side

Receiver Side

In the above program, there are two modules that can be used in the sender and receiver side. In line 
number 11 of the sender module, the public component n is defined. In the same module, the public 
value (e) of the receiver is copied in line number 13. Line numbers between 19 to 26 are used for per-
forming the encryption operation in the sender side. Line numbers between 37 to 41 in the receiver 
side are used for initializing the large prime numbers p, q and the public-key value e. Line number 43 
is used for computing the private key d to be used in the decryption operation. Line number 53 is used 
for performing the decryption operation in the receiver side.
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7.5 KnAPsAcK cryPtosystem

It is a public-key cryptosystem and hence it requires two keys for encryption and decryption purposes. 
Among the two keys, one key is made as a public key which can be used to encrypt the message and another 
key is a private key which is kept secret and is used for decrypting the message. Therefore, the person who 
knows the private key can decrypt the message. Merkle–Hellman published the knapsack public-key cryp-
tosystem in the year 1978. Subsequently, in 1982, the basic Merkle–Hellman knapsack cryptosystem was 
broken by Shamir’s attack on single-iteration knapsack cryptosystem and hence it is not a secure algorithm.

7.5.1 definition

Let us consider a predefined set of positive integers which is termed as knapsack x x x xn= …[ ],1 2  that 
is an n-tuple. The plaintext y y y yn= …[ ], ,1 2  is also an n-tuple that consists of values 0 and 1. Based on 
the values of the plaintext, we can define the elements of x that are discharged from the knapsack. For 
the given knapsack and the plaintext, the ciphertext S can be generated in the knapsack cryptosystem 
using the following equation.

S x y y i n
i

n

i i i= { }∈{ } ∀ ∈ …
=
∑

1

0 1 1, ,where

S Knapsacksum x y x y x y x yn n= ( )= + + +, 1 1 2 2 �

From the above equation, it is easy to obtain the value of S if the values of x and y are given. 
But it is not possible to obtain the value of y even if the values of S and x are known. That is, 
y invKnapsacksum S x= ( ),  is difficult to find from S and x. Hence, it is distinctly shown that 
Knapsacksum is a one-way function if x is a common n-tuple. The common n-tuple is the one that does 
not satisfy superincreasing knapsack.

7.5.2 superincreasing Knapsack

Let us consider a knapsack tuple x x x x xj n, , , , , .= … …⎡⎣ ⎤⎦1 2  This tuple is said to be superincreasing 

knapsack, if and only if x x i j j nj i : , , , .> … − ≤∑ for with1 1  If x is a superincreasing knapsack tuple, 
it is easy to calculate the value of y provided the values of S and x are known. In superincreasing knap-
sack tuple, each value is greater than or equal to the sum of its previous values except the first value. 
The following example shows the way of finding superincreasing knapsack tuple.

Example 7.2:
Check whether the given tuples [2, 4, 10, 13] and [1, 2, 4, 8] are superincreasing or not.

Solution
In the first tuple, compare the second value 4 with the first value 2. In such a comparison, the  current 
value 4 is greater than the previous value 2. Then, add the value 4 with 2 and compare the sum 
6 with 10. This also satisfies the superincreasing principle. Again add the values 2, 4, 10 and then 
compare the sum 16 with the next value 13 in the tuple. In this case, it is not greater than the sum 16 
(13 > 2 + 4 + 10) and hence it does not satisfy the superincreasing principle. Hence, it is not a superin-
creasing tuple. Similarly, in the second tuple, compare the second value 2 with the first value 1. Since 
2 is greater than the previous value 1, it satisfies the superincreasing principle. Then, add the value 2 
with 1 and compare the sum 3 with 4. This also satisfies the superincreasing principle. Finally, add the 
values 1, 2, 4 and then compare the sum 7 with the next value 8. In this case, the result is greater than 
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the sum 7 (8 > 1 + 2 + 4) and hence it satisfies the superincreasing principle. Hence, it is an example 
for superincreasing tuple.

Example 7.3:
Encrypt the plaintext 10011110100101100000 using the knapsack [1 2 8 15 26].

Solution
In this example, the given knapsack has five values. Therefore, the given plaintext sequence is decom-
posed into subsequences each has 5 bits length. The ciphertext is generated from the plaintext and the 
knapsack using the equation S S x yi i= + . Let us consider the first subsequence 10011 and knapsack 
[1 2 8 15 26] from which the ciphertext S can be generated as S = 1 × 1 + 0 × 2 + 0 × 8 + 1 × 15 + 1 × 
26 = 42. Similarly the ciphertext can be generated from other subsequences.

Plaintext (y) 10011 11010 01011 00000

Knapsack (x) 1 2 8 15 26 1 2 8 15 26 1 2 8 15 26 1 2 8 15 26

Ciphertext (S) 1 + 15 + 26 = 42 1 + 2 + 15 = 18 2 + 15 + 26 = 43 0 = 0

7.5.3 encryption and decryption Algorithm for Knapsack cryptosystem

 Algorithm 7.1

Encryption algorithm for knapsacksum

Function knapsacksum (x y, )

Initialize S = 0

  For i = 1 to n

    {      

     Ciphertext S S x yi i= +
    }

Return  S

Comments

// x  and y  are given two tuples of size n.

// Initially ciphertext S  is 0.

// Find ciphertext from the two n-tuples

 Algorithm 7.2

Decryption algorithm for invknapsacksum

    Function invknapsacksum (s, h)

    For j = n downto 1

    {       

         If s hj≥
         S S hj= −
 hj = 1

   }

   Else 

 hj = 0

Comments

// x  and y  are given two n-tuples

// The value of S changes to new value. 

// If  s h hj j≤ , then  is 0, 
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7.5.4 secret communication using Knapsack

This part explains the way of transferring a message from sender to receiver in a secure way using 
knapsack cryptosystem. To exchange the message in a secure way, three phases are involved, namely 
key generation phase, encryption phase and decryption phase.

7.5.4.1 Key generation Phase

The following steps are involved in the key generation process to generate encryption and decryption 
keys.

 1. Take a superincreasing sequence h h h hn= …[ ], .1 2

 2. Decide a modulus number p which should be greater than the sum of all the numbers in the 
sequence p h h hn> + + +1 2 � .

 3. Then, choose a multiplier q which is relatively prime to p and 1 1≤ ≤ − .q p

 4. Then, choose another tuple x x x xn= …[ ],1 2  of same size n in which .x q h pi i= × mod

 5. Therefore, the tuple x is assigned as a public key.

 6. So, the private key is h.

7.5.4.2 encryption Phase

 1. Let us consider the plaintext y y y yn= …[ ], , ,1 2 .

 2. Then, the sender generates the ciphertext S Knapsacksum x y x y x y x yn n= ( )= + +…+, 1 1 2 2 and 
sends this ciphertext to the receiver side.

7.5.4.3 decryption Phase

 1. The person who wants to decrypt the ciphertext must know the two numbers p  and q chosen 
by the sender.

 2. Find the multiplicative inverse of q  denoted as q−1 .

 3. The receiver calculates S q S p’ = ×−1 mod

 4. Find the plaintext y invknapsacksum S h= ( )’, .

Example 7.4:
This example shows how the message is transferred from sender to receiver in a secure way using 
Knapsack cryptosystem.

Key generation process

The following steps are involved in the key generation process for encryption and decryption by the 
sender and the receiver, respectively.

 1. Take a superincreasing sequence h =[ ], , ,1 2 5 10 .

 2. Decide a modulus number 110, which should be greater than the sum of all the numbers in the 
sequence 110 > 1 + 2 + 5 + 10.

 3. Then choose a multiplier 31, which is relatively prime with 110 and 1 ≤ 31 ≤ 109.

 4. The knapsack sequence would be:
 1 31 110 31× ( )=mod

 2 31 110 62× ( )=mod
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 5 31 110 45× ( )=mod

 10 31 110 90× ( )=mod

 5. So, the public key is x =[ ], , ,31 62 45 90  and the private key is h =[ ], , , .1 2 5 10

Encryption by the sender

 1. Let us consider the plaintext y =[ ], , ,1 0 0 1

 2. Then the sender generates the ciphertext S = × + × + × + × =1 31 0 62 0 45 1 90 121 and sends this 
ciphertext to the receiver.

Decryption by the receiver

 1. The person who decrypts the ciphertext must know the two numbers the modulus 110 and the 
multiplier 31.

 2. Find the multiplicative inverse of 31 which is 71.

 3. The receiver calculates ’S = × ( )=121 71 110 11mod .

 4. Then, calculate the plaintext y invknapsack S h’ , , , , .= = =[ ]( )11 1 2 5 10

  According to the decryption algorithm for invknapsacksum, the results are obtained as shown in 
Table 7.3.

Table 7.3 The result of decryption operation  

Sl. No. Privatekey (hi) S S ≥ (hi) y S = S - hi

4.

3.

2.

1.

10

5

2

1

11

1

1

1

Yes

No

No

Yes

1

0

0

1

1

−1

−1

0

 5. Hence, the plaintext y = [ ]1 0 0 1, , , .

Key terms
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summAry

 • All the encryption techniques are purely classified based on the concept of a key.

 • The public-key cryptosystem uses a pair of keys. Each pair consists of two keys, namely private 
key and public key.

 • The public-key cryptosystem is used to provide secure electronic communication over an the 
Internet.

 • This hybrid cryptosystem is efficient in terms of speed. 

 • The hybrid cryptosystem is used in many places such as PGP and the SSL/TLS.

 • The RSA is a best known and widely used public-key scheme that uses large integers (1024 bits) 
as key values.

 • There are three kinds of attacks that can be performed on the RSA algorithm. The three well-
known attacks are brute-force attack, mathematical attack and timing attack.

 • Brute-force attack is a trial-and-error method where the intruder tries for all possible trials.

 • In mathematical attack, the intruder focuses on factoring the product of two prime numbers. 

 • Timing attacks resemble to side channel attacks that utilize some vital information regarding time, 
power and sound, etc.

 • There are three possible countermeasures for this timing attack are constant exponentiation time, 
random delay and blinding.

 • knapsack cryptosystem  is a public-key cryptosystem and hence it requires two keys for encryp-
tion and decryption purposes.

 • Knapsacksum is a one-way function if x  is a common n-tuple. The common n-tuple is the one that 
does not satisfy superincreasing knapsack.

 • In superincreasing knapsack tuple, each value is greater than or equal to the sum of its previous 
values except the first value.

 • To exchange the message in a secure way, three phases are involved, namely key generation phase, 
encryption phase and decryption phase.

reVIew QuestIons

 1. Diffirentiate private key cryptography and public-key cryptography with 10 significant points.

 2. How confidentiality is achieved in public-key cryptography?

 3. How authentication is achieved in public-key cryptography?

 4. How both confidentiality and authentication are achieved in public-key cryptography?

 5. Expalin in detail about RSA algorithm.

 6. Encrypt and decrypt the word ‘HELLO’ in a block cipher manner using RSA algorithm for the 
value pB  = 12347, qB  = 181 and eB = 13.

 7. Encrypt and decrypt the word ‘HELLO’ by processing individual letters of the given word 
using RSA algorithm for the value pB  = 12347, qB  = 181 and eB = 13.

 8. Explain briefly about the attacks performed on RSA.

 9. Explain about knapsack cryptosystem with a suitable example.



Public Key Cryptosystem  223

reFerences

 1. http://publib.boulder.ibm.com/infocenter/wsdoc400/v6r0/index.jsp?topic=/com.ibm.web-
sphere.iseries.doc/info/ae/ae/csec_pubki.html

 2. http://nrich.maths.org/2200

 3. https://developer.mozilla.org/en/docs/Introduction_to_Public-Key_Cryptography

 4. http://homepages.math.uic.edu/~leon/mcs425-s08/handouts/RSA.pdf

 5. http://www.cs.sjsu.edu/faculty/stamp/students/article.html



This page is intentionally left blank



Key Management and 
Key Distribution

8
chapter

8.1 IntroductIon to Key ManageMent

Key management is the process of generating, distributing and maintaining the keys that are  necessary 
for making a secure communication. There are many key management schemes that are available in 
the literature that are used for supporting multicast communication [4–5]. Since multicasting is an 
 efficient and necessary communication mechanism for group-oriented applications such as interactive 
group games, video on demand, TV over Internet and e-learning, provision of security to such systems 
is an important and challenging issue. In order to provide secure multicasting, there are many multicast 
routing algorithms. Even though, the existing multicast routing algorithms provide effective means for 
communicating data, these algorithms are targeted by malicious users who modify them in such a way 
that the packets are multiplied and routed. This leads to congestion in the network and the confiden-
tial messages are easily accessed by illegitimate users. Moreover, the existing internet protocol (IP) 
multicast [7] saves the network bandwidth by sending the source data only to the members by routing 
them using a multicast tree that spans only the members of the group and covers all the members of 
the group. Multicast delivery over the Internet can be performed when all the devices that participate 
in the multicast communication have been enabled for multicast communication. In such a scenario, 
the multicast groups are identified by group addresses and hence any node of the network can freely 
join or leave a group at any time using the internet group management protocol (IGMP). Moreover, IP 
multicasting uses the datagram’s destination address to specify multicast delivery. IP multicasting uses 
class D addresses with the format shown in Figure 8.1.

The first four digits contain 1110, which is used for the identification of multicast address. 
Bits 4 through 31 identify a particular multicast group. The group field does not contain a network 
address since there is no single network to which all the hosts belong like class A, B and C type of 
IP addresses. When expressed in dotted decimal notation, multicast addresses range from 224.0.0.0 to 
239.255.255.255. 

In a multicast communication, the multicast source sends the multicast data only to a specific mul-
ticast address. Since IGMP is running between both the subnet-routers and the attached hosts, each 
subnet-router periodically sends an IGMP-based query to the hosts on its subnet whether they are 
interested in the multicast communication. If any host is interested in the current contents of the 

0 1 2 3 4 31

1 1 1 0 Group identifier

Figure 8.1 IP multicast address format
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multicast communication, such host sends an IGMP-Report to the subnet multicast router in order 
to indicate the willingness and also the address of the session. Upon receiving this join request, the 
subnet-router runs a multicast routing protocol that allows the new member to join the multicast group. 
Whenever a host wants to leave from the current multicast communication session, the corresponding 
multicast subnet-router deletes it from the multicast group directory. Therefore, information about 
the hosts in a multicast communication must be stored and maintained using a membership directory. 
Moreover, a member can join or leave a group at any time. In addition, a user can become a member 
of more than one multicast group. Hence, it is necessary to classify the nature of the groups based on 
the duration of the members of a multicast communication group.

Groups in multicast communication can be classified into static and dynamic groups. In static 
groups, membership of the group is predetermined and does not change during the communication. 
Therefore, the static approach distributes an unchanged group key (GK) to the members of the group 
when they join or leave from the multicast group. Moreover, they do not provide necessary solutions 
for changing the GK when the group membership changes which is not providing forward/backward 
secrecy. In dynamic groups, membership can change after participating in a few multicast com-
munications. Therefore, in a dynamic group communication, members can either join or leave from 
the service at any time. Dynamic groups are merely appropriate for many multicast applications. 
Moreover, in this book, all explanations related to group communications focus only on dynamic 
groups. When a new member joins into the service, it is the responsibility of the group centre (GC) 
to prevent new members from having access to previous data. This provides backward secrecy in 
a secure multimedia communication. Similarly, when an existing group member leaves from any 
group, he/she should not have further access to the multicast communication which provides forward 
secrecy. The backward and forward secrecy can be achieved only through the use of effective key 
management schemes.

Generally, the key management schemes are divided into two types, namely centralized and dis-
tributed key management schemes. In both the schemes, the sender computes a common GK based 
on the users share that can be used for encrypting and decrypting the data. Hence, each key manage-
ment scheme makes use of the combinations of two types of encryption method. First level is public 
key encryption in which users will be generating private and public key values. The second level is a 
secret key (SK)/symmetric encryption method in which a common GK is computed based on the each 
users private and public values. Using this GK, the multicast data can be encrypted and decrypted in 
the group. In the distributed key management scheme, members they themselves compute the GK. In 
contrast to this, the GK is computed by the GC and it is sent as a multicast message to the group users 
in a secure way in centralized key management scheme. This section discusses about centralized key 
management scheme.

Figure 8.2 illustrates the functional description of the centralized key management scheme. This 
model has a GC that handles three types of keys used in a centralized key management approach. In 
this scheme, when a new user sends a join request to the GC, it assigns a private key (PK) initially to 
each user in a secure way which is sent as a unicast message. The GC utilizes this public key to encrypt 
subgroup key (SGK), which is a public key for a set of users in the key updating/rekeying process. The 
key updating is the process of changing the key when the group membership changes in the multicast 
group. This encrypted SGK is sent as a multicast message to the users. Now, the users whose public 
keys are used in the key updating process can decrypt this message by using their own secret key or 
public key. The key updating is the process of changing the keys whenever group membership changes. 
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Figure 8.2 Functional description of centralized key management and distribution

In order to efficiently distribute the GK which is common to all the users of the group, SGK acts as 
a key to encrypt GK. The encrypted GK by using SGK forms another key updating or rekeying mes-
sage. In the receiving end, the users can obtain GK by using their common SGK while receiving the 
rekeying message from the GC side. After that, as shown in Figure 8.2, the video data is scrambled by 
using a GK which is generated in a random manner. The receivers can use GK to descramble the video 
stream which is sent as a multicast communication from GC in a secure way. Usually, the GC updates 
SGK and GK in centralized key management scheme whenever the group membership changes in a 
group communication.
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8.2 centralIzed vs dIstrIbuted Key ManageMent

As stated before, the key management schemes are divided into two types, namely, centralized and 
distributed key management schemes. In the centralized key management scheme, a trusted third party 
is used to control the activities of the members. These activities include member registration, key gen-
eration, key distribution and key updating in the case of group communication. Moreover, the trusted 
third party called GC/trusted authority is responsible interacting and controlling the group members in 
the centralized key management scheme. In contrast, the keys in a distributed key management scheme 
are computed and maintained with the coordination of the members. Distributed key management 
schemes are divided into two types, namely, fully contributed key management and partially contrib-
uted key management schemes. In a fully contributed distributed key management scheme, the users 
themselves contribute to form and distribute the key which helps to maintain the secrecy and group 
membership that provides security to the group communication. In a partial contributed key manage-
ment scheme, both the users and the GC are responsible for generating and maintaining the keys and 
group membership. In such a scenario, the group members are getting some amount of information 
from the GC which is used by them to maintain the secrecy and group membership.

In centralized key management scheme, the handling of key generation and distribution is more 
complex when the messages are distributed to a group of users where number of users who join or 
leave the multicast group is more and dynamic. When a member joins, the new GK is encrypted with 
the member’s public key that is shared between the GC and member in a secure way and it is sent as a 
unicast message to the newly joined member. For the remaining group members, the GC encrypts the 
new GK with the previously used GK which is sent as a multicast message. Thus, changing the GK 
securely after a join is not a complex operation. However, after a member leaves the group, the previ-
ous GK should not be used for updating the GK. Hence, the GC must generate a new GK by encrypt-
ing it with the public keys of the remaining group members. Thus, changing the GK securely after a 
member leave operation takes more computation and communication cost. 

Figure 8.3 shows an example of the centralized key management scheme. In this figure, there is a 
GC and n  number of users. All the users are communicating with the GC for completing the registra-
tion and getting necessary keys. Finally, the users are also receiving the data from GC (if the server 
and GC are the same system) in a secure way. In contrast to this, in the distributed key manage-
ment scheme, the users are generating the necessary keys and computing a common GK as shown in 
Figure 8.4. Each user will have three modules associated with them. 

The three modules are private and public key generation, group key computation and encryp-
tion and decryption. Among the three modules, the first module private and public key generation 
is used for generating a private (secret) key and public key for each user based on some parameter. 
The   second module, group key computation is used for computing a common GK for performing 
encryption and decryption. The third module encryption and decryption is used for providing secure 
group  communication in the distributed key management scheme.

8.2.1 Key generation

Key Generation process in secure multicast communication is responsible for generating the random 
keys to be assigned privately to the registered users. This process also computes GKs with respect to 
the public keys related under the same subgroup. An important issue in the maintenance of integrity 
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is that generating the GK by the GC and making the members of the group to derive the GK without 
showing the secret key of individual members of the group. There are two types of techniques that are 
used for GK generation. In the first method, users are generating their own secret keys from which they 
compute a common GK which will be acting as a common shared secret key for a group of members. 
This method is called distributed key management scheme. In the second method, a trusted third party 
called GC generates the GK and distributes them to the group members in a secure way. This method 
is called centralized key management scheme. In both the schemes, several computations are neces-
sary to compute the subgroup key and GKs. Moreover, both these schemes need storage for storing 
the public parameters and various key values used for computing the GK. According to Poovendran 
[4] and Mingyan Li [6], a key generation scheme should not suffer due to the computational complexi-
ties occurring because of integer factoring or the computation of discrete logarithms as present in the 
existing key generation schemes.

8.2.2 Key distribution

Key distribution process in secure multicast communication is responsible for distributing the 
public keys and GKs to the registered users. Therefore, it is necessary to provide a registration 
facility using a special registration authority which can use the support of a GK distribution 
centre. This registration authority can send secret keys to all the members of the group when they 
complete the registration process. GKs can be distributed either by the GC to the participating 
members or the members themselves will be distributing the keys generated by them which are 
necessary for computing the GK. In a centralized key management scheme, the GK is distributed 
by the GC whereas in the distributed approach any one of the group members can provide support 
for distributing the GK. 

8.2.3 Key updating

Key updating is the process of changing the GK from time to time whenever a user join or leave the 
group. Key updating is also called key recovery. Key updating process in secure multicasting is used 
for group members to construct the original GK computed by a trusted third party called GC in the 
centralized key management scheme. On the other hand in distributed GK management, the key recov-
ery process is used for group members to compute the GK which is based on the public values received 
from other group members. In both of these schemes, the members of the group should take minimum 
number of mathematical operations for recovering the newly generated or updated GK. Moreover, the 
key recovery process should take minimum number of parameters for recovering the common GK 
whenever there is a change in the group membership. 

8.3 dIffIe–HellMan Key excHange

Diffie–Hellman key exchange is a key exchange algorithm applied to resolve the following dilemma. 
Alice and Bob desire to compute a shared secret key for encrypting a message using symmetric cipher 
method. In order to compute the shared secret key in an insecure channel, they need to exchange some 
public parameters from which, they are allowed to compute a common shared secret key. In such a 
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scenario, the adversary Eve, may follow the public information that are exchanged between Alice and 
Bob from which Eve may try find the shared secret key. Therefore, Alice and Bob should compute the 
shared secret key without knowing it to Eve. Diffie and Hellman solved this problem by utilizing the 
difficulty of computing the discrete logarithms [8]. This algorithm was developed in 1977 and it was 
named as Diffie–Hellman key exchange algorithm. The following subsection gives an overall idea 
about Diffie–Hellman key exchange algorithm.

8.3.1 diffie–Hellman Key exchange algorithm

Step 1: Initially, Alice and Bob select a large prime number p.

Step 2: Choose a primitive root of a prime number p. The primitive root of a prime number p is a num-
ber whose power generates distinct integers from 0 to p −1. For example, If k is a primitive root of a 
prime number p, then calculation of

k p k p k p k pp1 2 3 1mod , mod , mod mod… −

generates distinct integers ranges from 0 to p −1.  The primitive root of a prime number is also called 
generator. The primitive root is used to generate the public keys of the users. The main reason behind 
the selection of primitive root is that no two users can create the same public key. Alice and Bob post 
the values such as a prime number p and a primitive root k of p to the public knowledge. 

Step 3: In this process, Alice selects a secret integer A less than p and then computes a public key 
C  using the prime number p and the primitive root k.

C k pA= mod

Step 4: Likewise, Bob selects a secret integer B less than p which is independent of A and then com-
putes the public key D.

D k pB= mod

Step 5: Next, these computed public key values are exchanged between Alice and Bob in such a way 
that Alice transmits C to Bob and Bob transmits D to Alice. Note that the adversary Eve can also take 
the values of C and D, since they are transmitted over the insecure communication channel.

Step 6:  Alice calculates the shared secret key one SSK1 using the secret integer A and public key of 
Bob as mentioned below:

SSK D pA
1 = mod

Step 7: In a similar way, Bob calculates the shared secret key two ( )SSK2  using the secret integer B and 
public key of Alice as mentioned below:

SSK C pB
2 = mod

The two values SSK1  and ( )SSK2  computed by Alice and Bob are equal.
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Theorem 8.1: Show that the shared secret keys are identical. 

Proof:

 SSK D pA
1 mod=

                      = ( )k p pB A
mod mod

                      = ( )k pB A
mod

                      = ( )k pA B
mod   (by the rules of modular arithmetic)

                      = ( )k p pA B
mod mod

                       = C pB mod

                       = SSK2

From Theorem 8.1, it is evident that SSK SSK1 2=  and thus the shared secret key values are equal. 
The complete steps of Diffie–Hellman key exchange are represented in an illustrative manner as shown 
in Figure 8.5. In this figure, Alice wishes to establish a link with Bob and utilizes the shared secret key 
to encrypt the messages transmitted through that connection to make message communication confi-
dentially. In order to do that, Alice and Bob choose distinct one-time secret integer (public keys) A, B 
and then calculate C and D, respectively. Alice sends C to Bob and Bob responds to send D to Alice. 
Both Alice and Bob can now calculate the shared secret key.

The summary of Diffie–Hellman key exchange algorithm is shown in Table 8.1. From the process 
indicated in Table 8.1, it is clear that Alice and Bob compute their own shared secret key by following 
the required steps. It is to be noted that the computed shared secret keys are identical. 

Alice Bob

Generate A < p
Calculate C = kA mod p

Calculate SSK1 = DA mod p

Generate B < p
Calculate C = kB mod p

Calculate SSK2 = CB mod p

C

D

Figure 8.5 Diffie–Hellman key exchange
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Example 8.1: 
Alice and Bob use the Diffie–Hellman key exchange technique with a common prime number 11 and 
a primitive root of 2. If Alice and Bob choose distinct secret integers as 9 and 3, respectively, then 
compute the shared secret key.

Solution
Alice computes C = 2 119 mod  = 6

Bob computes D = 2 113 mod  = 8

After that, Alice and Bob exchange public keys (C and D), thereby each of them can individually 
 compute the shared secret key:

A computes SSK1
98 11= mod  = 7

B computes SSK2
36 11= mod  = 7

8.3.2 discrete logarithms

Consider Equation (8.1) mentioned below. 

 A k pn= mod  (8.1)

In this equation, assume that A, k and p are known values. With reference to this context, the process 
of finding the unknown value of n, when A, k and p values are known is called the discrete logarithm 
problem. Here, n is the discrete log of A which is indicated as shown in Equation (8.2). 

 n Ak= ( )log  (8.2)

Table 8.1 Summary of Diffie–Hellman key exchange algorithm

Global parameter elements

p Prime number

k k < p, primitive root of p

Key generation

Alice Bob

Select a secret integer (PK) A.

Compute C k pA= mod

Select a secret integer (PK) B.

Compute D k pB= mod

Exchange of public values

                       Alice sends C to Bob C

 D                                                        Bob sends D to Alice

Shared secret key generation

Alice Bob

Compute SSK D pA
1 = mod Compute SSK C pB

2 = mod
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Since k is the primitive root of the prime number p, we can say n is the discrete log of A with respect to 
the primitive root k. If k is not a primitive root of A, then it is not feasible to find the discrete logarithm 
n for the values of A since we would not obtain distinct values. For the known values of A, k and p, it 
would be possible to find the value of n by brute-force attack only for small numbers. However, it is 
impractical to determine the value of n for larger number. In the next section, we discuss some methods 
for computing discrete log problem.

8.4 coMputIng dIscrete logarItHMs

There are various methods for computing the discrete log problem. Among the various methods, we 
have explained baby step, giant step and index calculus in this book.

8.4.1 baby step, giant step

Let us consider the prime number p and the primitive root k p A< .  is a random secret integer less than 
p which is kept secret. Therefore

C k pA= mod

In order to find exponent A , first compute m  as shown in Equation (8.3).

 m p= −( )sqrt 1  (8.3)

Then, compute A im j= + ,  for some i j m, , , ,∈ … −{ }0 1 1 . Then, compute the values as shown in 
Equation (8.4).

C k pim j= + mod

 Ck k pim j− = mod  (8.4)

From Equation (8.4), the computation of i  and j  values result in finding the value of A  (exponent), 
since A im j= + .

Giant step: The process of computing the values of Ck pim− mod  and storing it in a table for i  = 0, 
1 1, ,… −m  values is called giant step. 

Baby step: The process of computing the values of k pj mod  for j  = 0 1 1, , ,… −m  and storing it in 
another table is called baby step.

Finally, by comparing both the tables, the value of A can be obtained.

Example 8.2:

Let p k C A= = = =17 3 3 17 5, and mod . Find the discrete log value A using baby step, giant step 
 process.

Solution

m = −( )sqrt 17 1  = 4

Compute the value Ck pim− mod  = 5 3 174×( )−i mod  and k pj mod  = 3 17j mod
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Table 8.2 Computation of i, j values

i, j 0 1 2 3

(5 × 3-i4) mod 17 5 3 12 14

3j mod 17 1 3 9 10

From Table 8.2, it is clear that when i j, = 1, it results in same value (3) for baby step as well as for 
giant step. Hence, we can conclude that the value of i = 1 and j = 1. Using the above calculated values, 
the exponent A  can be easily computed as shown in Equation (8.5). 

 A i m j= ×( ) +  = (1 × 4) + 1 = 5 (8.5)

Therefore, A = 5. The value of A  can be verified by substituting it in the given equation as follows:

5 3 17= modA

5 3 175= mod

5 5=

Thus, the value of A  obtained using baby step and giant step is acceptable.

8.4.2 Index calculus

Index calculus is a process of computing values of the discrete log based on the index value.

 • Let p be the prime number and k  be the primitive root of p.

 • For the given value of modC k pA= , it is feasible to determine a discrete log value A  of C using 
the index calculus method.

 • In order to do this, randomly select d p∈ … −{ }0 1 2 2, , , ,  and then compute y C k pd= × ( )mod  
until the y  value is completely factored over prime numbers.

 • Hence, y p p p pa a
n
an= … ( )−

−
0 1 1

0 1 1. mod , where a
i
 is prime powers and p

i
 is prime numbers, 0 ≤ i ≤ n - 1.

 • Therefore, the discrete log value A  of C  is simply obtained as shown in Equation (8.6).

 
A a p p a p p a p p d pk k n k n= + +…+ −( )− −0 0 1 1 1 1log mod log mod log mod mod −−( )1  (8.6)

Example 8.3:

Let , , modk p C A= = = ( ) =3 101 3 101 94. Find the discrete log value of  A using index calculus  method.

 • Randomly select the value of  d p∈ … −{ }0 1 2 2, , , , and then compute y C k pd= ( ). mod  until the 
y  value is completely factored.

 • If d = 1, then 
y = × ( )94 3 1011 mod

= ( )
= = ×

282 101

80 2 54

mod

  For d y= =1 80,  which is not factored completely with respect to prime numbers. 
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 • If d = 2, then 

y = × ( )94 3 1012 mod

mod= ( )846 101

= = ×38 19 2

  For d y= =2 38, ,  which is factored as prime numbers. Therefore, we can consider the value of 
d  is 2.

 • Therefore, the discrete log value A  of C  can be computed by

A = ⋅ + ⋅ −( )( )1 19 101 1 2 101 2 1003 3log mod log mod mod

= + −( )84 29 2  mod100( )
= 111 100mod

= 11

8.5 Man-In-tHe-MIddle attacK

The Diffie–Hellman exchange algorithm can be easily attacked using man-in-the-middle (MITM) 
 attack. In order to do this, an attacker may begin two distinct key exchanges in this attack to Alice 
and Bob in such a way that they believe that it comes from reliable source (Alice/Bob). For doing this, 
 initially the attacker intercepts the public key value sent by Alice to Bob and transmits the attackers 
public key value to Alice. Similarly, when Bob sends his public key value, the attacker replies with 
attackers public key value in such a way that the message comes from Alice. After sending the public 
key value of attacker to both Alice and Bob, they compute different shared secret key SSK1  and SSK2. 
These two shared secret key values computed by Alice and Bob are not same and hence SSK SSK1 2≠ .

After computing SSK
1
, Alice encrypts the message using SSK

1
. This encrypted message is sent to 

Bob. Meanwhile, an attacker intercepts the encrypted message and decrypts it using the SSK
1
. The 

attacker can compute SSK
1
 using the public key received from Alice and secret integer (Z) of attacker 

SSK
1
 = kAZ mod p. After decrypting it, the attacker encrypts some other message using SSK

2
 = kBZ mod 

p, which can be decrypted by Bob. In this attack, the attacker reads the message sent by one party and 
modifies them with the suitable key and sends them to the other party. Note that the attacker must be 
present in the middle during the transmission of messages every time between Alice and Bob. If the 
attacker is sometimes absent, his earlier presence is then disclosed to Alice and Bob in such a way that 
they cannot decrypt the messages since SSK SSK1 2≠  and hence they will recognize that all of their 
previous private communications had been intercepted, decrypted and modified by an attacker in the 
channel. The MITM attack is depicted in Figure 8.6.

MItM procedure

 1. An attacker chooses an exponent Z as secret key.

 2. Attacker intercepts k pAmod  and k pB mod  which are sent by Alice and Bob.
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kA mod p

kz mod p

kB mod p

kz mod p

ESSK1(M1)

ESSK1(M4)

DSSK1(M1)

DSSK2(M3)

ESSK2(M2)

ESSK2(M3)

SSK1 = kZA mod p
SSK1 = kAZ mod p
SSK2 = kBZ mod p

SSK2 = kZB mod p

AttackerAlice Bob

Figure 8.6 Man-in-the-middle attack

 3. Attacker transmitts k pZ mod  to both Alice and Bob, from that transmission Alice thinks that Bob 
has received k pAmod  and Bob thinks that Alice has received k pB mod . 

 4. Attacker computes SSK k pAZ
1 = mod  and SSK k pBZ

2 = mod . Similarly, Alice and Bob compute 
SSK1  and SSK2 , respectively. In this case, both Alice and Bob do not realize that the attacker is in 
the middle. 

 5. When Alice encrypts a message with SSK1  and sends it to Bob, attacker intercepts the encrypted 
message in the middle, decrypts it and then re-encrypts it with SSK2  and forwards it to Bob.

 6. After receiving the message, Bob decrypts the message with SSK2  and thinks that the message 
was sent by Alice and gives the reply to Alice. Here, Bob does not know that the communication 
was attacked and at the same time the attacker gets pleasure from reading Alice’s message.
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8.6  Java IMpleMentatIon of dIffIe–HellMan 

Key excHange algorItHM

Line 
no. Java program for Diffie–Hellman key exchange algorithm

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

import java.math.BigInteger;

import java.util.Scanner;

public class DiffieHellman

{

public static void main(String ar[])

    {

Scanner in= new Scanner(System.in);

BigInteger k,p,A,C,B,D,ssk1,ssk2;

System.out.println(“DiffieHellman Key Exchange Algorithm:”);

System.out.println(“\nEnter the Large prime value”);

p = in.nextBigInteger();

System.out.println(“\nEnter the Primitive Root for Large prime value”);

k = in.nextBigInteger();

System.out.println(“\nEnter the Private key for Alice”);

A = in.nextBigInteger();

C=k.modPow(A, p);// Root power of A % p

System.out.println(“\nEnter the Private key for Bob”);

B = in.nextBigInteger();

System.out.println(“\nCalculating Public Keys”);

D = k.modPow(B, p); // Root power of B % p

System.out.println(“\n Public Key values for Alice and Bob  “+ “ “+ C + “ “+”\n”+ D+”\n”);

System.out.println(“\nCalculatingComman key values”);

ssk1 = D.modPow(A, p); // D power of A % p

ssk2 = C.modPow(B, p);

System.out.println(“\n Calculated common Key values for Alice and Bob  “+ “ “+ ssk1 + 
“ “+”\n”+ssk2);

     }

}
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Line 
no. Java program for Diffie–Hellman key exchange algorithm

29 OUTPUT:

In the above program, there is a shared secret key computation module that can be used in Alice and 
Bob side. In line numbers 16 and 18, the public key of Alice and Bob is calculated. In line numbers 
23–24, the common shared secret key of Alice and Bob is calculated. 

8.7  secure MultIcast coMMunIcatIon based on 

dIffIe–HellMan Key excHange

In this section, we discuss an efficient Diffie–Hellman key exchange-based GK computation protocol 
for providing secure data transmission among a group of users [1]. This GK computation protocol 
works in the distributed key management scheme that supports two major operations, namely, user 
joining and user leaving for managing group memberships. 

8.7.1 Introduction

This key exchange works in three phases. The first phase is the group initialization, where the multi-
plicative group is created. In the second phase of member initial join, the members send the joining 
request to the existing group members and obtain all the necessary keys for participation. The final 
phase of rekeying deals with all the operations to be performed after a member leaves/joins the group 
(providing forward/backward secrecy).

8.7.1.1 group Initialization

Initially, the group members select a large prime number p. This value, p helps in defining a multiplica-
tive group z

p
*
 
and a secure one-way hash function H(.). The defined function, H(.) is a hash function de-

fined from x y z× = , where x and y are non-identity elements of z
p
*. Since, the function H(.) is a one-way 

hash function, x is computationally difficult to determine from the given function modz y px= ( )  and y.

8.7.1.2 Member Initial Join

Whenever a new user i  is authorized to join in a group for the first time, the user selects a secret key 
Ki  from the group z

p
*, which is known only to the user Ui  who computes the Euler’s totient function 



240  Cryptography and Network Security

value of it. The result is represented as x Ki= ( )φ ,  which is used as a component in secure one-way 
hash function. Next, it computes the public key by using the parameter p (group size) and a value y 
which is  selected from the group z

p
* such that y p< . New user i sends join request along with its pub-

lic key to the entire  remaining user’s and also gets all users public key for computing the GK. 

8.7.1.3 rekeying

Whenever some new members join or some old members leave the group, the existing group  members 
need to compute the new GK in such a way that all the existing members should have the same 
GK. In such computational scenario, the new GK should be computed in minimal computation time. 
 During the key computation process, one node will be designated as a support node, where this node 
will usually be located nearest to the member leave/join node. If the tree is unbalanced, the support 
node will be located in the shallowest right most area as shown in Figure 8.8. If the tree is a balanced 
one, any node can become a support node. 

8.7.2 Key computation protocol

In distributed key management environment, the GC is not responsible for computing GK and SGK. 
Each member is generating GK via each user’s and internal nodes public key. Each member M

i
 holds a 

pairs of keys called secret key and public key. The notations used to represent the secret and public key 
are KMi (the secret key of member Mi

 
) and PK y pMi

KMi= mod  (the public key of member Mi), which 
will remain valid from the time M

i
 joins until it leaves. With the help of each user’s public key, a GK is 

computed when a member join or leave from the service. GK can be used to encrypt and decrypt the 
data that is shared between the group members. 

In this key management scheme, a binary key tree is formed in which each node v represents a 
secret (private) key Kv  and a public key PKv. Public key can be calculated by using the function 
public key modv

Ky pv= φ ( ) , where y and p are public parameters for that group. The function φ( )Kv  
 represents Euler’s totient value of the secret key Kv. Every member holds the secret keys along the key 
path from his leaf node to the root node. For simplicity, we assume that each member knows the public 
keys of all other group members who are in the key tree. Initially, each member randomly selects the 
secret key of a leaf node. The secret key of a non-leaf node v  can be generated as shown in Figure 8.7.

Since the member 2v + 1 knows the public key of member 2v + 2, the member 2v + 1 can calculate 
the value of node v  by,

 GK y pV v
K K K

v v
v= = ( )+

( )
+ +

+
public key mod2 2

2 1 2 2
2 1φ φ φ( ( ))  (8.7)

Similarly member 2v + 2 knows the public key of 2v + 1, this member can compute the node value by,

 GK y pV v
K K

K
v v

v

= = ( )+
( ) ( ) ( )

+ +
+

public key2 1
2 2 2 1

2 2φ φ φ
mod  (8.8)

V

2V + 1 2V + 2

Public key2V+2

Public key2V+1

Figure 8.7 Calculation of a node value
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The computed values shown in Equations (8.7) and (8.8) should be equal. Each user generates GK 
via all others and intermediate nodes public key. For example, in Figure 8.8, the member M

1 
can gener-

ate GK via the following steps:

 • Using K
7
 and public key

8
, the node key K

3
 is calculated.

 • After computing K
3
, the public key public key

4
 and K

3 
are used to calculate the node key K

1
.

 • Finally, using K
1
 and public key

2
, the root key K

0
 (GK) is calculated.

The same procedure is used by all other members of the group for computing the GK when there is a 
change in group membership.

8.7.2.1 Member Joins

Consider a binary tree depicted in Figure 8.9(a) that has 6 members {M
1
, M

2
…M

6
}. The new member 

M
8
 initiates the protocol by broadcasting a join request message that contains its own public key

8
. This 

message is distinct from any JOIN messages generated by the underlying communication system. 
Each current member receives this message and first determines the insertion point in the tree. When 
finding the insertion point, it should not increase the height of the key tree. Hence, the appropriate 
place for choosing the insertion point is to find a node which is located in a small depth. The member 
who is located in that insertion point becomes a support node. Otherwise, if the key tree is fully bal-
anced, any of the leaf nodes can act as support node to insert the new member in the key tree structure. 

The support node has to find the insertion point for the new member. After finding the insertion 
point, the support node creates a new intermediate node, a new member node, and promotes the new 
intermediate node to be the parent of both the insertion node and the new member node. The support 
node is responsible for updating all the internal node keys located in the path from leaf node to the root 
node. After the updating process, the support node broadcasts the public key of updated key nodes to 
essential group members. On reception of the public keys, all other members in the key tree update 
their GK. Only the required public keys for the computation of GK are sent to the group members, 
since all the other keys are already known to them and it might appear to increase the network traffic. 

0

1

3

7 8

4

M3

M2M1 M8 M5 M6M4

2

5 6

11 12 13 14

Figure 8.8 Binary tree key management scheme
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Figures 8.9(a) and (b) illustrate the case of member join/member leave. Suppose if member M
8
 wants 

to join in this group, then the keys from the leaf node to the root node must be updated in order to 
provide backward secrecy. First, the new joining user broadcasts its public key

12
 on joining.

After joining, the support node becomes the responsible node to update the keys that are located in its 
path. It rekeys K

5
, K

2
, and K

0
 and then broadcasts the public keys PK

5
 and PK

2
. The members M

1
, M

2
 and 

M
3
 compute K

0
 from the given PK

2
. Members M

5
 and M

6
 compute K

2
, K

0
 from the given public key PK

5
.

8.7.2.2 Member leaves

Assume that there are n members in the group currently where member M
n
 leaves the group. Now, the 

support node becomes a responsible node to update the GK and to broadcast all the required public 

0

1

3

9 10

4

M1 M4

M3

(a) Before member M8 join/leave

M2 M5 M6

2

5 6

13 14

0

1

3

9 10

4

M1

M3

(b) After M8 join/leave the group

M2 M5 M6

2

5 6

13 14

M4 M8

11 12

Figure 8.9 Member join/leave case
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keys in the key tree. When a member leaves from the tree, its immediate left or right node will be up-
lifted higher by one level to reduce the number of keys to be updated by the support node. During the 
member leave operation, all the keys from the leaf node to the root node must be updated in order to 
prevent the access of future data by the left members from the group. This provides forward secrecy. 
If member M

8
 wants to depart from the service, the internal node keys K

5
, K

2
 and K

0
 must be renewed 

as shown in Figures 8.9(b) and Figure 8.9(a). During the update phase, the support node M
4 
becomes 

a responsible node to rekey the secret keys K
2
 and K

0
 and broadcasts the public keys PK

2 
and

 
PK

5
. The 

members M
1
, M

2 
and M

3
 compute K

0
 from the given PK

2
. Members M

5
 and M

6
 compute K

2
, K

0
 from 

the given public key PK
5
. 

8.8  coMputatIon-effIcIent secure MultIcast Key 

ManageMent based on greatest coMMon dIvIsor

In this work, a new GCD (greatest common divisor)-based key distribution protocol that focuses on 
two dimensions [2] is introduced. The first dimension deals with the reduction of computation com-
plexity which is achieved in this protocol by performing less number of multiplication operations dur-
ing the key updating process. The second dimension aims at reducing the amount of information stored 
in the GC and group members while performing the updating operation in the key content. 

8.8.1 Introduction

This protocol works in three phases. The first phase is the GC initialization, where a multiplicative 
group is created at GC. In the second phase called member initial join phase, where the members send 
join requests to the GC and obtain all the necessary keys for participation through secure channel. 
The final phase of this protocol is known as ‘member leave’ that deals with all the operations to be 
performed after a member leaves from the group (providing forward secrecy). This work mainly con-
centrates on the third phase of ‘member leave’ phase because the computation time is extremely large 
in most of the existing systems for providing forward secrecy. This is extremely a great challenge in 
most of the multimedia multicast applications. 

8.8.1.1 gc Initialization

Initially, the GC selects a large prime number p  and q, where p q>  and q p≤ ⎡⎢ ⎤⎥4 . The value, p 
helps in defining a multiplicative group z

p
* and q  is used to fix a threshold value μ , where μ = +a q. 

The value a  is a random element from the group z
p
*
 
and hence when a  value increases, the value of 

μ  also increases.

8.8.1.2 Member Initial Join

Whenever a new user i is authorized to join the multicast group for the first time, the GC sends (using a 
secure unicast) a secret key Ki  which is known only to the user ui  and GC. Ki  is a random element in 
z

p
*
 
and the necessary condition is that all Ki  values are greater than μ . If this condition is not satisfied, 

then the value of a  must be adjusted so that it is possible to select Ki > μ . Using this Ki , the encrypted 
SGK γ  and a GK Kg 

are given for that user ui  which will be kept in the user ui  
database. The follow-

ing steps describe the key updating process used for member join operation at the GC.

 1. Initially, GC selects a random element β  from z
p
*.

 2. GC now computes the GK γ β= a pmod . 
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 3. The GC calculates .∂ = ( )
=

∏g
i

n

iK
1

 4. The GC computes GCD value of μ,∂( )g
 by using extended Euclidian algorithm described in 

Ref. [3] from which it finds x y d, ,  such that x y dg× + × ∂ =μ .

 5. The GC multicasts β , , ,x p q dand  to the group members.

Upon receiving all the above information β , , , ,x p q d( )  from the GC, an authorized user ui of the 
current group executes the following steps to obtain the new GK γ .

 1. Computes  x
1
 using the relation x mod K

i
 = x

1
. 

 2. Computes μ  using x
1
−1 mod K

i
 = m.

 3. Performs the following operation to find the shared secret key.

β
β

β γ
μ

μ
d

q

d qp p
×

×( )−= =mod mod  

  The γ  obtained in this way must be equal to the γ  computed in Step 2 used in GC.

security

Computing the newly updated γ  in the proposed scheme depends on the method used to calculate 
the members secret key Ki  

in a
 
particular time period. In this scheme, the GC distributes the elements 

β , , ,x p q dand to the group members through multicast communication. Hence, an attacker will try 
to capture all the distributed elements and by using these elements, the attacker can try to find the value 
of m. This μ  can be computed only by using the user’s secret key Ki . If the attacker is not an active 
adversary (i.e. not a previous member of the multicast group), the attacker can use brute-force attack 
to learn about any one member’s secret key Ki. If the size of Ki  

is w  bits, then the attacker has to use  
the total number of trial of 2w. The time taken to derive Ki can be increased by choosing the large  
Ki 

for each user’s secret key. In this work, the size of Ki  
must be 64 bits or 128 bits. If the time 

 required to perform one attempt using brute-force attack is 1 us, then the total time required will be 
263 us = 292471 years. Therefore, when large-size Ki  

is used, it is not possible to find the value of μ 
and hence γ  cannot be computed by an adversary.

8.8.1.3 Member leave

Whenever some new members wish to join or some old members wish to leave the multicast group, the 
GC needs to distribute a new GK to all the current members in a secure way with minimal computa-
tion time. When a new member joins the service, it is easy to communicate the new GK with the help 
of the old GK. Since the old GK is not known to the new user, the newly joining user cannot view the 
past communications. This provides backward secrecy. Member leave operation is completely differ-
ent from member join operation. In member leave operation, when a member leaves from the group, 
the GC must avoid the use of old GK/SGK to encrypt new GK/SGK. Since old member knows old 
GK/SGK, it is necessary to use each user’s secret key to perform rekeying operation when a member 
 departs from the services. In the existing key management approaches [4–5], this process increases 
GC’s computation time, because the number of multiplications operations to be done in the key upda-
tion is more. In this key distribution scheme, the computation times are equalized for member join and 
leave operations. Therefore, this work aims at reducing the computation time by decreasing the number 
of multiplication operations to be carried out.
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8.8.2 clustered tree-based Key Management scheme

Scalability can be achieved in this key distribution approach by applying this scheme in a clustered 
tree-based key management scheme to update the GK and SGK. Figure 8.10 shows a cluster tree in 
which, the root is the GK, leaf nodes are individual keys, and the intermediate level is SGK. The tree 
shown in Figure 8.10 consists of only three levels. The lowest level (0th level) is the GK. The next 
higher level (1st level) contains the shared secret keys, γ i , where i = 1, 2, …, n. The last level (2nd level) 
is the users level, where M number of users are grouped into k  clusters, Ck . Each cluster is attached 
to the upper level (1st level) node and in turn with the GK node. When the number of joining users 
exceeds the cluster size, a new node is created from the root to form the second cluster. The number of 
clusters formed is based on the cluster size M  which is fixed by GC and the number of joining  users. 
If  the cluster tree-based key management consists of N  number of users M1, M2 … MN  and each 
cluster size is of size M, then there will be N M/⎡⎢ ⎤⎥ clusters. In this cluster tree-based key management 
scheme, updating is necessary for each rekeying operation used for member leave and member join 
operations. For example, if a member M

10
 in cluster 2 from the Figure 8.10 leaves from the group, then 

the keys on the path from his leaf node to the tree’s root node must be changed. Hence, only the keys 
γ 2  and Kg 

will become invalid. Therefore, these two keys must be updated.

In order to update these two keys, two approaches are used in the members departure (leave) 
operation. In the first approach, updating of the SGK, γ 2  for the cluster 2 is performed as given in 
Algorithm 8.1. When a member M10  leaves from the service, GC computes ∂ ( )g K6 9,  for the existing 

users using their own secret keys which are kept in GC. When computing ∂ ( )g K6 9,  for the members 

M6, M7, M8 and M9, the GC uses K K K K6 7 8 9, , and , which are the secret keys for the remaining 

members of  cluster 2. Since the secret key K10  is known to the member M10 who had left from the 

service, GC is not using the secret key K10  when it computes the function ∂ ( )g K6 9,  for the members 

M6, M7, M8  and M9. However, the computation time of ∂ ( )g K6 9,  can be reduced by dividing γ 2  by 

K10 as shown in step 1 rather than multiplying all users secret key once again. Next, the GC computes

,μ GCD value of μ, ,∂ ( )( )g K6 9  and generates a multicast message as indicated in step 4 and sends the 

message to all the existing members of the cluster in order to update the new SGK γ 2
1.

Kg

g1

Cluster 1

Group key

Sub group keys

Secret keys

MembersMi

K1 K2

M1 M2 M3 M4 M5 M6 M7 M8 M9 M10M11M12M13M14M15

K3 K4 K5

g2

K6 K7 K8 K9 K10

g3

K11 K12 K13 K14 K15

g i

Ki

Figure 8.10 Clustered tree-based key management with cluster size M = 5 and 
number of users = N
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 1. ∂ ( ) =
∂ ( )

g

g
K

K

K6 9

6 10

10
,

, .

 2. GC generates the new β , q  and computes μ  and γ 2
1  values as explained in Section 8.8.1.2.

 3. Now GC computes GCD value of μ, ,∂ ( )( )g K6 9  and finds out x y d, ,  values.

 4. Finally, GC multicasts β , , , ,x p q dand  to the existing group members.

  Group members M6, M7, M8 and M9 execute the following steps to obtain the new  
SGK γ 2

1 .

 5. Compute x mod K
i
 = x

1
.

 6. Compute x
1

−1 mod K
i
 = m.

 7. Perform the following operation to find the shared secret key.

β
β

β γ
μ

μ
d

q

d qp p
×

×( )−= =mod mod 2
1

 Algorithm 8.1

After updating the above SGK successfully, GC has to use the second approach in order to update 
the GK Kg  using a different procedure as explained below. The new GK Kg is used to encrypt the data. 
For updating the GK, GC generates a new GK from *zp , with a condition that the new GK Kg

1 < γ i . 
If this condition is not satisfied, then append a value 1 in front of γ i  in order to make γ i  is a greater 
value than Kg

1 as used in Ref. [4]. Every time when a new cluster is created, its corresponding SGK is 
multiplied with all others SGK and the result is stored in to a temporary variable X. Therefore, when-
ever a new cluster is created, only the new γ i  of the newly created cluster is multiplied with the value X 
which is stored in GC. Hence, only one multiplication is needed for updating the GK. Similarly, when 
an existing cluster is completely deleted, X is divided by the corresponding γ i  value and hence only 
one division is necessary for updating the GK. In order to understand the key updation when a single 
member leaves a group, consider an example using Figure 8.10 where let only one member M10  

leaves 
from the cluster (cluster 2). In this case, γ 2  must be updated and let the updated γ 2  be represented 
as γ 2

1. In order to update γ 2, the GC must divide X by γ 2  first and then the result must be multiplied 
with the newly computed γ 2

1 and the final result is stored in to the variable X. This X is added with 
the newly generated GK Kg

1 to obtain γ g and the rekeying message is formed by using the equation
γ g gK X= +1 . In this way, member leave operations are handled effectively by reducing the number of 
multiplication/divisions. 

The resultant value γ g  is broadcast to the remaining members of the group. The members of the 
group can recover the updated GK with the help of γ i  using the relation,

modγ γg i gK( ) = 1

The key strength of this algorithm is that the scalability increases sufficiently. The number of keys to 
be used by the GC and group members is reduced. Each user has to store three keys, since the tree 
described in the proposed algorithm has three levels. If the number of clusters is K  and each cluster 
consists of n  users, then the storage complexity of GC is n K K×( ) + +2 1, where 2K  is used to denote 
the total number of ∂ ( )g i jK ,  and γ i  used for every cluster that are stored in GC. The computation 
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 complexity of the GC and group members is 3, which means that they will perform only three math-
ematical operations such as multiplication, multiplicative inverse and GCD.

8.9  Java IMpleMentatIon of secure MultIcast Key 

ManageMent based on gcd

Line no. Java program for secure multicast key management based on GCD

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

GC Side
import java.util.*;

import java.lang.*;

import java.net.*;

import java.io.*;

import java.math.*;

import java.lang.Math.*;

class server

{

public static void main(String args[])throws Exception

{

long t1,t2,t3,t4;

DatagramSocket ds=new DatagramSocket(1234);

BigInteger p,q,d,a,g,l,r,u,v,k1,k2;

BigInteger ea,eb,ex,ey,eq,er,ex1,ex2,ey1,ey2,zero;

// --- Assigning Initial Values --- //

p=new BigInteger(“7105152391649023”);  //16 digit prime

q=new BigInteger(“597419368681”);  //12 digit prime

a=new BigInteger(“366934943356”);  //12 digit number

k1=new BigInteger(“764365874318093”);  //15 digit number

k2=new BigInteger(“286431602915049”);  //15 digit number

g=new BigInteger(“632891092823657”);  //15 digit number

// --- Calculations --- //

//EUCLIDEAN VAR ASIIGN

ex2=new BigInteger(“1”);

ex1=new BigInteger(“0”);

ey2=new BigInteger(“0”);

ey1=new BigInteger(“1”);

zero=new BigInteger(“0”);
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Line no. Java program for secure multicast key management based on GCD

30 

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

//

d=q.add(a);

l=k1.multiply(k2);

t1=System.nanoTime();

r=g.modPow(a,p);

// --- Euclidian Algorithm --- // u.d+v.l=1 : xa+yb=d

ea=d;

eb=l;

while(eb.compareTo(zero)>0)

{

eq=ea.divide(eb);

er=ea.subtract(eq.multiply(eb));

ex=ex2.subtract(eq.multiply(ex1));

ey=ey2.subtract(eq.multiply(ey1));

ea=eb; eb=er; ex2=ex1; ex1=ex; ey2=ey1; ey1=ey;

}

t2=System.nanoTime();

System.out.println(“r= “+r);

u=ex2; v=ey2;

System.out.println(“u.d+v.l=x => “+u+”*”+d+”+”+v+”*”+l+”=”+ea);

// --- Send (p,g,m,u,ea) --- //

String temp;

temp=””+q;

ds.send(new DatagramPacket(temp.getBytes(),temp.length(),InetAddress.
getByName(“227.0.0.1”),1235));

temp=””+g;

ds.send(new DatagramPacket(temp.getBytes(),temp.length(),InetAddress.
getByName(“227.0.0.1”),1235));

temp=””+p;

ds.send(new DatagramPacket(temp.getBytes(),temp.length(),InetAddress.
getByName(“227.0.0.1”),1235));

temp=””+u;

ds.send(new DatagramPacket(temp.getBytes(),temp.length(),InetAddress.
getByName(“227.0.0.1”),1235));

temp=””+ea;

ds.send(new DatagramPacket(temp.getBytes(),temp.length(),InetAddress.
getByName(“227.0.0.1”),1235));
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Line no. Java program for secure multicast key management based on GCD

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

System.out.println(“Packets Send”);

System.out.println(“The Computation time for the SERVER : “+(t2-t1)+ “nano sec”);

}

}

User Side
import java.util.Scanner;

import java.lang.Math;

import java.math.BigInteger;

import java.net.*;

class client

{

public static void main(String args[]) throws Exception

{

long t3,t4;

MulticastSocket ds=new MulticastSocket(1235);

DatagramPacket dp;

ds.joinGroup(InetAddress.getByName(“227.0.0.1”));

BigInteger q,g,u,p,t1,r,d,k,ea;String temp;

Scanner scan=new Scanner(System.in);

// --- receive ‘q’ value --- //

byte by0[]=new byte[1024];

dp=new DatagramPacket(by0,1024);

ds.receive(dp);

temp=new String(dp.getData());

q=new BigInteger(temp.trim());

// --- receive ‘g’ value --- //

byte by1[]=new byte[1024];

dp=new DatagramPacket(by1,1024);

ds.receive(dp);

temp=new String(dp.getData());

g=new BigInteger(temp.trim());

// --- receive ‘p’ value --- //

byte by2[]=new byte[1024];

dp=new DatagramPacket(by2,1024);
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Line no. Java program for secure multicast key management based on GCD

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

ds.receive(dp);

temp=new String(dp.getData());

p=new BigInteger(temp.trim());

// --- receive ‘u’ value --- //

byte by3[]=new byte[1024];

dp=new DatagramPacket(by3,1024);

ds.receive(dp);

temp=new String(dp.getData());

u=new BigInteger(temp.trim());

// --- receive ‘ea’ value --- //

byte by4[]=new byte[1024];

dp=new DatagramPacket(by4,1024);

ds.receive(dp);

temp=new String(dp.getData());

ea=new BigInteger(temp.trim());

System.out.println(“(g,p,u) : “+g+” “+p+” “+u);

// --- get Private key --- //

System.out.println(“Enter the Private Key”);

k=new BigInteger(scan.nextLine().trim());

// --- Calculations --- //

//Assignngn for euclidean

BigInteger a1,a2,a3,b1,b2,b3,one,temp1,temp2,temp3,zero,q1;

a1=new BigInteger(“1”);

a2=new BigInteger(“0”);

b1=new BigInteger(“0”);

b2=new BigInteger(“1”);

one=new BigInteger(“1”);

zero=new BigInteger(“0”);

t3=System.nanoTime();

t1=u.mod(k);

// --- To find d --- //

a3=k;

b3=t1;

while(b3.compareTo(one)!=0)

{

q1=a3.divide(b3);

temp1=b1;temp2=b2;temp3=b3;
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Line no. Java program for secure multicast key management based on GCD

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

b1=a1.subtract(q1.multiply(b1));

b2=a2.subtract(q1.multiply(b2));

b3=a3.subtract(q1.multiply(b3));

a1=temp1;

a2=temp2;

a3=temp3;

}

if(b2.compareTo(zero)<0)

d=b2.add(k);

else

d=b2;

r=g.modPow((ea.multiply(d)).subtract(q),p);

t4=System.nanoTime();

System.out.println(“The value of r,d is “+r+” “+d);

System.out.println(“The Computation time for the CLIENT : “+(t4-t3)+ “nano sec”);

}

}

OUTPUT:

GC (Server) Side

User Side
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In the above program in line numbers between 16 to 21, necessary variables for the program are 
assigned with values in the GC side. Line numbers between 36 and 49 represent the extended Euclidian 
operation (encryption) that is essential for this approach. After this, the essential parameters are sent 
to the client for the computation of GK using datagram packet which are represented in line numbers 
between 53 and 61. In the user’s side, q, g, p, u and ea are received by the client that represented in line 
numbers between 86 and 110. Line numbers between 131 and 145 represent the extended Euclidian 
operation performed by the client. Line numbers between 145 and 146 represent the decryption opera-
tion performed by the client. 

Key terMs

Baby step 

Backward secrecy 

Binary key tree

Centralized key management

Clustered tree approach

Cluster size

Computation complexity

Diffie–Hellman key exchange

Discrete logarithms

Distinct integers

Distinct key exchanges

Distributed key management

Dynamic groups

Euler’s totient value

Extended Euclidian algorithm

Forward secrecy

Generator

Giant step

Greatest common divisor

Group centre

Group initialization

Group key

IGMP

Index calculus

Key computation protocol

Key distribution

Key generation

Key management

Key recovery

Key updating

Man-in-the-middle attack

Member join or leave

Multicast communication

One-way hash function

Primitive root

Private key

Public key values

Scalability

Secret integer

Secure multicast communication

Shallowest rightmost node

Shared secret key

Static groups

Subgroup key

Support node

suMMary

 • Multicast communication is a type of communication in which one sender is sending a common 
message to a group of receivers. 

 • In static group communication, membership of the group is predetermined and does not change 
during the communication.
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 • In a dynamic group communication, members can either join or leave from the service at any time.

 • Preventing new members from having access to previous data is called backward secrecy.

 • Preventing existing members who do not have further access to the multicast communication 
 during member leave is called forward secrecy.

 • The backward and forward secrecy can be achieved only through the use of effective key manage-
ment schemes.

 • The process of generating, distributing and managing keying materials to secure the group 
 communication is called key management.

 • Key managements schemes are classified into centralized and distributed schemes. 

 • Key generation process in secure multicast communication is responsible for generating the 
 random keys to be assigned privately to the registered users.

 • Key distribution process in secure multicast communication is responsible for distributing the 
public keys and GKs to the registered users.

 • Key recovery process in secure multicasting is used for group members to construct the original 
GK computed by a trusted third party called GC in the centralized key management scheme.

 • Diffie–Hellman key exchange is a key exchange algorithm in which shared secret key is securely 
communicated by utilizing the difficulty of computing the discrete logarithms. 

 • A shared secret key is a key used for encrypting a message using symmetric cipher methods.

 • The primitive root of a prime number p  is a number whose power generates distinct integers from 
0 to p −1.

 • In Diffie–Hellman key exchange, the computed shared secret keys are identical. 

 • The process of finding the unknown value from the known values using logarithms is called the 
discrete logarithm problem.

 • The process of computing the values of Ck pim− mod  and storing it in a table for i  = 0 1 1, , ,… −m  
values is called giant step. 

 • The process of computing the values of k pj mod  for j  = 0 1 1, , ,… −m  and storing it in another 
table is called baby step.

 • Index calculus is a process of computing values of the discrete log based on the index value.

 • The Diffie–Hellman exchange algorithm can be easily attacked using MITM attack.

 • In MITM attack, an attacker may begin with two distinct key exchanges in such a way that Alice 
and Bob believe that it comes from a reliable source.

 • In MITM attack, an attacker must be present in the middle during the transmission of messages 
every time between Alice and Bob else the earlier presence of an attacker is then disclosed to Alice 
and Bob.

 • Diffie–Hellman key exchange-based GK computation protocol works in a distributed key man-
agement scheme where the two major operations are member joining and leaving. 

 • Diffie–Hellman key exchange-based GK computation protocol has three phases, namely group 
initialization, member initial join and rekeying. 

 • In the distributed key management environment, the GC is not responsible for computing GK and 
SGK. Each member generates GK via each user’s and internal nodes public key.
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 • In Diffie–Hellman key exchange-based GK computation protocol, keys are derived from bottom 
(leaf) of the tree to the top (root) of the tree.

 • GCD-based key distribution protocol deals with the reduction of computation complexity and the 
amount of information stored in the GC and group members. 

 • In GCD-based key distribution protocol, GC uses extended Euclidian algorithm for computing 
GCD value. 

 • In GCD-based key distribution protocol, scalability can be achieved by applying clustered tree-
based key management scheme. 

 • In clustered tree-based key management scheme, root node is the GK and leaf nodes are indi-
vidual keys.

 • Clustered tree-based key management scheme can have a maximum of three levels starting from 
0th level to 2nd level.

 • The key strength of GCD-based key distribution protocol is that the scalability increases suffi-
ciently and each user has to store only three keys since clustered tree has three levels.

revIew QuestIons

 1. Differentiate centralized and distributed key management schemes.

 2. Draw the architecture of centralized key management and explain it in detail.

 3. Explain about Diffie–Hellman algorithm with a suitable example.

 4. Prove that 2 is a primitive root of the prime number 11.

 5. Find whether 3 is a primitive root of the prime number 11.

 6. Compute the common shared secret key for the prime number p = 181 and primitive root 
k = 127. Consider the secret integer chosen by Alice is 48 and the secret integer chosen by 
Bob is 58.

 7. Find the value of Alice’s secret integer A from her PK value C = 6511 using the baby step, giant 
step method, if p = 12347 and primitive root k = 8833. 

 8. Find the value of Alice’s secret integer A from her public key value C = 6989 using the index 
calculus method, if p = 12347 and primitive root k = 11920. 

 9. Consider a Diffie–Hellman scheme with a common prime number p = 13, and a primitive root 
k = 7.

  (a) Show that 7 is a primitive root of 13.

  (b) If Alice has a public key C = 5, what is Alice’s private key A?

  (c) If Bob has a public key D = 12, what is Bob’s private key B?

 10. Explain about group Diffie–Hellman key management scheme in detail. 

 11. Explain in detail about computation-efficient secure multicast key management which is based 
on GCD.

 12. Explain about user leave operation performed on a clustered tree-based key management 
scheme.
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Elliptic Curve Cryptography
9

chapter

9.1 IntroductIon

In 1985, Victor Miller (IBM) and Neil Koblitz (University of Washington) invented elliptic curve 
 cryptography (ECC), which comes under public-key cryptosystem. At the time of its invention, the ECC 
algorithm provided higher potential security than other cryptographic algorithms. However, the ECC 
also had a limitation that it required an enormous amount of execution time. In order to  improve its 
performance, Certicom [1] focused and provided efforts on its implementation part. Later on several 
years of research, the first commercial toolkit was introduced by Certicom to enhance ECC and created 
it for practical use in a variety of applications. The ECC is a public-key cryptosystem which is basi-
cally derived from the algebraic construction of elliptic curves over finite domains. The ECC has many 
advantages compared to other cryptographic schemes such as RSA, Elgamal and  Diffie–Hellman key 
exchange, etc. One of the major advantages is that it can provide the same degree of protection offered 
by other cryptography schemes with keys of smaller size. For example, the  160-bit key used in the 
ECC provides the same level of security as by the RSA with 1024-bit key. Likewise, the ECC with 
224-bit key provides the same degree of protection provided by the RSA with 2048-bit key. Because, a 
small size key is used for proving high-level security in the ECC, it also takes less computation time for 
performing encryption and decryption operation. Moreover, it would minimize the storage complexity 
of processing with smaller size key values.

Similar to other public-key cryptosystem such as RSA and Elgamal, in ECC, each user selects 
a private key within a finite group from which a public key is computed. For computing the public 
key from private key, each user selects a base point, which is taken from the elliptic curve. The base 
point is a point in the curve which is similar to the generator used in other public-key cryptosystems 
such as Diffie–Hellman key exchange and Elgamal. When this base point is added with the private 
key, it is necessary to perform point addition and when it is multiplied with the private key it would 
perform point multiplication. Apart from that, in ECC-based algorithms, it is infeasible to recover the 
discrete logarithm of a random elliptic curve element from a publicly known base point. This problem 
is predicted as the ‘elliptic curve discrete log problem’ or ECDLP. The total security of ECC depends 
on the inability to find the multiplicand value from the given original and product points in a point 
multiplication.

9.2 Ecc ArIthmEtIc

The elliptic curves are described by cubic equations. An elliptic curve is a plane curve and it is defined 
by the equation as given below:

y x ax b2 3= + +
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where a, b are the elliptic curve coefficients and x and y are the values of real numbers. The main 
 characteristics of elliptic curve are summarized as follows:

 1. Elliptic curves obey the abelian group property.

  •  Abelian groups: An abelian group is a set, denoted by A, together with an operation denoted 
by •, any two elements a, b in the set A form another element denoted a • b. The symbol 
•  corresponds to the binary operation. The set and operation, (A, •), require to satisfy the 
 abelian group axioms:

   –  (A
1
) Closure: If a, b is in A, then the result of a • b is also in A.

	 	 	 –  (A
2
) Associativity: The equation (a • b) • c = a • (b • c) holds for all a, b, c ∈ A

   –  (A
3
) Identity element: For all elements a in A, there exists an element e in A, such that  

e • a = a • e = a.

   –  (A
4
) Inverse element: For each a in A, there exists an inverse element a′ in A such that  

a • a′ = a′ • a = e, where e is the identity element.

   –  (A
5
) Commutativity: a • b = b • a, for all a, b ∈ A.

 2. The point at infinity ( )O  is acting as the identity element.

 3. Each elliptic curve is symmetric about y = 0.

9.2.1 Elliptic curve operations

The main operations involved in the ECC are point addition and point multiplication. In point  addition, 
the two adding points that lie on an elliptic curve result in a third point on the curve. From this 
 definition, the point addition defines some rules for addition over an elliptic curve.

9.2.2 Geometric description of Addition

A group can be described based on the set E a b( , ) for exact values of a and b in the equation 
y x ax b2 3= + + , which makes the following condition is satisfied:

 4 27 03 2a b+ ≠  

To describe the group, an addition operation must be defined which is denoted as +. The above  equation 
is satisfied for the values of a and b for the set E a b( , ).  In geometric terms, the following rules are 
defined for addition over an elliptic curve.

 1. The infinite point (O) can serve as the additive identity. Therefore, O O= − .

L O O L L+ = + =  (Existence of an identity element)

  where L is the point on the elliptic curve.

 2. If L x y= ( , )  on the elliptic curve, then the negative of the point is represented as – ( , ).L x y= −  
If these two points are connected by a vertical line, then

L L L L O+ − = − =( )  (Existence of inverses)

 3. L M M L+ = +  (Commutativity)
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 4. ( ) ( )L M N L M N+ + = + +  (Associativity)

 5. Point addition: If J and K are the two points with different coordinates on the elliptic curve, 
then the point addition between the two points can be performed by drawing a straight line 
between them which touches the third point R on the same elliptic curve. The reflection of 
R along the x-axis provides the result of J K+ .  The point addition is illustrated in Figure 9.1.

K

J

J + K

R

y

x

Figure 9.1 Illustration of point addition

 6. Point doubling: In point doubling, a tangent line is drawn to get the other point of intersection 
−L  in the same elliptic curve. Point doubling is illustrated in Figure 9.2. Then K K K L+ = =2

L

K

y

−L

x

Figure 9.2 Illustration of point doubling

9.2.3 Arithmetic description of Point Addition

Let us consider two distinct points J x yJ J= ( , ) and ( , )K x yK K=  on the elliptic curve. The straight 
line ( )l  between them touches the third point L  on the same elliptic curve. The reflection of  
L  denoted as M  along the x-axis provides the result of J K+ . The slope of the line l  can be calcu-
lated as given below:

 Δ =
−
−

( )

( )

y y

x x
K J

K J

�



260  Cryptography and Network Security

Therefore, ( ),M J K x yM M= + =
where,

� x x xM J K= − −Δ2

�

� y y x xM J J K= − + −Δ( ) �
If the given two points are same ( ( , ))J K x yK K= = , then point doubling operation will be  performed. 
The addition of two same points is called point doubling. For performing the point doubling  operation,
( )K K L K+ = = 2 , the following equations are used. In the following equations, a new point 
L x yL L= ( , )  is computed based on calculating xL  and yL  values.

 x xL K= −( )Δ 2 2 �

 y x x yL K L K= − −( )( )Δ �

where,

 Δ =

−
−

⎛
⎝⎜

⎞
⎠⎟

≠

+⎛
⎝⎜

⎞
⎠⎟

=

⎧

⎨

( )

( )
,

,

y y

x x
J K

x a

y
J K

K J

K J

K

K

if

if
3

2

2

⎪⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

�

9.2.4 Point multiplication

Point multiplication is performed by using both point addition and point doubling. In point  addition, 
two distinct points are added to get a result of another point in the same elliptic curve. In point  doubling, 
the same point is added to itself to get a result of another point in the same elliptic curve. In point 
 multiplication, a scalar multiplication is performed between a value and a point. Let us consider a 
scalar value n which is multiplied with the base point K  in the elliptic curve to get a new point Q  on 
the same curve, i.e. to find Q n K= × .

For example, If n = 23, then n K K× = ×23 .  In this case, rather than multiplying the scalar value n 
with the base point K , point doubling and point addition operations are performed. In order to do that, 
the scalar value 23 is splitted into multiples of 2 to perform point doubling operation as shown below:

 Q K K K K= = + +23 20 2 �

� = + + +16 4 2K K K K �

� = + + +( ( ( )))2 2 2 2 4 2K K K K �

� = + + +2 2 2 2 2 2 2( ( ( ))) ( )K K K K �

� = + + +2 2 2 2 2( ( ( ) ))K K K K �

 = + + +2 2 2 2( ( ( ) ) )K K K K �

In the above example, point addition and point doubling are used to get the result of point multipli-
cation Q. The ECC is divided into two types, namely, prime curves and binary curves. Prime curves 
( )Z p  are very much useful for software-oriented applications, because it does not require extended 
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bit-fiddling operation. Binary curves (GF(2n)) are more suitable for hardware application  because 
it uses extended bit-fiddling operation. In this book, we have discussed about the prime curves  
(Z

p
)-based ECC.

9.2.5 Elliptic curve over Zp

In ECC, the variables and coefficients of elliptic curve are limited to a finite field Z p. For example, 
let us assume the elliptic curve ,y x ax b p2 3= + + mod where ( , )a b Z p∈ . In this curve, if a b= =1 1,  
and p = 23.Therefore, the curve becomes y x x2 3 1 23= + + mod . In order to perform algebraic addi-
tion over the given elliptic curve that belongs to Z p, let us consider two points on the elliptic curve 
J K Z p, ∈ . The algebraic addition rules for elliptic curve over Z p  are summarized as follows:

 1. J O J+ =
 2. If J xJ= ( , yJ ) and – (J xJ= , − yJ ) Then J J J J O+ − = − =( )

 3. If (J xJ= , yJ ) and K xK= ( , yK )  then M J K xM= + = ( , yM )  can be calculated as

 x x x pM J K= − −( )Δ2 mod �

 y y x x pM J J K= − + −( ( ))Δ mod �

  where

 Δ =

−
−

⎛
⎝⎜

⎞
⎠⎟

≠

+⎛
⎝⎜

⎞
⎠⎟

=

⎧ ( )

( )

y y

x x
p J K

x a

y
p J K

K J

K J

K

K

mod if

mod if
3

2

2
⎨⎨

⎪
⎪

⎩

⎪
⎪

⎫

⎬

⎪
⎪

⎭

⎪
⎪

�
 4. Multiplication is done by performing repeated additions and point doubling operations. 

For example, 3K K K K p= + +( ) mod .

Example 9.1:
Let consider two different points J = ( , )3 10  and K = ( , )11 20  from the elliptic curve y2 = x3 + x + 1 
mod 23. Perform the point addition between the two points J and K .

Solution
The slope between the two points can be calculated as

Δ =
−
−

= ⎛
⎝⎜

⎞
⎠⎟

= × = =
( )

( )
( )

20 11

10 3
23

9

7
23 9 10 23 90 23 21mod mod mod mod

Let us consider M J K x yM M= + = ( ), , then

 xM = − − =( )21 3 11 23 172 mod �

 yM = − + − =( ( ))10 21 3 11 23 6mod �

Therefore, M J K Z= + = ∈( , )17 6 23.
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Suppose, If J K= = ( , )11 20 , then M K= 2 . In this case, point doubling operation as shown below:

 Δ =
+

= = × =
3 11 1

2 20
23

364

800
23 9 364 23 10

2

2

.

.
( )mod mod mod �

 xM = − − =( )10 11 11 23 82 mod �

 yM = − + − =( ( ))20 21 11 11 23 3mod �

Therefore, M K= = (2 8, 3) ∈Z23.

Example 9.2:
Let consider the elliptic curve y x x2 3 9 17 23( )= + + mod . Hence, this is the group which belongs to 
E23 9 17( , ). Find the discrete logarithm n  for the equation Q nP= , �where Q = ( , )4 5  and P = ( , )16 5 .

Solution
Let us assume that the intruder knows the values of P  and Q. Then, the intruder performs the brute-
force method until the value of Q  is reached to find the value of n. The point addition and point 
 doubling operations are used to perform brute-force method in the following manner.

 P = ( , );16 5 �

 2 20 20P P P ( , );= + = �

 3 2 14 14P P P ( , );= + = �

 4 2 2 19 20P P P ( , );= + = �

 ( , );5 2 2 13 10P P P P= + + = �

 6 2 2 2 17 32P P P P ( , );= + + = �

 7 2 2 2 18 72P P P P P ( , );= + + + = �

 8 2 2 2 2 12 17P P P P P ( , );= + + + = �

 9 2 2 2 2 4 5P P P P P P ( , )= + + + + = �

Here 9 4 5P Q= =( , ) . Therefore, the value of the discrete logarithm n  is 9. The brute force is  infeasible 
to perform, if the value of n  is so large.

9.3 dIffIE–hEllmAn KEy ExchAnGE usInG EllIPtIc curvEs

The ECC is applied to Diffie–Hellman key exchange to resolve the vulnerability in key exchange 
problem. The following subsection gives an overall idea about Diffie–Hellman key exchange using 
elliptic curves.
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Step 1:  Initially, Alice and Bob select an elliptic curve E a bq ( , )  with parameters a b,  for a large 
prime number q.

Step 2:  Alice and Bob also select a base point P = (x, y) on the elliptic curve of order c such that
.cP = 0  Here, c� is the small positive integer. The value of P  is known to all users in the 

system.

Step 3:  Suppose Alice and Bob want to share a secret key. Alice selects a random integer Apri  less 
than c which is considered as Alice’s private key. Alice does not disclose it to anyone. From 
this private key, Alice computes public key.

 A A Ppub pri= × �

Step 4:  Similarly, Bob selects a random integer Bpri  less than c independently which is Bob’s private 
key and does not disclose to anyone. Based on this, Bob also computes his public key.

 B B Ppub pri= × �

Step 5:  These computed public key values are exchanged to each other. Alice transmits Apub  to Bob 
and Bob transmits Bpub  to Alice. Notice that the adversary Eve tries to view the values of Apub  
and Bpub, since they are exchanged over the insecure communication channel.

Step 6:  From the public value (Bpub )  received from Bob, Alice can generate the shared secret key by 
using the following equation:

 SSK A B1 = ×pri pub �

Step 7:  Bob can also generate the shared secret key from

 SSK B A2 = ×pri pub �

The values SSK1  and SSK 2  generated by Alice and Bob are really identical. This can be proved as 
given below:

 SSK A B1 = ×pri pub �

 = × ×A B Ppri pri �

� = × ×B A Ppri pri �

 = ×B Apri pub  (by the rules of modular arithmetic)

� = SSK 2 �

Figure 9.3 shows the diagrammatic representation of ECC-based Diffie–Hellman key exchange. 
 Alice wishes to establish a secure communication link with Bob. Then, Alice and Bob choose 
 distinct  one-time private keys ,A Bpri pri�and then calculate ,A Bpub puband  respectively. Alice sends Apub 

to Bob and Bob sends Bpub to Alice. Both Alice and Bob can calculate the shared secret key for 

 communication. The summary of Diffie–Hellman key exchange using elliptic curves algorithm is 
shown in Table 9.1.
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Alice Bob

Generate Apri < c
Calculate Apub = Apri × P

Calculate SSK1 = Apri × Bpub

Generate Bpri < c
Calculate Bpub = Bpri × P

Calculate SSK2 = Bpri × Apub

Apub

Bpub

Figure 9.3 Diffie–Hellman key exchange using elliptic curves

Table 9.1 Summary of Diffie–Hellman key exchange algorithm using elliptic curves

Global parameter elements

q Prime number

P = (x, y) Elliptic curve point of order c

Key generation
 Alice Bob

Select a private key A
pri

.

Compute A
pub

 = A
pri

 × P

Select a private key B
pri

.

Compute B
pub

 = B
pri

 × P

Public exchange of values

 Alice sends A
pub 

to Bob  A
pub

 B
pub

  Bob sends B
pub

 to Alice

Shared secret key generation
 Alice Bob

Compute

SSK 1 = A
pri

 × B
pub

Compute

SSK 2 = B
pri

 × A
pub

9.4 ElGAmAl cryPtosystEm usInG EllIPtIc curvEs

The ECC-based Elgamal cryptosystem was described by Taher Elgamal in 1985. This cryptosystem 
is developed based on the ECC-based Diffie–Hellman key exchange algorithm. The ECC is applied 
to Elgamal cryptosystem to make the cryptosystem strong from vulnerabilities. This is consided to be 
strong because for larger key values it is infeasible to attack. ECC is also effective due to its shorter 
key length and higher efficiency on encryption and decryption [2]. The following subsection gives an 
overall idea about Elgamal cryptosystem using elliptic curves.
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Step 1:  Alice and Bob want to make secure communications with each other. Alice selects a message 
m to be communicated with Bob.

Step 2:  Bob selects an elliptic curve ( )E qmod , where q  is a large prime number. In addition, 
Bob selects a base point D x y= ( , )  on the elliptic curve and a private key Bpri  and then 
 computes,

 C D B= × pri �

Step 3: Bob places D  and C  in the public directory and keeps the value Bpri  as secret.

Step 4: Now, Alice selects a random integer a  and then computes

 A a D1 = × �

 ( )A m a C2 = + × �

Step 5: Now, the pair ( , )A A1 2  is sent to Bob. Bob decrypts the message m  by computing

 m A B A= − ×( )2 1pri �

Proof of correctness:

 R.H.S. pri= − ×A B A2 1( ) �

 = + × − ×( ) ( )m a C B Apri 1  (Since, A m a C2 = + ×( ) )

� = + × − × ×( ) ( )m a C B a Dpri  (Since, A a D1 = × )

� = + × × − × ×( ) ( )m a D B B a Dpri pri  (Since C D B= × pri )

� = =m L.H.S.  

The steps involved in Elgamal cryptosystem which is based on the use of elliptic curves are depicted 
in Figure 9.4.

Alice Bob

Select random integer a
calculates A1 = aD and A2 = m + aC

Selects D, Bpri
calculates C = D × Bpri

 calculates m = A2 − Bpri A1

(A1, A2)

Public directory
C, D

Figure 9.4 ECC-based Elgamal cryptosystem
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Example 9.3:
Bob chooses an elliptic curve y x x2 3 2 3 1237( )= + + mod  and D = ( , )1 3 . He also chooses Bpri = 5 and 
then computes C = =( , ) ( , )5 1 3 146 1137  and publishes C  and D  in the public directory. Alice desires 
to send the message m = ( , )3 7  to Bob. Then Alice selects a random integer 3 and computes

 A1 3 1 3 534 679( , ) ( , )= = �

 A2 3 7 3 146 1137 296 18= + =( , ) ( , ) ( , ) �

Now, the pair ( , )A A1 2  is sent to Bob. Bob decrypts the message m by computing

 m = −( , ) ( , )296 18 5 534 679 �

� = −( , ) ( , )296 18 428 756 �

� = + =( , ) ( , ) ( , )296 18 428 481 3 7 �

9.5 Ecc-bAsEd ElGAmAl dIGItAl sIGnAturE

The following subsection describes an overall idea about Elgamal digital signature using elliptic 
curves.

Step 1:  Alice and Bob want to make communications with each other. Alice desires to send a message 
m to Bob and assumes that m  is an integer.

Step 2:  Alice selects an elliptic curve ( )E qmod , where q is a large prime number. If q is not a large 
prime number, then 0 ≤ <m x, where x  is the number of points on the elliptic curve E. Along 
with that, Alice selects a point H x y= ( , )  on the elliptic curve and a private key Bpri  and then 
computes

 G H B= × pri �

Step 3:  Alice place G, H, x and the curve E in the public directory and keeps the value Bpri  as secret.

Step 4:  Now, Alice wants to sign a message m. In order to do that, Alice selects a random integer a 
such that 0 ≤ <a x  and gcd ( , )a x = 1. After that, Alice computes the signature L  and S  as 
given below:

    1. L aH i j= = ( , )

    2. S a m B i x≡ − ×− ( ( ))1
pri mod

Step 5:  Now, the signed message ( , , )m L S  is sent to Bob. Bob verifies the signature S in the 
 following way:

    1. Bob first gets the public information of Alice from the public directory.

    2. Then, computes s i G S L s m H1 2= × + × = ×( ) ( ) and

Proof of correctness:

 s i G S L1 = × + ×( ) ( ) �

where, L aH G H B= = ×, pri  and S a m B i≡ − ×− ( ( ))1
pri
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Therefore,

 s i G S aH1 = × + ×( ) ( ) �

 = × × + − × ×−( ) ( ( ( )) )i H B a m B i aHpri pri
1 �

 = × × + − × × ×− −( ) (( ) )i H B a m a B i aHpri pri
1 1 �

 = × × + × − × × ×− −( ) ( )i H B a m aH a B i aHpri pri
1 1 �

 = × × + × − × ×( ) ( )i H B m H B i Hpri pri
�

 = × × + × − × ×i H B m H B i Hpri pri �

 = ×m H �

 = s2 �

Since, s s1 2= ,  Bob declares the signature as a valid signature.

KEy tErms

Abelian group

Elliptic curve cryptography

Elliptic curves

Point addition

Point doubling

Point multiplication

summAry

 • Elliptic curve cryptography (ECC) is a public-key cryptography approach derived from the 
algebraic construction of elliptic curves over finite domains.

 • The elliptic curves are described by cubic equations, Weierstrass equation are in the form 
of cubic equations for elliptic curves. The elliptic curve with standard form is represented as 
y x ax b2 3= + + .

 • An abelian group is a set, denoted by A, together with an operation denoted by •, any two  elements 
a, b in the set A form another element denoted a • b. The symbol • corresponds to the binary 
 operation.

 • In point addition, the two adding points that lie on an elliptic curve results in a third point on the 
curve.

 • Point multiplication is performed by using both point addition and point doubling. In point 
 addition, two distinct points are added to get a result of another point in the same elliptic curve.

 • In point doubling the same point is added to itself to get a result of another point in the same 
 elliptic curve.
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rEvIEw QuEstIons

 1. What is meant by elliptic curve cryptography?

 2. Define elliptic curves.

 3. Describe the five axioms of the abelian group.

 4. Explain elliptic curve-based Diffie–Hellman key exchange method in detail.

 5. Explain elliptic curve-based Elgamal cryptosystem in detail.

 6. Explain elliptic curve-based Elgamal digital signature method in detail.

 7. Explain point addition, point doubling, and point multiplication processes in detail.
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Authentication Techniques
10
chapter

System security depends upon the proper design of a system, and its management. Network security 
monitors authorized access and it prevents misuse of network resources. Authentication is a process 
that verifies the identity of the user who accesses the particular system. It is one of the pillars for 
 information assurance. The authentication involves with single-level factor (user name) or multilevel 
factors (user name, password, finger print). The authentication function generates Message Authentica-
tion Code (MAC) that is derived from message and secrete key. Hash function is an important element 
of message authentication technique. It gets various size input and produces fixed size hash value. 
Hash function uses compression function repetitively to generate n-bit output. In digital signature 
procedure, the hash value uses private and public keys for processing. This chapter discusses about the 
importance of authentication and some authentication algorithms. It specifies the properties of hash 
function and further discusses about the evolution of hash algorithms and includes comparative study 
among them. Working style of some important hash functions is explained with block structure.

10.1 MESSAGE AUTHENTICATION

Message authentication deals the protection of message with integrity. It checks the identity of the 
message sender and non-repudiation of the origin. It checks whether the received messages are origi-
nated from the original sender. It ensures that content of the message is not modified or altered. It also 
verifies the sequence and timing of the messages. Digital signature is an authentication technique that 
is used to check the repudiation from the sender side or from the receiver side. The authentication 
of digital signature is done in two levels. The sender sends signed message to receiver. The receiver 
compares the computed hash codes with the hash code he got. If both hashes match, he/she can view 
the message. To generate an authenticated message, any one of the following functions can be used.

 1. Message encryption: The message is scrambled into unreadable form called the cipher text 
whereas the cipher text can be readable only by the intended user. The actual message is 
encrypted and converted into cipher text and the cipher text itself is treated as the authenticator.

 2. Message Authentication Code (MAC): This is a special function with secret keys. Both the 
sender and receiver have secret keys. The message digest has fixed length and this is treated 
as an authenticator. The authentication algorithm conform the sender, receiver and message 
integrity.

 3. Hash functions: It is the public function that maps the message to a fixed size hash value and 
this will be served as the authenticator for the message and for the sender. In general, the MAC 
and the hash functions use the cryptographic keys but the hash code does not need secret or 
cryptographic keys.
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10.1.1 Message Authentication Requirements

During transformation time, some attempts make the message unavailable. These attacks interrupt the 
communication. Some important message authentication requirements are specified in this section. 
Attacks conclude for several security requirements in order to prevent the misuse of data. Knowledge 
of these attacks helps for the effective and efficient design the security system.

 • Disclosure: In this type, the original data during transmission is opened by unintended users. 
The content of the data or the message is read by the attackers and takes a copy of it. This 
happens if the cryptographic keys are not used for encryption of the message or due to weak 
cryptographic keys.

 • Traffic analysis: The pattern of data communication between two parties are observed by the 
attacker to determine whether the traffic is connection oriented or connectionless. According to 
this constraint, the attacker can guess the communication between the users and guess the data and 
the type.

 • Masquerade: It functions like insertion of messages to the traffic from unintended users. This 
makes the way to the receivers to be got from the legitimate sender or from authorized one. 
Also the fake acknowledgement may be sent by the attackers to the receivers pretends to be the 
acknowledgement comes from the original sender or sometimes the acknowledgement may be 
trapped by the attacker.

 • Content modification: Attackers can do some additions, modifications and change of contents 
to the original message. The intended users may not know the data which are modified by the 
 attackers. The change may be insertion, deletion, transposition or modification function.

 • Sequence modification: In addition with the content change of the message, the attackers even 
change the order of the message delivery by changing the sequence of the messages. The entire 
meaning of the data gets modified when the order changes.

  Example:

  Message sequence: 10 20 30 40 50 60

  Modified sequence: 10 30 50 20 40 60

 • Timing modification: In connection-oriented communication, the messages are going in  sequence 
and timely based as some live relay contents will be played. Here, the attackers do some programs 
to delay the connection-oriented packets sent and make it meaningless.

 • Repudiation: Receipt of the message is denied or the message is denied by the source.

10.1.2 Message Authentication Functions

There are several message authentication functions that exist for integrity checking and encryption. 
They are hash functions, MAC, MD5, SHA, etc. All these cryptographic authentication functions 
provide message integrity and authentication. Some functions are used to compute the actual  message 
if the data or the message is modified. The authentication functions provide the mechanism to find 
the message modification and also the origin of the message. The sender of the message is also 
verified using the authentication functions. The following section discusses about the authentication 
 functions.
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10.2 HASH FUNCTIONS

For message authentication, some functions are used to generate a hash value. A hash function is 
 generally having some set of functions that compresses the input. It means generally the output 
 produced is unique for any of the input. This function takes the input in a random manner and produces 
the hash value output of fixed length, commonly 160 bits.

h = H(M)

where M is the variable length message

 H is the hash function

 h is the fixed length hash value

10.2.1 Requirements of Hash Functions

The main use of hash function is generating the fingerprint of a message a file or the block of data. 
The hash function properties are the requirements needed for the hash function to show the message 
authentication and given as

 1. H is applied to the data or the message or the block of data of variable size.

 2. Then H generates a fixed length or fixed size message digest.

 3. H(x) can be easily calculated for the given x in terms of both hardware and software implications.

 4. The code h is basically very complicated and infeasible to calculate and find x for H(x) = h.

 5. For the given x, it is not possible to find the value y equal to x and otherwise it is called a 
weak collision property also its hard to find (x, y) in which H(x) = H(y) called strong collision 
property.

One-way property in which the code can be generated using a message but it is not possible to generate 
a message using the code. This property is mandatory if some secret keys are used in this technique. 
The secret key will not be sent in communication but if the property is not one way then it easily give 
way for the attackers to compute and find the secret key. These properties are discussed further in 
 Section 10.4.2.

If the attacker attacks and gets the massage M and the hash code C = H(S||M) then after getting 
this information the attackers may try to go for inverse function. It applies to the function with the 
 message and the secret key S||M = H inverse (C). Even though the attacker has M and S||M it is 
 difficult to Recover S. The fifth property states that doing another copy of message hashing to the 
same value the original message will not be find and this avoids the illegitimacy when an encrypted 
hash code is used. A hash function if it satisfies the first properties is called the weak hash functions 
and if H(x) = H(y) property is satisfied, then it is called strong hash function. This function prevents 
the birthday attack.

10.2.2 Security of Hash Functions

Cryptographic hash functions  have two types. The first depends on mathematical operations and 
 functions. It has security proof based on mathematical models complexity theory and formal  reduction. 

http://en.wikipedia.org/wiki/Cryptographic_hash_functions
http://en.wikipedia.org/wiki/Computational_complexity_theory
http://en.wikipedia.org/wiki/Reduction_(complexity)
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These are called provably secure cryptographic hash functions. This can be broken, moreover it is very 
hard to develop and it has limitations in practical use.

The second type is also based on mathematical functions in which hash is produced by the mixing 
of text bits. It is assumed to be hard to break the function. Most of the hash algorithms fall under these 
two categories in which the broken algorithms are dropped from usage.

10.3 MESSAGE AUTHENTICATION CODE

In cryptography, a MAC is the simple one and the length is very less among any other method to 
authenticate the message. It also provides a better integrity check value to the message and assures 
integrity. Integrity of the message concludes any other changes and the modifications of the message 
where authenticity represents the message originality and the origin of the sender.

The only possible chance to generate MAC code is by the available cryptographic hash function 
and so it is called keyed method. These algorithms get a secret key as input and produce a lengthy 
arbitrary message as the authentication called MAC. The MAC checks for the integrity of the message 
and authentication. The authenticity is confirmed by checking or computing the MAC value using the 
secret keys hold by the users and checks for any message misuse for the change of contents.

10.3.1 Requirements of MAC

Message authentication is concerned with some requirements which are as follows. The requirements 
mention the data is not altered or modified. The sender and receiver are authenticated. Truthfulness of 
the message is not denied in any circumstance.

 1. Protecting the integrity of the message

 2. Validating the identity of the originator

 3. Non-repudiation of origin

10.3.2 Security of MAC

MAC functions are like cryptographic hash functions, and the security requirements are different. 
The MAC must withstand for plain text attack. A plain text attack is the attacker guesses at least the 
minimum-level contents. It should not be vulnerable for attacks even though the attacker has the secret 
key. It should maintain the infeasibility condition to mathematical computation.

There are the differences between the MACs and digital signatures. But both uses same secret 
key for verification as the sender and the receiver uses same key values for message transmission 
like symmetric encryption. MACs are not based on non-repudiation property in a network-based key 
 communication, whereas digital signature is based on public key cryptography in which it uses private 
key for authentication. This method is best as the private key. It is only used by the holder and it is 
easy for the user to check the message authenticity whether the message is misused by the attackers or 
not as the holder only permitted to access the key. These mechanisms are widely used in banking and 
finance institutions.

http://en.wikipedia.org/wiki/Cryptography
http://en.wikipedia.org/wiki/Cryptographic_hash_function
http://en.wikipedia.org/wiki/Digital_signature
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10.4 AUTHENTICATION ALGORITHMS

There are several authentication algorithms are there to deal with the security parameters like maintain 
integrity, confidentiality, secrecy, authenticity. Every authentication algorithms has different  properties, 
methods and working mechanisms depending upon the input criteria. Several types and keys and 
 different length of messages give unique output whereas the original message will be encrypted into 
unreadable form. The strength of integrity is verified by different authentication algorithms and are 
discussed as follows.

10.4.1 MD5

Figure 10.1 shows the overall working architecture of MD5 algorithm. There are two levels of mes-
sage digest that take place in a continuous sequence for ensuring multiple-level security policy. This 
however reduces the way of targeting to break the security by brute-force attacks. In the first level, the 
message digest is produced by two level inputs. The data is subdivided into a number of blocks and 
each block is given as input with 432-bit words. Applying the message digest function, first level of 
encrypted message digest is produced with a length of 432-bit words. Now, this generated message 
digest is given as input to the other set of 512-byte data block. Applying the message digest function 
again produces a new message digest of length 432-bit words.

432-bit words

Block digest 
diagram

432-bit words

Block digest 
diagram

432-bit words

Data block (512 Bytes)

Data block (512 Bytes)

Figure 10.1 Architecture of MD5

10.4.1.1 Message Compression Function

This MD5 algorithm works in a safer level. It takes the input from the message and converts it into a 
message digest as the output of 128-bit length. The hash value is unique and the message digests are 
not same. It is not possible to compute such a lengthy message digest of another. Figure 10.2 shows 
compression function of MD5. Consider an input is given like a bit and the message digest is calcu-
lated as follows.



274  Cryptography and Network Security

CVq

Yq 128

512 A B C D

32 32 32 32

128

(a)

(b)

A

Y [k]

S [i ]

B

h

C D

A B C D

→ Addition Modulo 232

CVq+1

F, S[1…16], y[1k]

G, S[17…32], y[2k]

H, S[33…48], y[3k]

I, S[49…64], y[4k]

++ +

+

+

+

+

CLS

+

+

Round 1

Round 2

Round 3

Round 4

Figure 10.2 (a) Overall processing of MD5; (b) Compression function of MD5

 • Step 1: The given message is padded and made the length congruent to 448 modulo 512. In other 
way, it means extending the message to 64 bit and being of 512-bits long. Then the single 1 bit is 
added to the message and also some 0 bits are added with the message input so as to produce the 
length in bits equal to 448 modulo 512 bit.
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 • Step 2: Adding the length. For the given input A, the corresponding 64-bit representation is 
 computed and the value is appended with the result of the previous step and the resultant message 
got will be the multiple of 512 bits.

 • Step 3: In this step, buffer for the message digest is initialized and the message digest is calcu-
lated using a four-word buffer (A, B, C, D) and all these are 32-bit register and the values of these 
 registers will be assigned in terms of hexadecimal codes.

  Word A: 01 23 45 67

  Word B: 78 ce ae de

  Word C: ba fe cd 98

  Word D: 10 32 54 76

 • Step 4: Now the given input will be processed as ‘w’ 16-word blocks. For each block, the inputs 
are Y

q
 and CV

q
, where Y

q
 is the qth input block, CV

q
 is chaining variable, the value of q ranges from 

0 to w − 1. Initially, CV has words A, B, C and D. The output of each block is considered as value 
for next block’s CV. The compression function is shown in Figure 10.2. Each block goes through 
four rounds and each round composed of 16 steps.

  For each round, the auxiliary function h takes three 32-bit words and then throws out the output of 
a single 32-bit word, where h can be expressed as follows:

  Round 1: h(B, C, D) = (B ∧ C) ∨ (¬B ∧ D)

  Round 2: h(B, C, D) = (B ∧ D) ∨ (C ∧ ¬D)

  Round 3: h(B, C, D) = B ⊕ C ⊕ d

  Round 4: h(B, C, D) = C ⊕ (B ∨ ¬D)

  The given message is processed like 16 word blocks. If the bits of A, B, C and D are  independent 
and unbiased each bit of F(A, B, C, D), G(A, B, C, D), H(A, B, C, D) and I(A, B, C, D) are 
 independent and unbiased.

  Y[k] – Message Word

  S[i] – Round Constant

  CLS – Circular Left Shift

 • Step 5: The output A, B, C and D is now produced as output with the starting word as the 
 lower-order byte. The ending word is the higher-order byte.

Thus the MD algorithm is very simple to implement and produces the message digest with the length 
corresponding with the input size. It is very complicated to produce the same message digest for 
 different inputs.

10.4.2 Secure Hash Algorithms

Secure Hash Algorithms (SHAs) are cryptographic algorithms that provide data integrity and 
 authentication. They are published by the National Institute of Standards and Technology (NIST). 
TLS, SSL, SSH and PGP applications use SHA. It is a deterministic function that takes arbitrary 
length block of data (message) and performs randomness process and returns a fixed size string called 
as hash value. A hash algorithm generates a condensed representation of message. It takes message of 
any length less than 2128 bit as input and results message digest as output ranges from 160 to 512 bit. 
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Any change in the message causes different message digest with a very high probability. The success 
of hash code against brute-force attacks and cryptanalysis requires 160 bits. The hash functions are 
affected by collisions and attacks.

The feasible computer knowledge cannot be used to regenerate the original message. Secure hash 
algorithms are often used in combination with cryptographic algorithms like keyed hash MACs or 
random number generation and digital signature algorithms to authenticate messages, including digital 
signatures.

Some network routers and firewalls implement SHA directly in their hardware. Many SHA  softwares 
also exist and it includes many open source implementations. It makes data packets to be authenti-
cated with limited impact on throughput. The US NIST and the canadian Communications Security 
Establishment (CSE) jointly establish the Cryptographic Module Verification Program (CMVP). 
This official program validates cryptographic modules to Federal Information Processing Standards 
(FIPS) 140-1 and certifies the correct operation of secure hash algorithm implementations for sensitive 
applications.

10.4.2.1 Properties of SHA

A cryptographic hash function must have some properties to withstand for cryptanalytic attacks and to 
be useful for authentication. It is applied to a block of variable size. SHA should go easy with software 
and hardware implementations. In addition to this, it should have some important properties and they 
are given below and Figure 10.3 shows the properties.

 1. Pre-image resistance (one-way): Take h as hash value. Find any message M that hashes to 
that value. Find data mapping for the specific hash value. Computationally it is infeasible. 
The one-way property is defined as ‘It is infeasible to find any data mapping between message 
and message digest and to find any message M that hashes to that value’.

 2. Second – Pre-image resistance: (Weak collision-resistant): Take any input x, and find another 
input y such a way that x and y hashes to the same value, where x and y are different. The weak 
collision-resistant property is defined as ‘It should be difficult to find another input y for an 
input x such a way that they both hash to the same value h(y) = h(x), where x ≠ y’.

 3. Collision resistance: Find two inputs x and y where they have the same hash values. The 
collision-free property is defined as ‘It is computationally infeasible to find two inputs x and y 
in such a way that h(y) = h(x).’

2nd Pre-image resistant

Collision resistant

Pre-image resistant

Figure 10.3 SHA properties
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10.4.2.2 Applications of Cryptographic Hashes

The main application of secure hashes is message integrity. It provides message integrity by comparing 
message digest before and after transmission or during any other event. Most of the digital signature 
algorithms provide authentication with signed messages. Cryptographic hashes are commonly used in 
digital signatures and MACs. They are also used to index data in hash tables, to detect duplicate data 
and data corruption.

10.4.2.3 Digital Signature Algorithms

A message is transmitted with its hash allowing the receiver to hash the message and compare the 
 outputs. The message with sender’s key conforms the message is not misused. Execution of the 
 algorithm  produces hash value. The integrity of the data is checked by comparing the hash values in 
the  receiver end.

Example
Secure electronic transaction in E-Commerce.

10.4.2.4 Storage of Passwords

Cryptographic hashes are useful in password storage. Instead of storing user’s password directly, it stores 
hash of password. When the system gets password from user, the hash is computed and  compared with 
stored hash. Collision-resistance property compares both hashes and informs about password match.

Example
For an input ‘test’, SHA-1 outputs ‘a94a8fe5ccb19ba61c4c0873d391e987982fbbd3’. After that when 
system gets ‘test’ SHA-1 always get ‘a94a8fe5ccb19ba61c4c0873d391e987982fbbd3’. If anyone finds 
‘a94a8fe5ccb19ba61c4c0873d391e987982fbbd3’ comes from the SHA-1, and it is infeasible to find 
what was entered to get ‘a94a8fe5ccb19ba61c4c0873d391e987982fbbd3’ from the hash function.

The computer passwords are stored in this way. When a password is fed into the system, it stores 
it after hashing. In case, if anyone traces this hashed figure, it is impossible to trace out the original 
password because of the one-way property. The computer never stores the actual text. It stores only the 
fingerprint of it.

10.4.2.5 Integrity Checking

The sender can hash a file like message before sending to the receiver. The receiver hashes the received 
file and checks hash match. This is used to store files with out corruption or modification.

10.4.2.6 Comparative Study of SHA Family

The SHA algorithms differ mostly in security strengths. It also differs in block size, word size. They are 
believed to have good randomized features. Table 10.1 shows the comparative study of SHA family.

 1. SHA-0: This is the first incarnation of SHA that is published in 1993 and withdrawn so early 
because of undisclosed significant flaw.

 2. SHA-1: This is the second version of SHA. It was released in 1994. It is considered as  successor 
of MD5 but slower than MD5. It results 160-bit hash value. The standard was not approved 
for most of the applications after 2010. It is commonly used in many security protocols and 
applications.
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Table 10.1 Comparative study of SHA family

Algorithm and variant Output size
(bits) 

Block size
(bits) 

Word size
(bits) 

Maximum 
message size

(bits) 

Number of 
steps

SHA-0 160 512 32 264 − 1 80

SHA-1 160 512 32 264 – 1 80

SHA-2 SHA-224 224

512 32 

 264 – 1

64SHA-256 256

SHA-384 384 1024

64

2128 − 1 80

SHA-512 512

SHA-512/224 224

SHA-512/256 256

SHA-3 SHA3-224 224 1152 64 ∞ 24

SHA3-256 256 1088 

SHA3-384 384 832

SHA3-512 512 576 

SHAKE128 d (arbitrary) 1344

SHAKE256 1088

 3. SHA-2: This is a family of two hash functions SHA-256 and SHA-512 with different block 
size. SHA-256 uses 32-bit words and SHA-512 uses 64-bit words. Security of SHA-2 is still 
unsure.

 4. SHA-3: This is a hash function is also called as Keccak. It works like other SHA family and it 
shows significant change in its internal structure.

The SHA algorithms specify that it is not possible to find the message from hash value. It also ensures 
that two different messages do not produce the same hash value.

10.4.2.7 Functionality of SHA

The hash algorithms have the following two stages.

 1. Pre-processing: It handles padding of message. It breaks the padded message as m-bit blocks 
and initializes the values for hash process. Hash computation generates message schedule from 
padded message. This message schedule is used with functions and word operations to gener-
ate a series of hash values iteratively.

 2. Hash computation: The compression function outputs fixed length value. The hash function 
applies compression function repeatedly to get message digest. This process breaks the  message 
into blocks depending upon the compression function involved. Padding is also involved to 
make the size of the message as multiple of block size. The blocks are processed consecutively 
to generate hash value for the message.

SHA-512 algorithm takes a message as input with a maximum length of 2128 bit. It results in 512-bit 
message digest as output. SHA breaks the message into blocks of certain length with compression 
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function and makes the message as multiple of block size. Each block is of size 1024 bit. The block 
diagram of message digest creation is specified in Figure 10.4 and message digest creation in SHA-512 
consists of four steps.

Compression
function

Compression
function

Compression
function

512
bits

512
bits

512
bits

512
bits

Block 2

1024 bits

Block 1

1024 bits

Block N

1024 bits

512
bits

A
ugm

ented m
essage: m

ultiple of 1024-bits blocks

Figure 10.4 Message digest creation SHA-512

 1. Append padding bits

 2. Append length

 3. Initialize hash buffer

 4. Process message as 1024-bit blocks

SHA processes message in fixed length block. The padding scheme appends predictable data to make 
the final block as fixed length block. The message length becomes congruent to 896 modulo 1024. 
SHA appends a block of 128-bit unsigned integer to the message. This block maintains the length 
of original message before padding. A 512-bit buffer holds the intermediate and final results of hash 
function. The buffer consists of 8 registers and each register can store 64-bit value. They are rep-
resented as a, b, c, d, e, f, g, h. To generate message digest, the registers are initialized with 64-bit 
 hexadecimal values. The algorithm consists of 80 rounds. Each round takes 64-bit values from the 
8 blocks. The  64-bit values are represented as W

t
 and they are obtained from the 1024-bit block (M

i
), 

which is being processed. Each round t updates the intermediate hash value, Hi-1. The completion of 
the 80th round outputs  512-bit message digest.
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The block diagram of SHA-512 compression function is given in Figure 10.5. It processes message 
in 1024-bit blocks and returns 512-bit message as output. The 1024 bits are considered as 16 words. 
Each word consists of 64 bits. It consists of 80 rounds. It takes a message of length less than 2128 as 
initial value and 512 bits as message digest. It derives W

t
 the expanded message word of round t from 

current message block.

∑a Ma

a b c d e f g h

∑b

Wt

Kt

512 bits
Wt = 64-bit word values

Kt = 64-bit additive constant

+ = addition modulo 232

∑ a (a) = (a >>> 2) ⊕ (a >>> 13) ⊕ (a >>> 22)

∑ b (e) = (e >>> 6) ⊕ (e >>> 11) ⊕ (e >>> 25)

Ma (a, b, c) = (a ∧ b) ⊕ (a ∧ c) ⊕ (b ∧ c)

Ch (e, f, g) = (e ∧ f ) ⊕ (¬e ∧ g)

Ch

a b c d e f g h

+

+ +

+

+

+

+

Figure 10.5 Working of SHA-512 compression function
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Example 10.1:
The length of the original message is 2590 bits. What is the number of padding bits?

Solution
The number of padding bits |p| = (−2590 − 28) mod 1024 = −2618 mod 1024 = 354

The padding consists of one 1 followed by 353 0’s.

Example 10.2:
The length of the original message is already a multiple of 1024 bits. Mention does the message need 
padding?

Solution
Yes the message needs padding because it needs to add the length field. Padding makes the new block 
as a multiple of 1024 bits. So, it is needed.

Example 10.3:
Mention the minimum and maximum number of padding bits that can be added to a message and 
explain how.

Solution
 (a)  The minimum length of padding can be 0. This situation happens when (−M −128) mod 1024 

becomes 0. It means |M| = −128 mod 1024 = 896 mod 1024 bits. Otherwise, the last block in 
the original message is 896 bits. A 128-bit length field is added to make the block complete.

 (b)  The maximum length of padding can be 1023. This case occurs when (−|M| −128) = 1023 mod 
1024. It means that the length of the original message is |M| = (−128 −1023) mod 1024 or the 
length is |M| = 897 mod 1024. In this scenario, padding cannot be done easily because the length 
of the last block exceeds 1 bit more than 1024. To complete the block, it is needed to add 897 bits.

10.4.3 Birthday Attacks

The birthday problem works like a probability problem. It states the probability of at least one pair of 
people in a group of n people that share the same birthday. A birthday attack is used to refer to a class 
of brute-force attacks. The probability of finding two people in a group of 23 with same birthday is 
greater than 0.5.

The birthday problem can be defined as ‘given a random variable that is an integer with uniform 
distribution between 1 and n and a selection of k instances (k ≤ n) of the random variable. What is the 
probability P(n, k), that there is at least one duplicate?’. The probability of the complement helps to 
solve the problem. By subtracting the probability from the value 1, the probability of at least one pair 
having the same birthday may be finding. For example, the probability of 40 people with at least one 
of the same birthdays goes as follows:

P A P A( ) ( )

.

= −

= − ×
−

× ×
−⎛

⎝⎜
⎞
⎠⎟

≈

1

1
365

365

365 1

365

365 39

365

0 89123





282  Cryptography and Network Security

The collisions of hash functions are identified using birthday attack. Birthday problem is useful to 
solve birthday attack and brute-force attack. One-way hash function, a collision-free hash function, a 
trapdoor one-way hash functions are some hash functions. Consider a function that returns one of a k 
equally like values with random input. The repeated evaluation of the function with different inputs is 
expected to get the same output after 1.2 k  evaluations. Ideal cryptographic hash functions are easy 
to compute a hash value for a message, infeasible to create a message with a given hash, infeasible 
to modify a message without changing the hash, and infeasible to find different messages with the 
same hash.

Example 10.4:
What is the probability that two people in a class of 25 have the same birthday? (Disregard leap years.)

Solution
Use complement to calculate answer. It is very simple to calculate 1 − P (no matches) = the probability 
of minimum one pair of people has the same birthday.

What is the probability of no matches?

Denominator: how many sets of 25 birthdays are there?

With replacement (order matters)

365 power 25

Numerator: How many ways 365 birthdays can be distributed to 25 people without replacement?

Order matters, without replacement:

365

365 25
365 364 363 364 365 24

!

( )!
[ ( )]

(

−
⎡

⎣
⎢

⎤

⎦
⎥ = × × × × × −…

P No matchees
power

so

)
[ ( )]

( )

.

=
× × × × −

=

365 364 363 364 365 24

365 25

0 568699704

…

557% !chances

10.4.4 RIPEMD-160

RACE Integrity Primitives Evaluation Message Digest (RIPEMD) is a fast cryptographic hash func-
tion that is tuned in 32-bit architectures. It is designed by Hans Dobbertin, Antoon Bosselaers and 
Bart Preneel. It is mainly based on the design principles of MD4. It works like SHA-1. RIPEMD-160 
is commonly used improved version of RIPEMD. RIPEMD-128, RIPEMD-256, and RIPEMD-320 
 versions also exist, and RIPEMD-160 is the popular version of this family. It is aimed for the replace-
ment of 128-bit hash function because it offers less security. RIPEMD-256 and RIPEMD-320-bit 
 versions minimize the chance of accidental collision. They do not provide higher level of security 
against pre-image attacks when compared with RIPEMD-128 and RIPEMD-160.

In 1995, Hans Dobbertin found that RIPEMD is restricted to some level. He also found collisions 
of MD4 in the same year. Ron Rivest developed MD4 and MD5 for RSA data security and he recom-
mended that MD4 shows poor performance due to collision. It is also found that MD5 should not be 
used for future applications that require the hash function to be collision-resistant.
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Later, Xiaoyun Wang, Dengguo Feng, Xuejia Lai and Hongbo Yu found collisions for MD4, MD5, 
RIPEMD, and the 128-bit version of HAVAL. RIPEMD-160 is the strengthened version in its family. 
It outputs 160-bit hash value.

RIPEMD-160 consists of 16 steps and 5 rounds. They are left rotation of words, bitwise Boolean 
operations (AND, NOT, OR, exclusive – OR) and two’s complement modulo 232 addition of 
words. It uses 2 parallel lines. It outputs 160-bit message digest. It is slower than SHA, but more 
secure. RIPEMD-160 divides the input into blocks of 512 bits. The compression function works 
on  512-bit message block. It uses chaining variable CV of 160-bit length. The 512-bit block is 
divided into 16  strings of 32-bit word. In MD-SHA family, SHA-2 and RIPEMD-160 are most 
secure compression functions. Recent analysis says the compression function in RIPEMD-128 is 
not collision-resistant.

10.4.4.1 Characteristics of RIPEMD-160

It uses 2 parallel lines of 5 rounds with increased complexity

 1. The 2 parallel lines are very similar.

 2. Step operations are very close to MD5.

 3. Permutation varies in parts of the message.

 4. Circular shifts are designed for the best result.

10.4.4.2 RIPEMD-160 Algorithm Steps

Input: a message of arbitrary length, processed in 512-bit block

Output: 160-bit message digest

Logic:

Step 1: append padding bits

The message is padded. Its length is congruent to 448 mod 512

Padding is always added (1 to 512 bits)

The padding pattern is 100…0

Step 2: append length

A 64-bit length value is appended with original message

Step 3: initialize MD buffer

A 160-bit buffer holds intermediate and final results of the hash function.

The buffer is represented as five registers. They are A, B, C, D, E and they can store 32-bit 
value. These five registers are initialized as follows.

A = 67452301

B = EFCDAB89

C = 98BADCFE

D = 10325476

E = C3D2E1F0
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The values are stored in such a way that the least significant byte of a word in the low-address 
position:

word A = 01 23 45 67

word B = 89 AB CD EF

word C = FE DC BA 98

word D = 76 54 32 10

word E = F0 E1 D2 C3

Step 4: process message in 512-bit blocks

A module is executed 10 rounds with 16 steps each. The 10 rounds are organized with 
2  parallel lines of 5 rounds each. The output of the last round becomes input for the first round.

Step 5: output

The L-th stage generates 160-bit message digest.

10.4.4.3 Working of RIPEMD-160

Figure 10.6 shows the working of RIPEMD-160 compression function. It starts with padding scheme 
which helps to prevent length extension attack. Padding is done at the end of the message. The bytes 
are then adjusted in such a way that the low end comes first. The length of the message is then added 
second to the last element.

Xi = derived from message block
Kj = constant valuer
s( j ), r10 = circular shifts

A B C D E

A B C D E

+

+

+

rs( j )

+

r10

f j

Xi

Kj

Figure 10.6 Working of RIPEMD-160 compression function
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Compression function consists of two parallel streams. It processes this message block by block. 
It initializes the chaining variable with 32-bit fixed value to hash the first message block. It also initial-
izes intermediate hash value for the following message blocks. Compression function updates the state 
variables in each stream. This update depends on expanded message word wi. The state variables are 
combined with initial value IV. The compression function works with 16 words of 32-bit length.

The working of RIPEMD-160 can be explained with two stages message expansion and state update 
transformation. The message expansion of RIPEMD-160 is iteration with permutation of the message 
words. Each iteration step uses different left and right streams. State update transformation begins with 
initial value IV of A, B, C, D, E registers and expanded message word wi. This transformation works 
as 5 rounds and each round has 16 steps. The function fj is used in the jth round in the left stream ad 
f6-j is used in the right stream. A step constant is added in each step and it is different for each round 
and stream. The value sj represents rotation value and it is used in each step of both streams. The last 
step combines the value of right and left streams and results the out of single iteration. Iteration adds 
the permutations of initial value with the output of left and right stream.

The working of RIPEMD-160 compression function is illustrated in Figure 10.6. The critical path 
has addition stages and a multiplexer. The values are fed and received via multiplexer for the operation 
block. The rounds in the working of RIPEMD-160 works in a similar way but each round performs 
with different operation for the inputs of A,B, C, D, E registers. The data is processed 16 times in each 
transformation.

10.4.5 Hash Message Authentication Code

Keyed Hash Message Authentication Code (HMAC) is a MAC. It is calculated by a cryptographic 
hash function with secret key. Normally the data passes through insecure communication channel. The 
checksum for this data is called as MAC. In MAC during transmission, the sender and receiver share 
the secret key for authentication. Hash-based MAC is called as HMAC. HMAC verifies both data 
 integrity and authentication simultaneously like other MAC. HMAC works on message and secret key 
with any cryptographic hash functions like MD5 and SHA-1. The strength of HMAC depends upon the 
strength of cryptographic function used, size and quality of the key and the size of the resultant hash 
output. It addresses several cryptographic schemes and various problems in it and solves them with 
arbitrary keyed hash constructions.

10.4.5.1 Design Objectives

Hash function codes are freely available in the Internet. HMAC applies hash function as a black 
box. Existing implementation of hash function can be applied as individual module in implementing 
HMAC. The HMAC code is readily available and it can be used without modification. The following 
are design objectives of HMAC.

 • Use existing hash functions without correction.

 • Replace existing hash function with embedded hash function for the need of more secure hash 
functions.

 • Maintain the level of performance of the hash function without modifying its significance.

 • Use and handle keys in flexible way.

 • Preserve a well-understood cryptographic analysis and authentication mechanism with reasonable 
assumptions in the embedded hash function.
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The first two objectives are important for the acceptability of HMAC. The last objective makes HMAC 
more popular over other proposed hash-based algorithms as the embedded hash function has some 
reasonable cryptographic strength.

10.4.5.2 Definition of HMAC

HMAC is defined with a cryptographic hash function H, and a secret key K. Authentication key K can 
be of any length up to the byte-length of each block B. The cryptographic hash function H iterates 
the basic compression function. The byte-length of hash output is represented as L. Hash function 
H hashes the keys longer than B bytes. Then the resultant L byte string is used as the actual key in 
HMAC. Usually the minimal recommended length for the authentication key is the byte length of hash 
output L.

The secret key of HMAC can be of any length. HMAC hashes the keys more than the block length 
are hashed first. It accepts keys more than hash output length because the extra length will not improve 
the strength of the hash function. When the randomness of the key becomes weak, the length of the 
secret key is increased.

Keys need to be generated randomly or with a pseudo random generator and it should be refreshed 
periodically. Current cryptographic attacks do not specify about the frequency of key change because 
detection of these attacks are infeasible. However, the periodic refreshment of the security key controls 
the potential weakness of the function and the limits any damages of the current secret key.

HMAC generates a MAC using the following formula.

HMAC (M) = H[(K+opad) & H[(k+ipad) & M]]

where

M = Message

H[] = Underlying Hash function

K = Shared Secret Key

opad = 36hex, repeated as needed

ipad = 5Chex, repeated as needed (the ‘i’ and ‘o’ are mnemonics for inner and outer)

& = concatenation operation

+ = XOR operation

The HMAC(M) message is then sent as any typical MAC(M) message in message transaction over 
insecure channels. HMAC is quite faster than block ciphers such as DES and AES. HMAC is freely 
available, and is not subjected to the export restriction rules of the USA and other countries. HMAC is 
authenticated as the sender and receiver generates an exactly same HMAC output.

Steps

 1. Append zeros to the end of shared secret key K. It creates block of bytes B

 2. Apply XOR (bitwise exclusive-OR) operation on block byte string B with ipad. The value of B 
is derived from step 1.

 3. Append the stream of data ‘text’ to the result of step (2)

 4. Apply H to the value obtained from step (3)



Authentication Techniques  287

 5. Apply XOR (bitwise exclusive-OR) operation on block byte string B with opad. B is obtained 
from step (1)

 6. Append the H result from step (4) to the result from step (5)

 7. Apply H to the value generated in step (6)

 8. Output the resultant hash value

The exclusive OR (XOR) operation is applied on block byte string B with ipad. It results in flipping 
one-half of the bits of secret key K. Following this, the exclusive OR (XOR) operation is applied on 
block byte string B with opad. It also results flipping in one-half of the bits of K in other set of bits. 
HMAC applies three executions of the hash compression function. Passing the two flipped messages 
Si and So through the compression function of the hash algorithm results pseudo randomly generated 
two keys from K. HMAC uses the same execution time for embedded hash function for long messages 
also. The block diagram for working of HMAC is given in Figure 10.7.

ipad

Si

Hash

. . .

b bits

Y L-1

H (Si || M)

K+ 

Y0 Y1

b bits b bits

IV
n bits

n bits

ipadK+

Pad to b bit

S0

HMAC (K, M)

IV
n bits

n bits

Hash

b bits

Figure 10.7 Block diagram for working of HMAC

H Embedded hash function

IV initial value

M Message input for HMAC (includes padding specified in the embedded hash function)
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Y
i
 is the ith block of M, where 0 ≤ i ≤ L − 1

L Number of blocks in Message M

B number of bits in a block

n length of hash code produced by embedded hash function

K Secret key

K+ padded secrete key with zeros in left

ipad 00110110 (36 in hexadecimal) repeated b/8 times

opad 01011100 (5C in hexadecimal) repeated b/8 times

If secret key length K is more than bits in a block, the key is given to the hash function to generate n-bit 
key. Secret key is recommended to have length more than n.

Message input and secret key are functionally two distinct parameters of HMAC. The secret key is 
known only by the sender and receiver. HMAC does not work like a cipher. It works as mechanism that 
handles signing of packet by sender with secret key and verification of the signature in receiver side 
using the same secret key. HMAC insists that it is impossible to generate packet without the knowledge 
of secret key.

10.4.5.3 HMAC Security

The strength of any MAC function depends on the strength of cryptographic hash function. The secu-
rity of the hash function is expressed as the probability of successful forgery. It depends on the amount 
of time spent by the forger and the number of messages generated with same secrete key the attacker 
can forge the HMAC function in any one of the following two ways.

 1. The attacker can find the collisions in hash function.

  The attack on the hash function can be a brute-force attack on the key or a birthday attack.

 2. The attacker may try to compute the output of the compression function.

  The attacker may try to look for two messages x and y which produces the same hash value 
H(x) = H(y). It needs 2n/2 level of effort for hash length of n. The attackers need to observe 
sequence of messages generated by HMAC with the same secret key.

  For example, consider the hash code with length 128 bits. The attacker needs to observe 
264 sequences of messages generated by HMAC with same secret key.

HMAC provide data integrity since attackers cannot generate the actual input or hashed message 
 offline because attackers do not know the secrete key.

10.4.6 Whirlpool

Whirlpool is developed by Paulo S.L.M. Barreto and Vincent Rijmen. It is a one-way hash function. 
The one-way hashing function says it is computationally infeasible to find data mapping to specific 
hash. Whirlpool was submitted to NESSIE (New European Schemes for Signatures, Integrity and 
Encryption) project. Then it is accepted by the international organization for standardization (ISO) 
and the international electrotechnical commission (IEC) as part of the joint ISO/IEC 10118-3 interna-
tional standard. The first version of Whirlpool is called as Whirlpool-T and latest version is referred as 
Whirlpool. The original Whirlpool is called as Whirlpool-0. The working flow is shown in Figure 10.6.
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10.4.6.1 Features and Goals of Whirlpool

Whirlpool is based on 512-bit block cipher. Its structure is similar to Rijndael (AES). It takes a  message 
of any length less than 2256 bits and returns a 512-bit message digest. Whirlpool has the following 
 features:

 1. The hash code length of Whirlpool is 512 bits. This length is similar to the hash length of SHA.

 2. The entire structure of the Whirlpool hash function is resistant to the usual attacks. The hash 
function of Whirlpool is based on block cipher.

 3. The 512-bit block cipher in Whirlpool is based on AES. It is flexibly designed by considering 
important features like compactness and performance. It can be used in both software and 
hardware implementations.

  The security goals of Whirlpool are as follows.

 4. The required quantity of workload to generate collision should be the order of 2n/2 executions.

 5. For a given n-bit input value, the required workload to find a message that hashes to the input 
value should be the order of 2n executions.

 6. For a given input message, the output n-bit hash value is measured. The required work-
load to find other input message that hashes to the same output should be of the order of  
2n executions.

 7. It should not be feasible to find any relation between the combinations of input and combina-
tions of hash value. It should not be possible to find the bits of value which predict the hash 
result when input is flipped.

 8. Whirlpool should be resistant against different cryptographic attacks.

The algorithm designers trust about these claims that met considerable safety margin. However, the 
formal proof of these claims has not been achieved.

10.4.6.2 Whirlpool Hash Structure

Consider the given a message consists of a sequence of blocks m
1
, m

2
 ... m

t
. The Whirlpool hash 

 function is represented as

� H0 = initial value 

� Hi = E(H mi i−1, ) ⊕�H mi i− ⊕1  = intermediate value 

� Ht = hash code value 

Each iteration i gets Hi−1  value as input from previous iteration. The current message block m
i
 is the 

plain text from Message. The ith iteration results intermediate value Hi  that consists of bitwise XOR 
of the current message block and intermediate hash value from previous iteration Hi−1, and the output 
from block cipher W. The algorithm considers a message with a maximum length of less than 2256 bits 
as input and produces 512-bit as hash value. Whirlpool processes input as 512-bit blocks. Figure 10.8 
depicts the overall processing of a message to produce a digest.
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Figure 10.8 Working of whirlpool

The complete message digest is generated in four steps.

 1. Append padding bits: Message is padded to odd multiple of 256 bits. Padding is done, even 
if the message is already of the desired length. Sometimes the unpadded message may be of 
the required length. In this case, the message is padded with maximum padding length 512 bits 
(2 × 256). Minimum padding length is 1 bit.

  For example, the length of the message is 768 bit. It is padded with maximum length. Now the 
message length is 1280 bits. Padding bit ranges from 1 to 512. Padding involves single 1 bit 
followed by required number of 0 bits.

 2. Append length: A block of 256 bits is appended to the input message. This block is considered 
as an unsigned 256-bit integer. It consists of the length in bits of the actual message. Now the 
message length is n × 512 bits, where n = 1, 2 ….

  The above two steps convert the message length as a multiple of 512 bits. In the figure the 
 message is denoted as expanded message m

1
, m

2
, … m

t
. The total length of expanded message 

is t × 512 bits. These blocks are treated as arrays of bytes with 8-bit chunks.

 3. Initialize hash matrix: The results of the intermediate and final hash functions H Hi t,  are 
stored in an 8 × 8 matrix. Each element of the matrix is 8-bit message. The hash matrix holds 
512 bits in total. H0  is initialized with 0000 0000.

 4. Block Cipher: The block cipher handles the message as 512-bit blocks. Whirlpool hash func-
tion is specially designed to use a block cipher. The whirlpool block cipher maintains the secu-
rity and efficiency of AES but its hash length is similar to SHA-512.
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  The structure and basic functions of block cipher W looks like AES. But it is not an extension of it. 
The block cipher W uses 512-bit keys and 512-bit blocks. The block length of AES is 128 and key 
length may be 128 or 192 or 256. The block cipher is faster since it operates with 8 × 8 byte matrices.

10.4.6.3 Overall Structure

The Whirlpool encryption algorithm functions with 512-bit plaintext block. It takes 512-bit key as 
 input and produces 512 bit as message digest. The Whirlpool algorithm handles four different func-
tions or transformations. They are Add Keys (AK), Substitute Bytes (SB), Shift Columns (SC), and 
Mix Rows (MR). Overall structure of Whirlpool cipher W is shown in Figure 10.9.

Round 1

Substitute Bytes (SBs)

Add round key

Plaintext

Shift Columns (SCs)

Mix Rows (MRs)

Add round Key (AKs)

Key expansion

Substitute Bytes (SBs)

Shift Columns (SCs)

Mix Rows (MRs)

Add round constant 

Round 10

Substitute Bytes (SBs)

Shift Columns (SCs)

Mix Rows (MRs)

Add round Key (AK)

Key expansion

Substitute Bytes (SBs)

Shift Columns (SCs)

Mix Rows (MRs)

Add round constant

Key

RC[1]

Cipher text

Round key matrix K0

Round key matrix K1

RC = round constant

RC[10]

Round key matrix K10

Figure 10.9 Whirlpool cipher W
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The block cipher W consists of one AK followed by 10 rounds. These rounds involve SBs, SCs, 
MRs and add round key (AK) operations.

The following equation specifies how one round is expressed as round function RF.

RF(K
r
) = AK(K

r
)  MR  SC  SB

where K
r
 is the round key matrix for round r.

The overall algorithm, with key input K, can be defined as

W(K) =�(Or =1
10  RF(K

r
))  AK(K

0
)

Large circle indicates the iteration of composition function.

Index r ranges from 1 to 10. The plaintext input to W is a single 512-bit block. This block is 
treated as an 8 × 8 square matrix of bytes and represented as CState. The first row of CState is formed 
by first eight bytes of 512-bit plaintext. The second row of CState is formed by second eight bytes 
and so on.

Whirlpool uses KState which is a 512-bit key. Like CState, KState is also a 8 × 8 matrix. Key is 
used as input to initial AK function. The successive rounds take the hash value from previous round 
and uses as key.

10.4.6.4 The Non-linear Layer SB

In Whirlpool, the substitution box is denoted as S-box. It is a 16 ×�16 table which has all possible 8-bit 
values. These values are called as 256 permutations. S-box helps for nonlinear mapping. Each byte in 
CState is mapped with a new byte. The row indicator for S-Box is represented with four leftmost bits 
from CState. The four right most bit is used as a column index.

Mathematically the non-linear layer SB function can be expressed as

B = SB(A)

 b
i, j

 = S[a
i, j

] 

where B is the output, A is the CState.

 b
i, j

 is the value of S-box

 a
i, j

 is the individual byte of CState.

 Indices i and j range from 0 to 7.

 S is the process of S-box mapping.

10.4.6.5 The Permutation Layer SC

The permutation layer shifts each column of CState downwards. This shift is a circular shift except for 
the first column. One byte shift is performed for the second column. Two-byte shift is performed on 
the third column and so on.

The SC function for input matrix A and Output matrix B is expressed as

B =�SC(A) ⇔ b
i, j

 = a i j j( ) mod ,− 8  0 ≤ i, j ≤ 7.
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The shift column transformation gets significant attention because CState is an 8 × 8 matrix. The first 
8 bytes of plaintext is copied in the first row, and so on. The transformation insists that the 8 bytes of 
one row are spread out for eight different rows.

10.4.6.6 The Diffusion Layer MR

The diffusion layer (mix rows) achieves diffusion individually within each row. Each byte of a row 
is mapped into a new value. This new value is a function of all eight bytes in that row. In diffusion 
 function, the output bit is affected by many input bits.

The transformation is represented by the matrix multiplication.

B = AC,

where A is the input matrix, B is the output matrix, and C is the transformation matrix.

The sum of products of figures of one row and one column is denoted as figures in product matrix. 
Each row of transformation matrix is built with a circular right shift of the previous row. The trans-
formation matrix C is designed as maximum distance separable (MDS) matrix which provides a high 
degree of diffusion.

10.4.6.7 The Add Key Layer AK

Add key layer applies XOR operations on 512 bits of CState with 512 bits of round key bitwise.

AK can be expressed as

B = AK[K
i
] (A) ⇔ b

i, j
= a

i, j
 ⊕ K

i, j
 0 ≤ i, j ≤ 7.

where A is the input matrix, B is the output matrix and K
i
 is a round key.

The key expansion for the block cipher W is achieved with the round key. The round constant 
for row r is represented as a matrix RC[r] in which only the first row is non-zero and others can be 
defined as

� rc r j[ ] ,0  =�S[8(r − 1) + j], 0 ≤ j ≤ 7, 1 ≤ r ≤ 10. 

� rc r i j[ ] ,  = 0, 1 ≤ i ≤ 7, 0 ≤ j ≤ 7, 1 ≤ r ≤ 10. 

S refers to S-box.

The key schedule expands 512 bit cipher key K with set of round keys K
0
, K

1
, … K

10
.

 K
0
 = K 

 K
r
 = RF [RC [r]](K

r-1
) 

where RF is the round function. RF(K
r
) = AK(K

r
)  MR  SC  SB

10.4.6.8 Comparison of Whirlpool Block Cipher W with AES

Advanced Encryption Standard (AES) is one of the cryptographic symmetric key standards. It is 
 designed to overcome DES. Whirlpool building blocks are similar to AES. Table 10.2 depicts some 
differences among them.
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Table 10.2 Comparison of Whirlpool block cipher W with AES

Key term Whirlpool block cipher W AES

Key size (bits) 512 128, 192, or 256

Block size (bits) 512 128

Number of rounds 10 10, 12 or 14

Key expansion W round function Expansion algorithm

Matrix orientation Row wise Column wise

Diffusion layer Right multiplication by  
8 × 8 circulant MDS matrix

(1, 1, 4, 1, 8, 5, 2, 9) – mix rows

Left multiplication by  
4 × 4 circulant

MDS matrix (2, 3, 1, 1) – mix columns

KEY TERMS

Birthday attack

Block cipher

Compression function

Hash value

HMAC

MAC

MD5

RIPEMD-160

SHA

Whirlpool

SUMMARY

 • MAC is generated with cryptographic hash function and secrete key. The design of hash functions 
is started with MD4 followed by MD5. The next hash function is SHA. SHA represents the mes-
sage with multiple of 512-bit length. SHA makes any file or input with different size as 160-bit 
 digest. SHA construction is similar to MD4 and MD5 hash functions. SHA prevents the attacker 
to find hash collisions. The birthday problem is an interesting model which shows the probability 
of collisions of 365 days in a year. Different variations of the original problem help to solve other 
related problems. The birthday attack shows the expected number of attempted values before find-
ing a collision. Birthday attack is sometimes computationally intensive strategy to break  encrypted 
message and it shows poor performance when the hash length is increased. RIPEMD-160 is an 
iterative hash function that processes 512-bit input message blocks with compression function 
and produces 160-bit hash value. RIPEMD-160 shows resistance against brute-force collision 
search attack. It is widely used in several banking applications. It is currently in consideration 
for standardization under ISO/IEC JTC1/SC27. HMAC looks like a special construction mecha-
nism to calculate MAC. MD5 or SHA-1 can be used in HMAC. The resulting MAC algorithms 
are denoted as HMAC-MD5 and HMAC-SHA-1, respectively. HMAC applies hash function in a 
block box way. HMAC codes are readily available. The strength of HMAC depends upon the qual-
ity of secret key and its size. Whirlpool is a block cipher-based secure hash function. The NIST 
evaluation of Rijndael says that Whirlpool better performance in execution speed in different 
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hardware and software. It works well during low memory requirements. Whirlpool hash function 
shows good resistant to the usual attacks on block-cipher-based hash codes. Whirlpool needs only 
10 clock cycles to transform each block. RIPEMD-160 needs 80 clock cycles and MD5 needs 
64 block cycles.

REVIEW QUESTIONS

 1. What is message authentication code (MAC)? Mention the requirement of MAC.

 2. What is SHA? Mention its applications.

 3. Mention the properties and applications of SHA.

 4. Write a note on SHA family.

 5. How does SHA work?

 6. State birthday problem.

 7. How can you relate birthday problem with data security?

 8. What are the operations of RIPEMD-160?

 9. What are the characteristics of RIPEMD-160?

 10. Mention the steps of RIPEMD-160.

 11. Briefly explain the operational block of RIPEMD-160.

 12. What is HMAC?

 13. Mention the design objective of HMAC.

 14. Briefly explain HMAC algorithm step and its working block.

 15. Mention the features of Whirlpool.

 16. Mention the security goals of Whirlpool.

 17. Mention the hash function expression in Whirlpool.

 18. Briefly explain the steps of message digest generation in Whirlpool with a block diagram.

 19. How the diffusion layer differs in Whirlpool block cipher W and AES?

 20. Mention any four differences between Whirlpool block cipher W and AES.

 21. Write a short note on Whirlpool cipher W.
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Digital Signature
11
chapter

Cryptosystem is the field of study about techniques for achieving and maintaining secure state. 
In cryptosystem, only authorized users are allowed to use the information contained within the system. 
In this chapter, different techniques such as digital signature, attacks on digital signature, RSA-based 
Digital Signature Algorithm (DSA) and java implementation for batch DSA are discussed in detail.

11.1 INTRODUCTION TO DIGITAL SIGNATURE

Digital signature is one of the most important inventions in modern cryptography. The necessity behind 
the invention of digital signature is a user, who has to sign a message such that intended addressee 
alone can verify the digital signature. Digital signature of each user should be verifiable by other users 
but digital signing on behalf of other users should be prohibited. Digital signature is different from a 
handwritten signature. Digital signature of a message is associated with the message, which is different 
for each message. But the handwritten signature is adjoined to the message, which always looks the 
same. Some salient features of digital signature are enumerated as follows:

 1. It depends on the message signed.

 2.  It must use information which is unique to sender for prevention of both forgery and repudiation.

 3. It must be relatively easy to generate and verify.

A digital signature should be computationally infeasible to regenerate by adversaries to avoid fraudu-
lent digital signature.

11.1.1 Uses of Digital Signature

Digital signatures are mainly used for authentication purpose. It is used to convince communicating 
parties with each other’s identity and exchange their session keys. It is an electronic format of signature 
that can be used by a person to authenticate the identity of message’s sender or identity of document’s 
signer. It ensures that the original content of message or document sent is intact. 

Digital signatures are transportable. It cannot be imitated by someone else. It can be automatically 
time-stamped. It ensures that the original signed message reached, so that sender cannot easily repudi-
ate it later. A digital signature can be used for any form of message. The receiver can be sure of sender’s 
identity and that the message arrived is intact with the help of digital signature.
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11.1.2 Comparison of Digital Signature with Digital Certificate

A digital certificate has digital signature of certificate-issuing authority, which can be used by a person 
to verify that the certificate is real. Digital signature and digital certificate are security measures, which 
are different in their usage and generation aspects.

Digital certificates are used for verification of website’s trustworthiness, while digital signatures 
are used to verify information authentication. In case of digital certificates, an organization can ensure 
the website’s security if and only if digital certificates are issued by organization itself or by a trusted 
certification source, like Verisign Inc. Although the website has certificated from trusted source, it can 
be insecure because hacker can infiltrate this website to modify its content.

Digital signature generates checksum for information that has to be sent, which can be verified by 
recipient that information is unaltered. For example, a person has to send a signed Microsoft Word as 
an attachment in an e-mail. The e-mail attachment in transit can be obtained by a hacker using man-in-
the-middle attack and can insert malicious piece of code with this attachment. The checksum of altered 
attachment will be different from checksum of sent attachment. Hence the recipient is alerted that the 
content was modified in some way from the original with the aid of checksum.

Nowadays business dealings are done over the internet. For example, online trading as well as 
transactions is done in an untrusted environment like the internet where any website has digital certifi-
cate whose trustworthiness has to be scrutinized. Here any content available for transfer was digitally 
signed to ensure it was unaltered. This is depicted in Figure 11.1.

Figure 11.1 Website using a trusted digital certificate

http://searchsecurity.techtarget.com/definition/man-in-the-middle-attack
http://searchsecurity.techtarget.com/definition/man-in-the-middle-attack
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11.1.3 Digital Signature Standard

Digital Signature Standard (DSS) was developed by the U.S. National Security Agency (NSA) for 
the generation of digital signature to authenticate electronic documents. In 1994, DSS was put forth 
by the National Institute of Standards and Technology (NIST). The US government standard for 
authentication of electronic documents is DSS, which is specified in Federal Information Processing 
Standard (FIPS) 186. 

DSA is a pair of large numbers that are computed according to the specified algorithm within 
parameters that enable the authentication of the signatory. As a consequence, the integrity of the data 
attached is ensured. Digital signatures are generated through DSA, as well as verified. Using the private 
key, signatures are generated. Public key corresponding to it is used for verification. Each signatory 
has their own paired public and private keys. Hence signature can be generated only by an authorized 
person using their private key, whereas anyone can use the corresponding public key to verify the 
signature. Message digest is the checksum, which depicts summary of the information is created using 
a hash function called the Secure Hash Standard (SHS). SHS is specified in FIPS 180. The message 
digest along with the DSA algorithm is used to create the digital signature, which has to be sent along 
with the message. Signature verification involves the use of the same hash function.

A digital signature system consists of the following: 

 1. Ptxt: space for possible plaintexts 

 2. Sign: space for possible signatures 

 3. K: space for possible keys 

 4. V: space for verification

For each k ∈ K there is a signing algorithm sig
k
 ∈ Sign and a corresponding verification algorithm 

ver
k
 ∈ V such that 

 1. sig
k
: Ptxt → Sign

 2. ver
k
: Ptxt ⊗ Sign → {true, false}, where ⊗ is the verification algorithm.

 3. ver
k 
(w, s): true, if s = sig (w); false, otherwise

Algorithms sig
k
 and ver

k
 have to be computable in polynomial time. Verification algorithm can be 

publically known whereas signing algorithm has to keep only its key as secret.

11.2 DIGITAL SIGNATURE SCHEMES

In this section, various signature schemes available for digital signing purpose are discussed. They are 
ElGamal signature scheme, DSA signature scheme, RSA signature scheme, Fiat–Shamir signature 
scheme, Lamport signature scheme, Chaum–Antwerpen undeniable signature scheme, Chaum’s blind 
signature scheme, Ong–Schnorr–Shamir subliminal channel signature scheme, Heyst–Pedersen signa-
ture scheme and probabilistic signature scheme.

11.2.1 ElGamal Signature Scheme

ElGamal signature scheme is based on computing difficulty of discrete logarithms. In 1984, a person 
named Taher ElGamal described this scheme. Hence this scheme is named after Taher ElGamal as 
ElGamal signature scheme.

http://searchsoftwarequality.techtarget.com/definition/NIST
http://whatis.techtarget.com/definition/FIPS-Federal-Information-Processing-Standards
http://searchdatacenter.techtarget.com/definition/integrity
http://searchsqlserver.techtarget.com/definition/hashing
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11.2.1.1 Design

Choose: prime p, integers 1 ≤ q ≤ x ≤ p, q be a primitive element of Z
p
*, where x is the private key of 

the signer.

 Compute: y = qx mod p 

 key K = (p, q, x, y)

 Publish the public key (p, q, y) and keep private key (x) as secret.

11.2.1.2 Signature

Let w be the message and r ∈ Z
p−1

* be randomly selected secret number, where 1 < r < p−1 and 
gcd(r, p − 1) = 1. 

 sig(w, r) = (a, b), where a = qr mod p  and b = (w − xa)r −1 (mod p – 1). 

11.2.1.3 Verification

Accept the signature (a, b) of w as valid if 

 yaab ≡ qw (mod p)  (Indeed: yaab ≡ qaxqrb ≡ qax + w – ax ≡ qw (mod p)) 

Example 11.1
Assume Anto considers p = 467; q = 2; x = 127 and calculates y = qx mod p = 2127 mod 467 = 132. So, 
Anto’s key pair is (127, 132). 

Anto takes message, w = 100 and assumes r = 213 for the signature of the message. Notice that 
gcd(213, 466) = 1 and 1 < 213 < 126.

Anto calculates signature as a and b as follows.

 a = qr mod p = 2213 mod 467 = 29.

b = (w − xa)r−1 (mod p –1) 

� = (100 − 127 * 29) * 213−1 mod 466 

� = (100 − 127 * 29) * 431 (mod 466) = 51.

 Therefore, sig(w, r) = (a, b) = (29, 51).

 Anto sends the message with the signature to Brad. Brad verifies Anto’s signature to accept the 
message.

 Brad calculates yaab ≡ qw (mod p).

 13229 * 2951 mod 467 = 2100 mod 467.

              189 = 189.

Thus, Brad verifies Anto’s signature and accepts the message.

11.2.2 DSA Signature Scheme

The Federal Information Processing Standard for digital signatures gives DSA. The NIST proposed 
DSA in August 1991, adopted as FIPS 186 in 1993. DSA is a different form of ElGamal Signature 
Scheme.

DSA uses public key and private key for generation and verification of digital signatures. DSA key 
pair is based on two large prime numbers, p and q, where (p – 1) mod q = 0. DSA cannot be used to 
encrypt messages.

http://en.wikipedia.org/wiki/Digital_signature
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11.2.2.1 Design

The following global public key components are chosen in the key generation process:

 p is a random l-bit prime, 512 ≤ l ≤ 1024,  l = 64t, where t = 8,…,16. 

 q is a random 160-bit prime dividing p − 1.

 r = h (p – 1)/q mod p, where h is random primitive element of Z
p
, such that r > 1                         

User’s private key components are: 

 x is a private key which is a random integer, 0 < x < q

 y = rx mod p.

 Therefore, the Key = (p, q, r, x, y)

After computing the key, Anto publish the public key (p, q, r, y) in the public directory.

11.2.2.2 Signature

Signing of a 160-bit plaintext w to be sent.

 Choose a random number k, where 0 < k < q such that gcd(k, q) = 1

 Compute a = (rk mod p) mod q

 Compute b = k−1(w + xa) mod q, where kk−1 ≡ 1 (mod q) 

 Signature: sig(w, k) = (a, b) 

11.2.2.3 Verification

Verification of signature (a, b)

 Compute z = b−1 mod q 

 Compute u
1 
= wz mod q, u

2 
= az mod q 

 Verification: ver
k
(w, a, b) =  true <=> (ru1yu2 mod p) mod q = a

 Proof: 

    (r u1y u2 mod p) mod q = ((r wz mod q)(yaz mod q) mod p) mod q

           = ((r wz mod q) ((r xaz mod p) mod q) mod p) mod q

           = ((r (w + xa)z) mod p) mod q

           = ((r bkz) mod p) mod q

           = ((r bkb -�1) mod p) mod q

           = (r k mod p) mod q

           = a

Example 11.2
Anto chooses prime number p = 11 and q = 5, w = 54, h = 2 and x = 3.

Calculate r = h (p –1)/q mod p = 2(11 – 1)/5 mod 11 = 4.

          y = r x mod p = 43 mod 11 = 9.

Anto publish the public key (11, 5, 4, 9).

Anto signs the message w as sig(w, k) = (a, b) 

Anto assumes k = 3 such that gcd(3, 5) = 1. 
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Anto computes a = (rk mod p) mod q = (43 mod 11) mod 5 = 4.

             b = k-1(w + xa) mod q = 3−1 (54 + 3 * 4) mod 5 = 2.

Anto sends the message with the signature to Brad.

Brad verifies Anto’s signature as follows:

Compute z = b−1 mod q = 2−1 mod 5 = 3.

   u
1 
= wz mod q = 54 * 3 mod 5 = 2.

   u
2 
= az mod q = 4 * 3 mod 5 = 2.

  (ru1yu2 mod p) mod q = (42 * 92 mod 11) mod 5 = 4 = a.

Signature has been checked and verified successfully.

Example 11.3
Anto chooses choose prime number p = 48731 and q = 443, w = 343, h = 7 and x = 242.

Calculate r = h(p - 1)/q mod p = 7(48731 -�1)/443 mod 48731 = 5260.

          y = rx mod p = 5260242 mod 48731 = 3438.

Anto publish the public key (48731, 443, 5260, 3438).

Anto signs the message w as sig(w, k) = (a, b) 

Anto assumes k = 427 such that gcd(427, 443) = 1. 

Anto computes a = (r k mod p) mod q = (5260427 mod 48731) mod 443 = 59.

                         b = k−1(w + xa) mod q = 427−1 (343 + 242 * 59) mod 443 = 166.

Anto sends the message with the signature to Brad.

Brad verifies Anto’s signature as follows:

Compute z = b−1 mod q = 166−1 mod 443 = 435.

   u
1 
= wz mod q = 343 * 435 mod 443 = 357.

   u
2 
= az mod q = 59 * 435 mod 443 = 414.

   (ru1yu2 mod p) mod q = (5260357 * 3438414 mod 48731) mod 443 = 59 = a.

Signature has been checked and verified successfully.

11.2.3 RSA Signature Scheme

The abbreviation for RSA is the last name of three person named Ron Rivest, Adi Shamir and Leonard 
Adleman, who first publicly described this algorithm in 1977. This can be used for encryption as well 
as signature generation and verification.

11.2.3.1 Design

The key components of RSA include p, q. Select p and q such that both are large prime numbers and 
p ≠ q. 

 Calculate n = p * q and ϕ�(n) = (p − 1) * (q − 1). 

 Select an integer e such that gcd(ϕ�(n), e) = 1 and 1 < e < ϕ�(n).

 Calculate d ≡ e−1 mod (ϕ�(n)).

 The public and private keys are (e, n) and (d, n), respectively.
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11.2.3.2 Signature

Consider a message w such that w < n.

 Signature of w is sign(w, s), where s = w d mod n 

11.2.3.3 Verification

Verification of a signature is verify(w, s) 

 To verify, calculate s��e mod n, which is equal to w that is w = se mod n

Example 11.4
Ando selects p = 7, q = 13.

Calculate n = p * q = 7 * 13 = 91

            ϕ�(n) = (p − 1) * (q − 1) = 6 * 12 = 72.

Choose e = 5 such that gcd(5, 72) = 1.

Calculate d ≡ e−1 mod (ϕ�(n)) = 5−1 mod 72 = 29.

Public Key (5, 91) and Private Key (29, 91).

Anto signs the message w = 35.

Calculate s = w d mod n = 3529 mod 91 = 42

Anto sends the signature, sign(w, s) = sign(35, 42) to Brad.

Brad verifies the received message by calculating w from s as 

  w = s��d mod n = 425 mod 91 = 35.

11.2.4 Fiat–Shamir Signature Scheme

Fiat–Shamir is the person who first proposed the use of zero-knowledge interactive proofs for 
authentication. Their trick for generation of digital signatures is widely used. Paradigm for changing 
identification scheme into signature scheme has been popular from its introduction because it gives 
efficient signatures.

11.2.4.1 Design

One-time set-up:

Trusted centre (T ) selects RSA-like modulus n =�pq, where n is public, p and q are secret. Choose 
s as co-prime to n, such that 1 ≤ s ≤ n – 1,

 Compute v = s2 mod n and registers v with T, where v is public and s is secret.

11.2.4.2 Signature

 1. Sender chooses random commitment r, such that 1 ≤ r ≤ n – 1

 2. Sender sends to Receiver  x = r2 mod n 

 3. Receiver sends to Sender a random value e, such that e = 0 or e = 1 

 4. Sender sends to Receiver y = r * se mod n
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11.2.4.3 Verification

 1. Verification done by Receiver involves computation of y2

 2.  If  y2 ≡ x * ve mod n, then Receiver accepts else rejects it. 

Example 11.5
Let p = 683, q = 811.

Trusted centre (T  ) selects RSA-like modulus n = pq = 683 * 811 = 553913.

Anto selects s = 43215 which is coprime to n and 1 ≤ s ≤ n – 1. 

Compute v = s2 mod n = 432152 mod 553913 = 295502.

Anto registers v with T, where v is public and s is kept secret.

This is one time set-up. 

Then Anto chooses random r = 16785, where ≤ r ≤ n – 1.

Anto sends x = r2 mod n = 167852 mod 553913 = 348421 to Brad. 

Brad sends random e = 1.

Anto sends to Brad y = r * se mod n = 16785 * 43215 mod 553913 = 291658. 

Brad checks by computing y2 ≡ x * v  e mod n

2916582 mod 553913 = 348421 * 295502 mod 553913

523467 = 523467

Hence, verified and accepted.

11.2.5 Lamport Signature Scheme

In 1979, person named Leslie Lamport invented a signature cryptosystem. It is named after the inven-
tor as Lamport signature. It is a method used to generate a digital signature which can be built from 
any cryptographically secure one-way function. Lamport signatures with large hash functions would 
still be secure, even in the presence of quantum computers.

11.2.5.1 Design

To construct a signature scheme for one-time use from any one-way function. 

 Let k be a positive integer and let P = {0, 1}k be the set of messages. 

 Let f: Y → Z be a one-way function and let Y be the set of ‘signatures’

 For 1 ≤ i ≤ k, j = 0, 1 let y
ij
 ∈ Y be chosen randomly and z

ij
 = f (y

ij 
). The key K consists of 2k y’s 

and z’s. y’s are secret, z’s are public.

11.2.5.2 Signature

Message x = x
1
… x

k
 ∈{0, 1}k

Sign the message x as sig(x
1
… x

k
) = (y

1, x1
,…, y

k, xk
) = (a

1
,…, a

k
) 

sig(x
1
… x

k
) denotes signature of message x.

(y
1, x1

,…, y
k, xk

)  denotes the output of the signature which can be simply represented as (a
1
,…, a

k
)

11.2.5.3 Verification

ver
k
(x

1
… x

k
, a

1
,…, a

k
) = true <=> f(a

i
) = z

i, xi
, 1 ≤ i ≤ k 

Anyone cannot forge a signature because it is unable to invert one-way functions. 

http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/One-way_function
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Example 11.6
Assume 7879 which is prime and 3 is primitive element in Z

7879
*

 f(x) = 3x mod 7879. Suppose k = 3, Anto chooses 6 random and secret numbers

 Y
1,0

 = 5831 Y
1,1

 = 735 Y
2,0

 = 803 Y
2,1

 = 2467

 Y
3,0

 = 4285 Y
3,1

 = 6449

Then Anto computes images of these 6 Y ’s under the function f :

 Z
1,0

 = 2009 Z
1,1

 = 3810 Z
2,0

 = 4672 Z
2,1

 = 4721

 Z
3,0

 =�268 Z
3,1

 = 5731. These Z’s are published. 

Suppose Anto wants to sign message x = (1, 1, 0), then signature of x is (Y
1,1

, Y
2,1

, Y
3,0

) = (735, 2467, 
4285).

Brad verifies this signature by using the following computation:

3735 mod 7879 = 3810

32467 mod 7879 = 4721

34285 mod 7879 = 268 

Hence, signature is verified.

11.2.6 Chaum–Antwerpen Undeniable Signature Scheme

This signature scheme was found by Chaum and Antwerpen in 1989. Undeniable signatures are sig-
natures that have the following properties: Any signature can be verified only at the cooperation of 
the signer with aid of a challenge-and-response protocol. Signer cannot deny a correct signature. This 
scheme forces signer to ensure non-repudiation by obeying a disavowal protocol. It makes possible to 
prove the invalidity of a signature and to show that it is a forgery.

11.2.6.1 Design

Similar to Schnorr scheme, but the value of p = 2q + 1.  Let α ε Z
p
* and its order is q. 

 α = g(p - 1)/q = g2, g is a generator for Z
p
*.

 K = {(p, q, α, a, b):b�= α��a mod p}, only a is private such that 1 ≤ a ≤�q - 1.

 q = (p -�1)/2. α = g2 mod p.

11.2.6.2 Signature

Signature: y = sig
k
(x) = xa mod p.

Receiver received y = sig
k
(x) = xa mod p supposedly signed/sent from Sender.

y can be a forgery or a valid signature. 

Hence Receiver issues a challenge to Sender for a response to either verify y is valid signature or y 
is indeed a forgery.

11.2.6.3 Verification

Receiver chooses e
1
, e

2
 randomly from Z

q
*.

Receiver computes c =�ye1 b���e2 mod p and send to Sender.

Sender computes d = cz mod p, z =�a-1 mod q.

Receiver accepts y, whenever d�=�xe1 αe2 mod p.
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Example 11.7
Let p = 467, g = 2.

Calculate α = g2 mod p = 22 mod 467 = 4.

Calculate q = (p − 1)/2 = (467 − 1)/2 = 233.

Anto chooses a = 101 and computes b = α��a mod p = 4101 mod 467 = 449.

Anto assumes x = 119 and computes y = xa mod p = 119101 mod 467= 129.

Now Brad verifies as follows:

Assumes e
1
 = 38, e

2
 = 397 and computes c = y e1 b  e2 mod p = 12938 * 449397 mod 467 =�13.

Brad sends c to Anto.

Now Anto computes z = a−1 mod q = 101−1 mod 233 = 30 and d = cz mod p = 1330 mod 467 = 9.

Brad accepts y whenever d = xe1 α�e2 mod p = 11938 * 4397 mod 467 = 9.

Hence verified and accepted.

11.2.7 Chaum’s Blind Signature Scheme

Cryptographic protocol used to get a valid signature for a message from a signer is called blind signa-
ture scheme. Here signer’s view of protocol cannot be linked to resulting message and signature pair. 
This signature scheme uses RSA cryptosystem. The security of the given scheme depends upon the 
strength of RSA algorithm.

11.2.7.1 Design

It combines RSA with blinding and unblinding features.

Receiver’s RSA public key is (num, encrypt) and his private key is (num, decrypt). 

Let m be a message, 0 < m < num,

11.2.7.2 Signature

 1. Sender chooses a random 0 < k < num with gcd(num,k) =�1. Sender computes m* = mke 
(mod num) and sends it to Receiver (this way Sender blinds the message). Here e is the 
public key.

 2. Receiver computes s* = (m*)d(mod num) and sends s* to Sender (Receiver signs the blinded 
message m*). Here d is the private key.

 3. Sender computes s =�k-1s*(mod num) to obtain Receiver’s signature md of m (Sender performs 
unblinding of m*).

Example 11.8
Anto chooses a random number k = 5 and num = 11 such that gcd(5,11) = 1.

Let m = 13 and e = 17.

Anto calculates m* = mk e (mod num) = 13 * 517 mod 11 = 6

Let d = 19
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s* = (m*)d(mod num) = 619 mod 11 = 2

Calculate s = k−1s*(mod num) = 5−1 * 6 mod 11 = 7

Calculate md(mod num) = 1319 mod 11 = 6.

Hence, verified.

11.2.8 Ong–Schnorr–Shamir Subliminal Channel Signature Scheme

Covert channels can be used for secret communication. They seem to be normal looking communica-
tion over an insecure channel, which is normal and unencrypted. Secret information to be passed will 
be hidden in the channel. Such channels are called as subliminal channels.

11.2.8.1 Design

Assume Anto sends a secret message to Brad through Dev. They choose a large number n and an 
integer k such that gcd(n, k) = 1. The common key k is shared between Anto and Brad but n is public. 
Anto’s intention is to send a message to Brad through Dev. Though Dev is having the message the 
meaning of the message is not revealed to Dev. 

Let w and w’ be the original and fake messages. 

11.2.8.2 Signature

Anto calculates two signatures S
1
 and S

2
.

Signature: (S
1
, S

2
)

  S
1
 = (1/2) * ((w’/w) + w) mod n

  S
2
 = (1/2) * ((w’/w) − w) mod n

Anto sends (w’, S
1
, S

2
) to Brad through Dev.

Dev reads w’ and assumes w’ as the original message. 

11.2.8.3 Verification

Brad recovers the original message as w = [w’/(S
1
 + k−1S

2
)] mod n and verifies the signature S

1
2 − S

2
2/

k2 ≡ w’(mod n).

11.2.9 Heyst–Pedersen Signature Scheme

Signature schemes using a trusted authority for providing ways to prove that a powerful adversary is 
around who could break the signature scheme and therefore its use should be stopped. It is maintained 
by a trusted authority, which will choose a secret key for each signer. The private key is kept secret, 
even from the signers and announces only the related public key.

11.2.9.1 Design

They are many signature schemes that use a trusted authority. It provides many ways to prove that 
a powerful enough trusted third party adversary is around who could break the signature scheme. 
Scheme is maintained by a trusted third party authority, it chooses a secret key for each signer. 
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11.2.9.2 Signature and Verification

A significant idea is that signing and verification algorithms are enhanced by the so-called proof of 
forgery algorithm. When the signer looks into a forged signature, then it is able to compute the secret 
key. The key is submitted to the trusted authority to prove the existence of a forgery. This achieves that 
any further use of the signature scheme is used. 

11.2.10 Probabilistic Signature Scheme

It was designed by Bellare and Rogaway. It is a signature scheme provably well secured against chosen 
message attack. It uses random oracle model, which is secured equivalently to RSA cryptosystem.

11.2.10.1 Design

Let us have a trapdoor permutation 

Pseudorandom bit generator G w G w G w
l k n l k

: , , , , ,0 1 0 1 0 1 1 2{ } → { } ×{ } → ( ) ( )( )− +( )
   

 and a hash function   h: {0,1}* → {0,1}l

This scheme is applicable to messages of arbitrary length.

11.2.10.2 Signature

Message w ∈ {0,1}*. 

 1. Choose random r ∈ {0,1}k and compute m = h (w || r). 

 2. Compute G(m) = (G
1
(m), G

2
(m)) and y = m || (G

1
(m) ⊕ r) || G

2
(m). 

 3. Signature of w is s = f −1(y). 

11.2.10.3 Verification

Message (w, s).

 1. Compute f(s) and decompose f(s) = m || t || u, where |m| = l, |t| = k and |u| = n − (k + l). 

 2. Compute r = t ⊕ G
1
(m). 

 3. Accept signature s if h(w || r) = m and G
2
(m) = u; otherwise reject it.

11.3 BATCH DIGITAL SIGNATURE ALGORITHM

In 1991, DSS is proposed by the US government. It is one of the ElGamal-type signature schemes 
which are based on the discrete logarithm problem. Since verifying each its type signature requires at 
least two modular exponentiations and modular exponentiation is a computational-intensive operation, 
it becomes very desirable to use special-purpose hardware or an efficient software algorithm to speed 
up the signature verification process.

Hence efficient and secure algorithms are essential to verify multiple digital signatures based on 
the discrete logarithm. Verifying multiple signatures simultaneously instead of single signature veri-
fication saves time and effort. Batch verification algorithm can maintain constant verification time 
as to verify a single signature. Naccache et al. had an interactive DSA batch verification protocol 
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in which signer generates  t  signatures through interactions with the verifier and verifier validates 
these t signatures at once based on batch verification criterion. Lim and Lee specified that the inter-
active DSA batch protocol is insecure. Harn gave a DSA-type secure interactive batch verification 
protocol.

11.3.1 Naccache et al. Batch Verification Algorithm

An example is used to illustrate Naccache et al. batch verification algorithm. Assume that there are 
three messages m

1
, m

2
, m

3
 needed to be signed by the signer. The signer interacts with the verifier and 

generates three individual signatures {r
1
, s

1
}, {r

2
, s

2
}, {r

3
, s

3
} of messages m

1
, m

2
, m

3
,  respectively, 

based on the DSA algorithm. The verifier checks these signatures based on the following batch verifi-
cation criterion as r

1
r

2
r

3
 = ( g ym s m s m s r s r s r s1 1 2 2 3 3 1 1 2 2 3 3’ ’ ’ ’ ’ ’+ + + +  mod p) mod q.

11.3.2 Lim and Lee’s Attack

Here, fake signatures can assure the batch verification without the knowledge of the secret key. First, 
the attacker randomly selects {u

i
, v

i
} and computes r

i
 = g ui y vi mod p, for i = 1, 2, 3. The attacker then 

computes s
1
’ that satisfies v

1
 = r

1
s

1
’ mod q. Now, the attacker can solve s

2
’ and s

3
’ from the following 

two equations:

u
1
+ u

2
+ u

3
= m

1
s

1
’+ m

2
s

2
’+ m

3
s

3
’ mod q.

v
1
+ v

2
+ v

3
 = r

1
s

1
’+ r

2
s

2
’+ r

3
s

3
’ mod q.

The issue in Naccache et al. approach is DSA is an insecure algorithm for the batch verification 
criterion, which is used to verify multiple signatures.

Even the Lim and Lee’s attack does not work properly. In their attack, the attacker can randomly 
select all r

i
 first. Then the attacker can solve s

i
 accordingly. However, in secure DSA algorithms, r

i
 can-

not be randomly selected at the first place. Signature algorithm used to sign each individual signature 
is so secure. 

11.4 ATTACKS ON DIGITAL SIGNATURE

Key issues in digital signature are confidentiality in protecting session keys and timeliness to prevent 
replay attacks. Replay attacks are done by copying valid signed message and resending later on. Coun-
termeasures include sequence number usage, timestamps and challenge/response protocol.

There are many ways to produce signature using ElGamal signature scheme. A valid forged signa-
ture can be done using this scheme. It will not allow an opponent to forge signatures on messages of 
their preference. For example, if 0 ≤ i, j ≤ p − 2 and gcd( j, p − 1) = 1, then for a = qi yj mod p; b = −aj−1 
mod ( p − 1);  w = −aij−1 mod ( p − 1); the pair(a, b) is a valid signature of the message w. It is proven 
by the verification condition. If ElGamal signature is not used carefully enough, then it can be easily 
broken. For example, any random number r used in signature must be kept secret, otherwise the system 
can be broken and signatures forged. If r is known, then x can be computed by x = (w − rb) a−1 mod 
( p − 1). A hacker who knows value of x can forge signatures at their own choice. If same value of r is 
chosen to sign two messages, then x can be computed to break the security of system.
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The attack works on RSA digital signature with public exponent e = 3 and PCKS-1 padding.  
A PKCS-1 digital signature is computed on a hash value H(M) that is padded as: 00 01 FF FF …FF 00 
|| ASN.1 || H(M), where 00 01 FF FF …FF 00 is a padding value, ASN.1 is used to provide information 
about the hash function (basically, the length of the hash value), and H(M) is the hash value. Note that 
the hash value H(M) is supposed to be right-justified.

The padded message is obtained by decrypting the digital signature using the public exponent e = 3. 
H(M) is the hash value which can be extracted by searching past the padding and the ASN.1 values to 
select the appropriate number of bytes that follow. To verify the signature, compare extracted value of 
H(M) with separately computed hash value on received message M. The digital signature is considered 
valid if and only if the comparison is true. In ANS X9.31, the hash value is followed by a 2 byte trailer 
with a fixed value instead of being right-justified. If SHA-1 is used, then padded hash value is 6B BB 
BB ...BB BA || H(M) || 33 CC.

11.4.1 Problem

In certain cases, hash value is obtained by getting bits from the padding relative location thereby 
unpredicted data coming after the hash value is left out. In case of PKCS-1, the padding end and the 
ASN.1 value is selected for the hash value. In case of ANS X9.31, the end of the padding is selected 
for hash value, without checking that only two bytes with expected values follow the hash value in 
padded hash string.

11.4.2 Attacks

If PKCS-1 padding method is used, then any message M″ with hash value H(M″) can be easily found 
using cubic root of string like 00 01 FF …FF 00 || ASN.1 || H(M″) || garbage  where number of occur-
rences of FF in padding is reduced. Garbage can be cleverly selected to make the modified string into 
a cube of other value. If ANS X9.31 padding method is used, then padded hash could be changed as 
follows by reducing number of occurrences of BB in padding 6B BB BB ...BB BA || H(M) || garbage, 
where last two bytes of garbage are trailer. Modified padded hash string has a cubic root. For example, 
this attack is presented with e = 3. For both padding methods, if small value of e is used, then eth root of 
a string can be found leading to the attack. If e is large, then determining an eth root modulo n is hard.

To prevent the attack when PKCS-1 is used:

 1. Use any value except 3 as public exponent for RSA signatures. 

 2. When its padding is used to find the hash value, verify that any data doesn’t exist on the right 
of hash value. 

To prevent the attack when ANS X9.31 is used:

 1. Use any value except 2 and 3 as public exponent for digital signatures. 

 2. When its padding is used to point the hash value, verify that only two bytes having expected 
value of trailer is preceded by the hash value.

Another possible attack is an attacker can compute a signature sig on a random fingerprint z. The 
value of x can be computed from z = h(x). In such a case (x, sig) is a valid signature. A hash function h 



Digital Signature  311

is collision-free, if it is computationally infeasible to find messages w and w’ such that h(w) = h(w’). To 
prevent the above attack, it is necessary that signatures have to use one-way hash functions. 

Digital signing algorithm can be compromised in many ways. For example, if an attacker deter-
mines the secret key of receiver, then forging signatures on any sender’s message is possible. If this 
happens, then authenticity of all messages signed by sender before attacker got the secret key is to be 
questioned. The key issue is that there is no way to find when a message was signed. Hence time stamp-
ing should be provided as proof for a message signed at a certain time. For example, stock-market data 
is denoted as stk, which is publically known and could not be predicted before the day of the signature. 
Timestamping by Person A of a signature on a message w is done as follows:

Person A computes z = h(w); computes z′ = h(z || stk); computes y = sig(z’). It publishes (z, stk, y) in 
following days’ newspaper. It is now clear that signature could not be done after triple (x, stk, y) was 
published, but also not before date stk was known. 

11.4.2.1 Man-in-the-middle Attack

Consider the following protocol in the data communication; Anto and Brad are sender and receiver, 
respectively. Mike is the man in the middle of communication performing the attack.

 1. Anto sends Brad the pair (encrypt
B
(encrypt

B
(w)A), B) to B.

 2. Brad uses decrypt
B
 to get A and w, and acknowledges by sending the pair (encrypt

A
(encrypt

A
(w)

B), A) to Anto. 

 3. Mike can learn (encrypt
A
(encrypt

A
(w) B), A) and therefore encrypt

A
(w’), w ‘ = encrypt

A
(w)B. 

 4. Mike can now send to Anto the pair (encrypt
A
(encrypt

A
(w ‘) C), A). 

 5. Anto, thinking that this is the step 1 of the protocol, acknowledges by sending the pair  
(encrypt

C
(encrypt

C
(w ‘) A), C) to Mike. 

 6. Mike is now able to learn w ‘ and therefore also encrypt
A
(w). 

 7. Mike now sends to Anto the pair (encrypt
A
(encrypt

A
(w) C), A). 

 8. Anto acknowledges by sending the pair (encrypt
C
(encrypt

C
(w) A), C). 

 9. Mike (attacker) is now able to learn w.

11.4.2.2 Solution to Man-in-the-middle Attack

Authenticated Diffie–Hellman key exchange.

 Let each user U have a signature function sign
U
 and a verification algorithm verify

U
. The following 

protocol allows Anto and Brad to establish a key K, which is used with an encryption function encrypt
K
 

to avoid the man-in-the-middle attack. 

 1. Anto and Brad choose large prime p and a generator q ∈ Z
p
*.

 2. Anto chooses a random x and Brad chooses a random y. 

 3. Anto computes qx mod p, and Brad computes qy mod p. 

 4. Anto sends qx to Brad. 

 5. Brad computes K = qxy mod p. 



312  Cryptography and Network Security

 6. Brad sends qy and encrypt
K 

(s
B 

(qy, qx)) to Anto. 

 7. Anto computes K = qxy mod p. 

 8. Anto decrypts encrypt
K 

(s
B 

(qy, qx)) to obtain s
B 

(qy, qx), where s
B 

is signing algorithm of Brad.

 9. Anto verifies, using an authority, that v
B
 is Brad’s verification algorithm. 

 10. Anto uses v
B
 to verify Brad’s signature. 

 11. Anto sends encrypt
K 

(s
A 

(qx, qy)) to Brad, where s
A 

is signing algorithm of Anto. 

 12. Brad decrypts, verifies v
A
, and verifies Anto’s signature. 

An enhanced version of the above protocol is known as station-to-station protocol. 

11.4.2.3 Chosen Message Attack

Process giving signature to a message of its choice using an input of verification key is called chosen 
message attack. It is successful, if it can output a valid signature for a message in which no request for 
a signature is done during the attack. It is said that any signature scheme is secure if and only if every 
feasible chosen message attack does not succeed with at least negligible probability.

11.5 MERITS AND DEMERITS OF DIGITAL SIGNATURE SCHEMES

Signature schemes discussed in the aforesaid topics allow for signing only ‘short’ messages. For 
example, sign 160-bit messages with 320-bit signatures. Let us assume message as msg of arbitrary 
length. Hence message digest, md = h(msg) (160 bits) signature, sg = sign(md) (320 bits) a naive 
solution is to break long message into a sequence of short messages, where each block has to be signed 
separately. 

Signing consumes more time and for long signatures, integrity is not protected. The solution is to 
use fast public hash functions h, which can map a message of arbitrary length to a fixed length finger-
print. The fingerprint is then signed.

11.6 JAVA IMPLEMENTATION OF DSA

Many researchers have attempted to make public key algorithms that directly support batch signing 
and batch verification, which was formalized by M. Bellare. With Batch RSA, several messages can 
be combined together and signed in one exponentiation if they are to be verified with different public 
exponents. Optimizations for DSA signing have also been proposed. Other approaches for increasing 
the throughput of public key algorithms include algorithms that can do parallel exponentiations of a 
constant g to random exponents by caching gx1…gxn [25] for a 42–85% improvement. Exponents can 
also be selected that offer efficient batch exponentiation.

11.6.1 History

In 1989, batch cryptography was introduced by Fiat. It is a variant of RSA. Later, in 1994, Naccache, 
Vaudenay and Raphaeli gave their first and an efficient batch verifier for DSA signatures. In 1995, 
Laih and Yen gave a method for batch verification of both DSA and RSA signatures. In the year 1998, 
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Bellare, Garay and Rabin took their first systematic look at batch verification and presented three 
generic methods for batching modular exponentiations, called 

 1. the random subset test; 

 2. the small exponents test; and 

 3. the bucket test 

These methods are applied to batch verification of DSA signatures. A weaker form of batch verification 
called screening is introduced. Later, Cheon and Lee had given two methods, namely sparse exponents 
test and complex exponent test. These are about twice as fast as the small exponents test. Boyd and 
Pavlovski gave few attacks against different batch verification schemes based on the small exponents 
test and related tests. A small exponent test is often used in a wrong way is depicted by these attacks. 

Yoon, Cheon and Kim gave an ID-based signature scheme with batch verification. Their security 
proof is for aggregation of signatures. Hence, it does not meet the definition of batch verification by 
M. Bellare. Methods for identifying invalid signatures in RSA-type batch signatures are proven flawed. 
Practical application of batch verification is done by using modified version of Fiat’s batch verifier for 
RSA. It improves the efficiency of SSL handshakes on a busy server. 

DSA implementation using java, java cryptographic algorithms and batch processing is given below.

Line No.
Program: DSA implementation using Simple Java

File 1: SignTest.java File 2: Conv.java

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

import java.security.*;

import java.io.*;

public class SignTest {

  private static byte[] signer(String datafile, PrivateKey prvKey,

      String signAlgo) throws Exception {

    Signature sign = Signature.getInstance(signAlgo);

    sign.initSign(prvKey);

    FileInputStream fis = new FileInputStream(datafile);

    byte[] dataBytes = new byte[1024];

    int nread = fis.read(dataBytes);

    while (nread > 0) {

      sign.update(dataBytes, 0, nread);

      nread = fis.read(dataBytes);

    };     

return sign.signer();    }

  private static boolean verify(String datafile, PublicKey pubKey,

      String signAlgo, byte[] signbytes) throws Exception {

    Signature sign = Signature.getInstance(signAlgo);

    sign.initVerify(pubKey);

    FileInputStream fis = new FileInputStream(datafile);



314  Cryptography and Network Security

Line No.
Program: DSA implementation using Simple Java

File 1: SignTest.java File 2: Conv.java
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    byte[] dataBytes = new byte[1024];

    int nread = fis.read(dataBytes);

    while (nread > 0) {

      sign.update(dataBytes, 0, nread);

      nread = fis.read(dataBytes);

    };      

return sign.verify(signbytes);

    }

  public static void main(String[] unused) throws Exception {

    // Generate a key-pair

    KeyPairGenerator kpg = KeyPairGenerator.getInstance(“DSA”);

    kpg.initialize(512); // 512 is the keysize.

    KeyPair kp = kpg.generateKeyPair();

    PublicKey pubk = kp.getPublic();

    PrivateKey prvk = kp.getPrivate();

    String datfile = “Conv.java”;

    byte[] signbytes = signer(datfile, prvk, “SHAwithDSA”);

    System.out.println(“Signature(in hex):: “ +

        Conv.byteArray2Hex(signbytes));

    boolean result = verify(datfile, pubk, “SHAwithDSA”, signbytes);

    System.out.println(“Signature Verification Result = “ + result);    

 }  

 }

public class Conv {

private static char[] hexChar = {

 ‘0’, ‘1’, ‘2’, ‘3’, ‘4’, ‘5’, ‘6’, ‘7’, ‘8’, ‘9’, ‘a’, ‘b’, ‘c’, ‘d’, ‘e’, ‘f ’

 };

 public static String byteArray2Hex(byte[] ba){

 StringBuffer sb = new StringBuffer();

 for (int i = 0; i < ba.length; i++){

 int hbits = (ba[i] & 0x000000f0) >> 4;

 int lbits = ba[i] & 0x0000000f;

 sb.append(“” + hexChar[hbits] + hexChar[lbits] + “ “);

 }

 return sb.toString();

 } 

}
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Line No.
Program: DSA implementation using Simple Java

File 1: SignTest.java File 2: Conv.java

Input and Output

G:\Java code>java  SignTest

Signature(in hex):: 30 2d 02 14 2c 14 bb 1f 5a b6 e5 c4 a8 d2 2b cc 7c 92 1e 54

5c 3d e5 6f 02 15 00 83 c4 9c 72 66 b6 ea a0 e4 8b f6 c6 b4 ef 8c 4c 05 f1 78 eb

Signature Verification Result = true

11.6.2 DSA Implementation using JCA

In Java, a framework called Java Cryptography Architecture (JCA) helps to exploit and design cryp-
tographic solutions. A JCA provider implements the cryptographic functionalities like Digital Signa-
tures and Message Digests. The default JCA provider in JDK 1.4.2 is SUN.

11.6.3 Security Considerations while Implementing Digital Signature

When implementing digital signatures, two main security considerations have to be taken into account. 
They are listed as follows:

 1. Sign the message and then encrypt the signed message

 2. Sign the hash of the message instead of the entire message

Note:

Execute the KeyGenerator program for creating private and public key files. Use the private-key. bin in 
JCA Sign program as keyFile and public-key.bin in JcaVerify program execution.

Line No.
Program: DSA implementation using JCA 

File 1: KeyGenerator.java
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import java.io.FileOutputStream;

import java.security.GeneralSecurityException;

import java.security.KeyPair;

import java.security.KeyPairGenerator;

import java.security.NoSuchAlgorithmException;

import java.security.NoSuchProviderException;

import java.security.SecureRandom;

public class KeyGenerator {

  /*Run the key generator and store the key pair in the files private-key.bin and public-key.bin  */

 public static void main(String[] args) {

    int keyLen = 1024;

    if ( args.length > 0) {
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Line No.
Program: DSA implementation using JCA 

File 1: KeyGenerator.java
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      try {         keyLen = Integer.parseInt( args[0]);        }

      catch ( NumberFormatException e) {         System.exit( 1);        }      }

    try {

      KeyPair keyPair = new KeyGenerator().generateKeyPair( keyLen);

      System.out.println( “\nKey pair with key-length of “ + keyLen +

          “ successfully generated.\n”);

      FileOutputStream output = new FileOutputStream(“private-key.bin”);

      output.write( keyPair.getPrivate().getEncoded());

      output.close();

      output = new FileOutputStream( “public-key.bin”);

      output.write( keyPair.getPublic().getEncoded());

      output.close();

    }

    catch ( Exception e) {        e.printStackTrace();        System.exit( 1);      }    }

    public KeyGenerator() {      super();    }

    public KeyPair generateKeyPair( int keyBitSize) 

      throws GeneralSecurityException { 

    // Use a digital signature algorithm generator.

    KeyPairGenerator generator = KeyPairGenerator.getInstance( “DSA”);

    // Random algorithm is SHA-1 with pseudo-random number generator.

    SecureRandom rndAlg = SecureRandom.getInstance( “SHA1PRNG”, “SUN”);

    rndAlg.setSeed( System.currentTimeMillis());

    generator.initialize( keyBitSize, rndAlg);

    return generator.generateKeyPair();

  }

}   

Input and Output

D:\>java KeyGenerator 1024

Key pair with key-length of 1024 successfully generated.
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Line No.
Program: DSA implementation using JCA

File 2: JcaSign.java
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import java.io.*;

import java.security.*;

import java.security.spec.*;

class JcaSign {

   public static void main(String[] a) {

      if (a.length<5) {

         System.out.println(“Usage:”);

         System.out.println(“java JcaSign inputdata signFile signAlgo keyFile keyAlgo”);

         return;        }

      String input = a[0];

      String signFile = a[1];

      String signAlgo = a[2];  // SHA1withDSA, SHA1withRSA,

      String keyFile = a[3];

      String keyAlgo = a[4]; // DSA, RSA

            try {

         PrivateKey prvKey = readPrivateKey(keyFile,keyAlgo);

         sign(input,signFile,signAlgo,prvKey);

      } catch (Exception e) {  System.out.println(“Exception: “+e);      return;        }   }

   private static PrivateKey readPrivateKey(String input,

         String algorithm) throws Exception {

      KeyFactory keyFactory = KeyFactory.getInstance(algorithm);

      System.out.println();

      System.out.println(“KeyFactory Object Info: “);

      System.out.println(“Algorithm = “+keyFactory.getAlgorithm());

      System.out.println(“Provider = “+keyFactory.getProvider());

      System.out.println(“toString = “+keyFactory.toString());

      FileInputStream priKeyStream = new FileInputStream(input);

      int priKeyLength = priKeyStream.available();

      byte[] priKeyBytes = new byte[priKeyLength];

      priKeyStream.read(priKeyBytes);

      priKeyStream.close();

      PKCS8EncodedKeySpec priKeySpec 

         = new PKCS8EncodedKeySpec(priKeyBytes);
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Line No.
Program: DSA implementation using JCA

File 2: JcaSign.java
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      PrivateKey priKey = keyFactory.generatePrivate(priKeySpec);

      System.out.println(“Private Key Info: “);

      System.out.println(“Algorithm = “+priKey.getAlgorithm());

      System.out.println(“Saved File = “+input);

      System.out.println(“Length = “+priKeyBytes.length);

      System.out.println(“toString = “+priKey.toString());

      return priKey;     }

   private static byte[] sign(String input, String output, 

      String algorithm, PrivateKey priKey) throws Exception {

      Signature sg = Signature.getInstance(algorithm);

      sg.initSign(priKey);

      System.out.println(“Signature Object Info: “);

      System.out.println(“Algorithm = “+sg.getAlgorithm());

      System.out.println(“Provider = “+sg.getProvider());

      FileInputStream in = new FileInputStream(input);

      int bufSize = 1024;        byte[] buffer = new byte[bufSize];

      int n = in.read(buffer,0,bufSize);        int count = 0;

      while (n!=-1) {

         count += n;

         sg.update(buffer,0,n);

         n = in.read(buffer,0,bufSize);

      }        in.close();

      FileOutputStream out = new FileOutputStream(output);

      byte[] sign = sg.sign();

      out.write(sign);        out.close();

      System.out.println(“Sign Processing Info: “);

      System.out.println(“Number of input bytes = “+count);

      System.out.println(“Number of output bytes = “+sign.length);

      return sign;

   }  }

Input and Output

D:\>javac JcaSign.java

D:\>java JcaSign input.txt signFile.txt SHA1withDSA private-key.bin DSA

KeyFactory Object Info:

Algorithm = DSA

Provider = SUN version 1.8

toString = java.security.KeyFactory@15db9742
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Line No.
Program: DSA implementation using JCA

File 2: JcaSign.java

Private Key Info:

Algorithm = DSA

Saved File = private-key.bin

Length = 201

toString = sun.security.provider.DSAPrivateKey@2171a

Signature Object Info:

Algorithm = SHA1withDSA

Provider = SUN version 1.8

Sign Processing Info:

Number of input bytes = 17

Number of output bytes = 46

Line No.
Program: DSA implementation using JCA

File 3: JcaVerify.java
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import java.security.*;

import java.security.spec.*;

class JcaVerify {

   public static void main(String[] a) {

      if (a.length<5) {

System.out.println(“Usage: java JcaVerify inputdata signFile signAlgo keyFile keyAlgo”);

         return;         }

      String input = a[0];

      String signFile = a[1];

      String signAlgo = a[2];  // SHA1withDSA, SHA1withRSA,

      String keyFile = a[3];

      String keyAlgo = a[4]; // DSA, RSA

      try {

         PublicKey pubKey = readPublicKey(keyFile,keyAlgo);

         byte[] sign = readSignature(signFile);

         verify(input,signAlgo,sign,pubKey);

      } catch (Exception e) {   System.out.println(“Exception: “+e);   return;  }     }

   private static PublicKey readPublicKey(String input,

         String algorithm) throws Exception {

      FileInputStream pubKeyStream = new FileInputStream(input);

      int pubKeyLength = pubKeyStream.available();

      byte[] pubKeyBytes = new byte[pubKeyLength];
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Program: DSA implementation using JCA

File 3: JcaVerify.java
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      pubKeyStream.read(pubKeyBytes);

      pubKeyStream.close();

      X509EncodedKeySpec pubKeySpec 

         = new X509EncodedKeySpec(pubKeyBytes);

      KeyFactory keyFactory = KeyFactory.getInstance(algorithm);

      PublicKey pubKey = keyFactory.generatePublic(pubKeySpec);

      System.out.println(“Public Key Info: “);

      System.out.println(“Algorithm = “+pubKey.getAlgorithm());

      System.out.println(“Saved File = “+input);

      System.out.println(“Length = “+pubKeyBytes.length);

      System.out.println(“toString = “+pubKey.toString());

      return pubKey;

   }

   private static byte[] readSignature(String input) 

         throws Exception {

      FileInputStream signStream = new FileInputStream(input);

      int signLength = signStream.available();

      byte[] signBytes = new byte[signLength];

      signStream.read(signBytes);

      signStream.close();

      return  signBytes;

   }

   private static boolean verify(String input, String algorithm, 

         byte[] sign, PublicKey pubKey) throws Exception {

      Signature sg = Signature.getInstance(algorithm);

      sg.initVerify(pubKey);

      System.out.println();

      System.out.println(“Signature Object Info: “);

      System.out.println(“Algorithm = “+sg.getAlgorithm());

      System.out.println(“Provider = “+sg.getProvider());

      FileInputStream in = new FileInputStream(input);

      int bufSize = 1024;

      byte[] buffer = new byte[bufSize];

      int n = in.read(buffer,0,bufSize);

      int count = 0;

      while (n!=-1) {
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Line No.
Program: DSA implementation using JCA

File 3: JcaVerify.java
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         count += n;

         sg.update(buffer,0,n);

         n = in.read(buffer,0,bufSize);

      }        in.close();

      boolean ok = sg.verify(sign);

      System.out.println(“Verify Processing Info: “);

      System.out.println(“Number of input bytes = “+count);

      System.out.println(“Verification result = “+ok);

      return ok;      }  }

Input and Output

D:\>java JcaVerify input.txt signFile.txt SHA1withDSA public-key.bin DSA

Public Key Info:

Algorithm = DSA

Saved File = public-key.bin

Length = 243

toString = Sun DSA Public Key

    Parameters:DSA

        p:     fca682ce 8e12caba 26efccf7 110e526d b078b05e decbcd1e b4a208f3 ae

1617ae

    01f35b91 a47e6df6 3413c5e1 2ed0899b cd132acd 50d99151 bdc43ee7 37592e17

        q:     962eddcc 369cba8e bb260ee6 b6a126d9 346e38c5

        g:     678471b2 7a9cf44e e91a49c5 147db1a9 aaf244f0 5a434d64 86931d2d 14

271b9e

    35030b71 fd73da17 9069b32e 2935630e 1c206235 4d0da20a 6c416e50 be794ca4

  y:

    3a88d44b f8253589 5dcb3929 09954637 93443606 33a1014a b0b1eeaa 1deeebb4

    9d36177e 08c71607 3e1e55ad 884c5c5b a05828d0 0b0733ba 79d56144 2ef3d796

Signature Object Info:

Algorithm = SHA1withDSA

Provider = SUN version 1.8

Verify Processing Info:

Number of input bytes = 17

Verification result = true



322  Cryptography and Network Security

11.6.4 Simple Batch Processing of DSA

Note:

This program requires a folder named ‘sample’ containing batch of files for digital signature and veri-
fication. For this output, three files are included in sample folder.

Line No.
Program: Simple Batch processing of DSA

File 1: BatchSignatureTest.java
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import java.security.KeyPairGenerator;

import java.security.KeyPair;

import java.security.PublicKey;

import java.security.PrivateKey;

import java.security.Signature;

import java.io.*;

public class BatchSignatureTest{

private static byte[] sign(String datafile, PrivateKey prvKey,String sigAlg) throws Exception {

    Signature sig = Signature.getInstance(sigAlg);

    sig.initSign(prvKey);

    FileInputStream fis = new FileInputStream(datafile);

    byte[] dataBytes = new byte[1024];

    int nread = fis.read(dataBytes);

    while (nread > 0) {

      sig.update(dataBytes, 0, nread);

      nread = fis.read(dataBytes);      };

    return sig.sign();     }

private static boolean verify(String datafile, PublicKey pubKey,String sigAlg, byte[] sigbytes) 
throws Exception {

    Signature sig = Signature.getInstance(sigAlg);

    sig.initVerify(pubKey);

    FileInputStream fis = new FileInputStream(datafile);

    byte[] dataBytes = new byte[1024];

    int nread = fis.read(dataBytes);

    while (nread > 0) {

      sig.update(dataBytes, 0, nread);

      nread = fis.read(dataBytes);       };

    return sig.verify(sigbytes);     }

public static void main(String[] unused) throws Exception {

    // Generate a key-pair

    KeyPairGenerator kpg = KeyPairGenerator.getInstance(“DSA”);

    kpg.initialize(512); // 512 is the keysize.
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Program: Simple Batch processing of DSA

File 1: BatchSignatureTest.java
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    KeyPair kp = kpg.generateKeyPair();

    PublicKey pubk = kp.getPublic();

    PrivateKey prvk = kp.getPrivate();

String targetdir = “./sample”;

File dir = new File(targetdir);

File[] files = dir.listFiles();

for (File f : files) {

    if(f.isFile()) {

 BufferedReader inputStream = null;

BufferedWriter writer = null;

                try {

inputStream = new BufferedReader(new FileReader(f));

writer = new BufferedWriter(new FileWriter(“batch.txt”));

String line;

  while ((line = inputStream.readLine()) != null) {

            writer.write(line);      }            }

                finally {

                    if (inputStream != null) {

                        inputStream.close();   }   }   }

 writer.close();

    String datafile = “batch.txt”;

    byte[] sigbytes = sign(datafile, prvk, “SHAwithDSA”);

    System.out.println(“Signature(in hex):: “ +

        Util.byteArray2Hex(sigbytes));

    boolean result = verify(datafile, pubk, “SHAwithDSA”, sigbytes);

    System.out.println(“Signature Verification Result = “ + result);    } }  }

Input and Output

D:\>javac BatchSignatureTest.java

D:\>java BatchSignatureTest

Signature(in hex):: 30 2c 02 14 32 2f a4 4f 03 73 b4 6b bf 39 39 5e c7 7e 89 1b

58 15 71 7f 02 14 33 49 63 48 71 8c 28 4d 47 44 4d 1d 30 9e 2a fa c7 cc f0 0f

Signature Verification Result = true
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Line No.
Program: Simple Batch processing of DSA

File 1: BatchSignatureTest.java

Signature(in hex):: 30 2d 02 14 28 3b ed 96 98 1f 3a 02 63 f2 89 6a 46 61 54 0e

fc 1e 5b 60 02 15 00 90 4b 29 57 f9 d3 64 30 bf 8e 5c d7 4f 9e 09 48 df 6d 8b 6c

Signature Verification Result = true

Signature(in hex):: 30 2d 02 15 00 8c 03 ae c8 30 d8 8c 58 85 e1 2f 26 c7 42 41

a2 5a 53 89 ad 02 14 7d a2 70 e4 84 a4 46 42 50 10 2f e8 df 7e d5 57 88 93 b7 07

Signature Verification Result = true

KEY TERMS

Batch DSA

Chaum–Antwerpen Undeniable Signature Scheme

Chosen message attack

Chaum’s blind signature

Digital certificate

Digital signature

DSA signature

Elgamal signature 

Fiat–Shamir signature

Heyst–Pedersen signature 

JCA

Lamport signature 

Man-in-the-middle attack

Ong–Schnorr–Shamir subliminal channel 

Probabilistic signature 

RSA attack

SUMMARY

 • Digital signatures are used for integrity purpose of security. It is one among other techniques that 
lead to advancement in cryptosystem. Digital certificates are issued by trusted third parties for 
non-repudiation purpose. The differentiation between handwritten signature, digital signature and 
digital certificate is clearly stated in this chapter.

 • Key generation, signing and verification of DSA are illustrated in this chapter. Various possible 
attacks on digital signatures are provided with corresponding solutions. Various digital signing 
and verification schemes are discussed in this chapter. 

 • RSA-based digital signature with its variants, interoperability and working principle are dis-
cussed. ElGamal digital signature generation and verification are discussed with its correctness 
of operation. DSA and batch processing of digital signatures are discussed in detail along with its 
merits and demerits. The implementation of digital signing and verification is provided as a simple 
Java program, as a Java program using JCA as well as Java program performing batch processing. 



Digital Signature  325

REVIEW QUESTIONS

 1. What is a digital signature?

 2. Differentiate digital certificate with digital signature.

 3. What are the uses of digital signature?

 4. Give a short note on DSS.

 5. List down a few attacks on digital signature.

 6. How ElGamal signatures are generated and verified?

 7. Write short note on Fiat–Shamir signature.

 8. What is Ong–Schnorr–Shamir subliminal channel signature scheme?

 9. Give short note on Lamport signature scheme.

 10. Write short note on Chaum–Antwerpen Undeniable Signature Scheme.

 11. Explain the generation and verification of Chaum’s blind signature.

 12. What is a Heyst–Pedersen signature?

 13. Differentiate probabilistic signature with Chaum–Antwerpen Undeniable Signature Scheme.

 14. Why batch processing of DSA is necessary?

 15. Write down the merits and drawbacks of digital signature. 
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chapter

In the modern world of communication, Internet plays a vital role. But the major threat in Internet is 
many malicious users try to get unencrypted password communicated over the Internet with sniffing 
tools. With the different authentic services like Kerberos, X.509 and Public Key Infrastructure (PKI), 
only  legitimate users will be allowed to access the intended services.

12.1 KERBEROS

Kerberos is an authentication protocol, which allows clients to communicate over a non-secure  network 
environment based on the use of ‘tickets’ in order to prove their identity to one another in a secure 
manner. It is designed primarily for a client–server communication to provide mutual authentication 
by which the client and the server can verify each other’s identity in a secure manner. Hence, Kerberos 
authentication protocol gives protection against eavesdropping and replay attacks. Kerberos relies on 
the use of trusted third party during authentication and it is based on symmetric key cryptography and 
optionally use public key cryptography in certain forms of authentication.

For providing authenticated services in distributed computing environment, Massachusetts Institute 
of Technology (MIT) developed the Kerberos Authentication Service for Project Athena. Initial 
 versions of Kerberos were used within the MIT. From Kerberos, Version 4 is widely used outside the 
MIT.  Version 4 predominantly developed for Project Athena could not provide the functionalities that 
are required universally. Therefore, Version 5 was developed which could overcome the shortcomings 
of Version 4. Nowadays, the authentication problem can be overcome by bundling Kerberos with the 
operating system.

The major goals of Kerberos are authentication, authorization and accounting. It offers authenti-
cation both in one-way and mutual. Kerberos permits the services to utilize various authentication 
 models. It also supports secure accounting system with reliability and integrity. For example, Kerberos 
can be implemented to provide authentication and authorization in various services such as remote 
login, remote file access and service management, etc.

12.1.1 Kerberos Terminologies

The following are the terminology or conventions that are used in Kerberos authentication service.

 1. Client: An entity who initiates the communication.

 2. Authentication Server: An entity who verifies the identity of the client.

 3. Ticket: It is a proof by which the client identifies itself to the server.

 4. Plaintext: The actual text intended by the user to send as a message.
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 5. Encryption: The process of converting the plaintext to a meaningless form so that the attacker 
cannot realize the actual content of the message.

 6. Ciphertext: With the help of encryption mechanism, the plaintext is converted to ciphertext.

 7. Decryption: Retrieving the original plaintext from the ciphertext.

 8. A secret-key cryptosystem: A single key called secret key is used for encryption and decryption.

 9. A public-key cryptosystem: A key pair, namely, public and private key is used for encryption 
and decryption, respectively.

12.1.2 Kerberos Version 4

12.1.2.1 A Simple Authentication Protocol

If a network is not protected, any client can obtain unauthorized privileges from any server which leads 
to a security risk of impersonation. To counter this threat, the servers are required to authenticate the 
clients before providing the service. But, in the case of an open environment, the authentication of 
clients produce a considerable burden on each server. An alternative way to reduce the burden on each 
server is the use an Authentication Server (AS) which stores the passwords of all users in a centralized 
database. In addition to that, a unique secret key is shared between the AS and each server physically 
or in some other secure manner. Consider the following simple protocol:

Step 1:  When the user (u) first logs on to the workstation, the client (C) module of the workstation 
sends a request message to AS which includes the user’s identity (UID), the user’s password 
(UP) and the server’s identity (SID).

 C AS UID UP SID→ : � �  

Step 2:  The AS verifies the user’s identity and its corresponding password in its database. If it holds, 
AS generates a ticket for the client which has the UID, network address (NA) and the SID. 
After generating the ticket, the ticket (T) is encrypted by the shared secret key (SSK) known to 
the AS and the server (S). Then the AS sends T to C. The main aim of encrypting T is to prevent 
from it alteration or forgery by an opponent.

 AS C T→ :  

 T E UID NA SIDSSK= ( )� �  

Step 3:  By using this T, the C can send a request to S for service. The request message of C contains 
UID and T. Once the S receives the request message, it decrypts T and verifies UID in the 
ticket with unencrypted UID in the request message. If both are same, then S considers that 
the user is authenticated and gives the requested service.

 C S T UID→ : �  

12.1.2.2 The Kerberos Version 4 Authentication Protocol

The simple authentication protocol contains various problems. First problem with the foregoing 
 scenario is that the servers have not authenticated themselves to users. Without such authentication, 
an opponent can configure a false server in a different location to act as a real server so that mes-
sages from the user to a server were directed to different location. Hence, the false server located in 
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a  different position can deny the true service to the user. Second problem is that each user is asked to 
enter the  password for accessing various services from various servers. For example, if the user wants 
to access mail server in the morning, file server in the afternoon and print server in the evening, then 
the user has to enter the same User Password (UP) three times. In such cases, opponent may get a 
greater  oppurtunity to capture the password. Finally for getting, different services from different serv-
ers, different tickets are required in simple authentication protocol. These problems can be eliminated 
by introducing a new server called as Ticket Provider (TP).

The Kerberos version 4 authentication protocol is explained in Figure 12.1 and the six steps involved 
in this diagram are explained as follows.

Authentication
server (AS)

Ticket Provider
(TP)

1 2

3

4

6

5Client

Server

Figure 12.1 Kerberos version 4 authentication protocol

Step 1:  The C sends a message to the AS requesting access to the ticket provider (TP). The TP, 
 provides tickets to authenticated users from the AS. The request message of C contains UID, 
the TP identity (TPID), and the time stamp (ts).

 C AS UID TPID ts→ : � � 1  

Step 2:  Afer receiving this message, the AS generates a secret key (SK) from the UP, a session key 
(SEK) and the ticket (TTP) to communicate with TP. The ticket is encrypted using the TP’s 
secret key (STP). The AS responds to C with a message, encrypted using SK as shown below:

 AS C E SEK UID ts lifetime TTPSK→ : ( )� � � �2 2  

 TTP E SEK UID NA TPID ts lifetimeSTP= ( )� � � � �2 2  
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Step 3:  The message is then decrypted by C using its SK and then the session key and TTP are taken 
to approach the TP. For that, C sends a message to TP that includes the TTP plus the SID. 
In addition to that, C transmits an Authen message, which contains the ID of C’s user and a 
timestamp.

 C TP SID TTP Authen message→ : � �  

Where Authenmessage E UID NA tsSEK ( )= � � 3 , which is used only once and it is not reusable 
unlike the ticket. This has a short life time.

Step 4:  The TP then gets the SEK by decrypting TTP using its STP which it shared between the TP 
and the AS.

 TTP D E SEK UID NA TPID ts lifetimeSTP STP= ( ( ))� � � � �2 2  

Then, the TP uses the SEK to decrypt the Authen message. The TP can then verify the user 
identity and network address from the Authen message with that of the ticket TTP and  network 
address with incoming message. If all are matched, then the TP is assured that the user is 
the  authenticated user. Then TP sends a message to C by encrypting it using the session key 
shared between TP and C. The TP includes a session key (SEKS) to be shared between C and 
the server S, SID, the timestamp and the ticket (TTS) used for a server through which a client 
can communicate with the server.

 TP C E SEKS SID ts TTSSEK→ : ( )� � �4  

 TTS E SEKS UID NA SID ts lifetimeSKS= ( )� � � � �4 4  

Where SKS is the secret key of the server.

Step 5:  After receiving the message, the C decrypts the certificate using the session key SEK and gets 
the following.

 ( )SEKS SID ts TTS� � �4  

Then, the C sends a message to server which includes the ticket TTS and a Authen message1.

 C S TTS Authen message→ : � 1  

Where Authenmessage E UID NA tsSEKS ( )1 5= � �
Step 6:  The server can decrypt the ticket TTS using its secret key SKS, and gets the session key 

SEKS, and decrypt the Authen message1. Then S increment the timestamp by one for mutual 
authentication and finally, the client and server share a secret key for future message com-
munications.

 S C E tsSEKS→ +: ( )5 1  

12.1.3 Kerberos Version 5

Kerberos Version 4 was developed to use in the MIT campus and later expanded to the world 
 outside. To provide security mechanism in Kerberos, DES algorithm was mainly used. So, the weak-
ness of DES impacted a lot in running Version 4 universally. In Version 5, it is overcome by tagging 
 encryption-identifier with the cipher text and allowing other encryption algorithms to use.
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In Kerberos Version 4, the hacker can get the ticket from AS by guessing the password and also, 
no authentication is required. Authentication in Version 5 is provided by other services rather than by 
itself, which helps to diversify the authorization facility.

Regarding the ordering of byte in message structures of Version 4, no specific standard followed by 
the sender. But in Version 5, the structures of message abide by standard such as Basic Encoding Rules 
(BER) and Abstract Syntax Notation one (ASN.1).

Version 5 has the capability of supporting different types of network address whereas Version 4 
supports only Internet Protocol. Thus, Version 5 claims major advantages in the areas of security, 
authentication and interoperability over Version 4.

12.2 X.509 AUTHENTICATION SERVICES

ITU-T recommendation X.509 is a portion of the X.500 series of endorsements describing directory 
services. X.509 is an authentication service used for directories. X.509 is the international standard 
for constructing public key certificate and, used by S/MIME and SSL/TLS. This standard has gone 
through several versions. This standard not only recommends the use of RSA algorithm, but also other 
public key algorithms can be used.

X.509 works under asymmetric key cryptography, digital signatures and PKI in which the major 
trust is on the key pairs. For example, if the key pair is <Key 1, Key 2>, where Key 1 and Key 2 are 
distinct values; either of the keys can be used for encrypting the data. In case if Key 1 is used for 
encryption, then Key 2 is used for decryption or vice versa. Once the key pair is generated, one of the 
keys is publicly announced and the other is kept secret.

For an entity E, an X.509 certificate is produced which holds the public key for it. Entity E can 
prove its identity by presenting its X.509 certificate and sample encrypted data using its private key. 
The  reason behind is that, only the owner can encrypt the data using the private key. By proving the 
identity, the owner of the certificate becomes trusted and the transaction can be preceded safely with the 
assurance of no masquerading. Mutual authentication can be organized naturally by making everyone to 
hold a copy of the certificates for all the entities they trust and checking the list of all trusted certificates 
when an entity is presented with a certificate. The scalability of this scheme does not hold good for a 
legitimate user whose trusted list is very large and keeping update of list is too hard. The solution for 
this scenario is to have a certificate issuer, Certification Authority (CA) who is common to all. By issu-
ing a certificate to an entity, the CA guarantees the legitimacy of the owner of the certificate. When an 
entity trusts CA, it apparently trusts the certificates issued by CA. Entity transacts with the certificates 
received from CA having CA’s identity. The common form of the certificate is shown in Figure 12.2.

The fields given in the above format cover all the three versions of X.509. In Section 12.2.1, elabo-
rate explanation about fields is given. Mandatory information of X.509 certificate is the identity of the 
issuer, i.e. the CA, expiry or termination date of the certificate, distinguished name of the entity that 
the certificate belongs to and public key of the entity.

12.2.1 X.509 Formats

The following section describes the fields available in X.509 Version 1 and Version 2 for public key 
 certificates. In 1988, X.509 Version 1 was approved and in 1993, Version 2 was approved, where 
 Version 2 contained only minor enrichments to the X.509 Version 1. Figure 12.3 depicts the fields in 
the Version 1 certificate standards.
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The following text describes the fields in X.509 certificate Version 1 and Version 2.

 1. Version: The version field depicts the version of the corresponding certificate format; as of 
now, there are three versions, namely, 1, 2 and 3; it also has provisions for future versions of the 
X.509 authentication service standard.

 2. Serial number: The serial number field states the numerical identifier of the certificate which 
is unique in the domain of all public key certificates issued by the CA. At the time of certificate 
revocation, this serial number is the identifier which is posted on the certificate revocation list 
(CRL) signed by the CA because posting the entire certificate in the CRL is inefficient and 
unwanted. As it is used as identifier for revocation of certificate, this identifier has to be unique.

 3. Signature algorithm: The signature algorithm field finds the algorithm the CA used to sign the 
certificate. This algorithm identifier states both the public key and the hashing algorithm, and 
this number is registered with an internationally registered organization.

 4. Issuer X.500 name: The issuer X.500 field denotes the X.500 DN of the CA which issued the 
certificate. To denote the CA which issues certificate to the employees of the MIOT corporation 
in the United States, the DN c=US, o=MIOT Corporation can be used.

 5. Validity period: The validity period field indicates the start and expiry date of the certificate. 
Whenever a certificate is used, its validity period has to be checked upon.

 6. Subject X.500 name: The subject X.500 name field tells the X.500 DN of the entity which 
holds the private key matching to the public key identified in the certificate. For example, 
DN for the employee John Smith of the MIOT Corporation is c=US, o=MIOT Corporation, 
cn=John Smith.

 7. Subject public key information: The subject public key information field points out two 
vital pieces of information, the former id the value of the public key owned by the subject and 
the latter is the algorithm identifier pointing out the algorithm with which the public key is to 
be used.

  Figure 12.4 depicts the fields in the Version 2 certificate standards.

 8. Issuer unique identifier: The issuer unique identifier field was incorporated to the X.509 
certificate definition as part of the Version 2 X.509 standard. This is an optional field which 
provides a location to specify a bit string to uniquely identify the issuer X.500 name, when at 
the same time that particular X.500 been assigned to more than one CA over time.

 9. Subject unique identifier (Version 2 only): This field was included in Version 2 of X.509 cer-
tificate definition. The field, which is non-compulsory, delivers a location to specify a bit string 
to uniquely identify the subject X.500 name, when the same X.500 name has been assigned to 
more than one subject over time.

12.2.2 Version 3 X.509 Certificates

To include additional information, Version 3 introduced a mechanism in which certificates can be 
extended in a generic and standardized fashion. Version 3 X.509 standard defined some broadly 
 applicable extensions to the Version 2 certificate; this is referred as ‘standard extensions’. Anybody 
can register extensions with appropriate authorities like ISO. New broadly applicable extensions are 
used to augment with the set of standard extensions.
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Figure 12.4 X.509 Version 2 with sample field values

Each extension comprises three fields: type, criticality and value. Figure 12.5 shows the structure 
of an extension.

Standard extensions

Type Criticality Value

Figure 12.5 Structure of standard extension

The type of the data in the extension type field is defined by the extension type field. The type 
extension can be a simple text string, a numerical value, a date, a graphic or a complex data structure. 
Registering all extensions with an internationally recognized standards organization will help to pro-
mote interoperability. To make some information more importance when an application is processing 
some certificate, that information’s extension field can be flagged as extension criticality field and if 
that application could not handle such type of extension, it has to reject the certificate.

Required information in a certificate is distinct from critical extension in a certificate. There are some 
adequate extension fields for an application to process a certificate, and it is not required to flag them as 
critical, critical information is the information which must be understood by all applications. Majority of 
the extensions fields are not critical only. The extension value field holds the actual data for the extension. 
The format of the data is mirrored in the extension type field. Figure 12.6 shows the format of Version 3.
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X.509 certificates with the extension mechanism:

12.3 PUBLIC KEY INFRASTRUCTURE

PKI allows efficient and secure identification of public keys. It can be used within or between orga-
nizations with the help of Internet. Different types of PKI can be deployed by varying the essential 
configuration details, trust rules.

12.3.1 PKI Management Model

PKI management model involves in specifying the rules for message formats and procedures used to 
communicate. The major entities of PKI management are as follows:

 1. End Entity (EE): It can be a user or software application to which the certificate is served. 
It needs secure access at least to its name and private key.

 2. Certification Authority (CA): It may be a third party or from the EE’s organization that issues 
certificate to the EE.

 3. Registration Authority (RA): It is a subset of EE and is an optional component. If RA is not 
present, then CA performs RA’s functions. RA carries out the functions such as key generation, 
key pair management, token distribution, etc.

 4. CRL (Certificate Revocation Lists) issuer: If some certificates have to be revoked, the CRL 
issuer will take care of it. It is also an optional component.

 5. Repository: Storage unit to define how to store certificates and CRLs and how it can be 
accessed by the EE.

12.3.2 PKI Management Operations

PKI management operations explain how various entities communicate with each other. PKI manage-
ment operations are depicted in Figure 12.7 and are enumerated below:

 1. Registration: EE registers directly or through an RA to CA for receiving certificates.

 2. Initialization: EE initializes with its key pair, securely with the CA’s public key for certificate 
validation.

 3. Certification: CA issues the certificate to EE and stores in the repository.
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 4. Key pair recovery: As the name indicates, if the key pair is to be recovered, it can be accessed 
from CA or a key backup system.

 5. Key pair update: Periodically all key pairs have to be updated.

 6. Revocation request: CA revokes a particular certificate when a request is received is from an 
authorized EE.

 7. Cross-certification: It is issued from one CA to another for information exchange.

KEY TERMS

Authentication

Authentication server

Certificate revocation list

Certification authority

CRL Issuer

Cross-Certification

Issuer X.500 name

Kerberos

Key pair recovery

Key pair update

Public key infrastructure

Registration authority

Repository

Revocation request

Signature algorithm

Subject X.500 name

Ticket

X.509



Authentication Applications  337

SUMMARY

User authentication is one of the primary steps to have a secure communication over Internet. Here, 
this chapter explains about one of the powerful authentic service, Kerberos and its different versions. 
It deals with how an authentic service developed to serve the need in the MIT lab, transformed to cater 
the needs across the territory. The next session gives a brief idea of X.509, a user authentication service 
for constructing public key certificate. X.509 works under asymmetric key cryptography and used by 
S/MIME and SSL/TLS. Chapter concludes with giving an idea how to have secure identification of 
public key using PKI, which can be used within or between organizations.

REVIEW QUESTIONS

 1. With the help of a diagram, explain the operations in Kerberos.

 2. List out the advantages of Kerberos Version 5 over Version 4.

 3. What do you mean by X.509 authentication services?

 4. Explain X.509 formats.

 5. Define standard extensions of X.509 and its structure.

 6. Write short note on PKI management model.

 7. Explain PKI management operations with the help of a diagram.
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Application layer security discusses about the methods of guarding web applications at the application 
layer from malicious attacks that might discover private information. Security is applied to the applica-
tion layer, especially to defend against unauthorized access and attacks.

13.1 WEB SECURITY

Web security protects web applications from the harmful events performed by the attackers. The web 
security measures can be provided only after knowing the threats that can affect the web applications 
by identifying the vulnerabilities. Threats can be from outside through the Internet or inside from an 
authorized user.

To build a secure web application, there should be a secure network and transport layer. The main 
function of secure network was to provide protection against Transmission Control Protocol/Internet 
Protocol (TCP/IP) attacks. In transport layer, this can be achieved by Secure Sockets Layer/Transport 
Layer Security (SSL/TLS). Then, secure web applications can be designed by analysing the cate-
gories of threats and thereby incorporating security in the developed application. Secure Electronic 
Transaction (SET) is a key example for a web application with secure features.

13.1.1 Web Security Threats and Countermeasures

Threats occurring due to the web application vulnerabilities can be classified as follows:

 1. Input validation: The input entered by the user may become a security issue if it is not prop-
erly validated. Some of the threats arising due to input validation are buffer overflow, cross-site 
scripting, SQL injection and canonicalization. To overcome these types of threats, the input 
entered by a user should not be accepted blindly. Thorough validation of input regarding type, 
length, keywords and built-in functions must be performed before using the input value.

 2. Parameter handling: Query string, form fields, cookies and Hyper Text Transfer Protocol 
(HTTP) header constitute different parameters values passed between the web browser and 
the web application. Attackers can manipulate these parameters and thereby threat can occur. 
These threats can be handled by using HTTP POST for form submission and session identifiers 
can be utilized instead of using hidden form fields. The countermeasures can be enhanced by 
encrypting the query string parameters and cookies.
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 3. Authentication: The failure of authentication leads the attacker to acquire access to the system. 
The major attacks due to lack of authentication check are network eavesdropping, brute-force 
attack, dictionary attack, cookie replay and credential theft. These attacks can be prevented by 
using strong, complex and encrypted passwords.

 4. Session management: Application layer is responsible for managing sessions of web appli-
cations which are crucial to provide security. The threats in the session management include 
 session hijacking, session replay and man-in-the-middle attack. Secure communication 
 channel, re-authentication and cryptographic techniques can be employed to prohibit these 
threats.

 5. Auditing and logging: Through auditing and logging all the actions carried out by the user can 
keep tracked. The major threats encountered are users deleting the history files after perform-
ing some operation or refuses to take the responsibility for the action performed. Threats can 
be avoided by secure logging of all the events occur and relocate the log files regularly.

13.2 SECURE ElECTRonIC TRanSaCTIon

Global reach of Internet encourages online transactions. Secured encryption technology is needed to 
support secure E-commerce in the Internet. Cryptanalysis or code breaker and US export restrictions 
on  encryption are some of the challenges in encryption technology to provide Secure Electronic Trans-
actions in the Internet. In order to provide solution to these challenges, Secure Electronic Transaction 
(SET) was developed. SET is an open encryption and security standard specification that ensures secure 
financial transactions performed in the Internet through a debit or credit card received from a bank. SET 
was  developed by VISA and MasterCard with the support of GTE,  Microsoft, IBM and Netscape. It is 
difficult to provide privacy, confidentiality and authentication when two users such as cardholders and 
merchant are communication. In order to provide this, each user receives a digital certificate and digital 
signature from a Certification Authority (CA). In other way, it is represented as public and private key. 
For each transaction, both digital wallets (certificate and signature) are verified by each actor.

The SET uses Netscape’s SSL, Microsoft’s Secure Transaction Technology (STT), Secure Hyper 
Text Transfer Protocol (S-HTTP) and some aspects of public key infrastructure. The cardholder’s infor-
mation is secured by the SET since it travels across an insecure network (Internet). The main advantage 
of SET is that, it securely conceals the Order Information (OI) and Payment Information (PI), so that 
bank cannot find order information and the merchant cannot find the details of payment information.

13.2.1 actors in SET

The main actors in SET are merchant (recipient), acquirer, customer (cardholder), issuer (bank), 
 payment gateway and CA, which are illustrated in Figure 13.1.

 1. Merchant (Recipient): Merchant is a person or an enterprise that has goods to sell to the customers 
in an electronic environment. Merchant will have a tie-up with acquirer through payment gateway.

 2. Acquirer: Merchant has an account with the acquirer for payment and payment card authoriza-
tion. Merchant accepts various types of payment cards with the assurance of acquirer. The  acquirer 
provides payment authorization to transfer the payment to the merchant account after delivering 
the goods to the customer.
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 3. Customer (Cardholder): Cardholder or customer is a person who interacts with the merchant 
to buy some products. In order to initiate purchase request, he/she holds a payment card which is 
provided by an issuer.

 4. Issuer (Bank): A financial organization such as bank who provides payment card to the customer 
with authentication.

 5. Payment Gateway: The Payment Gateway is an interface between the merchant and Acquirer.  
It supports money transfer and settlement. 

 6. Certification Authority: An entity that issues X.509v3 public key certificates to cardholders, 
merchants, acquirer, issuer and payment gateways.

In Figure 13.1, initially, the customer sends order request to the merchant. The merchant verifies the 
 order request and confirms the order to the customers. After getting confirmation from the merchant, 
the customer sends payment related information and order related information to the merchant. The 
merchant extracts order related information and forwards the payment related information to the 
 acquirer through payment gateway. The acquirer communicates with the issues and gets confirma-
tion from the issuer that the customer does not exceed his/her limit. After that the acquirer gives 
 payment authorization message to the merchant through payment gateway. Finally merchant delivers 
the goods to the customer. The CA takes the responsibility of providing private and public keys to all 
the  components in the form of certificates.

13.2.2 Functionality of SET

Initially, both the customer and the merchant should register their details with the CA. Then, the 
SET enables the merchant to authorize the user as a legitimate user with a valid card by checking 
the public key received from the CA. It uses X.509v3 digital certificate and rivest, shamir and  adleman 

Certification authority

Acquirer

Issuer

Customer Merchant

Payment Gateway

Figure 13.1 SET actors
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(RSA) signatures to provide authentication in the SET. As initialization procedure, the cardholder 
and  merchant exchange their public keys to each other as digital certificates provided by the CA. 
In the SET, information sent from customer to the merchant are PI and order information. The SET 
ensures that the information sent from customer to merchant is not altered during the time of transac-
tion. The information is protected to provide the facility of confidentiality, privacy and authentication. 
The  cardholder enters his/her private key to create a Dual Signature (DS) on the order and the payment 
 Message Digest (MD).

The DS is a new concept which is introduced in the SET to provide the facility of privacy. The DS is 
used for concatenating two different messages that are intended for two different persons in a single 
message. Hence, the customer creates the DS in such a way that the merchant can view the order 
information and hence merchant cannot view the payment-related information. Similarly, the bank can 
view the payment-related information and hence the bank cannot view the order-related information. 
In order to do that, the customer initially computes MDs of payment- and order-related information. 
For computing the MD, Secure Hashing Algorithm-1 (SHA-1) is used. These MDs are denoted as 
PIMD (Payment Information Message Digest) and OIMD (Order Information Message Digest). After 
creating the PIMD and OIMD values, these two values are concatenated and the result is sent into a 
hash function. The final result is called Payment Order Message Digest (POMD). This POMD is fur-
ther encrypted using the private key of card hold to produce the DS. The process of creating the DS is 
shown in Figure 13.2. 

The SET consists of two phases, namely purchase request and purchase response. During the pur-
chase request, the cardholder has to send order- and payment-related information to the merchant and 
to the bank. In the purchase response, the merchant responds with the cardholder. If the cardholders 
transaction is valid, then the merchant delivers the goods to the cardholder. For creating the purchase 
request message, the cardholder initially creates the DS. After creating the DS, it generates a  random 
session key value K

s
 to encrypt the payment-related information as shown in Figure 13.3. After gen-

erating the session key, it encrypts the session key using the public key of bank Ku
b
. This can be 

decrypted by using the private key of bank Kr
b
. This is called digital envelope and is used for finding 

the randomly generated session key by the bank. This digital envelope is created based on encryption 
performed using the public key of the bank with the RSA algorithm. After creating the digital enve-
lope, the customer encrypts the PI, DS and OIMD using the session key generated by the customers 
browser software. This provides additional confidentiality to the PI of the transaction. This result is 
denoted as encrypted PI. Finally, the customer sends encrypted PI, digital envelope, PIMD, OI, DS and 
certificate of customer (cardholder) to the merchant as shown in Figure 13.3.

After receiving the payment request from the customer, the merchant uses the customer’s public key, 
to verify the cardholder’s DS. In order to do that, the merchant decrypts the DS using the  public key of 
the customer. The public key of the customer can be obtained from the certificate of the  customer. After 
decrypting, the merchant obtains POMD. This POMD is compared with the hash value of concatenated 
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Figure 13.2 Dual signature process 
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PIMD and OIMD as shown in Figure 13.4. If both are equal, then the merchant accepts the received 
DS as a valid one. In this phase, the merchant cannot find any payment-related information since it is 
in encrypted form when it is sent to the merchant. Moreover, merchant obtains only the PIMD from 
which the merchant cannot perform attacks to find payment-related information and thus security of 
the PI (credit card details) is preserved.

Once the DS is verified, the merchant forwards the encrypted PI and digital envelope to the bank 
(issuer) through the payment gateway and waits for payment authorization from the bank side. In order 
to do that, the merchant forwards the encrypted PI through the payment gateway to the acquirer. The 
acquirer in turn forwards that information to the bank to check whether the debit/credit card used for 
transaction contains sufficient amount for completing the transaction. In this case, the order details are 
removed by the merchant so that bank cannot find the order-related information. In addition to that, 
bank obtains only the OIMD from which the bank cannot perform any attack to find order-related 
information and thus security of the order information is preserved. After receiving the encrypted PI 
and digital envelope, the bank decrypts the digital envelope to find the session key using the private key 
of the bank. After finding the session key, the bank decrypts the encrypted PI to get PI, OIMD and DS. 
Using the PI and OIMD, the bank computes the POMD as shown in Figure 13.5. After that, the bank 
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decrypts the DS to get POMD. Finally, it compares both the POMD values. If both are equal, then the 
bank gives reply to merchant through the acquirer.

After receiving the payment authorization reply from the acquirer, the merchant delivers the goods 
or products to the cardholder. After some time, the merchant can claim the amount from the acquirer 
for all the transactions for which the acquirer has given authorization reply. The strength of encryption 
used in SET is measured by how hard to break it, which depends on factors such as the length of the 
key, configuration of computer, the algorithms used for encryption, etc. 

13.2.3 SET algorithms

Both symmetric and asymmetric algorithms are used in the SET and are mentioned in Table 13.1. 
In symmetric encryption, a secret key is used to encrypt the data. The secret key may be a string of 
numbers or letters. 

For symmetric encryption, the SET uses DES algorithm. Asymmetric encryption has two related 
keys which are considered as a key pair. A public key can be used by anyone who sends messages. 
The encrypted message can be decrypted with a receiver’s private key that makes the secret message. 

13.3 E-MaIl SECURITY

E-mail is the electronic substitute of a postcard, because of this, it needs extraordinary policy con-
siderations. E-mail security represents the collective measures used to protect the access and content 
of an E-mail account. It permits an individual or organization to defend the complete access to one 
or more  E-mail account. While making policies for E-mail account management, the organizations 

Table 13.1 Commonly used algorithms in SET

S. No. Algorithm Expansion Key size 
(bits) Functionality

1. DES Data Encryption Standard 56
Protects financial data (private 
key system)

2. AES Advanced Encryption Standard 128
Speed and security increased 
than DES

3. CDMF
Commercial Data Masking 
Facility

40
Protects acquirer (cardholder 
message)

4. RSA Rivest–Shamir–Adleman 1024 Public key cryptosystem

5. SHA-1 Secure Hashing Algorithm-1 160
Hash algorithm condenses 
message to fixed length

6. HMAC
Hash Message Authentication 
Code

128
Message authentication code 
used with SHA-1

7. MD5 Message Digest 5 128 Digest function
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have to  consider many perspectives of E-mail like archiving the E-mails and framing constraints for  
content of the E-mail. The following aspects should be considered while framing E-mail policies:

 1. Guidelines for using E-mail: Policies must be fixed to stipulate the responsible utilization of 
E-mail that helps the organization’s goals and business needs. E-mail policy should contain at least 
the guidelines for the content, general usage and it performs according to the accepted  standards 
of E-mail security.

 2. Management of E-mail: Managerial policies must launch the right to test messages passing over 
the E-mail system. This testing could be for viruses or content. Irrespective of the testing type, there 
should be a policy in place that utters the name of an organization which is doing this. E-mail poli-
cies might hold mechanisms to bind the size of messages to avoid the overloading of servers and 
network bandwidth. To alleviate further problems, the organization might need to comprise a policy 
that permits them to use proxies, gateways and other means to support the diffusion of messages. 

 3. Usage of E-mail for confidential communication: Policies for directing confidential commu-
nication contain a facility for encoding the data before transmission and authorizing them with 
digital signatures. Encoding policies are really not the scope of E-mail policies. The policy state-
ments should denote the user to the organization’s encoding policy for that information.

Nowadays both formal and informal communication are done through E-mails. The personal and 
 confidential communication needs security since it passes through various unsecured channels. 
 Malicious software like viruses, worms and Trojan Horses can damage the information in various 
ways. Both Pretty Good Privacy (PGP) and Secure/Multipurpose Internet Mail Extensions (S/MIME) 
are standards which provide security to send and receive E-mail in a secure way.

13.3.1 Pretty Good Privacy

Encryption is the process of encoding information in such a way that only an authorized person can 
read it. Due to the ease of handling digital data in databases, hard drives or other media, E-mail can 
be accessed, seized and watched. The data in digital form can be manipulated, but cannot be kept in 
the same form for a long time, because in the meantime it can be easily duplicated and shared. For 
the above reasons, most of the organizations are considering to encrypt all the information they have. 

As an encryption program, PGP has turned out to be a common tool for routine encryption to  provide 
security. The PGP application helps for modest, informal and complete verification and encryption of 
files and messages. There are numerous versions of PGP and several different tools that can be used for 
a wide diversity of operating systems.

PGP is a digital data encryption program shaped by Phil Zimmermann, a special director at  Computer 
Professionals for Social Responsibility (CPSR) from 1997 to 2000. Phil Zimmermann  created PGP to 
support awareness of the privacy problem in a digital era. Encryption makes the concealed communi-
cation possible and one of the resilient encryption tools available is PGP. 

13.3.1.1 Working of PGP

In PGP the sender of the E-mail generates two different key values for encrypting and decrypting the 
E-mail. Among the two keys one key is a public key which is shared with someone to whom the sender 
wants to exchange E-mail in a secure way. The receivers can use this public key to encrypt the E-mail 
using any encryption technique.
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The next one is a private key, which is guarded by not sharing with anyone. The private key is used 
to decrypt the data that have been encrypted using public key of the owner (receiver). This means that 
the message encrypted using public key of owner ‘X’ can only be decrypted by the corresponding 
private key of ‘X’. The two keys, Key 1 and Key 2 are generated randomly. A key is a block or string 
of alphanumeric text, letters, numbers and other characters such as !, ?, or %, that is produced by PGP 
on demand using special key generation algorithms.

13.3.1.2 Functional operation of PGP 

The supreme usage of PGP is to sign and encrypt the E-mail and attachment files. The signing process 
of a document is used for confirming the integrity of the original file.

The process is as follows:

 1. Create a digest or hash value of the file or E-mail using hash algorithm. A hash algorithm is 
an  algorithm that produces a unique hash value (output) from a given message (input). In PGP,  
E-mail is given as message to hash algorithm.

 2. Add the hash to the rear of the message. In PGP message and plaintext represents same value.

 3. When somebody needs to verify that the message has not been modified, they run the same hash 
algorithm on the message and match it to the hash value which is placed at the end of the message. 
If the hash values are equal, then the message has not been changed.

This is demonstrated in the following example:

The hash algorithm: 

Convert every third letter of the message other than punctuation marks to a number and then add 
them together.

The message: 

Bose Vijayakumar wishes all readers a good day.

Calculating Hash Value: 

Bose Vijayakumar wishes all readers a good day.

19 + 09 + 25 + 21 + 18 + 19 + 19 + 12 + 01 + 18 + 07 + 04 + 25 = 197 

The message with calculated hash value are given below:

Bose Vijayakumar wishes all readers a good day.

Hash value: 197 

If the message is modified, the hash value of the modified message will differ from the original one.

Modified message:

Bose Vijayakumar wish all readers a good day.

New Hash Value: 

Bose Vijayakumar wishes all readers a good day.

19 + 14 + 09 + 25 + 21 + 18 + 19 + 19 + 12 + 15 + 04 = 175

By comparing both the hash values, it is understood that the hashes are different and therefore the 
original message is altered.



348  Cryptography and Network Security

13.3.1.3 PGP Message Generation

PGP is a hybrid cryptosystem which associates few of the best features of both conventional and  public 
key cryptography. When PGP is used to encrypt an E-mail which is considered as a plaintext, it com-
presses the plaintext first. Data  compression saves up modem transmission time, disk space and strength-
ens cryptographic security. Cryptanalysis techniques exploit patterns originate in the plaintext to flaw the 
ciphertext. Compression  decreases these patterns in the plaintext, thus prominently increasing resistance 
to cryptanalysis. The PGP formerly generates a session key, which is a one-time secret key. From the 
random movements of mouse and the keystrokes of the sender, a random number is generated and used 
as a key. This session key and fast encryption algorithm are used to encrypt the plaintext and transform 
it to ciphertext. Once the message is encrypted, the session key is then encrypted using the recipient’s 
public key. The ciphertext and the encrypted session key are sent to the recipient. Figure 13.6 shows the 
message generation in PGP.

13.3.1.4 PGP Message Reception

In the receiver side, the temporary session key is retrieved by PGP using the private key of the receiver 
and it is used to decrypt the conventionally encrypted ciphertext. Working of PGP reception is shown 
in Figure 13.7.
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The mixture of the two encryption methods combine the appropriateness of public key encryption 
with the speed of conventional encryption. Conventional encryption is about 1000 times faster than pub-
lic key encryption. Public key encryption in turn delivers a resolution to key distribution and data trans-
mission issues. Used together, performance and key distribution are improved without any loss in security 
when an E-mail is sent from one place to another place.

13.3.2 Secure/Multipurpose Internet Mail Extensions 

The popularity, functionality and necessity of E-mail need secure mail transfer. MIME (Multipurpose 
Internet Mail Extensions) is an Internet Engineering Task Force (IETF) standard. It is a specifica-
tion for formatting non-ASCII messages in order to send them through the Internet. E-mail clients 
like  Outlook Express handle E-mail messages efficiently with the help of MIME. In Request For 
 Comments (RFC1521), the MIME standard defines the syntax for the attachments of E-mail messages. 
Some of the MIME programs help the user to set their type of attachments for E-mails, how to interpret 
that messages, how to configure other programs with it. Users are advised to disable the automatic 
 E-mail functions like interpretation, execution.

The spam E-mails also look like the E-mails that are sent by the authenticated users which tempt 
us to open. Internet malpractices like changing the message, spoofing an address, hacking an account 
are still happening. The technical experts and government organization need secure MIME message 
for their communication.

S/MIME is a standard that provides a consistent way to send and receive MIME data in an encrypted 
way through the Internet. It is based on the X.509 certificate standard and ASN.1 (Abstract Syntax 
Notation) syntax. It allows the user to send the encrypted E-mails with the digital signature. It makes 
the authenticated recipients to see the messages and ensures that the message has not changed in any 
circumstance. S/MIME is a protocol used to encrypt and digitally sign E-mail messages. Since many 
people are involved in E-mail communication, symmetric key cryptosystems (i.e. The same key is 
used for encryption and decryption) are not practically suitable. The main reason is that, in symmetric 
key systems, it is required to exchange n(n - 1)/2 keys before sending E-mails to everyone else. But, 
symmetric key cryptosystems have fast processing abilities compared to asymmetric keys. Due to this 
advantage, symmetric key cryptosystem is used in S/MIME where a temporary session key is used 
for providing confidentiality. For providing the facility of key distribution, asymmetric key cryptosys-
tem is also used in S/MIME where permanent keys are used. Normally, S/MIME employs public key 
cryptography (an asymmetric system) for signing and encrypting E-mails and messages. Therefore, 
each user in the system receives two keys: A private key, which is maintained as secret and a public 
key, which is made as public to everyone. The E-mails are encrypted using somebody’s private key for 
providing authentication and it can be decrypted only using his/her public key. For providing confiden-
tiality, the E-mail message is encrypted using the randomly generated session key. This session key can 
be encrypted using the public key of the receiver which is called as a digital envelope. When a receiver 
receives this message, he/she first decrypts the digital envelope using the receivers public key to find 
the session key. After that the E-mail message is decrypted using the session key.

S/MIME version 1 was developed in 1995 by security vendors. During that period, there was no sin-
gle standard rather than several competing standard to send secure E-mails. In 1998, two IETF RFCs 
strengthened S/MIME version 2. RFC 2311 which established the standard for message and RFC 
2312 which established the standard for certificate handling. With these RFCs, Version 2 emerged as a 
standard for message security. Version 3 was introduced in 1999, to enhance its capability. RFC 2311 
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improved as RFC 2632 and RFC 2312 improved as RFC 2633. RFC 2634 is extended with additional 
feature like triple wrapping, security labels to provide more security in acknowledgement and in labels. 
Version 3.1 specifies about compressed data. Version 3.2 provides more interoperability with agents 
than prior versions. S/MIME ensures authentication, integrity and confidentiality of the E-mail by fol-
lowing Public-Key Cryptography Standard (PKCS #7) syntax. It is used in mail user agents (MUAs) 
and automated message transfer agents. 

13.3.2.1 S/MIME in Mobile oS

With the advancement in telecommunication technology, now S/MIME is used in mobile OS ( operating 
system) also. The following describes the utility of S/MIME in different mobile OS.

 1. IOS (iPhone OS), the Apple’s mobile OS, has features like iMessage, iCloud (personal cloud 
 storage), S/MIME, etc. The S/MIME functions can be enabled or disabled for each user account. 
IOS  permits to tap the unknown users for later use. 

 2. Windows phone 8.1 is one of the best smartphones in the market. Though it has several important 
features like no rootkits, no malware, no jailbreaks ability, etc., secure E-mail data with secure 
communication makes it worth. The mobile device management capability provides support for  
S/MIME in outlook express. It adds S/MIME policies with the enterprise policies since it does not 
need additional software.

 3. In Android, the software DJIGZO allows S/MIME. The existing Android application can be con-
nected with DJIGZO to send and receive encrypted E-mails. DJIGZO is used with Gmail applica-
tions and it is compatible with other applications like Outlook Express, Thunderbird, etc. 

 4. Encryption in Mac is done with lock icon and signing with a checkmark icon. When S/MIME is 
automated, E-mail considers all the certificates found in the keychain.

13.3.2.2 advantages and Disadvantages of S/MIME

S/MIME is a stable open standard encryption system and can deploy on mobile OS. It is not only 
meant for E-mail but also can support any MUA, automated message transfer agents and transport 
mechanisms like HTTP. It takes advantages of object-based features of MIME messages. 

Sometimes S/MIME may affect the E-mail functionality in an enterprise like damaging the anti-
virus scanners, data loss prevention tools, E-mail archives in retrieval systems, etc. Encryption in  
S/MIME makes the normal mail search as difficult in certain circumstances. S/MIME certificates are 
more expensive. Not all E-mail software handles S/MIME signatures. Once the private key or certifi-
cate stored is lost, the encrypted messages cannot be decrypted. Apart from that, the S/MIME cannot 
transmit executable files or data that contains national language characters.

13.3.2.3 Installation of S/MIME

The web-based applications such as Gmail, Yahoo cannot apply S/MIME directly. These services 
are induced with Internet Message Access Protocol (IMAP) or Post Office Protocol (POP). S/MIME 
 installation steps are specified in Figure 13.8. The client machine requests the CA to provide public 
key and private key. Then they are installed as a .pfx (personal information exchange) file in the  client 
machine. Registration Authority is an entity that is responsible for some administrative tasks like 
 registration of subject. It verifies the identification of the subject through a trusted authority.
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A mechanism to provide certification and authentication should be easy to process. The following 
steps are to be considered during certificate handling:

 1. The third party should provide the certificate.

 2. It should be in a sharable format. 

 3. Issue date and expire date must be considered.

 4. It should be flexible with E-mail applications.

 5. Use separate keys for digital signature and encryption.

 6. It should be easy to verify its validity by the agent.

 7. It should be in X.509 format and it should accept PKCS #7 syntax.

 8. Reason for issuing, issuer details must also be included.

13.3.2.4 Functionality of S/MIME

The Functionality of S/MIME is explained in this section with respect to authentication and confiden-
tiality services provided by S/MIME.

Authentication in S/MIME
Authentication is an essential security service that must be provided in S/MIME to ensure that the 
E-mail has come from a legitimate user. For example, when Alice sends an E-mail to bob to transfer 
$1000 amount, bob must ensure that this E-mail has not come from eve to empty his account. The 
authentication process used in S/MIME is shown in Figure 13.9.

Sender side:

 1. In the Figure 13.9, the sender’s message is denoted as plaintext (P) and the sender hashes the 
plaintext message (E-mail) using the hash function to produce the hash value.

 2. This hash value is encrypted by the sender using its private key (Kr
A
) to produce the digital 

signature.

 3. The plaintext of the sender together with the digital signature is then sent to the receiver.
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authority

Certificate
authority

Private key,
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Installs certificate in machine

PFX file to
E-mail account

S/MIME

Figure 13.8 S/MIME installation
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Receiver side:

 1. The receiver uses the same hash function on the plaintext to produce the same hash value.

 2. The receiver uses the public key of the sender (Ku
A
) to decrypt the digital signature to produce 

the hash value.

 3. Finally, the receiver checks the equality of both the newly computed hash value and already 
received hash value to authenticate the plaintext.

Authentication and Confidentiality in S/MIME
Confidentiality is also an essential security service that must be ensured when an E-mail is sent from 
one user to another user. Figure 13.10 shows the way in which both authentication and confidentiality 
services are used in S/MIME.

Sender side:

 1. The sender wants to communicate an E-mail (plaintext) with the receiver securely. In the 
Figure 13.10, the sender’s E-mail is denoted as plaintext (P). The sender hashes her message 
using the hash function to produce the hash value.

 2. The sender uses its private key (Kr
A
) to encrypt the hash value to produce the hash code.

 3. The sender chooses a 128-bit session key (K
s
) to encrypt the plaintext of the sender together 

with the hash code.

 4. The sender encrypts the session key using the public key of the receiver (Ku
B
) and produce the 

ciphertext as E P hashcode E KK Ku SS B
( || ) || ( ).

Encryption
(Digital signature)
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Figure 13.9 Authentication in S/MIME
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Receiver side:

 1. After receiving the cipher text, the receiver first uses its private key (Kr
B
) to decrypt the session key.

 2. The receiver uses the session key to get the plaintext and the hash code.

 3. The receiver uses the same hash function on the plaintext to produce the hash value.

 4. The receiver uses the public key of the sender (Ku
A
) to decrypt the hash code to produce the 

hash value.

 5. Finally, the receiver checks the equality of both the hash values to authenticate the message.

In this procedure, the session key is used to provide confidentiality and then it can be discarded by the 
receiver after decrypting the plaintext in the receiver side.
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13.4 CaSE STUDY

The following subsection discusses a case study of how PGP and S/MIME are used in E-mail security.

13.4.1 Case Study of PGP

In this case study, Alice is the receiver of an encrypted E-mail message, Bob is the transmitter and Eve 
is the eavesdropper. Alice first wants an encryption key pair. She needs to choose two prime numbers to 
generate her encryption keys. A prime number can be divided only by itself and the number one, with-
out any remainders. So, Alice picks 7639 and 7919 as prime numbers. She now generates her public 
key by multiplying these values together to make 60,493,241. Now Alice shares this key or value with 
everybody but does not disclose the two numbers she formerly chose. 

Bob transfers Alice a secure message using her public key composed with his message after pro-
cessing them with a one-way function. Now Alice is the only one who can decrypt Bob’s message as 
she only has her private key—only she knows the two values which she used to generate her public key. 

If Eve interrupted the message sent to Alice and desired to read it, Eve would have to factor 
60,493,241 to discover the two values that were multiplied together. If she worked quickly and could 
factor four primes a minute, it would take her almost five hours to determine the values of Alice’s 
 private key and read the message Bob sent.

13.4.2 Case Study of S/MIME

Almost all E-mail clients like Outlook Express have options to set their encryption algorithms. During 
the period of Outlook 2010, SHA-256 and SHA-512 were considered as strongest signing algorithm. 
Later it was found that Whilst options of algorithms are more limited in legacy versions and showed 
that it may not work well in some situations. But the signing algorithm SHA-1 balances both ubiqui-
tous technology and hash algorithms. The 3DES and AES-256 encryption algorithms can satisfy many 
of the clients but it is also viable in many circumstances. 

For more compatibility, Outlook 2011 designed with SHA-1 signing algorithm and 3DES or  
AES-256 is considered as an encryption algorithm for greater security. These options are available 
under preference tab. Mulberry mail users can find the same settings under preference tab. Select ‘Use 
MIME Multipart Security with PGS’ option to verify and send messages. 

Outlook 2007 users can locate their security setting through tools options. Thunderbird users can 
fix their options for signing and encryption algorithms when it limits the permission to change their 
settings.

13.5 SECURE HYPERTExT TRanSFER PRoToCol

Secure Hyper Text Transfer Protocol (S-HTTP) is a protocol that provides application layer security. 
It was introduced to work in combination with HTTP that enables the users and the server to connect 
with the confidentiality and authorized sort of environment. Therefore, S-HTTP provides an additional 
room to HTTP which permits the secure exchange of data on the World Wide Web. It was introduced in 
the year 1994 by EIT (Enterprise Integration Technologies). The working of S-HTTP is based on public 
key cryptography infrastructure. Range of cryptographic algorithms such as DES, International Data 

http://en.wikipedia.org/wiki/Secure_Hypertext_Transfer_Protocol
http://searchwindevelopment.techtarget.com/definition/HTTP
http://dret.net/glossary/desx
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Encryption Algorithm (IDEA), RC2 and RSA supports S-HTTP. In working of S-HTTP, it  encrypts a 
page that is submitted to the server by encrypting the fields such as post field, header field, etc. Mainly 
S-HTTP messages are based on four components that are listed as follows:

 1. HTTP message

 2. Browsers (users) cryptographic choice

 3. Servers cryptographic choice

 4. Single (or) double-directed security

In the above four components, HTTP message is the actual message that has to be submitted to the 
server. This HTTP message requires confidentiality and authentication since it passes over an insecure 
channel. Browser cryptographic choice determines the algorithm used by the browser in which the 
HTTP message is encrypted. This choice depends upon the browser that the user is using. Moreover, 
browsers cryptographic choice and the server’s cryptographic choice must be same in such a way that 
they can correctly encrypt and decrypt the messages. Using the same cryptographic choice, the server 
decrypts the HTTP message sent by the browser. Direction of security depends on both browser and 
server and it can be a single/double directions security. Using these four components, the S-HTTP 
 securely transfers the messages. S-HTTP header permits the use of digital signatures for authentication 
and encryption for confidentiality. Inspite of using all these security parameters, the S-HTTP discloses 
the actual protocol that is used while transferring the message from users to the server and hence this 
becomes a security flaw in S-HTTP. Owing to this reason, the S-HTTP is less efficient in terms of 
security when compared with HTTPS. Many web browsers such as Mozilla Firefox, Internet Explorer 
and Google Chrome, etc. have migrated to HTTPS because of this security constraints.

KEY TERMS
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 • Secured transactions play a vital role in E-commerce. Online frauds, cryptoanalysis and  scepticism 
are crucial issues and need to be considered nowadays. SET is a comprehensive standard that uti-
lizes cryptography to provide confidentiality to payment transaction. It ensures payment integrity 
and authentication. Authentication is provided to individual participants with digital certificates 
by the CA. The encrypted message is covered with digital envelope that is digitally signed by the 
sender ensuring it is sent by him and it is not known by anyone. Message data is encrypted with 

http://dret.net/glossary/idea
http://dret.net/glossary/rc2
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randomly generated key and it is further encrypted using the recipient’s public key. The recipi-
ent decrypts encrypted message using a private key and then uses the symmetric key to unlock 
the original message. Digital certificates are also called electronic credentials or public key. The 
digital certificate ensures that the cardholder obtains electronic credentials and is trustworthy. 
The same happens for merchant also. When the customer purchases goods, then their credentials 
are exchanged. If both are satisfied, then the transaction occurs. Credentials are renewed in regular 
intervals to prevent E-fraud.

 • Messaging applications like E-mail could not be completely protected by network security 
 measures alone. PGP is widely used protection for E-mail security by casual Internet user com-
munity. PGP is a data encryption and decryption protocol that offers cryptographic privacy and 
authentication for data communication. Encryption of the message is done using public key. The 
private key is used to decrypt the data that have been encrypted using public key of the owner.

 • S/MIME provides a consistent way to send and receive MIME data in the Internet safely. It secures 
messages with authentication, provides confidentiality. It ensures guarantee for the message. It is 
performed in two levels. First level checks the authentication to provide digital sign and to check 
the digital sign in the receiving time. Private keys play a major role in this level. The algorithm 
used for this purpose is referred as signing algorithm. The second level handles encryption. These 
are called encryption algorithms. 3DES and AES-256 are commonly used encryption algorithms. 
Public keys are used in the encryption level. Private and public keys are provided by the third 
party in the form of digital certificate. The expense of this certificate diminishes the spectrum of 
S/MIME considerably.

 • S-HTTP provides an additional room to HTTP which permits the secure exchange of data on the 
World Wide Web. S-HTTP is less efficient in terms of security when compared with HTTPS.

REVIEW QUESTIonS

 1. Describe briefly the different web security threats and its countermeasures.

 2. What is the need of E-mail security?

 3. With a neat diagram, explain the different actors of SET.

 4. Explain the functionality of SET in E-commerce.

 5. Outline SET operations involved during E-transaction with credit card.

 6. John started a tutorial class to handle electronic gadgets easily in a shopping mall. His business 
runs well. He planned to conduct online classes in Internet and hosted an application. He got a 
merchant account from national credit card company. To provide more payment options to his 
customer, he wants to go with PayPal. What are the various kind of operations that happen with 
PayPal and in its absence? Suggest your overall opinion to John in this scenario.

 7. State the basic steps in PGP.

 8. Discuss the role of PGP in E-mail security.

 9. Give a sample for hash algorithm.

 10. What is the role of session key in PGP encryption?

http://searchwindevelopment.techtarget.com/definition/HTTP
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 11. Brief the origin of PGP.

 12. What is meant by ‘signing’ a document?

 13. Explain the importance of random numbers in PGP message generation.

 14. List out the components contained in the outcome of PGP encryption.

 15. What are the shortcomings of S/MIME, and how can it be rectified?

 16. Mention any features to add with S/MIME or enhance any feature of S/MIME and How?

 17. Explain cryptographic message syntax.

 18. Explain briefly about S-HTTP.
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A familiar implementation of public-key encryption is Secure Socket Layer (SSL). SSL is used by web 
browsers and servers for transmission of sensitive information. SSL is a part of an overall protocol 
known as Transport Layer Security (TLS). SSL and its successor TLS makes use of certificate authori-
ties. When browser requests a secure web page, ‘s’ added onto ‘http’ in URL of the browser which 
sends out the public key and the certificate by checking whether the certificate comes from a trusted 
party which is currently valid and has a relationship with the site from where it comes.

14.1 SECURE SOCKET LAYER

SSL version 1.0 was developed by Netscape for securely exchanging document in the Internet. SSL 2.0 
was developed later with version 1.0 of Netscape Navigator. SSL 3.0 was released and Netscape has 
allowed the IETF to take over the development of future versions. Other versions of SSL protocol 
are changed to TLS, with version numbers beginning at 1.0. Version numbers that are discussed in 
 ClientHello and ServerHello messages of SSL are 3.0 and below. For future revisions of version numbers 
that has to be negotiated with TLS will continue as version 3.1 or higher indicates revision of SSL 3.0.

Large part of the Internet community has chosen SSL as the secure communications protocol. 
Many applications of SSL are in existence due to its capability of securing any transmission over TCP. 
In E-commerce or password transactions, Secure HTTP (HTTPS) is used which is a famous applica-
tion of SSL. 

SSL Protocol has to provide privacy, identity authentication and reliability between two communi-
cating applications. Privacy can be provided through encryption. Identity authentication can done with 
help of identification through certificates and reliability can be establish by dependable maintenance 
of a secure connection through message integrity checking.

14.1.1 SSL Architecture

The SSL protocol stack has 4 components over the transport layer. They are SSL record protocol, 
SSL ChangeCipherSpec protocol, SSL alert protocol and SSL handshake protocol. Figure 14.1 shows 
the SSL architecture. The four protocol layers of SSL comprise communication between the client 
 machine and the server.



360  Cryptography and Network Security

SSL
handshake

protocol

SSL
ChangeCipherSpec

protocol

SSL alert
protocol

HTTP

SSL record protocol

Transmission control protocol

Internet protocol

Figure 14.1 SSL protocol stack

 1.  Record protocol: The record protocol layer formats the alert, ChangeCipherSpec, handshake 
and application protocol messages. This formatting provides a header for each message and 
a hash is generated from a Message Authentication Code (MAC) at the end. The fields that 
 comprise the five byte header of the record protocol layer are protocol definition (1 byte), 
 protocol version (2 byte) and the length (2 byte). The header followed by the protocol messages 
has to be lesser than 16,384 bytes.

 2.  ChangeCipherSpec protocol: This protocol signals a message denotes the starting of secure 
communications between client and server. The actual ChangeCipherSpec message is only one 
byte long which uses the Record Layer format and signals the value of ‘1’ to indicate change in 
communications protocol.

 3.  Alert protocol: The connection between two parties can have errors, problems or warnings 
which are sent by this protocol. This layer is formed with two fields namely the Severity Level 
and Alert Description. The Severity Level sends messages with a value ‘1’ or ‘2’, depending 
on the level of concern. Value of ‘1’ in message is a caution or warning suggesting that parties 
should discontinue their session and reconnect using a new handshake. Message with a value 
of ‘2’ is a fatal alert which requires that parties should discontinue their session. Specific error 
is indicated in Alert Description field which caused the Alert Message to be sent from a party. 
This field is one byte, mapped to one of twelve specific numbers and can take on one of the 
meaning such as CloseNotify, UnexpectedMessage, BadRecordMAC, DecompressionFailure, 
HandshakeFailure, NoCertificate, BadCertificate, UnsupportedCertificate, CertificateRevoked, 
CertificateExpired, CertificateUnknown, IllegalParameter. 

 4.  Handshake protocol: Secure connection is established by a handshake that passes messages 
between client and server usually web browser and web application. The messages that com-
pose this handshake are: ClientHello, ServerHello, ServerKeyExchange, ServerHelloDone, 
ClientKeyExchange, ChangeCipherSpec, Finished.

14.1.2 Working of SSL

SSL provides the security to the messages that are communicated between the client and the server over 
the Internet. The SSL protocol is integrated into most of the web browsers to access web applications. 
Therefore, no further configuration is required from the client’s side of the SSL connection. Configura-
tion is relatively simple at the server side. Web server administrator must acquire a digital certificate, 
which can be got from Certification Authority (CA) such as VeriSign. CA requires the certificates to be 
renewed after certain period of time, as a procedure for identity verification of the owner of web server. 
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The working of SSL layer protocol in the web application is explained with the following messages.

 1.  ClientHello: The first message is the ClientHello. Client machine can request secure communi-
cation session to the server with this message that includes the required options. The options are 
Version of SSL to be used, CipherSuites supported by the client and CompressionMethods used 
by the client. Other information that are included in this message are a 32-byte RandomNumber 
that assists the client in establishing encrypted communications and a SessionID field that is 
blank. For example, when a client wants to check the E-mail with ‘secure connection’ option 
this message is generated.

 2.  ServerHello: The second message of the SSL handshake is the ServerHello. Server makes 
choices based on the ClientHello message using this message. Server returns five fields like the 
ClientHello message. It fills the SessionID making firm decision on version of SSL to be used 
along with the CompressionMethod and CipherSuite. Date and time stamp are used for four 
bytes of RandomNumber field, to prevent repetition in random values.

 3.  ServerKeyExchange: Decisions for the transmission of data are made by the server. 
Information about data encryption must be passed between the parties. This information is sent 
without encryption because no algorithm has been previously agreed upon. The server’s public 
key is used to encrypt a separate session key to be maintained for the secure communication. 
Both the client and server will use the same key to encrypt data to be transmitted. To ensure that 
the communicating parties, who they claim to be, digital certificates are provided as electronic 
identification. Public key is combined with digital certificates to connect the name of certifi-
cate owner with it. Besides, these certificates can have public keys to CAs like RSA Security 
or VeriSign. It has an expiry date for verification of the link between certificate owner and CA 
so that person receiving the digital certificate can check it. Only the public key is included in 
certificate. Private key is not included because it would be compromised and the entire purpose 
of having the digital certificate would be voided. 

 4.  ServerHelloDone: Once the Server has completed the ServerKeyExchange message, the client 
receives a ServerHelloDone message to indicate that the server is through with its messages. 

 5.  ClientKeyExchange: SSL don’t need key pair of client to establish a SSL session. Hence the 
ClientKeyExchange message has information about the key which is used by client and server 
for communication. Hence ‘man in the middle’ attack is mitigated because a masquerader 
needs the server’s private key for message decryption. The negotiation processes between client 
and the server is completed by this message.

 6.  ChangeCipherSpec: Data transmission from an insecure state to a secure state is signalled by 
two ChangeCipherSpec messages. The connection side is changed into the agreed-upon secure 
state based on the ChangeCipherSpec message sent by computer.

 7.  Finished: Final messages of SSL handshake ensures three things are verified before the ini-
tial handshake is complete. It is done by two messages which signalled it. Key Information, 
Previous SSL handshake messages content and special value indicating whether the sender is 
a client or server are the three things in final messages. 

User visualizes a lock icon in the corner of browser which indicates a secure protocol has been 
agreed upon that is in use by the web browser and the E-mail server.
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14.1.2.1 Message Authentication

Upon checking message authentication, the communication continues by appending message authen-
tication algorithm to the end of each message. It is performed by using an algorithm which makes use 
of cryptographic technology for creating digital summary of information. This summary is known as 
a hash will change upon the information alteration. MD5 and SHA are common hash functions used 
in SSL communications.

14.1.2.2 Resuming a Disconnected Session

If an Alert message disconnects a sessions before the parties finishing their communication, that 
 session can be resumed if the client sends a HelloRequest to the server with the properly encrypted 
SessionID information. Secure communication can resume only after the validation of SessionID for 
exchanging ChangeCipherSpec and Finished messages with client machine by the server. 

14.1.3 SSL Applications

Practical applications of SSL communications are E-mail and financial transaction communications. 
For example, a user wishes to check the E-mail without a digital certificate on the Internet. Secure 
connection exists in the E-mail webpage, which expects the user to feed username and password. 
The identification of the E-mail server from user’s current workstation is critical. User can check the 
E-mail from any computer which means that an identifying certificate on their machine is not critical. 
Hence, SSL do not want a client certificate. 

14.1.4 Issues in SSL

SSL gave customers a sense of safety for online stores while using their credit cards online, and 
guaranteed users of online applications that they were communicating with their intended recipient. 
SSL protects information that is passed through the Internet channels. It need not protect data held 
by the server. Hence, legislations are in effect for protecting the data and web servers in addition to 
secured connections. Man in the middle attack is possible by capturing encrypted information. But 
incorrect message authentication will alert the main parties of the secure session to disconnect from 
the current insecure session and re-instantiate a new secure session.

14.2 WIRED TLS 

TLS is the successor of SSL protocol in the Internet. TLS provides secure communication over the 
 Internet for E-mailing, Internet faxing and other online data transfers. Differences existing between 
SSL 3.0 and TLS 1.0 are very few. TLS falls on the Application Layer of OSI model. TLS provides 
security both in wired and wireless mode. 

Server and client can authenticate with each other using TLS Handshake Protocol which allows 
for negotiation of cryptographic algorithm and keys before data is exchanged. Only authentication of 
server is done to ensure its identity. The authentication of servers requires public key deployment to 
clients. During communication between a server and client, TLS protocol assures that no third party 
can eavesdrop or tamper with any message.
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When a website is accessed by ‘https’ protocol through a browser, it most likely uses TLS to securely 
send the data to and from the web server. TLS is based on the SSL specification developed by Netscape 
for their browser Navigator. Interchangeably using the terms SSL and TLS are common, but cryptog-
raphy literature denotes collectively as TLS. In the application design, TLS is used for encapsulating 
application specific protocols such as SMTP, HTTP, FTP, etc. TLS is used along with connection-
oriented reliable protocols such as TCP. 

The TLS protocol makes client-server application to securely communicate across an untrusted 
network. It is designed in a way to protect from stealing information by reading the communication 
and changing the transmitted information. Asymmetric cryptography is used for securely exchanging 
keys between client and the server. Symmetric cryptography is used only for the actual encryption of 
secret data that are being transmitted. MAC is used for message integrity.

14.2.1 TLS Architecture

Figure 14.2 shows the TLS architecture. Cryptographic security, platform independence, scalability 
and relative efficiency are the major objectives of TLS. These are accomplished through implementa-
tion of the TLS protocol on the following two levels:

 1.  TLS Record protocol: It negotiates private and reliable connection between client and the 
server. It uses keys to ensure a private connection, which is secured by using hash functions.

 2.  TLS Handshake protocol: This allows authenticated communication to proceed between the 
server and client. It allows the client and server to communicate in same terms. It makes them 
to agree upon an algorithm and keys before the selected application protocol begins to send 
data. It uses the same handshake protocol procedure as SSL, which provides authentication of 
server and optionally the client. 

Handshake
protocol

ChangeCipherSpec
protocol

Alert protocol

Transport layer security

Transmission control protocol

Internet protocol

Figure 14.2 TLS architecture

14.2.2 Working of TLS

Client initiates a session by ‘Hello’. It proposes protocol version and cipher suite. Server selects proto-
col as well as suite. Client can request for using cached session and server chooses whether to honour 
the request or not. Server sends certificate having public key parameters information. Client sends 
encrypted ‘pre-master’ secret to server using the ClientKeyExchange message. Master secret is calcu-
lated by using random values sent in both Hello messages. 
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14.2.3 TLS Applications

The most familiar use of TLS is to secure the online transactions. TLS can also be used for security 
purpose in servers such as mail, database or directory. Virtual private network uses TLS to encrypt 
connection between user’s device and the network being accessed.

14.2.4 Issues in TLS

All versions of TLS protocol are vulnerable to man in the middle and denial of service attacks. Other 
issues of TLS include low bandwidth, datagram connection, limited processing power, memory capac-
ity and cryptography exporting restrictions.

14.3 WIRELESS TRANSPORT LAYER SECURITY

Wireless Transport Layer Security (WTLS) is part of Wireless Application Protocol (WAP) stack. It 
is a form of TLS with optimizations for message size. It provides efficient encoding by suppressing 
redundancies with compression techniques. It wants to be packet friendly. Bidirectional stream ignores 
any notion of packet in working of TLS. It breaks down data into records based on its internal needs. 
The WTLS makes the TLS like layers aware of the size of individual underlying packets. The WTLS 
has been superseded with normal TLS.

Open industry established global standard is WAP which empowers mobile users for feasible access 
and interact with information and services over the Internet. WAP Version 1.1 includes the WTLS 
specification that defines the Internet security extension to the wireless Internet. The WAP gateway 
makes use of SSL for securely communicating with a Web server, which ensures privacy, integrity and 
server authenticity. The WAP gateway takes encrypted messages of SSL from the web for translation, 
so that transmission over wireless networks is done using the WTLS security protocol. Mobile devices 
can send their messages to the Web server by converting the WTLS into SSL. WAP gateway has bridge 
between the WTLS and SSL security protocols. The necessity for translation between SSL and WTLS 
arises due to low bandwidth transmissions with high latency of the wireless communications. 

14.3.1 WTLS Architecture

The WAP defines a set of protocols for each layer. The main purpose of having a layer protocol stack 
is that the communication with a certain layer is made through well-defined interfaces. Thus, changing 
something in one layer does not imply changing all other layers. For example, if a new protocol has 
to be supported as a bearer, only the transport layer has to be changed and it will not affect the other 
layers. Figure 14.3 depicts the WTLS in WAP architecture.

The WTLS is used in the security layer of WAP. Cryptographic operations such as digital signing, 
stream cipher encryption, block cipher encryption and public key encryption are supported by the 
WTLS. The attributes of these operations can be negotiated for each secure transmission. Security 
algorithms are processed faster by minimizing protocol overhead in the WTLS. It enables more 
data compression than the traditional SSL approach. These optimizations allow portable devices to 
 communicate securely over the Internet. Key refresh mechanism is provided for updating keys in a 
secure connection without handshaking. 

Figure 14.4 shows the WTLS architecture. The WTLS architecture has record protocol that  supports 
four protocol clients: the handshake protocol, the alert protocol, the application protocol, and the 
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ChangerCipherSpec protocol. The application protocol is not described, since it is the interface for the 
upper layers. External applications have direct access to the WTLS layer using the Wireless Markup 
Language (WML) Script.

 1.  WTLS Record Protocol: It accepts raw data from the upper layers to be transmitted which 
optionally compresses the data and applies a MAC with encryption for transmitting the result. 
Received data is decrypted, verified and decompressed, then handed to the higher layers. Data 
integrity and authentication are taken care by this protocol.

 2.  The Handshake Protocol: Security related parameters are agreed during the handshake. 
It  includes attributes such as protocol versions, cryptographic algorithms, and shared secret 
information generation. The WTLS handshake works like SSL which defines an abbreviated 
handshake where only Hello and Finished messages are sent. In this case, pre-master secret is 
the shared secret used by both parties.
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Figure 14.3 WTLS in WAP architecture
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 3.  The Alert Protocol: Alert messages convey the severity of the message with the description 
namely fatal, critical, and warning. If a fatal alert message is sent, both parties terminate the 
secure connection. Critical alert message leads to termination of current secure connection. 
Any of the party may initiate the exchange of closing messages by sending a warning alert. 
Upon reception of closing message, further data are ignored. The alert messages are also used 
to handle errors. 

 4.  The ChangeCipherSpec Protocol: The ChangeCipherSpec is sent either by the client or the 
server. By means of this message, both parties decide that they start using the negotiated ses-
sion parameters. When the ChangeCipherSpec message arrives, the sender of the message sets 
the current write state to the pending state and the receiver also sets the current read state to the 
pending state. Security parameters have been agreed upon following which ChangeCipherSpec 
message is sent during the Handshake phase.

14.3.2 Working of the WTLS

Digital certificates are used for creating a secure and confidential communication pipe between two 
 entities, typically a mobile phone and a WAP Server by the WTLS. Two parties involving in the  secured 
communication are immediately aware of the tampering when data is forged with the aid of WTLS. 
Figure 14.5 shows the working of the WTLS.
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Application or
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SSL WTLS

Figure 14.5 Working of WTLS

14.3.3 WTLS Applications 

Users access many transaction-based activities like banking, sale notification, auction notification, 
wireless ticketing and many other services on their mobile device screen with the aid of WTLS appli-
cations. Mobile devices such as mobile phones, pagers, personal digital assistants are overwhelming 
the interest of users in wireless technologies which is not only for luxuries and conveniences, but also 
for the sheer magnitude in which they can change the way in which businesses are run. 

14.3.4 Issues in the WTLS

The WTLS has security problems that include the chosen plaintext data recovery attack, the datagram 
truncation attack, the message forgery attack. 

The WTLS alert messages are not encrypted. Alert messages are assigned with sequence numbers 
which can be replaced with an unauthenticated message with same sequence number that are not 
detected. Hence truncation attack occurs which can allow arbitrary packets to be removed from the 
data stream. An eavesdropper can determine the change of keys by reading the contents of this record 
_type field, which is sent unencrypted. 

Security from the web or application server to the mobile client may not be guaranteed. The WTLS 
defines encryption between the mobile client and the WAP gateway only. The endpoint of encrypted 
WTLS data is the WAP gateway proxy server. 



Transport Layer Security  367

14.4 COMPARISON OF SSL AND TLS 

The major differences between SSL and TLS, ranging from protocol version number to the key infor-
mation generation, are enumerated as follows: 

 1.  TLS provides an alert message called ‘NoCertificate’ whereas SSL assumes there is no need for 
a separate message if no certificate exists for the user. 

 2.  TLS implements standardized MAC operating with any hash function whereas it is explicitly 
stated by the SSL protocol.

 3.  TLS uses the HMAC standard and its Pseudo Random Function (PRF) output to generate the 
key information whereas SSL uses RSA or Diffie–Hellman output to create it. 

 4.  CertificateVerify message requires a complex procedure of messages in SSL whereas the veri-
fication information is enclosed in the handshake messages for TLS. 

KEY TERMS
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SUMMARY

 • Using secure communication protocols, the C-I-A (Confidentiality, Integrity, and Availability) 
Model for information security can be addressed in numerous ways. The main purpose of SSL and 
TLS protocols is confidentiality of the information that is transmitted over the Internet.  Message 
authentication for each message starting from the first handshake ensures the integrity of data 
transmission. Digital certificate passing through ensures non-repudiation apart from the  integrity 
check of message authentication. Securing sensitive communications are achieved by the  efficient 
and proven methods of SSL and TLS. Huge information must be secured properly along with 
secure communications protocols for providing add-on tools for easy implementation of web 
 systems by developers.

REVIEW QUESTIONS

 1. Explain SSL architecture.

 2. Describe the working of SSL.

 3. Point out the applications of SSL.
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 4. What are the issues in SSL?

 5. With the help of a neat diagram, explain wired TLS architecture.

 6. Briefly narrate the working of wired TLS.

 7. Write down the applications of wired TLS and its issues.

 8. Explain wireless TLS architecture.

 9. Describe the working of wireless TLS architecture.

 10. Write a short note on the applications of wireless TLS and its issues.

 11. Compare SSL and TLS.
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The network layer sets up logical connection for transmitting data from node to node using switching 
and routing technologies. It also manages error handling, congestion control and packet sequencing. 
Internet Protocol (IP) is the most popular protocol associated with the network layer, which allows host 
to host communication. The network layer security ensures that data carried by all IP datagram were 
encrypted before it is launched into the network and is totally transparent to the underlying application.

15.1 IP SECURITY

IP was formulated in the late 1970s as part of Defense Advanced Research Projects Agency (DARPA) 
Internet project, in which the network was not large became and all the users were familiar and hence 
the  security was not an issue. As years passed by the Internet becomes global and hence the user’s 
 security concerns also  increased. By implementing security at the IP level, an organization can guar-
antee secure  networking for various applications.

Internet Protocol security (IPsec or IP security) is a set of protocols that provides unwavering secu-
rity for IP with the use of cryptographic techniques. By means of additional headers, it can be incorpo-
rated to internet protocol (IPv4 or IPv6). Support for IPsec is optional in IPv4 but mandatory in IPv6. 
IPsec may be implemented by integrating it with the native IP stack or by implementing an existing 
implementation of an IP protocol stack or by using a dedicated, inline security protocol processor.

15.1.1 IP Security Overview

The security protection put forth by IPsec is built on the conditions proposed and maintained by a user 
or system administrator defined in the Security Policy Database (SPD). Based on the SPD rules, any 
packet moving through the network is either PROTECTed using IPsec security services, DISCARDed 
or allowed to BYPASS IPsec protection.

IP security covers the functional areas such as authentication, integrity, confidentiality, replay pro-
tection and key management. The authentication mechanism ensures that the source mentioned in the 
received packet header and the original transmitted source are the same. The integrity mechanism 
guarantees that in the journey of the packet, it has not been modified. Confidentiality permits commu-
nicating nodes to encrypt messages and thereby preventing eavesdrop. The replay protection ensures 
that a third party cannot seize a datagram and play it back sometime later. The key management facility 
is concerned with the exchange of keys, used for encrypting/decrypting messages, in a secure manner. 
In short, secure communications over LAN, private and public WANs and the Internet can be achieved 
with the help of IPsec.
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15.2 IP SECURITY ARCHITECTURE

Regarding the IPsec specification, lot of documents have been published by the IP Security Protocol 
Working Group set up by the Internet Engineering Task Force (IETF). The most important of these are 
as follows:

 1. RFC 4301: Security architecture for the IP

 2. RFC 4302: IP Authentication Header (AH)

 3. RFC 4303: IP Encapsulating Security Payload (ESP)

 4. RFC 4308: Cryptographic suites for IPsec

 5. RFC 4835: Cryptographic algorithm implementation requirements for ESP and AH

To enhance the security, two protocols such as AH which guarantees the integrity of datagram and ESP, 
a combination of encryption/authentication protocol are used. Both AH and ESP hold up to two modes 
of use, namely transport and tunnel mode when used between end-stations and between gateways, 
respectively.

In the transport mode, ESP encrypts and optionally authenticates the payload of the IP packet but 
AH authenticates the IP payload and selected portions of the IP header. It offers end-to-end security 
and having lower overhead than tunnel mode, but needs IPsec to be implemented on the IP storage 
entities.

In the tunnel mode, the whole IP packet is encrypted and/or authenticated. The IP packet with a 
new IP header, it is encapsulated into a new IP packet. It is more compatible with existing Virtual 
Private Network (VPN) gateways and need not have to implement IPsec on the IP storage entity, but 
has smaller Maximum Transmission Unit (MTU) and more overhead.

15.2.1 IP Security Policy

An IPsec policy is applied to each IP packet that traverses between the source and the destination, 
which is decided by the interaction of two databases, namely, the Security Association Database (SAD) 
and the SPD.

Whether it is using AH or ESP protocol, the sender and the receiver must agree on a key for authen-
tication or encryption algorithm. This set of agreement between the hosts constitutes the Security 
 Association (SA). Security associations are selected on the basis of the security policy. The SA sepa-
rates the key management and the security mechanisms from each other. An association is a one-way 
connection, and so for a peer-to-peer communication two SAs are used, one for each direction.

The SA is identified by the following parameters:

 1. Security Parameters Index (SPI): An arbitrary 32-bit value having only logical significance 
is transmitted with an AH or ESP packet to enable the receiving system to select the SA under 
which a received packet will be processed.

 2. IP destination address: A 128-bit IPv6 or IPv4 address value of the destination end-point of 
the SA.

 3. Security Protocol Identifier: This field indicates whether the association is an AH or  
ESP SA.
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15.3 IP DATAGRAM

The IPsec protocols AH and ESP can be applied to two different versions of IP such as IPv4 and IPv6. 
Figures 15.1 and 15.2 show the IPv4 and IPv6 datagram format, respectively. IPv4 datagram contains 
IPv4 Header (6 bits) to specify the transport layer protocol that interprets the data section and IP data 
which contains TCP fragment.
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Figure 15.1 IPv4 datagram format
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Figure 15.2 IPv6 datagram format

IPv6 datagram consists of IPv6 header (43 bits), routing extension header (60 bits), destination 
options header (6 bits) and the IP data. IPv6 header denotes the transport layer protocol. The routing 
extension header indicates the type of the upper-layer protocol header, namely, AH or ESP, destination 
options header contains destination information, and IP data which contains TCP fragment.

15.4 IPsec AUTHENTICATION HEADER

Authentication Header (AH) protocol which protects all the parts of the IP packet or the datagram with 
the help of additionally calculated added header which gives authentication mechanism. Header place-
ments and the parts of the datagram for calculation depend upon the IP version and types of modes.

The AH protocol works very simple and does a lot for the network security and it works similar to 
error detection algorithms like checksum and CRC. The sender uses those algorithms and calculates 
the checksum of the messages and the result is sent with the contents of the message to the receiver 
over the network. The receiver computes the checksum and finds if there is any mismatch between the 
sender and receiver checksums, and will simply discard the message if found. To avoid the use of this 
well-known common algorithm, some special hashing algorithms and the keys are used by both the 
parties which are not transparent to the others and a SA is established between these two in calculating 
and computing the results. A special header is attached for this purpose and the computed result called 
Integrity Check Value (ICV) is put up and is transmitted in network communication. The receiver on 
receiving the packet re-computes the ICV and checks for the data integrity and provides authentication 
but privacy is not guaranteed.
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15.4.1 AH Format

The authentication data field is dynamic to hold varying length of the datagram with the hashing 
 algorithms and the length is a multiple of 32 bits and the header is 32 bits for IPv4 and 64 bits for 
IPv6. The padding field is included in the authentication data field if necessary. The IPsec AH format 
contains the following fields and illustrated in Figure 15.3:

 1. Next header: It is used to link the headers and contain a header number.

 2. Payload length: This field mentions the length of the AH in 32-bit units with 2 subtracted for 
consistency.

 3. Reserved: It is not in use, so it is set as zero by default.

 4. SPI: Security Parameter Index is a 32-bit value which identifies the SAs used for the datagram.

 5. Sequence number: This number uniquely identifies each datagram.

 6. Authentication data: This field contains ICV.

Next header ReservedPayload length

Security Parameter Index (SPI)

Sequence number

Authentication data 
(Integrity check value)

0 4 8 12 16 20 24 28 32

Figure 15.3 IPsec authentication header (AH) format

15.4.2 AH Datagram Placement and Linking

Calculating the AH is same for both IPv4 and IPv6, but differs only in the linking and placing 
 mechanisms of the header.

In IPv6, the AH is added inside the IP datagram and is linked with the next header by placing the 
header field in the subsequent datagram. This process is performed till the linking transport layer is 
reached. While in the transport mode, AH is kept inside main IP header preceded to the destination 
options header and if the ESP header is there it will be placed preceded to that. In the tunnel mode, 
inside the new IP datagram the AH header appears to be an extended header and does encapsulating 
the real one to be tunnelled. Figures 15.4 and 15.5 show the AH datagram placement and linking for 
IPv6 on transport and tunnel mode, respectively.

The same linking technique is followed in IPv4. The datagram carries the protocol field where in 
the higher layer protocol like TCP/UDP identity is shown by the protocol field and this is the front part 
of the IP payload and points to the next field. AH places the value into its next header field, places the 
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protocol value inside the IP field and the IP header points to the AH. In transport mode, with the main 
IP header of the original datagram the AH is added and for the tunnel mode it is added next to the new 
IP header and it encapsulates the original datagram. The AH datagram placement and linking for IPv4 
on transport and tunnel mode is shown in Figures 15.6 and 15.7, respectively.
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Figure 15.6 IPv4 AH datagram format – IPsec transport mode
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Figure 15.7 IPv4 AH datagram format – IPsec tunnel mode

15.5 IPsec ENCAPSULATING SECURITY PAYLOAD

Authentication header has functional limitations during communication as it protects only the 
 intermediate devices and not the message communication. Therefore, the use of ESP protocol is a 
boon to the  integrity check system. ESP protocol encrypts the IP datagram contents with a key, using 
an  encryption algorithm to maintain integrity and security of the IP datagram and data. The encrypted 
form of the IP datagram is now repacked and transmitted to the receiver over the network. The receiver 
will decrypt, to get the data using the same key.

15.5.1 ESP Format

ESP has various fields which are divided into the following three components:

 1. ESP header: The placement of ESP Header is based on the types of modes it uses and works 
as in the AH Header. In front of the encrypted data, ESP header has two fields, one is the SPI 
and other is the sequence number.

 2. ESP trailer: This contains padding and pad length field for the alignment of the encrypted data 
that is placed after the encrypted data and it has the next header field for ESP. 

 3. ESP authentication data: The ICV is calculated and placed as it is in the AH protocol.

The sequence of these fields indicates a consecutive working mechanism because one field may be 
the prerequisite for the following fields. This is the main reason of placing ESP header field initially. 
In the encryption phase, ESP holds the encrypted data and the padding field is used to authenticate the 
encrypted data. The following are the fields that are included in ESP and it is depicted in Figure 15.8:

 1. SPI: This field is a 32-bit value and when combined with the destination address and security 
protocol type, it determines the SA of this datagram.

 2. Sequence number: This sequence number is used to give protection against replay attacks.

 3. Payload data: It has higher layer message or encapsulated IP datagram.

 4. Padding: This extra padding field is used for encryption alignment.

 5. Pad length: It denotes the size of the preceding padding field.
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 6. Next header: It is used to link the headers and contains a header number.

 7. ESP authentication data: This field contains ICVs.

ESP payload data 

Next header

ESP authentication data

Pad length

Security parameter index (SPI)

Sequence number
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Figure 15.8 IPsec Encapsulating Security Payload (ESP) format

15.5.2 ESP Field Calculation and Placement

The various ESP field calculations and placement are described in the following list:

 1. ESP header: In IPv6, ESP header will be the extension header of the IP datagram using the 
extension header linking rule. In the transport mode, the ESP header is placed before the desti-
nation options header which has information about the reachabilities of dead destination. In the 
 tunnel mode before tunnelling, the IP datagrams extension header encapsulates the original 
data. In IPv4, the ESP header is placed after the IPv4 Header as in AH and it looks like the 
original IP header in the transport mode and it encapsulates the original in the tunnel mode.

 2. ESP trailer: Before ESP performs encryption, the encrypted data and the ESP trailer are 
added to the data. Here, the ESP trailer and the payload together are encrypted but the ESP 
header is not encrypted. Generally IP header is also encrypted and placed between the payload 
and the ESP header. Additionally in IPv6 a destination options extension header is also added. 
The next header field would be used to link the ESP header to the header though next header 
field in ESP appears in the trailer and not the header makes the linking complicated in ESP 
which works same like AH works and also like IPv6 where the header and the protocol fields 
tie everything together. After the encrypted data, the next header field placed and points to the 
destination options extension header if it is present and in the transport mode it points a TCP/
UDP header or in tunnel mode it may point to IPv6 or IPv4 header.

 3. ESP authentication data: The ICV is calculated and placed as it is in AH protocol.

Figures 15.9 and 15.10 show the placement of ESP fields like ESP header, ESP trailer and ESP 
 authentication data for IPv6 in transport mode and tunnel mode, respectively. The placement of ESP 
header, ESP trailer and ESP authentication data for IPv4 in transport mode and tunnel mode is shown 
in Figures 15.11 and 15.12, respectively.
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15.6 APPLICATIONS OF IPsec

The application of IPsec varie in the capability of providing a secure communication across a LAN to 
the Internet.

 1. Secure connection between different branch offices of the same company: A VPN can be 
erected by a company to have a secure connection between the branch offices over the Internet, 
which in turn helps the company to cut down cost for private network and can depend on the 
Internet.

 2. Secure remote access to a distant Intranet over an insecure medium: With the help of a 
system which is outfitted with IP security protocols, an employee can make a local call to an 
Internet Service Provider (ISP) and gain secure access to a company’s intranet.

 3. Set up secure connection between peers: IPsec can be used to establish secure communica-
tion within and outside network connectivity with associates of other institutions.

 4. Ensuring security for E-commerce applications: IPsec ensures that all communication 
selected by the network administrator is both encrypted and authenticated, adding an extra 
layer of security.

15.7 SECURITY ISSUES WITH IPsec

All types of network are vulnerable to unauthorized access. Security in intranet is an issue due 
to internal attacks and there are more risks from outside networks as all are interconnected with 
 Internet. So, the password-based access solely cannot protect the data transmitted over the network. 
The common types of attacks in the computer network which bring forth the need of IPsec are as 
follows:
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 1. Eavesdropping: Commonly the data communication happens in plain text format which gives 
place for the attackers to tamper, watch and modify the data by gaining unauthorized access in 
several network paths and routes. Eavesdropping means sniffing or snooping which is the most 
challenging security issue. Therefore, the data needs strong encryption techniques; otherwise, 
the data traversing across the network is unsecure.

 2. Data modification: Once the data is read by an attacker, the contents may be modified without 
the knowledge of the data originator or the receiver. The data which is not confidential lacks 
the value.

 3. Identity spoofing (IP address spoofing): Every system is identified in the network by the valid IP 
addresses and in some cases the IP addresses are falsely generated by some organizations intranet 
using special algorithms which are pretended to be valid and get the identity in the  network. This 
is called IP spoofing. Using this IP addresses, the attackers gain access to the network and modi-
fies the data and the routing paths and makes the system exhausted to inconvenience.

 4. Password-based attack: Generally in network and operating systems, security is provided 
by password-based access control where the access control is determined by user name and 
password. The login account is not commonly protected by the operating systems and it sends 
the identity data in plain text format across the network communication to validate it. In the 
meantime, the attackers hack such identity information and gain unauthorized access to the 
network. After gaining access to a network with a valid account, an attacker can get all user 
accounts and domain names or change the network parameters like configuration file type 
access permissions and routing information or even modify the data. 

 5. Denial-of-service attack: This attack will exhaust the total bandwidth of the system and 
make the entire service unavailable to its intended users. After gaining access to a network, an 
attacker may attack the applications and make the functions abnormal or send a flood of sync 
messages and exhaust the available bandwidth or block the access gain and network resources 
for the genuine users.

 6. Man-in-the-middle attack: This shows how an intruder enters, listens, tampers and controls 
the communication between two parties exchanging sensitive information which is unknown 
by other parties.

 7. Sniffer attack: The sniffer tool is available to monitor the packet exchanges between the users. 
It shows the data encapsulated in a packet and can be opened and read if the packets are not 
provided with security mechanisms. Using a sniffer, an attacker may determine the access 
 permissions and the related information and corrupt the network or read private data.
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SUMMARY

 • This chapter focused on IPsec or IP security. Maintaining IPsec is optional in IPv4 but manda-
tory in IPv6 with the help of SAD and SPD. Two protocols such as AH and ESP are used either 
in transport mode or in tunnel mode to enhance security. AH protocol protects all the parts of the 
IP packet. ESP protocol encrypts the IP datagram contents to maintain integrity and security of 
the IP datagram and data. This chapter explained about AH datagram format and ESP datagram 
format when used in IPv4 and IPv6. The chapter concluded with the applications of IPsec and the 
security issues of IPsec.

REVIEW QUESTIONS

 1. What do you mean by IP Security policy?

 2. Distinguish between IPv4 and IPv6 datagram.

 3. Compare between transport mode and tunnel mode.

 4. Write short notes on SAD and SPD.

 5. Briefly explain IPsec AH.

 6. Write a short note on AH format.

 7. Discuss on AH datagram placement and linking.

 8. Discus about IPsec ESP.

 9. With the help of a neat diagram, explain the ESP format.

 10. Write about ESP field calculation and placement.

 11. Write down the applications of IPsec.

 12. List down the security issues of IPsec.
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System Security
16
chapter

Computer system security is the field of study about techniques for achieving and maintaining secure 
state, where only the authorized users are allowed to use the system and its resources, neither misus-
ing nor disturbing the system operation. In this chapter, we shall discuss on different techniques such 
as password management, program security, Operating System (OS) security, network security and 
Database (DB) security.

16.1 PASSWORD

A password is a word or string of characters used for user authentication to approve access to a secured 
resource. Password usages are known to be ancient. Sentries would challenge those who are wishing to 
enter an area or approaching it to supply a secret word or code word and would only allow a person or 
group to pass if they knew the secret word or code word. Nowadays, passwords are used for controlling 
user access to computer OSs or mobile phones for protection. In this section, we will be discussing 
about how to create, use the passwords to secure the different computer resources.

16.1.1 Password Management

A set of alphabet, numerals and special characters is used in a combination to frame a phrase which can 
be used to access resource in secured manner. These phrases have restrictions such as case- sensitivity 
and 8 characters minimum length for enhanced security purpose. Hence, password can be perceived as 
a word that is used to pass through secured system for accessing resources. For example, Jg4_P+n5 is 
a password of 8 characters length with lower- and upper-case alphabet, numbers and symbols.

A password has to be short for the purpose of easy typing and remembering. Password policies 
are specified by many organizations for the use of passwords with constraints such as minimum 
length, combination of upper- and lower-case alphabet, numbers and special characters and prohibited 
 elements like name of a person, birth date or contact number.

16.1.1.1 Variants in Passwords

Passwords need not be actual words. This desirable feature of the password makes the hacker hard to 
make a guess and intrude into the secured systems. Passphrase and passcode are the two variants in a 
password. The term ‘passphrase’ is used when the password consists of multiple words and the term 
‘passcode’ is used when the password is purely numeric. Some examples for passphrase are I cake like, 
ILO veMyco untryIndia, etc., and examples for passcodes are 2453, 213243, 34563212, etc.
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16.1.2 Password Usage

A typical computer user has passwords for many purposes: logging into online applications, access-
ing applications, DBs, networks and peripheral devices. Table 16.1 shows the different examples for 
password usage in various circumstances.

 Table 16.1 Examples of password usage 

Passwords usage Instances

Online applications Internet banking

Software application files MS Office

Folders/Directories Windows OS

Databases Access 2007

Networks Internet via ISPs

Smart mobile phones Lock screen

Hard drives StorageCrypt

16.1.2.1 Logging into Online Applications

For accessing the Internet resources such as E-mail, Internet Banking, E-manuscript, E-news, 
 E-shopping, etc., an online account is required. Such an account has a login screen which is depicted 
in  Figure 16.1. The user has to enter the username and the password in the space provided. Usually, 
the user name will be a unique name with respect to the application. The password depends on the 
policy of the  organization. The password will not be displayed as it is, instead * will be displayed for 
each character. The ‘Forgot Password?’ option helps the user to recover the password if the password is 
forgotten accidentally. Depending on the application, password can be recovered by correctly answer-
ing the sequence of questions and thereby the provider will send the new password to the authorized 
E-mail ID which was specified during the account  creation.

16.1.2.2 Accessing Software Application Files

The user can enhance the protection to his/her files by incorporating password. The ‘password 
 protection’ facilities are provided by many vendors in their software applications such as MS Office, 
OpenOffice, WinZip, Adobe Reader, Adobe Photoshop, etc. Some of the applications may not have 

User name

Password

Ok Clear Forgot Password?

Figure 16.1 Sample login screen
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password protection mechanism, and in such cases privacy may be violated. To overcome this, soft-
ware such as ‘Password Door’ can be used, which will add password to any files in the computer system 
without altering the actual content.

16.1.2.3 Accessing Folders/Directories

The folder access can be restricted by using the password. For example, in the case of Windows OS, 
the folder access can be controlled by the following steps:

 1. To protect a folder with password, right-click it to select the option ‘Properties’.

 2. Select the checkbox named ‘Encrypt contents to secure data’ in ‘Advanced’ option.

 3. Apply protection to the folder only or to the subfolders. Choose the option ‘Apply changes to 
this folder only’ for protecting current folder.

 4. Finally click ‘Apply’ and ‘Ok’.

In the Linux flavour OS, ‘chmod’ command can be used to enforce read, write and execute options 
to users, groups and others for any files/folders. The above-mentioned procedure is applicable for file 
protection also.

16.1.2.4 Accessing Data in Databases

Generally, all the Database Management System (DBMS) softwares like Oracle, MySQL, etc., require 
username and password to access its DB. Almost, all the leading vendors are providing default user-
name and password for their products. Step-by-step procedure for creation and usage of password for 
protecting Access 2007 DB is enumerated as follows.

 1. To protect DB, open it in Exclusive mode. 

 2. On the DB Tools tab (shown in Figure 16.2), in the DB Tools group, click Encrypt with 
Password.

 3. Type password in Password textbox of Set DB Password dialog box.

 4. Retype password in Verify box, and then click OK.

16.1.2.5 Access Internet through Secured Network

Many Internet Service Providers (ISPs) give Internet connection using secured login into network 
system. The type of connection can be dial up or broadband or Point-to-Point Protocol over Ethernet 
(PPPoE) for Internet communication. But all these connection types require an authenticated user to 
pass through secured network for accessing Internet communication provided by ISPs. 

Figure 16.2 Database tools tab
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Wireless Hotspots as well as access points require password from client devices for getting con-
nected to access Internet provided by ISP. These passwords will be protected by security protocols such 
as Wired Equivalent Privacy (WEP) or Wi-Fi Protected Access (WPA).

16.1.2.6 Secure Access for Smart Mobile Phones

A smartphone can be protected by locking the screen. Only authenticated user of the smartphone can 
access it by providing fingerprint or drawing secured pattern or typing secret code as credentials to 
pass through the lock screen in order to access the device.

16.1.2.7 Securing Hard Drives

StorageCrypt software allows us to encrypt and protect hardware drives such as USB drives, flash 
cards and PCMCIA drives using password. It uses 128-bits AES encryption and does not store the 
password on the removable device for maximum security.

After encryption, the removable drive cannot be opened on any other computer. StorageCrypt can 
work on any public partition so that taking it anywhere on the fly without the software installed on each 
machine is possible.

16.1.3 Password Management System 

So far we have read about password and its usage. Now it is essential to manage such critical passwords 
through a system. A system can be a hardware or software or firmware. A managing system for mul-
tiple passwords used for various purposes is termed as ‘Password Management System’. Management 
includes suggesting passwords, storage of passwords in secured manner, renewing passwords periodi-
cally, etc. Password Management System maintains profile for each user so that it can manage many 
passwords for single user with multiple accounts. 

16.1.3.1 Types of Password Management System

Many developmental efforts are taken by software developers for password management software. 
They are password data storage, securing stored content along with added features such as save and 
fetch account information. The following are the different types of password management software 
available as of now.

 1. Add-on feature within other software: Web browsers, antivirus software and other applica-
tions rarely include a password manager as an add-on feature. Some examples are Chrome, 
Firefox, Internet Explorer browsers and the identity management in Norton 360 comprehensive 
security suite. It can be used if we are confident with security offered through the product. 

 2. Stand-alone password manager: Devices that are not shared with others use stand-alone 
password manager. Examples are KeePass and Aurora. Aurora has add-on features like form-
filling, password generator and export passwords to readable file. 

 3. Password managers using embedded security hardware: This is a rarely employed approach 
than other types of password management. It requires hardware embedded on device for stor-
age and encryption of data. An example is Lenovo’s T-series ThinkPad laptops having a chipset 
mounted on the motherboard called embedded security subsystem. This password management 
can be used if your computer is at a high risk of physical hacking or theft.
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 4. Web-based password manager: A web application can be used from any Internet-connected 
device. Some examples are RoboForm and PasswordSafe. These have some features like 
Aurora with the add-on benefit of web browsers interoperability.

16.2 PROGRAM SECURITY

In this section, we will be discussing different flaws in the software which become a threat to computer 
security. This section mainly deals with malwares and a case study which demonstrates how malwares 
can be removed. Malicious software package or malware plays a major role in most computer intru-
sion and security incidents. Any software package that causes harm to a user, computer or network can 
be termed as malware.

16.2.1 Malware

Malwares are the computer programs particularly designed to propagate among computers and cause 
damages or collect knowledge and send back to the hacker. The chief forms of malware are viruses, 
worms, Trojan Horses, rootkits, scareware and spyware. Virus is a program that invades a computer 
and embeds itself within the host program, where it replicates, propagates and infects all the  computers 
in the network. Viruses usually spread across infected removable disks, E-mails, etc. Worm is a pro-
gram that exploits vulnerability associated with the OS and copies itself on other computers over a 
network. Generally, in computing a Trojan Horse (Trojan) is a non-self-replicating type of malware, 
when executed causing loss or theft of data which is determined by the nature of the Trojan. As the 
name implies, Trojan appears themselves as a useful program which makes the victim to install it. 
Rootkit is a software tool which penetrates into the OS and allows the intruder to get privileged access 
to the computer system without the knowledge of users. Scareware is a software that generates false 
alerts under the pretext of security. Spyware software gathers information from the computer system 
and sends to another system without the consent of the owner.

16.2.2 Malware Propagation 

The malware propagation is the process of spreading malware to an information system, device or 
platform, which it seeks to infect. For example, the malware can spread through PDF files and access 
the host unless the user disables the JavaScript in PDF reader. The following are the different ways by 
which malwares are propagated.

 1. Through wireless networks: An attacker takes the advantage of the weakness in the Bluetooth 
technology, so that the malwares can spread across the different wireless devices within a short 
span of time. BlueSnarf, Bluejacking and BlueBug are some of the common attacks through 
wireless networks. BlueSnarf exploits other Bluetooth connection without their knowledge and 
paves path to the victims’ data on to a calendar, contact list, E-mails and text messages. The 
attacker can get a full access including read and write access. Bluejacking occurs by sending 
a short tricky text message, like vCard which contains message in the name field to another 
device which is Bluetooth enabled over OBEX (Object Exchange) protocol. Access codes of 
the tricky message are being used by the users in order to admit the attacker to take control of 
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the device. BlueBug accesses and uses all phone features like incoming and outgoing calls, 
sending and receiving SMS, but its operational range is limited to 10–15 m.

 2. Through file sharing: File sharing has become a very common application for peer-to-peer 
networking, which allows the users to share a vast number of digitally stored information. The 
weakness in the protection mechanism stands the reason behind the vulnerability of the peer-
to-peer file-sharing networks to many security attacks. Often when a ‘cracked’ version of some 
proprietary software is searched, there is a chance of getting malware instead.

 3. Through social networking: Online Social Networking (OSN) provides the users with many 
services such as sharing photos, clips, files, chat, etc. Nowadays, OSN has become a medium 
of collective force to change the culture and lifestyle. On the same time, regarding security, 
OSNs can be considered as a perfect platform for malware and security threats. The attacks and 
threats can be categorized into the following four varied categories:

  (a)  Privacy Breach Attacks correspond to the breaches from the service providers: for  example, 
Facebook, Twitter and so on. The user or the account owners and the third-party applica-
tions are the three primary parties who interact with one another in an OSN.

  (b)  Viral Marketing refers to the practices to yield growths in brand awareness to achieve 
other marketing objectives through self-replicating viral processes, analogous to the 
spread of computer viruses of marketing. In OSNs, viral marketing can be considered 
as worthy environment for malware, one of the most common examples is the spam, in 
addition to the process of phishing attacks, which is considered as social engineering 
technique. 

  (c)  Network Structural Attacks, such as Sybil, assault the system wherein a reputation  system 
is subverted by forging identities so that a node in a network claims multiple identities.

  (d)  In the malware attacks, one of the supreme attacks is the attack of a worm identified as 
Koobface worm. Koobface on successful infection, attempts to gather login informa-
tion for File Transfer Protocol (FTP) sites, Facebook, Skype and other social media plat-
forms, but not any sensitive financial data. It then uses compromised computers to build a 
 peer- to-peer connecting interfaces and infects each other nodes.

 4. Through E-mail communications: There are so many ways to attack an electronic mail, 
which affects the sending E-mails, i.e. spam E-mails using viruses or worms. The attackers 
seize the E-mail which is sent and delete the sender’s address, hence the E-mail gets spammed 
and the receiving process fails. The sender receives a failing note message and he/she cannot 
determine the real reason for not delivering the E-mail on the other side. The E-mail spam 
spread can be analysed by many causes such as the period of time between sending the E-mail 
and sending back the failing report for the transmitter, and the returned message, which does 
not hold a real failing reason.

16.2.3 Malware Detection 

Malware detection safeguards the computer system by detecting malicious behaviour. Malware 
detector implements malware detection techniques which needs two input data. First is the data about 
the malicious behaviour. Second is the program under inspection. Using these data, the detector 
decides whether the program is malicious or not. Malwares can be detected by analysing the behaviour 
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either statically or dynamically. Static method uses syntax or structural stuffs of the program (static) 
or Process (dynamic) Under Inspection (PUI) to decide its maliciousness. In general, a static approach 
tries to detect malware earlier the program under inspection executes. Conversely, a dynamic approach 
attempts to spot malicious behaviour during program execution or afterwards program execution. 
The three fundamental malware detection techniques are anomaly-, signature- and behaviour-based 
detection.

 1. Anomaly-based detection: This technique uses its knowledge of normal behaviour to decide 
the maliciousness of a program under scrutiny. An exclusive type of anomaly-based detec-
tion is referred to as specification-based detection. This type of technique renders some rule 
set of the valid behaviour in order to settle it down as maliciousness of a program under 
examination.

 2. Signature-based detection: This detection uses its categorization of what is known to be 
 malicious to decide the maliciousness of a program under scrutiny. It is the most common 
technique that antivirus software uses to detect malware. Signature-based detection is a type 
of static antivirus scanners which is accomplished by string matching and regular expression. 
The problem with signature-based detection is that it cannot detect new malwares and vari-
ants of existing malwares where each and every day new malwares are created. Though the 
signature-based approach can effectually contain virus outbreaks in the right environments, 
virus writers have tried to stay a step ahead of such software by scripting ‘oligomorphic’, 
‘polymorphic’ and ‘metamorphic’ viruses, which encode parts of themselves or otherwise 
alter themselves as a method of disguise, so as to not match virus signatures in the dictionary. 
Static approach to signature-based detection uses only the structural information to decide 
the maliciousness. On the other hand, a dynamic approach will leverage runtime evidence of 
the PUI.

 3. Behaviour-based detection: However, the appearance of the malware is, it will behave badly 
in order to infect the computer, so behaviour-based detection will be ultimate for detecting mal-
ware. For example, by studying the sequence of a malicious program calling by OS makes, the 
maliciousness could be detected. Malware detection software can catch the system calls while 
a program is running and uses heuristics to look for distrustful activity, terminating those with 
harmful behaviour. 

16.2.4 Viruses

Computer viruses are one type of malware. A virus is a computer program that hides inside an 
alternate program in a computer or on a disk that attempts to propagate itself to different machines, 
and regularly has some catastrophic capacity. A virus should never be treated as harmless and left 
on the system. 

16.2.4.1 Types of Virus

It is promising to classify computer viruses in numerous ways specifically in terms of infection 
mechanism of the virus, harm the virus inflicts, trigger mechanism, platform or OS the virus infects, 
 dissemination and hiding mechanisms. 

Some of the common viruses are discussed here. Memory resident virus hides in the RAM and get 
control over system memory. Whenever the OS runs, it gets activated and infects all the files which 
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are open. An overwrite virus deletes the information presented in the infected file, thereby making it 
useless. It appends its code to the program and modifies the program in such a way that it executes on 
every occasion when the program runs. A Boot Sector Virus infects the first sector of the hard drive, 
where the Master Boot Record (MBR) is stored. The MBR stores primary partition table of the disk 
and bootstrapping instructions which are executed after the computer BIOS passes execution to the 
machine code. Whenever the computer is turned on, the virus is loaded into the memory and controls 
the computer. Multipartite virus propagates in many ways and infects the victim depending on the OS 
installed or availability of certain file. A macro virus embeds itself in a file. A macro virus embeds 
itself in a file. A macro is a way to automate and simplify a task that is repeatedly performed in MS 
office suite. These viruses automatically infect the files that contain the macros. It is also referred to 
as a type of E-mail virus. Stealth viruses are specialized in avoiding detection. These viruses redirect 
the hard disk head, driving it to read alternative memory sector instead of their own. These viruses are 
anti-heuristic in nature which makes hard for the humans to find out, but antivirus software is specially 
designed to track and erase them.

16.2.4.2 Virus Life Cycle

The virus code may store at the beginning of an executable program and is executed whenever the 
program is launched by the new user. The pseudo code for the sample virus is shown in Figure 16.3. 
In this pseudo code, the string ‘SigNature’ is a distinctive identification of the virus.

The string ‘SigNature’ is the very first thing within the workable program’s file, however it is not 
executed by itself or written by the virus as a result. Once the virus’s main program starts, it invokes the 
procedure infect. That procedure arbitrary selects the associated workable program file F (but it is to be 
written by the present user), verifies that it is not already infected (by checking for the signature), then 
infects it by prepending its code to F, if it was already infected by virus the loop gets executed until it 
gets an uncorrupted file F. Procedure damage has the code to corrupt the file. The virus program then 
executes the trigger to seek out whether or not to unharness its payload (destructive task), and ends by 

Figure 16.3 Pseudo code for sample virus

Program Virus

{”SigNature”;
Procedure infect
{loop: exec:=select random writable executable file;
If (first line of exec=”SigNature”)
         Then goto loop: else prepend Virus to exec;)

Procedure damage
{code to do the actual damage}
Boolean Procedure trigger
{code to check trigger condition}
Main program
{infect;
If(trigger) then damage;
goto continue;}
continue:
}
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planning to the label continue. This label marks the beginning of the workable program that follows 
the virus, and this program currently executes. The life cycle of a typical virus consists of three stages, 
activation, replication and operation. The virus is activated within the host computer; it replicates itself 
and so performs its main ‘task’ if the triggering condition is happy. The perfect place for an endemic 
is within the bootstrap loader. However, this loader is created in a factory environment and its content 
is permanent. 

16.2.5 Case Study

Now, consider a case study where a website was infected by malware and the procedures adopted to 
remove malware from that website. 

What transpired was that a particular website got reported as an ‘attack site’ by Google Chrome and 
Mozilla Firefox but was working well on Internet Explorer.

The reason behind the above act is that the site is concealed with malware and blacklisted by 
Google and whichever browser (Chrome, Firefox, etc.) uses the Google’s blacklist would report that 
the  particular website as an ‘attack site’.

Make sure that the site works well on the browsers that uses Google’s blacklist. This issue can be 
solved by undergoing the following steps:

 1. Shutting down the site

  Get the FTP credentials (shared host, so no SSH access), and rename the publicffhtml directory 

  $ rename publicffhtml publichtmlffsaved

  $ mkdir publicffhtml

  $ put newindex publicffhtml/index.html

 2. Changing the passwords

 3. Analysing the malware

  To analyse the malware, download the whole publicffhtml directory and use ncftpget to get the 
job done.

  $ mkdir clientX

  $ ncftpget -z -u USER -p PASS -R clientX.com ./clientX /publichtmlffsaved

  grep for IFrames, JavaScripts pointing to external PHP files or very big encoded lines to find 
the malware.

 4. Fixing the site

  Run the find command passing the files to sed for removing those malware lines.

16.3 OS SECURITY

This section discusses about the fundamentals of the OS and how we can design a trusted OS. Here, 
we make note of the different security policies and security models. The different attacks on the system 
are also mentioned in this section.
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16.3.1 Operating System

The instructions and data from the peripheral devices are integrated with the application programs by 
a set of programs that controls the computer systems and are called OS. In the earlier digital comput-
ers, there was no OS. Such systems never supported multi programs as they can run only one program 
at a time, which had a command on all system resources. If any special resources are needed, then it 
requires some human intervention. In the mid-1950s, the first OS was developed. In the 1960s, the 
time-sharing facility was introduced in an OS, which helped  many users to know the CPU time and 
terminal.

The main services of OS are given as follows:

 1. Process management: A program can either be in a static or dynamic state. A running pro-
gram is called a process. It consists of code, data, certain set of resources allowed to it and one 
or more flows of execution through the code. The allocation of resources to the process is done 
by the OS. It also caters system calls to manage these processes.

 2. Memory management: Memory related to the computer system must be shared between the 
OS and an application program. The OS allocate memory to processes and control the memory 
management hardware that determines which memory locations a process may access.

 3. File management: The data are to be processed and the resultant information is to be trans-
mitted or stored. The data storage and retrieval are controlled by the file system. Without a file 
system, it is difficult to tell where a piece of information stops and the next begins. To easily 
identify the boundary of information, the data can be divided into several slices with name. An 
abstracted organized collection of stored objects are called files. These file system objects were 
manipulated by the primitives provided by the OS.

 4. Device management: The information created in the computer system is sent through a com-
puter’s Input and Output (I/O) devices. Processes access these devices using the system call 
interface. The OS tries to manage I/O devices by efficiently sharing them among all the required 
processes. A system call is a programming interface used to access the services provided by 
the OS.

From the above discussions, it is clear that the OS rules the computer system as a whole. It is analo-
gous to the government which runs a state. The OS provides resources to the process which needs the 
resources and also controls the process if it tries to intrude to other resources.

16.3.2 Trusted OSs

Trust in process means the absence of security defects and unreliable segments. Trust in product means 
that the product is evaluated and it is an approved product. The trusted software means the module used 
to enforce security policy. Trusted Computing Base (TCB) is the set of all protection  mechanisms within 
the hardware/software or the firmware that enforce a unified security policy. The system is more secure 
if the TCB is small. As a whole, a trusted system is the system which is trusted to  process-sensitive 
information. OS is trusted if we have the confidence that it provides the  above-mentioned four services 
in a consistent and an effective way.

Trust is quality that can be quantified. If the system meets the intended security requirement, it can 
be called trusted one. Based on the degree to which the system meets a specific set of requirement, one 
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can assign the level of trust to that particular system. Trusted BSD (Berkeley Software Distribution) 
and Trusted Solaris are examples of trusted OS. The trust of a system is assessed or evaluated by the 
user who uses the system which fully depends upon factors such as implementation of security policy 
and the adequacy of its measures and mechanisms.

16.3.3 Security Policies

A security policy is a statement of the security we expect a given system to enforce. A system can be 
characterized to the different level of trust based on the extent to which it satisfies the security policies. 
Each policy must have four sections.

 1. Purpose: What is the anticipated outcome for which the policy is created?

 2. Scope: The state of the environment in which the policy exists.

 3. Responsibility: The person who is accountable for the proper implementation of the policy.

 4. Authority: A statement about the individual who issued the policy and how that person has the 
authority to define and enforce the policy.

The major types of policies that are important to an organization are the following:

 1. Information policy: Company process and use information having various levels of sensitiv-
ity. Much of the information may be freely distributed to the public, but some should not. There 
are minimum two levels of sensitivity within the category of information which are not freely 
accessible by the public. Information such as employees contact details may cause some nui-
sance if released publicly. But information such as details of future business strategy may lead 
to a loss of competitive edge in the market. As time passes some information turns out to be 
less sensitive. For example, subsequent to the result of bid, the competitive bid information 
happens to be not sensitive.

 2. Security policy: The best way of finding the legitimacy of the computer systems users is by 
proving user IDs and the passwords and with many more methods.

 3. Audit policy: This must specify about the events occurred in the computer system to be logged 
for analysis in the future. One of the common events from logged classes covers the failed 
login, which can identify attempts to penetrate the system. If there is a systematic method for 
scrutinizing the event log for a particular event, it becomes more useful. Otherwise, it is an 
overhead of reading a long list of events as people do not feel comfortable with, so manual log 
reading is feasible only when an event has been identified by other means.

 4. Computer use policy: This type of policy involves the agreement of the employee with the 
company, once he joined the company and start using the company-owned computer. Some of 
the policy items are as follows:

  (a) The computers, hardwares and network resources are owned by the company.

  (b)  Which are the acceptable ways in which if computers (if any) are not owned by the com-
pany is to be used?

  (c)  All information stored on or used by the company computers is owned by the company 
except the customer data.

  (d) The employee is permitted to use the computer only for the company-related works.
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 5. Military information security policy: The information security policy of the U.S. Department 
of Defense classifies the information based on the potential of the effects it causes to the 
national security, if it is disclosed illegally. The security policy of each agency is precisely 
documented appropriately. Department Of Defense (DOD) policy provides an excellent model 
for the types of security. The same policy perhaps may not be suitable to commercial compa-
nies. The degree of classification of any document or other information is determined only by 
the seriousness of its causes and effects if it is released illegally. There are mainly four levels of 
classification: Unclassified, Confidential, Secret and TopSecret. DOD anti-espionage experts 
give every level of classification an average amount of time before it is open to the outsider.

    To establish trustworthiness of any company to access and protect the data, the U.S. 
 government follows security clearances method. The clearances are then given names relevant 
to the information levels indicating sensitivity which has more priority for a person is autho-
rized to access. For example, a person with a ‘Secret’ clearance is authorized for ‘Secret’ and 
‘Confidential’ material, but not for ‘Top Secret’. Based on the persons trustworthiness, the 
security clearance is determined and granted. 

 6. Company security policy: This section discusses how a company might use the DOD security 
policy to handle and maintain its own data; the companies using the sensitive data of the gov-
ernment are enforced to follow the policies as per the contract of data access permissions. The 
first idea is that of a multi-level security because the protection type varies from company to 
company as the sensitivity of the data differs among them. For many companies, a three-level 
policy might suffice. Suggested levels of classification include the following:

  Three-level: Public Release, Internal Use Only and Proprietary

  Four-level: Public Release, Internal Use Only, Proprietary and Company Confidential.

  Companies mostly do not have a well-cleared clearance system with some aspects of govern-
ment system integrated. All the companies performs background verification of all its employ-
ees and the authority of granting access to each sensitive project will be assigned to the specific 
managers based on the company interests. The need-to-know policy must be enforced in such 
a way that the employee can have access to sensitive information when the project manager 
ascertains it.

 7. System administration policy: The system administration policies are about the responsibil-
ity of distributing and updating the software which are assigned to the persons those who are 
experts in that area. Some additional responsibilities like exploring and eliminating the vulner-
abilities in the systems are also assigned. Security incidents are also handled using this policy, 
called Incident Response Policy, which covers the following topics:

  (a) Finding the incident.

  (b) Finding the way to transfer the necessary response which is the most appropriate.

  (c)  Finding who may deal the legal actions and meeting the press and the law enforcement 
activities.

 8. Password management policy: Since the passwords are vulnerable to imitation, theft and 
exploitation, the DB security systems that are based on passwords should secure it all times. 
Oracle DB has DBAs and security officers to control password management policy through 
user profiles, enabling greater control over DB security.



System Security  393

16.3.4 Features of Trusted OS

The following are the main features of trusted OS:

 1. User identification and authentication: This feature is a key to computer security. It involves 
two steps: first is to find who is the service requester and second is to verify the claimed 
identity.

 2. Object reuse policy: If an object is erased by a user, some of it may remain in its allocated 
space. There is a chance that new users can scavenge the space and mine some sensitive infor-
mation. This approach is called object reuse. OS should prevent this by overwriting all reas-
signed space.

 3. Complete mediation and trusted paths: Access to every resource needs to be controlled. For 
this, each object such as network ports, processes, DMA, etc. separate paths are provided by 
the modern OS. To establish proper communication, trusted paths are required.

 4. Audits: Log files related to security information are needed that services audit requests. But 
the drawback is that log file may be enormously large files. We can avoid this by limit to open/
close object actions. Even these can become too large over time. Continuous audits should be 
performed in the background.

 5. Intrusion detection: Intrusion detection software establishes patterns of ‘normal usage’. 
Consequently, it can sound alarm if these patterns change.

16.3.5 The Attacks on the System

There are four levels at which a system can be attacked:

 1. Physical: One of the best ways to steal data is to trap the backup tapes. Access permissions 
like privileges are set up while accessing to the root, console like rebooting is done from the 
root. Even common access to the system accessories paves way for the attacker to tamper the 
system; Internet is the common way of giving opportunity to the threats for the system.

 2. Human: Even though humans are allowed to access the system by trustworthy, some breaks 
the security law. The most attacks reported today are via social engineering by fooling the 
legitimate people and the attacks by violating the security law.

  (a)  Phishing is the act in which E-mail users are instructed to provide sensitive personal infor-
mation using authentic looking message. 

  (b) Dumpster diving involves exploring the passwords in recycle bin or other locations.

  (c)  Password cracking in security system involves stealing user’s system passwords, either 
by watching them when they type their passwords or like guessing by their pet names and 
other words common to the user.

 3. Operating system: The OS must protect itself from security threats, such as looping the pro-
cesses with same or different processes, misleading memory access, violating stack overflow, 
the launching of programs with excessive privileges and many others.

 4. Network: It is necessary to protect the network from the attacks and also protecting the desk-
top systems from threats which are coming from network communication system.
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16.3.6 Models of Security

It is usual that when we would like to understand a subject, first the logical model of the subject is 
created. A model of a system is an abstract machine description of what the system does. The logical 
model is useful only if it maps the real system. A security policy defines the security requirement for 
a given system. A security model is the combination of system model and the security policies to that 
model. Models of security are used for a number of purposes such as:

 1. Testing the policy for adequate coverage and consistency

 2. Documenting the policy

 3. Validating the policy to check whether the policy meets the requirements.

Many security models are there which are useful and majority of them looks on multi-level security. 
The key fact of multi-level security is that some data may be sensitive when compared with others. 
Some of the popular security models are discussed below.

16.3.6.1 The Bell–LaPadula Model

The Bell–LaPadula Model (BLM), which is a multi-level security model, was proposed by David 
Elliott Bell and Leonard J. LaPadula for enforcing access control in government and military applica-
tions. The goal of this model is to identify the allowable flows of information in a secure system. Here, 
the subjects, which are active entities that access or manipulate object and the objects, which can be 
anything that holds data like memory, directory, queues, are often partitioned into different security 
levels. For example: Top Secret > Secret > Confidential > Unclassified. A subject can only access 
 objects at certain levels determined by his/her security level.

Some access control rules are used here by having security labels on objects and subject clearances. 
The classification of security labels is ranged from top secret to the least sensitive secret. For example, 
a subject S may have read access to an object O only if C(S) > C(O), where C(S) is the person’s clear-
ness security class for subject S and C(O) is the classification of security class for object O. That means 
the ‘Secret’ parts of a report will be available only to those who are cleared for ‘Secret’ level or higher 
information.

Confidentiality and controlled access are the models core part to the classified information. The 
meaning of secure states that every state transitions holds security by changing from one secure state 
to another state, the security objectives and the state changeover is defined by transition functions.

The model deals only with confidentiality and not with integrity. Another issue of this model is that 
it does not deal with information flow through covert channels. The information flow in the covert 
channel is the communication channel which is purely based on how the system resources are utilized 
which are not meant basically for communication among the system processes.

16.3.6.2 The Biba Integrity Model

The Biba Integrity Model was published at the Mitre Corporation in 1977. The model is proposed by 
Kenneth J. Biba in 1977 to overcome the shortcoming of the BLM to deal with integrity of data. Trust-
worthiness of data or resources means integrity.

The model supports both mandatory and discretionary policies. The mandatory policies include 
Strict Integrity Policy, Low-Watermark Policy for Subjects, Low-Watermark Policy for Objects, Low-
Watermark Integrity Audit Policy, Ring Policy and the discretionary policies include Access Control 
Lists, Object Hierarchy and Ring Policy.
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FreeBSD 5.0 uses the Biba model which supports both hierarchical and non-hierarchical labelling 
of all system objects with integrity data.

The pros of this model is its simple nature, easy to implement and based on the requirement it 
 provides a number of different policies. On the other hand, the model does nothing to enforce con-
fidentiality or does not support the granting and revocation of authorization. To use this model, all 
 computers in the system must support the labelling of integrity for both subjects and objects which 
make it difficult to use the model in a network environment.

16.3.7 Design of a Trusted OS

Creating a large software system with all stipulated and consistent set of requirements is very hard 
and complex. To develop an OS that adheres to all of the specified requirements regarding the security 
constraints requires both the BLM and the Biba Integrity Model. 

If the OS is in interrupt-driven mode, then it is hard to insure the security. Imagine an ordinary user 
program; if this is a deterministic system, then the program does only for the instructions given. The 
core job of an OS is defining an environment for execution of the programs of the computer and then 
enters an idle state, just waiting for interrupts. It executes the program by responding to the interrupts 
based on a fixed priority policy. If the interrupts are set and the programs are associated, then the envi-
ronment for execution is initialized. A context switch method is followed when an interrupt suspends 
the ongoing program and initializing a new program, basically loading the new program and creating 
its environment for execution. There are some overheads in the OS due to the context switch that gives 
some indeterminacy but consumes time and resources. So, there is a challenge to make use of the con-
text switch in an efficient way. Introducing security code into the context switch slows it down.

The following are the main services of the OS with respect to security:

 1. User interface: The gateway where the users’ legitimacy is checked and allows the user to 
access the system.

 2. Service management: Permits the user to access low level services provided by the OS.

 3. Resource allocation: This allocates resources for the user like memory.

A kernel is the one that performs low-level functions in the OS. It does things such as handling 
shared printers, provide E-mail and Internet access, etc. The kernel of an OS is often called the core 
part of the OS. OS designed has two kernels: the security kernel and the OS kernel. The security kernel 
helps for the security mechanisms of the OS, which handles most of the functions normally allocated to 
the OS, as most of these low-level facilities have impact on security. The reference  monitor is the first 
and foremost thing in security kernel. This controls access mechanisms to all objects, files, devices, 
interprocess communication and memory. The reference monitor must check access to  itself and it 
should be protected from unauthorized modification or access. The resource allocator has a security 
front-end to increase its security. Each of the resources allocated by this feature should be viewed also 
as an object–a data structure with software to manage its access. Some of the features of a security-
oriented OS are discussed below.

 1. Mandatory Access Control  (MAC) is the way of permitting access with the service of cen-
tral authority and not by the users. If a user wants to reveal the secret data and there is no 
secret clearance on the receiver side, then the user does not have permission to grant the secret 
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clearance. MAC must exist in parallel with discretionary access control where the subjects 
owned by the individual user is only permitted to manage the objects.

 2. Object reuse protection  refers to the elimination of the objects and for reusing purpose the 
object is handed over to the object pool, for example: Protection of files. The modification of 
file allocation table in many OS leads to unavailability of object references in placing the data 
sectors on the free list of reuse. Note that the data sectors are not overwritten, so that the origi-
nal data remains. In theory, a large file can be declared without writing anything to it, just read 
what is already there, left over from when its sectors were used by a number of other files and 
now deleted.

 3. Audit log management  means practicing of logging to all the events having the impact of 
potential security, from unauthorized access and modification of the log is protected, on deter-
mining the periodical log and analysing the irregularities of the procedures that are created. 
A  security log is of no use if nobody looks at it.

 4. Intrusion detection  refers to the creation and use of system software that scans all activity 
 look-up for unusual events. The intrusion detection software always reports that the number of 
hard drives on the system has changed.

 5. An important tool of trusted OS is the virtualization. It refers to the OS to collect the sensi-
tive resources of the computer system and the virtualized objects must be supported by real 
objects. A virtual machine is a cluster of hardware facilities; it may be real or simulated in soft-
ware. Virtual memory is one of the features where every process access to all of the computer’s 
memory with the exception of OS allocated memory.

16.4 NETWORK SECURITY

Network security deals with the provision of network-accessible resources based on the policies 
 adopted by a network administrator to regulate and monitor any unauthorized access, modification 
and denial of a computer network. In this section, we are dealing with the Intrusion Detection System 
(IDS) and firewall.

16.4.1 Intrusion Detection System

Intrusion is an act which violates the security policies of the computer system. The IDS is a device or 
an application that monitors the network or the computer system for malicious activities or policy vio-
lations and produces reports for further action. It helps the information systems to prepare for intruders 
and deals with the person/system involving in the intrusion. Intrusion detection provides the following:

 1. Monitoring and analysing the system and user activities.

 2. Assessing the computer system configurations and their vulnerabilities.

 3. Evaluating the integrity of critical computer system and the data files in that system.

 4. Statistically analysing the activity patterns by comparing them with already known attacks.

 5. Monitoring and auditing the OS. 

 6. Analysing the abnormal activities of the computer system.
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16.4.1.1 Intrusion Detection Techniques

Intrusion detection system is mainly classified into three categories, namely, statistical anomaly-, 
signature- and stack-based IDS.

 1. A statistical anomaly-based IDS monitors normal network activities such as protocols used, the 
interconnecting ports and devices in the network and the different alerts sent to the administra-
tor/user whenever abnormal traffic is detected. The main limitation of this IDS is that it gener-
ates several false alarms which compromise the effectiveness of the IDS.

 2. Signature-based IDS screens packets for preconfigured and predetermined attack patterns 
which are referred to as signatures. Unfortunately, novel attacks cannot be predicted and 
IDS have to be programmed when each new pattern is detected. As in the case of statistical 
 anomaly-based IDS, signature-based IDS also suffers from false alarms.

 3. Stack-based IDS is tightly integrated with the Transmission Control Protocol (TCP)/IP pro-
tocol stack and watches the upward traversal of packets in OSI layers. It provides real-time 
analysis and response to the system. 

16.4.1.2 IDS Categories

Based on the observed location of intrusion, the IDS can be categorized as host-, network- and 
 distributed-based IDS.

 1. In the host-based observation, the system examines information at the local host or OS by 
examining actual system calls or system log files. With the help of this information, some 
can prevent the attack or it can generate reports of the attack which had occurred. The major 
benefit of this system is that the success or failure of an attack can be readily determined and 
also if the network traffic stream is encrypted, the observation system has access to the traffic 
in unencrypted form. The shortcoming of this model is that it fails to support multiple OSs.

 2. The network-based observation system examines the actual network packets that are travelling 
across the network for known signs of intrusion activity. It has the benefit of watching the attack 
from the entire network point of view and gives a clear indication of the extent to which the net-
work is being attacked. The encrypted network traffic can make the network-based IDS inefficient.

 3. In recent years, separate host-based and network-based IDS cannot provide complete security. 
The distributed-based IDS mainly focuses on scalability and heterogeneity thereby providing 
complete security. It multiplies the power of a single IDS by coupling an attack correlation 
engine with the DB of events obtained from a large number of geographically dispersed agents.

16.4.2 Firewall

Firewall is a hardware or software or a combination of both which is used to enforce security policies 
of an organization. It is located at the boundary between the two networks for controlling all the data 
traffic passing between the two networks through this. The firewall has a mechanism to implement 
security policies specified as rules so that it allows some data traffic to pass and the others are blocked. 
The firewall by itself is immune to illegal penetration. Besides these advantages, it has some limita-
tions as well. A firewall does not protect against internal threats or against attacks that bypass through 
it. In addition to this, it cannot protect against transfer of virus infected programs or files which are 
used internally.
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Mainly there are four common methods of control in a firewall: user control, direction control, 
behaviour control and service control. The user control determines all the users who have access to 
the other side of the firewall. The direction in which a particular service request gets initialized and 
allowed to flow through firewall is determined by the direction control. Behaviour control decides how 
particular services are used for an application. Service control finds the types of Internet services that 
can be accessed, inbound or outbound.

16.4.3 Types of Firewall 

Firewall mechanism is usually combined with other technologies, namely, Network Routing 
 Technology, Content Filtering Technology and Intrusion Prevention System (IPS) technology. The fol-
lowing are some of the available firewall types:

 1. Packet Filtering Firewall: Packet filtering is the most basic feature of a firewall. Modern 
firewalls consider packet filtering as the heart of firewall mechanism. A network router which 
utilizes access control lists is a good example for packet filtering device. Figure 16.4 shows a 
firewall with packet filtering router. Firewalls with packet filters operate at the network layer 
which provides network access control based on the information available in a packet. The 
various information that can be included in the packet are the packet’s source IP address, the 
packet’s destination IP address, the network or transport layer protocol used for communication 
between source and destination hosts such as TCP, User Datagram Protocol (UDP) or Internet 
Control Message Protocol (ICMP) characteristics of the transport layer communications ses-
sions, such as session source and destination ports and the interface being traversed by the 
packet with the direction.

    Usually access control functionalities are managed by a set of directives called ruleset. 
Filtering the inbound traffic is known as ingress filtering. Egress filtering refers to the filtering 
of outgoing traffic. Organizations implement restrictions on their internal traffic to block the 
external FTP server access or to prevent Denial of Service (DoS) attacks from insiders.

 2. Stateful inspection: Stateful inspection tracks the state of connections and blocks the pack-
ets that deviate from the expected state to improve the utility of packet filters by utilizing the 
transport layer features. TCP traffic has three states, namely, connection establishment, usage 

Figure 16.4 Packet filtering firewall
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and termination. For monitoring the states of every connection, stateful inspection explores the 
TCP headers for particular values. A state table is created for this purpose. Each new packet 
is compared with the existing values in state table to identify any deviation from its expected 
state. For example, to pass through a firewall, an attacker generates a packet with a header 
representing it as an established connection. Stateful inspection in a firewall must first confirm 
whether the received packet is a part of an established connection with the help of lists already 
available in the state table.

   Table 16.2 shows an example of a state table. From the internal network, if a device 
(e.g. 192.168.1.147) tries to connect to a device (192.0.9.40) outside the firewall, then the con-
nection is first verified with the firewall ruleset to identify whether it is allowable. If the 
 connection is allowed, then an entry is added in the state table indicating that a new session is 
initiated. If a connection completes the three-way TCP handshake, then the connection state 
is changed and all the consequent traffic which matches the row entry is permitted to pass 
through the firewall.

 3. Application firewall: Application firewall identifies the unexpected sequences of commands 
such as repeated issue of the same command or issuing a command that depends on the 
 preceded unavailable command. These suspicious commands are initiated within application 
protocols (HTTP, SMTP, FTP) for buffer overflow attacks, DoS attacks, malware and other 
types of attacks. Figure 16.5 shows an application firewall. 

Internet

Firewall

Application-level
gateway
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SMTP, TELNET

Internal network

.

.

.

 Table 16.2 State table example

Source address Source port Destination address Destination port Connection state

192.168.1.147 1050 192.0.9.40 80 Initiated

192.168.1.105 1031 10.12.14.16 52 Established

192.168.1.201 1043 10.77.82.45 80 Established

192.168.1.109 1005 10.157.45.76 45 Established

Figure 16.5 Application firewall
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  Another basic feature is validating the input of individual commands like minimum and maxi-
mum lengths of arguments. For example, a username argument with 1000 characters is doubt-
ful. Application firewalls are available for various common protocols that includes HTTP 
(Hyper Text Transfer Protocol), FTP, DB (such as SQL [Structured Query Language]), E-mail 
(SMTP [Simple Mail Transfer Protocol], Post Office Protocol [POP], and Internet Message 
Access  Protocol [IMAP]), Voice over IP (VoIP) and Extensible Markup Language (XML).

 4. Application-proxy gateway firewall: Advanced firewalls have a feature called an application-
proxy gateway which combines lower-layer access control with upper-layer functionality and 
this is shown in Figure 16.6. These firewalls have a proxy agent between two intermediary com-
municating hosts which does not allow a direct connection between them. Actually for every 
successful connection, two separate connections were created one between the client and the 
proxy server and another between the proxy server and the true destination. The proxy remains 
transparent to both the hosts like with an illusion of a direct connection.

    An application-proxy gateway operates at the application layer and inspects the actual traffic 
content. An application-proxy gateway provides higher level of security by preventing direct 
connections between the hosts and also inspects traffic content for identifying policy viola-
tions. Another advantage is that some application-proxy gateways have the ability of decrypt-
ing packets, examining them and re-encrypting them before sending them to the destination 
host. Firewalls with application-proxy gateways also have a disadvantage that the firewall 
spends more time to read and interpret every packet.

 5. Dedicated proxy servers: Firewall capabilities of dedicated proxy servers are limited as com-
pared to application-proxy gateways. Dedicated proxy servers are closely associated with 
application-proxy gateway firewalls. Many dedicated proxy servers are application-specific. 
Generally, dedicated proxy servers are used for decreasing the firewalls workload and for con-
ducting specialized filtering and logins that are difficult for the firewall to carry out.

 6. Virtual private networking: Rather than blocking unwanted traffic, a basic requirement in 
order to design a firewall is to encrypt and decrypt certain network traffic flows between the 
protected network and external networks. For this, Virtual Private Networks (VPNs) usually 
encrypt traffic message and perform user authentication and integrity checks by utilizing 

Figure 16.6 Application-proxy gateway firewall
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more protocols. VPNs are widely used for providing secure network communications across 
untrusted networks. For example, VPN technology is commonly used to extend the protected 
network of a multi-site organization across the Internet and also to provide secure remote user 
access to internal and secure organizational networks via the Internet. Two common options for 
secure VPNs are IPsec and Secure Socket Layer (SSL)/Transport Layer Security (TLS).

    The two most common VPN architectures are gateway-to-gateway and host-to-gateway. 
Gateway-to-gateway architecture connects multiple fixed sites over public lines with the help 
of VPN gateways, for example, connecting all branch offices to an organization’s headquarters. 
A secure connection to the network of distinct users (called remote users) is offered by the 
host-to-gateway architecture. Additional resources are required to run VPN functionality on a 
firewall that depends on the amount of traffic flowing across the VPN and the type of encryp-
tion being used.

16.5 DATABASE SECURITY

Database is a collection of data which contains relevant information. A DBMS is a general purpose 
software package that manages the DB for the user. Some of the real-world organizations that use DBs 
range from academic institutions to enterprise applications. Various commercially available DB sys-
tems are Oracle, SQL Server, DB2, MySQL, PostgreSQL, etc. This section discusses about the DB, its 
attack and the countermeasures to avoid those attacks.

16.5.1 DB Security Requirements

A DB system allows the user to manage the structure for storing the information and provides mecha-
nisms to manipulate the stored information. It is necessary that the DB system must provide security 
to the information available in the DB. DB security means protecting the DB and its objects from 
unauthorized access.

Complete security to the DB can be provided if it satisfies the three basic security requirements such 
as confidentiality, integrity and availability. Confidentiality means protecting the data from unauthor-
ized access. In a DB, confidentiality is ensured by applying access control mechanism, authorization 
and encryption techniques. The term ‘DB’ integrity stands for preventing the DB from unauthorized 
modification. It can be achieved by combining access control mechanism and integrity constraints 
(conditions). Availability assures that the data stored in the DB is available to the authorized users by 
utilizing concurrency control mechanism and recovery subsystem. 

16.5.2 DB Vulnerabilities and Attacks

A DB may be vulnerable due to many reasons. Mostly, all the DBs have their own default user accounts 
and passwords. If the DB administrators are not altering these default DB user credentials, there is 
an opportunity for the attacker to breach the security. Table 16.3 shows some sample DBs with their 
default user credentials. Nowadays, many password cracker tools and scripts are extensively used to 
exploit the weak and default DB user credentials for attacking the DB, so that all authenticated DB 
users must have strong passwords.
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Table 16.3 Databases default user credentials 

Database Username Password Database Username Password

Oracle

internal oracle

DB2

db2admin db2admin

system manager db2as ibmdb2

dbsnmp dbsnmp dflm ibmdb2

MySQL

root null

SQL Server SA nulladmin admin

myusername mypassword

All DBs are vulnerable to its specific category of DoS attacks and buffer overflows. DoS attacks on 
DB cause it to crash and result in failure in response to the valid user requests. Buffer overflows in DB 
make the application to perform unintended actions. While granting permissions to the users, incor-
rectly assigning the resources privileges allows the users to deliberately misuse their access rights by 
endangering the DB.

DB attacks can be classified into two categories based on whether the attacker is inside or outside 
the back-end DB network location. One category of attack is by an insider who can attack the DB 
by misusing the granted privileges. For example, a privileged user (insider) who is having the privi-
lege only to view the details of all employees but tries to modify the details by abusing the granted 
 privileges. Another attack is through a web application which uses DB as a back-end to store the infor-
mation. An attacker performs this attack by injecting the SQL query in the input field to be entered by 
the user and also by exploiting the vulnerabilities of DB buffer overflow. This attack is done mostly 
by the outsider who use or visits the web application with the intention of stealing the confidential 
information. This chapter mainly focuses on SQL injection attacks. To understand the SQL injection 
attack, it is necessary to understand the web application four-tier architecture and SQL queries which 
are explained in Section 16.5.2.1.

16.5.2.1 Web Application Architecture

Web applications that use any type of DB as back-end are more vulnerable to SQL injection attacks than 
other types of attacks. Most of the web applications are DB-driven; the best example is an  E-commerce 
application which stores various information in a DB. Some of the E-commerce applications are online 
shopping, instant messaging, online banking, social networking, newsgroups, etc. Figure 16.7 shows 
an architecture of a web application where SQL statements are executed in DB server. Generally, a web 
application has the following four tiers.

 1. Presentation tier: In this tier, the results of other tiers are displayed in the web browser as 
web pages. It includes web browser (Microsoft’s Internet Explorer, Mozilla’s Firefox, Google’s 
Chrome, etc.) or rendering engine which acts as an interface to the user. Web browser sends 
request to the web server (logic tier) whenever user performs an action like accessing a website 
by entering the URL (Uniform Resource Locator), for example, http://www.google.com.

 2. Logic tier: Web server (Glassfish, Apache, Internet Information Server) resides in this tier 
which sends HTML web pages to the web browser (presentation tier). It also loads, compiles 
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and executes scripts (C#, ASP, .NET, PHP, JSP, etc.) by calling an Application Programming 
Interface (API) from the application server (application tier).

 3. Application tier: The application server (SOAP, Web Services, RMI, EJB, etc.) residing in 
this tier connects to the DB server (storage tier) to execute the SQL statements. It applies the 
application and business logics to the result of the DB server and returns the outcome to the 
web server (logic tier).

 4. Storage tier: This tier contains the DB server (Oracle, SQL Server, MySQL, etc.) which stores 
the actual information and makes the data independent from application and business logic. 
It executes the SQL statements to store and manipulate the data that are sent by the application 
server (application tier) and sends the results back to the application server (application tier).

16.5.2.2 Structured Query Language

‘SQL’ stands for ‘structured query language’. SQL statements are used to perform operations on the 
information stored in the DB. The syntax of SQL statements varies with the DB vendor. To understand 
the SQL injection, it is essential to know the following SQL statement types.

 1. Data Manipulation Language (DML) Statements: These statements query or manipulate the 
information available in the DB. It includes SELECT, INSERT, UPDATE, DELETE, etc.

 2. Data Definition Language (DDL) Statements: These statements are used to define and alter 
the structure of the DB objects (tables, views, etc.). CREATE, ALTER, DROP are some of the 
DDL statements.

 3. Data Control Language (DCL) Statements: DCL statements (GRANT, REVOKE) are used 
to grant and revoke the privileges on the DB objects to/from the user.

SELECT Statement
SELECT statement is the most commonly used SQL statement (query) which fetches the data from the 
DB objects. In this book, all the SQL statements use SQL syntax of Oracle DB. The following is the 
structure of basic SQL SELECT statement.

SELECT column_list

FROM table_name

WHERE condition

Figure 16.7 Database-driven web application 4-tier architecture
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List of column names whose values to be fetched, is used in SELECT clause with the table name 
specified in FROM clause. WHERE clause is used to specify condition on the selection data. For 
example, the following SQL SELECT query displays the list of employees with their name and their 
job whose salary is greater than 30,000. 

SELECT emp_name, job 

FROM employee

WHERE salary > 30,000

INSERT Statement
INSERT statement is used to insert data into the DB objects. The basic structure of INSERT 
statement is

INSERT INTO table_name(column_list)

VALUES (data_list)

The values to be inserted to the columns of a table are specified in the data_list. For example, to insert 
an employee record with name, job and salary, the INSERT statement can be as follows:

INSERT INTO employee(emp_name, job, salary)

VALUES (‘alice’, ‘Software Engineer’, 40000)

UPDATE Statement
To modify any existing values in the table, the UPDATE statement is used. The general structure of the 
UPDATE statement is

UPDATE table_name 

SET column_name = new_value

[WHERE condition]

The column whose values have to be changed is to be specified with the new value in the SET clause. 
WHERE clause is optional which is used for data selection. For example, the UPDATE statement to 
increment all employees’ salary by 1000 is as follows:

UPDATE employee 

SET salary = salary + 1000

DELETE Statement
DELETE statement is used to remove one or more rows/records from the DB objects. The simple 
structure of DELETE statement is
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DELETE FROM table_name

[WHERE condition]

DELETE statement without WHERE clause will delete all rows from the table. To delete particular 
rows from the table, WHERE clause can be used. For example, the DELETE statement to remove all 
the employees whose salary is less than 10,000 is as follows:

DELETE FROM employee

WHERE salary < 10,000 

16.5.3 SQL Injection

Malicious SQL statements are included with the input of an application usually a web application is 
termed as SQL injection. SQL injection attack is a type of code-injection attack, where user’s input 
data to be used in SQL query is considered as SQL code and the attack is accomplished by placing 
malicious SQL statements in the user input for execution. SQL code injection technique is widely used 
to attack data-driven applications.

16.5.3.1 SQL Injection Methods 

SQL injection attack is mainly used for gaining unauthorized access to a DB and for retrieving in-
formation directly from the DB. Because of its ability to obtain/insert information from/to DB, it is a 
strong threat to the servers which are used in military or banking systems. SQL manipulation, code 
injection, function call injection and buffer overflows are the four main types of SQL injection attacks 
that can be attempted against any type of DBs.

SQL Manipulation 
SQL manipulation is the most widely used SQL injection attack. An attacker tries to add elements 
to the WHERE clause of the SQL statement or expands the SQL statement using set operators 
like UNION, INTERSECT or MINUS. The typical SQL manipulation is performed during login 
process. For example, a web application executes the following query to verify the user’s login 
authentication.

SELECT * FROM users_list

WHERE username = ‘alice’ 

AND password = ‘alice_password’

An attacker attempts to manipulate the SQL statement by adding OR condition statement whose 
value is always true like 1 = 1, ‘a’ = ‘a’, 0 < 1 to the WHERE clause and it can be executed. The attacker 
can penetrate into the DB using an invalid username and/or password since the WHERE clause will be 
true for all rows because of operator priority.

SELECT * FROM users_list

WHERE username = ‘alice’ 

AND password = ‘any_value’ or ‘a’ = ‘a’
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In SQL injection attacks, UNION (the set operator) is the most commonly used operator. The main 
objective is to manipulate a SQL statement to return rows from other tables. A web form may execute 
the following SQL query that returns a list of available products:

SELECT product_name FROM all_products

WHERE product_name like ‘%keyboard%’

The attacker exploits the SQL statement to get DB users list from the DB by executing the SQL 
query as follows:

SELECT product_name FROM all_products

WHERE product_name like ‘% keyboard’ 

UNION 

SELECT username || password FROM dba_users 

WHERE username like ‘%’

The list displayed in the web application is returned by the SQL query which contains all the 
selected products with all the DB users’ username and password in the application. Thus with this 
SQL manipulation, the attacker is able to get the users confidential authentication details. This attack 
is more harmful to the web application and to the DB.

Code Injection 
Code injection attack is commonly used to perform on SQL Server DB since it contains EXECUTE 
statement. In Oracle DB, this attack is rarely attempted because there is no statement similar to SQL 
Server’s EXECUTE. Oracle does not support multiple SQL statement requests from both PL/SQL 
and Java. Therefore in Oracle, the following code injection SQL statement using PL/SQL with Java 
application will result in error.

SELECT * FROM users_list 

WHERE username = ‘alice’ AND password = ‘alice_password’; 

DELETE FROM users_list WHERE username = ‘admin’;

But there are some programming languages or APIs which allow multiple SQL statements execu-
tion. PL/SQL and Java applications are vulnerable to code injection when they dynamically execute 
anonymous PL/SQL blocks. For example, a web application can execute the following PL/SQL block:

BEGIN 

  ENCRYPT_PASSWORD(‘alice’, ‘alice_password’); 

END; 

This example executes an application-stored procedure that encrypts and saves the user’s password. 
An attacker can modify this PL/SQL block by injecting new SQL code to modify the tables.
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BEGIN 

  ENCRYPT_PASSWORD(‘alice’, ‘alice_password’); 

  DELETE FROM users 

  WHERE upper(username) = upper(‘admin’); 

END; 

Function Call Injection 
In function call injection, DB functions or custom functions are injected into a vulnerable SQL state-
ment. These function calls are utilized to manipulate the data in the DB or to perform OS calls.

For example, the following function call illustrates how simple SQL statement is vulnerable and is 
exploited by an attacker. TRANSLATE DB function has no equivalent function in Java. So, application 
developers can use DB functions instead of native code (e.g. Java) for executing certain tasks.

SELECT TRANSLATE(‘user_input’,

                 ‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’,

                 ‘0123456789’)

FROM dual;

This SQL can be easily modified to perform a function injection attack. The attacker modifies the 
SQL statement by injecting a function call and executes. The modified SQL statement with an injected 
function call requests a page from a web server. Thus, the attacker can modify the string and URL to 
inject other functions to retrieve useful confidential information from the DB server and send it to the 
web server in the URL.

SELECT 

  TRANSLATE(‘’ || UTL_HTTP.REQUEST(‘http://192.168.11.3/’) || ‘’, 

                 ‘0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ’,

                 ‘0123456789’)

FROM dual;

Buffer Overflows 
Standard functions of many DBs cause buffer overflows which are considered as vulnerable and can be 
exploited for SQL injection attack specifically by function injection method. For example, some stan-
dard Oracle DB functions which cause buffer overflows are tz_offset, to_timestamp_tz and bfilename. 

The loss of a DB connection because of buffer overflow is not properly managed by most of the 
application and web servers which hangs the web process until the connection to the client is termi-
nated. This vulnerability can be exploited for DoS attack by the attacker.

16.5.4 SQL Injection Countermeasures

To prevent SQL injection attacks, it is important to follow some methods of using SQL statements in 
native code (e.g. Java). The simplest way of preventing the SQL injection is by validating the input 
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values by its data type, size, range, content, etc. The following are some of the countermeasures that 
can be followed to protect the DB from the SQL injection attacks. 

 1. User input validation: This is the simplest way of preventing the SQL injection by validating 
the input values by its data type, size, range, content, etc. For example, username should be 
of data type alphanumeric with length 5 and the range values as alphabet, numbers, symbols 
like _, - , etc. If any of the validation (e.g. length >5) fails, then the query should not be sent to 
the DB for execution. 

 2. Parameterized statements: In scripts or APIs, instead of building SQL string, dynamically 
existing feature like placeholders can be used. This method of generating dynamic SQL state-
ment is called parameterized statement.

    The following example shows the dynamic SQL building without placeholder. In this JDBC 
(Java Database connectivity) code, it is assumed that the application is connected to the DB, 
so those codes are omitted and only the SQL part is explained. 

String sql_qry = ‘SELECT * FROM users_list WHERE username=’’ +

      username_var + ‘‘ AND password=’’ + 

     password_var + ‘‘’ 

  Here, the values for the variables username_var and password_var are entered by the user and 
these are not validated but directly sent to the DB server for execution. So, the attacker can 
place malicious code/SQL statements in these values of the variables. To prevent the DB server, 
the following example uses available placeholder feature. In the query, ? (question mark sym-
bol) is used as a placeholder and later it is replaced with the values of the variables specified by 
the user.

String sql_qry = ‘SELECT * FROM users WHERE username = ? AND   
    password = ?’;

PreparedStatement pstmt = connection.prepareStatement(sql_qry);

pstmt.setString(1, username_var); 

pstmt.setString(2, password_var); 

 3. Web framework: It is a software framework which is used to detect and remove any com-
bination of the four special characters ‘, ’’, /, NULL in the user-specified values. It prevents 
SQL injection by simply adding a ‘\’ to those four special characters. For example, program-
ming languages such as PERL (Practical Extraction and Reporting Language) and Ruby have a 
 feature called ‘taint’ which checks for security risks in the user input values to secure websites 
from SQL injection attacks.

KEY TERMS

Audit policy

Bell–LaPadula model (BLM)

Biba integrity model

Bluejacking 

BlueSnarf 

Data manipulation language (DML)
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Firewall

Intrusion detection system (IDS)

Koobface worm

Malware

Passphrase

Password

Phishing

SQL Injection

Trusted OS

Virtual Private Network (VPN)

Virus

Web framework

SUMMARY

 • This chapter focused on how to protect a computer system from different attacks. An overview of 
password management, program security, OS security, network security and DB security is pre-
sented and suggested to achieve a secured computer system. 

 • Password is a word used to pass through secured computer system for accessing resources. Cre-
ation of secure passwords and the different variants of passwords such as passcodes and pass-
phrases were briefly described in the password management section. It also deals with password 
usage and password manager which is used to create, store and protect passwords.

 • Malware propagation and detection were briefly covered in the program security section. Types of 
viruses and the life cycle of virus were also explained in the section. A real-time case study was 
mentioned which helps the readers to understand better and how to remove malwares if a site is 
affected. 

 • OS security section begins with different services which are offered by the OS and then describes 
the different security policies with which an OS can be characterized as trusted OS to the extent 
it satisfies the security policies. This section also covers the different features of the trusted OS 
and the different levels at which the system can be attacked. For multi-level security, some of the 
popular security models such as the BLM and the Biba Integrity Model were described. This sec-
tion concludes with the design of trusted OS.

 • The network security section discusses mainly about the IDS and firewalls. The different intrusion 
detection techniques, the IDS categories and the types of firewall were discussed in this section.

 • Protecting the DB from unauthorized access of users is called DB security. This section introduces 
the DB security requirements and the different attacks that may occur on DB. To have better under-
standing on SQL injection attack, basic information about web application four-tier architecture 
and SQL queries are given. SQL injection methods and the countermeasures are also discussed 
with examples.

REVIEW QUESTIONS

 1. What do you mean by a password/secret code?

 2. List out the features and usage of a good password.

 3. What are the things to be avoided in password creation?

 4. Write a short note on the password types.

 5. Write about StorageCrypt.
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 6. What is a security pattern in mobile lock screen?

 7. Discuss about the different types of viruses.

 8. Explain the life cycle of virus.

 9. Briefly explain on malwares.

 10. Discuss on malware propagation.

 11. Write a short note on the main services of an operating system.

 12. Justify the statement ‘Security is not a quality that can be easily quantified’ with respect to OS 
security.

 13. List down the different types of OS security policies.

 14. Explain the features of trusted OS.

 16. Compare and contrast the Bell–LaPadula model and the Biba integrity model.

 16. What are the things to be taken care of while designing a trusted OS?

 17. Point out the features of an intrusion detection system.

 18. Write down the pros and cons of statistical anomaly-, signature- and stack-based IDS.

 19. What are the different categories of IDS based on the location of observation of intrusion?

 20. Define firewall and explain the different types of firewall.

 21. List the mechanisms used to assure database security requirements.

 22. State the database server functions in web application architecture and where it resides. 

 23. What is SQL? Give its basic structure.

 24. Explain SQL injection attack and its types.

 25. Assume when an attacker tries to modify the database content by inserting an UPDATE state-
ment. Identify this SQL injection attack method and justify.

 26. Detail the methods used to prevent SQL injection attack. 



FREQUENTLY ASKED UNIVERSITY QUESTIONS WITH SOLUTIONS

PART A - Brief Questions

1. What do you mean by cryptanalysis?
 Ans: Cryptanalysis: It is a process of attempting to discover the key or plaintext or both Cryptogra-

phy: It is a science of writing Secret code using mathematical techniques. The many schemes used 
for enciphering constitute the area of study known as cryptography

2. What is difference between a block cipher and a stream cipher?

 Ans: A block cipher processes the input one block of elements at a time, producing an output block 
for each input block. A stream cipher processes the input elements continuously, producing output 
one element at a time, as it goes along.

3. What is key distribution center?

 Ans: A key distribution center is responsible for distributing keys to pairs of users (hosts, processes, 
applications) as needed. Each user must share a unique key with the key distribution center for pur-
poses of key distribution. The use of a key distribution center is based on the use of a hierarchy of keys. 
At a minimum, two levels of keys are used. Communication between end systems is encrypted using a 
temporary key, often referred to as a session key .

4. Mention the application of public key cryptography.

 Ans: Public-key systems are characterized by the use of a cryptographic algorithm with two keys, 
one held private and one available publicly. Depending on the application, the sender uses either 
the sender’s private key or the receiver’s public key, or both, to perform some type of cryptographic 
function. In broad terms, we can classify the use of public-key cryptosystems into three categories:
Encryption/decryption: The sender encrypts a message with the recipient’s public key.
Digital signature: The sender “signs” a message with its private key. Signing is achieved by a 
cryptographic algorithm applied to the message or to a small block of data that is a function of the 
message.
Key exchange: Two sides cooperate to exchange a session key. Several different approaches are 
possible, involving the private key(s) of one or both parties.

5. Specify the requirements for message authentication.

 Ans: Authentication Requirements
In the context of communications across a network, the following attacks can be identified:

Appendix
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• �Disclosure: Release of message contents to any person or process not possessing the appropri-
ate cryptographic key.

• �Traffic analysis: Discovery of the pattern of traffic between parties. In a connection-oriented 
application, the frequency and duration of connections could be determined. In either a con-
nection-oriented or connectionless environment, the number and length of messages between 
parties could be determined.

• �Masquerade: Insertion of messages into the network from a fraudulent source. This includes 
the creation of messages by an opponent that are purported to come from an authorized entity. 
Also included are fraudulent acknowledgments of message receipt or non receipt by someone 
other than the message recipient.

• �Content modification: Changes to the contents of a message, including insertion, deletion, 
transposition, and modification.

• �Sequence modification: Any modification to a sequence of messages between parties, includ-
ing insertion, deletion, and reordering.

• �Timing modification: Delay or replay of messages. In a connection-oriented application, an 
entire session or sequence of messages could be a replay of some previous valid session, or indi-
vidual messages in the sequence could be delayed or replayed. In a connectionless application, an 
individual message (e.g., datagram) could be delayed or replayed.

• �Source repudiation: Denial of transmission of message by source.
• �Destination repudiation: Denial of receipt of message by destination.

6.  What are the two important key issues related to authenticated key exchange?

 Ans: Two key issues are confidentiality and timeliness. To prevent masquerade and to prevent 
compromise of session keys, essential identification and session key information must be com-
municated in encrypted form. This requires the prior existence of secret or public keys that can be 
used for this purpose. The second issue, timeliness, is important because of the threat of message 
replays. Such replays, at worst, could allow an opponent to compromise a session key or success-
fully impersonate another party. At minimum, a successful replay can disrupt operations by pre-
senting parties with messages that appear genuine but are not.

7. What entities constitute a full-service Kerberos environment?

 Ans: If a set of users is provided with dedicated personal computers that have no network con-
nections, then a user’s resources and files can be protected by physically securing each personal 
computer. When these users instead are served by a centralized time-sharing system, the time-
sharing operating system must provide the security. The operating system can enforce access con-
trol policies based on user identity and use the logon procedure to identify users.Today, neither of 
these scenarios is typical. More common is a distributed architecture consisting of dedicated user 
workstations (clients) and distributed or centralized servers. In this environment, three approaches 
to security can be envisioned:
1.  Rely on each individual client workstation to assure the identity of its user or users and rely on 

each server to enforce a securitypolicy based on user identification (ID).
2.  Require that client systems authenticate themselves to servers, but trust the client system con-

cerning the identity of its user.
3.  Require the user to prove his or her identity for each service invoked. Also require that servers 

prove their identitytoclients.
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8. Why does ESP include a padding field?

 Ans: The Padding field serves several purposes:
• �If an encryption algorithm requires the plaintext to be a multiple of some number of bytes 

(e.g., the multiple of a single block for a block cipher), the Padding field is used to expand the 
plaintext (consisting of the Payload Data, Padding, Pad Length, and Next Header fields) to the 
required length.

• �The ESP format requires that the Pad Length and Next Header fields be right aligned within a 
32-bit word. Equivalently, the cipher text must be an integer multiple of 32 bits. The Padding 
field is used to assure this alignment.

• �Additional padding may be added to provide partial traffic flow confidentiality by concealing 
the actual length of the payload.

9. What are the two types of audit records?

 Ans:
• �Native audit records: Virtually all multiuser operating systems include accounting software 

that collects information on user activity. The advantage of using this information is that no ad-
ditional collection software is needed. The disadvantage is that the native audit records may not 
contain the needed information or may not contain it in a convenient form.

• �Detection-specific audit records: A collection facility can be implemented that generates 
audit records containing only that information required by the intrusion detection system. 
One advantage of such an approach is that it could be made vendor independent and ported 
to a variety of systems. The disadvantage is the extra overhead involved in having, in effect, 
two accounting packages running on a machine.

10. What is an access control matrix? What are its elements?

 Ans: The basic elements of the model are as follows:
Subject: An entity capable of accessing objects. Generally, the concept of subject equates with 
that of process. Any user or application actually gains access to an object by means of a process 
that represents that user or application.
Object: Anything to which access is controlled. Examples include files, portions of files, pro-
grams, and segments of memory.
Access right: The way in which an object is accessed by a subject. Examples are read, write, and 
execute.

11. Give the types of attack.

 Ans:

 Passive Attacks

 Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The goal 
of the opponent is to obtain information that is being transmitted. Two types of passive attacks are 
release of message contents and traffic analysis.

 Active Attacks

 Active attacks involve some modification of the data stream or the creation of a false stream and 
can be subdivided into four categories: masquerade, replay, modification of messages, and denial 
of service.
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12. List out the problems of one time pad?

 Ans: The one-time pad offers complete security but, in practice, has two fundamental difficulties:
• �There is the practical problem of making large quantities of random keys. Any heavily used 

system might require millions of random characters on a regular basis. Supplying truly random 
characters in this volume is a significant task. 

• �Even more daunting is the problem of key distribution and protection. For every message to be 
sent, a key of equal length is needed by both sender and receiver. Thus, a mammoth key distri-
bution problem exists.

• �Because of these difficulties, the one-time pad is of limited utility, and is useful primarily for 
low-bandwidth channels requiring very high security.

13. Write down the purpose of the S-Boxes in DES?

 Ans: The role of the S-boxes in the function F is illustrated as the substitution consists of a set of 
eight S-boxes, each of which accepts 6 bits as input and produces 4 bits as output. These transfor-
mations are interpreted as follows: The first and last bits of the input to box Si form a 2-bit binary 
number to select one of four substitutions defined by the four rows in the table for Si. The middle 
four bits select one of the sixteen columns. The decimal value in the cell selected by the row and 
column is then converted to its 4-bit representation to produce the output. For example, in S1 
for input 011001, the row is 01 (row 1) and the column is 1100 (column 12). The value in row 1, 
column 12 is 9, so the output is 1001.

14. Define : Diffusion.

 Ans: Statistical structure of the plaintext is dissipated into long-range statistics of cipher text.
Confusion: Relationship between cipher text and key is made complex.

15. Define: Replay attack.

 Ans: An attack in which a service already authorized and completed is forged by another “dupli-
cate request” in an attempt to repeat authorized commands.
Simple replay: The opponent simply copies a message and replays it later.
Repetition that can be logged: An opponent can replay a timestamped message within the valid 
time window.
Repetition that cannot be detected: This situation could arise because the original message could 
have been suppressed and thus did not arrive at its destination; only the replay message arrives.
Backward replay without modification: This is a replay back to the message sender. This attack 
is possible if symmetric
encryption is used and the sender cannot easily recognize the difference between messages sent 
and messages received on
the basis of content.

16. List out the parameters of AES.

 Ans:

Key size (words/bytes/bits) 4/16/128 6/24/192 8/32/256

Plaintext block size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Number of rounds 10 12 14
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Round key size (words/bytes/bits) 4/16/128 4/16/128 4/16/128

Expanded key size (words/bytes) 44/176 52/208 60/240

17. Define : Primality test.

 Ans:
It is necessary to select one or more very large prime numbers at random. Thus we are faced with 
the task of determining whether a given large number is prime.

18.  State the difference between conventional encryption and public-key encryption.

 Ans:

Conventional Encryption Public-Key Encryption

Needed to Work:

1. The same algorithm with the same 
key is used for encryption and decryp-
tion.

2. The sender and receiver must 
share the algorithm and the key.

Needed to Work:

1. One algorithm is used for encryption and 
decryption with a pair of keys, one for encryp-
tion and one for decryption.

2. The sender and receiver must each have 
one of the matched pair of keys (not the same 
one).

Needed for Security:

1. The key must be kept secret.
2. It must be impossible or at least 
impractical to decipher a message if 
no other information is available.

3. Knowledge of the algorithm plus 
samples of ciphertext must be insuf-
ficient to determine the key.

Needed for Security:
1.  One of the two keys must be kept secret. 
2.  It must be impossible or at least impracti-

cal to decipher a message if no other infor-
mation is available.

3.  Knowledge of the algorithm plus one of the 
keys plus samples of ciphertext must be in-
sufficient to determine the other key.

19. Define : Malicious software.

 Ans:
Malicious software is software that is intentionally included or inserted in a system for a harmful 
purpose.

20. Name any two security standards.
Ans: RC4 is used in the SSL/TLS (Secure Sockets Layer/Transport Layer Security) standards that 
have been defined for communication between Web browsers and servers. SET used by visa Card. 

21. Differentiate passive attack from active attack with exzmple.

 Ans: Passive attacks are in the nature of eavesdropping on, or monitoring of, transmissions. The 
goal of the opponent is to obtain information that is being transmitted. Two types of passive attacks 
are release of message contents and traffic analysis.

Eg: A telephone conversation, an electronic mail message, and a transferred file may contain sen-
sitive or confidential information. We would like to prevent an opponent from learning the contents 
of these transmissions.
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Active attacks involve some modification of the data stream or the creation of a false stream 
and can be subdivided into four categories: masquerade, replay, modification of messages, and 
denial of service.

A masquerade takes place when one entity pretends to be a different entity .Masquerade attack 
usually includes one of the other forms of active attack. For example, authentication sequences 
can be captured and replayed after a valid authentication sequence has taken place, thus enabling 
an authorized entity with few privileges to obtain extra privileges by impersonating an entity that 
has those privileges.

22. What is the use of Fermat’s theorem?

 Ans: Fermat’s theorem states the following: If p is prime and a is a positive integer not divisible 
by p, then

aP-1=1(mod P)
Proof: Consider the set of positive integers less than p:{1,2,..., p 1} and multiply each element 

bya, modulo p, to get the set X = {a mod p,
2a mod p, . . . (p 1)a mod p}. None of the elements of X is equal to zero because p does not divide a.

23. What are the different modes of operation in DES?

 Ans:

• Electronic code Book

• Cipher Block chaining

• Cipher feedback mode

• Output Feedback mode

• Counter

24. Name any two methods for testing prime numbers.

 Ans:

• Miller-Rabin Algorithm

• A Deterministic Primality Algorithm

• Chinese Remainder algorithm

25. What is discrete logarithm?

 Ans: Discrete logarithms are fundamental to a number of public-key algorithms, including Diffie-
Hellman key exchange and the digital signature algorithm (DSA). 
Calculation of Discrete Logarithms

Consider the equation
y = gx mod p

Given g, x, and p, it is a straightforward matter to calculate y. At the worst, we must perform x 
repeated multiplications, and algorithms exist for achieving greater efficiency

26. What do you mean by one-way property in hash function?

 Ans: A variation on the message authentication code is the one-way hash function. As with the 
message authentication code, a hash function accepts a variable-size message M as input and 
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produces a fixed-size output, referred to as a hash code H(M). Unlike a MAC, a hash code does 
not use a key but is a function only of the input message. The hash code is also referred to 
as a message digest or hash value. The hash code is a function of all the bits of the message 
and provides an error-detection capability: A change to any bit or bits in the message results in a 
change to the hash code.

27. List out the requirements of Kerberos.

 Ans: Kerberos listed the following requirements:
 • Secure: A network eavesdropper should not be able to obtain the necessary information to im-
personate a user. Generally, Kerberos should be strong enough that a potential opponent does 
not find it to be the weak link.

 • Reliable: For all services that rely on Kerberos for access control, lack of availability of the 
Kerberos service means lack of availability of the supported services. Hence, Kerberos should 
be highly reliable and should employ a distributed server architecture, with one system able to 
back up another.

 • Transparent: Ideally, the user should not be aware that authentication is taking place, beyond 
the requirement to enter a password.

 • Scalable: The system should be capable of supporting large numbers of clients and servers. 
This suggests a modular, distributed architecture.

28. Mention four SSL protocols.

 Ans:

• SSL Handshake protocol

• SSL change cipher spec protocol

• SSL Alert Protocol

• SSL Record Protocol

29. Define Intruders. Name three different classes of Intruders.

 Ans: Threats to security is the intruder (the other is viruses), generally referred to as a hacker or 
cracker.
Classes of intruders:
Masquerader: An individual who is not authorized to use the computer and who penetrates a 
system’s access controls to exploit a legitimate user’s account
Misfeasor: A legitimate user who accesses data, programs, or resources for which such access is 
not authorized, or who is authorized for such access but misuses his or her privileges

Clandestine user: An individual who seizes supervisory control of the system and uses this control 
to evade auditing and access controls or to suppress audit collection

30. What do you mean by Trojan Horses?

 Ans: Trojan horse is a useful, or apparently useful, program or command procedure containing 
hidden code that, when invoked, performs some unwanted or harmful function.

Example, to gain access to the files of another user on a shared system, a user could create a 
Trojan horse program that, when executed, changed the invoking user’s file permissions so that the 
files are readable by any user.
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31. Define threads and attacks.
 Ans:

   Threat: A potential for violation of security, which exists when there is a circumstance, capability, 
action,or event that could breach security and cause harm.That is, a threat is a possible danger that 
might exploit a vulnerability.

Attack: An assault on system security that derives from an intelligent threat; that is, an intelligent 
act that is a deliberate attempt to evade security services and violate the security policy of a system.

32. What are the resources for secure use of conventional encrytion?
 Ans: Plaintext,Encryption Algorithm,Secret Key,Ciphertext and Decryption algorithm are the 

resources for secure use of conventional encrytion.

33. Using Fermat theorem find 3201 mod 11.
 Ans:

  a=3 ; p=201
  ap=a(mod p)
  310= 1 (mod 11)
  3201=(3)(310)(320)=(3)(310)(320)=(3)(1)20= 3(mod11)n.

34. List the techniques for distribution of public keys.
 Ans:

 • Public Announcement
 • Publicly available directory
 • Public Key Authority
 • Public Key Certificates 

35. What is suppress reply attack.
   Ans: The problem occurs when a sender’s clock is ahead of the intended recipient’s clock. In this 

case, an opponent can intercept a message from the sender and replay it later when the timestamp 
in the message becomes current at the recipient’s site. This replay could cause unexpected results. 
This attack is known as suppress replay attack.

36. What is the difference between MD4 and MD5 ?
 Ans:

MD4 MD5
Numbers of rounds of 16 steps 
each is 3

Numbers of rounds of 16 steps 
each is 4

Different additive constant for 
each round

Different additive constant for 
each step

3 primitive logical functions 4 primitive logical functions
It does not include the result of 
previous step

Each step adds in the result of the 
preceding step.

37. What is a realm?
 Ans: A kerberos realm is a set of managed nodes that store the same  kerberos  database. The kerbe-

ros database resides on the kerberos master  computer.
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PART B - Detailed Questions

 1.  Explain about substitution and transposition techniques with two examples for each.
 Ans: Classification of Cryptographic systems: 

1.  Based on type of operations used for transform-
ing plaintext to ciphertext-

Substitution ciphers 
Transposition cipher

2.  Based on number of keys used – Secret key encryption
Publickey Encryption

3.  Based on the way in which the plain text is 
processed-

Stream cipher
Block cipher

Substitution Techniques

The two basic building blocks of all encryption techniques are substitution and transposition. A 
substitution technique is one in which the letters of plaintext are replaced by other letters or by 
numbers or symbols. If the plaintext is viewed as a sequence of bits, then substitution involves 
replacing plaintext bit patterns with cipher text bit patterns.
1. Ceaser cipher
2. monoalphabetic cipher
3. Homophonic substitution cipher
4. Polygram Substitution cipher
5. Polyalphabetic cipher

Caesar Cipher

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar. The Caesar 
cipher involves replacing each letter of the alphabet with the letter standing three places further 
down the alphabet. 
For example, 
plain: meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB
The alphabet is wrapped around, so that the letter following Z is A. We can define the transforma-
tion by listing all possibilities, as follows:
plain: a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
we can also assign a numerical equivalent to each letter: 

Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase in the key space can 
be achieved by allowing an arbitrary substitution. Recall the assignment for the Caesar cipher:
plain: a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters, then there 
are 26! or greater than 4 x 10 26 possible keys. This is 10 orders of magnitude greater than the key 
space for DES and would seem to eliminate brute-force techniques for cryptanalysis. Such an 
approach is referred to as a monoalphabetic substitution cipher, because a single cipher alphabet 
(mapping from plain alphabet to cipher alphabet) is used per message.



420  Appendix

Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in the plain-
text as single units and translates these 

M O N A R
C H Y B D
E F G I/J K
L P Q S T
U V W X Z

In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the key-
word (minus duplicates) from left to rightand from top to bottom, and then filling in the remainder 
of the matrix with the remaining letters in alphabetic order. The letters I and Jount as one letter. 
Plaintext is encrypted two letters at a time, according to the following rules:
1.  Repeating plaintext letters that are in the same pair are separated with a filler letter, such as x, 

so that balloon would be treated as ba lx lo on.
2.  Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to the 

right, with the first element of the row circularly following the last. For example, ar is encrypted 
as RM.

3.  Two plaintext letters that fall in the same column are each replaced by the letter beneath, with 
the top element of the column circularly following the last. For example, mu is encrypted as 
CM.

4.  Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and the 
column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM (or JM, 
as the encipherer wishes). 

Hill Cipher

This cipher is somewhat more difficult to understand than the others in this chapter, but it illus-
trates an important point about cryptanalysis that will be useful later on. This subsection can be 
skipped on a first reading.
  Another interesting multiletter cipher is the Hill cipher, developed by the mathematician 
Lester Hill in 1929. The encryption algorithm takes m successive plaintext letters and substitutes 
for them m ciphertext letters. The substitution is determined by m linear equations in which each 
character is assigned a numerical value (a = 0, b = 1 ... z = 25). For m = 3, the system can be 
described as follows:

c3 = (k31P1 + k32P2 + k33P3) mod 26

This can be expressed in term of column vectors and matrices:

or 
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C = KP mod 26

where C and P are column vectors of length 3, representing the plaintext and ciphertext, and K is 
a 3 x 3 matrix, representing the encryption key. Operations are performed mod 26.
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Polyalphabetic Ciphers

Another way to improve on the simple monoalphabetic technique is to use different monoal-
phabetic substitutions as one proceeds through the plaintext message. The general name for this 
approach is polyalphabetic substitution cipher. All these techniques have the following features 
in common:
1. A set of related monoalphabetic substitution rules is used.
2.  A key determines which particular rule is chosen for a given transformation.
The best known, and one of the simplest, such algorithm is referred to as the Vigenère cipher. 
In this scheme, the set of related monoalphabetic substitution rules consists of the 26 Caesar 
ciphers, with shifts of 0 through 25. Each cipher is denoted by a key letter, which is the cipher-
text letter that substitutes for the plaintext letter a.

One-Time Pad

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the Vernam cipher 
that yields the ultimate in security. Mauborgne suggested using a random key that is as long as 
the message, so that the key need not be repeated. In addition, the key is to be used to encrypt 
and decrypt a single message, and then is discarded. Each new message requires a new key of the 
same length as the new message. Such a scheme, known as a one-time pad, is unbreakable. It pro-
duces random output that bears no statistical relationship to the plaintext. Because the ciphertext 
contains no information whatsoever about the plaintext, there is simply no way to break the code.

Transposition Techniques

• Rail Fence Techniques
• Columnar transposition Techniques
• Book cipher
• Vernam Cipher/one time pad
All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext 
symbol. A very different kind of mapping is achieved by performing some sort of permutation on the 
plaintext letters. This technique is referred to as a transposition cipher. The simplest such cipher is 
the rail fence technique, in which the plaintext is written down as a sequence of diagonals and then 
read off as a sequence of rows. For example, to encipher the message “meet me after the toga party” 
with a rail fence of depth 2, we write the following:
The encrypted message is

MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the message 
in a rectangle, row by row, and read the message off, column by column, but permute the order of 
the columns. The order of the columns then becomes the key to the algorithm. For example,

Key: 4 3 1 2 5 6 7
Plaintext: a t t a c k p
    o s t p o n e
    d u n t i l t
    w o a m x y z
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
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A pure transposition cipher is easily recognized because it has the same letter frequencies as 
the original plaintext. For the type of columnar transposition just shown, cryptanalysis is fairly 
straightforward and involves laying out the ciphertext in a matrix and playing  around with column 
positions. Digram and trigram frequency tables can be useful. The transposition cipher can be made  
significantly more secure by performing more than one stage of transposition. The result is a more 
complex permutation that is not easily reconstructed. Thus, if the foregoing message is reen-
crypted using the same algorithm,

Key: 4 3 1 2 5 6 7
Input: t t n a a p t
     m t s u o a o
     d w c o i x k
     n l y p e t z
Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ

To visualize the result of this double transposition, designate the letters in the original plaintext 
message by the numbers designating their position. Thus, with 28 letters in the message, the origi-
nal sequence of letters is

01 02 03 04 05 06 07 08 09 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28

Rail Fence techniques:

1. Write down the plain text message as a sequence of diagonals.
2. Read the plaintext written in step 1 as a sequence of rows.
plain text: Come home tomorrow
Cipher text: cmh mt mr ooeoeoorw.

Columnar transposition technique:

1  Writ the plain text message row by row in a rectangle of a predefined size.
2.  Read the message column by column .it need not be in the order of the column 1,2,3…
3.  The message thus obtained is the cipher text message.
plain text: Come home tomorrow
Let us consider a rectangle with six columns.

C1 C2 C3 C4 C5 C6

C O M E H O

M E T O M O

R R O W

the order of columns chosen in random order say 4,6,1,2,5,3 .Then read the text in order of these 
columns.
Cipher text: eowoocmroerhmmto

Vernam cipher:

1.  Treat each plain text alphabet as a number in an increasing sequence.
2. do the same for each character of the input cipher text.
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3.  Add each number corresponding to the plaintext alphabet to the corresponding input ciphertext 
alphabet number.

4. If the sum has produced is greater than 26,subtract 26 from it.
5.  translate each number of the sum back to the corresponding alphabet. This gives the cipher test.

 2.  What is the need for triple DES? Write the disadvantages of double DES and explain 
triple DES.

Ans: The use of double DES results in a mapping that is not equivalent to a single DES encryp-
tion. But there is a way to attack this scheme, one that does not depend on any particular property 
of DES but that will work against any block encryption cipher.
The algorithm, known as a meet-in-the-middle attack, C = E(K2, E(K1, P))
then (X = E(K1, P) = D(K2, P)
Given a known pair, (P, C), the attack proceeds as follows. First, encrypt P for all 256 possible 
values of K1 Store these results in a table and then sort the table by the values of X. Next, decrypt 
C using all 256 possible values of K2. As each decryption is produced, check the result against the 
table for a match. If a match occurs, then test the two resulting keys against a new known plaintext-
ciphertext pair. If the two keys produce the correct ciphertext, accept them as the correct keys.

3. Explain how the elliptic curves are useful for cryptography?
Ans: Several approaches to encryption/decryption using elliptic curves . The first task in this 
system is to encode the plaintext message m to be sent as an x-y point Pm. It is the point Pm that 
will be encrypted as a ciphertext and subsequently decrypted. Note that we cannot simply encode 
the message as the x or y coordinate of a point, because not all such coordinates are in Eq(a, b);. 
Again, there are several approaches to this encoding, which we will not address here, but suf-
fice it to say that there are relatively straightforward techniques that can be used. As with the key 
exchange system, an encryption/decryption system requires a point G and an elliptic group Eq(a, b) 
as parameters. Each user A selects a private key nA and generates a public key PA = nA x G. 
To encrypt and send a message Pm to B, A chooses a random positive integer k and produces the 
ciphertext Cm consisting of the pair of points:

Cm = {kG, Pm + kPB}

Note that A has used B’s public key PB. To decrypt the ciphertext, B multiplies the first point in 
the pair by B’s secret key and subtracts the result from the second point:

Pm + kPB nB(kG) = Pm + k(nBG) nB(kG) = Pm

A has masked the message Pm by adding kPB to it. Nobody but A knows the value of k, so even 
though PB is a public key, nobody can remove the mask kPB. However, A also includes a “clue,” 
which is enough to remove the mask if one knows the private key n B. For an attacker to recover 
the message, the attacker would have to compute k given G and kG, which is assumed hard. As an 
example of the encryption process take p = 751; Ep(1, 188), which is equivalent to the curve y2= x3x 
+ 188;and G = (0, 376). Suppose that A wishes to send a message to B that is encoded in the elliptic 
poinPtm = (562, 201) and that A selects the random number k = 386. B’s public key is PB = (201, 
5). We have 386(0, 376) = (676, 558), and (562, 201) + 386(201, 5) = (385, 328). Thus A sends the 
cipher text {(676, 558), (385, 328)}.
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  A key exchange between users A and B can be accomplished as follows .A selects an integer 
nA less than n. This is A’s private key.
1.  A then generates a public keyP A = nA x G; the public key is a point in Eq(a, b).
2.  B similarly selects a private key nB and computes a public key PB.
3.  A generates the secret key K = nA x PB. B generates the secret keyK = nB x PA.

Global Public Elements

E
q
(a, b)  elliptic curve with parameters a, b and q, where q is a 

prime or an integer of the form 2m

G    point on elliptic curve whose order is large value n

User A Key Generation

Select private n
A
     n

A
 < n

Calculate public P
A
     P

A
 = n

A
 × G

User B Key Generation

Select private n
B
     n

A
 < n

Calculate public P
B
    P

B
 = n

B
 × G

Calculation of Secret by User A

K = n
A
 × P

B

Calculation of Secret by User B

K = n
B
 × P

A

ECC Diffie-Hellman Key Exchange
The two calculations in step 3 produce the same result because

nA x PB = nA x (nB x G) = nB x (nA x G) = nB x PA

To break this scheme, an attacker would need to be able to compute k given G and kG, which is 
assumed hard.

 4.  In a public key system using RSA, you intercept the cipher text  C = 10 sent to a user whose 
public key is e=5, n=35. What is the plain text? Explain the above problem with an algorithm 
description.

Ans: Description of the Algorithm
The scheme developed by Rivest, Shamir, and Adleman makes use of an expression with expo-
nentials. Plaintext is encrypted in blocks, with each block having a binary value less than some 
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number n. That is, the block size must be less than or equal to log2(n); in practice, the block size is 
i bits, where 2 I ≤�n 2 i+1. Encryption and decryption are of the following form, for some plaintext 
blockM and ciphertext block C:

C = Memod n
M = Cdmod n = (Me)dmod n = Medmod n
Both sender and receiver must know the value of n. The sender knows the value of e, and only the 
receiver knows the value of d. Thus, this is a public-key encryption algorithm with a public key of 
PU = {e, n} and a private key of PU = {d, n}.
For this algorithm to be satisfactory for public-key encryption, the following requirements must 
be met:
1.  It is possible to find values of e, d, n such that M ed mod n = M for all M < n.
2.  It is relatively easy to calculate mod Memod n and Cdmod n . for all values of M < n.
3.  It is infeasible to determine d given e and n.
To find a relationship of the form Medmod n = M
4.  if e and d are multiplicative inverses modulo f(n), where f(n) is the Euler totient function. It is 

shown in 
that for p, q prime, f(pq) = (p- 1)(q-1) The relationship between e and d can be expressed as
1. Select two prime numbers, p = 17 and q = 11.
2. Calculate n = pq = 17 x 11 = 187.
3. Calculate f(n) = (p- 1)(q-1) = 16 x 10 = 160.
4.  Select e such that e is relatively prime to f(n) = 160 and less than f(n) we choose e = 7.
Determine d such that de 1 (mod 160) and d < 160. The correct value is d = 23, because 23 x 7 = 
161 = 1x 160 + 1; d can be calculated using the extended Euclid’s algorithm.

plaintext
88

Encryption

ciphertext
11

Decryption

PR = 23, 187PU = 7, 187

11 mod 187 = 88
23

88 mod 187 = 11
7 plaintext

88

Key Generation

Select p, q         p and q both prime, p ≠ q

Calculate n = p × q

Calculate f(n) = (p -�1)(q - 1)

Select integer e       gcd(f(n), e) = 1:1 < e < f(n)

Calculate d          d ≡ e-1 (mod f(n))

Public key         PU = {e, n}

Private key          PR = {d, n}
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Encryption

Plaintext: M < n

Ciphertext: C = Me mod n

Decryption

Ciphertext: C

Plaintext M = Cd mod n

C=10
e=5
n=35
if n=35 ,p=7,q=5 O(n)=(7-1)(5-1)=24
ed= 1 mod O(n)=5*21=105 mod 24

 5.  Write about the basic uses of MAC and list out the applications.

Ans: An alternative authentication technique involves the use of a secret key to generate a small 
fixed-size block of data, known as a cryptographic checksum or MAC that is appended to the 
message. This technique assumes that two communicating parties, say A and B, share a common 
secret key K. When A has a message to send to B, it calculates the MAC as a function of the mes-
sage and the key:

MAC= C(K, M), where
M = input message
C = MAC function
K = shared secret key
MAC = message authentication code

The message plus MAC are transmitted to the intended recipient. The recipient performs the same 
calculation on the received message, using the same secret key, to generate a new MAC. The 
received MAC is compared to the calculated MAC .If we assume that only the receiver and the 
sender know the identity of the secret key, and if the received MAC matches the calculated MAC, 
then 
1.  The receiver is assured that the message has not been altered. If an attacker alters the message 

but does not alter the MAC, then the receiver’s calculation of the MAC will differ from the 
received MAC. Because the attacker is assumed not to know the secret key, the attacker cannot 
alter the MAC to correspond to the alterations in the message.

2.  The receiver is assured that the message is from the alleged sender. Because no one else knows 
the secret key, no one else could prepare a message with a proper MAC.

3.  If the message includes a sequence number (such as is used with HDLC, X.25, and TCP), then 
the receiver can be assured of the proper sequence because an attacker cannot successfully alter 
the sequence number.
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M

M
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C(K,M)

C(K1,M)

C
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K1K2K2

K

M

Compare

Compare

Source A Destination B

(a) Message authentication

C

D M

C(K1,E(K2,M))

E(K2,M)

C

E

K2K2 K1
K1

M

Compare

(c) Message authentication and confidentiality: authentication tied to eiphertext

C

E D

Ki

M

E(K2, M C(K1,M) )

(b) Message authentication and confidentiality: authentication tied to plaintext

It suggests three situations in which a message authentication code is used:
• �There are a number of applications in which the same message is broadcast to a number of des-

tinations. It is cheaper and more reliable to have only one destination responsible for monitor-
ing authenticity. Thus, the message must be broadcast in plaintext with an associated message 
authentication code. The responsible system has the secret key and performs authentication. If 
a violation occurs, the other destination systems are alerted by a general alarm.

• �An exchange in which one side has a heavy load and cannot afford the time to decrypt all 
incoming messages. Authentication is carried out on a selective basis, messages being chosen 
at random for checking.

• �Authentication of a computer program in plaintext is an attractive service. The computer pro-
gram can be executed without having to decrypt it every time, which would be wasteful of 
processor resources. However, if a message authentication code were attached to the program, it 
could be checked whenever assurance was required of the integrity of the program.

Three other rationales may be added, as follows:
• �For some applications, it may not be of concern to keep messages secret, but it is important 

to authenticate messages. An example is the Simple Network Management Protocol Version 3 
(SNMPv3), which separates the functions of confidentiality and authentication. For this appli-
cation, it is usually important for a managed system to authenticate incoming SNMP messages, 
particularly if the message contains a command to change parameters at the managed system. 
On the other hand, it may not be necessary to conceal the SNMP traffic.

• �Separation of authentication and confidentiality functions affords architectural flexibility. 
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• �A user may wish to prolong the period of protection beyond the time of reception and yet allow 
processing of message contents. With message encryption, the protection is lost when the mes-
sage is decrypted, so the message is protected against fraudulent modifications only in transit 
but not within the target system.

• �Finally, note that the MAC does not provide a digital signature because both sender and receiver 
share the same key.
A B: M||C(K, M)

• �Provides authentication
Only A and B share K

(a) Message authentication
A B:E(K2, [M||C(K, M)])
• Provides authentication
Only A and B share K1
• Provides confidentiality
Only A and B share K2

(b)  Message authentication and confidentiality: authentication tied to plaintext
A B:E(K2, M)||C(K1, E(K2, M))
• Provides authentication
Using K1
• Provides confidentiality Using K2

(c)  Message authentication and confidentiality: authentication tied to ciphertext

 6.  With a neat sketch, explain signing and verifying functions of DSA.

Ans: Message authentication protects two parties who exchange messages from any third party. 
However, it does not protect the two parties against each other.

Requirements for a digital signature:

• �The signature must be a bit pattern that depends on the message being signed.
• �The signature must use some information unique to the sender, to prevent both forgery and denial.
• �It must be relatively easy to produce the digital signature.
• �It must be relatively easy to recognize and verify the digital signature.
• �It must be computationally infeasible to forge a digital signature, either by constructing a new 

message for an existing digital signature or by constructing a fraudulent digital signature for a 
given message.

• �It must be practical to retain a copy of the digital signature in storage.
A variety of approaches has been proposed for the digital signature function. These approaches 
fall into two categories: direct and arbitrated.

Direct Digital Signature

• �The direct digital signature involves only the communicating parties (source, destination). 
• �It is assumed that the destination knows the public key of the source. 
• �A digital signature may be formed by encrypting the entire message with the sender’s private 

key or by encrypting a hash code of the message with the sender’s private key 
• �Confidentiality can be provided by further encrypting the entire message plus signature with either 

the receiver’s public key (public-key encryption) or a shared secret key (symmetric encryption); 
• �It is important to perform the signature function first and then an outer confidentiality function.
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• �In case of dispute, some third party must view the message and its signature. 
• �If the signature is calculated on an encrypted message, then the third party also needs access to 

the decryption key to read the original message. 
• �However, if the signature is the inner operation, then the recipient can store the plaintext mes-

sage and its signature for later use in dispute resolution.

Limitations:

• �The validity of the scheme depends on the security of the sender’s private key. 
• �If a sender later wishes to deny sending a particular message, the sender can claim that the pri-

vate key was lost or stolen and that someone else forged his or her signature. 
• �Administrative controls relating to the security of private keys can be employed to thwart or at 

least weaken this ploy, but the threat is still there, at least to some degree. 
• �One example is to require every signed message to include a timestamp (date and time) and to 

require prompt reporting of compromised keys to a central authority. 
• �Another threat is that some private key might actually be stolen from X at time T. The opponent 

can then send a message signed with X’s signature and stamped with a time before or equal to T.

Arbitrated Digital Signature

• �The problems associated with direct digital signatures can be addressed by using an arbiter. 
• �Every signed message from a sender X to a receiver Y goes first to an arbiter A, who subjects 

the message and its signature to a number of tests to check its origin and content. 
• �The message is then dated and sent to Y with an indication that it has been verified to the satis-

faction of the arbiter. 
• �The presence of A solves the problem faced by direct signature schemes: that X might disown 

the message. 
• �The arbiter plays a sensitive and crucial role in this sort of scheme, and all parties must have a 

great deal of trust that the arbitration mechanism is working properly. 
• �In the first, symmetric encryption is used. It is assumed that the sender X and the arbiter A 

share a secret key K
xa

 and that A and Y share secret key K
ay

. 
• �X constructs a message M and computes its hash value H(M). 
• �Then X transmits the message plus a signature to A. 
• �The signature consists of an identifier IDX of X plus the hash value, all encrypted using K

xa
. 

• �A decrypts the signature and checks the hash value to validate the message. 
• �Then A transmits a message to Y, encrypted with K

ay
. The message includes IDX, the original 

message from X, the signature, and a timestamp. 
• Y can decrypt this to recover the message and the signature.
• �The timestamp informs Y that this message is timely and not a replay. Y can store M and the 

signature. 
• �In case of dispute, Y, who claims to have received M from X, sends the following message to A:
• �The following format is used. A communication step in which P sends a messageM to Q is 

represented as P Q: M.
• �E(K

ay
, [IDX||M||E(K

xa
, [IDX||H(M)])])

Arbitrated Digital Signature Techniques

(a) Conventional Encryption, Arbiter Sees Message
(1) X A: M||E(K

xa
,, [IDX||H(M)])

(2) A Y: EKay, [IDX||M||E(K
xa

,, [IDX||H(M)])||T])
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(b) Conventional Encryption, Arbiter Does Not See Message
(1) X A: IDX||E(K

xy
, M)||E(K

xa
, [IDX||H(E(K

xy
, M))])

(2) A Y: EK
ay

,[IDX||E(K
xy
, M)])||E(K

xa
, [IDX||H(E(K

xy
, M))||T])

(c) Public-Key Encryption, Arbiter Does Not See Message 
(1) X A: IDX||E(KRx, [IDX||E(PUy, E(KRx, M))])
(2) A Y: EKRa, [IDX||E(PUy, E(PRx, M))||T])
Notation:
X = sender
Y = recipient
A = Arbiter
M = message
T = timestamp
The arbiter uses Kay to recover IDX, M, and the signature, and then uses Kxa to decrypt the sig-
nature and verify the hash code.
 In this scheme, Y cannot directly check X’s signature; the signature is there solely to settle 
disputes. Y considers the message from X authentic because it comes through A. 
 In this scenario, both sides must have a high degree of trust in A: 
 X must trust A not to reveal Kxa and not to generate false signatures of the form E(Kxa, 
[IDX||H(M)]). Y must trust A to send E(Kay, [IDX||M||E(Kxa, [IDX||H(M)])||T]) only if the hash 
value is correct and the signature was generated by X. Both sides must trust A to resolve disputes 
fairly. 
 If the arbiter does live up to this trust, then X is assured that no one can forge his signature 
and Y is assured that X cannot disavow his signature.
 The preceding scenario also implies that A is able to read messages from X to Y and, indeed, 
that any eavesdropper is able to do so.
 In fig B. shows a scenario that provides the arbitration as before but also assures confidential-
ity. In this case it is assumed that X and Y share the secret key Kxy. Now, X transmits an identifier, 
a copy of the message encrypted with K xy, and a signature to A. The signature consists of the 
identifier plus the hash value of the encrypted message, all encrypted using Kxa. As before, A 
decrypts the signature and checks the hash value to validate the message. In this case, A is working 
only with the encrypted version of the message and is prevented from reading it. A then transmits 
everything that it received from X, plus a timestamp, all encrypted with Kay, to Y.

 7.  Describe briefly about X.509 authentication procedures. And also list out the drawbacks of 
X.509 version 2.
Ans: X.509 is based on the use of public-key cryptography and digital signatures. The standard does not 
dictate the use of a specific algorithm but recommends RSA. The digital signature scheme is assumed 
to require the use of a hash function. Again, the standard does not dictate a specific hash algorithm. 

Certificates

The heart of the X.509 scheme is the public-key certificate associated with each user. These user 
certificates are assumed to be created by some trusted certification authority (CA) and placed in 
the directory by the CA or by the user. The directory server itself is not responsible for the creation 
of public keys or for the certification function; it merely provides an easily accessible location for 
users to obtain certificates.
It shows the general format of a certificate, which includes the following elements:
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Version: Differentiates among successive versions of the certificate format; the default is version 
1. If the Issuer Unique Identifier or Subject Unique Identifier are present, the value must be ver-
sion 2. If one or more extensions are present, the version must be version 3.
Serial number: An integer value, unique within the issuing CA, that is unambiguously associated 
with this certificate.
Signature algorithm identifier: The algorithm used to sign the certificate, together with any 
associated parameters. Because this information is repeated in the Signature field at the end of the 
certificate, this field has little, if any, utility.
Issuer name: X.500 name of the CA that created and signed this certificate.
Period of validity: Consists of two dates: the first and last on which the certificate is valid.
Subject name: The name of the user to whom this certificate refers. That is, this certificate certi-
fies the public key of the subject who holds the corresponding private key.
Subject’s public-key information: The public key of the subject, plus an identifier of the algo-
rithm for which this key is to be used, together with any associated parameters.
Issuer unique identifier: An optional bit string field used to identify uniquely the issuing CA in 
the event the X.500 name has been reused for different entities.
Subject unique identifier: An optional bit string field used to identify uniquely the subject in the 
event the X.500 name has been reused for different entities.
Extensions: A set of one or more extension fields. Extensions were added in version 3 .
Signature: Covers all of the other fields of the certificate; it contains the hash code of the other 
fields, encrypted with the CA’s private key. This field includes the signature algorithm identifier.

Version

Issuer name

Certificate
serial number

Algorithm
Parameters

Issuer uniqe
Identifier

Subject unique
identifier

Algorithm
Parameters

Key

Algorithm
Parameters
Encrypted

Algorithm
Parameters
Encrypted

Subject name

Extensions

Not before
Not after
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User certificate serial #
Revocation date

User certificate serial #
Revocation date

This update date

Next update date

Signature
algorithm
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Revoked
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Signature
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public-key

info

Signature
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(b) Certificate revocation list
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The unique identifier fields were added in version 2 to handle the possible reuse of subject and/or 
issuer names over time. These fields are rarely used.
The standard uses the following notation to define a certificate:

CA<<A>> = CA {V, SN, AI, CA, TA, A, Ap}
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where
Y <<X>> = the certificate of user X issued by certification authority Y
Y {I} = the signing of I by Y. It consists of I with an encrypted hash code appended
The CA signs the certificate with its private key. If the corresponding public key is known to a 
user, then that user can verify that a certificate signed by the CA is valid. 

Obtaining a User’s Certificate

User certificates generated by a CA have the following characteristics:
• �Any user with access to the public key of the CA can verify the user public key that was certified.
• �No party other than the certification authority can modify the certificate without this being 

detected.
• �Because certificates are unforgeable, they can be placed in a directory without the need for the 

directory to make special efforts to protect them.
• �If all users subscribe to the same CA, then there is a common trust of that CA. All user certifi-

cates can be placed in the directory for access by all users. In addition, a user can transmit his or 
her certificate directly to other users. In either case, once B is in possession of A’s certificate, B 
has confidence that messages it encrypts with A’s public key will be secure from eavesdropping 
and that messages signed with A’s private key are unforgeable.

• �If there is a large community of users, it may not be practical for all users to subscribe to the 
same CA. Because it is the CA that signs certificates, each participating user must have a copy 
of the CA’s own public key to verify signatures. This public key must be provided to each user in 
an absolutely secure (with respect to integrity and authenticity) way so that the user has confi-
dence in the associated certificates. Thus, with many users, it may be more practical for there to 
be a number of CAs, each of which securely provides its public key to some fraction of the users.

• �Now suppose that A has obtained a certificate from certification authority X1 and B has obtained 
a certificate from CA X2. If A does not securely know the public key of X2, then B’s certificate, 
issued by X2, is useless to A. A can read B’s certificate, but A cannot verify the signature. How-
ever, if the two CAs have securely exchanged their own public keys, the following procedure 
will enable A to obtain B’s public key:

A obtains, from the directory, the certificate of X2 signed by X1. Because A securely knows X1’s 
public key, A can obtain X2’s public key from its certificate and verify it by means of X1’s signa-
ture on the certificate.
1.  A then goes back to the directory and obtains the certificate of B signed by X2 Because A now has 

a trusted copy of X2’s public key, A can verify the signature and securely obtain B’s public key.
2.  A has used a chain of certificates to obtain B’s public key. In the notation of X.509, this chain 

is expressed as

X1<<X2>> X2 <<B>>

In the same fashion, B can obtain A’s public key with the reverse chain:

X2<<X1>> X1 <<A>>

This scheme need not be limited to a chain of two certificates. An arbitrarily long path of CAs can 
be followed to produce a chain. A chain with N elements would be expressed as

X1<<X2>> X2 <<X3>>... XN<<B>>

In this case, each pair of CAs in the chain (Xi, Xi+1) must have created certificates for each other. 
All these certificates of CAs by CAs need to appear in the directory, and the user needs to know 
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how they are linked to follow a path to another user’s public-key certificate. X.509 suggests that 
CAs be arranged in a hierarchy so that navigation is straightforward.
CAs; the associated boxes indicate certificates maintained in the directory for each CA entry. The 
directory entry for each CA includes two types of certificates:
Forward certificates: Certificates of X generated by other CAs
Reverse certificates: Certificates generated by X that are the certificates of other CAs

Revocation of Certificates

Each certificate includes a period of validity, much like a credit card. Typically, a new certificate 
is issued just before the expiration of the old one. In addition, it may be desirable on occasion to 
revoke a certificate before it expires, for one of the following reasons:
1. The user’s private key is assumed to be compromised.
2. The user is no longer certified by this CA.
3. The CA’s certificate is assumed to be compromised.
Each CA must maintain a list consisting of all revoked but not expired certificates issued by that 
CA, including both those issued to users and to other CAs. These lists should also be posted on 
the directory.
Each certificate revocation list (CRL) posted to the directory is signed by the issuer and includes 
the issuer’s name, the date the list was  created, the date the next CRL is scheduled to be issued, 
and an entry for each revoked certificate. Each entry consists of the serial number of a certificate 
and revocation date for that certificate. Because serial numbers are unique within a CA, the serial 
number is sufficient to identify the certificate.
When a user receives a certificate in a message, the user must determine whether the certificate has 
been revoked. The user could check the directory each time a certificate is received. 

 8.  Write about SSL and TLS.

Ans: SSL (Secure Socket Layer): 
• ��transport layer security service 
• �originally developed by Netscape 
• �version 3 designed with public input 
• �subsequently became Internet standard known as TLS (Transport Layer Security) 
• �uses TCP to provide a reliable end-to-end service 
• �SSL has two layers of protocols 

SSL
Handshake

Protocol

SSL Change
Cipher Spec

Protocol

SSL Alert
Protocol

SSL Recorder Protocol

TCP

IP

HTTP
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SSL connection 

• ��a transient, peer-to-peer, communications link 
• ��associated with 1 SSL session 

SSL session 

• ��an association between client & server 
• ��created by the Handshake Protocol 
• ��define a set of cryptographic parameters 
• ��may be shared by multiple SSL connections 

SSL Record Protocol Services: 

• �message integrity 
• ��using a MAC with shared secret key 
• ��similar to HMAC but with different padding 
• �confidentiality 
• ��using symmetric encryption with a shared secret key defined by Handshake Protocol 
•   AES, IDEA, RC2-40, DES-40, DES, 3DES, Fortezza, RC4-40, RC4-128 
• message is compressed before encryption 

SSL Record Protocol Operation:

Application Data

Fragment

Compress

Add MAC

Encrypt

Append SSL
Record Header

SSL Change Cipher Spec Protocol: 

• �one of 3 SSL specific protocols which use the SSL Record protocol 
• �a single message 
• �causes pending state to become current 
• �hence updating the cipher suite in use 

SSL Alert Protocol: 

• �conveys SSL-related alerts to peer entity 
• �severity 

• �warning or fatal 
• �specific alert 

• �fatal: unexpected message, bad record mac, decompression failure, handshake failure, 
illegal parameter 
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•  warning: close notify, no certificate, bad certificate, unsupported certificate, certificate 
revoked, certificate expired, certificate unknown 

• �compressed & encrypted like all SSL data 

SSL Handshake Protocol: 

• �allows server & client to: 
• �authenticate each other 
• �to negotiate encryption & MAC algorithms 
• �to negotiate cryptographic keys to be used 

• �comprises a series of messages in phases 
• �Establish Security Capabilities 
• �Server Authentication and Key Exchange 
• �Client Authentication and Key Exchange 
• �Finish 

Phase 1. Establish Security Capabilities

This phase is used to initiate a logical connection and to establish the security capabilities that will 
be associated with it. The exchange is initiated by the client, which sends a client_hello message 
with the following parameters: 
Version: The highest SSL version understood by the client.
Random: A client-generated random structure, consisting of a 32-bit timestamp and 28 bytes 
generated by a secure random number generator. These values serve as nonces and are used during 
key exchange to prevent replay attacks.
Session ID: A variable-length session identifier. A nonzero value indicates that the client wishes 
to update the parameters of an existing connection or create a new connection on this session. A 
zero value indicates that the client wishes to establish a new connection on a new session.
CipherSuite: This is a list that contains the combinations of cryptographic algorithms supported 
by the client, in decreasing order of preference. Each element of the list (each cipher suite) defines 
both a key exchange algorithm and a CipherSpec; 
Compression Method: This is a list of the compression methods the client supports.

Phase 2. Server Authentication and Key Exchange

The server begins this phase by sending its certificate, if it needs to be authenticated; the message 
contains one or a chain of X.509 certificates. The certificate message is required for any agreed-
on key exchange method except anonymous Diffie-Hellman. If fixed Diffie-Hellman is used, this 
certificate message functions as the server’s key exchange message because it contains the server’s 
public Diffie-Hellman parameters. Next, a server_key_exchange message may be sent if it is 
required. It is not required in two instances: 
(1) The server has sent a certificate with fixed Diffie-Hellman parameters, or 
(2) RSA key exchange is to be used.

Phase 3. Client Authentication and Key Exchange

Upon receipt of the server_done message, the client should verify that the server provided a valid 
certificate if required and check that the server_hello parameters are acceptable. If all is satis-
factory, the client sends one or more messages back to the server. If the server has requested a 
certificate, the client begins this phase by sending a certificate message. If no suitable certificate 
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is available, the client sends a no_certificate alert instead. Next is the client_key_exchange mes-
sage, which must be sent in this phase. 
The content of the message depends on the type of key exchange, as follows:
RSA: The client generates a 48-byte pre-master secret and encrypts with the public key from the 
server’s certificate or temporary RSA key from a server_key_exchange message. Its use to com-
pute a master secret.

Ephemeral or Anonymous Diffie-Hellman: The client’s public Diffie-Hellman parameters are 
sent.

Fixed Diffie-Hellman: The client’s public Diffie-Hellman parameters were sent in a certificate 
message, so the content of this message is null.

Fortezza: The client’s Fortezza parameters are sent.

Finally, in this phase, the client may send a certificate_verify message to provide explicit veri-
fication of a client certificate. This message is only sent following any client certificate that has 
signing capability (i.e., all certificates except those containing fixed Diffie-Hellman parameters).

Phase 4. Finish

This phase completes the setting up of a secure connection. The client sends a change_cipher_
spec message and copies the pending CipherSpec into the current CipherSpec. Note that this mes-
sage is not considered part of the Handshake Protocol but is sent using the Change Cipher Spec 
Protocol. The client then immediately sends the finished message under the new algorithms, keys, 
and secrets. The finished message verifies that the key exchange and authentication processes were 
successful. 

client_hello

server_hello

certificate

server_key_exchange

client_key_exchange

certificate_request

certificate_verify

change_cipher_spec

change_cipher_spec

finished

finished

server_hello_done

certificate

ServerClient
Phase 1
Establish security capabilities, including
protocol version, session ID, cipher suite,
compression method, and initial random
numbers.

Phase 2
Server may send certificate, key exchange,
and request certificate. Server signals end
of hello message phase.

Phase 3
Client sends certificate if requested. Client
sends key exchange. Client may send
certificate verification.

Phase 4
Change cipher suite and finish
handshake protocol.

Note: Shaded transfers are
optional or situation-dependent
messages that are not always sent.

T
im

e
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 9.  Explain about intrusion detection techniques in detail.

Ans: Intrusion detection system can be broadly classified based on two parameters .
(a)  Analysis method used to identify intrusion, which is classified into Misuse IDS and Anomaly 

IDS. 
(b)  Source of data that is used in the analysis method, which is classified into Host, based IDS 

and Network based IDS

2.1. Misuse IDS

Misuse based IDS is a very prominent system and is widely used in industries. Most of the orga-
nizations that develop anti-virus solutions base their design methodology on Misuse IDS. The 
system is constructed based on the signature of all-known attacks. Rules and signatures define 
abnormal and unsafe behavior. It analyzes the traffic flow over a network and matches against 
known signatures. Once a known signature is encountered the IDS triggers an alarm. With the 
advancement in latest technologies, the number of signatures also increase. This demands for 
constant upgrade and modification of new attack signatures from the vendors and paying more to 
vendors for their support [6].
• �The advantages of this model are easy creation of attack signature databases, faster and easier 

implementation of IDS and minimal usage of the system resources. 
• �The main weakness of the traditional and established rule based techniques is that rule based 

detection is highly dependent on the audit results. 
• �This one-to-one correspondence between rules and audit records makes the system inflex-

ible. For example, given a particular penetration scenario, the audit results may vary in the 
sequences of events. This results in variations in the detection outcome. 

• �This may lead to large number of false positives (Section 3) and in some cases, false negatives 
too.

• �The inability to predict a mishap and take preemptive action. The rule-based technique only 
helps in prevention of an intrusion when the details and patterns of it are available.

• �Rules are framed when a set of administrators are interviewed, different observed penetrations are 
recorded, rules are set to those penetration scenarios based on the expected outcomes from the 
analysis of audit records. Therefore, updating of rules is expensive in terms of time and money.

2.2. Anomaly IDS

Anomaly IDS is built by studying the behavior of the system over a period of time in order to 
construct activity profiles that represent normal use of the system. The anomaly IDS computes the 
similarity of the traffic in the system with the profiles to detect intrusions. The biggest advantage 
of this model is that new attacks can be identified by the system as it will be a deviation from 
normal behavior.
The drawbacks of this model are summarized 
(a)  There is no defined process or model available to select the threshold value against which the 

profile is compared. 
(b)  They are computationally expensive because the profiles have to be constantly updated and 

compared against.
(c)  User behaviors generally vary with time and hence the model must provide a provision to 

revise and update it.
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2.3. Host Based IDS

When the source of data for IDS comes from a single host (System), then it is classified as Host 
based IDS. They are generally used to monitor user activity and useful to track IDS intrusions 
caused when an authorized user tries to access confidential information.

2.4. Network Based IDS

The source of data for these type of IDS is obtained by listening to all nodes in a network. Attacks 
from illegitimate user can be identified using a network based IDS. Commercial IDSs are always 
a combination of the two types mentioned above. The possible kinds of IDS are host based misuse 
IDS, network based misuse IDS, host based anomaly IDS and network based anomaly IDS. How-
ever, with greater interest and research in this field, new models are being developed such as 
Network Security monitor.

 10.  Write about trusted systems in detail.

Ans: One way to enhance the ability of a system to defend against intruders and malicious pro-
grams is to implement trusted system technology

Data Access Control

Following successful logon, the user has been granted access to one or a set of hosts and appli-
cations. This is generally not sufficient for a system that includes sensitive data in its database. 
Through the user access control procedure, a user can be identified to the system. Associated 
with each user, there can be a profile that specifies permissible operations and file accesses. The 
operating system can then enforce rules based on the user profile. The database management 
system, however, must control access to specific records or even portions of records. For example, 
it may be permissible for anyone in administration to obtain a list of company personnel, but only 
selected individuals may have access to salary information. The issue is more than just one of 
level of detail. Whereas the operating system may grant a user permission to access a file or use 
an application, following which there are no further security checks, the database management 
system must make a decision on each individual access attempt. That decision will depend not 
only on the user’s identity but also on the specific parts of the data being accessed and even on the 
information already divulged to the user.
A general model of access control as exercised by a file or database management system is that of 
an access matrix 
The basic elements of the model are as follows:
Subject: An entity capable of accessing objects. Generally, the concept of subject equates with 
that of process. Any user or application actually gains access to an object by means of a process 
that represents that user or application.
Object: Anything to which access is controlled. Examples include files, portions of files, pro-
grams, and segments of memory.
Access right: The way in which an object is accessed by a subject. Examples are read, write, and 
execute.
When multiple categories or levels of data are defined, the requirement is referred to as multilevel 
security. The general statement of the requirement for multilevel security is that a subject at a high 
level may not convey information to a subject at a lower or noncomparable level unless that flow 
accurately reflects the will of an authorized user. For implementation purposes, this requirement is 
in two parts and is simply stated. A multilevel secure system must enforce the following:
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No read up: A subject can only read an object of less or equal security level. This is referred to in 
the literature as th SimpleSecurity Property.
No write down: A subject can only write into an object of greater or equal security level. This is 
referred to in the literature as the *-Property
[1] The “*” does not stand for anything. No one could think of an appropriate name for the prop-
erty during the writing of the first report on the model. The asterisk was a dummy character entered 
in the draft so that a text editor could rapidly find and replace all instances of its use once the prop-
erty was named. No name was ever devised, and so the report was published with the “*” intact.
These two rules, if properly enforced, provide multilevel security. For a data processing system, 
the approach that has been taken, and has been the object of much research and development, is 
based on the reference monitor concept.
The reference monitor is a controlling element in the hardware and operating system of a com-
puter that regulates the access of subjects to objects on the basis of security parameters of the sub-
ject and object. The reference monitor has access to a file, known as the security kernel database, 
that lists the access privileges (security clearance) of each subject and the protection attributes 
(classification level) of each object. The reference monitor enforces the security rules (no read up, 
no write down) and has the following properties:
Complete mediation: The security rules are enforced on every access, not just, for example, 
when a file is opened.
Isolation: The reference monitor and database are protected from unauthorized modification.
Verifiability: The reference monitor’s correctness must be provable. That is, it must be possible 
to demonstrate mathematically that the reference monitor enforces the security rules and provides 
complete mediation and isolation.
These are stiff requirements. The requirement for complete mediation means that every access to data 
within main memory and on disk and tape must be mediated. Pure software implementations impose 
too high a performance penalty to be practical; the solution must be at least partly in hardware. The 
requirement for isolation means that it must not be possible for an attacker, no matter how clever, to 
change the logic of the reference monitor or the contents of the security kernel database. Finally, the 
requirement for mathematical proof is formidable for something as complex as a general-purpose 
computer. A system that can provide such verification is referred to as a trusted system.

Trojan Horse Defense

One way to secure against Trojan horse attacks is the use of a secure, trusted operating system. 
Figure illustrates an example. In this case, a Trojan horse is used to get around the standard secu-
rity mechanism used by most file management and operating systems: the access control list. 
In this example, a user named Bob interacts through a program with a data file containing the 
critically sensitive character string “CPE170KS.” User Bob has created the file with read/write 
permission provided only to programs executing on his own behalf: that is, only processes that are 
owned by Bob may access the file.
The Trojan horse attack begins when a hostile user, named Alice, gains legitimate access to the 
system and installs both a Trojan horse program and a private file to be used in the attack as a “back 
pocket.” Alice givesread/write permission to herself for this file and gives Bob write-only permis-
sion .Alice now induces Bob to invoke the Trojan horse program, perhaps by advertising it as a 
useful utility. When the program detects that it is being executed by Bob, it reads the sensitive char-
acter string from Bob’s file and copies it into Alice’s back-pocket file (Figure). Both the read and 
write operations satisfy the constraints imposed by access control lists. Alice then has only to access 
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Bob’s file at a later time to learn the value of the string. Now consider the use of a secure operating 
system in this scenario .Security levels are assigned to subjects at logon on the basis of criteria such 
as the terminal from which the computer is being accessed and the user involved, as identified by 
password/ID. In this example, there are two security levels, sensitive and public, ordered so that 
sensitive is higher than public. Processes owned by Bob and Bob’s data file are assigned the security 
level sensitive. Alice’s file and processes are restricted to public. If Bob invokes the Trojan horse 
program , that program acquires Bob’s security level. It is therefore able, under the simple security 
property, to observe the sensitive character string. When the program attempts to store the string in 
a public file (the back-pocket file), however, the is violated and the attempt is disallowed by the ref-
erence monitor. Thus, the attempt to write into the back-pocket file is denied even though the access 
control list permits it: The security policy takes precedence over the access control list mechanism.
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 11.  Explain the Key Generation, Encryption and Decryption of SDES algorithm in detail.

Ans: Simplified DES

P10

P8

IP

IPIP-1

IP-1

SW SW

fk fk

fk fk

P8

Shift

Shift

8-bit ciphertext 8-bit ciphertext

8-bit plaintext 8-bit plaintext

DECRYPTIONENCRYPTION

10-bit key

K1 K1

K2 K2

S-DES encryption (decryption) algorithm takes 8-bit block of plaintext (ciphertext) and a 10-bit 
key, and produces 8-bit ciphertext (plaintext) block. Encryption algorithm involves 5 functions: an 
initial permutation (IP); a complex function f

K
, which involves both permutation and substitution 

and depends on a key input; a simple permutation function that switches (SW) the 2 halves of the 
data; the function f

K
 again; and finally, a permutation function that is the inverse of the initial per-

mutation (IP-1). Decryption process is similar.
The function f

K
 takes 8-bit key which is obtained from the 10-bit initial one two times. The key 

is first subjected to a permutation P10. Then a shift operation is performed. The output of the 
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shift operation then passes through a permutation function that produces an 8-bit output (P8) for 
the first subkey (K1). The output of the shift operation also feeds into another shift and another 
instance of P8 to produce the 2nd subkey K2.
We can express encryption algorithm as superposition:

Ciphertext= IP-1 (f
k2

.SW.f
k1

.IP) or IP-1(f
k2

 (SW (f
k1

 (IP(plaintext))))

Where
k1=P8(shift(P10(key)))
k2= P8(shift(shift(P10(key)))
Decryption is the reverse of encryption:

Plaintext= (IP-1(f
k1

 (SW (f
k2

 (IP(ciphertext))))

S-DES key generation

Scheme of key generation:

10-bit key

P10

P8

10

5 5

5

8

8

5 5

5

LS-1 LS-1

P8

LS-2 LS-2

K2

K1

Figure Key Generation for Simplified DES

First, permute the 10-bit key k1,k2,..,k10:
P10(k1,k2,k3,k4,k5,k6,k7,k8,k9,k10)=(k3,k5,k2,k7,k4,k10,k1,k9,k8,k6)
Or it may be represented in such a form

P10

3 5 2 7 4 10 1 9 8 6

Each position in this table gives the identity of the input bit that produces the output bit in this posi-
tion. So, the 1st output bit is bit 3 (k3), the 2nd is k5 and so on. For example, the key (1010000010) 
is permuted to (1000001100).
Next, perform a circular shift (LS-1), or rotation, separately on the 1st 5 bits and the 2nd 5 bits. In 
our example, the result is (00001 11000)
Next, we apply P8, which picks out and permutes 8 out of 10 bits according to the following rule:
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P8
6 3 7 4 8 5 10 9

The result is subkey K1. In our example, this yields (10100100)
We then go back to the pair of 5-bit strings produced by the 2 LS-1 functions and perform a cir-
cular left shift of 2 bit positions on each string. In our example, the value (00001 11000) becomes 
(00100 00011). Finally, P8 is applied again to produce K2. In our example, the result is (01000011)
S-DES encryption

8-bit plaintext

IP

8

8

4

8

4

4

4

4

8
4

4

4

8

4

4

4

8

4

2 2

P4

S0 S1

E/P

E/P

F

fK

F

fK

+

+

+

+

SW

K2

S0 S1

P4

8-bit ciphertext

IP-1

K1

Simplified-DES encryption Detail

The input to the algorithm is an 8-bit block of plaintext, which is permuted by IP function:

IP

2 6 3 1 4 8 5 7
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At the end of the algorithm, the inverse permutation is used:

IP-1

4 1 3 5 7 2 8 6

It may be verified, that IP-1(IP(X)) = X.
The most complex component of S-DES is the function f

K
, which consists of a combination of per-

mutation and substitution functions. The function can be expressed as follows. Let L and R be the 
leftmost 4 bits and rightmost 4 bits of the 8-bit input to f

K
, and let F be a mapping (not necessarily 

one to one) from 4-bit strings to 4-bit strings. Then we let f
K
(L,R) = (L⊕F(R,SK),R)

where SK is a subkey and ⊕ is the bit-by-bit XOR operation. For example, suppose the output of 
the IP stage in Fig.3.3 is (1011 1101) and F(1101,SK) = (1110) for some key SK. Then f

K
(1011 

1101) = (0101 1101) because (1011) ⊕ (1110) = (0101).
We now describe the mapping F. The input is a 4-bit number (n1 n2 n3 n4). The 1st operation is 
an expansion/permutation:

E/P

4 1 2 3 2 3 4 1

For what follows, it is clearer to depict result in this fashion:
n4|n1 n2|n3
n2|n3 n4|n1

The 8-bit subkey K1 = (k11, k12, k13, k14, k15, k16, k17, k18) is added to this value using XOR:

4+k11|n1+k12 n2+k13|n3+k14

n2+k15|n3+k16 n4+k17|n1+k18

Let us rename these bits:

p00|p01 p02|p03
p10|p11 p12|p13

The 1st 4 bits (1st row of the preceding matrix) are fed into the S-box S0 to produce a 2-bit output, 
and the remaining 4 bits (2nd row) are fed into S1 to produce another 2-bit output. These 2 boxes 
are defined as follows:
0 12 3 0 12 3
The S-boxes operate as follows. The 1st and 4th input bits are treated as a 2-bit number that specify 
a row of the S-box, and the 2nd and 3rd input bits specify a column of the S-box. The entry in that 
row and column, in base 2, is the 2-bit output. For example, if (p00, p03) = (00) and (p01, p02) = 
(10), then the output is from row 0, column 2 of S0, which is 3, or (11) in binary. Similarly, (p10, 
p13) and (p11, p12) are used to index into a row and column of S1 to produce an additional 2 bits. 
Next, the 4 bits produced by S0 and S1 undergo a further permutation as follows:

P4

2 4 3 1

The output of P4 is the output of function F.
The function f

K
 only alters the leftmost 4 bits of input.
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The switch function SW interchanges the left and right bits so that the 2nd instance of f
K
 operates 

on a different 4 bits. In the 2nd instance, the E/P, S0, S1, and P4 functions are the same. The key 
input is K2.
Analysis of simplified DES
A brute-force attack on S-DES is feasible since with a 10-bit key there are only 1024 possibilities.
What about cryptanalysis? If we know plaintext (p1p2p3p4p5p6p7p8) and respective cipher-
text (c1c2c3c4c5c6c7c8), and key (k1k2k3k4k5k6k7k8k9k10) is unknown, then we can express 
this problem as a system of 8 nonlinear equations with 10 unknowns. The nonlinearity comes 
from the S-boxes. It is useful to write down equations for these boxes. For clarity, rename 
(p00,p01,p02,p03)=(a,b,c,d) and (p10,p11,p12,p13)=(w,x,y,z). Then the operation of S0 is defined 
in the following equations:
q=abcd+ab+ac+b+d
r=abcd+abd+ab+ac+ad+a+c+1
where all additions are made modulo 2. Similar equations define S1.

12. Write the algorithm of RSA and explain with an example.
Ans: Diffie and Hellman introduced a new approach to cryptography and, in effect, challenged 
cryptologists to come up with a cryptographic algorithm that met the requirements for public-
key systems. One of the first of the responses to the challenge was developed in 1977 by Ron 
Rivest, Adi Shamir, and Len Adleman at MIT .
The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 0 and 
n 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less than 21024.

Description of the Algorithm
The scheme developed by Rivest, Shamir, and Adleman makes use of an expression with expo-
nentials. Plaintext is encrypted in blocks, with each block having a binary value less than some 
number n. That is, the block size must be less than or equal to log2(n); in practice, the block size is 
i bits, where 2 I ≤�n 2 i+1. Encryption and decryption are of the following form, for some plaintext 
block M and ciphertext block C:

C = Memod n
M = Cdmod n = (Me)dmod n = Medmod n

Both sender and receiver must know the value of n. The sender knows the value of e, and only the 
receiver knows the value of d. Thus, this is a public-key encryption algorithm with a public key of 
PU = {e, n} and a private key of PU = {d, n}. For this algorithm to be satisfactory for public-key 
encryption, the following requirements must be met:
1.  It is possible to find values of e, d, n such that M ed mod n = M for all M < n.
2.  It is relatively easy to calculate mod Memod n and Cdmod n . for all values of M < n.
3.  It is infeasible to determine d given e and n. For now, we focus on the first requirement and 

consider the other questions later. We need to find a relationship of the form Medmod n = M
4.  if e and d are multiplicative inverses modulo f(n), where f(n) is the Euler totient function. It 

is shown in that for p, q prime, f(pq) = (p- 1)(q- 1) The relationship between e and d can be 
expressed as

1. Select two prime numbers, p = 17 and q = 11.
2. Calculate n = pq = 17 x 11 = 187.
3. Calculate f(n) = (p -1)(q- 1) = 16 x 10 = 160.
4. Select e such that e is relatively prime to f(n) = 160 and less than f(n) we choose e = 7.
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Determine d such that de 1 (mod 160) and d < 160. The correct value is d = 23, because 23 x 7 = 
161 = 10 x 160 + 1; d can be calculated using the extended Euclid’s algorithm.

plaintext
88

Encryption

ciphertext
11

Decryption

PR = 23, 187PU = 7, 187

11 mod 187 = 88
23

88 mod 187 = 11
7 plaintext

88

Key Generation

Select p, q         p and q both prime, p ≠ q

Calculate n = p × q

Calculate f(n) = (p -�1)(q - 1)

Select integer e       gcd(f(n), e) = 1:1 < e < f(n)

Calculate d          d ≡ e-1 (mod f(n))

Public key         PU = {e, n}

Private key          PR = {d, n}

Encryption

Plaintext: M < n

Ciphertext: C = Me mod n

Decryption

Ciphertext: C

Plaintext M = Cd mod n

The resulting keys are public key PU = {7,187} and private key PR = {23,187}. The example 
shows the use of these keys for a plaintext input of M = 88. For encryption, we need to calculate  
C = 887 mod 187
887 mod 187 = [(884 mod 187) x (88 2 mod 187) x (88 1 mod 187)] mod 187
88 1 mod 187 = 88
88 2mod 187 = 7744 mod 187 = 77
884mod 187 = 59,969,536 mod 187 = 132
887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11
For decryption, we calculate M = 1123mod 187:
1123 mod 187 = [(111mod 187) x (112 mod 187) x (114 mod 187) x (118mod 187) x (118mod 187)] 
mod 187
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111mod 187 = 11
112mod 187 = 121
114mod 187 = 14,641 mod 187 = 55
118mod 187 = 214,358,881 mod 187 = 33
1123 mod 187 = (11 x 121 x 55 x 33 x 33) mod 187 = 79,720,245 mod 187 = 88mod 187. 

 13. Illustrate about the SHA algorithm and explain.

 Ans: SHA-1
• �SHA was designed by NIST & NSA in 1993, revised 1995 as SHA-1
• US standard for use with DSA signature scheme 
o standard is FIPS 180-1 1995, also Internet RFC3174 
o note: the algorithm is SHA, the standard is SHS 
o produces 160-bit hash values 
o now the generally preferred hash algorithm 
o based on design of MD4 with key differences 

SHA Overview
1. pad message so its length is 448 mod 512 
2. append a 64-bit length value to message
3.  initialise 5-word (160-bit) buffer (A,B,C,D,E) to (67452301,efcdab89,98badcfe,10325476

,c3d2e1f0) 
1. process message in 16-word (512-bit) chunks:

• expand 16 words into 80 words by mixing & shifting 
• use 4 rounds of 20 bit operations on message block & buffer 
• add output to input to form new buffer value 

2. output hash value is the final buffer value 
3. each round has 20 steps which replaces the 5 buffer words thus:

4. (A,B,C,D,E) <-(E+f(t,B,C,D)+(A<<5)+W
t
+K

t
),A,(B<<30),C,D)

5. a,b,c,d,e refer to the 5 words of the buffer
6. t is the step number 
7. f(t,B,C,D) is nonlinear function for round
8. W

t 
is derived from the message block 

9. K
t
 is a constant value derived from sin

SHA-1 compression function

A B C D E

A B C D E

+

+

+

+

S5

S30

ft

Wt

Kt
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SHA1 vs MD 5
• brute force attack is harder (160 vs 128 bits for MD5) 
• not vulnerable to any known attacks (compared to MD4/5) 
• a little slower than MD5 (80 vs 64 steps) 
• both designed as simple and compact 
•  optimised for big endian CPU’s (vs MD5 which is optimised for little endian CPU’s) 

14. List out the participants of SET system, and explain in detail.
Ans: SET is an open encryption and security specification designed to protect credit card transac-
tions on the internet. SET is not itself payment system.

Services provided are

*Provides secure communication channel among all parties involved in a transaction.
* provided trust by the use of x.509v3 digital certificates.
*Ensures privacy because the information available to parties in a transaction when and where 
necessary.

Requirements:

• Provide confidentiality of payment and ordering information
• Ensure the integrity of all transmitted data
• �Provide authentication that a cardholder is a legitimate user of a credit card account:
• �Provide authentication that a merchant can accept credit card transactions through its relation-

ship with a financial institution:
• �Ensure the use of the best security practices and system design techniques to protect all legiti-

mate parties in an electronic commerce transaction
• �Create a protocol that neither depends on transport security mechanisms nor prevents their use:
• �Facilitate and encourage interoperability among software and network providers

Key features of SET:

• �Confidentiality of information: Cardholder account and payment information is secured as it 
travels across the network. An interesting and important feature of SET is that it prevents the 
merchant from learning the cardholder’s credit card number; this is only provided to the issuing 
bank. Conventional encryption by DES is used to provide confidentiality.

• �Integrity of data: Payment information sent from cardholders to merchants includes order 
information, personal data, and payment instructions. SET guarantees that these message con-
tents are not altered in transit. RSA digital signatures, using SHA-1 hash codes, provide mes-
sage integrity. Certain messages are also protected by HMAC using SHA-1.

• �Cardholder account authenticationCardholder account authentication: SET enables mer-
chants to verify that a cardholder is a legitimate user of a valid card account number. SET uses 
X.509v3 digital certificates with RSA signatures for this purpose

Participants of SET system

Merchant authentication: SET enables cardholders to verify that a merchant has a relationship 
with a financial institution
• �Cardholder: In the electronic environment, consumers and corporate purchasers interact with 

merchants from personal computers over the Internet. A cardholder is an authorized holder of a 
payment card (e.g., MasterCard, Visa) that has been issued by an issuer.
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• �Merchant: A merchant is a person or organization that has goods or services to sell to the card-
holder. Typically, these goods and services are offered via a Web site or by electronic mail. A 
merchant that accepts payment cards must have a relationship with an acquirer.

• �Issuer: This is a financial institution, such as a bank, that provides the cardholder with the pay-
ment card. Typically, accounts are applied for and opened by mail or in person. Ultimately, it is 
the issuer that is responsible for the payment of the debt of the cardholder.

• �Acquirer: This is a financial institution that establishes an account with a merchant and pro-
cesses payment card authorizations and payments. Merchants will usually accept more than one 
credit card brand but do not want to deal with multiple bankcard associations or with multiple 
individual issuers. The acquirer provides authorization to the merchant that a given card account 
is active and that the proposed purchase does not exceed the credit limit. The acquirer also pro-
vides electronic transfer of payments to the merchant’s account. subsequently, the acquirer is 
reimbursed by the issuer over some sort of payment network for electronic funds transfer.

• �Payment gateway: This is a function operated by the acquirer or a designated third party that 
processes merchant payment messages. The payment gateway interfaces between SET and the 
existing bankcard payment networks for authorization and payment functions. The merchant 
exchanges SET messages with the payment gateway over the Internet, while the payment gate-
way has some direct or network connection to the acquirer’s financial processing system.

• �Certification authority (CA): This is an entity that is trusted to issue X.509v3 public-key cer-
tificates for cardholders, merchants, and payment gateways. The success of SET will depend on 
the existence of a CA infrastructure available for this purpose

 15.  Explain the different types of firewall and its configurations in detail. 
Ans:  Types of Firewalls
There are three common types of firewalls: packet filters, application-level gateways, and circuit-
level gateways

(a) Packet-filtering router

(b) Application-level gateway

(c) Circuit-level gateway

Internet Private
network

Security perimeter

Packet-
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router
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Inside
connection

Inside
connection

Outside
connection

Outside
connection
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gateway

Outside host

Outside host

Inside host

Inside host
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SMIP
HTTP

Out In

In

In

Out
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(a) Packet-filtering router

(b) Application-level gateway

(c) Circuit-level gateway
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Packet-Filtering Router

A packet-filtering router applies a set of rules to each incoming and outgoing IP packet and then 
forwards or discards the packet. The router is typically configured to filter packets going in both 
directions (from and to the internal network). Filtering rules are based on information contained 
in a network packet:

• �Source IP address: The IP address of the system that originated the IP packet (e.g., 192.178.1.1)
• �Destination IP address: The IP address of the system the IP packet is trying to reach (e.g., 

192.168.1.2)
• �Source and destination transport-level address: The transport level (e.g., TCP or UDP) port 

number, which defines applications such as SNMP or TELNET 
• IP protocol field: Defines the transport protocol
• �Interface: For a router with three or more ports, which interface of the router the packet came 

from or which interface of the router the packet is destined for 
• �The packet filter is typically set up as a list of rules based on matches to fields in the IP or TCP 

header. If there is a match to one of the rules, that rule is invoked to determine whether to for-
ward or discard the packet. If there is no match to any rule, then a default action is taken. 

ADVANTAGE:

One advantage of a packet-filtering router is its simplicity. Also, packet filters typically are trans-
parent to users and are very fast. 

Weaknesses of packet filter firewalls:

• �Because packet filter firewalls do not examine upper-layer data, they cannot prevent attacks that 
employ application-specific vulnerabilities or functions. For example, a packet filter firewall 
cannot block specific application commands; if a packet filter firewall allows a given applica-
tion, all functions available within that application will be permitted.

• �Because of the limited information available to the firewall, the logging functionality present in 
packet filter firewalls is limited. 

• �Packet filter logs normally contain the same information used to make access control decisions 
(source address, destination address, and traffic type).

• �Most packet filter firewalls do not support advanced user authentication schemes. Once again, 
this limitation is mostly due to the lack of upper-layer functionality by the firewall.

• �They are generally vulnerable to attacks and exploits that take advantage of problems within the 
TCP/IP specification and protocol stack, such as network layer address spoofing. Many packet 
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filter firewalls cannot detect a network packet in which the OSI Layer 3 addressing information 
has been altered. Spoofing attacks are generally employed by intruders to bypass the security 
controls implemented in a firewall platform.

• �Finally, due to the small number of variables used in access control decisions, packet filter fire-
walls are susceptible to security breaches caused by improper configurations. In other words, it 
is easy to accidentally configure a packet filter firewall to allow traffic types, sources, and desti-
nations that should be denied based on an organization’s information security policy.

• �Some of the attacks that can be made on packet-filtering routers and the appropriate counter-
measures are the following:

IP address spoofing: The intruder transmits packets from the outside with a source IP 
address field containing an address of an internal host. The attacker hopes that the use of a 
spoofed address will allow penetration of systems that employ simple source address security, 
in which packets from specific trusted internal hosts are accepted. The countermeasure is to 
discard packets with an inside source address if the packet arrives on an external interface.
Source routing attacks: The source station specifies the route that a packet should take as it 
crosses the Internet, in the
hopes that this will bypass security measures that do not analyze the source routing information. 
The countermeasure is to
discard all packets that use this option.
Tiny fragment attacks: 
• �The intruder uses the IP fragmentation option to create extremely small fragments and force the 

TCP header information into a separate packet fragment. 
• �This attack is designed to circumvent filtering rules that depend on TCP header information. 
• �Typically, a packet filter will make a filtering decision on the first fragment of a packet. 
• �All subsequent fragments of that packet are filtered out solely on the basis that they are part of 

the packet whose first fragment was rejected.
• �If the first fragment is rejected, the filter can remember the packet and discard all subsequent 

fragments.

Stateful Inspection Firewalls

• �A traditional packet filter makes filtering decisions on an individual packet basis and does not 
take into consideration any higher layer context. 

• �For example, for the Simple Mail Transfer Protocol (SMTP), e-mail is transmitted from a client 
system to a server system. 

• �The client system generates new e-mail messages, typically from user input. The server system 
accepts incoming e-mail messages and places them in the appropriate user mailboxes. 

• �SMTP operates by setting up a TCP connection between client and server, in which the TCP 
server port number, which identifies the SMTP server application, is 25. T

• �The TCP port number for the SMTP client is a number between 1024 and 65535 that is gener-
ated by the SMTP client.

• �In general, when an application that uses TCP creates a session with a remote host, it creates a 
TCP connection in which the TCP port number for the remote (server) application is a number 
less than 1024 and the TCP port number for the local (client) application is a number between 
1024 and 65535. 
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• �The numbers less than 1024 are the “well-known” port numbers and are assigned permanently 
to particular applications (e.g., 25 for server SMTP). T

• �The numbers between 1024 and 65535 are generated dynamically and have temporary signifi-
cance only for the lifetime of a TCP connection.

• �A simple packet-filtering firewall must permit inbound network traffic on all these high-numbered 
ports for TCP-based traffic to occur. 

• �A stateful inspection packet filter tightens up the rules for TCP traffic by creating a directory of 
outbound TCP connections.

• �There is an entry for each currently established connection. 
• �The packet filter will now allow incoming traffic to high-numbered ports only for those packets 

that fit the profile of one of the entries in this directory.
Application-Level Gateway
• �An application-level gateway, also called a proxy server, acts as a relay of application-level 

traffic. 
• �The user contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the gate-

way asks the user for the name of the remote host to be accessed. 
• �When the user responds and provides a valid user ID and authentication information, the gate-

way contacts the application on the remote host and relays TCP segments containing the appli-
cation data between the two endpoints. 

• �If the gateway does not implement the proxy code for a specific application, the service is not 
supported and cannot be forwarded across the firewall.

• �Further, the gateway can be configured to support only specific features of an application that 
the network administrator considers acceptable while denying all other features.

Advantage

• �Application-level gateways tend to be more secure than packet filters. 
• �Rather than trying to deal with the numerous possible combinations that are to be allowed and 

forbidden at the TCP and IP level, the application-level gateway need only scrutinize a few 
allowable applications. 

• �In addition, it is easy to log and audit all incoming traffic at the application level. 

A prime disadvantage 

• Additional processing overhead on each connection. 
• �In effect, there are two spliced connections between the end users, with the gateway at the splice 

point, and the gateway must examine and forward all traffic in both directions.

Circuit-Level Gateway

• A third type of firewall is the circuit-level gateway. 
• �This can be a stand-alone system or it can be a specialized function performed by an applica-

tion-level gateway for certain applications.
• �A circuit-level gateway does not permit an end-to-end TCP connection; rather, the gateway sets 

up two TCP connections, one between itself and a TCP user on an inner host and one between 
itself and a TCP user on an outside host. 

• �Once the two connections are established, the gateway typically relays TCP segments from one 
connection to the other without examining the contents. 
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• �The security function consists of determining which connections will be allowed. 
• �A typical use of circuit-level gateways is a situation in which the system administrator trusts 

the internal users. 
• �The gateway can be configured to support application-level or proxy service on inbound con-

nections and circuit-level functions for outbound connections. 
• �In this configuration, the gateway can incur the processing overhead of examining incoming 

application data for forbidden functions but does not incur that overhead on outgoing data.
An example of a circuit-level gateway implementation is the SOCKS package [KOBL92]; ver-
sion 5 of SOCKS is defined in RFC 1928.

CONFIGURATIONS:

Describe packet filtering router in detail. (8)

(a) Screened host firewall system (signal-honned bastion host)
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In the screened host firewall, single-homed bastion configuration ,the firewall consists of two 
systems: a packet-filtering router and a bastion host. Typically, the router is configured so that
1. For traffic from the Internet, only IP packets destined for the bastion host are allowed in.
2. For traffic from the internal network, only IP packets from the bastion host are allowed out. The 
bastion host performs authentication and proxy functions. This configuration has greater security 
than simply a packet-filtering router
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or an application-level gateway alone, for two reasons. First, this configuration implements both 
packet-level and application-level filtering, allowing for considerable flexibility in defining secu-
rity policy. Second, an intruder must generally penetrate two separate systems before the security 
of the internal network is compromised.
 This configuration also affords flexibility in providing direct Internet access. For example, 
the internal network may include a public information server, such as a Web server, for which 
a high level of security is not required. In that case, the router can be configured to allow direct 
traffic between the information server and the Internet.
 In the single-homed configuration just described, if the packet-filtering router is completely 
compromised, traffic could flow directly through the router between the Internet and other hosts 
on the private network. The screened host firewall, dual-homed bastion configuration physically 
prevents such a security breach .The advantages of dual layers of security that were present in the 
previous configuration are present here as well. Again, an information server or other hosts can be 
allowed direct communication with the router if this is in accord with the security policy.

(a) Packet-filtering router

(b) Application-level gateway

(c) Circuit-level gateway

Internet Private
network
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Packet-
filtering
router

Application-level
gateway

Inside
connection
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connection
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The screened subnet firewall configuration is the most secure of those we have considered. In this 
configuration, two packet-filtering routers are used, one between the bastion host and the Internet 
and one between the bastion host and the internal network. This configuration creates an isolated 
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subnetwork, which may consist of simply the bastion host but may also include one or more infor-
mation servers and modems for dial-in capability.
Typically, both the Internet and the internal network have access to hosts on the screened subnet, 
but traffic across the screened subnet is blocked. This configuration offers several advantages:
• There are now three levels of defense to thwart intruders.
• �The outside router advertises only the existence of the screened subnet to the Internet; therefore, 

the internal network is invisible to the Internet.
• �Similarly, the inside router advertises only the existence of the screened subnet to the internal 

network; therefore, the systems on the inside network cannot construct direct routes to the 
Internet

Packet-Filtering Router

A packet-filtering router applies a set of rules to each incoming and outgoing IP packet and then 
forwards or discards the packet. The router is typically configured to filter packets going in both 
directions (from and to the internal network). Filtering rules are based on information contained 
in a network packet:
• �Source IP address: The IP address of the system that originated the IP packet (e.g., 192.178.1.1)
• �Destination IP address: The IP address of the system the IP packet is trying to reach (e.g., 

192.168.1.2)
• �Source and destination transport-level address: The transport level (e.g., TCP or UDP) port 

number, which definesapplications such as SNMP or TELNET 
• IP protocol field: Defines the transport protocol
• �Interface: For a router with three or more ports, which interface of the router the packet came 

from or which interface of the router the packet is destined for 
• �The packet filter is typically set up as a list of rules based on matches to fields in the IP or TCP 

header. If there is a match to one of the rules, that rule is invoked to determine whether to for-
ward or discard the packet. If there is no match to any rule, then a default action is taken. 

Advantage:

One advantage of a packet-filtering router is its simplicity. Also, packet filters typically are trans-
parent to users and are very fast. 
Weaknesses of packet filter firewalls:
• �Because packet filter firewalls do not examine upper-layer data, they cannot prevent attacks that 

employ application-specific vulnerabilities or functions. For example, a packet filter firewall 
cannot block specific application commands; if a packet filter firewall allows a given applica-
tion, all functions available within that application will be permitted.

• �Because of the limited information available to the firewall, the logging functionality present in 
packet filter firewalls is limited. 

• �Packet filter logs normally contain the same information used to make access control decisions 
(source address, destination address, and traffic type).

• �Most packet filter firewalls do not support advanced user authentication schemes. Once again, 
this limitation is mostly due to the lack of upper-layer functionality by the firewall.

• �They are generally vulnerable to attacks and exploits that take advantage of problems within the 
TCP/IP specification and protocol stack, such as network layer address spoofing. Many packet 
filter firewalls cannot detect a network packet in which the OSI Layer 3 addressing information 
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has been altered. Spoofing attacks are generally employed by intruders to bypass the security 
controls implemented in a firewall platform.

• �Finally, due to the small number of variables used in access control decisions, packet filter fire-
walls are susceptible to security breaches caused by improper configurations. In other words, it 
is easy to accidentally configure a packet filter firewall to allow traffic types, sources, and desti-
nations that should be denied based on an organization’s information security policy.

• �Some of the attacks that can be made on packet-filtering routers and the appropriate counter-
measures are the following:

IP address spoofing: The intruder transmits packets from the outside with a source IP address 
field containing an address of an internal host. The attacker hopes that the use of a spoofed address 
will allow penetration of systems that employ simple source address security, in which packets 
from specific trusted internal hosts are accepted. The countermeasure is to discard packets with an 
inside source address if the packet arrives on an external interface.
Source routing attacks: The source station specifies the route that a packet should take as it 
crosses the Internet, in the hopes that this will bypass security measures that do not analyze the 
source routing information. The countermeasure is to discard all packets that use this option.

Tiny fragment attacks: 

• �The intruder uses the IP fragmentation option to create extremely small fragments and force the 
TCP header information into a separate packet fragment. 

• �This attack is designed to circumvent filtering rules that depend on TCP header information. 
• �Typically, a packet filter will make a filtering decision on the first fragment of a packet. 
• �All subsequent fragments of that packet are filtered out solely on the basis that they are part of 

the packet whose first fragment was rejected.
• �If the first fragment is rejected, the filter can remember the packet and discard all subsequent 

fragments.

Stateful Inspection Firewalls

• �A traditional packet filter makes filtering decisions on an individual packet basis and does not 
take into consideration any higher layer context. 

• �For example, for the Simple Mail Transfer Protocol (SMTP), e-mail is transmitted from a client 
system to a server system. 

• �The client system generates new e-mail messages, typically from user input. The server system 
accepts incoming e-mail messages and places them in the appropriate user mailboxes. 

• �SMTP operates by setting up a TCP connection between client and server, in which the TCP 
server port number, which identifies the SMTP server application, is 25. T

• �he TCP port number for the SMTP client is a number between 1024 and 65535 that is generated 
by the SMTP client.

• �In general, when an application that uses TCP creates a session with a remote host, it creates a 
TCP connection in which the TCP port number for the remote (server) application is a number 
less than 1024 and the TCP port number for the local (client) application is a number between 
1024 and 65535. 

• �The numbers less than 1024 are the “well-known” port numbers and are assigned permanently 
to particular applications (e.g., 25 for server SMTP). T
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• �The numbers between 1024 and 65535 are generated dynamically and have temporary signifi-
cance only for the lifetime of a TCP connection.

• �A simple packet-filtering firewall must permit inbound network traffic on all these high-numbered 
ports for TCP-based traffic to occur. 

• �A stateful inspection packet filter tightens up the rules for TCP traffic by creating a directory of 
outbound TCP connections.

• �There is an entry for each currently established connection. 
• �The packet filter will now allow incoming traffic to high-numbered ports only for those packets 

that fit the profile of one of the entries in this directory.

Application-Level Gateway

• �An application-level gateway, also called a proxy server, acts as a relay of application-level 
traffic. 

• �The user contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the gate-
way asks the user for the name of the remote host to be accessed. 

• �When the user responds and provides a valid user ID and authentication information, the gate-
way contacts the application on the remote host and relays TCP segments containing the appli-
cation data between the two endpoints. 

• �If the gateway does not implement the proxy code for a specific application, the service is not 
supported and cannot be forwarded across the firewall.

• �Further, the gateway can be configured to support only specific features of an application that 
the network administrator considers acceptable while denying all other features.

Advantage

• �Application-level gateways tend to be more secure than packet filters. 
• �Rather than trying to deal with the numerous possible combinations that are to be allowed and 

forbidden at the TCP and IP level, the application-level gateway need only scrutinize a few 
allowable applications. 

• �In addition, it is easy to log and audit all incoming traffic at the application level. 

A prime disadvantage 

• �Additional processing overhead on each connection. 
• �In effect, there are two spliced connections between the end users, with the gateway at the splice 

point, and the gateway must examine and forward all traffic in both directions.

Circuit-Level Gateway

• �A third type of firewall is the circuit-level gateway. 
• �This can be a stand-alone system or it can be a specialized function performed by an applica-

tion-level gateway for certain applications.
• �A circuit-level gateway does not permit an end-to-end TCP connection; rather, the gateway sets 

up two TCP connections, one between itself and a TCP user on an inner host and one between 
itself and a TCP user on an outside host. 

• �Once the two connections are established, the gateway typically relays TCP segments from one 
connection to the other without examining the contents. 

• �The security function consists of determining which connections will be allowed. 
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• �A typical use of circuit-level gateways is a situation in which the system administrator trusts 
the internal users. 

• �The gateway can be configured to support application-level or proxy service on inbound con-
nections and circuit-level functions for outbound connections. 

• �In this configuration, the gateway can incur the processing overhead of examining incoming 
application data for forbidden functions but does not incur that overhead on outgoing data.

• �An example of a circuit-level gateway implementation is the SOCKS package [KOBL92]; ver-
sion 5 of SOCKS is defined in RFC 1928. 

Firewall Configurations:
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In the screened host firewall, single-homed bastion configuration, the firewall consists of two 
systems: a packet-filtering router and a bastion host. Typically, the router is configured so that
1.  For traffic from the Internet, only IP packets destined for the bastion host are allowed in.
2.  For traffic from the internal network, only IP packets from the bastion host are allowed out. The 

bastion host performs authentication and proxy functions. This configuration has greater secu-
rity than simply a packet-filtering router or an application-level gateway alone, for two reasons. 
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First, this configuration implements both packet-level and application-level filtering, allowing 
for considerable flexibility in defining security policy. Second, an intruder must generally pen-
etrate two separate systems before the security of the internal network is compromised.

This configuration also affords flexibility in providing direct Internet access. For example, the 
internal network may include a public information server, such as a Web server, for which a 
high level of security is not required. In that case, the router can be configured to allow direct 
traffic between the information server and the Internet.
 In the single-homed configuration just described, if the packet-filtering router is completely 
compromised, traffic could flow directly through the router between the Internet and other hosts 
on the private network. The screened host firewall, dual-homed bastion configuration physically 
prevents such a security breach .The advantages of dual layers of security that were present in the 
previous configuration are present here as well. Again, an information server or other hosts can be 
allowed direct communication with the router if this is in accord with the security policy.
 The screened subnet firewall configuration is the most secure of those we have considered. 
In this configuration, two packet-filtering routers are used, one between the bastion host and the 
Internet and one between the bastion host and the internal network. This configuration creates an 
isolated subnetwork, which may consist of simply the bastion host but may also include one or 
more information servers and modems for dial-in capability.
 Typically, both the Internet and the internal network have access to hosts on the screened subnet, 
but traffic across the screened subnet is blocked. This configuration offers several advantages:
• There are now three levels of defense to thwart intruders.
• �The outside router advertises only the existence of the screened subnet to the Internet; therefore, 

the internal network is invisible to the Internet.
• �Similarly, the inside router advertises only the existence of the screened subnet to the inter-

nal network; therefore, the systems on the inside network cannot construct direct routes to 
the Internet

16. Classification of Cryptographic systems: 

  Ans:

1. Based on type of operations used for transforming plaintext to ciphertext- Substitution cipher

Transposition cipher
2.Based on number of keys used- Secret key encryption

Publickey Encryption
3.Based on the way in which the plain text is processed- Stream cipher

Block cipher

Substitution Techniques

The two basic building blocks of all encryption techniques are substitution and transposition. A 
substitution technique is one in which the letters of plaintext are replaced by other letters or by 
numbers or symbols. If the plaintext is viewed as a sequence of bits, then substitution involves 
replacing plaintext bit patterns with cipher text bit patterns.
1. Ceaser cipher
2. Monoalphabetic cipher
3. Homophonic substitution cipher
4. Polygram Substitution cipher
5. Polyalphabetic cipher
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Caesar Cipher

The earliest known use of a substitution cipher, and the simplest, was by Julius Caesar. The Caesar 
cipher involves replacing each letter of the alphabet with the letter standing three places further 
down the alphabet. 
For example, 
plain: meet me after the toga party
cipher: PHHW PH DIWHU WKH WRJD SDUWB
The alphabet is wrapped around, so that the letter following Z is A. We can define the transformation 
by listing all possibilities, as follows:
plain: a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C
we can also assign a numerical equivalent to each letter: 

Monoalphabetic Ciphers

With only 25 possible keys, the Caesar cipher is far from secure. A dramatic increase in the key 
space can be achieved by allowing an arbitrary substitution. Recall the assignment for the Caesar 
cipher:

plain: a b c d e f g h i j k l m n o p q r s t u v w x y z
cipher: D E F G H I J K L M N O P Q R S T U V W X Y Z A B C

If, instead, the “cipher” line can be any permutation of the 26 alphabetic characters, then there 
are 26! or greater than 4 x 10 26 possible keys. This is 10 orders of magnitude greater than the key 
space for DES and would seem to eliminate brute-force techniques for cryptanalysis. Such an 
approach is referred to as a monoalphabetic substitution cipher, because a single cipher alphabet 
(mapping from plain alphabet to cipher alphabet) is used per message.

Playfair Cipher

The best-known multiple-letter encryption cipher is the Playfair, which treats digrams in the plain-
text as single units and translates these 
M O N A R
C H Y B D
E F G I/J K
L P Q S T
U V W X Z
In this case, the keyword is monarchy. The matrix is constructed by filling in the letters of the key-
word (minus duplicates) from left to rightand from top to bottom, and then filling in the remainder 
of the matrix with the remaining letters in alphabetic order. The letters I and Jount as one letter. 
Plaintext is encrypted two letters at a time, according to the following rules:

1.  Repeating plaintext letters that are in the same pair are separated with a filler letter, such as x, 
so that balloon would be treated as ba lx lo on.

2.  Two plaintext letters that fall in the same row of the matrix are each replaced by the letter to the 
right, with the first element of the row circularly following the last. For example, ar is encrypted 
as RM.

3.  Two plaintext letters that fall in the same column are each replaced by the letter beneath, with 
the top element of the column circularly following the last. For example, mu is encrypted 
as CM.



Appendix  461

4.  Otherwise, each plaintext letter in a pair is replaced by the letter that lies in its own row and 
the column occupied by the other plaintext letter. Thus, hs becomes BP and ea becomes IM (or 
JM, as the encipherer wishes). 

Hill Cipher

This cipher is somewhat more difficult to understand than the others in this chapter, but it illus-
trates an important point about cryptanalysis that will be useful later on. This subsection can be 
skipped on a first reading.

Another interesting multiletter cipher is the Hill cipher, developed by the mathematician Lester 
Hill in 1929. The encryption algorithm takes m successive plaintext letters and substitutes for 
them m ciphertext letters. The substitution is determined by m linear equations in which each char-
acter is assigned a numerical value (a = 0, b = 1 ... z = 25). For m = 3, the system can be described 
as follows:

c
3
 = (k

31
P

1
 + k

32
P

2
 + k

33
P

3
) mod 26

This can be expressed in term of column vectors and matrices:
or

c

c

c

k k k

k k k

k k k

p

p
1

2

3

11 12 13

21 22 23

31 32 33

1

2

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

=
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟ pp3

26

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

mod

C = KP mod 26
where C and P are column vectors of length 3, representing the plaintext and ciphertext, and K is 
a 3 x 3 matrix, representing the encryption key. Operations are performed mod 26.
Polyalphabetic Ciphers
 Another way to improve on the simple monoalphabetic technique is to use different monoal-
phabetic substitutions as one proceeds through the plaintext message. The general name for this 
approach is polyalphabetic substitution cipher. All these techniques have the following features 
in common:
1. A set of related monoalphabetic substitution rules is used.
2.  A key determines which particular rule is chosen for a given transformation.
The best known, and one of the simplest, such algorithm is referred to as the Vigenère cipher. In 
this scheme, the set of related monoalphabetic substitution rules consists of the 26 Caesar ciphers, 
with shifts of 0 through 25. Each cipher is denoted by a key letter, which is the ciphertext letter 
that substitutes for the plaintext letter a.

One-Time Pad

An Army Signal Corp officer, Joseph Mauborgne, proposed an improvement to the Vernam cipher 
that yields the ultimate in security. Mauborgne suggested using a random key that is as long as 
the message, so that the key need not be repeated. In addition, the key is to be used to encrypt 
and decrypt a single message, and then is discarded. Each new message requires a new key of the 
same length as the new message. Such a scheme, known as a one-time pad, is unbreakable. It pro-
duces random output that bears no statistical relationship to the plaintext. Because the ciphertext 
contains no information whatsoever about the plaintext, there is simply no way to break the code.
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Transposition Techniques

 • Rail Fence Techniques
 • Columnar transposition Techniques
 • Book cipher
 • Vernam Cipher/one time pad

All the techniques examined so far involve the substitution of a ciphertext symbol for a plaintext 
symbol. A very different kind of mapping is achieved by performing some sort of permutation 
on the plaintext letters. This technique is referred to as a transposition cipher. The simplest such 
cipher is the rail fence technique, in which the plaintext is written down as a sequence of diagonals 
and then read off as a sequence of rows. For example, to encipher the message “meet me after the 
toga party” with a rail fence of depth 2, we write the following:
The encrypted message is

 MEMATRHTGPRYETEFETEOAAT

This sort of thing would be trivial to cryptanalyze. A more complex scheme is to write the message 
in a rectangle, row by row, and read the message off, column by column, but permute the order of 
the columns. The order of the columns then becomes the key to the algorithm. For example,
Key: 4 3 1 2 5 6 7
Plaintext: a t t a c k p
 o s t p o n e
 d u n t i l t
 w o a m x y z
Ciphertext: TTNAAPTMTSUOAODWCOIXKNLYPETZ
A pure transposition cipher is easily recognized because it has the same letter frequencies as 
the original plaintext. For the type of columnar transposition just shown, cryptanalysis is fairly 
straightforward and involves laying out the ciphertext in a matrix and playingaround with column 
positions. Digram and trigram frequency tables can be useful.The transposition cipher can be 
made significantly more secure by performing more than one stage of transposition. The result 
is a morecomplex permutation that is not easily reconstructed. Thus, if the foregoing message is 
reencrypted using the same algorithm,
Key: 4 3 1 2 5 6 7
Input: t t n a a p t
 m t s u o a o
 d w c o i x k
 n l y p e t z
Output: NSCYAUOPTTWLTMDNAOIEPAXTTOKZ
To visualize the result of this double transposition, designate the letters in the original plaintext 
message by the numbers designating their position. Thus, with 28 letters in the message, the origi-
nal sequence of letters is
01 02 03 04 05 06 07 08 09 10 11 12 13 14
15 16 17 18 19 20 21 22 23 24 25 26 27 28
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Rail Fence techiniques:

1. Write down the plain text message as a sequence of diagonals.
2. Read the plaintext written in step1 as a sequwnce of rows.
plain text: Come home tomorrow
Cipher text: cmh mt mr ooeoeoorw.

Columnar transposition technique:

1.  Writ the plain text message row by row in a rectangle of a predefined size.
2.  Read the message column by column .it need not be in the order of the column 1,2,3…
3.  The message thus obtained is the cipher text message.

 plain text: Come home tomorrow
Let us consider a rectangle with six columns.

C1 C2 C3 C4 C5 C6
C O M E H O
M E T O M O
R R O W

the order of columns chosen in random order say 4,6,1,2,5,3 .Then read the text in order 
of these columns.

Cipher text: eowoocmroerhmmto
Vernam cipher:
1.  Treat each plain text alphabet as a number in an increasing sequence.
2.  do the same for each character of the input cipher text.
3.  Add each number corresponding to the plaintext alphabet to the corresponding input ciphertext 

alphabet number.
4. If the sum has produced is greater than 26,subtract 26 from it.
5.  translate each number of the sum back to the corresponding alphabet.This gives the cipher test.

 17. Euler’s Theorem

  Ans:
Euler Totient Function ø(n): 

 • when doing arithmetic modulo n 
 • complete set of residues is: 0..n-1 
 • reduced set of residues is those numbers (residues) which are relatively prime to n 

 �eg for n=10, 
 �complete set of residues is {0,1,2,3,4,5,6,7,8,9} 
 �reduced set of residues is {1,3,7,9} 

 • number of elements in reduced set of residues is called the Euler Totient Function ø(n) 
 • to compute ø(n) need to count number of residues to be excluded 
 • in general need prime factorization, but 

 �l for p (p prime) ø(p) = p-1 
 �l for p.q (p,q prime) ø(pq) =(p-1)x(q-1) 

 • eg. 
ø(37) = 36 
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ø(21) = (3–1)x(7–1) = 2x6 = 12 

Euler’s Theorem: 

 • a generalisation of Fermat’s Theorem 
 • aø(n) = 1 (mod n) 

 �for any a,n where gcd(a,n)=1 
 • eg. 

a=3;n=10; ø(10)=4; 
hence 34 = 81 = 1 mod 10 
a=2;n=11; ø(11)=10; 
hence 210 = 1024 = 1 mod 11 

Primality Testing: 

 • often need to find large prime numbers 
 • traditionally sieve using trial division 

 �ie. divide by all numbers (primes) in turn less than the square root of the number 
 �only works for small numbers 

 • alternatively can use statistical primality tests based on properties of primes 
 �for which all primes numbers satisfy property 
 �but some composite numbers, called pseudo-primes, also satisfy the property 

 • can use a slower deterministic primality test 

Miller Rabin Algorithm: 

• a test based on Fermat’s Theorem 
 • algorithm is: 

TEST (n) is: 
1. Find integers k, q, k > 0, q od’d, so that (n–1)=2kq 
2. Select a random integer a, 1<a<n–1 
3. ifaqmod n = 1 then return (“maybe prime”); 
4. forj = 0 to k – 1 do 
5. if (a2jqmod n = n-1) 

thenreturn(“ maybe prime “) 
5. return (“composite”) 

Chinese Remainder Theorem: 

 • used to speed up modulo computations 
 • if working modulo a product of numbers 

 �eg. mod M = m1m2..mk 
 • Chinese Remainder theorem lets us work in each moduli mi separately 
 • since computational cost is proportional to size, this is faster than working in the full modu-
lus M 

 • can implement CRT in several ways 
 • to compute A(mod M) 

 �first compute all ai = A mod mi separately 
 �determine constants ci below, where Mi = M/mi 
 �then combine results to get answer using:
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To represent 973 mod 1813 as a pair of numbers mod 37 and 49, define
m1 = 37
m2 = 49
M = 1813
A = 973
We also have M1 = 49 and M2 = 37. Using the extended Euclidean algorithm, we compute = 34 
mod m1 and = 4 mod m2. (Note that we only need to compute each Mi and each once.) Taking 
residues modulo 37 and 49, our representation of 973 is (11, 42), because 973 mod 37 = 11 and 
973 mod 49 = 42.

Now suppose we want to add 678 to 973. What do we do to (11, 42)?
1.  First we compute (678) (678 mod 37, 678 mod 49) = (12, 41). Then we add the tuples 

element-wise and reduce (11 + 12 mod 37, 42 + 41 mod 49) = (23, 34). 
2.  To verify that this has the correct effect, we compute (23,34) a1M1 + a2M2 mod M = [(23)(49)

(34) + (34)(37)(4)] mod 1813 = 43350 mod 1813 = 1651 and check that it is equal to (973 + 
678) mod 1813 = 1651. Remember that in the above derivation, is the multiplicative inverse 
of M1 modulo m1, and is the multiplicative inverse of M2 modulo m2. Suppose we want to 
multiply 1651 (mod 1813) by 73. We multiply (23, 34) by 73 and reduce to get (23 x 73 mod 
37, 34 x 73 mod 49) = (14,32). It is easily verified that (32,14) [(14)(49)(34) + (32)(37)(4)] 
mod 1813 = 865 = 1651 x 73 mod 1813.

18.  The algorithm itself is referred to as the Data Encryption Algorithm (DEA). For DES, data 
are encrypted in 64-bit blocks using a 56-bit key. The algorithm transforms 64-bit input in 
a series of steps into a 64-bit output. The same steps, with the same key, are used to reverse 
the encryption.

  Ans:
First, the 64-bit plaintext passes through an initial permutation (IP) that rearranges the bits to 
produce the permuted input. This is followed by a phase consisting of 16 rounds of the same 
function, which involves both permutation and substitution functions. The output of the last (six-
teenth) round consists of 64 bits that are a function of the input plaintext and the key. The left and 
right halves of the output are swapped to produce the preoutput. Finally, the preoutput is passed 
through a permutation (IP -1 ) that is the inverse of the initial permutation function, to produce 
the 64-bit ciphertext.

Initial Permutation: 

It is the first step of the data computation . IP reorders the input data bits. It changeeven bits to LH 
half, odd bits to RH half. 
Example: 
IP(675a6967 5e5a6b5a) = (ffb2194d 004df6fb) 
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32 bits 32 bits 28 bits

Li−1

Li

Ri−1

Ri Ci Di

Ci−1

Ki

Di−1

Left shift (s)Left shift (s)Expansion/permutation
(E table)

Substitution/choice
(S-box)

Permutation
(P)

XOR

XOR
48

48

48

32

32

Permutation/contration
(Permuted choice 2)

28 bits

F

DES Round Structure: 

It uses two 32-bit L & R halves as for any Feistel cipher can describe as: 
Li = Ri–1 
Ri= Li–1 Å F(Ri–1 , Ki) 

 • F takes 32-bit R half and 48-bit subkey: 
 • expands R to 48-bits using perm E 
 • adds to subkey using XOR 
 • passes through 8 S-boxes to get 32-bit result 
 • finally permutes using 32-bit perm P 

DES Round Structure:

R (32 bits)

K (48 bits)48 bits

32 bits

P

+

E

S1 S2 S3 S4 S5 S6 S7 S8
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Substitution Boxes S: 

DES have eight S-boxes which map Substitution Boxes S: 
DES have eight S-boxes which map 6 to 4 bits. Each S-box is actually 4 little 4 bit boxes. Outer 
bits 1 & 6 (row bits) select one row of 4. Inner bits 2-5 (col bits) are substituted. Result is 8 lots 
of 4 bits, or 32 bits. Row selection depends on both data & key. Feature known as autoclaving 
(autokeying). 
example: 
S(18 09 12 3d 11 17 38 39) = 5fd25e03 

DES Key Schedule: 

 • forms subkeys used in each round 
 –  initial permutation of the key (PC1) which selects 56-bits in two 28-bit halves 
– 16 stages consisting of: 

 • rotating each half separately either 1 or 2 places depending on the key rotation schedule K 
 • selecting 24-bits from each half & permuting them by PC2 for use in round function F 
 • note practical use issues in hardwarevs software 

DES Decryption: 

 • decrypt must unwind steps of data computation 
 • with Feistel design, do encryption steps again using subkeys in reverse order (SK16 … SK1) 

 �IP undoes final FP step of encryption 
 �1st round with SK16 undoes 16th encrypt round 
 �16th round with SK1 undoes 1st encrypt round 
 �then final FP undoes initial encryption IP 
 �thus recovering original data value 

Strength of DES – Analytic Attacks: 

 • now have several analytic attacks on DES 
 • these utilise some deep structure of the cipher 

 �by gathering information about encryptions 
 �can eventually recover some/all of the sub-key bits 
 �if necessary then exhaustively search for the rest 

 • generally these are statistical attacks 
 • include 

 �differential cryptanalysis 
 �linear cryptanalysis 
 �related key attacks 

Detailed explanation:

The round key Ki is 48 bits. The R input is 32 bits. This R input is first expanded to 48 bits by using 
a table that defines a permutation plus an expansion that involves duplication of 16 of the R bits  
The resulting 48 bits are XORed with Ki. This 48-bit result passes through a substitution func-
tion that produces a 32-bit output, which is permuted .The role of the S-boxes in the function F 
is illustrated The substitution consists of a set of eight S-boxes, each of which accepts 6 bits as 
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input and produces 4 bits as output. These transformations are defined, which is interpreted as  
follows:

The first and last bits of the input to box Si form a 2-bit binary number to select one of four sub-
stitutions defined by the four rows in the table for Si. The middle four bits select one of the sixteen 
columns. The decimal value in the cell selected by the row and column is then converted to its 
4-bit representation to produce the output. For example, in S1 for input 011001, the row is 01 (row 
1) and the column is 1100 (column 12). The value in row 1, column  12 is 9, so the output is 1001.

Each row of an S-box defines a general reversible substitution. Figure 3.1 may be useful in 
understanding the mapping. The figure shows the substitution for row 0 of box S1. The operation 
of the S-boxes is worth further comment. Ignore for the moment the contribution of the key (Ki). 
If you examine the expansion table, you see that the 32 bits of input are split into groups of 4 bits, 
and then become groups of 6 bits by taking the outer bits from the two adjacent groups. 
For example, if part of the input word is
... efgh ijkl mnop ...
this becomes
... defghi hijklm lmnopq ... 
The outer two bits of each group select one of four possible substitutions (one row of an S-box). 
Then a 4-bit output value is substituted for the particular 4-bit input (the middle four input bits). 
The 32-bit output from the eight S-boxes is then permuted, so that on the next round the output 
from each S-box immediately affects as many others as possible.

(b) Key Discarding Process:

Differential Cryptanalysis Attack
The differential cryptanalysis attack is complex; provides a complete description. The rationale 
behind differential cryptanalysis is to observe the behavior of pairs of text blocks evolving along 
each round of the cipher, instead of observing the evolution of a single text block. Here, we pro-
vide a brief overview so that you can get the flavor of the attack. 
We begin with a change in notation for DES. Consider the original plaintext block m to consist of 
two halves m0,m1. Each round of DES maps the right-hand input into the left-hand output and sets 
the right-hand output to be a function of the left-hand input and the subkey for this round. So, at 
each round, only one new 32-bit block is created.
mi+1 = mi-1 f(mi, Ki), i = 1, 2, ..., 16
In differential cryptanalysis, we start with two messages, m and m’, with a known XOR difference 
Dm = m m’, and consider the difference between the intermediate message halves: mi = mi mi’ 
Then we have:
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suppose that many pairs of inputs to f with the same difference yield the same output difference if 
the same subkey is used. To put this more precisely, let us say that X may cause Y with probability 
p, if for a fraction p of the pairs in which the input XOR is X, the output XOR equals Y. We want 
to suppose that there are a number of values ofX that have high probability of causing a particular 
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output difference. Therefore, if we know Dmi-1 and Dmi with high probability, then we know 
Dmi+1 with high probability. Furthermore, if a number of such differences are determined, it is 
feasible to determine the subkey used in the function f.

The overall strategy of differential cryptanalysis is based on these considerations for a single 
round. The procedure is to begin with two plaintext messages m and m’ with a given difference 
and trace through a probable pattern of differences after each round to yield a probable differ-
ence for the ciphertext. Actually, there are two probable patterns of differences for the two 32-bit 
halves: (Dm17||m16). Next, we submit m and m’ for encryption to determine the actual difference 
under the unknown key and compare the result to the probable difference. If there is a match, 
E(K, m) E(K, m’) = (Dm17||m16)

Linear Cryptanalysis

This attack is based on finding linear approximations to describe the transformations performed 
in DES. This method can find a DES key given 2 43 known plaintexts, as compared to 247chosen 
plaintexts for differential cryptanalysis. Although this is a minor improvement, because it may be 
easier to acquire known plaintext rather than chosen plaintext, it still leaves linear cryptanalysis 
infeasible as an attack on DES. So far, little work has been done by other groups to validate the 
linear cryptanalytic approach.

19. RSA algorithm:
Ans: Diffie and Hellman introduced a new approach to cryptography and, in effect, challenged 
cryptologists to come up with a cryptographic algorithm that met the requirements for public-key 
systems. One of the first of the responses to the challenge was developed in 1977 by Ron Rivest, 
Adi Shamir, and Len Adleman at MIT .

The RSA scheme is a block cipher in which the plaintext and ciphertext are integers between 
0 and n 1 for some n. A typical size for n is 1024 bits, or 309 decimal digits. That is, n is less 
than 21024.

Description of the Algorithm

The scheme developed by Rivest, Shamir, and Adleman makes use of an expression with expo-
nentials. Plaintext is encrypted in blocks, with each block having a binary value less than some 
number n. That is, the block size must be less than or equal to log2(n); in practice, the block size 
is i bits, where 2 I ≤n 2 i+1

. Encryption and decryption are of the following form, for some plaintext blockM and ciphertext 
block C:

 C = Memod n

 M = Cdmod n = (Me)dmod n = Medmod n

Both sender and receiver must know the value of n. The sender knows the value of e, and only the 
receiver knows the value of d. Thus, this is a public-key encryption algorithm with a public key of 
PU = {e, n} and a private key of PU = {d, n}.

For this algorithm to be satisfactory for public-key encryption, the following requirements must 
be met:
1.  It is possible to find values of e, d, n such that M ed mod n = M for all M < n.
2.  It is relatively easy to calculate mod Memod n and Cdmod n . for all values of M < n.
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3.  It is infeasible to determine d given e and n.
To find a relationship of the form Medmod n = M

4.  if e and d are multiplicative inverses modulo f(n), where f(n) is the Euler totient function. It is 
shown in

that for p, q prime, f(pq) = (p- 1)(q-1) The relationship between e and d can be expressed as
 1. Select two prime numbers, p = 17 and q = 11.
 2. Calculate n = pq = 17 x 11 = 187.
 3. Calculate f(n) = (p 1)(q 1) = 16 x 10 = 160.
 4.  Select e such that e is relatively prime to f(n) = 160 and less than f(n) we choose e = 7.
Determine d such that de 1 (mod 160) and d < 160. The correct value is d = 23, because 23 x 7 = 
161 = 10 x 160 + 1; d can be calculated using the extended Euclid’s algorithm.

plaintext
88

Encryption

ciphertext
11

Decryption

PR = 23, 187PU = 7, 187

11 mod 187 = 88
23

88 mod 187 = 11
7 plaintext

88

Key Generation

Select p, q       p and q both prime, p ≠ q

Calculate n = p × q

Calculate φ(n) = (p-1)(q-1)

Select integer e      gcd(ϕ(n), e) = 1:1 < e < ϕ(n)

Calculate d      d ≡ e-1 (mod ϕ(n))

Public key     PU = {e, n}

Private key     PR = {d, n}

Encryption

      Plaintext: M < n

      Ciphertext: C = Me mod n

Decryption

      Ciphertext: C

      Plaintext M = Cd mod n
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The resulting keys are public key PU = {7,187} and private key PR = {23,187}. The example 
shows the use of these keys for a plaintext input of M = 88. For encryption, we need to calculate 
C = 887 mod 187
887 mod 187 = [(884 mod 187) x (88 2 mod 187) x (88 1 mod 187)] mod 187
88 1 mod 187 = 88
88 2mod 187 = 7744 mod 187 = 77
884mod 187 = 59,969,536 mod 187 = 132
887 mod 187 = (88 x 77 x 132) mod 187 = 894,432 mod 187 = 11
For decryption, we calculate M = 1123mod 187:
1123 mod 187 = [(111mod 187) x (112 mod 187) x (114 mod 187) x (118mod 187) x (118mod 187)] 
mod 187
111mod 187 = 11
112mod 187 = 121
114mod 187 = 14,641 mod 187 = 55
118mod 187 = 214,358,881 mod 187 = 33
1123 mod 187 = (11 x 121 x 55 x 33 x 33) mod 187 = 79,720,245 mod 187 = 88mod 187. 

20.  Discrete Logarithms: Discrete logarithms are fundamental to a number of public-key algo-
rithms, including Diffie-Hellman key exchange and the digital signature algorithm (DSA).

  Ans:
Consider the powers of 7, modulo 19:
71 ≡�7(mod 19)
72 = 49 = 2 x 19 + 11 ≡�11(mod 19)
73 = 343 = 18 x 19 + 1 ≡�1(mod 19)
74 = 2401 = 126 x 19 + 7 ≡�7(mod 19)
75 = 16807 = 884 x 19 + 11 ≡�11(mod 19)
There is no point in continuing because the sequence is repeating. This can be proven by noting 
that 731(mod 19)and therefore 7 3+j ≡�737j ≡� 7j(mod 19), and hence any two powers of 7 whose 
exponents differ by 3 (or a multiple of 3) are congruent to each other (mod 19). In other words, 
the sequence is periodic, and the length of the period is the smallest positive exponent m such 
that 7 m ≡� 1(mod 19). 
The length of the sequence for each base value is indicated by shading. Note the following:
1.  All sequences end in 1. This is consistent with the reasoning of the preceding few paragraphs.
2.  The length of a sequence divides f(19) = 18. That is, an integral number of sequences occur in 

each row of the table.
Some of the sequences are of length 18. In this case, it is said that the base integer a generates (via 
powers) the set of nonzero integers modulo 19. Each such integer is called a primitive root of the 
modulus 19.
More generally, we can say that the highest possible exponent to which a number can belong 
(modn ) is f(n). If a number is of this order, it is referred to as a primitive root of n. The impor-
tance of this notion is that if a is a primitive root of n, then its powers a, a2,..., a f(n) are distinct 
(mod n) and are all relatively prime to n. In particular, for a prime number p, if a is a primitive 
root of p, then a, a2,..., a p1 are distinct (mod p). For the prime number 19, its primitive roots are 
2, 3, 10, 13, 14, and 15.
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Not all integers have primitive roots. In fact, the only integers with primitive roots are those of 
the form 2, 4, pa, and 2 pa,, where p is any odd prime and a is a positive integer.

Diffie hellman Key exchange algorithms:

Diffie-Hellman Key Exchange: 
 • first public-key type scheme proposed 
 • by Diffie& Hellman in 1976 along with the exposition of public key concepts 

 �note: now know that Williamson (UK CESG) secretly proposed the concept in 1970 
 • is a practical method for public exchange of a secret key 
 • used in a number of commercial products 
 • a public-key distribution scheme 

 �cannot be used to exchange an arbitrary message 
 �rather it can establish a common key

 known only to the two participants 
 • value of key depends on the participants (and their private and public key information) 
 • based on exponentiation in a finite (Galois) field (modulo a prime or a polynomial) - easy 
 • security relies on the difficulty of computing discrete logarithms (similar to factoring) – 
hard 

Diffie-Hellman Setup: 

 • all users agree on global parameters: 
 �large prime integer or polynomial q 
 �a being a primitive root mod q 

 • each user (eg. A) generates their key 
 �chooses a secret key (number): xA< q 
 �compute their public key: yA = axA mod q 

 • User A selects a random integer X A < q and computes YA = aXA mod q. Similarly, user B 
independently selects a random integerX A < q and computes YB = a XB mod q. Each side 
keeps the X value private and makes theY value available publicly to the other side. User A 
computes the key as

K = (YB)XA mod q and
user B computes the key as K = (YA)XB mod q. These two calculations produce identical results:
K= (YB)XA mod q
   = (aXB mod q)XA mod q
 (aXB)XA mod q
by the rules of modular arithmetic

= (aXB XA mod q
= (aXA)XB mod q
= (aXA mod q)
= (aXA mod q)XB mod q
= (YA)XB mod q

Calculation of Secret key by User B
K = (YA)X

B
 mod q
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Merits and Demerits:

 • Another use of the Diffie-Hellman algorithm, suppose that a group of users (e.g., all users 
on a LAN) each generate a long-lasting private value Xi (for user i) and calculate a public 
valueY i. These public values, together with global public values for q and a, are stored in 
some central directory. At any time, user j can access user i’s public value, calculate a secret 
key, and use that to send an encrypted message to user A. 

 • If the central directory is trusted, then this form of communication provides both confiden-
tiality and a degree of authentication. Because only i and j can determine the key, no other 
user can read the message (confidentiality). Recipient knows that only user j could have 
created a message using this key (authentication). However, the technique does not protect 
against replay attacks. It also suffers from man in the middle attack.

21. Explain about MD5 in detail. 

 Ans:
MD5 algorithm can be used as a digital signature mechanism. 
Description of the MD5 Algorithm

 • Takes as input a message of arbitrary length and produces as output a 128 bit “fingerprint” 
or “message digest” of the input. 

 • It is conjectured that it is computationally infeasible to produce two messages having the 
same message digest.

 • Intended where a large file must be “compressed” in a secure manner before being encrypt-
ed with a private key under a public-key cryptosystem such as PGP.explore the technical 
aspects of the MD5 algorithm.

MD5 Algorithm

 • Suppose a b-bit message as input, and that we need to find its message digest.
Step 1 – append padded bits:

–  The message is padded so that its length is congruent to 448, modulo 512. • Means extended 
to just 64 bits shy of being of 512 bits long. – A single “1” bit is appended to the message, and 
then “0” bits are appended so that the length in bits equals 448 modulo 512

Step 2 – append length:
–  A 64 bit representation of b is appended to the result of the previous step. – The resulting 

message has a length that is an exact multiple of 512 bits.
Step 3 – Initialize MD Buffer

 • A four-word buffer (A,B,C,D) is used to compute the message digest. – Here each of 
A,B,C,D, is a 32 bit register.
These registers are initialized to the following values in  hexadecimal:

word A: 01 23 45 67
word B: 89 ab cd ef
word C: fe dc ba 98
word D: 76 54 32 10

Step 4 – Process message in 16-word blocks.– Four auxiliary functions that take as input three 
32-bit

words and produce as output one 32-bit word.
F(X,Y,Z) = XY v not(X) Z
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G(X,Y,Z) = XZ v Y not(Z)
H(X,Y,Z) = X xor Y xor Z
I(X,Y,Z) = Y xor (X v not(Z))
Process message in 16-word blocks cont.
– if the bits of X, Y, and Z are independent and unbiased, the each bit of F(X,Y,Z), 
G(X,Y,Z),H(X,Y,Z), and I(X,Y,Z) will be independent and unbiased.

Step 5 – output
– The message digest produced as output is A, B, C, D.
–  That is, output begins with the low-order byte of A, and end with the high-order byte of D.

A B C D

Mi

Ki

F

A B C D

<<<s

 • The MD5 algorithm is simple to implement, and provides a “fingerprint” or message digest 
of a message of arbitrary length. 

 • The difficulty of coming up with two messages with the same message digest is on the order 
of 2^64 operations.

22. Differentiate SSL from SET

 Ans:

Secure Socket layer Secure Electronic Transaction

1.  SSL protocol is an internet protocol foe 
secure exchange of information between a 
web and web server.

1.   SET is an open encryption and security 
specification designed to protect credit 
card transactions on the internet. SET is 
not itself payment system.

2.  provides two authentication services
* Authentication
* Confidentiality

SSL is designed to make use of TCP to provide 
a reliable end-to-end secure service

Services provided are
*   Provides secure communication channel 

among all parties involved in a transaction.
*  provided trust by the use of x.509v3 digital 

certificates.
*  Ensures privacy because the information 

available to parties in a transaction when 
and where  necessary.
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2. Two important SSL concepts are the SSL 
session and the SSL connection, which are 
defined in the specification as follows:
Connection: A connection is a transport (in the 
OSI layering model definition) that provides a 
suitable type of service. For SSL, such connec-
tions are peer-to-peer relationships. The con-
nections are transient. Every connection is as-
sociated with one session.
Session: An SSL session is an association be-
tween a client and a server. Sessions are created 
by the Handshake Protocol.
Sessions define a set of cryptographic security 
parameters, which can be shared among mul-
tiple connections. Sessions are used to avoid the 
expensive negotiation of new security param-
eters for each connection. Parameters for each 
connection.

Requirements:
 • Provide confidentiality of payment and or-
dering information

 • Ensure the integrity of all transmitted data
 • Provide authentication that a cardholder is 
a legitimate user of a credit card account:

 • Provide authentication that a merchant can 
accept credit card transactions through its 
relationship with a financial institution:

 • Ensure the use of the best security practices 
and system design techniques to protect 
all legitimate parties in an electronic com-
merce transaction

 • Create a protocol that neither depends on 
transport security mechanisms nor prevents 
their use:

 • Facilitate and encourage interoperability 
among software and network providers and 
network providers

A session state is defined by the following pa-
rameters (definitions taken from the SSL speci-
fication):
Session identifier: An arbitrary byte sequence 
chosen by the server to identify an active or re-
sumable session state.
Peer certificate: An X509.v3 certificate of the 
peer. This element of the state may be null.
Compression method: The algorithm used to 
compress data prior to encryption.
Cipher spec: Specifies the bulk data encryption 
algorithm (such as null, AES, etc.) and a hash 
algorithm (such as MD5 or
SHA-1) used for MAC calculation. It also de-
fines cryptographic attributes such as the hash_
size.
Master secret: 48-byte secret shared between 
the client and server.
Is resumable: A flag indicating whether the ses-
sion can be used to initiate new connections.
A connection state is defined by the following 
parameters:
Server and client random: Byte sequences that 
are chosen by the server and client for each con-
nection

Key features of SET:
Confidentiality of information:Cardholder ac-
count and payment information is secured as 
it travels across the network. An
interesting and important feature of SET is 
that it prevents the merchant from learning the 
cardholder’s credit card number; this
is only provided to the issuing bank. Conven-
tional encryption by DES is used to provide 
confidentiality.
Integrity of data: Payment information sent 
from cardholders to merchants includes order 
information, personal data, and
payment instructions. SET guarantees that 
these message contents are not altered in tran-
sit. RSA digital signatures, using
SHA-1 hash codes, provide message integ-
rity. Certain messages are also protected by 
HMAC using SHA-1.
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Server write MAC secret: The secret key used 
in MAC operations on data sent by the server.
Client write MAC secret: The secret key used 
in MAC operations on data sent by the client.
Server write key: The conventional encryption 
key for data encrypted by the server and de-
crypted by the client.
Client write key: The conventional encryption 
key for data encrypted by the client and de-
crypted by the server.
Initialization vectors: When a block cipher in 
CBC mode is used, an initialization vector (IV) 
is maintained for each key. This
field is first initialized by the SSL Handshake 
Protocol. Thereafter the final ciphertext block 
from each record is preserved for use
as the IV with the following record.
Sequence numbers: Each party maintains sep-
arate sequence numbers for transmitted and 
received messages for each
connection. When a party sends or receives a 
change cipher spec message, the appropriate 
sequence number is set to zero.
Sequence numbers may not exceed 264 1.

Cardholder account authenticationCardhold-
er account authentication: SET enables mer-
chants to verify that a cardholder is a legiti-
mate user of a valid card
account number. SET uses X.509v3 digital 
certificates with RSA signatures for this pur-
pose
Merchant authentication: SET enables card-
holders to verify that a merchant has a rela-
tionship with a financial institution
allowing it to accept payment cards. SET 
uses X.509v3 digital certificates with RSA 
signatures for this purpose

1. SSL Layer is located between the applica-
tion layer and transport layer.
Application layer of the sending computer pre-
pares the data to be sent to the receiving com-
puter and pass it to the SSL layer.SSL layer 
performs encryption on the data received from 
the application and also add its own SSL head-
er to the encrypted data.
SSL layer data becomes the input data for 
Transport layer it adds its own header and 
passes it on to the Internet.
SSL layer at the receiver’s end removes the 
SSL header decrypts the encrypted data and 
gives the plain text data back to the application 
layer of the receiving computer.

SET Participants
Cardholder
Merchant

SSL Protocols:
handshake protocol
Record protocol
alert Protocol

Issuer:
Acquirer
Payment gateway
Certification authority (CA):
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 23. Overview of IP Security documents.

Ans: IP Security Documents:

 • IP security (IPSec) is a capability that can be added to either current version of the Internet 
Protocol (IPv4 or IPv6), by means of additional headers.

 • IPSec encompasses three functional areas: authentication, confidentiality, and key manage-
ment.

 • Authentication makes use of the HMAC message authentication code. Authentication can 
be applied to the entire original IP packet ( tunnel mode) or to all of the packet except for 
the IP header (transport mode).

 • Confidentiality is provided by an encryption format known as encapsulating security pay-
load. Both tunnel and transport modes can be accommodated.

 • IPSec defines a number of techniques for key management.

IPSec Documents

The IPSec specification consists of numerous documents. The most important of these, issued in 
November of 1998, are RFCs 2401, 2402, 2406, and 2408:

RFC 2401: An overview of a security architecture

RFC 2402: Description of a packet authentication extension to IPv4 and IPv6

RFC 2406: Description of a packet encryption extension to IPv4 and IPv6

RFC 2408: Specification of key management capabilities

Support for these features is mandatory for IPv6 and optional for IPv4. In both cases, the security 
features are implemented as extension headers that follow the main IP header. The extension 
header for authentication is known as the Authentication header; that for encryption is known as 
the encapsulating Security Payload (ESP) header.

In addition to these four RFCs, a number of additional drafts have been published by the IP 
Security Protocol Working Group set up by the IETF. The documents are divided into seven 
groups.

1. Architecture: Covers the general concepts, security requirements, definitions, and mecha-
nisms defining IPSec technology.

2. Encapsulating Security Payload (ESP): Covers the packet format and general issues 
related to the use of the ESP for packet encryption and, optionally, authentication.

3. Authentication Header (AH): Covers the packet format and general issues related to the 
use of AH for packet authentication.

4. Encryption Algorithm: A set of documents that describe how various encryption algo-
rithms are used for ESP.

5. Authentication Algorithm: A set of documents that describe how various authentication 
algorithms are used for AH and for the authentication option of ESP.

6. Key Management: Documents that describe key management schemes.

7. Domain of Interpretation (DOI): Contains values needed for the other documents to 
relate to each other. These include identifiers for approved encryption and authentication 
algorithms, as well as operational parameters such as key lifetime.
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 Security Associations

•	 A key concept that appears in both the authentication and confidentiality mechanisms for IP 
is the security association (SA). 

•	 An association is a one-way relationship between a sender and a receiver that affords secu-
rity services to the traffic carried on it. If a peer relationship is needed, for two-way secure 
exchange, then two security associations are required. 

•	 Security services are afforded to an SA for the use of AH or ESP, but not both. 

A security association is uniquely identified by three parameters:

•	 Security Parameters Index (SPI): A bit string assigned to this SA and having local sig-
nificance only. The SPI is carried in AH and ESP headers to enable the receiving system to 
select the SA under which a received packet will be processed.

•	 IP Destination Address: Currently, only unicast addresses are allowed; this is the address 
of the destination endpoint of the SA, which may be an end user system or a network system 
such as a firewall or router.

•	 Security Protocol Identifier: This indicates whether the association is an AH or ESP secu-
rity association. Hence, in any IP packet, the security association is uniquely identified by 
the Destination Address in the IPv4 or IPv6 header and the SPI in the enclosed extension 
header (AH or ESP).

SA Parameters

In each IPSec implementation, there is a nominal Security Association Database that defines the 
parameters associated with each SA.

A security association is normally defined by the following parameters:

•	 �Sequence Number Counter: A 32-bit value used to generate the Sequence Number field 
in AH or ESP headers

•	 �Sequence Counter Overflow: A flag indicating whether overflow of the Sequence Number 
Counter should generate an auditable event and prevent further transmission of packets on 
this SA (required for all implementations).

 • Anti-Replay Window: Used to determine whether an inbound AH or ESP packet is a replay
 • AH Information: Authentication algorithm, keys, key lifetimes, and related parameters 
being used with AH (required for AH implementations).

 • ESP Information: Encryption and authentication algorithm, keys, initialization values, key 
lifetimes, and related parameters being used with ESP required for ESP implementations).

 • Lifetime of This Security Association: A time interval or byte count after which an SA 
must be replaced with a new SA (and new SPI) or terminated, plus an indication of which 
of these actions should occur 

 • IPSec Protocol Mode: Tunnel, transport, or wildcard (required for all implementations). 
 • Path MTU: Any observed path maximum transmission unit (maximum size of a packet that 
can be transmitted without fragmentation) and aging variables .

SA Selectors

 • IPSec provides the user with considerable flexibility in the way in which IPSec services are 
applied to IP traffic. 
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 • SAs can be combined in a number of ways to yield the desired user configuration. 
 • IPSec provides a high degree of granularity in discriminating between traffic that is afford-
ed IPSec protection and traffic that is allowed to bypass IPSec, in the former case relating 
IP traffic to specific SAs.

 • IP traffic is related to specific SAs (or no SA in the case of traffic allowed to bypass IPSec) 
is the nominal Security Policy Database (SPD). 

 • In its simplest form, an SPD contains entries, each of which defines a subset of IP traffic 
and points to an SA for that traffic. In more complex environments, there may be multiple 
entries that potentially relate to a single SA or multiple SAs associated with a single SPD 
entry. The reader is referred to the relevant IPSec documents for a full discussion.

 * Each SPD entry is defined by a set of IP and upper-layer protocol field values, called selectors.

In effect, these selectors are used to filter outgoing traffic in order to map it into a particular SA. 
Outbound processing obeys the following general sequence for each IP packet:

1.  Compare the values of the appropriate fields in the packet (the selector fields) against the SPD 
to find a matching SPD entry, which will point to zero or more SAs.

2.  Determine the SA if any for this packet and its associated SPI.

3.  Do the required IPSec processing (i.e., AH or ESP processing).

The following selectors determine an SPD entry:

 • Destination IP Address: This may be a single IP address, an enumerated list or range of 
addresses, or a wildcard (mask) address. The latter two are required to support more than 
one destination system sharing the same SA (e.g., behind a firewall).

 • Source IP Address: This may be a single IP address, an enumerated list or range of ad-
dresses, or a wildcard (mask) address. The latter two are required to support more than one 
source system sharing the same SA (e.g., behind a firewall).

 • UserID: A user identifier from the operating system. This is not a field in the IP or upper-
layer headers but is available if IPSec is running on the same operating system as the user.

 • Data Sensitivity Level: Used for systems providing information flow security (e.g., Secret 
or Unclassified).

 • Transport Layer Protocol: Obtained from the IPv4 Protocol or IPv6 Next Header field. 
This may be an individual protocol number, a list of protocol numbers, or a range of proto-
col numbers.

 • Source and Destination Ports: These may be individual TCP or UDP port values, an enu-
merated list of ports, or a wildcard port.

 • Transport and Tunnel Modes
Both AH and ESP support two modes of use: transport and tunnel mode. The operation of these 
two modes is best understood in the context of a description of AH and ESP.

Transport Mode

 • Transport mode provides protection primarily for upper-layer protocols.
 • That is, transport mode protection extends to the payload of an IP packet. Examples include 
a TCP or UDP segment or an ICMP packet, all of which operate directly above IP in a host 
protocol stack. 

 • Typically, transport mode is used for end-to-end communication between two hosts (e.g., a 
client and a server, or two workstations).
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 • When a host runs AH or ESP over IPv4, the payload is the data that normally follow the IP 
header.

 • ESP in transport mode encrypts and optionally authenticates the IP payload but not the IP 
header. 

 • AH in transport mode authenticates the IP payload and selected portions of the IP header.

Tunnel Mode

 • Tunnel mode provides protection to the entire IP packet. 
 • To achieve this, after the AH or ESP fields are added to the IP packet, the entire packet plus 
security fields is treated as the payload of new “outer” IP packet with a new outer IP header.

 • The entire original, or inner, packet travels through a “tunnel” from one point of an IP net-
work to another; no routers along the way are able to examine the inner IP header. 

 • Because the original packet is encapsulated, the new, larger packet may have totally differ-
ent source and destination addresses, adding to the security. 

 • Tunnel mode is used when one or both ends of an SA are a security gateway, such as a fire-
wall or router that implements IPSec. 

 • With tunnel mode, a number of hosts on networks behind firewalls may engage in secure 
communications without implementing IPSec. 

 • The unprotected packets generated by such hosts are tunneled through external networks by 
tunnel mode SAs set up by the IPSec software in the firewall or secure router at the bound-
ary of the local network.

Authentication Header

 • The Authentication Header provides support for data integrity and authentication of IP 
packets. 

 • The data integrity feature ensures that undetected modification to a packet’s content in 
transit is not possible. 

 • The authentication feature enables an end system or network device to authenticate the user 
or application and filter traffic accordingly; 

 • It also prevents the address spoofing attacks observed in today’s Internet. 
 • The AH also guards against the replay attack .Authentication is based on the use of a mes-
sage authentication code (MAC), hence the two parties must share a secret key.

The Authentication Header consists of the following fields 

 • Next Header (8 bits): Identifies the type of header immediately following this header.
 • Payload Length (8 bits): Length of Authentication Header in 32-bit words, minus 2. For 
example, the default length of the  authentication data field is 96 bits, or three 32-bit words. 
With a three-word fixed header, there are a total of six words in the header, and the Payload 
Length field has a value of 4.

 • Reserved (16 bits): For future use.
 • Security Parameters Index (32 bits): Identifies a security association. 
 • Sequence Number (32 bits): A monotonically increasing counter value, discussed later.
 • Authentication Data (variable): A variable-length field (must be an integral number of 
32-bit words) that contains the Integrity Check Value (ICV), or MAC, for this packet, dis-
cussed later.
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Bit: 0 8 16 31

Next header Playload length RESERVED

Security parameters index (SPI)

Sequence number

Authentication data (variable)

Anti-Replay Service

 • A replay attack is one in which an attacker obtains a copy of an authenticated packet and 
later transmits it to the intended destination. 

 • The receipt of duplicate, authenticated IP packets may disrupt service in some way or may 
have some other undesired consequence. 

 • The Sequence Number field is designed to thwart such attacks

Encapsulating Security Payload

 • The Encapsulating Security Payload provides confidentiality services, including confiden-
tiality of message contents and limited traffic flow confidentiality. 

 • As an optional feature, ESP can also provide an authentication service.

ESP Format-The format of an ESP packet contains the following fields:

 • Security Parameters Index (32 bits): Identifies a security association.
 • Sequence Number (32 bits): A monotonically increasing counter value; this provides an 
anti-replay function, as discussed for AH.

 • Payload Data (variable): This is a transport-level segment (transport mode) or IP packet 
(tunnel mode) that is protected by encryption. 

 • Padding (0255 bytes.
 • Pad Length (8 bits): Indicates the number of pad bytes immediately preceding this field.
 • Next Header (8 bits): Identifies the type of data contained in the payload data field by 
identifying the first header in that payload (for example, an extension header in IPv6, or an 
upper-layer protocol such as TCP).

 • Authentication Data (variable): A variable-length field (must be an integral number of 
32-bit words) that contains the Integrity Check Value computed over the ESP packet minus 
the Authentication Data field.

Encryption and Authentication Algorithms

 • The Payload Data, Padding, Pad Length, and Next Header fields are encrypted by the ESP 
service. 

 • If the algorithm used to encrypt the payload requires cryptographic synchronization data, 
such as an initialization vector (IV), then these data may be carried explicitly at the begin-
ning of the Payload Data field.

 • If included, an IV is usually not encrypted, although it is often referred to as being part of 
the ciphertext. 
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 • The current specification dictates that a compliant implementation must support DES in 
cipher block chaining (CBC) mode ..

 • A number of other algorithms have been assigned identifiers in the DOI document and 
could therefore easily be used for encryption; these include

 • Three-key triple DES
 • RC5
 • IDEA
 • Three-key triple IDEA
 • CAST
 • Blowfish

  As with AH, ESP supports the use of a MAC with a default length of 96 bits. Also as with AH, the 
current specification dictates that a compliant implementation must support HMAC-MD5-96 
and HMAC-SHA-1-96.

 24. PGP Message generation and reception

  Ans:
Phil Zimmermann, PGP provides a confidentiality and authentication service that can be used for 
electronic mail and file storage applications. In essence, Zimmermann has done the following:

1.  Selected the best available cryptographic algorithms as building blocks Integrated these algo-
rithms into a general- purpose application that is independent of operating system and proces-
sor and that is based on a small set of easy-to-use commands

2.  Made the package and its documentation, including the source code, freely available via the 
Internet, bulletin boards, and commercial networks such as AOL (America On Line)

3.  Entered into an agreement with a company (Viacrypt, now Network Associates) to provide a 
fully compatible, low-cost commercial version of PGP

4.  PGP has grown explosively and is now widely used. A number of reasons can be cited for this 
growth: It is available free worldwide in versions that run on a variety of platforms, including 
Windows, UNIX, Macintosh, and many more. In addition, the commercial version satisfies 
users who want a product that comes with vendor support. 

PGP key features

1.  It is based on algorithms that have survived extensive public review and are considered extremely 
secure. Spe ifically, the package includes RSA, DSS, and Diffie-Hellman for public-key encryp-
tion; CAST-128, IDEA, and 3DES for symmetric encryption; and SHA-1 for hash coding.

2.  It has a wide range of applicability, from corporations that wish to select and enforce a stan-
dardized scheme for encrypting files and messages to individuals who wish to communicate 
securely with others worldwide over the Internet and other networks.

3.  It was not developed by, nor is it controlled by, any governmental or standards organization. For 
those with an instinctive distrust of “the establishment,” this makes PGP attractive.

4.  PGP is now on an Internet standards track (RFC 3156). 

Authentication:

The digital signature service provided by PGP. The sequence is as follows:
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1. The sender creates a message.

2.  SHA-1 is used to generate a 160-bit hash code of the message.

3.  The hash code is encrypted with RSA using the sender’s private key, and the result is prepended 
to the message.

4.  The receiver uses RSA with the sender’s public key to decrypt and recover the hash code.

The receiver generates a new hash code for the message and compares it with the decrypted hash 
code. If the two match, the message is accepted as authentic.

Source A
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PUb
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(a) Authentication only

(b) Confidentiality only

(c) Confidentiality and authentication  

Confidentiality

 •  Another basic service provided by PGP is confidentiality, which is provided by encrypting 
messages to be transmitted or to be stored locally as files. 

 • In both cases, the symmetric encryption algorithm CAST-128 may be used. 
 • Alternatively, IDEA or 3DES may be used.
 •  The 64-bit cipher feedback (CFB) mode is used. As always, one must address the problem of 

key distribution. In PGP, each symmetric key is used only once. 
 • A new key is generated as a random 128-bit number for each message. 
 • This is referred as a session key, it is in reality a one-time key.
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 •  Because it is to be used only once, the session key is bound to the message and transmitted 
with it. 

 • To protect the key, it is encrypted with the receiver’s public key. 
1.  The sender generates a message and a random 128-bit number to be used as a session key for 

this message only.

2.  The message is encrypted, using CAST-128 (or IDEA or 3DES) with the session key.

3.  The session key is encrypted with RSA, using the recipient’s public key, and is prepended to 
the message.

4.  The receiver uses RSA with its private key to decrypt and recover the session key.

5. The session key is used to decrypt the message.

Confidentiality and authentication:

 • Both services may be used for the same message. 
 • First, a signature is generated for the plaintext message and prepended to the message.
 • Then the plaintext message plus signature is encrypted using CAST-128 (or IDEA or 3DES), 

and the session key is encrypted using RSA (or ElGamal). 
 • This sequence is preferable to the opposite: encrypting the message and then generating a signa-

ture for the encrypted message. 
 • It is generally more convenient to store a signature with a plaintext version of a message. 
 • Furthermore, for purposes of third-party verification, if the signature is performed first, a third 

party need not be concerned with the symmetric key when verifying the signature.
 • When both services are used, the sender first signs the message with its own private key, then 

encrypts the message with a session key, and then encrypts the session key with the recipient’s 
public key.

Compression

 • PGP compresses the message after applying the signature but before encryption. 
 • This has the benefit of saving space both for e-mail transmission and for file storage. 
 • The placement of the compression algorithm, indicated by Z for compression and Z-1 for de-

compression is critical:

The signature is generated before compression for two reasons:

It is preferable to sign an uncompressed message so that one can store only the uncompressed 
message together with the signature for future verification. If one signed a compressed document, 
then it would be necessary either to store a compressed version of the message for later verifica-
tion or to recompress the message when verification is required.

a.  Even if one were willing to generate dynamically a recompressed message for verification, 
PGP’s compression algorithm presents a difficulty. The algorithm is not deterministic; vari-
ous implementations of the algorithm achieve different tradeoffs in running speed versus com-
pression ratio and, as a result, produce different compressed forms. However, these different 
compression algorithms are interoperable because any version of the algorithm can correctly 
decompress the output of any other version. Applying the hash function and signature after 
compression would constrain all PGP implementations to the same version of the compression 
algorithm.
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b.  Message encryption is applied after compression to strengthen cryptographic security. Because 
the compressed message as less redundancy than the original plaintext, cryptanalysis is more 
difficult.

2. The compression algorithm used is ZIP,

E-mail Compatibility

 • When PGP is used, at least part of the block to be transmitted is encrypted. 
 • If only the signature service is used, then the message digest is encrypted (with the 
sender’s private key). 

 • If the confidentiality service is used, the message plus signature (if present) are en-
crypted (with a one-time symmetric key). Thus, part or all of the resulting block consists 
of a stream of arbitrary 8-bit octets. 

 • However, many electronic mail systems only permit the use of blocks consisting of 
ASCII text. 

 • To accommodate this restriction, PGP provides the service of converting the raw 8-bit 
binary stream to a stream of printable ASCII characters. 

Transmission and Reception of PGP Messages

On transmission, if it is required, a signature is generated using a hash code of the uncompressed 
plaintext. Then the plaintext, plus signature if present, is compressed. Next, if confidentiality is 
required, the block (compressed plaintext or compressed signature plus plaintext) is encrypted 
and prepended with the public-key-encrypted symmetric encryption key. Finally, the entire block 
is converted to radix-64 format.

X ← file

Signature
required?

Generate signature
X← signature X

Encrypt key, X
X← E(PUb−Kb) E(Kb, X)

Compress
X ← Z(X)

Confidentiality
required?

Convert to radix 64
X←R6+[X]

No

Yes

Yes

No

(a) Generic transmission diagram (from A)
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Signature
required?

Strip signature from X
verify signature

Decrypt key, X
K1← D(PRb−E(PUb, K1))
X← D(Ka E(Ka, X))

Decompress
X ← Z−1(X)

Confidentiality
required?

Convert from radix 64
X←R64−1[X]

No

No

Yes

Yes

(b) Generic reception diagram (to B)

On reception, the incoming block is first converted back from radix-64 format to binary. Then, if 
the message is encrypted, the recipient recovers the session key and decrypts the message. The 
resulting block is then decompressed. If the message is signed, the recipient recovers the transmit-
ted hash code and compares it to its own calculation of the hash code.

 25.  Explain definition, phases, types of virus structures and types of viruses.

  Ans: Viruses:
A virus is a piece of software that can “infect” other programs by modifying them; the modifica-
tion includes a copy of the virus program, which can then go on to infect other programs.

A computer virus carries in its instructional code the recipe for making perfect copies of itself. 
The typical virus becomes embedded in a program on a computer. Then, whenever the infected 
computer comes into contact with an uninfected piece of software, a fresh copy of the virus passes 
into the new program. Thus, the infection can be spread from computer to computer by unsuspect-
ing users who either swap disks or send programs to one another over a network. In a network 
environment, the ability to access applications and system services on other computers provides a 
perfect culture for the spread of a virus.

A virus can do anything that other programs do. The only difference is that it attaches itself to 
another program and executes secretly when the host program is run. Once a virus is executing, it 
can perform any function, such as erasing files and programs.

During its lifetime, a typical virus goes through the following four phases:

 • Dormant phase: The virus is idle. The virus will eventually be activated by some event, such 
as a date, the presence of another program or file, or the capacity of the disk exceeding some 
limit. Not all viruses have this stage.
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 • Propagation phase: The virus places an identical copy of itself into other programs or into 
certain system areas on the disk. Each infected program will now contain a clone of the virus, 
which will itself enter a propagation phase.

 • Triggering phase: The virus is activated to perform the function for which it was intended. 
As with the dormant phase, the triggering phase can be caused by a variety of system events, 
including a count of the number of times that this copy of the virus has made copies of itself.

 • Execution phase: The function is performed. The function may be harmless, such as a message 
on the screen, or damaging, such as the destruction of programs and data files.

Most viruses carry out their work in a manner that is specific to a particular operating system and, 
in some cases, specific to a particular hardware platform. Thus, they are designed to take advan-
tage of the details and weaknesses of particular systems.

Virus Structure

A virus can be prepended or postpended to an executable program, or it can be embedded in some 
other fashion. The key to its operation is that the infected program, when invoked, will first execute 
the virus code and then execute the original code of the program. The virus code, V, is prepended 
to infected programs, and it is assumed that the entry point to the program, when invoked, is the 
first line of the program.

A simple virus

  Program V: =

{goto main;
   1234567;

Subroutine infect-executable: =
   {loop:
   file: = get-random-executable-file;
   if (first-line-of-file = 1234567)
     then goto loop
     else prepend V to file;}

subroutine do-damage: =
   {whatever damage is to be done}

subroutine trigger-pulled: =
   {return true if some condition hold}
main: main-program: =
   {infect-executable;
   If trigger-pulled then do-damage;
   Goto next;}
next:
}
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An infected program begins with the virus code and works as follows.

 • The first line of code is a jump to the main virus program. 
 • The second line is a special marker that is used by the virus to determine whether or not a po-

tential victim program has already been infected with this virus. 
 • When the program is invoked, control is immediately transferred to the main virus program. 

The virus program first seeks out uninfected executable files and infects them. 
 • Next, the virus may perform some action, usually detrimental to the system. This action could 

be performed every time the program is invoked, or it could be a logic bomb that triggers only 
under certain conditions. 

 • Finally, the virus transfers control to the original program. If the infection phase of the program 
is reasonably rapid, a user is unlikely to notice any difference between the execution of an in-
fected and uninfected program. 

 • For each uninfected file P2 that is found, the virus first compresses that file to produce P’ 2, 
which is shorter than the original program by the size of the virus.

1.   A copy of the virus is prepended to the compressed program.

2.   The compressed version of the original infected program, P’1, is uncompressed.

3.   The uncompressed original program is executed.

Initial Infection

 Once a virus has gained entry to a system by infecting a single program, it is in a position to infect 
some or all other executable files on that system when the infected program executes. Thus, viral 
infection can be completely prevented by preventing the virus from gaining entry in the first place. 
Unfortunately, prevention is extraordinarily difficult because a virus can be part of any program 
outside a system. Thus, unless one is content to take an absolutely bare piece of iron and write all 
one’s own system and application programs, one is vulnerable.

Types of Viruses

 Significant types of viruses:

 • Parasitic virus: The traditional and still most common form of virus. A parasitic virus attaches 
itself to executable files and replicates, when the infected program is executed, by finding other 
executable files to infect.

 • Memory-resident virus: Lodges in main memory as part of a resident system program. From 
that point on, the virus infects every program that executes.

 • Boot sector virus: Infects a master boot record or boot record and spreads when a system is 
booted from the disk containing the virus.

 • Stealth virus: A form of virus explicitly designed to hide itself from detection by antivirus 
software.

 • Polymorphic virus: A virus that mutates with every infection, making detection by the “sig-
nature” of the virus impossible.

 • Metamorphic virus: As with a polymorphic virus, a metamorphic virus mutates with every 
infection. The difference is that a metamorphic virus rewrites itself completely at each itera-
tion, increasing the difficulty of detection. Metamorphic viruses my change their behavior as 
well as their appearance.
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One example of a stealth virus that uses compression so that the infected program is exactly the 
same length as an uninfected version.

For example, a virus can place intercept logic in disk I/O routines, so that when there is an attempt 
to read suspected portions of the disk using these routines, the virus will present back the original, 
uninfected program.

A polymorphic virus creates copies during replication that are functionally equivalent but have 
distinctly different bit patterns. As with a stealth virus, the purpose is to defeat programs that 
scan for viruses. In this case, the “signature” of the virus will vary with each copy. To achieve 
this variation, the virus may randomly insert superfluous instructions or interchange the order of 
independent instructions. 

A more effective approach is to use encryption. A portion of the virus, generally called a mutation 
engine, creates a random encryption key to encrypt the remainder of the virus. The key is stored 
with the virus, and the mutation engine itself is altered. When an infected program is invoked, 
the virus uses the stored random key to decrypt the virus. When the virus replicates, a different 
random key is selected.

Macro Viruses

In the mid-1990s, macro viruses became by far the most prevalent type of virus. Macro viruses are 
particularly threatening for a number of reasons:

A macro virus is platform independent. Virtually all of the macro viruses infect Microsoft 
Word documents. Any hardware platform and operating system that supports Word can be 
infected.

1.  Macro viruses infect documents, not executable portions of code. Most of the information 
introduced onto a computer system is in the form of a document rather than a program.

2.  Macro viruses are easily spread. A very common method is by electronic mail.

Macro viruses take advantage of a feature found in Word and other office applications such as 
Microsoft Excel, namely the macro. In essence, a macro is an executable program embed-
ded in a word processing document or other type of file.

E-mail Viruses

 A more recent development in malicious software is the e-mail virus. The first rapidly spreading 
e-mail viruses, such as Melissa, made use of a Microsoft Word macro embedded in an attachment. 
If the recipient opens the e-mail attachment, the Word macro is activated. Then

1.  The e-mail virus sends itself to everyone on the mailing list in the user’s e-mail package.

2.  The virus does local damage.

Worms

A worm is a program that can replicate itself and send copies from computer to computer across 
network connections. Upon arrival, the worm may be activated to replicate and propagate again. 
In addition to propagation, the worm usually performs some unwanted function.

An e-mail virus has some of the characteristics of a worm, because it propagates itself from 
system to system. A worm actively seeks out more machines to infect and each machine that is 
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infected serves as an automated launching pad for attacks on other machines.

Network worm programs use network connections to spread from system to system. Once active 
within a system, a network worm can behave as a computer virus or bacteria, or it could implant 
Trojan horse programs or perform any number of disruptive or destructive actions.

To replicate itself, a network worm uses some sort of network vehicle. Examples include the 
following:

 • Electronic mail facility: A worm mails a copy of itself to other systems.
 • Remote execution capability: A worm executes a copy of itself on another system.
 • Remote login capability: A worm logs onto a remote system as a user and then uses 
commands to copy itself from one system to the other.

 A network worm exhibits the same characteristics as a computer virus: a dormant phase, a propa-
gation phase, a triggering phase, and an execution phase. The propagation phase generally per-
forms the following functions:

1.  Search  for other systems to infect by examining host tables or similar repositories of remote 
system addresses.

2. Establish a connection with a remote system.

3.  Copy itself to the remote system and cause the copy to be run.

The network worm may also attempt to determine whether a system has previously been infected 
before copying itself to the system. In a multiprogramming system, it may also disguise its pres-
ence by naming itself as a system process or using some other name that may not be noticed by a 
system operator. As with viruses, network worms are difficult to counter.

The Morris Worm

 • The worm released onto the Internet by Robert Morris in 1998. 
 • The Morris worm was designed to spread on UNIX systems and used a number of dif-
ferent techniques for propagation. When a copy began execution, its first task was to 
discover other hosts known to this host that would allow entry from this host. 

 • The worm performed this task by examining a variety of lists and tables, including 
system tables that declared which other machines were trusted by this host, users’ mail 
forwarding files, tables by which users gave themselves permission for access to remote 
accounts, and from a program that reported the status of network connections. 

 • For each discovered host, the worm tried a number of methods for gaining access: 
1.  It attempted to log on to a remote host as a legitimate user. In this method, the worm first attempted 

to crack the local password file, and then used the discovered passwords and corresponding 
user IDs. The assumption was that many users would use the same password on different 
systems. To obtain the passwords, the worm ran a password-cracking program that tried

a. Each user’s account name and simple permutations of it

b.  A list of 432 built-in passwords that Morris thought to be likely candidates

c. All the words in the local system directory

2.  It exploited a bug in the finger protocol, which reports the whereabouts of a remote user.

3.  It exploited a trapdoor in the debug option of the remote process that receives and sends mail.
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 If any of these attacks succeeded, the worm achieved communication with the operating system 
command interpreter. It then sent this interpreter a short bootstrap program, issued a command 
to execute that program, and then logged off. The bootstrap program then called back the parent 
program and downloaded the remainder of the worm. The new worm was then executed.

26. Firewalls:

  Ans:

 • The firewall is inserted between the premises network and the Internet to establish a con-
trolled link and to erect an outer security wall or perimeter. 

 • The aim of this perimeter is to protect the premises network from Internet-based attacks and 
to provide a single choke point where security and audit can be imposed. 

 • The firewall may be a single computer system or a set of two or more systems that cooperate 
to perform the firewall function.

Design goals / Characteristics for a firewall:

All traffic from inside to outside, and vice versa, must pass through the firewall. This is achieved 
by physically blocking all access to the local network except via the firewall. 

1.  Only authorized traffic, as defined by the local security policy, will be allowed to pass. Various 
types of firewalls are used, which implement various types of security policies.

2.  The firewall itself is immune to penetration. This implies that use of a trusted system with a 
secure operating system. 

 • Direction control: Determines the direction in which particular service requests may be 
initiated and allowed to flow through the firewall.

 • User control: Controls access to a service according to which user is attempting to access 
it. This feature is typically applied to users inside the firewall perimeter (local users). It may 
also be applied to incoming traffic from external users; the latter requires some form of se-
cure authentication technology, such as is provided in IPSec .

 • Behavior control: Controls how particular services are used. For example, the firewall may 
filter e-mail to eliminate spam, or it may enable external access to only a portion of the 
information on a local Web server.

3.  There are four general techniques that firewalls use to control access and enforce the site’s 
security policy. Originally, firewalls focused primarily on service control, but they have since 
evolved to provide all four:

 • Service control: Determines the types of Internet services that can be accessed, inbound 
or outbound. The firewall may filter traffic on the basis of IP address and TCP port 
number; may provide proxy software that receives and interprets each service request 
before passing it on; or may host the server software itself, such as a Web or mail service.

Types of Firewalls

There are three common types of firewalls: packet filters, application-level gateways, and circuit-
level gateways
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(a) Packet-filtering router

(b) Application-level gateway

(c) Circuit-level gateway
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Packet-Filtering Router

A packet-filtering router applies a set of rules to each incoming and outgoing IP packet and then 
forwards or discards the packet. The router is typically configured to filter packets going in both 
directions (from and to the internal network). Filtering rules are based on information contained 
in a network packet:

 • Source IP address: The IP address of the system that originated the IP packet (e.g., 
192.178.1.1)

 • Destination IP address: The IP address of the system the IP packet is trying to reach (e.g., 
192.168.1.2)

 • Source and destination transport-level address: The transport level (e.g., TCP or UDP) 
port number, which definesapplications such as SNMP or TELNET 

 • IP protocol field: Defines the transport protocol
 • Interface: For a router with three or more ports, which interface of the router the packet 
came from or which interface of the router the packet is destined for 

 • The packet filter is typically set up as a list of rules based on matches to fields in the IP or 
TCP header. If there is a match to one of the rules, that rule is invoked to determine whether 
to forward or discard the packet. If there is no match to any rule, then a default action is taken. 
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Advantage:

One advantage of a packet-filtering router is its simplicity. Also, packet filters typically are trans-
parent to users and are very fast. 

Weaknesses of packet filter firewalls:

 • Because packet filter firewalls do not examine upper-layer data, they cannot prevent attacks 
that employ application-specific vulnerabilities or functions. For example, a packet filter 
firewall cannot block specific application commands; if a packet filter firewall allows a 
given application, all functions available within that application will be permitted.

 • Because of the limited information available to the firewall, the logging functionality pres-
ent in packet filter firewalls is limited. 

 • Packet filter logs normally contain the same information used to make access control deci-
sions (source address, destination address, and traffic type).

 • Most packet filter firewalls do not support advanced user authentication schemes. Once 
again, this limitation is mostly due to the lack of upper-layer functionality by the firewall.

 • They are generally vulnerable to attacks and exploits that take advantage of problems within 
the TCP/IP specification and protocol stack, such as network layer address spoofing. Many 
packet filter firewalls cannot detect a network packet in which the OSI Layer 3 addressing 
information has been altered. Spoofing attacks are generally employed by intruders to by-
pass the security controls implemented in a firewall platform.

 • Finally, due to the small number of variables used in access control decisions, packet filter 
firewalls are susceptible to security breaches caused by improper configurations. In other 
words, it is easy to accidentally configure a packet filter firewall to allow traffic types, 
sources, and destinations that should be denied based on an organization’s information se-
curity policy.

 • Some of the attacks that can be made on packet-filtering routers and the appropriate coun-
termeasures are the following:
IP address spoofing: The intruder transmits packets from the outside with a source IP 
address field containing an address of an internal host. The attacker hopes that the use of a 
spoofed address will allow penetration of systems that employ simple source address secu-
rity, in which packets from specific trusted internal hosts are accepted. The countermeasure 
is to discard packets with an inside source address if the packet arrives on an external 
interface.
Source routing attacks: The source station specifies the route that a packet should take as 
it crosses the Internet, in the
hopes that this will bypass security measures that do not analyze the source routing infor-
mation. The countermeasure is to
discard all packets that use this option.

Tiny fragment attacks: 

 • The intruder uses the IP fragmentation option to create extremely small fragments and force 
the TCP header information into a separate packet fragment. 

 • This attack is designed to circumvent filtering rules that depend on TCP header informa-
tion. 
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 • Typically, a packet filter will make a filtering decision on the first fragment of a packet. 
 • All subsequent fragments of that packet are filtered out solely on the basis that they are part 
of the packet whose first fragment was rejected.

 • If the first fragment is rejected, the filter can remember the packet and discard all subse-
quent fragments.

Stateful Inspection Firewalls.

 • A traditional packet filter makes filtering decisions on an individual packet basis and does 
not take into consideration any higher layer context. 

 • For example, for the Simple Mail Transfer Protocol (SMTP), e-mail is transmitted from a 
client system to a server system. 

 • The client system generates new e-mail messages, typically from user input. The server sys-
tem accepts incoming e-mail messages and places them in the appropriate user mailboxes. 

 • SMTP operates by setting up a TCP connection between client and server, in which the TCP 
server port number, which identifies the SMTP server application, is 25. T

 • he TCP port number for the SMTP client is a number between 1024 and 65535 that is gener-
ated by the SMTP client.

 • In general, when an application that uses TCP creates a session with a remote host, it cre-
ates a TCP connection in which the TCP port number for the remote (server) application 
is a number less than 1024 and the TCP port number for the local (client) application is a 
number between 1024 and 65535. 

 • The numbers less than 1024 are the “well-known” port numbers and are assigned perma-
nently to particular applications (e.g., 25 for server SMTP). T

 • The numbers between 1024 and 65535 are generated dynamically and have temporary sig-
nificance only for the lifetime of a TCP connection.

 • A simple packet-filtering firewall must permit inbound network traffic on all these high-
numbered ports for TCP-based traffic to occur. 

 • A stateful inspection packet filter tightens up the rules for TCP traffic by creating a direc-
tory of outbound TCP connections.

 • There is an entry for each currently established connection. 
 • The packet filter will now allow incoming traffic to high-numbered ports only for those 
packets that fit the profile of one of the entries in this directory.

Application-Level Gateway

 • An application-level gateway, also called a proxy server, acts as a relay of application-level 
traffic. 

 • The user contacts the gateway using a TCP/IP application, such as Telnet or FTP, and the 
gateway asks the user for the name of the remote host to be accessed. 

 • When the user responds and provides a valid user ID and authentication information, the 
gateway contacts the application on the remote host and relays TCP segments containing the 
application data between the two endpoints. 

 • If the gateway does not implement the proxy code for a specific application, the service is 
not supported and cannot be forwarded across the firewall.

 • Further, the gateway can be configured to support only specific features of an application 
that the network administrator considers acceptable while denying all other features.
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Advantage

 • Application-level gateways tend to be more secure than packet filters. 
 • Rather than trying to deal with the numerous possible combinations that are to be allowed 
and forbidden at the TCP and IP level, the application-level gateway need only scrutinize a 
few allowable applications. 

 • In addition, it is easy to log and audit all incoming traffic at the application level. 

A prime disadvantage 

 • Additional processing overhead on each connection. 
 • In effect, there are two spliced connections between the end users, with the gateway at the 
splice point, and the gateway must examine and forward all traffic in both directions.

Circuit-Level Gateway

 • A third type of firewall is the circuit-level gateway. 
 • This can be a stand-alone system or it can be a specialized function performed by an appli-
cation-level gateway for certain applications.

 • A circuit-level gateway does not permit an end-to-end TCP connection; rather, the gateway 
sets up two TCP connections, one between itself and a TCP user on an inner host and one 
between itself and a TCP user on an outside host. 

 • Once the two connections are established, the gateway typically relays TCP segments from 
one connection to the other without examining the contents. 

 • The security function consists of determining which connections will be allowed. 
A typical use of circuit-level gateways is a situation in which the system administrator trusts 
the internal users. 

 • The gateway can be configured to support application-level or proxy service on inbound 
connections and circuit-level functions for outbound connections. 

 • In this configuration, the gateway can incur the processing overhead of examining incoming 
application data for forbidden functions but does not incur that overhead on outgoing data.

An example of a circuit-level gateway implementation is the SOCKS package [KOBL92]; 
version 5 of SOCKS is defined in RFC 1928.

Bastion Host

A bastion host is a system identified by the firewall administrator as a critical strong point in 
the network’s security. Typically, the bastion host serves as a platform for an application-level or 
circuit-level gateway. Common characteristics of a bastion host include the following:
1.  The bastion host hardware platform executes a secure version of its operating system, making 

it a trusted system.
2.  Only the services that the network administrator considers essential are installed on the bastion 

host. These include proxy applications such as Telnet, DNS, FTP, SMTP, and user authentication.
3.  The bastion host may require additional authentication before a user is allowed access to the 

proxy services
4.  Each proxy is configured to allow access only to specific host systems. This means that the 

limited command/feature set may be applied only to a subset of systems on the protected 
network.
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5.  Each proxy maintains detailed audit information by logging all traffic, each connection, and the 
duration of each connection. The audit log is an essential tool for discovering and terminating 
intruder attacks.

6.  Each proxy module is a very small software package specifically designed for network 
security. 

7.  Each proxy is independent of other proxies on the bastion host. If there is a problem with the 
operation of any proxy, or if a future vulnerability is discovered, it can be uninstalled without 
affecting the operation of the other proxy applications. Also, if the user population requires 
support for a new service, the network administrator can easily install the required proxy on 
the bastion host.

8.  A proxy generally performs no disk access other than to read its initial configuration file. This 
makes it difficult for an intruder to install Trojan horse sniffers or other dangerous files on the 
bastion host. Each proxy runs as a nonprivileged user in a private and secured directory on the 
bastion host. 

 27. Explain Hill Cipher and encrypt the plain text ‘paymoremoney’ using the ecncryption key

  Ans:
17 17 5

21 18 21

2 2 19

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

Hill cipher was invented by Lester Hill in 1929. In the encryption algorithm, n successive letters in 
plaintext are considered as a n-dimension vector P. The algorithm takes a n × n matrix K as a key.
The ciphertext C of P is also a n-dimension vector derived by multiplying P by K, modulo 26. That 
is C = (KP)mod(26). The inverse of the matrix K is used to decrypt the ciphertext. The inverse K−1 

of a matrix K is defined by the equation KK−1 = K−1K = I, where I is the identity matrix. In particu-
lar, the plaintext P is derived by multiplying ciphertext C by K−1, 

i.e., P = (K−1C)mod(26).The cryptographic system of Hill cipher can be summarized as follows.
C = E(K, P) = (KP)mod(26) 
P = D(K,C) = (K−1C)mod(26) = K−1KP = P 
Consider the plaintext “paymoremoney”, and the key

 

K =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

17 17 5

21 18 21

2 2 19

The plaintext is decomposed into 3-letter blocks. For the first block “pay”, its corresponding vector 
is (15, 0, 24). Then its ciphertext can be derived as

17 17 5

21 18 21

2 2 19

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 (15 0 24) mod (26) = (375 819 486) mod (26) = (11 13 18) = LNS
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Applying the same encryption over the rest of 3-letter blocks, we have the ciphertext of the entire 
plaintext LNSHDLEWMTRW. For decryption, the inverse of key matrix is used.

K − =
⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

1

4 9 15

15 17 6

24 0 17

For the first 3-letter block in the ciphertext LNS, its decryption is demonstrated as follows.

4 9 15

15 17 6

24 0 17

⎛

⎝

⎜
⎜⎜

⎞

⎠

⎟
⎟⎟

 (11 13 18) mod(26) = (431 494 570) mod(26) = (15 0 24) = pay

The use of a larger n-dimension vector in Hill cipher hides more frequency information, thus pro-
vides stronger protection against frequency analysis. Yet Hill cipher is easily broken with a known 
plaintext attack, because it is completely linear. An opponent who intercepts n2 plaintext/ciphertext 
character pairs can set up a linear system which can be solved to derive the key matrix.

28. Discuss AES cipher in detail with neat diagram.

  Ans: Origins:
 • Clear a replacement for DES was needed

 �have theoretical attacks that can break it
 �have demonstrated exhaustive key search attacks 

 • Can use Triple-DES – but slow with small blocks
 • US NIST issued call for ciphers in 1997
 • 15 candidates accepted in Jun 98 
 • 5 were shortlisted in Aug-99 
 • Rijndael was selected as the AES in Oct-2000
 • Issued as FIPS PUB 197 standard in Nov-2001 

AES Requirements:

 • private key symmetric block cipher 
 • 128-bit data, 128/192/256-bit keys 
 • stronger & faster than Triple-DES 
 • active life of 20-30 years (+ archival use) 
 • provide full specification & design details 
 • both C & Java implementations
 • NIST have released all submissions & unclassified analyses

AES Evaluation Criteria:

 • Initial criteria:
 �security – effort to practically cryptanalyse
 �cost – computational
 �algorithm & implementation characteristics



498  Appendix

 • Final criteria
 �general security
 �software & hardware implementation ease
 �implementation attacks
 �flexibility (in en/decrypt, keying, other factors) 

The AES Cipher – Rijndael:

 • designed by Rijmen-Daemen in Belgium 
 • has 128/192/256 bit keys, 128 bit data 
 • an iterative rather than feistel cipher

 �treats data in 4 groups of 4 bytes
 �operates an entire block in every round 

 • designed to be:
 �resistant against known attacks
 �speed and code compactness on many CPUs design simplicity

Rijndael:

 • processes data as 4 groups of 4 bytes (state)
 • has 9/11/13 rounds in which state undergoes: 

 �byte substitution (1 S-box used on every byte) 
 �shift rows (permute bytes between groups/columns) 
 �mix columns (subs using matrix multipy of groups) 
 �add round key (XOR state with key material) 

 • initial XOR key material & incomplete last round
 • all operations can be combined into XOR and table lookups - hence very fast & efficient

Byte Substitution:

 • a simple substitution of each byte
 • uses one table of 16x16 bytes containing a permutation of all 256 8-bit values
 • each byte of state is replaced by byte in row (left 4-bits) & column (right 4-bits)

 �eg. byte {95} is replaced by row 9 col 5 byte
 �which is the value {2A}

 • S-box is constructed using a defined transformation of the values in GF(28) designed to be 
resistant to all known attacks
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Add round key
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(a) Encryption (b) Decryption

Shift Rows:

 • a circular byte shift in each each
 �1st row is unchanged
 �2nd row does 1 byte circular shift to left
 �3rd row does 2 byte circular shift to left
 �4th row does 3 byte circular shift to left

 • decrypt does shifts to right
 • since state is processed by columns, this step permutes bytes between the columns 

Mix Columns:

 • each column is processed separately
 • each byte is replaced by a value dependent on all 4 bytes in the  column effectively a matrix 
multiplication in GF(28) using prime poly m(x) =x8+x4+x3+x+1
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Add Round Key:

 • XOR state with 128-bits of the round key
 • again processed by column (though effectively a series of byte operations)
 • inverse for decryption is identical since XOR is own inverse, just with correct round key
 • designed to be as simple as possible 

AES Round:

S S S S S S S S S S S S S S S S

State

State

State

State

AddRoundKey

MixColumns

SubBytes

State

ShiftRows

M M M M

r0 r1 r2 r3 r4 r5 r6 r7 r8 r9 r10 r11 r12 r13 r14 r15

AES Key Expansion:

 • takes 128-bit (16-byte) key and expands into array of 44/52/60 32-bit words
 • start by copying key into first 4 words
 • then loop creating words that depend on values in previous & 4 places back

 �in 3 of 4 cases just XOR these together
 �every 4th has S-box + rotate + XOR constant of previous before XOR together

 • designed to resist known attacks 

AES Decryption:

 • AES decryption is not identical to encryption since steps done in  reverse
 • but can define an equivalent inverse cipher with steps as for  encryption

 �but using inverses of each step
 �with a different key schedule
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 • works since result is unchanged when
 �swap byte substitution & shift rows
 �swap mix columns & add (tweaked) round key 

Implementation Aspects:

 • can efficiently implement on 8-bit CPU
 �byte substitution works on bytes using a table of 256 entries
 �shift rows is simple byte shifting
 �add round key works on byte XORs
 �mix columns requires matrix multiply in GF(28) which works on byte values, can be simpli-
fied to use a table lookup 

 • can efficiently implement on 32-bit CPU
 �redefine steps to use 32-bit words
 �can precompute 4 tables of 256-words
 �then each column in each round can be computed using 4 table lookups + 4 XORs
 �at a cost of 16Kb to store tables

 • designers believe this very efficient implementation was a key factor in its selection as the AES 
cipher

29. Explain in detail about key distribution techniques.

  Ans:
Distribution of Public Keys can be considered as using one of:
 • public announcement
 • publicly available directory
 • public-key authority
 • public-key certificates

Public Announcement

 • users distribute public keys to recipients or broadcast to community at large
 �eg. append PGP keys to email messages or post to news groups or email list

 • major weakness is forgery
 �anyone can create a key claiming to be someone else and broadcast it
 �until forgery is discovered can masquerade as claimed user 

Publicly Available Directory

 • can obtain greater security by registering keys with a public directory
 • directory must be trusted with properties:

 �contains {name,public-key} entries
 �participants register securely with directory
 �participants can replace key at any time
 �directory is periodically published
 �directory can be accessed electronically

 • still vulnerable to tampering or forgery 

Public-Key Authority

 �improve security by tightening control over distribution of keys from directory
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 �has properties of directory
 �and requires users to know public key for the directory
 �then users interact with directory to obtain any desired public key securely

 • does require real-time access to directory when keys are needed 

Public-Key Authority

(3) E(PUb’ IDA   N1) 

Public-key
Authority

Initiator
A

Responder
B

(6) E(PUa’ N1  N2  ) 

(7) E(PUb’N2) 

(5) E(PRauthr’ PUa  Request  Time2)

(2) E(PRauth’ PUb  Request  Time1 )

(1) Request   Time1
(4) Request   Time2

Public-Key Certificates

 • certificates allow key exchange without real-time access to public-key authority
 • a certificate binds identity to public key 
 • usually with other info such as period of validity, rights of use etc
 • with all contents signed by a trusted Public-Key or Certificate Authority (CA)
 • can be verified by anyone who knows the public-key authorities public-key 

Public-Key Certificates

Certificate
Authority

A B

PUa

PUb

CA = E(PRauth’  Time1  IDA   PUa  )

CA = E(PRauth’  Time2  IDB   PUb  )

(1) CA

(1) CA
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Public-Key Distribution of Secret Keys

 • use previous methods to obtain public-key
 • can use for secrecy or authentication
 • but public-key algorithms are slow
 • so usually want to use private-key encryption to protect message contents
 • hence need a session key
 • have several alternatives for negotiating a suitable session 

Simple Secret Key Distribution

 • proposed by Merkle in 1979
 �A generates a new temporary public key pair
 �A sends B the public key and their identity
 �B generates a session key K sends it to A encrypted using the supplied public key
 �A decrypts the session key and both use

 • problem is that an opponent can intercept and impersonate both halves of protocol 

Public-Key Distribution of Secret Keys

 �if have securely exchanged public-keys: 

Initiator
A

Responder
B

(2) E(PUb’  N1  K2  )

(3) E(PUb’N2)

(1) E(PUb’  N1  IDA  )

(2) E(PUa’  N1  N2  )

Hybrid Key Distribution

 • retain use of private-key KDC
 • shares secret master key with each user
 • distributes session key using master key
 • public-key used to distribute master keys

 �especially useful with widely distributed users
 • rationale

 �performance
 �backward compatibility

30.  Perform encryption and decryption using RSA algorithm 
P=11 , q=13 , e = 11 and m = 7

  Ans: The value of n = p*q = 11*13 = 143
(p-1)*(q-1) = 18*12 = 120
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Choose the encryption key e = 11, which is relatively prime to 120 =(p-1)*(q-1).
The decryption key d is the multiplicative inverse of 11 modulo 120.
Run the Extended Euclid algorithm with m = 120 and n = 11.
We find the decryption key d to be also 11 (the multiplicative inverse of 11 in class modulo 120)
The encryption key is (11, 143)
The decryption key is (11, 143)

a q x y

120 - 1 0

11 10 0 1

1 10 -1 -10

1 10 -1 11
0

 Encryption for Plaintext P = 7
Ciphertext C = Pe mod n = 711 mod 143
71 mod 143 = 7 mod 143 = 7
72 mod 143 = (71 * 71) mod 143 = (7 mod 143 * 7 mod 143) mod 143 = (7 * 7) mod 143 =49 
mod 143 = 49
74 mod 143 = (72 * 72) mod 143 = (72 mod 143 * 72 mod 143) mod 143 = (49 * 49) mod 143 
= 2401 mod 143 = 113
78 mod 143 = (74 * 74) mod 143 = (74 mod 143 * 74 mod 143) mod 143 = (113 * 113) mod 143 
= 12769 mod 143 = 42
711 mod 143 = (78 * 72 * 71) mod 143
  = (42 * 49 *7) mod 143
  = (((42*49) mod 143) * (7)) mod 143
  = ((2058) mod 143) * (7)) mod 143
  = ((56) * (7)) mod 143
  = (392) mod 143
  = 106

Ciphertext is 106

Decryption for Ciphertext C = 106
Plaintext P = Cd mod n = 10611 mod 143
1061 mod 143 = 106 mod 143 = 106
1062 mod 143 = 1061 * 1061) mod 143 = (106 mod 143 * 106 mod 143) mod 143 = (106 * 
106) mod 143 = 49 mod 143 = 82
1064 mod 143 = (1062 * 1062) mod 143 = (1062 mod 143 * 1062 mod 143) mod 143 = (82 * 
82) mod 143 = 6724 mod 143 = 3
1068 mod 143 = (1064 * 1064) mod 143 = (1064 mod 143* 1064 mod 143) mod 143 = (3 * 3) 
mod 143 = 9 mod 143 = 9
10611 mod 143 = (1068 * 1062 * 1061) mod 143
  = (9 * 82 * 106) mod 143
  = (((9 * 82) mod 143) * (106)) mod 143
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  = (((738) mod 143) * (106)) mod 143
  = ((23) * (106)) mod 143
  = (2438) mod 143
  = 7
Plaintext is 7

31. Write short notes on security of Elliptic Curve Cryptography.

  Ans: Relies on elliptic curve logarithm problem
• Fastest method is “Pollard rho method”
 • Compared to factoring, can use much smaller key sizes than with RSA etc
 • For equivalent key lengths computations are roughly equivalent
 • Hence for similar security ECC offers significant computational advantages 

Symmetric 
scheme

(key size in bits) 

ECC-based scheme
(size of n in bits) 

RSA/DSA
(modulus size in bits) 

56 112 512 

80 160 1024 

112 224 2048 

128 256 3072 

192 384 7680 

256 512 15360 

32. Explain Authentication Function in detail.

 Ans:
•  Message authentication or digital signature mechanism can be viewed as having two levels

 �At lower level: there must be some sort of functions producing an authenticator – a value to 
be used to authenticate a message
 �This lower level functions is used as primitive in a higher level authentication protocol

 • Three classes of functions that may be used to produce an authenticator
 �Message encryption
 Ciphertext itself serves as authenticator
 �Message authentication code (MAC)
 A public function of the message and a secret key that produces a fixed-length value that 

serves as the authenticator
 �Hash function
 A public function that maps a message of any length into a fixed-length hash value, which 

serves as the authenticator 

Message Encryption

 • Conventional encryption can serve as authenticator
 �Conventional encryption provides authentication as well as confidentiality
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 �Requires recognizable plaintext or other structure to distinguish between well-formed legiti-
mate plaintext and meaningless random bits
 e.g., ASCII text, an appended checksum, or use of layered  protocols

Basic Uses of Message Encryption
DestinationSource

K K

MM DE

EK(M)

(a) Conventional encryption: confidentiality and authentication

KUb KRb

MM DE

EKUb(M)

(b) Public-key encryption: confidentiality

KRa

KRa KRb

KUa

KUaKUb

MM DE

EKRa(M)

EKRa(M) EKRa(M)

(c) Public-key encryption: confidentiality and signature

(d) Public-key encryption: confidentiality, authentication and signature

M E D MDE

EKUb  EKRa(M)

Ways of Providing Structure 

 • Append an error-detecting code (frame check sequence (FCS)) to each message 

M E D F

F

K

M

M
M

Source
Destination

Compare

(a) Internal error control

(b) External error control

K
F(M)

M

F(M)
EK M  F(M)

D

Compare

F

F

K

E

F(EK M )

EK M 

EK M 

K
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Ways of Providing Structure - 2 

1. Suppose all the datagrams except the IP header is encrypted.
2.  If an opponent substituted some arbitrary bit pattern for the encrypted TCP segment, the result-

ing plaintext would not include a meaningful header 

Source Port

Reserved Flags Window

Checksum Urgent Pointer

Options + Padding

Destination Port

Sequence Number

Acknowledgement Number

Data
offset

Bit: 0 4 10 16 31

Application Data

20
 o

ct
et

s

Confidentiality and Authentication Implications of Message Encryption

(a) Conventional (symmetric) Encryption

A → B: E
K
 [M]

• Provides confidentiality
 	Only A and B share K
• Provides a degree of authentication
 	Could come only from A
 	Has not been altered in transit
 	Requires some formatting/redundancy
• Does not provide signature
 	Receiver could forge message
 	Sender could deny message

(b) Public-Key (asymmetric) Encryption

A → B: E
K
 U

b
 [M]

• Provides confidentiality
 	Only B has KR

b
 to decrypt

• Provides no authentication
 	Any party could use KU

b
 to encrypt message and claim to be A
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A → B: E
K
 R

a
 [M]

• Provides authentication and signature
 	Only A has KR

a
 to encrypt

 	Has not been altered in transit
 	Requires some formatting/redundancy
 	Any party can use KU

a
 to verify signature

A → B: E
KUb

 [E
KRa

 (M)]
• Provides confidentiality because of KU

b

• Provides authentication and signature because of KR
a

Message Authentication Code

M

M

C

C

CK(M)

CK1(M)

C

K

K1K2K2

K

M

Compare

Compare

Source Destination

(a) Message authentication

C

D M

CK1(EK2 [M])

EK2,[M]

C

E

K2K2
K1

K1

M

Compare

(c) Message authentication and confidentiality: authentication tied to ciphertext

C

E D

Ki

M

EK2 [M CK1,(M)]

(b) Message authentication and confidentiality: authentication tied to plaintext

 • Uses a shared secret key to generate a fixed-size block of data (known as a cryptographic checksum 
or MAC) that is appended to the message

 • MAC = CK(M)
 • Assurances:

 �Message has not been altered
 �Message is from alleged sender
 �Message sequence is unaltered (requires internal sequencing)

 • Similar to encryption but MAC algorithm needs not be reversible
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Basic Uses of Message Authentication Code C

(a) A → B: M ⎜⎜C
K
 (M)

 • Provides authentication
 	Only A and B share K

(b) A → B: EK2
 [M ⎜⎜ CK1

 (M)]
• Provides authentication
 	Only A and B share K

1

• Provides confidentiality
 	Only A and B share K

2

(c) A → B: EK2
 [M] ⎜⎜ CK1

 ( EK2
 [M])

• Provides authentication
 	Using K

1

• Provides confidentiality
 	Using K

2

MACs USE

 • Cleartext stays clear
 • MAC might be cheaper
 • Broadcast
 • Authentication of executable codes
 • Architectural flexibility
 • Separation of authentication check from message use

Hash Function

 • Converts a variable size message M into fixed size hash code H(M) (Sometimes called a message 
digest)

 • Can be used with encryption for authentication
 • E(M || H) 
 • M || E(H)
 • M || signed H
 • E( M || signed H ) gives confidentiality
 • M || H( M || K )
 • E( M || H( M || K ) )
Basic Uses of Hash Function 

E D H

H

K

M

H(M)

Source
Destination

Compare

(a)

K

M

EK [M  H(M)]

H

DH

M

K

EK[H(M)]E

Compare

(b)

M

K

H

DH

M

KRa

EKRa[H(M)]E

Compare

(c)

M

KUa

Basic Uses of Hash Function
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E D H

H

K

M

H(M)

Source
Destination

Compare

(a)

K

M

EK [M  H(M)]

H

DH

M

K

EK[H(M)]E

Compare

(b)

M

K

H

DH

M

KRa

EKRa[H(M)]E

Compare

(c)

M

KUa

Basic Uses of Hash Function

M
H

EKRa[Η(M)]

KUa
KK

Compare

H

E D

KRa

M

HE

EK[M EKRa[Η(M)]]

(d)

Η(M S)

KK

E DM

E

EK[M Η(M S)]

(f)

M

Η(M S)

CompareKRa

M

S

S H

E

(e)

M

Compare

S H

S

Source Destination

Basic Uses of Hash Function



8 subkeys, 168
10 rounds of operation, 188

A

Abelian groups, 258
Access control, 10
Accounting, 327
Acquirer, 340
Active attacks, 7
Addition modulo, 167, 168
Additive group, 41
AddRoundKey(), 188, 189
Advanced encryption standard, 187
AES, 170, 345
AES-256, 354
Affine cipher, 76
Alert protocol, 360
Algebraic structure, 40, 166
Application-proxy gateway, 400
A public-key cryptosystem, 328
Arbitrary length, 81
Array initialization, 159
ASCII value, 83
A secret-key cryptosystem, 328
Aurora, 384
Authentication, 10, 205, 269, 327, 

369, 381
 applications, 327
 header, 370
 protocol, 327

 server, 327
 techniques, 269
Authorization, 327
Availability, 4
Avalanche effect, 133

B

Baby Step, Giant Step, 234
Backward secrecy, 27, 239
Bell–LaPadula model, 394
Biba integrity model, 394
Binary key tree, 240
Birthday attacks, 281
Bitwise XOR, 168
Blinding, 214
Block cipher, 127, 140
Blowfish, 170
 decryption, 170
 encryption, 170
BlueBug, 385
Bluejacking, 385
BlueSnarf, 385
Bluetooth enabled over OBEX, 385
Blum blum shub (BSS) 

generator, 157
Boot sector virus, 388
Broadband, 383
Brute-force attack, 136, 153, 213, 340
Buffer overflow attacks, 399

Index
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C

Caesar cipher, 74
CDMF, 345
Centralized key management, 226
Certification authority (CA), 331, 341
ChangeCipherSpec, 361
ChangeCipherSpec protocol, 360
Chinese remainder theorem (CRT), 24
Chosen plaintext data recovery attack, 366
Chunk, 130
Cipher block chaining mode, 142
Cipher feedback mode, 144
Ciphertext, 71, 328
Circular left shift, 196
ClientKeyExchange, 361
Clustered tree-based key management scheme, 245
Cluster size, 245
Code injection attack, 406
Collision resistance, 276
Column transposition, 90
Common key, 141
Commutative ring, 45
Compression algorithms, 92
Computation complexity, 16, 18, 243
Confidential data, 92
Confidentiality, 3, 205, 369
Congruences, 14
Constant exponentiation time, 214
Continued fraction, 54
Cookie replay, 340
Co-primes, 23
Counter mode, 147
Counter values, 147
Credential theft, 340
Cross-certification, 336
Cryptanalysis, 71
Cryptanalytic attack, 139
Cryptography, 71
Customer, 341

D

Database (DB) security, 381
Data-dependent rotations, 162

Data encryption standard (DES), 121
Data integrity, 4, 10
Decryption, 71, 74, 153, 328
Denial of service (DoS), 2
DES, 153, 170, 345
Determinant, 84
Deterministic random bit generator 

(DRBG), 157
D-flip-flops, 94
Dial up, 383
Dictionary attack, 340
Differential cryptanalysis, 136
Diffie–Hellman key exchange, 230
Digital envelope, 342
Digital signature, 205
Digital wallets, 340
Directory services, 331
Discrete logarithms, 230
Dissemination, 387
Distinct integers, 231
Distinct key exchanges, 236
Distributed key management, 226, 228
DoS attacks, 399
Double DES, 153
Dual signature, 342
Dumpster diving, 393
Dynamic groups, 226

E

Eavesdropping, 378
Egress filtering, 398
Electronic code book mode, 141
Elliptic curve cryptography, 257
Elliptic curves, 257
Embedding function, 91
Encapsulating security payload, 370, 374
Encryption, 71, 153, 328
Encryption key generation, 124
ESP, 374
 authentication data, 374
 header, 374
 trailer, 374
Euclid’s algorithm, 21
Euler’s theorem, 34
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Euler’s totient function, 209
Euler’s totient value, 240
Even round process, 166
Expansion table, 130
Exponentiation, 16
Extended euclidean algorithm, 22, 244
External feedback LFSR, 92
Extraction function, 91
Extraneous information, 92

F

Factorization, 60
Fast modular exponentiation algorithm, 18
Fast symmetric block cipher, 162
Feedback path, 93
Feistel network, 170
Fermat’s factorization method, 63
Fermat’s primality test, 33
Fermat’s theorem, 33
Field, 45, 46
Filler letter, 78
Finite continued fraction, 54
Finite field, 47
FIPS (federal information processing 

standards), 188
Flip-flops, 92
Forward secrecy, 27, 226
FTP, 400
Function type, 174

G

Galois field (GF), 47, 49, 188
Gateway-to-gateway architecture, 401
Generator, 231
Greatest common divisor (GCD), 19, 243
Greatest common divisor group, 41
Group centre, 226
Group initialization, 239
Group key, 226

H

Hacker, 381
Handshake protocol, 360
Hash functions, 271

Hash message authentication code, 285
Hidden message, 91
Higher clock frequency, 92
Hill cipher, 83
HMAC, 345
HMAC security, 288
Host-to-gateway architecture, 401
HTTP, 400

I

IDEA, 166
Identity matrix, 84
IDS monitors, 397
IDS screens, 397
IGMP, 225
Image manipulation, 91
IMAP, 400
Index calculus, 234, 235
Infinite continued fraction, 54
Infinite field, 47
Initialization vector (IV), 142
Integrity, 369
Internal feedback LFSR, 92
Internet control message protocol, 398
Internet protocol, 369
 security, 369
Intruder, 2, 3, 6, 8
Intrusion detection, 393
Inverse DES, 155
Inverse initial permutation, 132
Inverse matrix, 83
Invertible, 84
InvMixColumns(), 188, 189, 193
InvShiftRows(), 188, 189, 192
InvSubBytes(), 188, 189
IP level, 369
IPsec, 369, 401
IPsec encapsulating security payload (ESP) 

format, 375
IPsec transport mode, 373
IPsec tunnel mode, 373
IP security architecture, 370
IP security policy, 370
IPv4 AH datagram format, 373
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IPv4 datagram, 371
IPv4 ESP datagram format, 376, 377
IPv6 AH datagram format, 373
IPv6 datagram, 371
IPv6 ESP datagram format, 376
Irreducible polynomial, 49, 193
Issuer, 341
Issuer unique identifier, 333
Issuer X.500 name, 333
Issues in SSL, 362
Issues in TLS, 364

J

Jacobi symbol, 53

K

KeePass, 384
Kerberos, 327
Kerberos version 4, 328
Kerberos version 5, 330
Key, 71
 computation protocol, 240
 distribution, 230
 expansion, 122, 163
 expansion process, 124, 177
 generation, 228
 generation process, 126, 129
 management, 225, 369
 matrix, 79, 83
 pair recovery, 336
 pair update, 336
 recovery, 230
 schedule, 173
Key scheduling algorithm (KSA), 159
Key updating, 230
Keyword, 78
Knapsack cryptosystem, 218
Knapsacksum, 218
Koobface worm, 386

L

Left circular shift, 124
Left shift operation, 168
Legendre symbol, 53

Linear algebra, 83
Linear approximations, 139
Linear congruential generators, 157
Linear cryptanalysis, 139
Linear feedback shift register (LFSR), 92
Linear recurrence relation, 93
Low-watermark integrity audit policy, 394
Low-watermark policy, 394
Luminance, 91

M

Magic constants, 163
Malicious software package, 385
Malwares, 385
Mangler function, 169
Man-in-the-middle attack, 236
Masking keys, 173
Masquerade attack, 7
Mathematical attack, 213
MD5, 273, 345
Meet-in-the-middle attack, 154
Member joins, 241
Member leaves, 242
Message authentication, 269
 code, 269
 requirements, 270
Message compression function, 273
Message digest, 342
Metamorphic, 387
Miller–Rabin primality test, 58
MixColumns(), 188, 189, 193
Modular exponentiation, 16
Monoalphabetic substitution, 81
Multicast, 27
 communication, 225, 226, 239
Multiplication modulo, 168
Multiplicative group, 41
Multiplicative inverse, 76

N

Naive algorithm, 55
Network layer, 369
Network layer security, 369
Network security, 381
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Network structural attacks, 386
NoCertificate, 367
Non-invertible, 84
Non-repudiation, 10, 206
n-tuple, 218

O

Odd round process, 168
Oligomorphic, 387
One-way hash function, 239
Operating system (OS) security, 381
Order information message digest, 342
Output feedback mode, 144

P

Parity checking, 127
P-array, 170
Passcode, 381
Passive attacks, 5
Passphrase, 381
Password, 381
Password-based attack, 378
Password cracking, 393
Password door, 383
Password management, 381
PasswordSafe, 385
Payment gateway, 341
Payment information message digest, 342
Payment order message digest, 342
Permutation, 121
PGP, 346
Phishing, 393
PITABLE, 177
PKI management model, 335
Plaintext, 71, 154
Playfair cipher, 78
Point addition, 258, 259
Point doubling, 259
Point multiplication, 260
Point-to-point protocol over ethernet 

(PPPoE), 383
Pollard_rho, 64
Polygraphic substitution, 83
Polymorphic, 387

Polynomial, 47
POP, 400
Practically known attacks, 156
Pre-image resistance, 276
Premature state, 92
Primality testing, 55
Primary function, 122
Primary permutation, 122
Prime factorizations, 20
Primitive polynomial, 94
Primitive root, 231
Privacy breach attacks, 386
Private key, 205, 226
PRNG’s seed, 158
Program security, 381
Protocol, 385
Pseudo random bit pattern, 164
Pseudo random function (PRF), 158
Pseudo random generation algorithm 

(PRGA), 159
Pseudo random number generator (PRNG), 157
Public key, 205
Public key cryptography, 71, 348
Public key infrastructure(PKI), 327, 335
Public key values, 226

Q

Quadratic residue, 52

R

Rail fence cipher, 89
Random delay, 214
Random word, 163
RC2, 355
RC4, 158
RC5, 162
Rcon[], 189
Real division method, 48
Record protocol, 360
Rectangular matrix, 90
Reducible polynomial, 49
Related-key attack, 181
Replay attack, 7
Replay protection, 369
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Revocation request, 336
RFC, 349
Ring, 45
Ring policy, 394
RIPEMD-160, 282
RoboForm, 385
Rootkits, 385
rotateword(), 197
Rotation keys, 173
RotWord(), 189
Round operation, 126, 129
RSA, 345, 355
RSA algorithm, 208, 331

S

S array, 159
S bits, 144
S-box array, 170
Scalability, 245
scareware, 385
S-DES encryption, 122
Secondary function, 124
Second – Pre-image resistance, 276
Secret integer, 231
Secret key cryptography, 71
Secure electronic transaction, 340
Secure hash algorithms, 275
Secure HTTP (HTTPS), 359
Secure multicast communication, 228, 230
Secure/multipurpose internet mail 

extensions, 349
Secure socket layer (SSL), 359, 401
Security, 73
 architecture, 370
 association, 370
 attacks, 5
 issues with IPsec, 377
 layer, 364
 parameters index, 370
 policy, 391
 policy database, 369
 protocol identifier, 370
 services, 9
ServerKeyExchange, 361

Session key, 329
SHA-1, 345, 354
SHA-256, 354
SHA-512, 354
Shallowest right most, 240
Shared secret key, 230
Shift register, 144
ShiftRows(), 188, 189, 192
S-HTTP, 354
Sieve of eratosthenes, 56
Simplification method, 48
Single output transformation, 166
Singular matrix, 84
S/MIME, 349
SMTP, 400
Spyware, 385
SQL, 400
SQL injection attacks, 402
Square matrices, 84
SSL applications, 362
SSL architecture, 359
SSL protocol stack, 359
Standard extension, 334
Standard frequency, 79
Static groups, 226
Stealth viruses, 388
Steganography, 91
stegano-image, 91
StorageCrypt, 384
Stream ciphers, 140
Strict integrity policy, 394
SubBytes(), 188, 189
subgroup key, 226
Subject public key information, 333
Subject unique identifier, 333
Subject X.500 name, 333
sub-key, 123, 124, 167
Substitution, 121
Substitution techniques, 74
SubWord(), 189
Superincreasing knapsack, 218
Support node, 240, 241
Swapping, 122
Sybil, 386
Symmetric block cipher, 127
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Symmetric key, 71
Symmetric/private key, 205

T

Taint, 408
The datagram truncation attack, 366
The message forgery attack, 366
Ticket, 327
Timing attack, 213, 214
TLS architecture, 363
Transport layer, 372
Transport layer security (TLS), 359, 401
Transport mode, 370
Transposition techniques, 71
Trial division method, 61
Trigger mechanism, 387
Triple DES, 153, 155, 170
Trojan horses, 385
Trusted BSD, 391
Trusted solaris, 391
Tunnel mode, 370
Two rails, 89

U

User datagram protocol, 398

V

Validity period, 333
Variable length key, 159, 170
Version 3 X.509 certificates, 333
Vigenere cipher, 80

Viral marketing, 386
Virtual private networks, 400
Viruses, 385
VoIP, 400

W

w-bit registers, 166
Web security, 339
Whirlpool, 288
Whirlpool cipher, 291
Whirlpool encryption algorithm, 291
Whirlpool hash structure, 289
Wi-Fi protected access (WPA), 384
Wired equivalent privacy (WEP), 384
Wired TLS, 362
Wireless application protocol, 364
Wireless transport layer security, 364
Word-oriented cipher, 163
Worms, 385
WTLS architecture, 364
WTLS in WAP, 365

X

X.500 series, 331
X.509, 327, 331
X.509 certificate, 331
X.509v3 digital certificate, 341
X.509 version 1 and version 2, 331
XML, 400
XOR operation, 158, 170
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