

 Systems Engineering
with SysML/UML

Morgan Kaufmann OMG Press

Morgan Kaufmann Publishers and the Object Management Group™ (OMG) have
joined forces to publish a line of books addressing business and technical topics
related to OMG’s large suite of software standards.

OMG is an international, open membership, not-for-profi t computer industry
consortium that was founded in 1989. The OMG creates standards for software
used in government and corporate environments to enable interoperability and
to forge common development environments that encourage the adoption and
evolution of new technology. OMG members and its board of directors consist
of representatives from a majority of the organizations that shape enterprise
and Internet computing today.

OMG’s modeling standards, including the Unifi ed Modeling Language™
(UML®) and Model Driven Architecture® (MDA), enable powerful visual design,
execution and maintenance of software, and other processes—for example, IT
Systems Modeling and Business Process Management. The middleware standards
and profi les of the Object Management Group are based on the Common Object
Request Broker Architecture® (CORBA) and support a wide variety of industries.
More information about OMG can be found at http://www.omg.org/.

Related Morgan Kaufmann OMG Press Titles

UML 2 Certifi cation Guide: Fundamental and Intermediate Exams
Tim Weilkiens and Bernd Oestereich

Real-Life MDA: Solving Business Problems with Model Driven Architecture
Michael Guttman and John Parodi

Architecture Driven Modernization: A Series of Industry Case Studies
Bill Ulrich

 Systems Engineering
with SysML/UML

Modeling, Analysis, Design

 Tim Weilkiens

Acquisitions Editor: Tiffany Gasbarrini
Publisher: Denise E. M. Penrose
Publishing Services Manager: George Morrison
Project Manager: Mónica González de Mendoza
Assistant Editor: Matt Cater
Production Assistant: Lianne Hong
Cover Design: Dennis Schaefer
Cover Image: © Masterfile (Royalty-Free Division)

Morgan Kaufmann Publishers is an imprint of Eslsevier.
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA

This book is printed on acid-free paper.

Copyright © 2006 by dpunkt. verlag GmbH, Heidelberg, Germany.
Title of the German original: Systems Engineering mit SysML/UML (ISBN: 978-3-89864-409-9)
Translation © 2007 Morgan Kaufmann Publishers, an imprint of Elsevier, Inc. All rights reserved.

Designations used by companies to distinguish their products are often claimed as trademarks or
registered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the
product names appear in initial capital or all capital letters. Readers, however, should contact the
appropriate companies for more complete information regarding trademarks and registration.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, scanning, or otherwise—without prior
written permission of the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights Department in
Oxford, UK: phone: (�44) 1865 843830, fax: (�44) 1865 853333, E-mail: permissions@elsevier.com.
You may also complete your request online via the Elsevier homepage (http://elsevier.com), by
selecting “Support & Contact” then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Weilkiens, Tim.
 [Systems Engineering mit SysML/UML. English]
 Systems engineering with SysML/UML: modeling, analysis, design/Tim Weilkiens.
 p. cm. — (The OMG Press)
 Includes bibliographical references and index.
 ISBN 978-0-12-374274-2 (pbk. : alk. paper) 1. Systems engineering. 2. SysML (Computer science).
3. UML (Computer science). I. Title.

 TA168.W434 2008
 620.001�171—dc22

2007047004

ISBN: 978-0-12-374274-2

08 09 10 11 12 13 10 9 8 7 6 5 4 3 2 1

Printed in the United States of America

For information on all Morgan Kaufmann publications, visit our
Web site at www.mkp.com or www.books.elsevier.com

Working together to grow
libraries in developing countries

www.elsevier.com | www.bookaid.org | www.sabre.org

 Contents

 Foreword ix
 Author Biography xii

 CHAPTER 1 Introduction ... 1
 1.1 Preliminaries ... 1
 1.1.1 Is This Book for Me? ... 3
 1.1.2 What Will I Get from This Book? .. 3
 1.1.3 What Motivated This Book? And Thanks! 4
 1.1.4 How Do I Read This Book?... 5
 1.1.5 What Next? .. 5
 1.2 Systems Engineering ... 6
 1.2.1 What Is Systems Engineering? ... 7
 1.2.2 Systems Engineering Processes .. 10
 1.2.3 The Systems Engineer .. 12
 1.2.4 Systems Engineering History ... 13
 1.2.5 International Council on Systems Engineering 14
 1.2.6 Systems Engineering versus Software Engineering 15
 1.2.7 Marginal Notes ... 15
 1.3 The OMG SysML TM and UML TM Languages .. 16
 1.4 Book Context .. 17
 1.4.1 Autosar ... 18
 1.4.2 Capability Maturity Model Integration 18
 1.4.3 BPM .. 19
 1.4.4 ISO/IEC 15288 ... 19
 1.4.5 MATLAB/Simulink .. 20
 1.4.6 The Requirement Interchange Format 20
 1.4.7 Statemate ... 21
 1.4.8 Step .. 21
 1.4.9 Specifi cation and Description Language 22
 1.4.10 V-Model XT .. 22

 CHAPTER 2 The Pragmatic SYSMOD Approach 23
 2.1 Case Study ... 24
 2.1.1 Describe Project Context... 28
 2.2 Determining Requirements .. 33
 2.2.1 Identify Stakeholders ... 34
 2.2.2 Collect Requirements .. 38
 2.3 Modeling the System Context ... 45
 2.3.1 Identify System Actors ... 45
 2.3.2 Model System/Actor Information Flow 54
 2.3.3 Identify System Interaction Points ... 59
 2.4 Modeling Use Cases .. 63
 2.4.1 Identify Use Cases .. 65

vi

 2.4.2 Describe Use Case Essences .. 75
 2.4.3 Describe System Processes .. 80
 2.4.4 Model Use Cases Without Redundancies 84
 2.4.5 Model Use Case Flows ... 88
 2.4.6 Model Object Flows ... 94
 2.5 Model Domain Knowledge ... 102
 2.6 Create Glossary ... 107
 2.7 Realizing Use Cases ... 110
 2.7.1 Model System/Actor Interaction .. 112
 2.7.2 Derive System Interfaces ... 114
 2.7.3 Model System Structures.. 116
 2.7.4 Desire State Model ... 125
 2.8 Marginal Notes .. 128
 2.8.1 Variant Management .. 129
 2.8.2 Model Simulation ... 130
 2.8.3 Testing.. 131
 2.8.4 The System of Systems ... 134
 2.8.5 Modeling Patterns .. 135
 2.8.6 Model Views ... 139

 CHAPTER 3 UML—Unifi ed Modeling Language 143
 3.1 History .. 144
 3.2 Structure and Concepts .. 146
 3.3 The Class Diagram .. 148
 3.3.1 Class ... 149
 3.3.2 Attribute ... 151
 3.3.3 Operation ... 153
 3.3.4 Association ... 154
 3.3.5 Aggregation and Composition ... 155
 3.3.6 Dependency ... 157
 3.3.7 Abstraction Dependency ... 158
 3.3.8 Generalization .. 158
 3.3.9 Interface ... 160
 3.3.10 Signal .. 161
 3.3.11 Data Types .. 162
 3.3.12 Association Class .. 163
 3.4 The Composite Structure Diagram ... 164
 3.4.1 Role .. 165
 3.4.2 Connector .. 167
 3.4.3 Port .. 167
 3.5 The Use Case Diagram .. 168
 3.5.1 Use Case ... 168
 3.5.2 Actor .. 170
 3.5.3 Include Relationship .. 173
 3.6 The Activity Diagram .. 173
 3.6.1 Activity ... 174

Contents

vii

 3.6.2 Action and PIN ... 177
 3.6.3 Parameter Set ... 179
 3.6.4 Activity Edge .. 182
 3.6.5 Initial and Final Nodes ... 182
 3.6.6 Decision and Merge Nodes .. 185
 3.6.7 Fork and Join Nodes .. 186
 3.6.8 Interruptible Activity Region ... 189
 3.6.9 Expansion Region .. 190
 3.6.10 Activity Partition .. 191
 3.7 The State Machine Diagram .. 192
 3.7.1 State Machine ... 192
 3.7.2 State ... 193
 3.7.3 Transition ... 195
 3.7.4 Trigger and Event ... 197
 3.7.5 Initial and Final States .. 198
 3.7.6 Pseudostate .. 199
 3.8 Interaction Diagrams .. 203
 3.8.1 Interaction ... 204
 3.8.2 Lifeline ... 205
 3.8.3 Message .. 206
 3.8.4 Combined Fragment .. 207
 3.8.5 Interaction Use .. 210
 3.8.6 State Invariant .. 211
 3.8.7 Time Constraints .. 212
 3.9 The Package Diagram.. 214
 3.9.1 Package .. 214
 3.10 Other Model Elements .. 214
 3.10.1 Diagram Frame ... 215
 3.10.2 The Stereotype Extension Mechanism 216
 3.10.3 Information Item and Information Flow 218
 3.10.4 Comment ... 220
 3.10.5 Constraint .. 220

 CHAPTER 4 SysML—The Systems Modeling Language 223
 4.1 History .. 224
 4.2 Structure and Concepts .. 225
 4.3 The Requirement Diagram .. 226
 4.3.1 Requirement .. 227
 4.3.2 The Derive Requirement Relationship 229
 4.3.3 Namespace Containment ... 230
 4.3.4 Satisfy Relationship .. 231
 4.3.5 Copy Relationship ... 233
 4.3.6 Verify Relationship ... 234
 4.3.7 Test Case .. 235
 4.3.8 Refi ne Relationship .. 235
 4.3.9 Trace Relationship ... 236

Contents

viii

 4.3.10 Table Notation ... 237
 4.4 Allocation .. 238
 4.4.1 Allocation ... 240
 4.4.2 Allocate Activity Partition .. 241
 4.4.3 Table Notation ... 242
 4.5 Block Diagrams ... 242
 4.5.1 Block .. 243
 4.5.2 Distribution Defi nition .. 247
 4.5.3 Value Type .. 247
 4.5.4 Unit and Dimension ... 248
 4.5.5 Flow Port ... 250
 4.5.6 Item Flow ... 252
 4.5.7 Association Block ... 252
 4.5.8 Data Types .. 253
 4.6 The Parametric Diagram ... 254
 4.6.1 Constraint Block .. 254
 4.7 The Use Case Diagram .. 256
 4.8 The Activity Diagram .. 257
 4.8.1 Activity Composition (Function Tree) 258
 4.8.2 Control Operator ... 258
 4.8.3 Rate .. 261
 4.8.4 Special Object Node Properties ... 261
 4.8.5 Probability .. 264
 4.9 The State Machine Diagram .. 264
 4.10 Interaction Diagrams .. 265
 4.11 General Modeling Elements .. 265
 4.11.1 Rationale .. 266
 4.11.2 Diagram Frame ... 266
 4.11.3 Model View and Viewpoint .. 268
 4.11.4 Problem ... 270

 CHAPTER 5 Systems Engineering Profi le—SYSMOD 271
 5.1 Actor Categories ... 271
 5.2 Discipline-Specifi c Elements ... 274
 5.3 Extended Requirement ... 275
 5.4 Essential Activity ... 276
 5.5 Domain Block ... 277
 5.6 Weighted Requirement Relationships... 278
 5.7 Continuous and Secondary Use Cases .. 279
 5.8 Stakeholders ... 281
 5.9 Systems and Subsystems ... 282
 5.10 System Context Elements ... 283
 5.11 System Processes .. 283

 Glossary 285

 References 295

 Index 299

Contents

ix

 According to the Boeing Commercial Aircraft Company, a Boeing 747-400 air-
craft has a maximum gross take-off weight (including a typical 416 passengers,
171 cubic meters of freight in the cargo hold, and over 200,000 kg of fuel) of
nearly 400,000 kg. Four behemoth engines push the bird at up to 88 percent of
the speed of sound for unbelievable distances, up to 13,500 km, without refueling.
The length of the aircraft alone (45 m) is longer than the Wright brothers ’ entire
first flight.

 But these amazing statistics, after 30 years finally to be eclipsed by even larger
passenger aircraft, are nothing compared to the complexity of the system of sys-
tems which makes up the Boeing 747-400. The aircraft ’ s electrical systems com-
prise some 274 km of wiring alone; high-strength aluminum and titanium parts
are designed to work both standing still and heated by rapidly passing air. Backup
systems keep navigation and life-sustaining systems running if primary systems
fail; and even the in-flight entertainment system is one of the more complex sys-
tems on earth. In fact, the Boeing 747-400 comprises some 6 million parts, about
half of which are simply fasteners like screws and bolts. It ’ s no wonder that a
Boeing spokesman once quipped, “ We view a 777 as a collection of parts flying in
close proximity. ” As a frequent flyer, I constantly and fervently hope that that prox-
imity goal is respected!

 All of these facts reflect a fact that all engineers understand: complexity is difficult
to manage, and most interesting systems are complex. Worse, the compounding of
systems into systems of systems—e.g., back to our airplane, the electrical, hydrau-
lic, propulsion, lift surface, life support, navigation, and other systems of aircrafts—
tends to introduce new complexities in the form of unexpected overlaps of parts
and unexpected behavior of previously well-behaved systems.

 The net result of the rising complexity of systems is the crying need for ways
to express component systems in ways that those designs can be easily shared
between design teams. A shared language is a crucial component of the design
methodology of any system or process, be it electrical, software, mechanical, or
chemical. And if that shared language is based on a pre-existing language, the team
which must share design will be up to speed more quickly and more able to com-
plete the design task—and the more-demanding long-term maintenance and inte-
gration task—better, faster, and cheaper.

 This line of thinking was the thought process behind the Systems Modeling
Language (SysML), an open standard developed and managed by the Object

 Foreword by
Richard M. Soley

x Foreword

Management Group (OMG) and its hundreds of worldwide member companies.
OMG ’ s SysML has quite a lot of positive aspects:

 ■ It is based on (an extension of a subset of) the OMG ’ s own Unifi ed Modeling
Language, or UML. Thus software developers comfortable with UML can
move to SysML easily and tool developers with UML tools can easily support
SysML as well.

 ■ It is graphical. I have always been struck by the way software developers
will share design with other developers using graphics (boxes and lines),
but then write (for example) “ C �� code ” when communicating that design
to a computer. Likewise product engineers will work out the details of a
family of products using graphs, boxes, and lines but then outline those
choice points using a textual approach, e.g. PDES/STEP. Graphical languages
are a natural choice for design and have been used for thousands of years
(witness building and ship blueprints, electrical circuit diagrams, etc.).

 ■ It has many implementations. International standards simply aren ’ t worth the
paper they are printed on (or the hard disk space they occupy) if they are
not implemented. Even before the SysML fi nal specifi cation became available
in early 2006, several companies announced implementation of the standard.

 It is important to understand that SysML is not just another software develop-
ment modeling language. While software is an important component of nearly all
complex systems today, it is almost never the only component—planes, trains, and
automobiles all have software, and so do building controllers and chemical plants,
but they also have plumbing, hydraulics, electrical, and other systems that must be
harmonized and co-designed. Likewise the human and automated processes to use
complex systems need to be mapped out as well in order to get good use from
them (as well as maintain and integrate those systems for future requirements and
into future systems). And all of these co-design issues need to take into account
the fact that all complex systems are available in multiple configurations, based on
facilities requirements, personnel hiring issues, and myriad other variables.

 This is the focus of the SysML language, a language to model all of these different
factors in the course of engineering complex systems and systems of systems. The
purpose is not to mask the complexity of those systems, but rather to expose and
control it in the face of constantly changing business requirements and constantly
changing infrastructure.

 SysML is likely not the last language for engineering complex systems; the fast-
paced change in most engineering fields (and in fact introduction of completely
new engineering fields, like bioengineering) will likely cause change in the specifi-
cation language itself. This shouldn ’ t be a surprise to any engineer; other long-lasting
xispecification languages have changed over time. One simple example: building
blueprints are several hundred years old, but those made before about 1880 didn ’ t
feature the international symbol for electrical outlets, since that feature didn ’ t
exist yet. Languages change to suit changing requirements in engineering, and

xiForeword

fortunately SysML itself is designed to change, by being based on a metamodeling
infrastructure also standardized by the OMG, the Meta Object Facility (MOF). This
same technology can be used to transform and integrate existing designs in older
engineering modeling languages, including IDEF (a language heavily used in many
fields, including aviation).

 This brings us full circle, back to that collection of 6 million parts flying in close
formation. There is no hope of developing such a large collection of parts—and
people, facilities, hardware, software, hydraulics, navigation, and HVAC—without a
shared design language which takes into account the constant change of compo-
nent systems. SysML was specifically designed to address that need, and is already
doing so in parts from tiny embedded robotics controllers to huge industrial
components.

 So enjoy learning the language. While not simple—complex problems often
require complex solutions—it ’ s logical and based on good engineering design
practice. And keep those parts flying in close proximity!

 Richard Mark Soley, Ph.D.
 Chairman and Chief Executive Offi cer

 Object Management Group, Inc.
 Lexington, Massachusetts, USA

 Tim Weilkiens works as a consultant and trainer for German consulting company
oose Innovative Informatik GmbH. He is a member of the OMG working groups
about SysML and UML and has written sections of the SysML specification. His
son Ben helped energetic writing the book. You can reach both at twe@system-
modeling.com

 Author Biography

1

 Technology evolves from the primitive over the complicated to the simple.
 (Antoine de Saint-Exupéry)

 When you have read this chapter you can answer the following questions : 1

 ■ Why is this book around?
 ■ What is systems engineering?
 ■ What relation is there between SysML and UML?
 ■ How does the content of this book relate to topics like CMMI, V model, or

AUTOSAR?

 1.1 Preliminaries
 “ Things had been much simpler in the past. You had been able to put something
up and get it running with just a handful of people. Today the number of peo-
ple you need quickly runs up to a hundred to develop a decent system. And even
then they don ’ t normally get things right … With all those experts from all kinds
of disciplines … ”

 I hear such and similar talk increasingly often. As a trainer and consultant, I
meet a lot of people from most different industries. But the tone is always the
same. What ’ s the reason? Very simple: progress.

 We have reached a point where what ’ s needed are complex and distributed
systems, but where conventional development methods are not yet ready to make
such systems available fast enough and at acceptable cost.

 We cannot expect to develop increasingly progressive, larger, and better sys-
tems while continue using the same tools. Our approach, the modeling languages
we use, and the development environments have to be part of this progress and
evolve in line with it.

 Introduction 1
CHAPTER

1 If you can’t please write to me and ask me: twe@system-modeling.com.

2 CHAPTER 1 Introduction

 In software development, e.g., this evolution can be seen quite clearly.
Development tools have known increasingly larger components (from 0/1 to
classes/objects) from the times we used punch cards, and then Assembler, and
then procedural programming languages, and eventually object-oriented lan-
guages, thus facilitating the description of complex systems. The evolution to the
next generation has already begun: The graphical Unifi ed Modeling Language
(UML) has become increasingly popular for developing software systems, and it
is being used to solve more and more tasks that had been previously done with
conventional programming languages (Figure 1.1).

 In systems engineering (system development) the boundaries between the dif-
ferent disciplines continue to blur. Especially software is used in more and more
fi elds. These hybrid systems represent a particular challenge to the development.

 We can use proven methods to effi ciently develop individual components of a
complete system. However, the complete system is more than the sum of its com-
ponents. The interplay between all the elements can be extremely complex and
hard to control.

 The need for a holistic line of thinking is particularly strong in the software
development fi eld. Embedding a piece of software in a system is a critical com-
plexity factor. The consequence is that both approach models and notations are
required to be able to develop these systems effectively. Otherwise the develop-
ment cost will rise out of proportion compared with an acceptable price in the
near future.

 Systems engineering has been dealing with this problem for quite some time.
The development of large systems in which many different disciplines participate
requires holistic lines of thinking. This means that the requirements and structures
of a system are looked at totally detached from the knowledge of specifi c details.
The entire lifecycle from the idea to the disposal is planned to develop a system
that fulfi lls the wishes of all participants.

 Software development can learn a lot from systems engineering. But there
is no taking without giving. Systems engineering can also learn from software
development, where highly developed modeling tools and methods are available.

 FIGURE 1.1

 Increasing abstraction of programming languages.

1010001001

Assembler

Object-oriented languages

Procedural languages

Graphical modeling languages (UML)
A

bs
tr

ac
tio

n G
en

er
at

io
n

3

The Unifi ed Modeling Language (UML TM) is a modeling language from this fi eld.
It has established itself as a worldwide standard. What systems engineering has
been lacking is a standardized modeling language. This situation will change with
the new Systems Modeling Language (OMG SysML TM). SysML is based on UML
and is supported by leading organizations from the systems engineering industry,
including the International Council on Systems Engineering (INCOSE).

 1.1.1 Is This Book for Me?
 This book will be interesting and helpful to you if you

 ■ want to familiarize yourself with the new SysML modeling language.
 ■ write, specify, and develop systems, i.e., if you are active in system analysis

and design.
 ■ work with complex systems.
 ■ want to use SysML or UML in systems engineering.
 ■ develop systems with mixed disciplines, e.g., software and hardware.
 ■ want to create a holistic model in which analysis and design elements relate

in a reproducible way.
 ■ want to familiarize yourself with a universal way that leads you from the sys-

tem idea to the system design.
 ■ are active in software development and have a holistic view.
 ■ cannot identify yourself with any of the above points. In cases of doubt ask

me: twe@system-modeling.com .

 This book will introduce you to a toolbox you can use to take a uniform road
all the way from the idea of a system to its design. We keep the results in detailed
and expressive models. The modeling language is SysML or UML. You will learn
both languages as well as their common features and their differences. The tools
described here work both with SysML and UML. To give the child a name I call
the toolbox SYSMOD —derived from “ system modeling. ”

 1.1.2 What Will I Get from This Book?
 You find the following in this book:

 ■ A toolbox for system development from the system idea to the design
(SYSMOD).

 ■ Summaries about each of the tools so that you will be able to easily put
them together to an individual approach. In fact, the book outlines a stan-
dard path for you.

 ■ A description of the SysML .
 ■ A description of the UML .
 ■ An introduction to systems engineering.
 ■ Marginal notes, e.g., on variant management, simulation, testing, and model-

ing patterns.

1.1 Preliminaries

4 CHAPTER 1 Introduction

 1.1.3 What Motivated This Book? And Thanks!
 The first time I thought about writing this book was approximately at the year
2003. At that time I had held many seminars on using UML for system analy-
sis and design. Most of the participants/attendants came from software develop-
ment—from programmers to project managers. However, I found in one particular
seminar that an unusual group of people had gathered: engineers, including tel-
ecommunication engineers, but not a single software developer. They planned a
large project that was to include software, but also construction work, hardware,
and other disciplines. As the training course went on I reduced the software aspect
and explained the analysis and design techniques in more general terms. What the
attendants gained from this was an excellent approach for their project.

 This particular constellation of attendants has not been an exceptional case
from then on. It was followed by more seminars, workshops, and coaching con-
tracts that were not attended by software developers, but by engineers from other
disciplines who wanted to familiarize themselves with system analysis and design
using UML for their work. I found myself thinking more and more about issues,
ideas, and further considerations: How much software does UML actually contain?
How can I describe requirements in UML for non-software fi elds? How do I handle
hybrid systems? I gradually became aware of the fact that the UML language and
the approaches it supports can be used in many fi elds independently of software.

 A glance over the fence helped me arrive at the systems engineering dis-
cipline. I found this a discipline where my line of thinking fi tted well. It was by
pure chance that, as I had been working on UML 2 within my work in the Object
Management Group (OMG), I was asked whether I could support the develop-
ment of the SysML . That was a perfect match with the ideas I had back then and I
accepted immediately. Since then, I have been actively participating in the develop-
ment of SysML, and I am a coauthor of the SysML specifi cation.

 The general approach was to analysis and design, the fi eld of systems engineer-
ing, and the SysML modeling language—the mosaic was complete. I want to show
you the picture that results from this perfect match in this book.

 I was able to fi nd the matching pieces for the mosaic only because my ideas
found a fruitful soil in many discussions with my customers to fully mature. My
sincere thanks! I ’ d like to mention fi rst and foremost Reiner Dittel, Marc Enzmann,
and Ulrich Lenk.

 The creative disputes in the SysML work group with very competent modelers
and system engineers have taken me huge steps forward. I ’ m particularly grateful
to Conrad Bock, Sanford Friedenthal, Bran Selic, Alan Moore, and Roger Burkhart.

 Extremely important for my professional and personal development are the
environment and freedom of movement I enjoy from oose Innovative Informatik
GmbH, the company I work for. My special thanks to my colleagues and particu-
larly to Bernd Oestereich for their support. Several pictures in this book are by
courtesy of oose Innovative Informatik GmbH.

 Praise and thanks to my publisher, fi rst and foremost to Christa Preisendanz!
 It ’ s always a pleasure to communicate with Richard M. Soley. Thanks for your

great foreword.

5

 No book can achieve suffi cient quality if it weren ’ t for domain-specifi c review.
Looking things from outside is important. I ’ m particularly grateful to Wolfgang
Krenzer of IBM Automotive Industry, and Andreas Korff of ARTiSAN Software Tools
GmbH.

 I ’ d like to thank Pavel Hruby for his excellent UML Visio template (http://www.
phruby.com). By the way, it is also used for the offi cial UML and SysML specifi cations.

 My sincere thanks to you, of course, for having bought this book and for being
interested in the subject. I ’ m interested in your feedback. Please write to me: twe@
system-modeling.com .

 1.1.4 How Do I Read This Book?
 This book consists of two parts: Chapters 1 and 2 are intended for consecutive
reading, while the second part from Chapter 3 on is the reference part suitable
for looking things up.

 You are currently reading Chapter 1. This chapter informs you about the book
itself, e.g., how to read this book in this section, and introductory basics about sys-
tems engineering, SysML, and UML.

 Chapter 2 describes the SYSMOD approach used to collect and model the
requirements to a system, and to derive a design that meets these requirements.
The type of system—whether hardware or software—doesn ’ t play an important
role. The results from the approach are modeled using SysML. However, you don ’ t
have to fully rely on SysML tools; you can also use UML and its stereotypes.

 At the end of Chapter 2 I ’ ll briefl y mention various other issues that are impor-
tant for this approach, such as variant management, simulation, and others.

 In Chapters 3 and 4 I will explain the SysML and UML modeling languages. Since
SysML builds on UML, the SysML chapter describes only the extending elements.
Accordingly the UML chapter discusses only those language elements that are also
used in SysML. So these two chapters together represent the entire SysML language.
The demarcation shows you clearly what UML can do and what SysML adds to it.

 Chapter 5 describes the language extensions (stereotypes) needed in the
approach discussed in Chapter 2. They do not belong to the SysML and UML
language standards.

 1.1.5 What Next?
 This is not the end. It is not even the beginning of the end. But it is, perhaps,
the end of the beginning.

(Winston Churchill)

 Together with SysML, UML proliferated further. Starting as a pure modeling
language for software development, UML extended its use to business process
modeling (BPM) [33], and more recently became a modeling language for systems
engineering. What next?

 It seems that UML is fi t and ready to become the lingua franca for modeling.
It has the potential. UML is extendable, which means that it can be adapted to

1.1 Preliminaries

6 CHAPTER 1 Introduction

specifi c needs. It is used, proven, and accepted all over the world. And behind it is
the OMG —a globally active consortium with members being leading IT corpora-
tions—as well as SysML and the INCOSE .

 Although I am a strong advocate of UML, considering it to be unrivaled in its
role, I don ’ t think it will become the lingua franca for modeling. I think (and hope)
that no language will achieve this. A certain diversity is necessary. But UML is sow-
ing the seed for future modeling languages, which will lead to a situation where
these languages will have a similar core and be compatible to a certain extent.

 The future will bring about a great demand for modeling languages. The sys-
tems we develop will become increasingly complex. It is therefore a good idea
to fi rst thoroughly design them on the drawing board and perhaps simulate them
before using them in practice.

 The modeling language allows me to move on different abstraction levels. The
more abstract I get the simpler the system appears to be. This is the art of being
concrete on an abstract level.

 In a collection of parts called A300
 flying in close proximity somewhere

 high above Germany in May 2007.
 (Tim Weilkiens)

 For further clarifi cations, please refer to:

 ■ The homepage to this book:
 http://www.system-modeling.com

 ■ Direct contact:
 Twe@system-modeling.com

 ■ Consulting, seminars, project work:
 http://www.oose.de

 ■ OMG™:
 http://www.omg.org —main page
 http://www.omgsysml.org —OMG SysML ™
 http://www.uml.org —UML ™

 ■ INCOSE:
 http://www.incose.org

 1.2 Systems Engineering
 Every discipline and every industry have their own methods. Be it software devel-
opment, hardware development, mechanics, construction, psychology, and so on.
These demarcations work fine as long as you stay within one discipline with your
project. Things get harder, however, if your project extends over several disciplines.
It means that interfaces have to be created and coordinated between the methods
of these disciplines. Product management has to introduce its requirements to the
system development process, marketing is involved, and so on. Then project man-
agement is confronted with the challenge of having to consider the particularities
of all disciplines.

7

 The large number of jokes about the peculiarities of physicians, engineers,
IT people, mathematicians and other engineers underline the fact that different
worlds collide in interdisciplinary projects. 2 Misunderstandings and confl icts are
preprogrammed.

 For example, a team of software developers think about a new high-performing
architecture. They fi nd that it requires more memory resources. Unfortunately,
they fi nd this only much later when they start integrating it on the target hard-
ware. The hardware developers see a way to expand the hardware to suffi cient
memory. The problem seems to have been solved. The bad thing is that they fi nd
out much later that the expanded hardware will no longer fi t in the enclosure
since nobody told the enclosure designers that there had been a couple changes.
The new hardware develops more heat, exceeding the required upper limits. In
the end product management fi nds that such a high-performing software archi-
tecture wasn ’ t actually necessary. Each of the disciplines involved had contributed
the best possible solution from its area and its view. Unfortunately, the sum of all
these good individual solutions is not the best solution for the overall system.

 So 1 � 1 makes 3. The development of single subsystems is well under control.
The “ � ” increases the complexity and leads to a wide range of different problems.
It is found all too often that projects lack a role responsible for forming sums,
i.e., the holistic view across the entire system. That ’ s a real pity because there are
proven methods and strategies for this role. Systems engineering is a discipline
that has been dealing with this issue for more than 50 years.

 “ Wow, that ’ s pretty complex! ” You ’ ve certainly heard this at least once. What
do people mean by that? What does “ complex ” mean? There is a similar word:
complicated. Do they mean the same? No! Something complex doesn ’ t have to be
complicated. The following defi nition stems from [28].

 Complexity refers to the number and type of relationships between elements
in a system.

 Intricacy refers to the number of different elements.
 Based on this defi nition, many systems are complex, while hybrid systems

are additionally complicated, or intricated. That ’ s the core challenge in systems
engineering.

 1.2.1 What Is Systems Engineering?
 You ’ ve surely heard of a discipline called systems engineering. But even if you
haven ’ t, the term will probably ring a bell. Both systems and engineering are
well-known general terms. Hearing them combined, everybody has a certain idea
of what this discipline is all about. The trouble is that these ideas are often very
different.

 2 An engineer, a chemist, and an IT guy are in a car driving across the desert. All of a sudden the car
stops, and the three of them start quarreling about what might have been the cause of failure. Says
the chemist: “ Got to be an unexpected entropy increase in the engine compartment! ” The engineer:
 “ Crap! Either the V-belt is broken or the ignition distributor is gone. Simple as that! ” … and so on
till the IT guy lost his patience: “ Who cares. Let ’ s just get off, then back in the car, and you ’ ll see it ’ ll
run again. ”

1.2 Systems Engineering

8 CHAPTER 1 Introduction

 What do you mean by a system? An airplane? A car? An inventory management
system? A navigation system? A word processor? Your laptop? A company? All
examples are correct.

 A system is an artifact created by humans that consists of components or
blocks that pursue a common goal that cannot be achieved by each of the sin-
gle elements. A block can consist of software, hardware, persons, or any other
units [45].

 This defi nition of a system is intentionally very general. You can also think of
very large systems in the sense of systems engineering, e.g., a country ’ s aviation
system, consisting of airports and air traffi c routes.

 When looking at the size of a system you have to clearly distinguish between
the size of the real system and the size of the system model. A country ’ s aviation
system is clearly larger than a car in real life. However, when you look at the under-
lying system models it could be just the opposite. It all depends on the detailing
depth of the model. For example, we could model a car to include even the tiniest
little screw. In the system model for an aviation system, however, we have airplanes
and airports as our smallest units.

 You have just learned what the fi rst part of the term systems engineering
means. The second part, engineering , generally stands for a discipline that uses
methods and tools in a structured way to develop a product.

 Putting the two words together, the term systems engineering describes meth-
ods used to successfully develop systems.

 Systems engineering concentrates on the defi nition and documentation of
system requirements in the early development phase, the preparation of a system
design, and the verifi cation of the system as to compliance with the requirements,
taking the overall problem into account: operation, time, test, creation, cost and
planning, training and support, and disposal [45].

 Systems engineering integrates all disciplines and describes a structured devel-
opment process, from the concept to the production to the operation phase and
fi nally to putting the system out of operation. It looks at both technical and eco-
nomic aspects to develop a system that meets the users ’ needs.

 As such, systems engineering stands above specifi c disciplines, such as soft-
ware development, for example. As a so-called meta-discipline, systems engineer-
ing deals with the entire approach, from the idea to create a system (trigger) to
the development, realization, and use to the disposal of the system. This holistic
line of thinking can also include solutions to problems that emerge only as a new
system is introduced.

 Figure 1.2 shows a bundle of systems engineering tasks in the form of a SysML
package diagram. The individual areas are considered on the system level, rather
than diving into the details of one single discipline.

 Here, you fi nd the concepts of systems engineering in the specifi c disci-
plines again. The way how problems are formulated and solutions are developed
here shows many parallels that are generally described in systems engineering.
For example, contents include the description of lifephase models and problem-
solving cycles.

9

 A lifephase model describes several time sections: development, realization,
use, and disposal. The problems in the development of systems arise from the fact
that consequences of the decisions that have to be made during the development
phase will only become effective in later phases. In the later lifephases, however,
there is normally no way to infl uence the system properties to a larger extent.
This situation poses important questions that we have to answer in the develop-
ment phase:

 ■ What problems does the system solve?
 ■ What problems does the system create?
 ■ In which environment will the system be used?
 ■ How long should the system be used?
 ■ How will the system be replaced by a successor?

1.2 Systems Engineering

 FIGURE 1.2

 Group of tasks in systems engineering.

pkg Systems engineering tasks

Requirements
analysis

Systems
engineering

System design

Project
management

Requirements
management

System
validation

System
verification

Requirements
definition

System
integration

Risk
management

10 CHAPTER 1 Introduction

 Here is a simple example, something I currently have to deal with, but which you
surely know very well: moving. 3 My company is planning to move to new offi ce space.
Where will which desk be placed? What separation walls will be put up? Where are
which connections (electric power, phone, etc.)? The impact of the large number
of decisions we have to make will truly emerge in the use phase. Are the fl oor sock-
ets really where we need them? Subsequent changes may be hard or impossible.

 A problem-solving cycle describes the way from when a problem emerges to
its solution. Its rough structure is composed of three steps that are to be traversed
not only linearly, but also with feedback:

 1. Describing the current situation and formulating the goal to be achieved.
 2. Working out solution options.
 3. Selecting the best solution.

 What sounds so simple and intuitive is not always experienced as such in prac-
tice. For example, it often happens that Point 1 is omitted, or only one single solu-
tion is considered in Point 2. The approach discussed in this book begins with
the formulation of a goal—the development of a system—(Section 2.1). The analy-
sis and the design of the system in a model support us in viewing several different
variants so that the optimal solution can be selected (see also Section 2.7).

 1.2.2 Systems Engineering Processes
 The SIMILAR process model [1] provides a good overview of a systems engineer-
ing process. The name is an abbreviation that stands for

 ■ S tate the problem
 ■ I nvestigate alternatives
 ■ M odel system
 ■ I ntegrate
 ■ L aunch the system
 ■ A ssess performance
 ■ R e-evaluate

 The following subsections briefl y describe these tasks.

 State the problem
 At the beginning of a system development project there is a description of the
tasks involved. A good solution can be found only provided that the task is well
formulated. Errors in this phase can become very costly, in terms of both money and
image. A task should define what the system is to perform, or which requirements
it is to meet. A systems engineer deals with requirements on the system level.

 The requirement model does not describe the solution. If it did it would hin-
der us from evaluating alternative solutions.

 3 Development of the system “ new office. ”

11

 Investigate alternatives
 One of the important tasks of a systems engineer is to investigate and weigh alter-
native concepts. Unfortunately, this task is often neglected. The human urge to
concentrate on one single solution to a problem blurs the sight on the fact that an
alternative solution may be better suited.

 This means that, based on the requirement model, a systems engineer does
not only develop a system design, but normally additional alternative designs.
This allows the systems engineer to weigh several solutions against one another.
It will hardly ever happen that all benefi ts are united in one single solution. This
means that different criteria and priorities have to be considered. Typical aspects
include, e.g., cost, size, weight, development time, time-to-market, and risks. Sim-
ulation parameters are derived from the system models to make the required
aspects directly visible, comparable, and measurable in the model. SysML supports
this work, e.g., by the parametric diagram (Section 4.6).

 Model system
 Design models are created as early as when we weigh alternative solutions. This
step is the detailing of the selected solution ’ s model. From the system engineer ’ s
perspective the model also serves for managing the entire lifecycle of the system,
in addition to being used to specify the system design.

 Modeling with SysML offers a good traceability of aspects, e.g., the realization
of a requirement in the design (see satisfy in Section 4.3.4).

 Integrate
 A system will not exist in solitude and serve an end in its own. It is embedded in
an environment, and it will interact with this environment. This step integrates the
system. It includes, e.g., the definition of system interfaces.

 Launch the system
 A system is created on the basis of a specified design model and taken into opera-
tion. The models from the previous steps specify implementation requirements
for software, hardware, mechanics, etc.

 Assess performance
 Once the system is ready for operation it is tested and measured. The values result-
ing from tests and measurements have to comply with the requirements. In SysML
the connection between test model and requirement model is made by use of the
 verify relationship (Section 4.3.6).

 Re-evaluate
 This task ranks above all other activities. Results from the process are critically veri-
fied and evaluated. As a consequence, the findings gained are fed back to the process.

 Risk management
 Another important issue in systems engineering is risk management, or—
positively formulated—provisions management, which is not part of the SIMILAR
abbreviation.

1.2 Systems Engineering

12 CHAPTER 1 Introduction

 A general basic understanding among all participants is necessary to ensure
good risk management in a project. There is no absolute perfection in any work,
including the work of a project team, and project managers cannot work won-
ders. Things just tend to go wrong. That ’ s the normal situation.

 Risk management is responsible for identifying potential risks and defi ning
measures to minimize risk, or solve the problem when a risk event has occurred.
Risk management is part of the decision processes in a project, and it needs to
be regularly observed to be able to discover the occurrence of a forecasted risk
event in time and react accordingly.

 1.2.3 The Systems Engineer
 A system engineer is the connecting link between the disciplines in a project,
which are sometimes very different. System engineers think along the line of the
entire system, independent of software, hardware, or other specific views.

 From the organizational perspective, the systems engineering discipline ranks
like a staff unit. It reports directly to the corporate management on the entire
project which, in turn, communicates directly with the other development depart-
ments. Systems engineers should not be mediators between the project manage-
ment and the development departments. They are the architects 4 on system level.
They have to be capable of dealing with different development departments
about domain issues rather than just playing the role of observers and go-between
for messages. In particular, a system engineer has decision authority. According to
INCOSE, 20 to 30 percent of the entire project budget should be allocated to sys-
tems engineering [45].

 Many projects lack the organizational unit systems engineering shown in Figure
1.3 . 5 Its tasks are handled by the overall project management and the individual

 4 Though the term architect is quite overstressed.
 5 The fi gure shows an organizational chart in the SysML/UML notation. You fi nd more informa-
tion on BPM with UML in [33]. The chart is a block defi nition diagram (bdd). These diagrams are
described in Section 4.5.

 FIGURE 1.3

 Positioning systems engineering in an organizational chart.

bdd Organizational chart

Software Hardware Mechanics ...

Overall project
management

Systems
engineering

«reports to»

«reports to»

13

development departments. Although the overall project management would be
capable of assuming systems engineering tasks as far as the contents are con-
cerned, it usually does not have the time available other than for its management
tasks. The development departments communicate only with their direct neighbor-
ing disciplines, to which there are interfaces. Though this widens their view to a
certain extent, it doesn ’ t give them a holistic system view. This leads to the prob-
lems often observed in practice that the overview of complex systems is easily lost.

 A frequent scenario is that the discipline that normally dominates (for histori-
cal reasons) in the company assumes the systems engineering tasks. This constel-
lation leads to potential confl icts and misunderstandings at the latest as soon
as other disciplines become more important. For example, an engineer with an
increasingly dominating software discipline.

 The development departments of a project solve partial problems of the over-
all problem. Each partial solution is a choice taken from a set of several solution
variants. Without a system engineer role the selection criteria are characterized
by the respective disciplines. The interplay between the solution variants of the
individual development departments remains unnoticed. The applied divide-and-
conquer principle works only provided that someone focuses on the overall prob-
lem and ensures that the sum of the best partial solutions results in the best of all
possible overall solutions. So this means fi rst conquer, then divide. And that ’ s one
of the tasks of systems engineering.

 Trying to integrating systems engineering in the project structure shows that
it cannot be introduced without the support of all departments—particularly the
management. In addition to the organizational change, it also means a change to
the project culture. Clear rules and transparent task descriptions for all stakehold-
ers are important tools when introducing a development process. It will only
work if it is driven both from the top (management) and from the bottom (devel-
opment), meeting in the middle, or getting very close.

 1.2.4 Systems Engineering History
 Humanity developed systems already 5000 years ago. Back then, the Egyptians
built their impressive pyramids. At that time nobody talked about systems engi-
neering. Even if this is partially seen as the beginning of this discipline, we will
make a huge time leap forward to the beginning of the 20th century and set the
birth of systems engineering there. The industrial revolution produced many
systems that can be better connected with systems engineering: cars, airplanes,
machines. However, engineers still hadn ’ t known systems engineering. A head
engineer was capable to see the entire system, and the partial disciplines were
able to develop more or less autonomously, since the interfaces were simple.

 Systems engineering as we know it today emerged toward the end of the
1950s. At that time humanity started tackling systems, the complexity and project
implementation of which surmounted everything known then. The race of the
world powers in space, or the military race, has brought about projects that had to
develop extremely complex systems on the one hand and, on the other hand, were
forced to be available as soon as possible and successful. This enormous pressure
led to a situation where methods of systems engineering had been developed.

1.2 Systems Engineering

14 CHAPTER 1 Introduction

 In commercial fi elds, too, systems had become more complex, and the need
for holistic methods grew. For example, an early publication, “ Methodology for
Systems Engineering ” by Arthur Hall [21] came from the telecommunication
industry in 1962.

 The signifi cance of systems engineering has grown slowly but surely. The tech-
niques of this discipline are used not only for huge projects in aviation and space,
but also in “ common ” projects. In 2002, the process framework ISO/IEC 15288
[24] that describes processes along the lifecycle of a system had been introduced.
This turned systems engineering formally into an accepted discipline in the devel-
opment of systems.

 1.2.5 International Council on Systems Engineering
 An organization by the name of National Council on Systems Engineering
(NCOSE) was founded in the United States in 1990. Its goals had been the devel-
opment and promotion of systems engineering in the United States. It took only
5 years to extend these goals to the international level, when NCOSE became
 INCOSE .

 The largest part of the INCOSE members of over 5000 comes from the United
States (� 3300 members) and the United Kingdom (� 400 members). Germany has
about 100 members (Figure 1.4). The US members include employees of NASA,
Boeing, and General Motors. German representatives include Siemens, BMW, and
oose Innovative Informatik GmbH. INCOSE is organized in geographic regions
with local chapters.

 FIGURE 1.4

 Distribution of the INCOSE membership (July 2007).

5000

Distribution of INCOSE Membership

4500

4000

3500

3000

2500

2000

1500

1000

500

0

U
S

A

F
ra

nc
e

U
ni

te
d

K
in

gd
om

N
et

he
rla

nd
s

S
ou

th
 A

fr
ic

a

G
er

m
an

y

Is
ra

el

A
us

tr
al

ia

S
w

ed
en

N
or

w
ay

C
an

ad
a

July 07
February 05

15

 1.2.6 Systems Engineering versus Software Engineering
 I often hear the question: “ What has systems engineering got to do with software
engineering? ” especially from software developers. The answer can actually be
found in the previous sections. Nevertheless I want to repeat it here explicitly again.
Software engineering, hardware engineering, process engineering, automation
technique, and so on are all disciplines that develop certain components of a sys-
tem. Systems engineering takes a holistic view on the system: the overall architec-
ture, the correct interplay of the components, the requirements as well as their
implementation and verification, and all the other lifephases of a system, such as
operation and disposal, in addition to the development.

 Figure 1.5 shows the superior cross-section functionality of systems engineer-
ing. In particular it shows that systems engineering does not replace software
engineering. It will interfere with the matters of software engineering only to the
extent as requirements are given to bring about the best possible integration in
the overall system.

 1.2.7 Marginal Notes
 General systems theory was founded by the biologist Ludwig von Bertalanffy. He
carved out common features from different fields of knowledge and described
them in his book [58]. In the sense of general systems theory, technical systems
are only one of many possible fields of application. Others would be, e.g., econom-
ics, sociology, and psychology. Human social systems could be seen as a system
just as well as the world economy, or an automobile. We will only look at systems
made by humans in this book.

 This means that general systems theory is on a very abstract level.
Transferring it to a concrete fi eld of knowledge, we can derive many important
and specifi c tools and methods. Systematic thinking allows us to interact with
systems without knowing the details of the individual components they are
composed of.

1.2 Systems Engineering

 FIGURE 1.5

 Systems engineering disciplines.

..

S
of

tw
ar

e
en

gi
ne

er
in

g

E
le

ct
ric

al
 e

ng
in

ee
rin

g

M
ec

ha
ni

ca
l e

ng
in

ee
rin

g

M
at

er
ia

l e
ng

in
ee

rin
g

...

Systems engineering

16 CHAPTER 1 Introduction

 1.3 The OMG SysML™ and UML™ Languages
 The central topic of this book is modeling. And models require modeling lan-
guages. The UML has established itself as a modeling language in the field of
software development. UML is an international standard specified by the OMG .
UML is also accepted as an ISO standard (ISO/IEC 19501).

 Despite a number of initiatives to standardize the processes of systems engi-
neering (e.g., Process ISO/IEC 15288, EIA-632), no uniform modeling language had
resulted. This had led to considerable friction losses in interdisciplinary projects.
Information in the form of models is hard to communicate leading to misunder-
standings and an immediate need for different tools.

 In 2001 the INCOSE decided to make UML a standard language for systems
engineering. UML essentially meets the requirements, it is widely used, it can be
adapted to specifi c needs, and there are a large number of modeling tools as well
as consulting and seminar vendors. Thanks to the extension mechanism (stereo-
types) new modeling vocabulary can be defi ned, so that UML can be adapted to
specifi c domains and disciplines. Together with UML Version 2.0 6 the range of
applications has further increased versus UML 1 (see, e.g., [33]).

 The adaptation of UML for systems engineering has the name OMG Systems
Modeling Language (OMG SysML™), and its Version 1.0 is based on UML 2.1.1.
The most important extensions are:

 ■ UML classes are called blocks in SysML, and the class diagram is called block
defi nition diagram . The UML composite structure diagram is called inter-
nal block diagram in SysML.

 ■ Item fl ows in the internal block diagram. For both diagrams several exten-
sions were defi ned.

 ■ Support of Enhanced Functional Flow Block Diagrams (EFFBD) and con-
tinuous functions by action and object nodes in the activity diagram.

 ■ Two new diagram types: requirement diagram and parametric diagram.
 ■ Support of the neutral ISO AP-233 data format for exchanging data between

different tools.
 ■ Explicit omission of UML elements that are not needed in systems engineer-

ing, e.g., software-specifi c components.

 The question whether these extensions were necessary at all is justifi ed, or
in other words: “ Why yet another modeling language? ” The answer is that, though
UML is quite a mighty language, it has some shortcomings with regard to systems
engineering, such as a lack of requirement modeling. Another reason for the need
of SysML is the fact that UML is rather software-specifi c and strongly characterized
by object orientation, while modeling in systems engineering is interdisciplinary.
The use of UML can easily lead to acceptance problems and misunderstandings
when in interdisciplinary communication.

 6 I use “ UML 1 ” and “ UML 2 ” for UML Versions 1. x and 2. x in the further course of this book. If I
mean a specific version, I will write it fully, e.g., “ UML 2.0. ”

17

 OMG SysML™ Version 1.0 was accepted by OMG as a standard in April 2006.
Several manufacturers already support the language, including ARTiSAN Software
Tools, EmbeddedPlus Engineering, Telelogic, NoMagic, and Sparx Systems.

 The Finalization Task Force has worked on the fi ne tuning of Version 1.0 for
a full year. In April 2007, OMG SysML™1.0 was fi nalized as the offi cial standard of
OMG and published in September 2007.

 The approach described in Chapter 2 uses SysML. Chapters 3 and 4 describe
the SysML and UML languages separately and independently of one another. This
way you will learn which elements are from UML and which extensions were
introduced by SysML. This knowledge helps you to use only UML in systems engi-
neering and to apply the approach discussed in this book without the SysML
extension. Chapter 5 introduces more elements in the form of a profi le, which are
used in the approach described in this book.

 1.4 Book Context
 This section briefly introduces the immediate environment of this book so that
you can classify it better and draw a line against similar topics. Figure 1.6 shows
a book context diagram 7 that follows the system context diagram described in
Section 2.3.

 7 Of course, the stereotype «book» is not part of the SYSMOD profile (Chapter 5). But it could eas-
ily be added.

1.4 Book Context

 FIGURE 1.6

 Book context.

bdd [package] SysML book [book context]

SDL

STEP

AUTOSAR

STATEMATE MATLAB/SimulinkRIF

GPM ISO/IEC 15288

CMMI

V-Model XT

«book»
Systems engineering

with SysML/UML

18 CHAPTER 1 Introduction

 1.4.1 Autosar
 AUTOSAR stands for Automotive Open System Architecture . Behind this idea is
an international organization aimed at specifying an open standard for electronics
architectures in cars. Most of the organization ’ s members are car manufacturers
and suppliers. One basis of AUTOSAR is the EAST-EEA project.

 The goal of AUTOSAR is to fi nd better ways of exchanging automobile elec-
tronics components between suppliers and manufacturers as well as between
various product lines. The standardization required to achieve this goal maintains
competition. It considers a wide range of fi elds, including body electronics, drive,
chassis, security, multimedia systems, telematics, and man–machine interface.

 The acronym EAST-EEA stands for Electronics Architecture and Software
Technologies — Embedded Electronic Architecture [13]. It is a project of the
European ITEA (Information Technology for European Advancement) program.
The results of this project form the basis for AUTOSAR.

 The participants in EAST-EEA include car manufacturers and suppliers. The
 EAST-ADL (Architecture Description Language) was born within the scope of
this architecture. ADL is a profi le of UML2 for modeling of electronic systems in
the automotive fi eld. It focuses on requirement modeling, consistency across sev-
eral abstraction levels as well as validation and verifi cation. EAST-ADL is organized
in six areas:

 1. Structure
 2. Behavior
 3. Requirements
 4. Validation and verifi cation
 5. Support
 6. Variants

 Language constructs are available for each of these areas.
 This results in considerable overlapping with the capabilities and goals of the

SysML language. Some initiatives have been started to bring the two languages
closer together. For example, the requirement modeling of EAST-ADL is an exten-
sion of the SysML approach, but based on SysML Version 0.3. Since SysML is more
general, i.e., independent of the car industry, the language will certainly achieve a
higher degree of proliferation. I expect and hope that the two languages will not
compete in the future, but complement each other, and be used together.

 SysML and AUTOSAR cannot be directly compared. AUTOSAR is an architec-
ture with standardized interface descriptions, components, and so on. SysML is
 “ only ” a modeling language. It can be used to describe a system according to the
AUTOSAR architecture.

 1.4.2 Capability Maturity Model Integration
 It has (had?) long been accepted as normalcy that software development projects
fail. The successful completion had been the exception, i.e., functionality as
required and development time and cost as planned. To improve this situation,

19

the US Department of Defense encouraged the development of the Capability
Maturity Model (CMM) to be able to better evaluate their principals/contractors.
CMM was developed by the Software Engineering Institute (SEI) of Carnegie
Mellon University at Pittsburgh in the mid-1980s.

 CMM defi nes fi ve steps that characterize the quality of an organization and its
processes. For example, it looks at project planning, risk management, and require-
ment management.

 The Capability Maturity Model Integration (CMMI) is the successor of CMM;
it was published in 2000. It integrates experiences gained from working with CMM.
In addition to software development, CMMI also examines systems engineering.

 The SysML language cannot be directly compared with CMMI, since they are
two different things. Good SysML models and the processes that create them help
to meet the quality criteria of CMMI. For example, it demands the traceability of
requirements, which can be easily mapped in SysML.

 1.4.3 BPM
 Systems engineering does not only deal with flows within a (technical) system.
The processes in the environment of the system are equally important. Which
work flows are to be considered in development, in production, in operation, and
when the system is disposed of?

 Modeling these fl ows is a fi eld of BPM . 8 Rather than at technical systems, BPM
models, develops, and optimizes business systems, i.e., companies. Between the
two disciplines there are not only tangencies, but also many parallels. The model-
ing tools and approaches are similar in many areas [33].

 1.4.4 ISO/IEC 15288
 The ISO/IEC standard 15288 had been developed to provide a framework for
processes to develop technical systems that ranks software and hardware on an
equal scale. There had not been such a type of hybrid process framework when
work at the standard began in the 1990s. This standard is based on ISO/IEC stand-
ard 12207, which refers to software only.

 The framework is equally suitable for small and large corporations. Moreover, it
is independent of a specifi c domain. Accordingly, the standard is general to ensure
that it can be easily adapted for a specifi c project.

 The V-Model ® XT [54] allows you to map conventions for ISO/IEC standard
15288. This means that it puts terms and concepts from both standards in relation.
For example, the process stakeholder requirements defi nition from ISO/IEC 15288
is mapped to the activity group requirements and analyses from the V-Model XT.

 The standard describes fi ve process areas:

 1. Acquisition processes.
 2. Corporate processes, e.g., quality assurance, resources management.

 8 SPICE is an evaluation method for standard ISO/IEC 12207.

1.4 Book Context

20 CHAPTER 1 Introduction

 3. Project processes, e.g., project planning, risk management, controlling.
 4. Technical processes, e.g., requirements analysis, architecture, implementa-

tion, operation, disposal.
 5. Other processes, e.g., tailoring.

 SysML is a possible language to describe results from activities in processes.

 1.4.5 MATLAB/Simulink
 MATLAB (Matrix Laboratory) is a proprietary development environment and
programming language of The Mathworks designed to visualize, compute, and
program mathematical expressions.

 Simulink is an extension of MATLAB designed to model, simulate, and analyze
dynamic systems using block diagrams. Statefl ow is an extension that allows you
to model and simulate fi nite state machines.

 MATLAB/Simulink is a widely used tool. Despite its impressive capabilities, its
major drawback is that it is a proprietary system rather than being a standard like
SysML, for example. A SysML modeling tool is not directly competing with MATLAB.
Although there is some overlapping, e.g., with regard to state modeling, the two
environments can complement each other. SysML is more powerful with regard to
requirements modeling and the overall system design, while MATLAB/Simulink has
its strengths in the simulation area. If you use both environments you need a chain
of tools to ensure that you won ’ t lose continuality of your models.

 1.4.6 The Requirement Interchange Format
 The Requirement Interchange Format (RIF) is the product of an initiative of
the automotive industry. 9 It was designed to exchange requirements between car
manufacturers and suppliers. Despite this background, RIF is independent of the
automotive industry and can be used in other domains.

 The principal/contractor constellation is a typical scenario in which require-
ments have to be exchanged. Between the two roles there is normally the corpo-
ration boundary, and access to a common requirements database is hardly ever
possible. The friction losses, and thus errors, costs, time delays, and discords can
easily exceed the limits to pain. And when something hurts, it ’ s time to change it. 10

 RIF closes the gap, allowing you to exchange requirements beyond tool lim-
its and company boundaries. It describes a generic format for fi ling requirements.
In addition to the requirements themselves, you can also describe groups, hierar-
chies, relationships, access privileges, and more.

 The RIF model is described in UML and implemented in XML. This means that it
can be imported to and exported from a SysML model. The hard part that remains
in all variants is the traceability of requirements beyond model boundaries.

 9 The initiator was the Herstellerinitiative Software (HIS), a group of car manufacturers including
Audi, BMW, Daimler-Chrysler, Porsche, and Volkswagen. Adam Opel AG also participates in the RIF
specification.
 10 Kent Beck would probably have called it the limits of smell (If it stinks, change it.) [2].

21

Though SysML integrates several arrangements to improve this situation, the suc-
cessful realization depends on the modeling tools.

 1.4.7 Statemate
 STATEMATE is a graphical modeling tool of I-Logix designed for the development
of integrated systems. It is popular in the automotive and aviation domains. The
central model in STATEMATE are state machines. It is based on the seminal work
by David Harel, cofounder of I-Logix [22].

 STATEMATE had been developed before UML emerged. I-Logix used UML to
publish the Rhapsody modeling tool that features a large number of STATEMATE
functions. Rhapsody is also a SysML modeling tool. I-Logix was taken over by
Telelogic in 2006.

 1.4.8 Step
 STEP describes a series of ISO 10303 standards and stands for Standard for the
Exchange of Product model data . It is a sort of building kit, consisting of several
documents, including:

 ■ the EXPRESS language for describing object-oriented data models.
 ■ implementation methods for realizing data models, e.g., a text format (ISO

10303-21), an XML format (ISO 10303-28), or an API (ISO 10303-22).
 ■ basic models for data classes, e.g., product identifi cation and product confi g-

uration (ISO 10303-41), visual representation (ISO 10303-46), or mathemati-
cal descriptions (ISO 10303-51).

 ■ application models that extend the basic models, e.g., for fi nite elements and
methods (ISO 10303-104), or kinematics (ISO 10303-105).

 ■ application protocols for describing product data under a specifi c aspect,
e.g., ISO AP-214 to describe product data in the automotive domain (ISO
10303-214).

 The application protocol ISO AP-233 for systems engineering data is also devel-
oped within the scope of STEP. It includes elements to describe the following:

 ■ Requirements
 ■ Functional and structural data
 ■ Physical structures
 ■ Confi guration data
 ■ Project and data management data

 Together with OMG and INCOSE the AP233 work group has established the
requirements for SysML and participated in the development of SysML. SysML
and ISO AP-233 had been tuned to ensure that SysML models can be exchanged
between other systems engineering tools via ISO AP-233. For example, ISO AP-233
is also supported by DOORS , the requirements management tool of Telelogic.
Models can be exchanged via XMI (XML Metamodel Interchange) or an API
according to the STEP implementation methods.

1.4 Book Context

22 CHAPTER 1 Introduction

 1.4.9 Specifi cation and Description Language
 The Specification and Description Language (SDL) was developed in the tele-
communication industry [36]. It is published as a standard by the International
Telecommunication Union (ITU). Meanwhile SDL is used outside the telecommuni-
cation industry, e.g., to develop medical systems, or in the aviation and space domain.

 The SDL is a language that has many common features with UML and thus
SysML. For example, the sequence diagrams stem from the Message Sequence
Charts (MSC) of SDL [37]. The large number of common features supports the
mapping of SDL models to SysML/UML models [43].

 1.4.10 V-Model XT
 The V-Model is an approach model that was developed by commissioning of the
State of Germany for planning and implementing system development projects. It
considers the entire lifecycle of a system nicely fitting the line of thinking in sys-
tems engineering.

 The current V-Model XT from 2004 is based on V-Model 97, its predecessor.
The model ’ s revision was motivated when, after 7 years, the old V-Model was
found to no longer comply with the current state of the art in projects. It was no
longer suited for supporting the most recent techniques and methods.

 The V-Model XT is a toolbox consisting of defi ned roles, products, and activi-
ties (Figure 1.7). This means that the approach can be adapted to a specifi c
project. The “ XT ” stands for Extreme Tailoring . Rules ensure that the composed
approach is logical and consistent.

 In contrast to several other standards, the V-Model is concrete and does not
fi rst have to be interpreted before it can be practically used.

 Trying to directly compare the V-Model with SysML is similar to the famous
comparison of apples and pears. SysML is a language and does not contain any
instructions of the kind that can be used in projects. In contrast, the V-Model does
contain the instructions. For the results that are thereby created, SysML can be
used in many different domains. The SYSMOD approach described in this book
covers parts of the V-Model.

 FIGURE 1.7

 Overview of the V-Model XT.

Basics
T

ai
lo

rin
g

R
ol

es

A
ct

iv
iti

es

P
ro

du
ct

s

C
on

ve
nt

io
n

m
ap

s

23

 The wise man never takes a step too long for his leg.
 (African saying)

 In this chapter you will be introduced to the SYSMOD approach for modeling
of complex systems based on a practical example used throughout this book. I
selected a practical system that is easy to understand, and includes all necessary
aspects. The approach scales very well and can be used both for much larger and
much smaller systems than the one in our case study.

 Using the same example throughout this chapter will make it easier for you
to gain an overall insight, to better understand the approach discussed here, and
to easily apply it to your practical environment. In fact, we don ’ t jump from one
island solution to the next in our practical projects either, but have to consistently
apply our approach.

 We will begin with the project context, looking at our system as a black box, 1
studying the environment, and will then successively delve into the details. This
approach corresponds to a widely used pattern: identify an element, describe
some context (external view), and then immerge (internal view). Since we will be
starting in the green meadow, the approach covers all areas pertaining to a devel-
opment process. Of course, the approach would also work if you were to start off
from an existing system, the difference being that you would probably leave out a
few steps or slightly modify some steps.

 Look at the individual steps of the approach as if they were packed in a tool-
box from which you simply take those you need in your project. This is not a rigid
recipe that can be used only in the sequence described here. The path discussed
here has proven in practice and belongs to the best practices of many approach
models—in particular, special iteratively incremental processes. Of course, you
can use SysML in other approach models too.

 The Pragmatic SYSMOD
Approach 2

CHAPTER

1 The term black box means that the system is a black box we can’t look into. This means that the
internals of the system are not considered. All you see is what goes into the system and what comes
out of it. The opposite is termed white box.

24 CHAPTER 2 The Pragmatic SYSMOD Approach

 This chapter is described from the view onto a project that is intended to real-
ize a technical system for a rental car fi rm. To be able to better understand the
entire system and the principal ’ s requirements, we will take a holistic look at the
system, independently of its hardware- and software-specifi c aspects. There are
plenty of discipline-specifi c books. We are more interested in the tasks involved in
systems engineering and in the particularities of both the analysis and the design
of complex systems.

 The intricacy of the example we use in this book is intentionally small to ensure
that you will be able to concentrate on the approach itself and the SysML/UML lan-
guages. Both the approach and the language scale very well and can be used for
systems of any size.

 Each section begins with a reference card that outlines the step within the
approach discussed in that section. This abstract describes the step with incoming
and outgoing information. Moreover, it includes a short description, helpful guid-
ing questions, and a list of the most important SysML model elements required in
the respective step. Finally, the summary lists elements from the SYSMOD profi le.

 The blocks can be put together to form the entire approach. Figures 2.1 (analy-
sis) and Figure 2.2 (design) show you a possible way of how to proceed, but there
are other ways. In particular, we will be doing without modeling results, because
we either won ’ t need them, or they are already at hand, so that we won ’ t have to
create them within our approach.

 The fi gures that describe the approach and the sequence of sections in this
book have a purely sequential character. However, this won ’ t work in practice
when you won ’ t start a step before you have fully completed all previous steps.
For example, you should start working on your domain modeling at the latest as
soon as you have fi nished modeling your fi rst use case (Figure 2.1).

 2.1 Case Study
 Assume we are a company called System-Modeling.com , specialized in project
work in the field of systems engineering. Our principal is a rental car firm by the
name of SpeedyCar. 2 They have decided to use innovative IT systems, allowing
them minimum manpower to offer unbeatable prices in the market. Of course,
they don ’ t want to compromise on their quality of service. To the very opposite:
Their service should be clearly better and visible versus their competition.

 Our contract with SpeedyCar consists in developing an on-board computer for
rental cars, with the primary task being to make it simpler for their customers to
pick up and return cars without their staff ’ s intervention.

 In a fi rst meeting with the principal, we learn the more specifi c ideas they
had already worked out for the planned system. We prepared a meeting minutes
(Table 2.1).

2 Both System-Modeling.com and SpeedyCar are fictitious companies.

252.1 Case Study

 FIGURE 2-1

 The approach model for analyses.

act Analysis

Create
glossary

Glossary

Model domain
knowledge

Domain knowledge

Requirements

Use cases
[object flow]

Determine
requirements

Requirements

Model system
context

Requirements

System context

Model use
cases

System context

Use cases

Requirements

GlossaryDomain knowledge System context

Requirements

Use cases

System processes

Project context

Describe project
context

Project context

Project context

System-
processes

26 CHAPTER 2 The Pragmatic SYSMOD Approach

 FIGURE 2-2

 The approach model for designs.

Interaction model
[system/actor]

Interaction model
[system/actor]

act Realize use cases

System contextUse cases

Use cases

Use cases

System
context

System context
[interfaces]

System context
[interfaces]

System context
[interaction points]

System structures

System structures
[with state machines]

Use cases
[detailed]

Model system/actor
interaction

Derive system
interfaces

Model system
structures

System structures

System structures

Derive state model

27

 PROJECT DIARY

 Project Time 2160

 Markus Witte, Project Manager, System-Modeling.com

 I decided to write a project diary to be able later on to track the course of the
project. As is customary with diaries, it is intended for my eyes only. I got the idea
when I read the excellent book The Deadline by Tom DeMarco [9]. The novel ’ s
hero, Mr. Tomkin, writes a diary that was a good possibility for him (and thousands
of readers) to reflect and learn. Of course, I won ’ t publish my project diary.

 Mr. Speedy ’ s ideas of the on-board computer we are supposed to develop are
too specific. Though using a competitor system as a guiding example provides a
feasible solution, why shouldn ’ t there be better alternatives?

 Unfortunately, Mr. Speedy doesn ’ t have much time. So we ’ ll start our project
with only superficial knowledge of the system. On the other hand, Mr. Speedy has
promised us good communication with his domain experts.

 Altogether I have a good feeling that there will be a good cooperation with
SpeedyCar.

 Table 2.1 Minutes of the fi rst brainstorming meeting with SpeedyCar.

 Title: Brainstorming meeting with principal SpeedyCar.

 Place, date: SpeedyCar Headquarters Hamburg, November 28, 2005, 14:16.

 Participants: Mr. Tim Weilkiens (oose Innovative Informatik GmbH, Moderator);
Mr. Hugh Speedy (SpeedyCar, Project Manager; CEO); Mr. Kevin
Corsa (SpeedyCar, Manager Car Service); Mrs. Steffi Schoning
(SpeedyCar, Marketing); Mr. Markus Witte (System-Modeling.com,
Project Manager).

 Mr. Speedy briefl y introduces the planned system. He uses the system of a
competitor as an example.

 The on-board computer is to be built into the radio compartment in the car.
Accordingly, it also has to assume the radio functionality, since it will replace the
conventional car radio. Behind the windshield, a card reader is attached that
can read from a customer card placed onto it from the outside, and transmit
the information to the on-board computer. The on-board computer itself has to
communicate with the booking center to be able to verify the validity of a customer ’ s
booking. Mr. Speedy thinks of realizing this communication via SMS. The cell phone
functionality of the on-board computer thus required should also be made available
to the customers so that they can make phone calls over the on-board computer.

 The car key is placed in a special holder inside the glove compartment. The
on-board computer registers when the key is removed and returned.

 As a security mechanism—which is also required by the insurance company—the
customer has to type a personal secret code (PIN). The electronic drive-away
protection deactivates as soon as the customer entered their correct code.

(Continued)

2.1 Case Study

28 CHAPTER 2 The Pragmatic SYSMOD Approach

 2.1.1 Describe Project Context
 The project context is shown in Table 2.2 .

 At the beginning of the project we will fi rst of all think about the goals that the
system under development is to pursue: Why? What for? Where to? It is extremely
important to recognize the goals and system ideas, and to document them and
communicate about them with all project participants. Motivating common goals
weld together a team and provide for direction.

 Alice: “ Would you tell me, please, which way I ought to go from here? ”
 The cat: “ That depends a good deal on where you want to get to. ”
 Alice: “ I don ’ t much care where. ”
 The cat: “ Then it doesn ’ t much matter which way you go. ”
 Alice: “ So long as I get somewhere. ”
 The cat: “ Oh, you ’ re sure to do that, if only you walk long enough. ”
 (Lewis Carroll, Alice in Wonderland [7])

 Goals help make decisions. When there are controversial discussions, a deci-
sion will be made in favor of the idea that best supports the goal.

 Contradictive goals can be detected early. For example, our principal would
like to offer a highly comfortable usage with the system but, on the other hand,
he wants the system to be secured against misuse. High security usually reduces
the usage comfort, since the user will generally have to do additional steps.

 We prepare the goals and ideas for the system in a workshop. We invite our
principal and two of his staff. From our own team, the project manager and an
analyst will participate.

 Table 2.1 (Continued)

 The returning of a car follows the procedure in reverse order.

 In addition, Mr. Speedy presents a navigation system that the competitor system
cannot offer. However, he ’ s afraid that there might be a cost problem. Therefore, he
fi rst wants to have a feasibility study on this.

 Mr. Speedy gave us a couple pictures of the competitor system (Figure 2.3).

 FIGURE 2-3

 Competitor system: card reader and on-board computer.

29

 Now, it won ’ t make much sense to think of common sentences about the goals
next to the fl ipchart and to discuss commas and other textual nuances. Things can
be done in a much more productive and, at the same time, entertaining way: We
develop a product box.

 A product box shows the goals (Why should I buy this one of all prod-
ucts?), the system idea (What can I do with this product?), and perhaps some
additional information, such as system requirements, price, content, and so on.

 We take our unmarked little box and imagine that it is to become the box for
our system. The box has to present the product attractively to arouse buying inter-
est. This approach has clear benefi ts:

 1. It ’ s fun and, at the same time, an extremely creative and productive method.
 2. The metaphor of a product box creates a uniform vision about the result

among all workshop participants.

2.1 Case Study

 Table 2.2 Summary: Describing the project context.

 Reference card: Describe the project context.

 Incoming and outgoing data

 Project context:
 Basic ideas and goals for the system;
background situation; framework
conditions and other information from
the project environment.

 Motivation/description
 Why? The system ideas and goals as well as the project environment have to be
known to all participating parties to ensure that the right decisions and measures
are taken along the way toward the fi nished system.

 What? Describe all relevant information from the project context, particularly ideas
and goals for the system.

 How? The information is prepared in workshops and described in text documents.
System ideas and goals are worked out in the form of a product box.

 Where? The project context forms the basic knowledge for all subsequent steps,
particularly for determining the stakeholders.

 Guiding questions
 ■ What are the three most important system goals?
 ■ Are all project participants informed about the goals?
 ■ How does the background situation of the project look like?
 ■ What goals does the project NOT pursue?

 SysML elements
 None.

Describe project
context

project context

30 CHAPTER 2 The Pragmatic SYSMOD Approach

 3. The space available on the box is limited. You can ’ t accidentally drift off
writing a user specifi cation as you formulate the system idea. And you can-
not get lost in details as you formulate the goals; rather you limit yourself to
the most important goals that can then be focused on much easier.

 4. With some luck you will fi nd a good metaphor for your project.

 Of course, we want to achieve a meaningful result with our product box. That
doesn ’ t necessarily mean that we ’ ll have less fun. Don ’ t hesitate to think about
crazy things; play with your ideas, and think about a great name for the system,
a logo, striking advertising slogans. You will see that the result is very good. A
relaxed atmosphere normally encourages creativity among all participants. And if
you need a document that is more formal than the product box, you can easily
derive it from the product box.

 A logo or a striking slogan can serve as a metaphor for the system. It will be
much easier for the project staff to remember it than dryly formulated goals. In
fact, it ’ s “ a story everybody—customer, developer, manager—can use to intuitively
explain the functionality of the system ” [2].

 Pay attention not to lose your goals out of sight during the course of the
project. It often happens that a project is successfully completed and celebrated
from the technical perspective. However, as it often turns out, it is eventually a
big failure when the primary goal was cost savings, and if the development, main-
tenance, operation, and/or disposal costs no longer complied with the planned
budget.

 Place the product box somewhere well visible in your offi ce. This way you ’ ll
always have your goals in front of your eyes, and you can quickly show the system
you are currently working on in case somebody was interested. Though there is
usually a certain amount of blindness with regard to the permanent inventory in
an offi ce, it is rewarding to now and then throw a glance at the goals originally
formulated weeks or even months after the project started. Does the system you
are developing still fi t into the box? Or are you smiling at the original goals? If the
latter is the case, you need a more exact analysis. Have the goals changed? Or has
the project moved in the wrong direction?

 Of course, your system doesn ’ t really have to fi t into the box. This technique also
works if the system you have to model is for a port logistics system [59] or a car.

 In addition to the system ideas and goals, you have to document other informa-
tion on the project context. This additional information includes, e.g., the follow-
ing aspects:

 ■ Has someone perhaps tried to create such a system, but the attempt was
unsuccessful? Why?

 ■ What framework conditions and restrictions are there? For example, the
budget.

 ■ What steps had been undertaken? For example, the board of directors
encouraged the project, but the money had not been approved.

 ■ Project organization, team structure.

31

 The project context is written in text form. The structure of the document is
optional. It should be simple enough to ensure that the document is easy to read
and friendly.

 We are at the very beginning of our project. Nevertheless, there are concrete
visions about the solution. There will be a card reader in order for customers to
identify themselves with their customer cards. The on-board computer and the
booking center are to communicate via SMS. And so on. All these things are solu-
tion ideas our principal had seen in the on-board computer of one of his competi-
tors. But perhaps there is another way. And it might even be a better one.

 In the systems engineering discipline, we normally develop several solution
approaches and then weigh one against the other before we go for one. So we ques-
tion the solution ideas of our principal and think about alternatives. Unfortunately,
it is often the case that our look into alternatives is foggy, since we already know
one possible solution, or because the project doesn ’ t have enough time to examine
alternatives more closely.

 This is the point where a thinking experiment comes in handy: searching for
the ideal system. Of course, we always want to develop an ideal system. But what
is THE ideal system? The ideal system meets all user requirements without existing
itself. Wait a minute! Don ’ t close the book just yet. This thinking process is really
helpful.

 Thinking about this obviously unreachable goal limits the search space and
focuses on a successful direction (Figure 2.4). Let ’ s look at a concrete example:
Consider the locking system of a car. Start thinking of old times when you had to
put a key into the lock and turn it to unlock the car door. 3 Is this what you ’ d want
as a user? Think of all its nice side effects: the lock freezes in winter, or you scratch
the paint as you try to fi nd the key hole, or you have to dig deep in your pocket to
fi nd the key. As a user, you ’ d want to have a locked car. Nothing more!

2.1 Case Study

 FIGURE 2-4

 The solution search space.

Ideal system

Real solution

Search space

3You know how old you are if you really remember.

32 CHAPTER 2 The Pragmatic SYSMOD Approach

 Modern cars all have central locking systems that can be unlocked from the
remote control at the key. Get your key, press the door unlock button, and off you
go. The locking system itself is less evident for the user, but it offers the same func-
tionality. However, there is still no ideal system, and there are new inconveniences.
For example, you realize only when you already buckled up that the key is still in
your pocket, but you need it to start the car.

 A very recent technique comes pretty close to the ideal system. As soon as a
hand approaches the door knob of the car, the locking system checks whether
or not there is an encoded chip nearby and, if so, unlocks the door. A fi nger print
scan at the gearshift can start the engine. The system is nearly inexistent for the
user, but the desired functionality is there.

 Look at the systems in your environment and think about how these systems
have evolved over the years. They normally aspire to becoming ideal systems.

 The idea of an ideal system was fi rst expressed by Genrich Saulowich Altshuller,
who founded the theory of inventive problem solving (TIPS) in 1956 (see box
below). Searching for the ideal system is aspiring for simplicity. Or in the words of
Goethe: “ All intelligent thoughts have already been thought; what is necessary
is only to try to think them again. ”

 Now, let ’ s apply this technique to our system. We fi nd that the user of our system
is not keen on carrying around a customer card, or memorizing a secret code. One
possible alternative would be a keyless access system, similar to the car locking
system described above. The system could then do without card reader and
without PIN. Another idea is to allow the user to access the system via their cell
phones (the customer sends an SMS with the code to the on-board computer).
We don ’ t want to lose these ideas as we proceed; we want to consider them as
feasible alternatives until suffi cient information will be available to opt for one
solution idea.

 TRIZ/TIPS

 TRIZ is an acronym that stands for “ Teorija Rezhenija Jzobretatel ’ skich Zadach, ”
which is Russian and means “ Theory of Inventive Problem Solving (TIPS). ”
This theory is based on a systematic methodology for innovative processes. The
father of TRIZ—Genrich Soulovich Altshuller (* 15.10.1926– † 24.09.1998)—was
convinced that inventions are no coincidence.

 Altshuller analyzed thousands of patents and found that the problems and
their solutions repeat themselves—on an abstract level—in various disciplines.
The patterns he found form the basis of TRIZ. One of Altshuller ’ s particularly
interesting findings was that real innovation happens only when several different
disciplines cooperate.

 Altshuller wrote a letter to Stalin about the deplorable state of affairs in the
Soviet Union. He was sentenced to 25 years and continued his studies with his
fellow inmates while at a labor camp. After Stalin died Altshuller was released from
prison, and when the Soviet Union broke up, TRIZ was taught in the West too [29].

33

 2.2 Determining Requirements
 Probably the most important step in a system development process is collecting
requirements. If this step is neglected you may still be able to develop a system,
but it will probably be no big success, since you haven ’ t considered what the sys-
tem ’ s environment—e.g., your principal or the system users—want and demand.

 Figure 2.5 shows the details of our approach step determine requirements
from Figure 2.1 . The approach splits this step into two areas that will be described
in the following sections. The results are the requirements to the system. On the

 PROJECT DIARY

 Project Time 5279

 We were able to solve the conflicting goals— “ high usage comfort ” and “ security
against misuse ” —in a phone conversation with Mr. Speedy. He clearly said that
usage comfort had higher priority. The customer should be “ bothered ” by the
on-board computer as little as possible. They should rather see it as a service.
Mr. Speedy also hopes for considerable cost savings if security is not an intensely
driven issue. Let ’ s hope for the best …

2.2 Determining Requirements

 FIGURE 2-5

 The “ determine requirements ” step within our approach model.

act Determine requirements

Identify
Stakeholders

Stakeholders

Collect
requirements

Stakeholders

Requirements

Requirements

Project context

Project context

34 CHAPTER 2 The Pragmatic SYSMOD Approach

basis of these requirements, the subsequent steps will then develop an analysis
model and eventually one or more design models.

 2.2.1 Identify Stakeholders
 Identifying stakeholders is shown in Table 2.3 .

 We barely know the functions that are desirable for the system and its goals.
This amount of knowledge is not suffi cient to develop the system. We have to deal
with the issue of where all the information on system requirements will come
from or, more exactly, from whom.

 Table 2.3 Summary: Identifying stakeholders.

 Reference card: Identify stakeholders.

 Incoming and outgoing data

 Project context:
 Basic ideas and goals for the system; background
situation; framework conditions and other information
from the project environment.
 Stakeholder:
 An individual or organization that has an interest in the
system and may have requirements.

 Motivation/description
 Why? It is decisive for the success of the project that the needs of all stakeholders
are suffi ciently fulfi lled.

 What? Identify all individuals and organizations that may have requirements to or an
interest in the system.

 How? The list of stakeholders is initially elaborated in a workshop and continually
reviewed during the project.

 Where? Stakeholders are the sources of requirements. Their interest is described
and analyzed in further steps within the approach.

 Guiding questions
 ■ Who has an interest in the system?
 ■ What if we were not to consider this or that stakeholder and his interests?
 ■ Who will use the system?
 ■ Who would be concerned if the system failed?
 ■ Who will be in charge for disposal of the system?

 SysML elements
 Perhaps use case diagram, SYSMOD: stakeholders.

Identify
stakeholders

Stakeholders

Project context

35

 All individuals and organizations that may have an interest in the project are
equally important. They are the potential sources for requirements, and we call
them stakeholders . 4

 We initially identify our stakeholders in a workshop. We invite a suitable group
of individuals to ensure that we gain a broad domain knowledge about the system.
We could also combine the workshop with the preparation of the system ideas and
goals (product box), since this requires a similar group of participants. Moreover,
depending on the project size, both issues can be worked out jointly.

 For brainstorming, we gather all potential individuals and organizations that
have an interest in the planned system. The following list briefl y outlines where
to look for stakeholders:

 ■ System users
 ■ Domain experts
 ■ Principal, investors, board of directors, corporate management
 ■ Laws and standards
 ■ Customers
 ■ Service staff, training staff
 ■ System engineer, system maintenance
 ■ Buyers of the system
 ■ Marketing and sales
 ■ System adversaries and advocates
 ■ Stakeholders of supporting systems, e.g., production system, training system,

or maintenance system
 ■ Stakeholders of related systems, e.g., predecessor or competitor systems

 Be creative! It is better to have one potential stakeholder too many on your list
than missing one out. The forgotten stakeholder could show up shortly before or
after the project ends and contribute important requirements, such as legal regu-
lations that have to be observed, and which your system doesn ’ t cover yet. That
would cause a serious problem.

 Even if the result will now be pretty extensive it is not complete yet. But com-
pleteness cannot be seen as the goal of a workshop. Its goal is to fi nd as many
stakeholders as possible to create a good working basis. We will discover more
stakeholders as the project progresses, and we can add them to out stakeholders
list as they emerge, and then take them into consideration.

 To be able to work effectively with a long list, we have to assign priorities.
Simply use a scale ranging from 1 � high to 4 � low and ask yourself the fol-
lowing question about each stakeholder: “ How high is the risk of project failure
if I don ’ t consider this stakeholder and his interest? ” A healthy gut feeling will
help you handle this task quickly. If you are not sure, lengthy discussions won ’ t
help. Just select a higher priority for the stakeholder you are not sure about. This
ensures that the stakeholder won ’ t be left out, since we initially presume that all
stakeholders have important requirements.

4 The word presumably goes back to the gold digger era, when the holders of claims used stakes
to mark their rights. These stakeholders had an enormous interest in their claims and put forward
certain requirements (that were fiercely fought for in the gold digger times).

2.2 Determining Requirements

36 CHAPTER 2 The Pragmatic SYSMOD Approach

 Table 2.4 Stakeholders (selection)

 Stakeholder Priority (1–4) Comments/Interests

 Customer 1 Wants easy and comfortable access to a car
and low prices.

 Reservation system 2 Requires interface to the on-board computer.

 Car manufacturer 1 The on-board computer must control the
central locking system and the drive-away
protection, and collect mileage information.

 Cellular
communication
vendor

 1 The on-board computer and the reservation
system will presumably communicate via
SMS. Both speed and availability must be
ensured.

 Insurance company 1 Is break-in protection coverage for the
on-board computer suffi cient?

 Car service 2 Installation, maintenance, and confi guration
of the on-board computer.

 SpeedyCar call
center

 2 Handles customer enquiries with regard to
the on-board computer ’ s operation.

 Navigation system
manufacturer

 4 SpeedyCar wants the on-board computer to
have navigation system functionality.

 Car radio
manufacturer

 2 The on-board computer should integrate car
radio functionality since it will replace the
regular radio.

 Card reader
manufacturer

 1 The access device will be purchased from
third party.

 Legacy systems
takeback law

 3 What does the law say about the disposal of
old devices? Who is responsible?

 Lawmaker 1 What size/weight is permitted for the
on-board computer? Other legal provisions
have to be checked yet.

 Table 2.4 shows a few stakeholders we found for our system.
 To make sure we obtain requirements we have to ask our stakeholders. And to

do that we need additional information about the stakeholders, including:

 ■ Person to contact.
 If we have a stakeholder who cannot be addressed directly we need a per-

son to contact. This is the case, e.g., with insurance companies, reservation
systems, or customers. 5 In particular, persons to contact in lieu of important
stakeholders (priority 1) should include vacation leave substitutes.

5It often happens in projects that the customer cannot be contacted directly. Potential persons to
contact are members of the customer’s marketing department, or market survey firms.

37

 ■ Category:
 It is normally helpful to group stakeholders in categories, for example:
 – Domain experts;
 – a person in charge for requirements, i.e., somebody who is authorized to

specify (and pay for!) requirements; and
 – system users.
 Notice that the categories overlap, i.e., one stakeholder can concurrently

belong to more than one category.
 ■ Open points and other remarks.

 Note that we have used neither UML nor SysML in this approach step. Though
there are methods to model the stakeholders with actors (using the «stakeholder»
stereotype) (Figure 2.6), I think this is “ over-modeling ” and not useful in most proj-
ects. It ’ s quick and easy to create stakeholders–actors and their relationships. The
thing is that this model information has to be maintained and used, which could
become very time-consuming. It is normally a better idea to manage your list of
stakeholders in a wiki, a text processor, or spreadsheet. Many SysML/UML tools
allow you to embed external sources at the appropriate places.

 PROJECT DIARY

 Project Time 5381

 The cooperation with our principal has started off very well indeed. My suggestion
to meet once in a week to check the project status was accepted right away. The
regulars in these meetings are Mr. Speedy and myself. Other participants will be
invited as needed. Since we put great weight on regularity, we want to conduct
the meeting at least over the phone if we can ’ t agree on a personal meeting date,
even though this is a poorer form of communication. But it ’ s clearly better than
e-mails.

2.2 Determining Requirments

 FIGURE 2-6

 Using SysML to model stakeholders.

uc [package] stakeholders [selection]

«stakeholder»
Customer

«stakeholder»
Principal

«stakeholder»
Lawmaker

«stakeholder»
Marketing
principal

38 CHAPTER 2 The Pragmatic SYSMOD Approach

 2.2.2 Collect Requirements
 Collecting requirements is shown in Table 2.5 .

 The fact that we know who the stakeholders of the planned system are
doesn ’ t mean that we know their requirements. So, how do we get hold of the
requirements? Well, we simply ask them.

 This sounds more trivial than it is in practice. I remember a company where
a department had developed a piece of software to support their staff in creat-
ing a help text system. The software turned out to be a failure. The future users
of the help text software had never been asked about their requirements. In fact,
they didn ’ t even know about their “ luck. ” And all this while they sat only a couple
rooms away from the development department.

 Turn to your stakeholders and ask them about their requirements. Run inter-
views and workshops. Collect documents, manuals of legacy systems, and the like.
Also ask your stakeholders for further stakeholders.

 Table 2.5 Summary: Collect requirements .

 Reference card: Collect requirements.

 Incoming and outdoing data

 Stakeholders:
 Individuals or organizations that have a
direct interest in the system and may have
requirements.

 Requirements:
 Requirements to the system.

 Motivation/description
 Why? Requirements form the elementary basis in system development. They
determine what the system has to offer.

 What? Requirements are obtained from stakeholders and documented and put in a
structure.

 How? Requirements are determined by survey techniques such as workshops and
described in a SysML model.

 Where? Requirements are a direct or indirect prerequisite for most steps involved in
system development.

 Guiding questions
 ■ Do you ask the right people?
 ■ Are the responses offi cial?
 ■ Do you ask the right questions?

 SysML elements
 Requirement diagram, requirement (SYSMOD): categories (e.g., functional
requirement), containment, refi ne, trace.

Collect
requirements

Stakeholders

Requirements

39

 Of course, there will always be stakeholders who cannot be addressed directly.
For example, a lawmaker could be a stakeholder out of your reach. In this case,
you have to fi nd a suitable substitute, e.g., someone in the legal department, or
you consult the relevant legal code book.

 There may be other stakeholders who are extremely hard to reach. For exam-
ple, you can ’ t talk directly to a customer of SpeedyCar. What you could do though
is think about a survey. In this case, you ’ d have to weigh the costs against the ben-
efi ts. Again, there may be a suitable substitute, e.g., the marketing department of
SpeedyCar; they should know their customers ’ wishes and expectations.

 Requirements won ’ t just fall into your lap as you conduct interviews or work-
shops, or browse documents for requirements. I will briefl y introduce a few tech-
niques you can use to check natural language for information.

 Words like easier , better , simpler , faster should have a signaling effect on you.
They can be examined more closely by asking the following questions:

 ■ What does the comparative or superlative refer to? What is the point of
reference?

 ■ Which measuring method can be used to check the required feature?
 ■ Which unit is meant, e.g., second, minute, or hour? What tolerances are

permitted?

 Ask yourself these questions. The answers are important for your requirements.
 Pay attention to generalized terms like never , always , ever , everybody , all . You

will fi nd them in many sentences. These words generalize a fact. There are cer-
tainly exceptions. Ask them:

 ■ Really always? Really everybody? Really never?

 The general situation is often correctly mapped to a system. It is the exception
that causes problems. In my car, e.g., the navigation system ’ s display is linked to
the car light. When I switch the headlights on the display switches automatically
to night mode, which is better readable in the dark. Now, it is customary in my
area to drive with the lights on during the day too. The display in night mode is
then rather hard to read.

 An acquaintance of mine has a habit of putting his briefcase on the passenger
seat. Then, however, the car refuses to start driving. It expects the passenger to
buckle up fi rst.

 I ’ m sure that you have made similar experiences with a system in exceptional
cases.

 You can recognize conditions in words like if , then , unless , provided that ,
 depends . They describe variants. Ask for completeness:

 ■ Are there other variants? What if not?

 A condition is a junction that leads to something else. For example, a state-
ment says where you ’ ll most likely be getting to if you turn right. Be glad about
the information and ask what if you chose to turn left.

2.2 Determining Requirments

40 CHAPTER 2 The Pragmatic SYSMOD Approach

 The result from interviews, workshops, and studies are stakeholder requests.
In the fi rst go, you have no predefi ned granularity or structure. If you ’ re informed
by a stakeholder that he requires this or that system, then you have a stakeholder
request. If you look at it more closely you may fi nd that it is a functional require-
ment which is further refi ned by several use cases. Or it is a performance plus a
physical requirement and something of a functional requirement.

 We add the requirements identifi ed to our model. SysML offers a suitable
model element for this purpose (Figure 2.7). It describes in a very general way a
requirement to the system, i.e., a contract between the customer or stakeholder
and the systems engineer.

 Each requirement gets a unique ID. SysML does not dictate a given format. You
can choose any character string. Moreover, each requirement comes with a piece
of text—also an arbitrary character string—that describes the requirement. It can
optionally contain a reference to external sources, e.g., a requirements management
tool. The requirement element is then only a reference in the SysML model to the
external source.

 Requirements are usually described in text form. Modeling with SysML means
nothing else but storing the text in a standardized format and representing the
text blocks in rectangles in the diagram to visualize their relationships. In turn,
you can generate pure text documents from SysML requirements. They are a non-
standardized view on the SysML requirement model.

 Figure 2.7 shows another model element connected with the requirement by
a dashed line. This is a rationale . You can use it to document the Why?, which can
be very valuable information. If the reader cannot answer the Why?, then this can
have a blocking and stifl ing effect on his further work [56].

 FIGURE 2-7

 Requirement for enclosure size.

req [package] sizes [enclosure for central unit]

«requirement»
Enclosure size central unit

«requirement»
id�“REQ2.1”
text�“The central unit of the on-board computer has to fit into a
DIN compartment.”

«rationale»
The on-board computer has to be built into the
car’s radio compartment.

41

 Requirements can be grouped into various categories. One example for cat-
egorizing requirements is the FURPS model developed by Robert Grady (Hewlett-
Packard) [19]:

 ■ Functionality —functional requirements.
 ■ Usability —usability requirements, e.g., usage concepts, corporate identity.
 ■ Reliability —reliability requirements, e.g., failure frequency.
 ■ Performance —quantifi able requirements, e.g., response times, speed,

bandwidth.
 ■ Supportability —testability, confi gurability, installation, service.

 There are other categorization catalogs, including the one by Robertson [38],
which also describes categories like policies , operation , and security , among other
things; or the quality characteristics defi ned in ISO/IEC standard 9126 [23].

 Since there is no uniform standardized catalog here, SysML does not dictate
categories. Use the extension mechanism of stereotypes to add your project-
specifi c categories in the modeling language. Section 5.3 describes the categories
of the SYSMOD profi le.

 Of course, the requirements are not isolated from one another. One require-
ment results from another or is part of another requirement. It is important to
model these relationships to ensure that future changes to requirements, which
always occur, can be integrated into the model in a reproducible way.

 There are requirements on different hierarchical levels. Generally formulated
requirements are broken down into several sub-requirements which, in turn, are
broken down into several detail requirements, and so on. We use the containment
relationship to model the requirements hierarchy (Figure 2.8).

 Some requirements can be derived from existing requirements. For example,
we have the size of the DIN 6 radio compartment where the central unit enclo-
sure is to be built in. We can derive the size of the enclosure from this (Figure
2.9). These requirements already include technical aspects for a possible system
design. You will read further below how we handle this. For now, let ’ s fi rst add
this customer wish as it is.

 Pay attention to the direction of the arrowheads. In SysML/UML arrows are
often used in exactly the opposite way of what you would normally expect. As a
rule of thumb, the arrows can be read in the direction they point. The size for the
central unit is derived from the DIN radio compartment (Figure 2.9). Another help-
ful rule: arrows are also often dependencies. This means that the enclosure size
depends on the DIN radio compartment, and not vice-versa, which would hardly
make any sense.

 There are other requirement relationships that produce a connection to the
design and test models. They answer questions like “ What does which requirement
implement? ” and “ What checks whether or not a requirement is implemented
correctly or at all? ” These relationships will be explained in the course of our
approach, or in the appropriate SysML chapter (Section 4.3).

6DIN � Deutsches Institut für Normung e.V. (German Institute for Standardization).

2.2 Determining Requirements

42 CHAPTER 2 The Pragmatic SYSMOD Approach

 We have added the customer ’ s requirements more or less directly. These
requirements often include solution approaches, e.g., the requirement to the
enclosure size for the central unit. Technical solution approaches also have an
infl uence on the list of stakeholders we identifi ed (Section 2.2.1). For example, it
includes the cell phone manufacturer stakeholder. However, this is not desirable,
because solution approaches don ’ t really belong to the requirements analysis. You
probably have a hunch telling you that we can ’ t simply omit them. Unless there is
a solution idea, it is very diffi cult to fi nd good and correct requirements. So allow
for solutions and derive solution-free requirements from them, provided you need
the higher abstraction level at all.

 We give our requirements model some structure to separate technical system
requirements from pure domain requirements. If product families or several solu-
tion variants are to be evaluated, then we need an additional way of differentia-
tion. We will deal with this issue in Section 2.8.1.

 FIGURE 2-8

 Requirements hierarchy.

req [package] Functional requirements [selection]

«functionalRequirement»
Car usage without staff

«functionalRequirement»
id�“REQ1”
text�“Cars to be picked up
and returned by the
customers without assistance.”

«functionalRequirement»
Identify customer

«functionalRequirement»
id�“REQ1.1”
text�“The system must do
unique authorization of
customers.”

«functionalRequirement»
Grant access to car

«functionalRequirement»
id�“REQ1.7”
text�“The system must be
able to grant authorized
customer access to car.”

«functionalRequirement»
End usage of car

«functionalRequirement»
id�“REQ1.3”
text�“The system must be
able to allow customer to
end usage of car.”

«functionalRequirement»
Start using car

«functionalRequirement»
id�“REQ1.2”
text�“The system has to
allow a customer to start
using the car.”

43

 We defi ne the two different types of requirements as follows:
 An essential requirement describes the purely domain-specifi c intention

and is independent of the technical implementation (solution). Accordingly, we
speak of a technical requirement if it is based on a solution approach.
 We take the technical requirements and ask ourselves the question about the Why.
Why should the enclosure size for the central unit be such that it fits into the
DIN radio compartment of a car (Figure 2.9)? What ’ s the purpose? The car driver
should be able to operate the on-board computer and read information from it as
they drive. There are ways other than building it into the radio compartment to
achieve this goal.

 Fine, we found the essential requirement. It ’ s what the principal really wants:
operability while driving. If we continue asking for the Why, we can arrive at addi-
tional fi ndings, such as the principal ’ s goals. In this specifi c case, we fi nd a cross-
relationship to a requirement on the same level. Why do drivers have to be able to
operate the on-board computer while driving? This is not required for picking up
and returning cars—our system ’ s core functions. The reason is that the principal
wants to offer comfort functions, such as the navigation system or a possibility to
make phone calls.

 We are now ready to model the fi ndings we won. We use the derive relationship
between the technical requirements and the essential requirement that belongs
to them. 7 We use containment for the cross-relationship to operate the on-board
computer while driving, and the comfort functions, because this operability

2.2 Determining Requirments

 FIGURE 2-9

 Requirement to the size of the on-board computer.

req [package] Usability requirements [size of central unit]

«usabilityRequirement»
Enclosure size of central unit

«deriveReqt»

«constraintRequirement»
DIN radio compartment

id�“REQ2.1”
text�“The on-board computer’s central unit
has to fit in a DIN compartment.”

7 The containment relationship would be the better choice for this requirement decomposition.
However that relationship also implies a nesting of namespaces. The requirement Radio could not
be located in the package Technical requirements. Using the containment relationship the require-
ment would have the qualified name Essential requirements::Convenience functions::Radio. This
problem is a current issue of the SysML working group.

44 CHAPTER 2 The Pragmatic SYSMOD Approach

requirement is not needed without the comfort functions requirement. It is exis-
tentially contained in the requirement. You can see the result in Figure 2.10 . This
fi gure already gives a hint to an important fact that further modeling will confi rm:
If our contractor eventually decides to do without the comfort functions, then
this will have only a minor effect on the core function, namely picking up and
returning a car. There is an enormous cost savings potential in this fact.

 The separation of essential from technical requirements corresponds to the
differentiation between user specifi cation and system specifi cation. A user specifi -
cation contains the principal ’ s requirements from the user perspective. A system
specifi cation is prepared by the contractor. It contains details about the require-
ments from the user specifi cation, further enhanced by requirements that refer to
concrete solution approaches [10].

 FIGURE 2-10

 Relationship between essential requirements and technical requirements.

«usabilityRequirement»
Central unit display and

keypad

«functionalRequirement»
Navigation system

«functionalRequirement»
Phone

req [package] Requirements [essential/technical]

Technical Requirements

Essential Requirements

«usabilityRequirement»
Enclosure size of central unit

id � “REQ13”
text � “The system has to be
operated by the driver during
driving.”

«usabilityRequirement»
Operability during driving

«functionalRequirement»
Radio

«functionalRequirement»
Comfort functions

«deriveReqt»

«deriveReqt»

 PROJECT DIARY

 Project Time 5735

 I have to be careful in this early project phase that my team won ’ t fall into the
feared analysis paralysis.

 If a team gets infected by this illness they will add requirements and analyze
and analyze and analyze and … The question is how much requirements analysis
will be sufficient. When is the analysis complete?

45

 2.3 Modeling the System Context
 Rather than fulfilling an end in itself, the system supplies services to its environ-
ment. Vice-versa, it can also request services from its environment if it needs
them for its own functionality. It is therefore important to know the system ’ s
environment.

 There is manifold interplay between the system and its environment. We there-
fore have to analyze the type of embedding to ensure that the fi nished system will
integrate into the environment nicely without negative surprises later on.

 The system context model represents the direct environment of the system
and gives initial information about the communication fl owing from and to the
system. The external interaction partners are the system actors. The communica-
tion itself is described by information fl ows.

 The system context diagram is not a predefi ned SysML or UML diagram, but
part of the SYSMOD approach. It is formally and correctly composed of standard
elements and can be modeled using any SysML/UML tool. You would select the
block defi nition diagram or the internal block diagram here as your standard dia-
gram form. 8

 Figure 2.11 shows the details of the approach step model system context from
 Figure 2.1 . You can see that, starting with the general requirements, there are three
steps to model the system context. I ’ ll explain each of these steps in detail in the
following sections.

 2.3.1 Identify System Actors
 Identifying system actors is shown in Table 2.6 .

 Systems consist of several units that work more or less autonomously and,
together, form the entire system as a network of communicating units. Since the
single system is, in turn, part of a larger system, we speak of an embedded system.
Note that for my defi nition of embedding it doesn ’ t really matter whether the single
system is a simple 8-bit processor or a complex aggregate, such as an automobile,

8 Or accordingly the class or composite structure diagram in UML. You can also use the use case
diagram instead of the class or block definition diagram.

2.3 Modeling the System Context

 We will start early to create the design for these requirements to check the
feasibility, recognize possible risks, and find changes to requirements that may
be necessary. “ Early ” means as soon as we will have added the first bunch of
requirements.

 We bring this issue up regularly in our team meetings, trying to focus on our
goals, our time, and the costs. The more we analyze the lesser the risk that the
finished system might not meet the requirements. But the more we analyze the
higher the costs. Little analysis at low cost increases the risk. We have to find a
good trade-off between risk and time or cost.

46 CHAPTER 2 The Pragmatic SYSMOD Approach

for example. The underlying aspects that have to be taken into consideration in
the system development are the same.

 I ’ ve used the word “ system ” several times in the last short paragraph above.
You may not have noticed it. But I still haven ’ t even mentioned what I mean by a
system. This is one of these trivial terms that are used all the time but hardly ever
defi ned or examined. The term “ system ” is relative and varies with the onlooker ’ s
standpoint. For a software developer it means a software application that may
have a few hardware artifacts. For a hardware developer it means the exact oppo-
site. A systems engineer or customer usually has a rather holistic view. I myself
take the view based on the INCOSE defi nition of a system [45].

 A system is an artifact created by humans and consisting of system blocks
that, together, pursue a goal. A block can be software, hardware, an individual, or
any other unit.

 The system under development interacts with individuals and other systems.
Its boundary is an important piece of information: What belongs to my system and
what ’ s outside of it? This question can be answered in an early project phase—at
least in part. We already know who will interact with the system. That ’ s the nature

 FIGURE 2-11

 The approach model for modeling the system context.

act Model system context

Identify system
actors

System context

Requirements

Identify system
interaction points

System context
[interaction points]

System context
[information flow]

System context

Requirements

System context

Model system/actors
information flow

System context

47

of the matter: I ’ ll hardly have an idea or even a concept for a system unless I know
who will operate it.

 It is basically clear to all project participants what belongs to the system and
what doesn ’ t. However, these views can blur directly at the system boundary. What
clearly belongs to a system for some parties could be seen as external interaction
partners by others.

 The system context diagram shows the system ’ s environment and thus the
system boundary. It is not a predefi ned diagram of SysML or UML, but a variant of
block diagrams. 9 In the center of the diagram is the system under development. It
is a block with the stereotype «system» . This clearly distinguishes this block from
other system blocks yet to be identifi ed. All currently known interaction partners
are denoted all around the system and associations are used to connect them.

2.3 Modeling the System Context

9 In UML class or composite structure diagrams. The use case diagram can also be used for the sim-
ple variant.

 Table 2.6 Summary: Identify system actors.

Reference card : Identify system actors.

 Incoming and outdoing data

 Requirements:
 General requirements to the system.

 System context:
 System with actors.

 Motivation/description
 Why? The system actors are direct interaction partners, for which services and
interfaces have to be developed. They describe the system boundaries.

 What? All users and systems that will interact with the system under development
are identifi ed and their roles are modeled.

 How? The system actors are primarily derived from the requirements and modeled in
the system context diagram.

 Where? The services and interfaces for the system are identifi ed on the basis of the
actors.

 Guiding questions
 ■ Who or what belongs to the system?
 ■ Who or what interacts with the system?
 ■ What communication partners do you want to focus on?
■ What aspects do you want to emphasize with an actor category?

 SysML elements
 Block defi nition diagram, internal block diagram, SYSMOD: system, actor (SYSMOD:
actor categories, e.g., environmental effect), association, role, connector.

Identify system
actors

System context
Requirements

48 CHAPTER 2 The Pragmatic SYSMOD Approach

 The system ’ s interaction partners, i.e., elements outside of it, are called actors.
An actor is not a concrete system or a concrete individual, but a role, e.g., “ operator ”
instead of “ Miss Gabi Goldfi sh ” or “ temperature sensor ” instead of “ XY sensor arti-
cle number 4711. ”

 The model element actor is too general for our purposes. We need a rough cat-
egorization of actors and distinguish, e.g., between user, external system, mechani-
cal system, environmental effect, actuator, and sensor. This differentiation helps us
better understand the system and makes it easier to describe its services later on.
For example, a user has clearly different requirements than a sensor. The catego-
ries are represented by different actor symbols.

 A user is a human actor. When a human emerges as a direct interaction partner
with the system we need to provide a user interface within the system, e.g., the GUI 10
of a software application, or the HMI 11 of a technical system, such as a dashboard.

 A user can and should be asked directly about their requirements to the sys-
tem. The success of our project depends on their acceptance. Unfortunately, it is
not always possible to ask our future users directly. In this case, we try to fi nd a
suitable substitute, e.g., somebody in product management or marketing.

 We use the standard symbol for actors—the stick man—to represent users
(Figure 2.12).

 An external system is a system that interacts directly with the system to be
modeled. In its role as an interaction partner, the external system is seen merely
as a black box. This external system can be the system under development in
another project, and our system would then assume the role of an external
system from their point of view.

 An external system is denoted as a box (Figure 2.13).
 A user system is a type of external system that serves as a medium for a

user to interact with our system. Typical user systems are keyboard, display, and
dashboards.

 Whether we model the keyboard as an interaction partner or the user directly
as an actor depends on the project. It can be useful for technical systems to

 FIGURE 2-12

 A user “ customer. ”

bdd [package] on-board computer context [customer]

Customer

«system»
On-board computer

10 Graphical User Interface for user–system interaction. The term refers to software systems.
11 Human Machine Interface—a man–machine interface, e.g., key buttons, levers, light-emitting
diodes.

492.3 Modeling the System Context

 FIGURE 2-13

 External system: reservation system.

bdd [package] On-board computer context [external system]

Reservation
system

«system»
On-board computer

describe user systems as interaction partners, since they could be more important
than the users behind them from our system ’ s perspective.

 Similar to an external system a user system is denoted as a box, but addition-
ally with a user symbol (Figure 2.14).

 We can additionally model the individual who operates the user system. For
formal reasons, you cannot draw a solid line (association) between a user and a
user system, i.e., between two actors. The relationship between any two actors is
represented by means of an information fl ow.

 A boundary system is a special external system that provides an interface to
another external system. For example, this can be a sender that enables contacting
another system. It is comparable to a user system, except that a boundary system
is a mediator for another system rather than for a human.

 A boundary system is only used if it has a special modeling signifi cance.
Otherwise, the external system is a direct actor.

 FIGURE 2-14

 The user system “ cell phone. ”

bdd [package] On-board computer context [study: access
via cell phone]

Customer
Cell phone

Customer
information

«flow»

«system»
On-board computer

50 CHAPTER 2 The Pragmatic SYSMOD Approach

 Similar to an external system, a boundary system is denoted as a box with an
additional fi sh symbol (Figure 2.15). The fi sh symbol is also known as a boundary
symbol in software class modeling.

 Several factors from the environment infl uence the system without directly
interacting with it. This includes environmental effects such as temperature, pre-
cipitation, or oxygen. Only relevant environment effects are of course considered.
We don ’ t generally have to model the fact that most systems won ’ t survive ump-
teen degrees Celsius or total fl ooding. An environmental effect is denoted as a box
with a sun symbol (Figure 2.16).

 An actuator is a special external system that serves our system in infl uencing
its environment. In contrast, a sensor is a special external system that accepts
information from the environment and passes it on to the system.

 Similar to an external system, an actuator is denoted as a box with an addi-
tional cogwheel symbol, while a sensor is denoted with an additional symbolic
dial gauge (Figure 2.17).

 Actuators and sensors are special categories for technical systems. Other cat-
egories can be introduced as needed by the project. For example, the sender and
receiver categories with their respective symbols are more suitable than actuators
and senders in a communication environment.

 A mechanical system is a special external system that has only mechani-
cal aspects from our system ’ s view. In particular, it does not include calculation
resources, and no data is exchanged, but there may be an exchange of forces, for
example.

 Similar to an external system, a mechanical system is denoted as a box with an
additional tool symbol (Figure 2.18).

 FIGURE 2-15

 The notation for boundary systems.

bdd [package] SysML book [notation for interface systems]

Interface system

 FIGURE 2-16

 An environmental effect “ temperature. ”

bdd [package] On-board computer context
[environmental effect]

Temperature
«system»

On-board computer

51

 You should be careful not to defi ne too many categories, though. Here too, less is
more. Think carefully about the goals you want to achieve with a new category before
you introduce it. Will it make the diagrams easier to understand and improve the com-
munication? Will it help winning more information or focus on an important fact?
How would you model the actors if you were NOT to introduce a new category?

 The system context diagram may make a trivial impression. In practice, however,
searching for actors can lead to diffi cult discussions. For example, we modeled the
actor customer as a user of our system. Would you have chosen the same actor? Or
perhaps opted rather for the card reader ? Or the customer card ? (Figure 2.19).

 The customer is just the one who holds the card in front of the card reader,
and the card reader is just the mediator between the customer card and the on-
board computer control.

2.3 Modeling the System Context

 FIGURE 2-17

 Example for an actuator and a sensor.

bdd [package] On-board computer context [actuator and sensor]

Central locking
system

Car movement
data

«system»
On-board computer

 FIGURE 2-18

 Example for a mechanical system.

bdd [package] On-board computer context
[mechanical systems]

Windshield

«system»
On-board computer

52 CHAPTER 2 The Pragmatic SYSMOD Approach

 And what about the processors in the card reader, or the cable between the
card reader and the on-board computer, or … ; are they all actors?

 There can be good reasons to model each of the solutions mentioned above. You
can surely imagine the kind of workshops where all these are discussed. There is no
single recipe for fi nding the best solution. So every workshop participant would be
right. Selecting an actor or the system boundary is a pure project decision.

 What interaction partner do you want to focus on? And which blocks really
belong to your system or project? Information about other potential actors won ’ t
necessarily be lost. If this is the information you think is important, then you
should document it, e.g., in a comment.

 Figure 2.20 shows you a different way. The relationship marked as fl ow
between the actors car service employee and car management system repre-
sents an information fl ow. The car service employee transmits a status request
to the car management system. Notice that you are outside the system under
development. Your modeling focus is within the system boundaries. So don ’ t
invest too much work into modeling relationships between actors.

 If you do have a bigger modeling need between actors it might be a good idea
to move the system boundary further outward. The actors would then become
part of the system and fall within the modeling focus.

 FIGURE 2-19

 Searching for a matching actor.

Customer card

Card reader

Customer

53

 But let ’ s go back to our selection of actors in Figure 2.19 . We decided to use
 customer which means, e.g., that card reader and keyboard are part of the sys-
tem. In terms of systems engineering, we take a holistic view of the system. This
allows us to then derive requirements for the card reader, which is to be pur-
chased from a third party, or evaluate other conceivable access systems, such as a
cell phone (see Section 2.8.1). Altogether, we now have the system context model
fully worked out, as shown in Figure 2.21 .

 When searching for actors we normally run into elements that are not out-
side but inside our system. Now, what do we do with this information? We cannot
model these elements as actors, since actors are outside the system by defi nition.

 Of course, we won ’ t discard this information for the only reason that it is not
needed in this work step; instead, we add it. Model an element found as a so-called
 block and use the composite relationship to connect it with the entire system
(Figure 2.22). Blocks are a concept of the SysML language. We will be looking at
blocks more closely in Section 4.5.

2.3 Modeling the System Context

 FIGURE 2-20

 Information fl ow between actors.

Car management
system

Car service
employee

Status request
«flow»

bdd [package] System context [information flow between actors]

«system»
On-board computer

 PROJECT DIARY

 Project Time 5942

 We managed to excellently use the system context diagram in a workshop with
the domain experts. Though not all of the participating domain experts came from
the engineering field none of them had trouble understanding and commenting the
diagram. That ’ s very beneficial for our project, since we can coordinate the models
directly with the principal, who will now be jointly responsible.

 In contrast, there were fierce discussions about the planned navigation system.
Though they considered it a very good service, they feared, on the other hand,
that customers may feel they are being watched, because SpeedyCar would be
technically able to determine the current position of a car at any given time. We
will consider it secondary for the time being until there will be a final decision
either for or against the navigation system.

54 CHAPTER 2 The Pragmatic SYSMOD Approach

 FIGURE 2-21

 The system context model for the on-board computer.

 FIGURE 2-22

 Structure of the on-board computer.

bdd [package] System context

Customer
Reservation

system

Car service
employee

Car movement
data

Car drive-away
protection

Central locking
system

Car management
system

Status request

«flow»

Billing system

External systems of car

Car ignition

Battery

Temperature

Receives usage data via
SMS upon car return

«system»
On-board computer

Windshield

System for configuring
and testing the on-board
computer in operation

bdd [package] On-board computer

«system»
On-board computer

«block»
Service

«block»
On-board computer

control

«block»
Card reader

«block»
Navigation system

 2.3.2 Model System/Actor Information Flow
 Modeling the system/actor information flow is shown in Table 2.7 .

 Based on the system context diagram we now look at the incoming and outgo-
ing information for our system. The fact that an actor is connected to the system
means that they supply information to the system, or obtain information from our

55

system, or both. The type of information exchanged here, and who participates
in the exchange, is well known in this early project phase. Though you may be
frowning now, it is not a matter of saying how the exact protocol to the exter-
nal systems should look like. The information we look for is initially much more
abstract. What sort of information does the on-board computer get from the cus-
tomer? Right, card data or a PIN, for example.

 We want to write this information down at this point, at which it isn ’ t a matter
of achieving completeness. It ’ s rather a matter of documenting the knowledge the
participants have gained so far and improving the understanding of the way our
system is embedded in its environment. During the subsequent steps within our
approach we will use this information to add details to our model and to further
complete it (see Section 2.4.1).

 The system context model with its information fl ow essentially serves two goals:

 1. The information fl ow leads to a better understanding of the domain. We are
interested only in domain-relevant information and not in technical details.

2.3 Modeling the System Context

 Table 2.7 Summary: Modeling the system/actor information fl ow.

 Reference card: Model system/actor information fl ow.

 Incoming and outgoing data

 System context:
 System with associated actors.
 System context [information fl ow]:
 System with information fl ow from and to the
actors.

 Motivation/description
 Why? The system ’ s information fl ow with its environment is required for a clear
understanding of the system embedding.

 What? Describe the information that the system will exchange with its environment.

 How? Relevant information that actors send to or receive from the system is
documented for each actor. Focus on the direction of the information fl ow from an
actor to the system.

 Where? The information fl ows are used in the analysis to identify and describe use
cases. In the system design these information fl ows have to refl ect within the system
and correspond to the system interfaces.

 Guiding questions
 ■ What information will the actors send to the system?
 ■ Does the information have domain relevance for our system?
 ■ How does the system integrate itself into its environment?
 ■ What information does the system send to its actors?

 SysML elements
 Block defi nition diagram, internal block diagram, block, actor, association, role,
connector, information, information fl ow.

Model system/actors
information flow

System context
[information flow]

System context

56 CHAPTER 2 The Pragmatic SYSMOD Approach

The diagram gives us a good insight into how the system is embedded in its
environment. The meaning of the term domain is relative. What is domain-
relevant depends on the type of system. If the system is very technical, such
as an engine control, then domain-relevant things would be much more
technical than in our system.

 2. The information fl ow serves as basic information to determine the services
demanded from the system—the use cases (see Section 2.4.1). The informa-
tion fl owing toward the system are potential requests for services from the
environment. We therefore focus on this information fl ow direction.

 The information fl ow is a new concept of UML 2. It is in principle a kind of
data fl ow modeling. That ’ s a technique many had missed in UML 1. The data fl ow
modeling is an integral part of the structured analysis (SA) [8], which is also used
in systems engineering, though it is primarily a software development technique.
However, it wasn ’ t really fi tting for a purely object-oriented notation like UML to
support techniques from the procedural world. Fortunately the times when the
procedural world and the object-oriented world were enemies and excluded each
other are mostly overcome. Today, proven techniques from the procedural world
are not rejected in object orientation, but further developed and integrated in the
paradigm. 12 The object-oriented concepts from the fi eld of software development
do not play a dominant role in systems engineering. In fact, SysML suppresses
them, in part intentionally. For example, there are no classes and objects in SysML.

 Now, take a look at our system context model. We think about the information
fl ow actor by actor. We are primarily interested in the direction from an actor to
the system. We want to fi nd out what kind of services the actors request from our
system. If you can ’ t think of any meaningful information just omit the information
fl ow. We don ’ t have to do guesswork.

 You can see the result of our thoughts in Figure 2.23 . The information fl ow
between the actor and the system is denoted by a black triangle on top of the
actor/system relationship. The triangle shows the information fl ow ’ s direction.
Next to the triangle is the type of information, e.g., card data.

 In our considerations about the information fl ow we found a new system
actor. We found that vibration forces from the moving car can affect our system.
This clearly shows us two things: First, SysML considers not only classic IT infor-
mation, but also physical objects. Second, immerging into detailed levels leads to
new fi ndings about the next higher level.

 Also, the information itself is explicitly modeled. UML knows the model ele-
ment information . It is denoted as a frame with the name of the information in
the center and a black triangle in the upper right corner (Figure 2.24). We distin-
guish explicitly between information and its fl ow.

 If you want to document that a fl owing piece of information consists of different
units you can use the UML relationship representation . For example, Figure 2.24
documents that the very generally formulated information user input represents

12 That’s something you would call progress.

57

two pieces of information: PIN and user confi rmation . In general, however, I ’ d
go about this matter very carefully. I suggest you model this only provided you
really see an immediate benefi t in it. Modeling should never become an end in
itself. SysML allows you to describe many different facts from your system ’ s real
world. However, the decisive question is not what can be modeled, but what ben-
efi t you ’ d have from it.

 You can use the same relationship in a later point within the approach to con-
nect a piece of information with concrete design elements. In the design, e.g.,
we model a signal called KeySignal , which describes the communication object
that the on-board computer control receives from the key holder. In the system
context model the signal is represented by the information key (Figure 2.25).
Altogether we obtain traceability of this fact in the model.

 Alternatively, you can tackle this matter much more directly. SysML extends the
UML information fl ow by a property you can use to transport concrete objects rather
than abstract information. These objects are described in more detail and they can

2.3 Modeling the System Context

 FIGURE 2-23

 System context with information fl ow.

bdd [package] System context [with information flow]

«system»
On-board computer

Car management
system

Customer

Card data,
user input,

key

Reservation
system

Usage right

Car movement
data

Mileage

Central locking
system

Car
commands

Car
commands

Car drive-away
protection

Billing system
Usage data

Car service employee

Configuration

Car ignition

Engine off

Temperature

Battery

Current

Status

«flow»

Car

Vibration
ConfigurationWindshield

58 CHAPTER 2 The Pragmatic SYSMOD Approach

be present in this form directly in the design models. However, this extension is
applicable to the internal block diagram only. We should switch to this diagram form
at the latest when identifying the system interaction points (Section 2.3.3). If you
include this step in your approach, then it would be a good idea to model the system
context diagram as an internal block diagram right from the outset.

 Figure 2.26 shows the system context in the internal block diagram. In what
block are we, internally? We have to introduce a context element that encompasses
the system and all actors. This element is denoted with the stereotype
 «systemContext» . You can see in Figure 2.27 how this context element is mod-
eled; note that this diagram does not show all actors.

 FIGURE 2-24

 Structuring information.

bdd [package] Information [user input]

«information»
PIN

«represents» «represents»

«information»
User confirmation

«information»
User input

 FIGURE 2-25

 Information as a representative of design elements.

bdd [package] Information [key]

ID:String
wasRemoved:Boolean

«represents»

«signal»
KeySignal

«information»
Key

592.3 Modeling the System Context

 FIGURE 2-26

 A SysML information fl ow.

ibd [block] On-board computer context
[with information flow]

«system»
:On-board
computer

:Car management
system

kfgVs:Configuration

Customer

ssig:KeySignal

:Reservation
system

nb:Usage right

:Car movement
data

km:Mileage

:Central
locking system

zvCmd:Car
command

wsCmd:Car
command

:Car drive-away
protection

:Billing
system

nd:Usage data

:Car service
employee

kfgFs:Configuration

:Car
ignition

eOff:EngineSignal

s:Status

:Temperature

:Battery

s:Current

:Car

vK:Vibration

 This modeling offers no more than a small benefi t without system interaction
points: real objects instead of information can fl ow between actor and system.
Relationships between actors can be modeled using connectors where, in turn,
other object can fl ow (see car management system and car service employee in
 Figure 2.26).

 At this point it is a good idea to think about the required depth of details in
your information fl ow modeling for your project. Are the pieces of information,
i.e., simple names, suffi cient? Or should they be detailed using the representation
relationship? Or do we have to use the SysML extension of the information fl ow
to model objects directly? In case of doubt we model less for the time being.

 2.3.3 Identify System Interaction Points
 Identifying system interaction points is shown in Table 2.8 .

 You know the actors who interact with our system from the previous results.
This is modeled in the system context diagram by a relationship from an actor to

60 CHAPTER 2 The Pragmatic SYSMOD Approach

the system. You also know several pieces of information that will be exchanged.
But how does this information get in and out of the system?

 There is a system interaction point where the solid line from an actor hits
the system. This is a point over which the system will communicate with its
environment.

 Imagine your system is a black box. This box has to provide interaction points for
the actors to be able to communicate with the system. These can be connections
for external systems or special clients, Web access for users, switches, displays, and
so on (Figure 2.28).

 We have to be careful not to confuse interaction points with interfaces.
Interfaces and interaction points are different concepts. Unfortunately, the two
terms are often used synonymously. On the other hand, the two terms are not
totally unrelated either, as we will see later on.

 UML lets you model interaction points with ports. They had been added to
the modeling language with UML Version 2.0. In the diagram, ports are denoted as
small rectangles on the edge of a class.

 Though the concept of a port is new to UML, it hasn ’ t been invented from
scratch for UML. In fact, the concept roots in a notation and methodology called
 ROOM (Realtime Object-Oriented Modeling) [42].

 ROOM doesn ’ t depend on UML. The concept was fi rst introduced to UML by
Bran Selic and James Rumbaugh as a profi le by the name of UML-RT in 1999 [39].
The ROOM modeling tool ObjecTime became Rational Rose RT when the fi rm
was taken over by Rational Software. That sealed the end of ROOM as a notation
and tool, but the concepts are still valid today.

 FIGURE 2-27

 A system context element.

bdd [package] System context element [section]

Customer

Reservation system Central locking system

«system»
On-board
computer

«systemContext»
On-board computer

context

612.3 Modeling the System Context

 Table 2.8 Summary: Identifying system interaction points.

 Reference card: Identify system interaction points.

 Incoming and outdoing data

 System context:
 System with associated actors.
 System context [interaction points]:
 System with interaction points.

 Motivation/description
 Why? Interaction points describe the interfaces to the system environment and are
responsible for successful system integration.

 What? Describe the points of your system over which information will be exchanged
with the environment.

 How? Think about a relevant interaction point for each actor. Bear in mind that one
single point could be used by several actors.

 Where? The interaction points will then be specifi ed in more detail in the design.

 Guiding questions
 ■ What paths will the system use to exchange information with its environment?
 ■ Are your interaction points conceptual or physical?
 ■ What interaction paths for actors can be merged?

 SysML elements
 Block defi nition diagram, internal block diagram, block, actor, association, role,
connector, standard port.

 FIGURE 2-28

 Interaction points.

System

Identify system
interaction points

System context
[interaction points]

System context

62 CHAPTER 2 The Pragmatic SYSMOD Approach

 Interestingly, ROOM does not know interfaces in the sense UML does. The two
concepts of port and interface have both been part of a language only since the
introduction of UML 2.0. It is then a task of the approach models to cleanly sepa-
rate the two concepts.

 SysML distinguishes between a standard port and an object fl ow port. A stan-
dard port is used to supply or request services. Such a port normally has synchro-
nous character, i.e., it is a point over which a request is started and where the
sender of the request waits for the result from the receiver. In contrast, object
fl ow ports transport information to and from the system. They often have asyn-
chronous character, e.g., information from external sensors. We don ’ t want to look
at these details in this early stage of our approach. We will use only standard ports
that comply with the UML-2 ports for now, and do without modeling interfaces
for the sake of simplicity, since we are currently interested only in the interaction
points themselves. We will differentiate port types later on in the system design, as
described in Section 2.7.3.

 A system port describes a point in the system that is used to exchange infor-
mation with actors. Such a port can be a virtual, conceptual point or an object
existing in the real world.

 Now, how do we fi nd the ports in our on-board computer? We look at our sys-
tem context model and try to fi nd out what interaction point each single actor may
have to the system. There may be more than one. It could also be that the com-
munication of an actor with the system does not fl ow over a port. For example,
we won ’ t model a port for the environmental effect temperature . In this case, the
exchange doesn ’ t occur over a designated point.

 It is not a good idea in this early project phase to anticipate design or imple-
mentation decisions, or only to a very little extent. Use conceptual names for your
ports, such as ServerPort for SMS communication with the SpeedyCar server in
our system example. You can see our result in Figure 2.29 .

 You cannot connect actors directly with ports even if it may look enticing and
useful from the graphical perspective. The following box describes the formal
rationale.

 FIGURE 2-29

 System interaction points for the on-board computer.

bdd [package] System context [interaction points]

CarControlPort

CarReaderPort

IOPort

ServerPort

ServicePort

KeyPortCurrentPort

MicrophonePort

CarPort

«System»
On-board computer

63

 WHY ARE ASSOCIATIONS NOT PERMITTED ON PORTS?

 It is often very enticing to connect an association with a port, e.g., in the system
context diagram or in the block definition diagram. Though this is in fact supported
by several SysML/UML tools, it is formally illegal. And a closer look reveals that it
doesn ’ t make any sense. A port is a property of a block and has a rank similar to
that of an attribute. Attributes must not be connected with associations either.

 The internal block diagram looks at more detailed structure aspects than the
block definition diagram. For example, you could model how the properties of a
block—ports and attributes—relate. You could then use a connector which, in
turn, can have an association as its type, to connect a port.

 The block definition diagram describes the type level, while the internal block
diagram describes the role level.

2.4 Modeling Use Cases

 PROJECT DIARY

 Project Time 6137

 I asked Klaus, our tools specialist, to expand the modeling tool accordingly to
keep technical modeling details out of our daily project work. Luckily, our tool can
be individually expanded over a programming interface. That way we can develop
little helpers that will do several modeling details for the developer automatically
and transparently. This includes, e.g., the system context element, which can
be thought of as a sort of wrapping around the system and the actors, so that
we can conduct a detailed environment analysis. The tool can create all model
relationships of the context element automatically.

 Ivar Jacobson founded Jaczone; one of the company ’ s products is an
intelligent agent that guides the developer through the modeling process [26].
Unfortunately, that doesn ’ t correspond to our project requirements, so we cannot
use the agent, but the concept is great.

 To connect actors directly with ports, we have to switch over to the internal
block diagram. I wrote in Section 2.3.2 how a system context element (Figure
2.26) can be used for modeling. It means that this is where we leave the type level
and continue working on the role level. This level allows us to connect actors—
more specifi cally, the roles—with ports. These connections are then formally con-
nectors rather than associations. You can see the result in Figure 2.30 .

 2.4 Modeling Use Cases
 Use cases represent the services provided by our system, which means that they
are the central elements in our requirements analysis. The services a system pro-
vides determine that system ’ s meaning and purpose. This means that all functional
requirements of the use cases have a high priority. All other requirements, such as
response times, weight, or size are of qualitative or supportive nature. That doesn ’ t

64 CHAPTER 2 The Pragmatic SYSMOD Approach

 FIGURE 2-30

 System context with ports.

mean that these requirements could not be important. An airbag that unfolds sev-
eral minutes after its triggering is absolutely useless.

 We ’ ve already collected requirements, including functional requirements, such
as rent car without staff assistance . Use cases help us refi ne these requirements
and describe them in greater detail. A use case itself is not a requirement.

 Ours is a top-down approach, which means that we can achieve a broad col-
lection of requirements in an early project phase. It also helps us obtain a full
picture rather early. This provides us with a good basis, e.g., for cost and time esti-
mates, in an early project phase [57].

65

 One of the most important benefi ts of our approach is scalability. The depth of
details of our model can be adapted to the project. Each step is realizable and achiev-
able, from a superfi cial analysis to get a rough insight, e.g., for a feasibility study, to
very detailed executable models. This allows us to further detail a superfi cial analy-
sis model at a later point in time. And a very detailed model can appear like a super-
fi cial analysis model in suitable diagram views. If there is an interest in the details
of a model element we simply “ zoom in. ” This way we can make complex models
manageable. The modeler won ’ t be overwhelmed by the model ’ s intricacy and they
won ’ t get lost in the details either; instead they can work on the details level they
need for their current task. Grady Booch calls this Illusion of Simplicity [6].

 In Sections 2.4.1–2.4.6, we will identify use cases, immerging into each of
them, and then analyze them from the superfi cial use case essence all the way to
the detailed fl ow description. The individual steps involved in use case modeling
are shown in Figure 2.31 . It is the detailing of the step, model use cases , from
 Figure 2.1 .

 2.4.1 Identify Use Cases
 Identifying use cases is shown in Table 2.9 .

 Our approach is service-oriented, which means that we fi rst look for the ser-
vices our system is to provide. The only thing of interest for the actors is actually
what functions the system offers or the services that will be requested from the
system. The structures required for all of these are secondary for now. It is a “ side
product ” that emerges when we describe and realize the services.

 By way of example, we will briefl y look at another system: a soft drinks vend-
ing machine. What does the actor customer want of this system (Figure 2.32)?
They are not interested in the structures of the system, but in the services only.
They want to buy a soft drink .

 The services a system offers, i.e., its functionality, are described in UML by
means of use cases. A use case is denoted as an ellipse, and the actors participat-
ing in the use case are connected to the ellipse by solid lines (Figure 2.32).

 A use case has always at least one actor; it is started by a domain trigger, and it
ends with a domain result. The fl ow between the trigger and the result has a time
coherence, i.e., no domain interruption is possible.

 The metaphor of a “ service provider ” is helpful to ensure that we won ’ t lose
sight of the important things. The system exists to render services to others. It has
no end in itself. This perspective can get lost in the large number of (technical)
details an engineer has to deal with, especially in later project phases. However, all
use cases have to have been realized when the system is shipped. You can think
of use cases as the “ lighthouses ” of your project, which you always have to have in
sight to ensure that you reach your goal straight on in the secure groove.

 This is the approach that ’ s also behind the catchword “ use case-driven, ”
used in many process models or software development architectures (including,
e.g., the oose Engineering Process (OEP) [35], the Rational Unifi ed Process
(RUP) [31], and the 4�1-Architecture [30]). It means that the use cases are always
kept in focus in the individual system development phases.

2.4 Modeling Use Cases

66 CHAPTER 2 The Pragmatic SYSMOD Approach

 To identify services, we fi rst of all look at the system context model and ask our-
selves what the actor wants of our system, especially with regard to incoming infor-
mation fl ows. Does the information fl ow trigger a new use case fl ow, or is it part
of another fl ow? In case of doubt, we assume for now that a new fl ow is triggered.

 FIGURE 2-31

 The approach model for use cases.

act Model use cases

Model object
flow

Use cases
[detailed]

Requirements

Use cases
[object flow]

Describe use cases
essences

Use cases
[essential]

Use cases

Requirements

Model use cases without
redundancies

Use cases
[non-redundant]

Use cases

Describe system
processes

Use cases

Identify use
cases

Use cases

System context

Model use
case flows

Use cases
[detailed]

Requirements

Use cases
[essential]

Requirements
Requirements

System context

Use cases System
processes

System processes

67

Each newly found fl ow is a use case for our system. The categories we have
grouped our actors in are helpful in this step.

 When the actor ’ s end, where the information fl ow starts, is a user we have to
ask ourselves what the user wants of our system. The information fl ow is part of a
dialog between a user and the system. The important thing is to fi nd out whether
the information starts the dialog, or whether the information is transmitted in the
course of a dialog. If the user started the dialog, we have found a new use case.
Otherwise, we track back the dialog to fi nd the trigger.

 The use case name is formulated from the user ’ s view. Imagine you are sup-
posed to mark a button at your system that triggers the use case for users to
understand what the button does.

 Though the naming is often independent of a direction, verbs like buy , sell ,
or enter , actually imply a direction. It is important to understand whether the
actor or the system buys or enters something. From the triggering actor ’ s view a

2.4 Modeling Use Cases

 Table 2.9 Summary: Identifying use cases.

 Reference card: Identify use cases.

 Incoming and outgoing data

 Requirements:
 General requirements to the system.
 System context:
 System with actors.
 Use cases:
Services provided by the system.

 Motivation/description
 Why? Use cases describe the system ’ s services that are perceived and requested
from the outside, which means that they are an important view on the requirements.

 What? Use cases are identifi ed and allocated to the participating system actors.

 How? Use cases are elaborated systematically based on the requirements and the
system context.

 Where? Use cases are completed with a fl ow description and then serve as a starting
point for deriving the design.

 Guiding questions
 ■ What can the system do for a specifi c actor?
 ■ What incoming information is at the beginning of a fl ow?
 ■ What services does each of the actors require from the system?
 ■ What results do the services supply to the actors?
 ■ Is the use case described from the actors ’ view?

 SysML elements
 Use case diagram, package diagram, use case (SYSMOD: continuous use case),
actor, package, requirement, association, information fl ow, refi ne relationship.

Identify use
cases

Use cases

Requirements

System context

68 CHAPTER 2 The Pragmatic SYSMOD Approach

sentence in the form “ � actor � wants � use case � ” must sound meaningful. For
example, “ customer wants to buy soft drink. ” From the system ’ s view, a sentence
like “ system wants to buy soft drink ” doesn ’ t make sense.

 We proceed in the same way if the actor is an external system. Only this time
we take the view of the external system.

 If the actor ’ s end from where the information fl ow starts is a user system we
take the view of the user behind the user system and proceed similarly to user
actors. From this modeling view, the user system itself does not have an interest,
apart from the data transfer between a user and the system.

 Similar to user systems, we describe the use cases for boundary systems from
the view of the external system that communicates over the boundary system.

 Actors representing environmental effects don ’ t have to be considered as we
look for use cases. They are the only actors that are not necessarily participating
in use cases.

 If the actor is an actuator, then it participates in some part of a fl ow, but it is
not the trigger of a use case. A situation where an actuator sends domain-relevant
information to the system is rather unusual; and it would be even more unusual if

 FIGURE 2-32

 Describing use cases for services.

Thirsty!

uc [package] Core use cases [buy soft drink]

Customer

Buy soft drink

69

this information triggered a use case. The direction of the information fl ow is nor-
mally from the system to the actuator. Look for the start of the fl ow in which the
actuator participates. If you fi nd it you ’ ve found the pertaining use case.

 If the actor is a sensor, it can be the trigger of a use case. However, the sensor
is not interested in the result of the use case. This means that we cannot describe
that use case from the sensor ’ s view. Look for the actor or stakeholder that is
interested in the result, and formulate the use case from its view. If you can ’ t fi nd
anything or anybody, you can omit that use case. Nobody will notice it ’ s not there.
Or will they? If so, you ’ ve found the interested party.

 We now want to apply these heuristics to our system. We fi nd the information
fl ow PIN from customer to system (Figures 2.23 and 2.24) in the system context
model of our system. Does the PIN input trigger a new fl ow in the system? We
will just assume it does in case of doubt. Why does a customer enter their PIN?
The goal is to deactivate the electronic drive-away protection. Formulating it from
the customer ’ s view, we call this use case activate car (Figure 2.33). As seen in the
fi gure we can also show the information fl ow in the use case diagram.

 Next we look at the information fl ow usage right from the reservation system
to the on-board computer. We recognize that it merely responds to a request of
the on-board computer, but doesn ’ t start a new fl ow. But who or what started the
pertaining fl ow? In an attempt to trace back the fl ow, we hit the customer who
started the fl ow by placing their customer card on the card reader. The result is
the car being unlocked. Describing it from the customer ’ s view, we call the use
case unlock car (Figure 2.34).

 You will notice at the latest when getting to the detailed modeling of your use
case fl ows (see Section 2.4.5) that the fl ow after the one called unlock car is not
yet complete. After this fl ow there is only a predefi ned time interval available for
entering the PIN and removing the car key from the holder. Only then will the
customer have started using the car. Beginning of the usage is stopped if either
the PIN is not entered or the key is not removed within this time window. In this
case, the car is automatically locked again. The business terms and conditions of
SpeedyCar say that a car is deemed to have been offi cially given to a customer
upon removal of the key.

 This means that the use cases unlock car and activate car are one single use
case. The trigger, apply customer card , normally leads to the result that the car

 FIGURE 2-33

 A potential use case called “ activate car. ”

2.4 Modeling Use Cases

uc [package] Car usage [activate car]

Activate
car

Customer

PIN

70 CHAPTER 2 The Pragmatic SYSMOD Approach

usage has begun. Accordingly, we call the use case start car usage (Figure 2.35).
There would be no negative effect if you were not to yield this fi nding in this
phase; it would be perfectly alright if you were to fi nd it later when you look at
the details of your use cases (see Section 2.4.5), or if you were never to merge
your use cases. The fl ows are the same, only their distribution across the use cases
would differ. It is absolutely normal that new information is won as we work on
the details which affect the previous modeling steps in arrears. Your modeling can
be only as exact as the current abstraction level permits.

 The information fl ow mileage from the sensor car movement data partici-
pates in a special use case. Use cases that are triggered by a sensor information
often “ feel ” a little strange.

 The information mileage seems to trigger a new fl ow. The system determines
how many kilometers have been done and how much time has elapsed since
usage started; then it compares the current time with the scheduled reservation
end, and fi nally shows the result in a display unit. The party interested in this
result is the customer. From their views let ’ s call this use case show car usage
data (Figure 2.36).

 Do you think your use case has a strange look and feel? No? In that case
you can skip the following lines. Yes? Then the reason is probably that the described
fl ow represents only a traversal of a continuous fl ow. Such a fl ow does not corre-
spond to the standard defi nition of a use case. It has no external trigger and no

 FIGURE 2-35

 A use case called “ start car usage. ”

 FIGURE 2-34

 A potential use case called “ unlock car. ”

uc [package] Car usage [unlock car]

Customer data
Customer

Reservation
system

Unlock car

Usage right

uc [package] Car usage [start car usage]

Usage right

Reservation
system

Start car usage

Customer

Card data,
PIN

71

defi ned end result, but supplies results continually. So, if you want to describe a con-
tinuous fl ow rather than just a traversal, you should use a continuous use case.

 When does the use case show car usage data begin? What we need is mileage
information in order to determine the car usage data, which will form the basis for
customer billing later on. To ensure that customers can keep themselves updated
on the current state of costs incurred, this information is presented regularly on the
display unit—similar to a taximeter. The display of usage data additionally includes
the usage time currently run up, and it will be shown even while the car is not
moving. We know from the person in charge at SpeedyCar that the fi rst display
appears immediately upon the beginning of the car usage. That is, before the engine
is started and before any kilometer has been driven. The use case is triggered by an
internal state transition. As soon as the system changes to the usage state, the display
starts showing usage data. Leaving the usage state causes the use case to end.

 I ’ m sure you would have noticed that we are in the middle of analyzing poten-
tial use cases. We normally don ’ t start identifying use cases on our own hidden in
our closets. We identify our use cases in a workshop. The participants are chosen
such that we obtain as much knowledge about all disciplines involved in the sys-
tem as possible. We then determine potential use case candidates in small groups.
We write our use cases on metaplan cards. Such cards are also available fi ttingly
in the form of use cases, i.e., ellipses. We can optionally note the pertaining actors,
the information fl ow, open questions, and other information on the back of the
cards. However, the focus is clearly on the identifi cation of use cases. This means,
for example, that we won ’ t especially determine pertaining actors, but only add
them if we already have this information.

 In the plenum, we collect the use cases on a metaplan board. This helps us
discover duplicate use cases, synonymous terms, use cases not clearly formulated,
and use cases that are too abstract, too granular, or simply wrong.

 We will keep only one card each of the duplicate or synonymous use cases. We
will staple the duplicate cards to the main card each if the cards have additional
information on their back. Otherwise, we can discard them.

 A use case that is too granular is part of a larger use case. Again, we will staple
the card to the larger use case if it contains additional information.

 A use case that is too abstract can initially be used as a heading for a group of
use cases.

 FIGURE 2-36

 A use case called “ show car usage data. ”

2.4 Modeling Use Cases

uc [package] Car usage [show car usage data]

Car
movement data

Show car
usage data

Usage data

CustomerKilometer

72 CHAPTER 2 The Pragmatic SYSMOD Approach

 We then take all use cases found and put them into domain-motivated groups
on the metaplan board. We name these groups accordingly.

 Next we use a digital camera to capture the result. We can transfer the use cases
to our model later on. In the model the use case groups become packages. Since we
want to concentrate only on the core functions of the on-board computer for the
time being, we move the contents of the packages, navigation system , phone , and
 radio , to the side in the diagram (Figure 2.37).

 There is normally other information that belongs to a use case, but for which
there are no meaningful model elements in SysML. This additional information
includes short descriptions, references to external documents, open issues, or
management information like priorities and cost estimates.

 We can normally accommodate this information in fi elds available to describe
the use case in the modeling tool or as a comment in the diagram. We can of course
create a description in a text document outside the SysML model as an alternative. If
you opt for this alternative you have to make sure that the data stored separately—
the model and the document—are maintained consistently.

 Use cases also have the roles of functional requirements. How does this har-
monize with the requirements we determined in Section 2.2? A use case is a

 FIGURE 2-37

 Model showing the results of the use case workshop.

pkg Use case packages

Service

Navigation system

Radio

Phone

Poll system
status

Do
system test

Configure
on-board
computer

Start on-board
computer

Car usage

Start
car usage

Show
car usage data

End
car usage

73

refi nement of a functional requirement. It fulfi lls further criteria, such as domain
trigger, result, and time coherence. It has actors associated with it, and an activity
describes the fl ow in detail (Section 2.4.5).

 Functional requirements are more general in nature and are not subject to
side conditions. The refi ne relationship (Figure 2.38) describes how a functional
requirement and a use case relate. It could easily be that several use cases refi ne
one single requirement, just as well as one single use case can have refi ne relation-
ships with several requirements. A use case is an element of the analysis, but not a
requirement.

 Non-functional requirements can describe qualitative aspects of use cases, e.g.,
agreed system response times during a fl ow. This type of relation is modeled by
means of a trace relationship (Figure 2.39).

 So far we have been concentrating more on the identifi cation of use cases
and less on the allocation of actors. We ’ ll catch up on this right now. You can fi nd

2.4 Modeling Use Cases

 FIGURE 2-38

 Refi ning use cases, requirements.

req [package] Functional requirements [car usage without staff]

«requirement»
Car usage

without staff

Start car usage End car usage

«refine» «refine»

 FIGURE 2-39

 Relationship between a use case and a requirement.

uc [package] Car usage [non-functional requirements]

«interfaceRequirement»
Reservation system

«performanceRequirement»
Period unlock door

«trace» «trace»

Start car usage

74 CHAPTER 2 The Pragmatic SYSMOD Approach

examples like the one shown in Figure 2.40 —an actor denoted as a stick man,
connected with a use case, in the UML literature.

 However, use case diagrams for embedded systems look totally different.
Embedding means that the system will interact with many other (external) systems.
Consequently, many external systems are actors participating in the use cases. The
pertaining diagram has a Star pattern, which we already know from the system con-
text diagram (Figure 2.41).

 We are now ready to assign actors to the use cases identifi ed so far. We have
actually done some when we identifi ed the use cases. We try to fi nd the actors that
participate in each use case. Each actor also has to appear in the system context
model. Since we are now looking closer at the details of our system it is absolutely
normal to discover new actors. We extend the system context model accordingly.

 FIGURE 2-40

 An actor and a use case.

uc [package] SysML book [actor/use case]

Actor Use case

 FIGURE 2-41

 Actors and the use case “ start car usage. ”

uc [package] Start car usage [actors]

Reservation
system

Start car
usage

Central locking system

Drive-away protectionCustomer

752.4 Modeling Use Cases

 The dependency on the system context arises from the fact that we have
redundant information in the model. Each use case actor is also a system actor. We
could calculate most of the associations between the system and the actors from
the use case model. To this end, we can use the UML construct of a derived asso-
ciation , which is denoted by a slash (Figure 2.42).

 Unfortunately, in practice we often have to deal with the problem that derived
associations are poorly or not at all supported by modeling tools. On the other
hand, since the redundancy is controllable it is not dangerous to leave it in the
model. Bear in mind that redundancy occurs in the model only later. We don ’ t
have use cases yet in the fi rst step of modeling the system context.

 In Section 3.5 you will fi nd more techniques for actor modeling, such as gen-
eralization of actors, the OR relationship, and multiplicities in the actor/use case
relationship that we haven ’ t used here.

 FIGURE 2-42

 A derived association.

bdd [package] System context [derived association]

Customer

«system»
On-board computer

/

 PROJECT DIARY

 Project Time 6269

 We can communicate directly with the domain experts about the use cases just
as we do about the system context model. The simple representation of the use
cases and the pertaining actors is easy to understand even for people who are not
from the engineering environment. This helps us continue coordinating our model
directly with the principal. Great!

 We discussed the possibilities of the communication unit with the domain
experts in a workshop. They consider data transmission via SMS as the cheapest
variant. But the system has to be flexible to ensure that another communication
technique could perhaps be used in the future.

 The domain experts require that a so-called emergency driving be allowed.
What they mean by that is a way for a customer to start using a car even if no
connection to the reservation system can be established. For example, some rental
stations are located in underground parking floors where it is often impossible to
reach a cell network.

 2.4.2 Describe Use Case Essences
 Describing use cases essentially is shown in Table 2.10 .

76 CHAPTER 2 The Pragmatic SYSMOD Approach

 We are now ready to deal more closely with each of our use cases. If you dive
into the use case by one detail step deep you get to the essential use case descrip-
tion. It describes the fl ow of a use case in general and independent of any specifi c
technology. This description is purely textual and is initially not modeled with
special model elements.

 While this description looks extremely easy it can be rather diffi cult to create
it. The essential description omits a lot of details, doesn ’ t consider exceptions but
only the standard fl ow, and contains no technology and design decisions. The tar-
geted omission of information is called abstraction . Abstraction at this point may
prove to be diffi cult especially for engineers, since they normally have to consider
every detail and every exception.

 Table 2.10 Summary: Describe use case essences.

 Reference card: Describe use case essences.

 Incoming and outgoing data

 Requirements:
 General requirements to the system.
 Use cases:
 System provided by the system
 ::Use cases [essential]:
 Use cases with an essential step
description.

 Motivation/description
 Why? We need an overview of the system ’ s services that can be determined quickly
and which is independent of technical solutions.

 What? Describe the domain intention for the use case in the form of essential steps
that don ’ t consider technical details and concrete fl ows.

 How? Think of the steps involved in the standard fl ow of a use case and remove the
technical details that are contained in the standard fl ow so that they will no longer be
present in the result.

 Where? The essential steps give you the structure for the next level of details. The
description is stable and can be reused for subsequent or similar systems, e.g., in a
product family.

 Guiding questions
 ■ What is the domain intention for the use case?
 ■ Does the essential description contain technical solutions?
 ■ Is the name of an essential step identical with that of the use case?
 ■ Is the essential description easy to understand for a domain person who doesn ’ t

know anything about the project?
 ■ Does the use case have 2–8 essential steps?

 SysML elements
 Use case diagram, use case, comment.

Describe use
case essences

Use cases
[essential]

Use cases

Requirements

77

 A helpful path toward our essential description leads across a pragmatic pro-
cess. Write down the standard fl ow of a use case freely out of your gut feeling. For
example, this could look like in Figure 2.43 for our use case start car usage .

 The pragmatic use case description corresponds to the explanations we
obtained from the domain experts. The essential description we are looking for
has a higher degree of abstraction. We want to detach from the technical realiza-
tion and limit ourselves to the domain core—the essence.

 As an example let ’ s look at the fi rst step of our pragmatic description. We dis-
cover a technical detail: the customer card. Inserting and reading the customer
card are not the domain intention. These two steps are not the goal of the on-board
computer. From the domain perspective what these two steps do is they identify
a customer. We could easily think of a different technical implementation.

 We similarly proceed step by step in the use case and distill the essence out of
it. Since the description is more abstract it won ’ t come as a surprise that it is much
shorter than the pragmatic description. You can see the result in Figure 2.44 .

 Essential steps are denoted as comments in the model (Figure 2.45) or in the
documentation fi eld of the use case, provided the SysML/UML tool supports this.

 It is mandatory in both cases to be able to generate the essence in the form
of a report from the modeling tool; otherwise you won ’ t have a clear description,
and the information might go under in the depths of the modeling tool.

 The sequence of the use case steps is not yet relevant at this point. We natu-
rally write them down in a meaningful sequence. However, the sequence often
depends on technologies and doesn ’ t play a particularly important role on the
domain level. For example, we don ’ t want to think about the sequence of the
PIN input or the key removal now. Of course, we will think about these things a
lot later on when we will describe the use case in detail and with the respective
technologies in mind (see Section 2.4.5).

 The essence we found is not the only possible solution. You can see two alter-
native essences in Figure 2.46 . Alternative 1 involves the same number of steps as

2.4 Modeling Use Cases

 FIGURE 2-43

 Pragmatic fl ow description for “ start car usage. ”

Pragmatic description

Apply customer card
Read card
Send SMS to reservation center
Receive SMS reply
Check usage right
Unlock car doors via central locking system
Poll PIN
Enter PIN
Verify PIN
Deactivate electronic drive-away protection
Remove key
Display customer welcome message

78 CHAPTER 2 The Pragmatic SYSMOD Approach

our solution. Taking a closer look reveals, however, that the steps are formulated
in more concrete terms. For example, the last step is remove key rather than start
car usage .

 The phrase remove key is undoubtedly catchier. But it doesn ’ t follow the pure
theory of an essence since it includes a technical detail: the key. I recently rented a

 FIGURE 2-44

 Essential fl ow description for “ start car usage. ”

Pragmatic description Essential description

Apply customer card
Read card

Send SMS to reservation center
Receive SMS reply
Check usage right

Unlock car doors via central locking system

Poll PIN
Enter PIN
Verify PIN
Deactivate electronic drive-away protection

Remove key
Display customer welcome message

Identify customer

Check usage right

Unlock car

Check disposal right

Start car usage
Confirm usage start

 FIGURE 2-45

 The essence of “ starting car usage ” as a comment in the model.

Essence

Identify customer
Check usage right
Unlock car
Check disposal right
Activate car
Start car usage
Confirm usage start
Open points

Open points

- Planned timeouts are still unclear.
- Does every car have a central locking
 system and drive-away protection?

uc [package] Car usage [essence start car usage]

Start car usage

79

car and noticed that they ’ ve started offering rental cars that must be started with a
chip card and by the push of a button. There was no car key. Of course, this can lead
to an important discussion about terms. Is a chip card a type of key? You fi nd a broad
description of terms in Sections 2.5 (domain knowledge) and 2.6 (glossary).

 The phrase start car usage is more essential and has the benefi t that the name
of the step and that of the use case are identical. This shows clearly that we are
looking at the core of the use case. A use case often follows a certain structure: fi rst
the preparation, then the core, and then perhaps some touchup steps. The removal
of the key is the formal consignment or delivery of a car to a customer based on
the terms and conditions of SpeedyCar. So this is the domain core of the use case.

 The second alternative essence is shorter than the other possibilities. It con-
sists of only four steps. It is more abstract and omits more information. The best
way to fi nd out whether or not this is still suffi cient are the reactions of the other
project participants. Do they all understand the essence, or do you have to explain
what is meant every time?

 The way between the purely essential description and a more pragmatic
description, which is normally sprinkled with technical details, is a tightrope walk.
If you move too sharply to one side you risk “ falling down. ” Once you ’ ve under-
stood the degree of abstraction and the benefi ts of an essential description you
will easily fi nd the right way.

 The number of essential steps naturally depends on the domain situation
and cannot be universally stated. As a heuristic: there are at least two steps and
at most eight steps in most cases. You should review the essence if your number
differs a lot.

 You will describe each of the essential steps in more detail later on in the
approach. If you have few essential steps you will have to supply more informa-
tion. If you have many essential steps you won ’ t have to go much into breadth any

2.4 Modeling Use Cases

 FIGURE 2-46

 Alternative essences for “ start car usage. ”

uc [package] Car usage [alternative essences start car usage]

Essence alternative 1
Identify customer
Check reservation
Unlock car
Check customer PIN
Activate car
Remove key
Confirm usage start

Essence alternative 2
Identify customer
Unlock car
Activate car
Start car usage

Start car usage

80 CHAPTER 2 The Pragmatic SYSMOD Approach

more later on (Figure 2.47). Both approaches should eventually yield a description
of the same information. The only difference is that it is distributed differently over
the abstraction levels. I tend to prefer the approach with many essential steps.

 It ’ s easy to create essential descriptions as soon as you have developed a feel-
ing for the abstraction required. It is generally not a good idea to conduct long
academic discussions in an effort to obtain the perfect essence. You cannot trans-
fer the above discussion about alternative essences in this form to your practical
project. It is much too “ fi nicky. ” Its purpose here is to help you understand the dif-
ferent aspects of essential descriptions.

 Altogether, this gives you a compact domain description of the services pro-
vided by the system. The fact that technologies and details are not considered
makes essences well suited for successor versions or related systems and keeps
them open for different solution approaches.

 FIGURE 2-47

 Number of essential steps.

Use case Use case

Essence

Detailing

 PROJECT DIARY

 Project Time 6429

 Essential descriptions represent a major benefit for our project. The initial startup
difficulties have been overcome and all participants, including our principal,
can now work on this abstract level. This is extremely effective since it spares
us from cumbersome discussions about details, which cannot be conducted in a
meaningful way in this early project phase. We will examine the details later in an
environment where we will have sufficient information and structures to analyze
them productively.

 2.4.3 Describe System Processes
 Describing system processes is shown in Table 2.11 .

 As we identifi ed our use cases we noticed that there can be dependencies
between use cases with regard to their sequence of execution. That is, only once a

812.4 Modeling Use Cases

certain use case has been fully traversed can other use cases be executed. We use
system processes to describe this relation.

 A system process describes a fl ow that extends over several use cases. It con-
sists of a set of use cases that have a domain-logical fl ow sequence.

 A system process is a special use case with the stereotype «systemProcess» . We
use a different notation (Figures 2.48 and 3.87) to better distinguish it from sys-
tem use cases. Its name is a noun without verb.

 Not every use case belongs to a system process; only the ones with a fl ow
dependency to other use cases do. These are often use cases that are in the same
package, all belonging to a system process.

 System processes serve two distinct purposes. First, they document fl ow
dependencies in a compact and clear way. Second, you can use them to describe
holistic behavior, which has to be explicitly considered in the system design and
implementation.

 System process information is implicitly included in the model. For each use
case we can formulate a postcondition that, in turn, could be a precondition of
another use case. This means that there is a domain-logical sequence between use
cases. A system process represents this dependency explicitly.

 Table 2.11 Summary: Describing system processes.

 Reference card: Describe system processes.

 Incoming and outgoing data

 Use cases:
 Services provided by the system.
 System processes:
 Holistic fl ows, consisting of use cases, in a
domain-logical sequence.

 Motivation/description
 Why? Complex fl ow sequences between use cases have to be dealt with and
modeled explicitly.

 What? Describe the fl ow dependencies between use cases and group-related fl ows
into system processes.

 How? Study the fl ow dependencies of domain-related use cases based on your pre-
and postconditions and describe them in an activity.

 Where? System processes have to be considered in the design, and they may have
to be implemented by blocks of their own.

 Guiding questions
 ■ What fl ow dependencies are there between the use cases?
 ■ Which use cases have an important domain proximity?

 SysML elements
 Use case diagram, activity diagram. SYSMOD: system process, include relationship,
activity, action, edge, control node (e.g., initial node, decision), composition.

Describe system
processes

System processes

Use cases

82 CHAPTER 2 The Pragmatic SYSMOD Approach

 We model the fact that a use case belongs to a system process by means of an
 include relationship. Its notation is a dashed arrow pointing from the system pro-
cess to the use case and marked with the keyword «include» (Figure 2.48).

 We use activities to model the fl ow sequence of system processes. Exactly
one activity belongs to a system process. This relation cannot be represented in
the diagram. SysML and UML know only few notations that combine two diagram
types. But the system process/activity relationship exists in the model. 13

 The pertaining use cases are represented each by an action in the activity. The
action is denoted as a rectangle with rounded corners. The name of the action—
that is, in this case the name of the use case—appears inside the rectangle. The
small fork in the lower right corner shows that this action invokes an activity.
It is an activity that describes the fl ow of the corresponding use case (see
Section 2.4.5).

 Our next job is to connect the actions, i.e., to arrange them in some sequential
order or fl ow. The fl ow begins at the initial node, which is a black circle, followed
by the actions, and ends at the activity fi nal node, which is also a black circle with
an encompassing circle.

 We defi ne a system process called car usage and then continue modeling
the dependencies of the use cases start car usage , end car usage , and car usage
data . You can see the result in Figure 2.49 . Displaying the usage data and ending
the usage can happen independently of one another.

 Independent fl ows are expressed by a fork node in activity diagrams. A fork
node is denoted by a black bar at which one fl ow ends, and from which an arbi-
trary number of fl ows start. The incoming fl ow is “ forked. ”

13For those who are well familiar with the UML metamodel: It’s the composite relationship between
BehavioredClassifier (in this case the use case or system process) and Behavior (in this case the
activity).

 FIGURE 2-48

 A system process with use cases.

uc [package] Car usage [system process]

Car usage

Start car usage

End car usage

«include»

«include»
«include»

Show car usage
data

832.4 Modeling Use Cases

 The display of usage data is a continuous use case. It is no longer exited in this
system process. When the use case end car usage is completed, the entire system
process and with it the usage data display are terminated over the activity fi nal node.

 You will learn other description elements that are possible in activity diagrams
in Sections 2.4.5, 2.4.6, and 3.6.

 You can just as easily represent a system process in the form of a function tree
(Figure 2.50). This fi gure is a static view of Figure 2.49 . The dynamic information
about the fl ows is lost in this representation (Figure 2.50).

 FIGURE 2-49

 The activity of the system process “ car usage. ”

«systemProcess»
act Car usage

Start car usage

Show car
usage data

End car usage

 FIGURE 2-50

 The function tree for the system process “ car usage. ”

bdd [package] Car usage [function tree]

«systemProcess»
Car usage

«activity»
Start car usage

«activity»
Show car usage

data

«activity»
End car usage

84 CHAPTER 2 The Pragmatic SYSMOD Approach

 2.4.4 Model Use Cases Without Redundancies
 Non-redundant modeling of use cases is shown in Table 2.12 .

 This step is used to refactor our model [16]. This means that we change the
structures of the model without adding new domain information. The model is
cleaned up, so to speak, to create a better basis for expansion.

 As soon as we have fi nished creating essential use case descriptions we have a
possibility to detect redundant fl ows. These are identical fl ows that occur in sev-
eral use cases. The earlier we detect them the easier it will be to avoid multiple
analyses, designs, and implementations. This will be particularly helpful later on;
otherwise there could be a risk that a desired change is not made to all fl ows
involved, causing the model to become inconsistent.

 The essential description allows us to see the top level of our use case
fl ows and to start refactoring. Since the essential description does not contain any
technical aspects, we can discover even fl ows that are identical from the domain
perspective, and which differ only in their technical implementation.

 Table 2.12 Summary: Non-redundant modeling of use cases.

 Reference card: Model use cases without redundancies

 Incoming and outgoing data

 Use cases:
 Services provided by the system.
 Use cases [non-redundant]:
 Use cases with generalization and include
relationships for non-redundant fl ow
description.

 Motivation/description
 Why? Redundant model information can cause serious problems if their consistency
is violated.

 What? Identify common things between the use case fl ows and model these areas in
isolation to avoid redundancies.

 How? Common things between use case fl ows are described in secondary use cases
and embedded into the primary use cases by means of the include relationship.

 Where? The non-redundant use case structure supplies useful hints for optimized,
non-redundant system design.

 Guiding questions
 ■ Which use case steps repeat themselves in other use cases?
 ■ Which use cases are similar?

 SysML elements
 Use case diagram, use case, SYSMOD: secondary use case, include relationship,
generalization.

Model use cases
without redundancies

Use cases
[non-redundant]

Use cases

85

 Several common fl ow steps between the use cases are very easy to fi nd since
the names of the respective steps are identical. However, if the essences had been
created by several people, which is normally the case, we have to deal with syn-
onyms and similar things. The same steps do no longer have the same names now.

 This is where a glossary comes in handy, since it encourages the use of a uni-
form project language. For example, we added to our glossary that our principal
uses the term car rather than auto , vehicle , or rental car . Accordingly, we called
an essential step unlock car and not unlock auto in the use case car usage .

 We can formalize our search for identical fl ows by means of pre- and postcon-
ditions as well as incoming and outgoing data. This information can be modeled
as we will see later on in Section 2.4.5. And we can use query scripts to access
it from within the model. A script can create a list of use case steps that have the
same pre- and postconditions or the same incoming and outgoing data. These are
potentially identical steps. Most SysML/UML tools allow you to develop tailored
model query scripts.

 However, there are neither pre- and postconditions nor information about
incoming and outgoing data on the essential level yet. We can apply this technique
only to more detailed use case fl ows later on.

 A use case step that occurs more than once or related use case steps are mod-
eled as one single new use case. However, since the criteria for a fully fl edged use
case—no trigger, result, or actor—are not met, 14 we denote it with the stereotype
 «secondary» or as a dashed ellipse. This is only one use case fragment, a so-called
 secondary use case . We use the include relationship to embed it in the primary
use cases.

 We fi nd only one common step in the package car usage . We need to deter-
mine the usage data for two reasons: fi rst, for continuous usage data display, and
second, when the car usage ends to be able to forward the data to the billing sys-
tem (Figure 2.51).

 We need to be careful not to model routinely every step that occurs more than
once as a secondary use case. Bear in mind the triple heuristic, which says that
one thinks about resolving a redundancy only in its third occurrence. If so, we
wouldn ’ t have had to defi ne the secondary use case determine car usage data .
On the other hand, heuristics don ’ t apply routinely either. We have to weigh each
concrete case to fi nd out what is more valuable: either no redundancy or redun-
dancy with the benefi t of having a less complex model, since we omit another
model element and its relationships.

 If you search your use cases for common things you may fi nd that some use
cases are pretty much alike. Not necessarily in the number of common steps, but
in the fl ows themselves. The use cases of our system ’ s navigation system are a
good example: A customer can defi ne a new route, or change or delete an exist-
ing route. This means that we found three use cases: add route , modify route , and
 delete route (Figure 2.52).

2.4 Modeling Use Cases

14 This would violate the use case criteria of the SYSMOD approach and not the formal SysML
criteria, which would be illegal.

86 CHAPTER 2 The Pragmatic SYSMOD Approach

 Two use cases, modify route and delete route , are very similar. Nevertheless
it is necessary to list both use cases, because they concern two different system
services. You can document their similarity in another use case. The two fl ows will
become identical if you move one abstraction level up.

 The abstract fl ow is described by an abstract use case. SysML lets you denote
the property abstract by writing its name in italics and optionally adding the word
{ abstract }. The relationship to the concrete use cases is a generalization, which is
denoted by an arrow with a solid line and closed arrowhead (Figure 2.53).

 FIGURE 2-51

 Use case relationships.

uc [package] Car usage [secondary use cases]

End car usage
Show car usage

Determine car
usage data

«include» «include»

 FIGURE 2-52

 Use cases for “ route. ”

uc [package] Routes

Add route

Modify route Delete route

Essence
Select route
Modify route
Confirm change

Essence
Select route
Delete route
Confirm deletion

Essence
Add route
Compute route
Display route

87

 The use case generalization is meaningful only provided that the relation-
ship can be read in the direction of the arrow to say: “ � use case � is like � use
case � , ” or, in this specifi c case: “ modify route is like edit route. ” Sounds perfectly
alright! Though this is not a 100 percent rule it covers most cases. Moreover, the
abstract use case should be only slightly more abstract than the concrete use
cases. Otherwise, they would have to become more and more abstract in order
to always fi nd a common “ master ” use case for two arbitrary use cases. Grossly
exaggerating, this would mean that if we used a use case do something , we would
have found a master use case for all our use cases. Obviously modeling such a use
case doesn ’ t make sense (Figure 2.54).

2.4 Modeling Use Cases

 FIGURE 2-54

 Too abstract!

uc [package] SysML book [meaningless generalization]

Do something
{abstract}

Start car usage Add route

 FIGURE 2-53

 Use case relationships for “ route. ”

uc [package] Routes

Add
route

Modify
route

Delete
route

Essence
Select route
Edit route {abstract}
Confirm edited route {abstract}

Edit
route

{abstract}

88 CHAPTER 2 The Pragmatic SYSMOD Approach

 The include relationship described at the beginning of this section is much
more important than the generalization. It is always a good idea to follow the
guideline “ the include relationship has to be searched for while the generalization
relationship is found ” in the modeling process. This means that you should search
for potential redundancies in a targeted way, while you should model a generaliza-
tion only if you found it purely “ by chance. ”

 2.4.5 Model Use Case Flows
 Modeling use case flows is shown in Table 2.13 .

 The steps completed so far in our approach have provided us with a broad
overview of the system. We now know the system environment (actors, informa-
tion fl ows) and the catalog of services, including essential descriptions (use cases).

 Table 2.13 Summary: Modeling use case fl ows.

 Reference card: Model use case fl ows.

 Incoming and outgoing data

 Requirements:
 General requirements to the system
 ::Use cases [essential]:
 Use cases with an essential step description
 ::Use cases [detailed]:
 Detailed fl ow description, including
exceptions and variants.

 Motivation/description
 Why? The fl ow descriptions of use cases belong to the core information of our
requirements analysis. They provide a detailed view of the behavior required of the
system.

 What? Describe the use case fl ows, including all exceptions and variants, in
appropriately detailed form.

 How? The use case fl ows are described using SysML activities.

 Where? The activities form a direct basis for the system design. Their clear
representation in the activity diagram allows you to have the principal deeply
involved in the system development process.

 Guiding questions
 ■ What steps are required for the use case?
 ■ What exceptions and variants can occur during the fl ow?
 ■ Is the use case suffi ciently detailed and clearly described?

 SysML elements
 Activity diagram, activity, SYSMOD: essential/continuous activity, action, edge,
control node (e.g., initial node, decision).

Model use case
flows

Use cases
[detailed]

Requirements

Use cases
[essential]

89

We achieved these results relatively quickly. Here, in this fi rst round, the iterative–
incremental approach does not demand completeness either. It is suffi cient to
have found the core use cases. As soon as their details have been analyzed we can
also determine the remaining use cases easily.

 In our analysis we normally spend the best part of our time describing
detailed fl ows for use cases. We are ready to start this job now. Starting from the
abstract essence description, we analyze and model fl ow details, exceptions, and vari-
ants. This requires many domain details. You will come across open issues that cannot
be solved without the help of a domain expert. It is therefore always a good idea
to have access to appropriate stakeholders in this phase to clarify detail questions
in time.

 We start our analysis by selecting a use case. If you haven ’ t modeled use case
fl ows for the system yet, you should select a use case that contains the central
domain logic, and covers as large a system area as possible, and has a known fl ow.
Let ’ s select start car usage as our fi rst use case.

 When describing exceptions and variants of a use case fl ow, we quickly hit the
limits of our natural language. It is normally easier to describe all these sorts of
junctions, concurrencies, and terminations graphically. SysML and UML offer the
activity diagram to graphically describe exceptions and variants.

 First of all, let ’ s look at the essential steps of our use case. A step becomes
an action in the activity. It ’ s now a matter of connecting the actions, i.e., putting
them in a certain sequence. The fl ow begins at the initial node, denoted by a black
circle, followed by the actions, and fi nally the activity fi nal node, which is also
denoted by a black circle with an additional encompassing circle.

 We don ’ t consider potential exceptions and variants just yet, which means that
the result can be pretty trivial. Though the essential description does not dictate
a fi xed sequence, the steps are already listed in a meaningful order rather than
meaninglessly mixed at random. In our use case, start car usage , this also applies
to all the steps up to and including the step unlock car (Figure 2.45). However,
the subsequent steps cannot be arranged in a fi xed sequence. A customer can
fi rst remove the key and then enter the PIN, or vice-versa. The two steps are
independent of one another. They can occur in an arbitrary sequence, perhaps even
concurrently in case a customer is willing and able to go into contortions
(Figure 2.55).

 In activity diagrams we express independent fl ows by means of a fork node,
which is denoted by a black bar at which a fl ow ends, and from which an arbi-
trary number of independent fl ows start. In other words: the fl ow is “ forked ”
(Figure 2.56).

 As soon as the independence is no longer desired, we have to synchronize the
fl ows. The join node is also denoted by a black bar. In contrast to the fork notation,
however, it has several incoming fl ows and only one single outgoing fl ow (Figure
2.56). The outgoing fl ow doesn ’ t start before all incoming fl ows have arrived.
So what happens here is a synchronization of the fl ows. In our case, we have to
synchronize the independent fl ows before they reach the last action— confi rm
usage start . Otherwise, the faster fl ow part would trigger the confi rmation before
the other fl ow part has been fully traversed (Figure 2.56).

2.4 Modeling Use Cases

90 CHAPTER 2 The Pragmatic SYSMOD Approach

 Altogether, we obtain the result shown in Figure 2.56 for the use case start car
usage . This result shows the standard fl ow without exceptions or variants, based
on the essential steps.

 Unfortunately, we have introduced some redundancy in our model. First, we
denoted the essential steps textually near the use case. Second, exactly these steps
are also described as actions in the activity diagram. If you were to change something
in the essential steps as you progress, it would very likely lead to inconsistencies due
to redundancy. It could easily happen that you change the textual description, but
overlook the corresponding actions in the activity, or vice-versa.

 To remove this redundancy we delete the textual essence description and add
the stereotype «essential» to the actions in the activity (Figure 2.56). 15 This has
the additional advantage that we see the essence in the activity directly. However,
this modeling technique makes sense only provided that your modeling tool
allows you to generate an essential description in the form of a text document
from the activities. Otherwise, you ’ d lose the simple—purely textual—view of the
essence. Many SysML/UML tools have interfaces to support such individual exten-
sions, but they are not included in the standard product.

 In the next step we look at the paths outside the standard fl ow. This means
that we now take off our rose-colored spectacles and analyze what should hap-
pen if things are not “ normal. ”

 FIGURE 2-55

 Arbitrary sequence?

act Start car usage [sequence?]

Unlock car

Check disposal right

Check disposal right

Unlock car

Start car
usage

Start car
usage

?

15As described further below and in Section 5.4, the action itself does not have a stereotype «essen-
tial», while the invoked activity does. The stereotype of the activity is also represented in pertaining
call actions.

91

 We try to fi nd possible exceptions and variants for each single action. We can
often distinguish between successful and unsuccessful results after each action.
Let ’ s look at the fi rst step, identify customer . The result can be either customer
identifi ed or customer not identifi ed (Figure 2.57). The former result corresponds
to the standard fl ow, while the latter requires more thinking. We ask the domain
experts and learn that the system should terminate in such a case. If a customer
cannot be identifi ed, they shouldn ’ t be able to access the car. Accordingly there is
no fl ow variant where no customer has to be identifi ed.

 A fl ow can take different turns based on a decision. We use a decision node
to model this in the activity diagram. The notation is a diamond with one incom-
ing fl ow and an arbitrary number of outgoing fl ows, each fi tted with a condition.

2.4 Modeling Use Cases

 FIGURE 2-56

 Standard fl ow for “ start car usage. ”

act Start car usage

Car usage started

«essential»
Identify

customer

«essential»
Check usage

right

«essential»
Unlock car

«essential»
Start car

usage

«essential»
Check disposal

right

«essential»
Activate car

«essential»
Confirm usage

start

92 CHAPTER 2 The Pragmatic SYSMOD Approach

These conditions have to mutually exclude each other to ensure that no more
than one condition is met ever. Of course, we also have to ensure that one single
condition is always met. If there are several conditions, i.e., no pure yes/no deci-
sions, it is useful to add the keyword [else] to a fl ow, which will then be activated
whenever all other conditions are wrong. This allows us to achieve a complete
coverage of all possibilities.

 Similarly to fork and join nodes, there is a counterpart to decision nodes.
A merge node looks like a decision, except that it has several incoming fl ows and
only one outgoing fl ow. No decisions are denoted. The only purpose of a merge
is to unite optional fl ows to one single strand. It neither checks nor synchronizes
anything (Figure 2.58).

 A closer look at each of the use case steps reveals that one single step can, in
turn, contain a complex fl ow. You can also use an activity that is invoked in that
step to model this fl ow. To make sure this is visible in the diagram, we denote the
calling action with a small fork in the lower right corner. This symbol represents a
call hierarchy (Figure 2.58).

 Many things happen in our second use case step, check usage right . A message
is sent to the reservation center, a response is expected and received, and some-
times emergency driving (see Project dairy with Project time 6269 on p. 75) is
triggered. We detail this step in a new activity of type «essential» (Figure 2.58).

 First, we use the light-emitting diodes of the status display unit to show the
customer that the system is on and that they should be patient. To this end, we
send a corresponding signal to the status display unit. In the activity diagram we
use a special symbol to represent this. Though the receiver of the signal is not
denoted it is present in the model.

 Note that we are no longer working on the essential level. The further we go
forward in the detailing process the more specifi c we describe a fl ow. In contrast
to the essential description, technical details are now not only permitted but
desired. Try to knowingly draw a border between pure domain things and technical

 FIGURE 2-57

 The decision “ customer identifi ed? ”

act Start car usage [section]

«essential»
Identify

customer

[customer not identified]

[customer identified]

...

...

93

solutions. We will be working exactly along this border in Section 2.8.1 to model
technical variants.

 In the next step, we send a usage right request to the reservation system and
expect an answer. Of course, the waiting time has to be limited. We use an inter-
ruptible activity area to model this in the activity diagram. A dashed rectangle
denotes the area within the activity that can be interrupted by an event. In our
case it ’ s a time event that we denote by a symbolic hourglass symbol. An edge

2.4 Modeling Use Cases

 FIGURE 2-58

 The detail activity for “ check usage right. ”

94 CHAPTER 2 The Pragmatic SYSMOD Approach

with a lightning arrow begins at the event and leaves the interruptible area. Things
continue at this point when the event occurs, at which time all fl ows within the
area terminate.

 There is yet another particularity at the interruptible edge: It states how
likely it is that the fl ow will take this path. This construct is not specifi c to inter-
ruptible areas. It is an extension of SysML that can also be denoted, e.g., at outgo-
ing edges.

 You can see the entire fl ow of the use case start car usage in Figure 2.59 . One
particularity I haven ’ t mentioned yet is the step start car usage . Similar to the
symbol used for sending a signal, you can see here the symbol for receiving of a
signal. This step hides the key removal. We can model it as a signal. This step waits
until the customer has removed the key from the holder, which is perceived as a
signal by our system.

 We proceed like this step by step. Not every use case step has to be neces-
sarily detailed with an activity. Two or three explanatory sentences may be
suffi cient; see, e.g., the step terminate usage start in Figure 2.59 . By the way,
this step is worth noting in another respect: It is not an essential step, but one
that was “ discovered ” just now. It is absolutely admissible that new steps,
which are not essential, are added on this abstraction level as we look at the
exceptions.

 In the top right corner in the activity (Figure 2.59) you can see a precondition
that has to be met in order for the activity to execute. Preconditions result partly
from the fact that other use cases have to have been executed beforehand. You
can also model this using system processes (Section 2.4.3).

 Exceptions and detailing require a lot of domain information. This is why we
need to closely cooperate with domain experts. We have to be aware of the fact
that the activity diagrams are not as simple as use case diagrams. You should nev-
ertheless try to use them in discussions and workshops with stakeholders.

 PROJECT DIARY

 Project Time 6897

 As we analyzed the use case start car usage Paul suddenly discovered the issue
whether or not a customer who canceled but is still in possession of the customer
card can access the car. Since access to a car is supposed to work even without
connection to the reservation center (emergency driving, Project dairy with Project
time 6269 p. 75) it ’ s impossible to check such a case in their customer system.
Should the on-board computer be fed regularly with a list of suspended cards?

 2.4.6 Model Object Flows
 Modeling the object flow is shown in Table 2.14 .

 You may have noticed as you have been dealing with use case fl ows that data
or objects have not played a particular role yet. All our steps execute actions, but

952.4 Modeling Use Cases

 FIGURE 2-59

 The fl ow diagram for “ start car usage. ”

act Start car usage [without object flow]

«essential»
Identify

customer

«essential»
Check usage

right

«essential»
Unlock car

«essential»
Check disposal right

«essential»
Activate

car

Terminate
usage start

[customer not identified]

[usage authorized]

[usage not authorized]

Timeout car
handover

[disposal
right o.k.]

[disposal
right not o.k.]

Car usage started Car usage not started

«essential»
Start car

usage

[customer identified]

Signal
remove key

«precondition» Car is not in use

Ask customer to get
out and lock car; car
will lock automatically
after a defined time.

«essential»
Confirm usage

start

Terminate if no PIN is entered
and key is not removed within a

defined time window after
the car is unlocked.

we haven ’ t modeled yet what they require, or what they create or change. It ’ s just
as well we haven ’ t looked into this until now, since we wanted to concentrate on
the logical fl ow (called “ control fl ow ” in SysML/UML lingo).

 Now—in a second step—we add information about this data. This is called
 “ object fl ow ” in the activity diagram. It represents how objects, i.e., data, “ fl ow ”

96 CHAPTER 2 The Pragmatic SYSMOD Approach

across a fl ow. One step creates an object which is, in turn, the input information for
another step, where it is modifi ed and accepted by a subsequent step, and so on.

 More specifi cally, it ’ s not objects that fl ow through the activity, but object
tokens. Think of the term object or data in the widest sense of the words. Either
can be data within a software application, but also purely physical elements, such
as liquids, electric current, gases, or forces.

 We use pins in actions to model incoming and outgoing data. A pin is a small
rectangle that is attached to an action. The name of the object is written next to
the rectangle. We distinguish between input pins and output pins, depending on
whether arrows point to the pin or away from it (Figure 2.60). Though the nota-
tion for pins is similar to that for ports, they have nothing in common.

 We are now ready to add the object fl ow to our activity for the use case start
car usage . We don ’ t need an object or block model yet to do this. We defi ne the

 Table 2.14 Summary: Modeling the object fl ow.

 Reference card: Model object fl ow.

 Incoming and outgoing data

 ::Use cases [detailed]:
 Detailed fl ow description, including
exceptions and variants.
 Requirements:
 General requirements to the system.
 Use cases [object fl ow]:
 Use cases with object fl ow in fl ow
descriptions.

 Motivation/description
 Why? Studying the data incoming and outgoing to/from your fl ow steps sharpens
your description and supplies important information for the design, e.g., for interface
descriptions. The object fl ow functions as a link between the dynamic and static
models and ensures mutual consistency.

 What? Model the incoming and outgoing data of each of the use case steps and their
relationships.

 How? The actions of the activity are fi tted with pins that describe the incoming and
outgoing data.

 Where? The object fl ow adds a degree of details to the model, which can be used for
simulations and automated consistency checks.

 Guiding questions
 ■ What data is required by a use case step?
 ■ What data is created or modifi ed by a use case step?

 SysML elements
 Activity diagram, activity, activity parameters, action, pin, control node (e.g., initial
node, decision).

Model object
flows

Use cases
[detailed]

Requirements
Use cases
[object flow]

972.4 Modeling Use Cases

object entirely intuitively. This means that we don ’ t need object-oriented knowl-
edge either. Just use the word “ data ” if “ object ” irritates you. We will turn to block
modeling later in Section 2.5.

 Look at the fi rst use case: What result object will identify customer produce?
Right—a customer. In the positive case, the next step will be check usage right
(Figure 2.61). Within this step, an SMS with the authorization request is created and
sent to the reservation center. Of course, the SMS also contains information about
the customer, i.e., the customer object belongs to the incoming data of that step.

 Moreover, the step needs information about the car in which the on-board com-
puter is located, since this also has to be communicated to the reservation system.
This information hides somewhere in the on-board computer. At this point we are
interested only in the fact that we need it; we are not interested in the data source,
since it has no effect on the fl ow. We use an input pin that is not connected to any
edge to express this. To make sure the pin is recognizable as an input pin, we draw
an arrow inside the pin (Figure 2.61).

 At this point we should take a look at the car data from another perspective.
From the fi nding that we need car data arise a few questions: How does the data
get into the system? How will they be updated or removed? The answers to these
questions mean that we found new potential use cases. We will name them add
car data , modify car data , and delete car data .

 It is generally a good idea with all kinds of data to take a look at their life-cycles.
Where do they come from and where do they go? There are normally new potential
use cases behind the answers to these questions. The term “ data ” is not limited to
software; it also concerns physical things, like liquids or gases, for example.

 FIGURE 2-60

 Example for input and output pins.
 FIGURE 2-61

 The object fl ow for “ start car usage ” (section).

act Buy soft drink [section]

Check choice
of drinks

Select drink Money

Choice of drinks
[checked]Choice of drinks

[checked]

Output
drink

act Start car usage [section]

[customer not identified]

[customer
identified]

Car

«essential»
Identify

customer

Customer

«essential»
Check usage

right

Customer

«precondition» Car not in use

Usage right

98 CHAPTER 2 The Pragmatic SYSMOD Approach

 This is how we proceed step by step. Things will not always fi t as neatly as
they did in the fi rst two steps, when the result of the fi rst step was the input
object for the second step. For example, unlock car does not require any data, and
it doesn ’ t create any either. But in our next step, check disposal right , we need the
customer ’ s PIN check code to be able to check the PIN entered for correctness.
This value is hidden somewhere in our customer object. We use the Detour pat-
tern to make sure the data get there.

 We haven ’ t explicitly modeled the data outgoing from the step check disposal
right , since this is a yes/no statement.

 Altogether, we obtain the activity model shown in Figure 2.62 . We continue
using the same approach with each of the other steps to detail them by adding
another activity.

 In the activity start car usage , we described the step check usage right in
another activity model. Here we have to pay particular attention to the transition.
The incoming and outgoing data of this step have to correspond to the incoming
and outgoing data of the detailed activity.

 Similar to pins, an activity can have input and output parameters, except on
the activity level. Input and output parameters are denoted as rectangles on top
of the activity ’ s encompassing rectangle (Figure 2.63). Inside the rectangle of a
parameter there is its name, which normally corresponds to the parameter ’ s type.
An incoming activity parameter also assumes the function of an initial node. This
is the point where a fl ow begins as soon as the activity has been invoked. In con-
trast, however, an outgoing activity parameter does not have the same function as
an activity fi nal node. It is the point where the fl ow that placed an object in the
parameter node ends. This ends the entire activity only provided that this fl ow
was the last within that activity. This means that the semantics is similar to that of
fl ow fi nal nodes.

 You can see that both activity parameters and initial and fi nal nodes are mod-
eled in Figure 2.63 . Invoking this activity causes three fl ows to start. The fl ows
with the customer and car objects are initially blocked, because the target—the
step request usage right —is not yet ready to accept these objects. The fl ow out-
going from the initial node sends a signal, status display . There upon, this fl ow
visits the step request usage right . All start conditions for the step are now met,
and customer and car objects can be consumed.

 The activity is regularly terminated with an outgoing usage authorization
when the outgoing activity parameter is reached. However, no usage authorization
can be returned if the fl ow reaches the activity fi nal node. Since outgoing activity
parameters must not be empty at the end of the activity, we place a so-called null
token into the parameter. The two possible results— usage authorized and usage
not authorized —are taken into account in the calling activity, start car usage , in
the subsequent decision (Figure 2.62).

 In closing this section, let ’ s have a look at the fl ow of another use case that
introduces a new and important aspect. Show car usage data is a continuous use
case. SysML extends the UML activity model by properties for modeling continu-
ous systems. You can see several new SysML elements modeled in Figure 2.64 .

992.4 Modeling Use Cases

 FIGURE 2-62

 The activity “ start car usage ” with object fl ow.

act Start car usage

«essential»
Activate

car

Terminate
usage start

[customer not identified]

[usage authorized]

[usage not authorized]

Timeout
Car handover

[Disposal right o.k.]

[Disposal right
not o.k.]

Car usage started Car usage not started

«essential»
Start car

usage

[customer identified]

Car

«essential»
Identify

customer

Customer

«essential»
Check usage

right

Customer

«essential»
Unlock car

«essential»
Check disposal

right

PIN check code

«precondition» Car is not in use

K

K

«transformation»
Customer.pinCheckCode

«essential»
Confirm usage

start

Usage
right

N

N
Usage

right

100 CHAPTER 2 The Pragmatic SYSMOD Approach

 The continuous activity can be stopped only by the signal end usage .
Otherwise, once started, it would run continually. The action get car usage data
has two incoming object fl ows. An object token is transported over the edge from
the time event updating to the action once every minute. The notation {rate�1/
minute} describes the rate.

 The signal car movement data supplies the data required to display the
mileage since usage was started. The interval in which this data arrives is not
described. We add the word overwrite next to the output pin to ensure that the
action always processes the most current values. This means that the current
token will always be the most recent.

 The fl ow property is denoted by {stream} at the input pin of the action show
car usage data . This causes the action to accept data over this pin “ in active oper-
ation ” rather than at the startup time.

 FIGURE 2-63

 The activity “ check usage right ” with object fl ow.

«essential»
act Check usage right

Status display
(yellow,blinking=true)

Request usage
right

Status display
(green,blinking=false)

[usage right o.k.]

[usage not authorized]

Usage
right

Customer

Car

Check
emergency

driving

Usage right

Usage right

Car

Customer

[emergency driving]

[no emergency driving]

Timeout reservation
system

Usage not
authorized

{probability=10%}

1012.4 Modeling Use Cases

 FIGURE 2-64

 A continuous activity for “ show car usage data. ”

«continuous»
act Show car usage data

Car movement
data

Determine car
usage data

Car movement data

Time

Show car
usage data

Car usage
data {stream}

Car usage
data

End usage

updating

«discrete»
{rate�1/minute}

Display
on/off

«controlOperator»
Enable/disable

display

«overwrite»

 But what if one of the subsystems for phone, radio, or navigation wants to use
the usage data display? The signal display on/off switches the usage data display
accordingly. More specifi cally, the subsequent action is responsible for this. This
action is a so-called control operator , which means that it is capable of starting or
stopping other actions.

 To better understand have a look at the detailing 16 of this action in Figure 2.65 .
The action has an output value of type ControlValue . This type is defi ned in SysML

 FIGURE 2-65

 Detailing “ display on/off. ”

«controlOperator»
act Enable/disable display

Display on/off

{probability�0.5} {probability�0.5}

disable enable

ControlValue

[off] [on]

16 We wouldn’t need this detailing in practice; I’m only showing it here for better understanding.

102 CHAPTER 2 The Pragmatic SYSMOD Approach

and includes the two possible values, enable and disable . We don ’ t normally show
the pertaining input and output pins at the actions.

 Now, if the control value disable applies to the action show car usage data ,
then this action is terminated, and then restarted when the control value enable
occurs.

 Together with the object fl ow modeling, our use case modeling is complete. The
activities allow us to use an arbitrary degree of details to describe our use cases,
from a superfi cial fl ow description to executable models. This is the reason why
you should carefully think about what you want to achieve with your activity model
to ensure you will know when you ’ ve reached a suffi cient degree of details.

 PROJECT DIARY

 Project Time 7829

 Today we were able, together with the domain experts, to clarify the question of
whether or not the on-board computer can detect suspended customer cards in
order to prevent unauthorized emergency driving. It should be possible to send
data about suspended cards via SMS to the on-board computer. This means that
we ’ ve found another use case, which we will call add suspended customer data .

 Today is Mr. Speedy ’ s birthday. I gave him a fountain pen for a birthday present.
His reaction was somehow reserved. As far as customer relationship management
is concerned I probably have to learn a thing or two yet.

ibd [block] Auto [Port and connector]

bdd [package] Auto [Port and association]

front:Wheel
Drive

P
m:Engine

Engine
Drive

0..1
Wheel

P

 2.5 Model Domain Knowledge
 Modeling the object flow is shown in Table 2.15 .

 The domain terms we are dealing with in our project are described in the glos-
sary (Section 2.6). Some terms described there directly concern our system. The

1032.5 Model Domain Knowledge

system “ knows ” and uses the terms listed in the glossary. For example, a customer
is known to our system. In the use case start car usage , the customer is identi-
fi ed. In the display unit, they are personally “ addressed, ” and they are transmitted
together with billing data to the billing system. This makes a customer a so-called
 domain block . Other candidates for domain blocks include, e.g., a phone call, the
usage right, and usage data.

 A domain block represents an object, a concept, a location, or an individual
from the real-world domain. A domain block is directly known to the system.

 To better understand what we mean by the term “ domain block, ” let ’ s take
a brief look at a counter example. The term “ customer billing ” is a domain term
from the glossary. But the on-board computer does not directly deal with cus-
tomer billing. In fact, it doesn ’ t know the term. So it is not a domain block. Other
examples for non-domain blocks are normally the actors and objects our system is
composed of, such as the card reader.

 Table 2.15 Summary: Modeling the domain knowledge.

 Reference card: Model domain knowledge.

 Incoming and outgoing data

 Requirements:
 General requirements to the system.
 Use cases [object fl ow]:
 Use cases with object fl ow in fl ow
descriptions.
 Domain knowledge:
 Structures of the system ’ s domain
terms.

 Motivation/description
 Why? The domain objects you are using in the object fl ow of activities have to be
described in order to ensure that all stakeholders reach a uniform understanding
and that they are used consistently in the model.

 What? Model the structures of the domain-relevant terms from the system ’ s view.

 How? Model the terms and their structures as domain blocks in a block defi nition
diagram.

 Where? The domain knowledge model refl ects the static view of the domain logic; it
is well suited for coordination with the principal and as a design basis.

 Guiding questions

 ■ What domain terms does the system deal with?
 ■ Are the terms known to the principal?
 ■ Is a term important enough to justify being explicitly modeled?

 SysML elements

 Block defi nition diagram, SYSMOD: domain block, association, generalization.

Model domain
knowledge

Domain knowledge
Requirements

Use cases
[object flow]

104 CHAPTER 2 The Pragmatic SYSMOD Approach

 These blocks are easy to fi nd. Actually we ’ ve found them already. Look at the
object fl ow in the activity diagrams of our use cases (see Section 2.4.6). The data
we have denoted as incoming or outgoing data near the actions represent the
domain information our system is dealing with.

 We use the stereotype «domain» to denote domain blocks. Blocks do not nor-
mally have operations, and they have only few attributes. The types of attributes
are generally not stated, because they are part of design or implementation details,
which are not of interest in the domain knowledge model. Here it is irrelevant
whether it ’ s a string or char[] , an int or integer .

 In our object fl ow model we have made assumptions about the structures of the
objects. For example, the object fl ow in the use case start car usage implies that
the object customer includes the PIN check code, or that the object usage right
includes information about emergency driving , and so on. We can also derive rela-
tionships between objects.

 These structures have to refl ect in the domain knowledge model. We use the
model element association to model structural relationships between blocks. An
association is denoted by a solid line between two blocks.

 Associations in the domain knowledge model are normally not directed,
i.e., they have no arrowheads or, in SysML/UML lingo, no navigation direction.
From the domain ’ s perspective, either direction is both present and meaningful.
For example, not only the customer as the booking party belongs to usage right ,
but also a usage right. Associations are denoted with role names (booker , right)
and multiplicities (Figure 2.66).

 Figure 2.67 shows the domain knowledge model of the on-board computer.
The abbreviation bdd in the diagram header stands for “ block defi nition diagram. ”
The associations are read in the following pattern: “ A � block � has � multiplicity �
 � block � in the role specifi ed by � role name � . ” This sentence must be meaningful
for the domain. Let ’ s test it in a simple example: “ A customer has null to one usage
right in the role right. ” Though this sounds a bit clumsy it makes sense.

 What makes sense and what doesn ’ t will be decided by your principal or the
domain experts in cases of doubt. The allocations of an association are not always
unique. For example, there could easily be an association between usage right

 FIGURE 2-66

 The domain blocks “ customer ” and “ usage right. ”

«domain»
Customer

bdd [package] Domain knowledge [customer, usage right]

«domain»
Usage rightbooker

1

0..1

rightname
ID
isBlocked

period
isAuthorized
isEmergency

1052.5 Model Domain Knowledge

 FIGURE 2-67

 The domain knowledge model for our on-board computer.

«domain»
Customer «domain»

Usage right

«domain»
Car

«domain»
Usage data

«domain»
Phone call

«domain»
Route«enumeration»

RouteKind

Customer

bdd [package] Domain knowledge

name
ID
pinCheckCode
isBlocked

period
isAuthorized
isEmergency

ID
keyID

period
kilometers

date
number
duration

short
quick
simple

start coordinates
destination coordinates
type: RouteKind
kilometers
duration

«problem»
May phone number be stored
(data privacy law)?

0..1 0..1

0..1

right1

booker

user

1
billing

phone calls
1..*

carUsed1
usage data

0..1

and usage data rather than an association between a customer and their usage
right (Figure 2.67). Bear in mind that, in the domain knowledge model, there is no
right or wrong, only a better or worse.

 The block route is a loner. That ’ s possible too. Not every block has to necessarily
participate in an association. In other words: We should never force a relationship
onto something. The area around route is incomplete yet in our system, since we
haven ’ t analyzed the navigation system in depth yet.

 The RouteKind is a so-called enumeration (Figure 2.67). We use this type if
the number of values for an attribute is limited from the domain perspective. The
attribute type in the block route is an example of this type.

 A generalization is another possible relationship in the domain knowledge
model. However, it is not required in our example. If you come across a poten-
tial generalization you should check whether or not the matter could be modeled
more meaningfully with an enumeration type (Figure 2.68).

 Eventually, what makes sense and what doesn ’ t is largely decided by your envi-
ronment: Which variant is better understood, especially by the domain people?

 Multiple inheritances are absolutely legal and meaningful in the domain
knowledge model, as opposed to the system design where they don ’ t make sense.

106 CHAPTER 2 The Pragmatic SYSMOD Approach

It means that a block has more than one generalization relationship with other
blocks. Nevertheless, you should use multiple inheritance very sparingly.

 Pay attention to circles in your domain knowledge model (Figure 2.69). They
are not illegal, but they indicate that there is likely to be redundant information.
In such a case you should check each association from the circle outward as to
its importance. Try to do this by imagining you removed an association from the
diagram and are trying to see whether or not your model lost some of its expres-
siveness. If you fi nd an unimportant association, remove it.

 Make sure your domain knowledge model doesn ’ t turn into a design model. The
primary goal is to describe the domain structures. Particularly software developers
who are familiar with design patterns and various design tricks relating to class
modeling have to be aware of this delimitation.

 FIGURE 2-68

 A generalization in the domain knowledge model.

bdd [package] Domain knowledge [generalization]

Route Route

type: RouteKind

Quick route Short route Simple route

«enumeration»
RouteKind

short
simple
quick

 FIGURE 2-69

 Circles in the domain knowledge model.

bdd [package] Domain knowledge [circle]

«domain»
Customer

«domain»
Car

«domain»
Usage data

1072.6 Create Glossary

 PROJECT DIARY

 Project Time 7939

 Similar to other diagrams used earlier, we can coordinate the domain knowledge
model also directly with our stakeholders. They can read the diagram and reproduce
the structures. That ’ s great since it saves us the error-prone translation of our
principal ’ s wishes to our model.

 2.6 Create Glossary
 Creating a glossary is shown in Table 2.16 .

 Creating and maintaining a glossary are activities that continue during the
entire project time. The glossary describes all domain terms from the project
environment. Rather than defi ning terms, the glossary explains them briefl y and

 Table 2.16 Summary: Creating a glossary.

 Reference card: Create glossary.

 Incoming and outgoing data

 Requirements:
 General requirements to the system.
 Glossary:
 Description of domain terms for the
project.

 Motivation/description
 Why? A glossary restricts the playground for free interpretations so typical of natural
languages to avoid misunderstandings in the project.

 What? Describe domain terms from the system environment.

 How? Describe the terms in text form in the style of a lexicon. Long explanations and
formal defi nitions do not belong to a glossary.

 Where? A standardized project language that doesn ’ t leave much room for all sorts
of interpretations forms the basis for effective working and successful modeling.

 Guiding questions
 ■ What domain terms will be used in the project?
 ■ Do all project participants have the same understanding of a term?
 ■ Does every project participant have quick and easy access to the glossary?

 SysML elements
 None.

Create
glossary

Glossary
Requirements

108 CHAPTER 2 The Pragmatic SYSMOD Approach

clearly so that any project participant will understand the term unambiguously.
It surely happened to you too during your daily project work that unnerving dis-
cussions or system errors emerged due to petty misunderstandings.

 Our glossary should contain two types of terms: “ real ” domain terms that
not everybody necessarily knows, and domain terms that everybody thinks they
know. The second category is dangerous. Look at this example: The term customer
is certainly known to all project participants. So hardly anyone will ask what is
meant by it. Unfortunately, this domain term hides potential misunderstandings.
Is a customer always an individual? Or are there corporate customers? If so, do all
employees of a corporate customer have identical customer cards? Since the term
appears to be trivial, it can easily happen that these questions will never be dis-
cussed. This means that the fi nished system is potentially faulty and might have to
be corrected, probably causing considerable cost that hadn ’ t been planned for.

 Other good examples from a real-world project are the terms confi guration
and parameterization . Both terms had been used in that project, but they had
different meanings for the project participants. The bad thing was that everybody
had a different idea of what they meant. Many disputes were eventually clarifi ed
once the misunderstanding had been discovered. Yet another real-world project
had used the term printer . It didn ’ t mean the device, but the profession, i.e., an
individual who was a user of the system. I could easily list many more such exam-
ples and you could probably add your own to that list.

 WIKI

 The official name is WikiWikiWeb , which means that it has the abbreviation WWW ,
which shows clearly what it is all about. Just like the World Wide Web, a wiki is
based on an arbitrary number of Web pages that present information. The word
 “ wiki ” is not an abbreviation, but a Hawaiian-language word for “ fast. ” Some
busses or taxis in Hawaii are called “ Wiki-Wiki. ” A Wiki can present information
fast, where “ fast ” refers to the time from an idea to its presentation. For example,
you read a Web page and have an idea about adding more information to that page.
Using a wiki that can be done real quick. Each wiki Web page includes the function
 “ edit page . ” You select this function and start entering your new information. As
soon as you finished typing, this information is available to everybody immediately.
You do not have to know HTML. A wiki can be fed with (almost) normal text.

 Wiki is not a commercial system, but a concept for which there is a large number
of free implementations. A pretty extensive collection can be found on the pages of
Ward Cunningham, the inventor of wikis, at http://www.c2.com/cgi/wiki?WikiEngines .
In addition, there are public wikis that everybody can access or edit. One of the
most popular wiki communities is the Wikipedia encyclopedia [62].

 I strongly recommend you play with this technology and consider seriously
using it in your project. It is free, simple, and effective.

 Building a glossary is tied to a number of problems in practice. It is a cumber-
some job that nobody wants to do, let alone being motivated to do it. That ’ s no
good news for a starter. You ’ ll often see that the glossary disappears in a document

1092.6 Create Glossary

 Table 2.17 Glossary entries.

 Usage right

 Description: A usage right describes whether or not a customer is
entitled to use a car. It includes information about the
customer, the booking period, and whether it is an
emergency driving case.

 Domain block: Yes

 Author, last change: Tim Weilkiens, April 30, 2004

 Disposal right

 Description: The on-board computer grants a customer disposal right,
if this customer has entered a correct customer PIN upon
start of usage.

 Domain block: No

 Author, last change: Tim Weilkiens, April 30, 2004

that nobody reads. It is normally not updated as everybody shies away from the
effort. I recommend to lay out your glossary in a pragmatic and simple way. An ideal
medium for a glossary is a wiki (see box on p. 108 (previous page)). A wiki creates a
platform where every project member can add entries and update information. The
wiki is also generally suitable to be used as an internal communication medium in
a project. Using a wiki means that your glossary stands a good chance to be “ lived. ”
And there won ’ t be one or a couple members in the team who have to take care of
the glossary while hating to even think about it, since a wiki is always a joint effort.

 In our on-board computer project, there are mainly two terms that could lead
to misunderstandings: usage right and disposal right . You can see the glossary
entries in Table 2.17 .

 I ’ m giving a few rules for glossary entries that, when observed, will help you
create them in an easy-to-understand way to avoid misunderstandings:

 1. Write down entire sentences rather than headwords. This helps you avoid
that important information will eventually be missing. For example, compare
the entry in Table 2.17 with the following description of “ usage right ” .

 ■ Customer
 ■ Booking period
 ■ Emergency driving

 2. Try to write active sentences rather than passive ones. This helps you prevent
that you inadvertently omit information. For example, use a style similar to the
one in Table 2.17 instead of the following description of “ disposal right. ”

 A customer is granted the disposal right if he or she has entered a correct
customer PIN at the beginning of the usage period.

 3. Write short, communicative sentences. Somebody who tries to look some-
thing up in a glossary doesn ’ t expect long essays. Think of entries in a lexicon.

110 CHAPTER 2 The Pragmatic SYSMOD Approach

 2.7 Realizing Use Cases
 We have identified and modeled the requirements to the system in the previous
steps in Sections 2.2 through 2.5. That ’ s the area we generally call “ analysis. ” We
now dedicate ourselves to the design of the system. This means that we describe
structures and behaviors that realize the requirements we identified and deter-
mined in the analysis. 17

 We now have to deal with the issue of how the results from the analysis
should be transferred into the design in a structured and reproducible way. That ’ s
the only way to ensure that all results from the analysis will be taken into account,
and that changes to the requirements will be made in the right places, or changes
to the design will be harmonized with the requirements.

 We are only looking at the abstract solution in this book, i.e., structure and
behavior descriptions, excluding concrete implementations. This means that we
do not take the technical aspects, such as concrete hardware, software technolo-
gies, and so on, into account. We will add these technical aspects later on when
we ’ ll be ready to take technological decisions on the basis of the abstract solution.

 The most important thing about a system is the services it offers to its environ-
ment. A system is useless without them. I ’ ve emphasized this fact over and over
again in the previous sections. Accordingly, we will now have a closer look pri-
marily at the use cases as the representatives of services, and we will realize them
systematically in our design.

 Our approach is shown in Figure 2.70 . We begin with an outer view and develop
an interaction diagram of the system/actor dialog (Section 2.7.1). From there we
can derive our system ’ s interfaces (Section 2.7.2). We continue from the outer
view toward the inside to model the system structures. We identify blocks, look

 PROJECT DIARY

 Project Time 7989

 The marketing department of SpeedyCar expressed their concerns about the
fact that the regular car radio has to be removed to make room for the on-board
computer. Car radios have increasingly evolved into a multimedia center in cars.
That ’ s a development that the customer requires, but the on-board computer
cannot catch up with.

 For this reason, there may be a major concept change coming up. Luckily,
this doesn ’ t have an impact on our project in its current phase, since we haven ’ t
analyzed the radio subsystem of the on-board computer in detail yet. We ’ ve
modeled the other parts independently of it. This shows once again that a good
dependency management and a structured model pay in the end.

17 Note that the transition from the analysis to the design is flowing. This is the reason why there
are often discussions about the exact delimitation of the two terms that lead to no result. In fact,
we already took solutions, such as the card reader, into account in the analysis.

1112.7 Realizing Use Cases

at the information fl ows between the blocks, and use interaction diagrams again
to derive interfaces (Section 2.7.3). This time they are the interfaces of the blocks.
The behavior of each of the blocks can be easily described in a state machine.

 This approach will repeat itself if we want to detail a block. We treat a block as
we treated the system in the approach described above, and so on, until we reach

 FIGURE 2-70

 The approach model for “ realizing use cases. ”

Interaction model
[system/actor]

Interaction model
[system/actor]

act Realize use cases

System contextUse cases

Use cases

Use cases

System
context

System context
[interfaces]

System context
[interfaces]

System context
[interaction points]

System structures

System structures
[with state machine]

Use cases
[detailed]

Model system/actor
interaction

Derive system
interfaces

Model system
structures

System structures

System structures

Derive state model

112 CHAPTER 2 The Pragmatic SYSMOD Approach

the desired degree of details. This way of doing things produces diagrams in vari-
ous detailing levels—similar to our approach to the analysis.

 2.7.1 Model System/Actor Interaction
 Modeling system/actor interaction is shown in Table 2.18 .

 The fi rst step where we map the required fl ows to the system/actor struc-
ture, i.e., the system context, takes us closer to our system design. We previously
modeled the fl ows in the use case activities. These fl ows don ’ t describe who exe-
cutes the individual steps or who communicates with whom. To this end SysML
offers the sequence diagram, which the interaction model is based on. It weaves
elements together that we already have in our model—the system and its actors

 Table 2.18 Summary: Modeling system/actor interactions.

 Reference card: Model system/actor interaction.

 Incoming and outdoing data

 System context:
 System with actors.
 Use cases:
 Services provided by the system.
 Interaction model [system/actor]:
 Interactions between the system and
actors.

 Motivation/description
 Why? The system context and the use cases do not look at the interaction between
the system and its actors in detail, which can lead to faulty estimates of the usability
and system integration.

 What? Describe the interactions between the system and its actors each with regard
to a use case.

 How? The interaction between the system and its actors is described in a sequence
diagram for selected fl ow scenarios.

 Where? The system/actor interaction supplies a template for the design, especially
with regard to defi ning the interfaces.

 Guiding questions
 ■ What requests will the actors send to the system during a use case fl ow?
 ■ What requests will the system send to the actors during a use case fl ow?
 ■ Who will make which request when?

 SysML elements
 Sequence diagram, lifeline, message, interaction operator.

Model system/actor
interaction

System context

Use cases

Interaction model
[system/actor]

1132.7 Realizing Use Cases

with the use case fl ows—and adds information about the communication
between the participants.

 Our interaction modeling effort has primarily the goal of identifying the sys-
tem interfaces, which we will do in the next step (Section 2.7.2). In the step after
that we will trace the messages arriving at the system and leaving the system, and
we will build the required system structures.

 How do we create a sequence diagram? First thing we take a use case, e.g.,
 start car usage . The system and the participating actors are the interactions part-
ners to be shown as lifelines in the sequence diagram. What we ’ ll do is we model
a concrete scenario only, excluding all exceptions and variants, as we did in the
use case activities. We pick the standard fl ow—the positive case. We translate this
fl ow from the activity to the sequence diagram. We draw messages that describe
the communication between the lifelines. Interaction operators, denoted by
boxes, infl uence the possible fl ow. The operator par is used in Figure 2.71 .

 You have to pay attention to obtain a meaningful degree of details for our mes-
sages. You have a certain degree of freedom depending on your goal. Do you want
to describe conceptual messages and interfaces, or do you want to examine all
technical details already in this step? We are moving on a more conceptual level in
 Figure 2.71 .

 FIGURE 2-71

 System/actor interaction for “ start car usage. ”

sd [block] On-board computer context [system/actors start car usage]

«system»
:On-board computer

:Customer :Reservation
system

:Central locking
system

Apply card

SigLED(yellow, blinking�true)

SigLED(green,blinking�false)

SigKey(removed�true)

Unlock car

PIN request

PIN
Deactivate
drive-away
protection

Request usage right

Usage right

:Drive-away
protection

par

114 CHAPTER 2 The Pragmatic SYSMOD Approach

 A complete modeling process requires us to transfer all fl ow variants from the
activities to a sequence diagram, regardless of whether we use an interaction oper-
ator for a variant or another sequence diagram. This is normally not meaningful,
since the standard fl ow is suffi cient. You should add variants only if they help you
gain new fi ndings. Otherwise, the modeling effort would rise out of proportion.

 2.7.2 Derive System Interfaces
 Deriving system interfaces is shown in Table 2.19 .

 From the interaction models in the previous step (Section 2.7.1) we can
understand the kind of messages our system receives from the actors, and which
messages it sends to them. This provides us with an idea about the protocols that
each of the interaction points understands.

 Table 2.19 Summary: Deriving system interfaces.

 Reference card: Derive system interfaces.

 Incoming and outgoing data

 System context [interaction points]:
 System with interaction points.
 Interaction model [system/actor]:
 Interactions between the system and its
actors.
 System context [interfaces]:
 System with description of interfaces for
the interaction points.

 Motivation/description
 Why? A specifi cation of the interfaces is required to be able to integrate the system
with its environment.

 What? Describe the system ’ s interfaces versus the actors with regard to the individual
interaction points.

 How? Derive the interfaces from the system/actor interactions and model them at the
system ports.

 Where? The system interfaces represent “ contracts ” the system enters into with its
actors.

 Guiding questions
 ■ What services are offered over the interaction points?
 ■ What services are requested over the interaction points?
 ■ What data fl ows across the interaction points?

 SysML elements
 Block defi nition diagram, interface.

Derive system
interfaces

System context
[interfaces]

Interaction model
[system/actor]System context

[interaction points]

1152.7 Realizing Use Cases

 We can see in Figure 2.71 that the system receives the message apply card
from the actor customer . This means that the system offers a service to a cus-
tomer. So, the interaction point from within the system context is a standard port.
This service is described with an interface called ICustomer and denoted with
the lollipop notation (Figure 2.72).

 The customer is informed about the state of the on-board computer by means
of light-emitting diodes over the same interaction point. This is a message from the
system to an actor, i.e., a service requested by the system from a customer. The
customer is expected to understand this message. The service is also described
by an interface. The fact that the service is requested is denoted by the compact
socket notation (“ grabber ” symbol) at the standard port.

 In this way we proceed message by message across our interactions between
the system and its actors. You can see our result from the sequence diagram from
 Figure 2.71 in Figure 2.72 . Only the interfaces of the CardReaderPort are shown
in detail. However, the entire picture remains the same: An interface contains only
one operation, or an incoming signal. This is not the normal case, but only the

 FIGURE 2-72

 System interfaces of our on-board computer.

bdd [package] On-board computer context [interfaces start car usage]

bdd [package] Interfaces [CardReaderPort]

IUsageRight IReservationSystem

ServerPort

ICar

CarControlPort
CarPort:Vibration

ICustomer

IStatusDisplay

CardReaderPort

IInput

IOutput IKey

IOPort KeyPort

«system»
On-board computer

«interface»
IStatusDisplay

«interface»
ICustomer

«enumeration»
Color

«signal» SigLED(f:Color, blinking:Boolean)Apply card

red
yellow
green

116 CHAPTER 2 The Pragmatic SYSMOD Approach

result at the beginning of our modeling work. As we look at other fl ows we will
see that the interfaces will gradually contain more elements.

 We also consider interaction points that are not used by messages in the
sequence diagrams. There are vibration forces that affect the system over this port.
This is not an interaction that could be meaningfully described by a standard port
and interfaces. CarPort is an atomic object fl ow port, which transports objects of
the type vibration to one direction—from the outside to the system.

 A SysML design rule says that the interfaces of the standard ports should
specify only operations. Signals and data fl ows run across object fl ow ports. The
SYSMOD approach deviates from this rule with regard to the system ports if their
interaction partner is a human user. In this case, we always have to use standard
ports, and the interfaces may also contain signals.

 PROJECT DIARY

 Project Time 8042

 The transition from the analysis to the design often leads to conflicting discussions
in the team. Some members headjump from the analytical board into the depths
of the design, arguing about minor details. Other members just mince along and
continue looking at the system from a very rough level.

 I think a way in between these two extremes seems to be the most suitable,
as is often the case. It doesn ’ t make sense to courageously jump at details, while
we still don ’ t know whether or not they are relevant at all. On the other hand, it
doesn ’ t make sense either to avoid getting specific and instead cowardly withdraw
to the rough abstract levels.

 We should keep these considerations in mind as we start working on the
design.

 2.7.3 Model System Structures
 Modeling system structures is shown in Table 2.20 .

 In this approach step we want to describe the system ’ s structures that are
needed in order to realize the requirements. We are talking of the blocks our sys-
tem is composed of eventually.

 The domain knowledge model shows us the structures of the domain-specifi c
objects that occur in the system. This model is primarily a model of terms and
does not represent the system structures. Based on our top-down approach, we
fi rst start looking for the next level below the system, where we will develop the
structures from the rough to the detail. What levels are there anyway? And how
many? The scheme is shown in Figure 2.73 .

 A system consists of several subsystems and a subsystem, in turn, consists of
several blocks. This scheme is only a rough rule though. If a system is small, e.g., it

1172.7 Realizing Use Cases

may not have a subsystem level at all. Such a system would then be composed of
blocks only. On the other hand, there can be blocks on subsystem level.

 We will now start looking for the structures of our on-board computer. I ’ m
drawing a naïve approach here, which would probably not be used in this form in
practice. But it is suitable for showing the relations that should be present in any
arbitrary approach.

 We fi rst take a use case. The services represented by use cases have to be
offered by the system. Their realization is the primary goal. In working toward this
goal, we also have to take the requirements that somehow relate to a use case
into account, e.g., a defi ned system response time. Depending on how complete
the requirements are covered by use cases (refi ne relationship), we also have to
directly select a requirement instead of a use case.

 Table 2.20 Summary: Modeling system structures.

 Reference card: Model system structures.

 Incoming and outgoing data

 System context [interfaces]:
 System with interface description of the
interaction points.
 Use cases:
 Services provided by the system.
 System structures:
 Description of the static structures of the
system.

 Motivation/description
 Why? The system structures form the static design of the system.

 What? Model the blocks and their relationships in suffi cient depth of details as
required by the entire system to meet the project requirements.

 How? Determine the required blocks and structures for each use case or
requirement, and model all these in block diagrams.

 Where? The blocks of the system design can, in turn, describe the system in a
discipline-specifi c development project, e.g., a software application or a hardware
component.

 Guiding questions
 ■ What blocks are required to realize the use cases/requirements?
 ■ How is a block composed?
 ■ How are the blocks interconnected?
 ■ What interaction points and interfaces do the blocks have?

 SysML elements
 Block defi nition diagram, internal block diagram, block, interface, association,
connector, port, information object fl ow.

Model system
structures

System structures

System context
[interfaces]

Use cases

118 CHAPTER 2 The Pragmatic SYSMOD Approach

 In the fi rst step, we will be looking for a central use case. A good candidate for
our system would be start car usage . We pick this use case and select its standard
fl ow to develop a system structure that supports this fl ow.

 The pertaining system/actor interaction from Section 2.7.1 shows the fl ow on
message level (Figure 2.71). Since we are now interested in the system structures and
not in the actors, we zoom in to that system element in the sequence diagram. This
 “ zooming ” is formally modeled with a part decomposition (Figure 2.74). The interac-
tion partners in the detailed sequence diagram are the blocks we are looking for.

 What happens when the fi rst message, apply card , arrives at the system
(Figure 2.74)? The customer card is part of our system, as is the card reader. The
latter reads data from the customer card, but it won ’ t process the data; it will pass
it on. To whom? Our on-board computer will be equipped with a central control
unit. This control unit receives card data, controls the light-emitting diodes at the
card reader, sends and receives SMS for usage rights, unlocks the central locking
system to open the car doors, and so on.

 We track identifi ed messages between the system and its actors all the way
into the system. This sounds trivial but requires many design decisions in practice.
We document our considerations in a sequence diagram (Figure 2.75). This dia-
gram shows us the blocks that are connected (exchange of messages), so that we
can model the structures in an internal block diagram (Figure 2.76).

 The message apply card gets into the system over CustomerPort . At the cus-
tomer card, we model another (conceptual) CustomerPort as an interaction point.
Together with CardReaderPort, this new CustomerPort stands for the interaction
with customers. In the following, we model the structures to read customer data
from the card.

 The card reader emits an energy fi eld. The customer card feeds itself with
electric power from this energy fi eld if it is near enough to the card reader. The

 FIGURE 2-73

 Hierarchical view of the system structures.

bdd [package] SysML book [system hierarchy]

«system»
System

«subsystem»
Subsystem

«block»
Block

*

*
*

1192.7 Realizing Use Cases

 FIGURE 2-74

 Using a part decomposition to trace messages.

:Customer

sd [block] On-board computer context [section: system/actors start car usage]

«system»
:On-board computer
ref BC start car usage

:Reservation
system

:Central locking
system

Apply card

SigLED(yellow, blinking = true)

Usage right

SigLED(green, blinking = false)

Usage right request

Unlock car

 FIGURE 2-75

 Interaction between the on-board computer structures.

sd Start car usage [up to and incl. unlock car]

:Customer
card

Apply
card

:Card
reader

:On-board
computer control

:Communication
unit :CarControl

readCustomerData()

SigCardData(data)

SigLED(yellow, blinking = true)

SigLED(green, blinking = false)

SigLED(yellow, blinking = true) srvSendMessage
(usage right request)

srvReceiveMessage
(usage right)

Unlock car

Usage right

Unlock car

Usage right request

120 CHAPTER 2 The Pragmatic SYSMOD Approach

pertaining ports transport only one object (energy) in one direction. They are
so-called atomic object fl ow ports , shown by the directional arrow (Figure 2.76).
Technically the protocol between the card reader and the customer card runs
over an energy fi eld emitted by the card reader. That ’ s the same fi eld that feeds
the card with energy. The energy fi eld is modulated appropriately to ensure that
information can be transmitted.

 The data exchanged between the customer card and the card reader corresponds
to a request/reply scheme. The ports used here transport not only data—they also
offer or request services. This means that they are standard ports that are specifi ed
in more detail over interfaces. The interface between the card reader and a customer
card is called ICustomerCard (Figure 2.76). 18 The “ grabber ” symbol shows that the
service is requested, while the “ lollipop ” symbol means that a service is provided.

 We have modeled two ports in total: an object fl ow port for the energy fl ow
and a standard port for the protocol. The reason is that we are looking at two layers,
the application layer (protocol) and the transport layer (energy fi eld). There can be
more layers, e.g., if you think of the seven layers specifi ed in the OSI layering model.

 It makes a lot of sense to look at several layers. But you have to be aware of
the difference, and you have to model the relations. Above all, you should be care-
ful not to mix the layers. The allocate relationship allows you to defi ne relation-
ships between elements of different model layers. We use this relationship here to
allocate the standard port of the application layer to the object fl ow port on the
transport layer. You can see the result in Figure 2.77 .

18 The “I” stands for “Interface.” It is a common naming convention to use the type of model element
as a prefix.

 FIGURE 2-76

 System structures of the on-board computer.

ibd [block] On-board
computer

:Card reader

:On-board
computer

control

CarControlPort

ICar

:Communication
unit

IBC_ServerCtrl

IBC_ServerData

ServerPort

:Customer card

e:Energy
customer:CustomerPort

CustomerPort

:LED

ICustomerCard ICutomerCard

ICardData

ICardData
IStatusDisplay

IStatusDisplay

1212.7 Realizing Use Cases

 It is usually a good idea NOT to show model elements of different layers in
one diagram to prevent aspects from being confused. I recommend to use the
callout notation shown in Figure 2.78 rather than the direct representation shown
in Figure 2.77 .

 Similar to the system/actor interactions, we can derive the interfaces from the
interaction between the blocks. The messages become operations and signals,
which are meaningfully grouped into interfaces (Figure 2.79). Each of these inter-
faces is then either a providing interface or a requesting interface and allocated to
the respective port of the block.

 FIGURE 2-77

 Using a structural allocation.

ibd [block] On-board computer
[structural allocation]

:Card reader :Customer card

e:Energy

ICustomerCard
ICustomerCard

«allocate»

 FIGURE 2-78

 Using the callout notation for structural allocation.

:Card reader :Customer card

e:Energy

ibd [block] On-board computer [structural allocation on
application layer]

ibd [block] On-board computer [structural allocation on
transport layer]

:Card reader :Customer card

allocatedTo

«port» energyPort

allocatedTo

«port» energyPort

allocatedFrom

«port» readerPort

allocatedFrom

«port» cardPort

ICustomerCard ICustomerCard

122 CHAPTER 2 The Pragmatic SYSMOD Approach

 The sequence of fl ows shown in Figure 2.75 takes us to the structure of our
on-board computer, which is described in the internal block diagram in Figure
2.76 . The picture will naturally change as we look at more fl ows. There will be
new blocks, ports, and connections to be added, and existing ones will be modi-
fi ed or removed.

 The resulting picture has to make sense, of course. For example, may block X
communicate with block Y ? If we fi nd an undesirable connection we must search
for the reason why it ’ s there. Is the exchange of messages between the blocks
concerned really necessary? Where does the requirement come from? Are all nec-
essary infrastructure elements, e.g., power supply, available?

 These decisions are not hewn in stone. Considerations like the ones men-
tioned above form a good starting point that, in turn, can change later on. It may
well happen that blocks are merged, removed, or newly shaped. You can also
experiment with alternative designs and compare them. Models provide an excel-
lent vehicle for this sort of studies.

 We can derive the defi nitions of the blocks used from the internal structure of
our on-board computer and describe them in a block defi nition diagram (Figure
2.80). Figure 2.80 shows the relationships between several blocks. In contrast,
Figure 4.29 (p. 244), e.g., shows the detailed defi nition of a single block, card
reader .

 FIGURE 2-79

 Specifying the identifi ed ports.

bdd [package] On-board computer [port specifications]

readCardData():Card data

«interface»
ICustomerCard

«signal»
SigLED(f:color,blinking:Boolean)

«interface»
IStatusDisplay

send(chipId:String,data:String)

«interface»
ICardData

zv(cmd:String)
ws(cmd:String)
getSpeedoStatus():String

«interface»
ICar

srvSendMessages(data:String)

«interface»
IBC_ServerData

srvReceiveMessages(data:String)

«interface»
IBC_ServerCtrl

1232.7 Realizing Use Cases

 By way of example, we have added the navigation subsystem in Figure 2.80 , which
we would normally fi nd only later when looking at the pertaining use cases. We
have described the domain fl ows in activity diagrams. We have now identifi ed the
system structures and modeled them in block diagrams. The allocate relationship
brings the two models together and answers this question: Which action of an
activity is executed on which block?

 There are several possibilities to visualize this relation. You can see an allocate
activity partition in Figure 2.81 and other ways of using an allocate relationship
in Section 4.4.

 FIGURE 2-80

 Block defi nition diagram for our on-board computer.

bdd [package] On-board computer [section]

«system»
On-board computer

«block»
Card reader

«block»
Customer card

«block»
Communication unit

«block»
On-board computer

control

«subsystem»
Navigation system

«block»
GPS antenna

 FIGURE 2-81

 Allocating a fl ow to system structures.

«essential»
act Identify customer

Read customer
card

Identify
customer

Customer

«allocate»
Card reader

«allocate»
Customer card

Transmit
card data

Card data

«allocate»
On-board computer control

Customer

Card data Card data

Card data

124 CHAPTER 2 The Pragmatic SYSMOD Approach

 We can do some further detailing of the blocks we previously identifi ed if
needed. If we do, we proceed in exactly the way we came from the entire sys-
tem and arrived at the system structure in Figure 2.76 . As an example, Figure 2.82
shows the customer card detailing.

 In addition to atomic object fl ow ports, we also used a common and conju-
gated object fl ow port here. The data that may be transported over these ports
are described in the object fl ow specifi cation FS_CustomerCard (Figure 2.82).

 The conjugated object fl ow port changes the data transport direction (in
becomes out , and out becomes in).

 You can immerge as deeply into the system as you want, until you arrive at
single nuts and bolts. This is the reason why it is important to set yourself clear
limits to ensure that you won ’ t get lost in the modeling depths. What do I want to
achieve with the models? For whom is the information useful?

 In closing I want to show you how we produce a reference to the require-
ments set forth in the beginning. It can easily happen that we forget looking at
our requirements as we proceed in our work, but only they determine what the
system is to perform. SysML offers the satisfy relationship, which can be used to
connect a model element, e.g., a block, with the requirement that is realized by
this element (Figure 2.83).

 The relationship doesn ’ t state whether or not the requirement is fully realized
by the design element. This would require that the requirements and the design
models had identical granularities. Apart from the fact that this is not practically
feasible, it would result in an undesired dependency of the requirements on the
design. As a pragmatic approach, I recommend to use a comment to document com-
pleteness of the realization (Figure 2.83). A good alternative would be a suitable

 FIGURE 2-82

 Structures for “ customer card. ”

bdd [package] Customer card
[port specifications]

ibd [block] Customer data

s:Coil

c:Chip

i:Current

i:Current
<

>

e:Energy

e:Energy

p:FS_Customer-
CardICustomerCard

flow properties

out dataOut:char[]
in dataIn:char[]

«flowSpecification»
FS_CustomerCard

<>

<
>

1252.7 Realizing Use Cases

stereotype with a property that describes the degree of realization, e.g., 60 percent.
Before you start using comments or stereotypes, you should of course think about
whether or not you need this information in the model at all. You could run a
model request to determine whether all requirements have at least one model
element that realizes them, and vice-versa, whether each model element is based
directly or indirectly on a requirement.

 Modeling these relations is costly. While it ’ s easy to model the relationships, it
is costly to maintain them. The benefi t is higher than the cost if many changes are
made to the model during the course of the project, or if the model is used for
subsequent projects. A good traceability of the relations is then very important. It is
also possible that your principal or standards you have to comply with dictate the
traceability of the requirements all the way to the design or the fi nished system.

 PROJECT DIARY

 Project Time 8152

 The good preparation and coordination with the customer in the analysis now
pays. The domain issues and insecurities have been clarified largely, so that we
can fully deal with the technical challenges in the design.

 There are still white spots in the analysis model, which we will now examine in
the further course of the project. Of course, we haven ’ t started with the pertaining
design yet. Also, there will surely arise new domain issues that will have to flow
back into the analysis. The consistency of the model facilitates an iterative
adaptation and prevents consistency errors.

 The principal is happy, our development processes are doing fine, we are within
the time plan … I ’ m confident that we will successfully complete the project.

 2.7.4 Derive State Model
 Creating a state model is shown in Table 2.21 .

 FIGURE 2-83

 Fulfi llment of requirements to the card reader and the customer card.

req [package] Requirements [Authenticate customer]

«functionalRequirement»
Authenticate and

authorize customer

«block»
Card reader

«block»
Customer card

«satisfy»

«satisfy»

«block»
On-board

computer control

«satisfy»

Complete

126 CHAPTER 2 The Pragmatic SYSMOD Approach

 The states of the system change when something happens in the system,
i.e., when behavior is executed. Vice-versa, the system states infl uence the behav-
ior. So far, the activity diagrams with our use cases and the sequence diagrams
with our blocks describe the behavior of our system. We use this information to
derive a state model.

 To this end, we select a use case and take the pertaining sequence diagram that
describes the standard interaction between the blocks (Figure 2.75). Our goal is to
derive state machines of the blocks that occur in the interaction we are looking at.

 We think along the lifelines to see what state that block is in at the respec-
tive position. The state could theoretically have changed after each event that
occurred on that lifeline, e.g., when the block received a message and responded
to it. We can denote the current state as a state invariant directly on the lifeline in
the appropriate position (Figure 2.84).

 In the next step, we use the states we found to describe a state machine for
each block, which may be very trivial. However, we have looked at only one fl ow
of a use case so far. So we will take more interactions and the activities of that use
case and extend the state machine accordingly. Each fl ow variant has to refl ect in

 Table 2.21 Summary: Creating a state model.

 Reference card: Derive state model.

 Incoming and outgoing data

 System structures:
 Description of the static structures of the
system.
 Use cases:
 Services provided by the system.
 System structures [with state machine]:
 Blocks with state machine.

 Motivation/description
 Why? The behavior of a system is often determined by the states of its blocks.

 What? Model the state machines for all relevant blocks.

 How? Describe the state machines in a state machine diagram, based on
interactions between blocks and use case fl ows.

 Where? The state machines are executable and can be used for simulating the
system.

 Guiding questions
 ■ Have all paths of the system fl ows been considered in the state machines?
 ■ Have different aspects been modeled in separate regions?

 SysML elements
 State machine diagram, state machine, state, transition, pseudostates (e.g., start
state, history pseudostate).

Derive state
model

System structures

System structures
[with state machines]

Use cases

1272.7 Realizing Use Cases

the state machine in some form or another. You can see the on-board computer
control in Figure 2.85 .

 The state machine starts in the state free . It changes to the composite state
 usage handover as soon as the signal card data arrives. The internal view of the
state is not shown. It has a special exit point. The exit point cancel is selected
when the usage handover is canceled, e.g., due to an invalid PIN. The on-board
computer control is then in the state free or in use again.

 The state usage handover is internally terminated (fi nal state) in the positive
case. This causes the transitions outgoing above and below to activate immedi-
ately, because they may not have triggers. Instead they have conditions that check
the state the right-hand region is currently active in. In our case, that ’ s the hand-
over state, and we switch to in use state. During the transition we send the signal
 pickup completed . This sets the state return in the right-hand region. This region
serves as a sort of knot in the handkerchief to remember the direction in which
the next usage handover should occur. 19

19This corresponds to the State Latch pattern in [12].

 FIGURE 2-84

 A sequence diagram with states.

sd [block] On-board computer [standard flow start car usage]

:Card reader :On-board
computer control

:Customer card

Card data Card data
Customer

card

Unlock car

passive idle free

Usage
handover

in
use

ref
Check usage right

ref
Check disposal right

ref
Start car usage

128 CHAPTER 2 The Pragmatic SYSMOD Approach

 Only little is missing now to take this machine to execution in a modeling tool
with the corresponding capabilities. Simulating the system behavior is a fascinating
aspect. However, before you get to work you have to defi ne the goals you want to
achieve with the simulation. These goals determine the system areas you are look-
ing at in the simulation, and the kind of state modeling.

 2.8 Marginal Notes
 Marginal notes complete the approach chapter. This final section discusses a few
topics that support our modeling effort, including variant management or mod-
eling patterns, and topics such as testing that should not be left unmentioned, but
which would go beyond the scope and volume of this book if I were to discuss
them in detail.

 Missing a topic? Or should I actually deal with a topic in more detail? I ’ ll be
happy to receive your suggestions. Please write to me: twe@system-modeling.com .

 FIGURE 2-85

 A state machine for the on-board computer control.

On-board computer control

free

Usage transition

in
use

Card data

Engine off

Cancel

[oc1IsInState(Pickup)]

Pickup completed

Return completed

[oc1IsInState
(Return)]

Use comfort
function

Pickup

Return

Pickup
completed

Return
completed

Pickup

Return

[oc1IsInS
tate(R

eturn)]
[oc1IsInS

tate(P
ickup)]

1292.8 Marginal Notes

 2.8.1 Variant Management
 We have quickly opted for one specific solution to the requirements of our prin-
cipal in our example project. The blueprint came from the principal themselves,
which is absolutely the norm. The road we took makes itself notice in the model
early on, e.g., in the project context or the list of stakeholders. As for the require-
ments, we have put in some effort to separate the purely domain-specific and
essential requirements from the technical requirements (Section 2.2.2). In this
section you will learn how different solution variants can be modeled. You obtain
several variants if you create a model for a product family, or if you want to evalu-
ate several solution alternatives for one system to identify the best one.

 Let ’ s begin with the requirements from the status quo where the essential
requirements are separated from the technical ones. We put both areas into a
package by the name of core requirements . Next, we determine the requirements
that are NOT valid for all variants. If you are just looking for solution variants, you
should limit your search to the technical requirements. If you are looking at a
product family, you should be aware of the fact that essential requirements too
can belong to the variants.

 A core requirement refers to the entire system and is independent of the
particularities of system variants. A variant requirement refers exclusively to a
variant and is valid only for the system design of that variant.

 Put one package for each variant on the level of the core requirement package
and then, in each of them, create subpackages for essential and technical require-
ments. We pick up the ideas we had at the beginning of our project (see p. 32)
and look at alternative access systems for our on-board computer. You can see the
structure of the requirement model with variants in Figure 2.86 .

 The requirements to the on-board computer with the access system variant
 customer card are all in the packages core requirements and customer card

 FIGURE 2-86

 Package structure for requirements variants.

pkg Requirements [variants]

Core requirements

Essential
requirements

Technical
requirements

Customer card variant

Essential
requirements

Technical
requirements

Cell phone variant

Essential
requirements

Technical
requirements

130 CHAPTER 2 The Pragmatic SYSMOD Approach

variant . Accordingly, the requirements to the access system cell phone are all in
the packages core requirements and cell phone variant .

 You can see the relationships between the core requirements and the variant
requirements in Figure 2.87 . Model views can be used to zoom in and out of variants.

 Except for the requirements, a generalization is essentially the relationship
used for variant modeling. For example, Figure 2.88 shows the variants for the cus-
tomer identifi cation feature in the domain knowledge model, which are required
because we have different access systems. If you compare this version with the
model in Figure 2.67 in Section 2.5 you will see that it involves some work to
create the model structures required. In fact, an independent domain block came
into being from the pinCheckCode attribute.

 You also have to fi nd suitable abstractions in the design in order to be able
to map your variants. This means that you describe the things that vary versus a
common basis. If you enrich the model elements by adding information, such as
cost, time, performance, and so on, you can compare your variants in different per-
spectives. This allows you to achieve a good information basis for your decision in
favor of the solution that best meets your goals (Figure 2.89).

 2.8.2 Model Simulation
 SysML offers a rich choice of elements to support an executable model. What we
need are structures (block diagrams), behavior descriptions (activities, interactions,
state machines), and elementary instructions (action model). Tools provide runtime
environments so that you can execute the model to simulate and test your system.

 FIGURE 2-87

 Variants for modeling requirements.

pkg requirements [locking system variants]

Core requirements

Technical requirementsEssential requirements

Customer card variant

«requirement»
Insurance-compliant

locking system

«requirement»
SMS access system

Technical requirements

«requirement»
Secret customer

PIN

«requirement»
Customer card

«requirement»
Electronic drive-away

protection

Cell phone variant

Technical requirements

«deriveReqt»

«deriveReqt»

1312.8 Marginal Notes

 This is an excellent way to discover wrong or unfavorable analysis or design
decisions. The earlier we discover that there is a problem the easier and cheaper
it will be to solve it.

 Of course, this benefi t comes at a price. We have to describe the model in its
very details to be able to execute it. This means a lot of work, which translates in
time and money. This is the reason why you should think carefully what the bene-
fi t of an executable model is worth. However, you normally won ’ t have to execute
the entire model. Of utmost importance are the critical areas, including complex
and error-prone fl ows, or the analysis of design alternatives.

 There is currently no literature available on executable SysML models.
Executable UML models are described, e.g., in [32] and [11]. ARTiSAN Studion
and Telelogic Rhapsody are SysML/UML tools that support model simulations.

 2.8.3 Testing
 Testing is a highly significant issue in development processes, especially for system
engineers. Nevertheless, it landed in the marginal notes in this book. The reason is
that it is far too complex to be discussed in detail within the scope and volume of
this book. I ’ ll just highlight a few points in this section.

 A test verifi es the requirements for correct and complete realization or fulfi ll-
ment. SysML lets you also create a test model. Block diagrams are used to describe
the required test structures, while behavior diagrams, such as activity or sequence

 FIGURE 2-88

 Variants for domain blocks.

pkg Domain knowledge [customer identification feature variants]

Core

Cell phone
variant

Customer card
variant

«domain»
Customer

«domain»
Customer identification

feature

id

1

«domain»
PIN check code

«domain»
SMSCode

132 CHAPTER 2 The Pragmatic SYSMOD Approach

diagrams, are used to describe the test processes themselves. SysML knows a
model element called test case . This model element produces a connecting link
to the UML testing profi le [53], which defi nes additional model elements like test
context and test components .

 You can start very early to build your test model. As soon as you have fi nished
identifying the fi rst bunch of requirements, you can think about the pertain-
ing test cases. This highlights the fact that it must be verifi able whether or not a
requirement is satisfi ed. The further you detail your requirements, the more details
of your tests you can describe. For example, every possible traversal through a use
case activity is a potential test case (Figure 2.90).

 The test model grows in parallel with the system model. The relation—the
test model verifi es the requirements to the system—is modeled explicitly. To this

 FIGURE 2-89

 Two access system variants, customer card and cell phone.

pkg On-board computer [access system variant]

Core

Cell phone variantCustomer card variant

«system»
On-board computer

values
cost:USD
time:personday

structure

«system»
On-board computer

:Card reader

:On-board computer
control

values
cost:USD
time:personday

structure

«system»
On-board computer

:Communication
unit

:On-board computer
control

1332.8 Marginal Notes

end, SysML has a verify relationship that allows you to connect a test case with a
requirement to be verifi ed (Figure 2.91).

 Part of a test specifi cation is a description of the test environment. The
internal block diagram is a suitable form for this description. You can see in
 Figure 2.92 that values have been assigned to some of the block attributes. For
example, the ID describes the concrete block that has to be used in this test envi-
ronment. Together with these values, the blocks deviate from their original defi ni-
tion. This is the reason why we model these blocks as property-specifi c types.

 FIGURE 2-90

 Deriving test cases.

act Start car usage [section]

[customer not identified]

[customer identified]

«essential»
Identify

customer

Customer

«precondition» Car not in use

TC1

TC2

 FIGURE 2-91

 Using a verify relationship.

req [package] Requirements [context car usage without staff]

«requirement»
Car usage without

staff

Start car usage

«refine»

«block»
On-board

computer control

«satisfy»
«testCase»

TC1: Customer
not identified

«testCase»
TC2: Customer

identified

«verify»

«verify»

134 CHAPTER 2 The Pragmatic SYSMOD Approach

 2.8.4 The System of Systems
 If you want to consistently model systems that, in turn, consist of systems, you have
to pay special attention to the model transitions. The reason is that, in this case, the
model of your entire system consists of fragments which form an independent
model from the view of other projects. What you have is a model of models (MoM).

 What may be an independent system for you from the view of your project
may be “ only ” one block out of many for another project. This means that your sys-
tem is part of another system—a system of systems (SoS).

 The elements at the model transitions may play various roles. For example, the
block card reader of our on-board computer system could be an independent sys-
tem from the view of another project. In this case, it plays two roles that are both
realized by the same model element—the block. This means that you can simply
model both roles by using two stereotypes («block» and «system»), which are
shown or hidden, respectively, in the respective context. Things are a bit harder
for the on-board computer control , which is a block in the on-board computer
system and an actor in the card reader system. These are different model ele-
ments. This means that the on-board computer control exists twice in the entire
model. We use the trace relationship to ensure that we won ’ t lose sight of the dif-
ference of these elements.

 FIGURE 2-92

 A test environment.

ibd [block] Test on-board computer access system [TC42]

values
sn:ID�bc2342

testBC1:[on-board computer]

values
sn:ID�kl32X27

reading device:
[card reader]

values
card#:CardID�3725
cus#:CustomerID�2936
pinCheckCode:String�“x4637a”
name�“Gabi Goldfish”

card:[customer card]

values
sn:ID�ctrlOO79

bcCtrl:[on-board computer
control]

1352.8 Marginal Notes

 The relationships in the model are shown in Figure 2.93 . I ’ m presenting the
diagram in this form here only to show you the model relations. You wouldn ’ t use
such a view of your model in practice.

 2.8.5 Modeling Patterns
 Have you ever heard of modeling patterns or design patterns? Even if you don ’ t
know what patterns are, you can rest assured that you have worked with patterns.
If a known problem arises during your daily work, you will most likely solve it by
the same pattern you used the previous times, provided, of course, that your solu-
tion was successful. A pattern is a proven solution.

 Modeling patterns are proven and documented solutions from the practice to
frequently recurring problems. They are often very simple. Their major benefi ts are
that they are for sure proven solutions, and that the solutions have names. Modeling
patterns facilitate the communication among modelers. For example, “ I have an
idea of how to solve this: model an abstract block and derive your block from it.
Give those blocks that can be nested an association relationship to the basic block
with a multiplicity of infi nite. As unusual as that may sound, I assure you that it
works. I ’ ve solved many problems like the one you ’ re trying to solve successfully
that way. ” That ’ s harder to understand than “ I ’ d use the composition pattern. ” 20 The
fact that patterns have names makes it much simpler to communicate about them
as long as the communication partner knows the pattern by content and name.

 I intentionally omit design patterns for class modeling, or block modeling in
SysML lingo, at this point. First of all, they focus on software development prob-
lems rather than on the things we are doing here. Second, there is extensive litera-
ture that deals with this issue. The book Design Patterns by E. Gamma et al. [18]
is considered the seminal work in this fi eld. Special patterns can be found, e.g.,

20A well-known design pattern from [18] used to model tree structures.

 FIGURE 2-93

 Model relations in the MoM.

bdd [package] On-board computer [MoM card reader, on-board computer control]

«system, block»
Card reader

«trace» «block»
On-board

computer control
On-board

computer control

136 CHAPTER 2 The Pragmatic SYSMOD Approach

in the book Real-Time Design Patterns by Bruce P. Douglass [12], or in Analysis
Patterns by M. Fowler [15].

 I ’ d like to introduce some modeling patterns from the area of activity diagrams at
this point. There are only few patterns from this environment yet. All patterns that I
will present have proven in practice and again, and they are independent of whether
you model system fl ows, hardware fl ows, software fl ows, or business process fl ows.

 The Detour pattern describes a fl ow that frequently occurs in activities with
object fl ow. An action, A , has an output pin for object S . The object is not required
by the action immediately following, but only at a later point in time.

 The rules of the token fl ow (“ game of marbles ”) enable a simple and elegant
solution (Figure 2.94). Action A gets two outgoing edges. One is the object fl ow
that transports object S to the desired destination. The other edge is a control fl ow,
which is responsible for the fl ow sequence. In our fl ow pattern in Figure 2.94 ,
action B starts after action A . The object token, S , remains in the output pin of
 A , because action C —the target node of S —is not ready yet. Action C starts only
once action B has terminated, since there are now tokens present at both incom-
ing edges. In total we have the execution sequence A , B , C , and object S is trans-
ported by A past B directly to C .

 Turn to page 99; you will see that we used the Detour pattern in Figure 2.62 .
 After most actions in an activity there is some checking as to whether or not

they were successful. The decision after an action is based on the outgoing object
fl ow: The object is either present or not, or the action was successful or unsuc-
cessful. The fact the no object is present doesn ’ t mean that there is no object fl ow.
What fl ows here is a so-called null token —an empty object. The UML specifi ca-
tion says that the edge must go to and end in an object node. This means that the
action following that action needs an input pin for formal reasons although it may
do without input data. A zero token is not very informative.

 FIGURE 2-94

 Using a Detour pattern.

act Detour pattern

A
S

S

S

B

C

A

B

C

1372.8 Marginal Notes

 UML knows so-called control pins , which accept object tokens, so that they
can cause an action to execute, but without passing the object on to the action.
This means that the action cannot access the object itself. The object token plays
the role of a control token. Control pins are often not shown in the diagram.
 Figure 2.95 shows a control pin for better understanding. If you want to have a
model that is 100 percent formally correct you sometimes have to use such mod-
eling tricks. Normally the information is only in the model and not in the diagram.

 We used a Success pattern in Figure 2.58 .
 The Termination pattern helps activities that have a decision to take after each

action to check whether or not it is necessary to terminate (Figure 2.96). For example,
these can be fl ows that can be terminated by an event, such as an emergency-off
event of a machine, or a termination due to expiry of a given time interval.

 The region concerned is modeled with an interruptible activity region all
around it, which can be exited by a termination event (Figure 2.97). If the entire
fl ow, i.e., the complete activity, is to be terminated by the event, then the inter-
ruptible activity region is omitted (Figure 2.98). The Termination pattern simpli-
fi es the activity and maps the reality more exactly.

 We used a Termination pattern in Figure 2.64 .
 In contrast to the pure control fl ow, an object fl ow adds important informa-

tion to an activity. On the other hand, it makes the model more complex, e.g.,
due to additional edges across the Detour pattern. The Indirect object fl ow pat-
tern describes how information on incoming and outgoing data can be completed
without modeling the actual object fl ow.

 FIGURE 2-95

 Using a Success pattern.

act Success pattern

A

B

C
S

S

S

[S not present]

[S present]
{control}

138 CHAPTER 2 The Pragmatic SYSMOD Approach

 Input and output pins are denoted near actions for data. Since we do not repre-
sent the Object Flow, omitting the edges between pins, we need a feature to distin-
guish between input and output pins. UML uses a small arrow, which is drawn inside
the pin rectangle (Figure 2.99). The model is not exact, because there is no explicit

 FIGURE 2-96

 Terminate?

act Terminations (section)

A

B

[terminate]

[terminate]

[o.k.]

[o.k.]

 FIGURE 2-97

 Using a Termination pattern.

act Termination pattern (section)

A

B
Termination

event

C

D

1392.8 Marginal Notes

connection between the output pins and the corresponding input pins. This means,
e.g., that it is not defi ned that input pin T accepts the object token from output pin T .

 One restriction is the activity parameters. They have the role of initial or fi nal
nodes and have to be connected with an object fl ow edge.

 2.8.6 Model Views
 A large number of individuals normally participate in a system development
project. Depending on their role within the project, each individual has a certain

 FIGURE 2-98

 A Termination pattern without interruptible activity region.

act Termination pattern (entire activity)

A

B

Termination
event

 FIGURE 2-99

 Using an Indirect Object Flow pattern.

act Indirect Object Flwo (section)

A

B

T

U

T

CU

S
S

140 CHAPTER 2 The Pragmatic SYSMOD Approach

view of the system model. A test engineer is interested in different elements
and relations than a system engineer or the project manager. It would be fatal
if each of these roles created their own model. The consequences would be
high redundancies, inconsistencies, and misunderstandings, and the success
of the project would be at stake. The important thing is to have one model for
everybody.

 To solve this problem SysML offers two model elements: the model view and
the viewpoint (Figure 2.100). The model view presents only a certain selection of
model elements and diagrams, so that they meet all needs of, say, a test engineer. It
realizes exactly the viewpoint that describes the stakeholders and their interests,
and includes rules as to how the pertaining model view is to be created.

 Model views and viewpoints are easy to describe and use in theory. In prac-
tice, they represent a challenge for the manufacturers of SysML modeling tools to
ensure that both model elements can be practically realized.

 It is a common concept in architecture and process descriptions to provide
special model views for different stakeholders (e.g., [30]). SysML refers to the defi -
nition of IEEE standard 1471, and defi nes both the model view and the viewpoint
in compliance with this standard.

 FIGURE 2-100

 Example for a model view.

bdd [package] Customer request view [requirements/use cases]

«viewpoint»
stakeholder�“Customer,
requirements engineer, project manager”
concerns�“Which requirements does the system satisfy?”
purpose�“Show the requirements including their relationships
that are of primary interest for the customer.”
methods�“The model view includes all use cases...”
languages�“SysML”

«viewpoint»
CustomerRequirementViewpoint

«conform»

«view»
Customer view

Requirements Use cases

1412.8 Marginal Notes

 Another way to emphasize different aspects of a model is the diagrams them-
selves. Each diagram always shows only a section of the model, i.e., the section
that represents certain aspects, rather than all information stored in the model
(repository). You can see in Figure 2.101 that a customer appears in three dia-
grams in a different context each. However, this customer is present in the model
only once as a model element; see also Section 3.2.

 FIGURE 2-101

 The diagrams/model relation.

SysML Model
(repository)

Customer Customer

uc

Customer

sd

:Customer
foo()

bdd

«system»
On-board
computer

Start car
usage

:On-board
computer

This page intentionally left blank

143

 If language is not correct, then what is said is not what is meant.
 (Confucius)

 UML had originally been developed to create models for software systems. The
word unifi ed stands for the claim that the language can be used for software sys-
tems of a large number of different domains—from business and economics sys-
tems to the development of standard software products to technical systems, such
as an airbag control. The language uses controlled extension mechanisms (stereo-
types) to let you adapt it to your domain, so that UML actually lives up to that
claim.

 At the latest since the introduction of Version 2.0, the term unifi ed has had
a more ample meaning. Since then, the target groups include not only the large
number of different software development domains, but also neighboring disci-
plines, such as business process modeling [33] and systems engineering. Again,
UML lives up to the claim to be truly unifi ed . Of course there are limits. For exam-
ple, UML is suitable for systems engineering. However, Systems Modeling Language
(SysML) is much more closer to systems engineering, as you will see further on in
this book.

 UML is not a Babylonian language. You shouldn ’ t give in to your inclination
to try expressing everything in UML. However, to make sure you can maintain a
complete model altogether, for example, you can integrate a general element—a
 “ placeholder ” —in your model. The details of this placeholder are described out-
side the model. One good example is requirements that are usually described
in detail outside the model in requirement management tools, such as Telelogic
DOORS™ (Section 2.2.2).

 UML is a worldwide industry standard. The software consortium Object
Management Group (OMG), which has about 800 members, is responsible for
the language. But only 20–30 corporations actively participate in the development
of UML, including modeling tool vendors, such as IBM, Telelogic, and ARTiSAN
Software Tools, and other corporations, such as Motorola, NIST, and oose Innovative
Informatik GmbH. The language is subject to continuous further development.
When UML 2.1.1 was fi nished, work had been started on UML 2.2 right away.

 UML—Unifi ed Modeling
Language 3

CHAPTER

144 CHAPTER 3 UML—Unifi ed Modeling Language

 This development effort lives from users ’ feedback. Please notify OMG if you
fi nd errors or irregularities in UML, if you think something should be clarifi ed, or
if you have a suggestion for improvement. You don ’ t have to be a member to do
this. You can fi nd the online form on the pages of OMG at http://www.omg.org/
technology/issuesform.htm .

 In contrast to SysML, there are a large number of books on UML. This is why
you won ’ t fi nd a full description of all model elements; I ’ ll describe only the areas
that are really part of the SysML language. I recommend “ The Unifi ed Modeling
Language Reference Manual ” by the “ Three Amigos ” [41] for a full description
of UML.

 You can fi nd detailed information about the UML grammar in my preparatory
book for the UML Certifi cation [61]. The UML specifi cation is freely available. You
can fi nd it on the Internet pages of OMG [48].

 The class is a central element of UML. The SysML language uses a different
term for it: block. I use the UML vocabulary in this chapter. If you want to read
this chapter through SysML spectacles, simply replace the word class by block .
All content items described in this chapter apply to SysML too. If there are differ-
ences I ’ ll say so in the appropriate places. I ’ ve used the SysML vocabulary in all
the other chapters of this book. Over and above, SysML is fully described in this
chapter and the specifi c SysML extensions are discussed in Chapter 4.

 3.1 History
 UML has its roots in the software development domain. The language is a logical
consequence of the fast pace progress that has been made since Konrad Zuse took
his first computer into operation. As the performance of hardware has increased
software has become increasingly better performing too. This led to requirements
for increasingly complex systems. Ensuring that developers can meet this chal-
lenge has meant that progress was also necessary in the area of their tools—the
programming languages.

 The original building blocks of software—zeros and ones—had quickly
become too small. What was needed was a programming language that offered
larger building blocks. And thus, development went on from assembler over
macro-assembler and C to eventually object-oriented programming languages. The
building blocks of which software is composed were no longer zeros and ones,
but classes and objects.

 The rise of object-oriented programming languages began in the 1980s
with Smalltalk and particularly C � � . The evolution of programming languages
appeared to have hit its limits when it had reached object orientation. The class
is the largest software building block still today. However, since the continued
progress in hardware required more and more complex systems, a new path has
emerged.

 People had begun to graphically visualize software pretty early. In particu-
lar, algorithms were documented and specifi ed in diagrams (e.g., the Nassi–
Shneiderman diagram). This type of modeling intensifi ed at the beginning of the

145

1990s. A large number of object-oriented notations emerged during that time. The
most prominent representatives are Booch by Grady Booch [5], Objectory by Ivar
Jacobson [25], and Object Modeling Technique (OMT) by James Rumbaugh [40].
In addition to the notation, a methodology was defi ned as well, which describes
both the approach and the application of that notation.

 The phase in the early 1990s is often referred to as a blossoming of methods
or war of methods . The latter shows that there had been fi erce disputes between
the different camps. The issues had usually been hackneyed: Had I better denote a
class as a rectangle (OMT) or a cloud (Booch) (Figure 3.1)?

 The discussions showed that the different camps has basically been agreeable,
and they eventually converged—something practice had desperately needed. The
wide choice of notations would have caused just as large a choice of tools, train-
ing programs, and consulting efforts, which would have translated in considerable
friction losses.

 Grady Booch had been with Rational Software back then. He was joined by
James Rumbaugh and together, in 1995, they presented the Unifi ed Method 0.8
(UM 0.8), a merger product of the notations and methodologies— Booch and
 OMT —at the OOPSLA 1 Conference 1995 in Austin, Texas. The discussions between
the two had certainly been exciting. While Grady Booch is a pragmatist, James
Rumbaugh is thought to be more of a theorist.

 Neither of the two had the customer and user of the system in mind. This focus
was introduced by Ivar Jacobson, who joined Booch and Rumbaugh. 2 In fact, use
case modeling is the brain child of Ivar Jacobson. Since the methodology of the
UM had still caused problems, while the notation was deemed to be mature, the
three of them reduced the extent to the sheer language, and the Unifi ed Modeling
Language — UML —was born. From then on Booch, Rumbaugh, and Jacobson
had been named “ The Three Amigos. ” There ’ s a lot of speculation about the ori-
gin of this name. The methodology re-emerged within the IBM Rational Unifi ed
Process TM (RUP TM) later on.

 In 1997, the responsibility for UML went from Rational Software to Object
Management GroupTail (OMG). Since then UML has been further developed by
this group. In 2005, a new generation of the language—UML 2.0—was offi cially
published. The group currently works on UML 2.2.

OMT class Booch class

FIGURE 3-1

The OMT versus Booch class notation.

1 Short for Object-Oriented Programming Systems, Languages, and Applications.
2 More specifi cally, his company, Objectory, had been taken over by Rational Software.

3.1 History

146 CHAPTER 3 UML—Unifi ed Modeling Language

 James Rumbaugh had also participated in the development of UML 2.0, while
Grady Booch and Ivar Jacobson had taken different roads.

 3.2 Structure and Concepts
 UML is extremely extensive, which might overwhelm some people at first.
However, once you know the basic structure and the concepts of UML, the mass
of language elements do no longer represent a hurdle. Compare it with a natural
language. You don ’ t have to know the meaning of every word to have a talk with
somebody, say, in German, Spanish, or Swahili.

 You can see the rough structure of the UML language in Figure 3.2 . There are
two levels to be looked at. We can distinguish between structure and behavior ele-
ments. Structure elements include classes and components, for example. You use
them to describe the structure of your system. Functions are described by means
of behavior elements. They include activities, state machines, and interactions.
The column “ Others ” includes elements that refer to both structure and behavior
(cross-section functionality).

 On the other level we distinguish between model and diagram. The model con-
tains the full description of the system. In contrast, a diagram is only the visualiza-
tion of the model with regard to a certain aspect. For example, there are class
diagrams that show classes and their associations, but no attributes or operations.
And there are other class diagrams that show all attributes and operations, but
only few selected associations. Both diagrams are based on the same model. Figure
3.3 is a schematic view of this example. 3 All of this globally obeys the rule that the
information represented in a diagram are incomplete, compared with the model.
You could think of this as a spreadsheet: the table with the data is the model,
while you fi nd bar charts, line charts, and pie charts on the level of the diagrams.

3 The figure also shows the model as a diagram for better understanding.

FIGURE 3-2

The structure of UML.

Activity diagram
Use case diagram
State machine diagram
Sequence diagram
Communication diagram
Timing diagram
Interaction overview diagram

Class diagram
Component diagram
Object diagram
Composite structure diagram
Deployment diagram
Package diagram

Structure and behavior model

D
ia

gr
am

M
od

el

Structure Behavior

S
te

re
ot

yp
es

, m
od

el
, i

nf
or

m
at

io
n

flo
w

, p
rim

iti
ve

 d
at

a
ty

pe
s,

te
m

pl
at

es
, O

bj
ec

t C
on

st
ra

in
t

La
ng

ua
ge

 (
O

C
L)

, M
et

ad
at

a
In

te
rc

ha
ng

e
(X

M
I)

 fo
rm

at
s

Others

147

 The terms diagram and model are often generally used as synonyms. This
hardly leads to misunderstandings as long as everybody involved is aware of the
actual difference.

 In contrast to UML 1, UML 2 includes not only one but four specifi cation docu-
ments. The language is described in Superstructure [48]. It is based on a core that
is defi ned in the infrastructure [51]. Moreover, UML includes another language—
the Object Constraint language (OCL)—that has been described in a separate
document since UML 2 [52]. And the XML Metamodel Interchange (XMI) Metadata
Interchange format [64] has been around since UML 1. XMI allows you to exchange
UML model between different tools. A new data format for diagrams (Diagram
Interchange [50]) was introduced together with UML 2; it lets you exchange the
diagram level, in addition to the model level, between different tools.

 UML is defi ned in a modular way. You can work with parts of the language.
For example, you don ’ t have to deal with class modeling when all you want to do
is an analysis of your use cases. The criticized point, that UML was too large and
too extensive a language is unjustifi ed. It is not necessary to realize all modeling
possibilities UML offers in one project. And it wouldn ’ t normally be meaningful.
Also, you don ’ t have to have a command of all language elements in order to work
with UML.

3.2 Structure and Concepts

FIGURE 3-3

1 = model, 2 = diagrams.

class Customer Relationship Management diagram

«domain»
Customer «domain»

Customer

booker right

booker right

1 0..1

user0..1

carUsed

user

carUsed

1

class Customer model

1 0..1

0..1

1

class Customer diagram

name
ID
isBlocked

«domain»
Customer

name
ID
isBlocked

Diagram

Model

«domain»
Car

«domain»
Car

ID
keyID

«domain»
Usage right

«domain»
Usage right

period
isAuthorized
isEmergency

148 CHAPTER 3 UML—Unifi ed Modeling Language

 UML is extensible to ensure that it is unifi ed and, on the other hand, can offer
useful model elements for specifi c domains and disciplines. Stereotypes and profi les
offer a controlled extension mechanism that allows projects to defi ne new model-
ing elements (i.e., new vocabulary for the language). At the same time, the models
remain interoperable, so that they can still be exchanged between different tools.

 Figure 3.4 gives an overview of all UML diagrams.

 3.3 The Class Diagram
 No doubt class modeling is currently the most popular use of UML. Many soft-
ware projects have used UML for the only reason to model classes and to generate

FIGURE 3-4

Overview of UML diagrams.

class UML behavior diagrams

class UML structure diagrams

«domain»
Communication

diagram

«domain»
Interaction

diagram

«domain»
Composite

structure diagram

«domain»
Deployment

diagram

«domain»
Class

 diagram

«domain»
Component

diagram

«domain»
Object

diagram

«domain»
Package
diagram

«domain»
Structure
diagram

«domain»
Behavior
diagram

«domain»
Activity
diagram

«domain»
Use case
diagram

«domain»
State

machine diagram

«domain»
Timing

diagram

«domain»
Sequence
diagram

«domain»
Interaction

overview diagram

149

simple source-code scaffolding. Several integrated development environments
support this approach by using UML as a graphical editor for the source code.

 However, class modeling can also be used outside the software development
domain in a meaningful way. Generally speaking, classes are used to describe
structures and behaviors of virtual or real-world objects. Look at your current
environment, for example. If you are presently in a room, then the class diagram in
 Figure 3.5 can be thought of as a simple model of your environment. A room can
contain several tables, with up to two chairs at each table, where each chair has a
defi ned number of legs. Chair and table are types of furniture.

 Classes and objects represent the core in object orientation. A class is the
smallest building block of an object-oriented system. Classes are interconnected
by associations to form larger structures. Objects are concrete elements that are
created based on the building plans of classes.

 SysML does not know the term class , but calls it block . Everything I write
about classes in this chapter applies just as well to blocks in SysML. You just have
to swap the two terms in your mind. Instead of a class diagram, SysML knows
the block defi nition diagram . Objects play a subordinate role in SysML. Over
and above, SysML removes the software aspect from the UML class model, so that
objects can be used in any discipline to describe system structures.

 3.3.1 Class

3.3 The Class Diagram

FIGURE 3-5

A simple class model.

class Room model

Room

Table

table*

number of legs

Chairseat

0..2

move()

Furniture

 Defi nition
 A class describes structure and behavior of objects that have the same charac-
teristics and semantics. The structure is described by attributes, while behavior
is described by operations.

150 CHAPTER 3 UML—Unifi ed Modeling Language

 A class is the building plan for similar objects. For example, the class customer
in Figure 3.6 describes objects that each have a name, an ID, blocking information,
a PIN check code, and personalized routes for the navigation system. Moreover,
they are capable of verifying whether or not a PIN is correct. All customer objects
meet this building plan. Other examples for classes are car , braking system , cur-
rent , or energy .

 Each object has a unique identity, regardless of its attribute values. This means
that we can still distinguish two customer objects that happen to have the same
attribute values. This is not the case with instances of data types.

 We often speak of instances rather than of objects, and we say “ instantiate
objects ” rather than saying “ create objects. ” The formal name in UML is instance
specifi cation.

 A class is denoted as a rectangle divided into several compartments : the name
compartment, the attribute compartment, and the operation compartment. While
the name compartment always has to be visible, the other compartments in the
diagram can be hidden (Figure 3.6).

 Objects are denoted in a similar way (Figure 3.7). A colon is used to separate
the name of an object from its type. The text is underlined. The attributes contain
concrete values. Operations are not represented.

FIGURE 3-6

Example for class customer.

class Customer

pinCheck(pin)

name
ID
isBlocked
pinCheckCode
routes

name
ID
isBlocked
pinCheckCode
routes

Customer Customer Customer

FIGURE 3-7

Example for objects.

class Customer objects

g:Customer k:Customer

name�“Gabi Goldfish”
ID�2965
isBlocked�false
pinCheckCode�“0�4711”
routes�null

name�“Klaus Carp”
ID�2342
isBlocked�true
pinCheckCode�“0�9913”
routes�null

151

 A class can be abstract, and abstract classes can describe attributes and opera-
tions as well. However, objects cannot be created directly by this building plan;
they can be created only by concrete subclasses. The abstract property is repre-
sented by writing the name in italics. In addition, we can optionally denote the
adjective {abstract} next to the name (Figure 3.8). Abstract classes represent a
superordinate term for concrete subclasses that are bound with the abstract class
through a generalization relationship.

 3.3.2 Attribute

3.3 The Class Diagram

FIGURE 3-8

An abstract class and concrete subclasses.

class Vehicle with subclasses

Vehicle
{abstract}

Car Truck

 Defi nition
 An attribute defines a structural property of a class. The description is
composed of visibility, name, type, and a multiplicity.

 The structure of a class is defined by the sum of its attributes. Here the abstraction
of the model compared to the real world plays an important role. The attributes
reflect only the structure that is relevant for the model. For example, the class
 customer in Figure 3.9 has no attribute for the color of the customer ’ s eyes, but it
does have one for the name or the PIN check code. In another system the color of
the eyes might indeed be a relevant attribute.

 The type of an attribute is denoted behind the attribute ’ s name, separated by a
colon. Objects created on the basis of the class ’ building plan include one value of
attribute type for each of that class ’ attributes. This type is often itself a class—the
building plan of the attribute.

 An attribute can also be defi ned such that it contains several values of the
same type. The so-called multiplicity is denoted within square brackets behind
the type. It describes an interval (Table 3.1) that defi nes the possible number. For
example, a customer object can contain any number of route objects in the range
0–5 (Figure 3.9).

152 CHAPTER 3 UML—Unifi ed Modeling Language

 We can assign an initial value to an attribute right away as we defi ne it. Each
new object of the pertaining class will then initially have these values.

 We can use property strings predefi ned in UML to specify an attribute more
closely. For example, {ordered} specifi es that a set-type attribute (multiplicity � 1) is
ordered, or {nonunique} specifi es that the set of attribute values may contain identical
elements. 4 Several property strings are separated by commas within curly brackets.

 The visibility of an attribute is denoted before the name. It states whether or
not the attribute is visible for elements outside the class, which means that it can
be read and written. UML defi nes four different visibility types:

 1. public (denoted as �)—the attribute is publicly visible. Each element out-
side the class can access this attribute.

 2. private (denoted as �)—the attribute is private. No element outside the
class can see this attribute.

 3. package (denoted as �)—the attribute is visible to all elements located in
the same package as the class.

 4. protected (denoted as #)—the attribute is visible only to subclasses of the
pertaining class.

Table 3.1 Examples for multiplicities

Multiplicity Meaning

0..1 The value is optional.

1 Exactly one value (default when no
multiplicity is stated).

2..4 At least two values and at most four values.

0..* None to an arbitrary number of values.

* None to an arbitrary number of values
(shortcut notation).

4 Mathematically, a set cannot contain identical elements.

FIGURE 3-9

Example for attributes of the “customer” class and a customer object.

class Class Customer and customer object

Customer

-name:String
-ID:String
-isBlocked:Boolean
-pinCheckCode:String
-routes:Route[0..5] {ordered}

name�“Gabi Goldfish”
ID�2965
isBlocked�false
pinCheckCode�“ddhus”
routes�...

�pinCheck(pin)

gabi:Customer

153

Altogether, the syntax for attributes is:

 � visibility � � name � : � Type � [� multiplicity �]� � initial value � {property

string}

 Visibilities do not play any role in SysML, where all attributes are public by
defi nition. Visibility is not shown in the SysML notation.

 3.3.3 Operation

class Customer with operation

Customer

�pinCheck(pin:String):Boolean

FIGURE 3-10

Operation of the class “customer.”

3.3 The Class Diagram

 Defi nition
 An operation defines a behavior property of a class. The description consists
of a visibility, a name, as well as parameters and a return type.

 The behavior of a class is largely described by the sum of its operations. The class
 customer in Figure 3.10 has an operation called pinCheck(/) with an input param-
eter, pin:String , and a return type, Boolean . The input parameter passed on to this
operation is a string (pin:String). It verifies whether or not the string corresponds
to the PIN of that customer and returns a Boolean value (true/false) as the result.
The actual verification of a PIN is part of the implementation of the operation, but
you can ’ t see it in the class diagram. Often it is not directly described in the UML
model either. It is often described in mechanical or electronic components, for
example, in a hardware development project. In the UML model itself we could
use an activity, a state machine, or an interaction to describe the implementation.

Parameters are denoted similarly to attributes. Several parameters are sepa-
rated by commas.

 � name � : � Type � [� multiplicity �]

Similarly to an attribute, an operation has a visibility with the same meaning.
All operations are public in SysML models. The visibility is not shown in the nota-
tion. The syntax of an operation is as follows:

 � visibility � � name � (� parameter list �): � Return type �

154 CHAPTER 3 UML—Unifi ed Modeling Language

class Classes Customer, Usage right

Customer
Usage right

name
ID
isBlocked
pinCheckCode
routes

period
isAuthorized
isEmergency

booker right

0..11 has

FIGURE 3-11

Example for an association.

5 We can actually model an association between more than two classes, but it is not customary in
practice and not supported by SysML.
6 Actually, this is a common but simplifi ed view of an association. For details see [61].

 3.3.4 Association

 Defi nition
 An association is a structure relationship between two classes .5

 You can see an association between the classes customer and usage right . This
association is a structure relationship, which means that the structure of the class
 customer includes not only the attributes listed in the class symbol, but also a
property, right , of type usage right . 6 The multiplicity states how many values are
included. In this case, it ’ s one at most.

 In contrast, the class usage right has a property, booker , of type customer .
From a pragmatic perspective, there is not much of a difference between attri-
bute and association. For example, the customer attribute routes can also be rep-
resented as an association to the class route . Looking at the details, however, there
are differences between association and attribute. Rather than discussing them
here I refer to further UML literature; see [61], and [41]. In SysML these differ-
ences refl ect in values, references, and parts.

 An association can have a name. If we use a name we write it centered at the
association line. The name of an association often refers to a reading direction,
which is stated by a black triangle in front of the name. In Figure 3.11 , we read,
 “ Each customer has one or no usage right . ” Since only one association name
is permitted we can state only one direction in this way, even though the other
direction might be valid. You have to be careful not to confuse the triangle with
the information fl ow.

 In the above example, what if the class customer had a usage right , but no
customer should belong to the class usage right ? We would need a uni-directional
association. This property controls the so-called navigation. We denote an arrow at

155

the association end to express that it is possible to navigate from one class to the
other. 7

 If we continue thinking along these lines in our example, then we should actu-
ally denote an arrow at the other end too, since this direction is also valid. The ques-
tion is then why we haven ’ t used any arrows in Figure 3.11 . The answer is that, by
convention, both navigation directions are possible if no arrows are stated.

 You can see a so-called derived association between the usage data class and
the car class in Figure 3.12 . You can recognize a derived association by the slash
before the name of the association. This association is actually superfl uous in this
context because it results from the other two associations in the diagram. A usage
data object can reach the car object through its customer object. This is the rea-
son why the association is referred to as “ derived. ” It emphasizes the indirect rela-
tionship between usage data and car . Derived associations are used mainly in
analysis models, for example in the domain class model.

 Associations are used not only between classes, but also between actors and
use cases, or between actors and the system (Figure 3.13). We are talking about the
same model element. The different forms of uses are supported in UML by default.

 3.3.5 Aggregation and Composition

FIGURE 3-12

A derived association.

7 The concepts navigability and owning properties were split apart in UML 2.1.1 [48].

3.3 The Class Diagram

class Derived association

Customer
customer

0..1
Usage data

carUsed0..1

I

0..1

carUsed
Car

 Defi nitions
 An aggregation denotes an association end as an aggregate and describes a
whole-part hierarchy.

 A composition denotes an association end and describes a whole-part
hierarchy, where the composite is existentially responsible for its parts.

156 CHAPTER 3 UML—Unifi ed Modeling Language

 The meanings of aggregations and compositions can be best explained by using
a simple example. Figure 3.14 represents one aggregation and one composition.
Both are denoted by a rhombus at the association end. The composition as the
stronger form has a filled rhombus.

 The example class model describes that a house consists of between one and
an arbitrary number of rooms, and that a room can contain an arbitrary number of
pieces of furniture.

 The aggregation underlines the whole-part relationship. The room is the whole
and the pieces of furniture are the parts. However, the room is not existentially
responsible for these pieces of furniture.

 The relationship from the house to its rooms is different. The house is the
whole and responsible for its parts, the rooms. If the house is removed, then all
the rooms disappear, but not the furniture. The composite is here also referred to
as the owner of the parts, since it is responsible for them.

 Similarly to the real world, there can be only one owner for a part in a com-
position. The house/room example shows this clearly. A room of a house cannot

FIGURE 3-13

Association and actor.

uc Actor and association

Customer

Customer

Buy soft drink

«system»
Soft-drink vending

machine

FIGURE 3.14

Example for a composition.

class House

House
rooms

1..*
Room

inventory *

Furniture

157

concurrently belong to several houses. With an aggregation, in contrast, there can
be several aggregates concurrently. They are merely referenced by the aggregate.
For example, a piece of furniture can be assigned to several rooms. Another exam-
ple from a port logistics system is shown in Figure 3.15 . The containers are pres-
ent both as cargo in the ship and as delivery item in the shipment.

 3.3.6 Dependency

FIGURE 3-15

Example for an aggregation.

8 Flow controllers are special classes with the primary task to control flows. In software develop-
ment, use cases are often realized by flow controllers in the design.

3.3 The Class Diagram

class Container

Ship

cargo *

*
Container

delivery item
Shipment

FIGURE 3-16

Example for a dependency.

class Flow controller

StartCarUsageCtrl Customer

 Defi nition
 A dependency is a relationship between two elements, which describes that
one element needs the other element for its specification or implementation.

 In contrast to an association, a dependency can be defined not only between
classes, but also between almost any model elements. This is the most common
use in class modeling.

 Figure 3.16 shows a dependency between a fl ow controller 8 and the class
 customer .

158 CHAPTER 3 UML—Unifi ed Modeling Language

 The fi eld of software development uses the dependency relationship very
intensely, while it is used rather scarcely for block modeling in SysML.

 A dependency is denoted as a dashed arrow without additional notes. There
are no role names, nor are there multiplicities, as in associations.

 3.3.7 Abstraction Dependency

 Defi nition
 An abstraction dependency is a mapping between model elements on vari-
ous abstraction levels.

 A design model is developed on the basis of an analysis model (specification). The
test model verifies the correctness of the design with regard to the analysis. These
relations are examples for relationships between various abstraction levels. The
abstraction dependency allows us to explicitly model them.

 The notation is a dashed arrow, similar to how we denote a dependency, except
that it carries the additional keyword «abstraction». The semantics of an abstrac-
tion dependency is often refi ned by a stereotype. In SysML we can use «allocate»
or «deriveReqt» , for example. UML defi nes «derive» , «trace» , and «refi ne» .

 Figure 3.17 shows an abstraction dependency between two abstraction
levels—business process model and system model.

 3.3.8 Generalization

 Defi nition
 A generalization is a taxonomic relationship from a special class to a general
class.

 Taxonomy is the division of things in groups. In software development it is com-
mon to use the term inheritance rather than generalization . In Figure 3.18 , the
class Location inherits all properties from the class Waypoint . This means that an
object of type Location has an attribute coordinates in addition to the attribute
 name . Not only attributes are inherited, but also constraints and operations, if
defined.

 A generalization is denoted as an arrow with solid line and hollow triangle as
an arrowhead. It is read as “ is a kind of ” in the direction of the arrow. In Figure
3.18 , we read, “ a location is a kind of waypoint. ”

 The relationship forms a hierarchy. This is why we speak of superclasses and
subclasses. The class Location is a subclass of the superclass Waypoint .

 A generalization is also permitted between actors and between use cases. It ’ s
the same model element and the same concept in all cases. However, it must not

1593.3 The Class Diagram

FIGURE 3-17

Example for an abstraction dependency.

pkg Models

Business process model

«business process»
Rental cars

System model on-board computer

Start car usage

«trace»

FIGURE 3-18

Example for a generalization.

class Waypoint

coordinates

Waypoint
{abstract}

name

Location Attraction

160 CHAPTER 3 UML—Unifi ed Modeling Language

be mixed between different model elements. For example, it is not permitted to
use a generalization between a class and a use case.

 3.3.9 Interface

FIGURE 3-19

Example for an interface.

class Interface CarKey

«signal» Key(removed:Boolean)

«interface»
CarKey

 Defi nition
 An interface specifies structure and behavior. It does not include any imple-
mentation, and no object can be created based on its building plan.

 We know the separation of specification and implementation very well in our
daily lives. Think of a socket, for example. It specifies the structure of the plug as
well as textually the intensity of current and voltage. The implementation—elec-
tric power or mains supply—is not visible to the user. For the user, only the speci-
fication is important.

 We use the same principle in modeling, too. The interface specifi es a behavior
without stating how exactly it is implemented. Similarly to classes, the notation is
written with the additional keyword «interface» above the name.

 Figure 3.19 represents the interface CarKey with a receive signal, Key(removed:
Boolean) . The interface is implemented by the class On-board computer control .
This relation is described by the realization in Figure 3.20 . The arrow is denoted
similarly to a generalization, but with a dashed line.

 Together with the realization, the class is obligated to realize the properties
of the interface. The interface is a contract that is fulfi lled by the realizing class.
Accordingly, the interface ’ s receive signal shows up once more in the implement-
ing class. The class KeyDeposit is a user of the interface.

 Alternatively the realized (offered) interface is denoted as a ball , while a used
(requested) interface is denoted as a socket . 9

 The realization also comes as a more general concept in the same notation.
In that case, what is being realized doesn ’ t have to be an interface; it can be any
specifi cation element. SysML uses this for the «satisfy» relationship.

 Interfaces are very common in software development, while SysML uses them
only for the specifi cation of standard ports.

161

 UML knows two communication forms between objects: One form lets an object
invoke an operation at another object. This means that the first object determines
the behavior the second object should execute. In the second form, one object
sends a signal to the other object.

 The most important difference between these two forms is that, though both
forms transmit information, the second form lets the receiver object decide how
it will respond. When an operation is invoked, then the sender decides on the
behavior to be executed.

 The signal is a type and is written in a notation similar to the one for classes. In
addition, the keyword «signal» is denoted above the signal ’ s name (Figure 3.21). A
signal has only attributes; it does not normally have operations.

9 Within the ball-and-socket notation , the ball by itself is commonly referred to as lollipop notation .

3.3 The Class Diagram

FIGURE 3-20

Example for an interface realization.

class Interface realization CarKey

«signal» Key(removed:boolean)

«signal» Key(removed:boolean)

«interface»
CarKey

On-board computer control

On-board computer
control

class Interface realization CarKey (alternative)

KeyDeposit

KeyDeposit

CarKey

CarKey

 Defi nition
 A signal describes the structure of a communication object.

 3.3.10 Signal

162 CHAPTER 3 UML—Unifi ed Modeling Language

 Classes that can receive signals describe this property similar to an operation,
but with the additional keyword «signal» in front of the name (Figure 3.21).

 3.3.11 Data Types
 Data types differ from classes in that their instances have no object identity. This
means that two instances with identical attribute values cannot be distinguished.
UML knows three forms of data types.

FIGURE 3-21

Example for send and receive signals.

class Send and receive signals

«signal»
Key

removed:Boolean

StartCarUsage

Key(removed:Boolean)
«signal»

 Defi nitions
 A data type is a type the instances of which can be identified solely by their
values.

 A primitive type is a special data type that has no structures worth
mentioning.

 An enumeration is a special data type the value range of which consists of a
limited set of defi ned literals.

 Data types are used when we are interested only in a value but not in the object
identity. Examples for data types are period , date , current . Two equal values can-
not be distinguished. This is different with classes. Two objects with the same
attribute values can be distinguished: they are equal but not identical.

 Data types are denoted like classes, with the keyword «dataType» above the
name (Figure 3.22).

 A primitive type has no structures. For example, date is not a primitive type
since it has structure elements like day , month , and year . UML has four predefi -
ned primitive types: Integer , Boolean , String , and UnlimitedNatural. Unlimited
Natural is the value range for natural numbers, including zero and * as the symbol
for infi nite.

163

 A primitive type is denoted like a class, with the keyword «primitive» above
the name (Figure 3.22).

 Another special data type is enumeration. Its value range consists of a limited
set of literals, which have to be fully stated. Figure 3.22 shows an example of an
extended control value with four literals.

 3.3.12 Association Class

class Pumping system

Container
0..2 0..1

Pump

Hose

diameter:Integer

FIGURE 3-23

Example for an association class.

3.3 The Class Diagram

FIGURE 3-22

Example for data types.

class Data types

«datatype»
Current

«primitive»
Integer

«enumeration»
ExtendedControlValue

i:Ampere
u:Volt

enable
disable
suspend
resume

 Defi nition
 An association class unifies the properties of an association and of a class.

 In UML, associations are more than people normally think. An association is
not an alternative representation for attributes, but an independent element.
An association as a relationship between classes can have properties itself. This is
particularly striking with the association class.

 An association class is denoted like an association and a class, where the class
is connected with the association by a dashed line (Figure 3.23). The objects of

164 CHAPTER 3 UML—Unifi ed Modeling Language

an association are called links . Accordingly, the objects of an association class are
referred to as link objects .

 3.4 The Composite Structure Diagram
 This section discusses a diagram form of UML 2 that was not around in UML 1:
composite structure diagrams. A composite structure diagram describes the inter-
nal structure of classes on role level. UML is a very extensive language already, so
that you may ask, “ Why do we need yet another diagram form? ”

 To answer this question, let ’ s look at the class diagram in Figure 3.24 . It is a
simplifi ed representation of things a car is composed of. The car consists of an
engine that drives two wheels. In total, the car has four wheels—two front wheels
and two rear wheels.

 All of this looks pretty logical at fi rst sight. But take a closer look at the sec-
tion of the object model shown in Figure 3.25 , which can result from this class
diagram. The engine in the Opel Astra doesn ’ t only drive the front right wheel,

FIGURE 3-25

Undesirable object model “car” (section).

class Object model Car (section)

frontright:Wheel

opelAstra:Car turbo:Engine rearright:Wheel

ferrari:Car

FIGURE 3-24

Simple class model for a car.

class Car

0..1

m 1

0..1 2axle

2

0..1

0..1

2
front rear

Engine Wheel

Car

165

but also the rear right wheel, but the latter is a wheel of a Ferrari. All objects cor-
respond to the building plan that defi nes the pertaining classes from Figure 3.24 .
I leave it up to the playful reader to think of more unhappy constellations.

 How can such a situation be prevented? How can a modeler express which
object relationships are valid and which ones are not? Unfortunately, this is impos-
sible in a class diagram, because it describes types, and with them all object rela-
tionships that are permitted in each context across the entire model. However, we
want to describe that certain relationships are invalid while others are mandatory
for an object, depending on the role it plays. This is where the composite struc-
ture diagram comes in handy.

 The diagram and the underlying model close the gap between type level
(classes) and object level. In between these two there is the role level. The engine
plays a role in the context of the car. The four wheels can play two roles: Each
can either be a front wheel or a rear wheel. The context-specifi c relationships
between the roles and sets are defi ned in a composite structure diagram.

 Figure 3.26 shows the internal composition of the class Car . The car has an
engine, e that drives the two front wheels. Moreover, there are two rear wheels. In
contrast to the rear wheels, the role of the front wheels has a relationship to the
engine, e , in the context of a car. This role specifi cation ensures that undesirable
object constellations are prevented (Figure 3.27). Figure 3.26 shows the wheels in
dashed notation, because the car doesn ’ t own them any more; it uses an aggrega-
tion to merely reference them. The special designation of the objects with slashes
in their names were be explained in Section 3.4.1.

 3.4.1 Role

3.4 The Composite Structure Diagram

FIGURE 3-26

The composite structure diagram for “car.”

 Defi nition
 A role describes a structure in the context of a class.

class Composite structure Car

Car

rear:Wheel

front:Wheele:Engine

2

2

a:axle

166 CHAPTER 3 UML—Unifi ed Modeling Language

 Attributes specify the structure of a class. An attribute ’ s type is a class. This class
describes the structure of the attribute. This description is independent of the
class (i.e., the context) the attribute is in.

 You can see in Figure 3.24 that an engine can belong to the structure of a
wheel. Whether or not a specifi c wheel does really have a relationship to an
engine depends on the role it plays. If it is a front wheel of a car, then it has a
relationship to an engine (Figure 3.26). Relationships between roles are called
 connectors .

 The role is within the context class and is denoted similarly to an object (i.e.,
as a rectangle) except that the name is not underlined and the multiplicity of the
role is in the upper right corner. The rectangle is dashed if the context class refer-
ences the role rather than owning it—association/aggregation versus composition
(Figure 3.26).

Note that, on the object level, we can also state the role name. The object is
written as follows (Figure 3.28):

 � object name � / � role name � : � Type name �

FIGURE 3-28

Wheel objects.

class Wheel objects

frontright/front:Wheel rearright/rear:Wheel

frontleft / front:Wheel rearleft /rear:Wheel

FIGURE 3-27

Desirable object model “car” (section).

class Car (section)

frontleft/front:Wheel

frontright/front:Wheel

opelAstra:Car turbo:Engine

167

 You can omit single parts of this object notation. For example, the role names
of Car and Engine were omitted in Figure 3.27 .

 3.4.2 Connector

3.4 The Composite Structure Diagram

 Defi nition
 A connector specifies a relationship between two roles, allowing these roles
to communicate.

 There are associations between classes, links between objects, and connectors
between roles. They express that the roles can communicate. This is frequently
the case since the classes belonging to roles have an association between them. In
this case, the association is the type of the connector.

 We can see in Figure 3.24 that the association between Engine and Wheel is
named axle . The connector between the engine, e , and the role front:Wheel in
 Figure 3.26 has this association as a type. The syntax is the same as with other
typifi ed elements, namely � name � : � Type � .

 When the connector is typifi ed, then the desired multiplicity is written at the
connector end. Of course, this multiplicity must not be in confl ict with the mul-
tiplicity of the pertaining association end. The multiplicity at the connector end
corresponds to the multiplicity of the role if none is stated at the connector end.
For example, multiplicities of 1 and 2 are explicitly stated at the connector bet-
ween e:Engine and front:Wheel in Figure 3.26 .

 3.4.3 Port

 Defi nition
 A port describes an interaction point at which a class uses interfaces to pro-
vide services to its environment, or to request services from its environment.

 A class encapsulates structure and behavior. Encapsulation means that the inside
is separated from the outside. However, the class has to communicate with its
environment in order for the entire system to function. Ports describe the points
at which the class can communicate. They are properties of the class, similar to
attributes. A port has a name, a type, and a multiplicity.

The notation is a small square positioned on the edge of the class rectangle.
Next to it is further information in the following syntax:

 � name � : � Type � [� multiplicity �]

 The type and the multiplicity are often not represented. The name of a port is
normally written in lowercase letters. Ports can also be denoted on roles, if they
belong to the class of a role (Figure 3.29).

168 CHAPTER 3 UML—Unifi ed Modeling Language

 The potential communication over ports is described by their interfaces.
A port can have several interfaces, both requested and provided interfaces.

 3.5 The Use Case Diagram
 A use case model describes the services a system offers as well as the users of
these services. In contrast to the other UML areas, the use case model elements are
very vaguely defined, allowing us a large degree of freedom. An approach model
is responsible for concretizing this degree of freedom. The SYSMOD approach in
Chapter 2 describes how you find and model use cases for systems.

 Use case diagrams look very simple. These diagrams are communication inter-
faces between system engineers and stakeholders, such as domain experts or
future users of the system. Many stakeholders are normally not from the technical
environment, but they can still be involved in the modeling, thanks to the sim-
plicity of the use cases. This had been one of the goals of Ivar Jacobson when he
invented use cases back then.

 Use cases, actors, and the include relationship will be described below. We will
not be looking at the «extend» relationship though. It is not used in the SYSMOD
approach described in this book. I ’ m following Martin Fowler ’ s recommendation
for the extend relationship: “ Just pretend it doesn ’ t exist ” [17].

 3.5.1 Use Case

FIGURE 3-29

Example for ports.

Class Example ports

«system»
On-board computer

k

bc

comm

Receiver
ServerPort

Sender

:On-board
computer control

:Communication unit

 Defi nition
 A use case describes a coherent and targeted interaction of an actor with a
system, at the beginning of which there is a domain trigger, and at the end of
which there is a defined result of domain value.

169

 A use case describes a service performed by the system for its environment. The
users of this service are actors. A use case is generally triggered by an actor. The
result of a use case is normally significant for the triggering actor (see exceptions
in Section 2.4). I intentionally chose these vague formulations because UML does
not make any specific statement about the trigger and result of a use case. You ’ ll
learn how to handle exceptions in Section 2.4.

 In addition to actors who are users, there can also be actors that a use case
requires in order to perform a service. It is typical especially for embedded sys-
tems to have many actors connected with a use case.

 A use case is denoted as an ellipse. The name of the use case is written inside
or underneath the ellipse. The participating actors are connected with the use
case by a solid line. Several actors being connected with a use case means that all
of them participate in that use case (AND semantics).

 The use case buy soft drink in Figure 3.30 has exactly two actors: a customer
using the control panel to select a soft drink, and the card reader from which a
chip card is read and written for payment.

 The system the use case refers to can be drawn as a box around the use case,
or use cases (Figure 3.30). Having a system boundary is important for use case
modeling since it determines who the actors are and what execution steps the
use case describes.

 The solid line between an actor and a use case is formally an association. It
means that the actor and the system communicate in the context of the use case.

 A use case can also be abstract. It then represents common features with simi-
lar use cases. Similar to an abstract class, the name is written in italics, and it can
be optionally completed by the adjective {abstract} . Concrete use cases are con-
nected with the abstract use case by a generalization. This is the same relationship
as between classes. Reading in the direction of the arrow, the sentence “ use case A
is a kind of use case B ” has to make sense. Otherwise, there is a modeling error.

3.5 The Use Case Diagram

FIGURE 3-30

A use case with actor and system.

uc Soft-drink vending machine

Customer

Card reader

«system»
Soft-drink vending machine

Buy soft drink

170 CHAPTER 3 UML—Unifi ed Modeling Language

Let ’ s test this on the example in Figure 3.31 :

 ■ Delete soft-drink data is a kind of change soft-drink data .
 ■ Modify soft-drink data is a kind of change soft-drink data .

 Bingo!
 A use case describes only that a service is present. The service itself is

described by an activity, for example. The relation between use case and activity
cannot be represented in a diagram. However, the relationship exists in the model.
It is up to the modeling tool you use to visualize the relation.

 You do not necessarily have to represent the concept of use cases in UML. You
can alternatively work with text documents (Table 3.2). The most important things
are the concept and a standardized fi ling of information, and not the notation.

 3.5.2 Actor

uc Generalization

Change soft
drink data
{abstract}

Service system

Delete soft
drink data

Modify soft
drink data

FIGURE 3-31

Use case generalization.

 Defi nition
 An actor is a role that interacts with the system. The role can be assumed by
an individual or by an external system. An actor is outside the system.

 Actors represent users of the system as well as users outside the system which
are, in turn, used by the system.

 The UML notation uses the stick man for an actor. Since not only humans can
be actors, but also other systems, for example, UML allows us to use any other
symbol for an actor. For example, a box is a common symbol for an external sys-
tem that is an actor (see also Section 5.1).

 An actor is connected with the use cases it participates in by an association.
An actor can additionally be connected directly with the system class it interacts
with. We use this property in the system context diagram.

 The solid line is an association. It is the same model element that is used
between classes. This means that we can also state role names and multiplicities.
However, they are generally omitted in the diagram.

171

 Multiplicity has the following meaning here: At the actor ’ s side the multiplicity
describes how many concrete individuals or systems participate in their roles as
actors in the use case. The use case open safe in Figure 3.32 requires exactly two
managers. Each of the two managers can deactivate part of the safe ’ s security sys-
tem to open the safe.

 At the use case side, the multiplicity describes how often the use case can be
executed concurrently by the actors.

 Actors can have only few relationships among them. Since they are outside the
system, which means that they are not within the modeling focus, there is little
need to examine the relations between actors in detail.

Table 3.2 The use case “buy soft drink”.

Description of use case

Name: Buy soft drink.

Trigger: A customer selects a soft drink at a
vending machine.

Result: The vending machine dispensed
the selected drink and booked the
corresponding amount of money.

Actors: Customer, card reader, communication
unit.

Short description: A selected drink is dispensed.
Payment is effected by a chip card
that is read and rewritten by a card
reader. Headquarters may be informed
about the fi lling status of the vending
machine via SMS.

Essence: Select soft drink.

 Pay for soft drink.

 Remove soft drink.

Transmit vending machine status.

uc Multiplicity

Manager

Open safe
2

FIGURE 3-32

Example for multiplicity.

3.5 The Use Case Diagram

172 CHAPTER 3 UML—Unifi ed Modeling Language

 A relationship that is permitted between actors is a generalization (a “ is a kind
of ” relationship). This allows us to describe taxonomic 10 hierarchies between
actors. They can be abstract, just like use cases and classes. In this case, the actor ’ s
name is written in italics. The adjective {abstract} can optionally be denoted
behind the actor ’ s name.

 A generalization is also used to model an OR semantics between actors and a
use case. The use case change soft-drink data in Figure 3.33 has only one actor,
 service system . More specifi cally, this is either the maintenance system or the
 confi guration system .

 An information fl ow is another relationship that is permitted between
actors. You can use an information fl ow to describe the information your actors
exchange.

 Associations between actors are not allowed.
 Actors can alternatively be described in text form, just like use cases (Table 3.3).

This is a textual representation of the model, but it ’ s not standardized in UML.

10 Taxonomy means dividing things into groups.

Table 3.3 Description of actors.

Name: Customer

Type: User

Description: An individual who buys a soft drink at a
vending machine.

Example: Train passenger.

uc Actor generalization

Service system
{abstract}

Maintenance
system

Configuration
system

Change soft
drink data
{abstract}

FIGURE 3-33

Example for an actor generalization.

173

 3.5.3 Include Relationship

3.6 The Activity Diagram

FIGURE 3-34

Example for an include relationship.

End car usage«continuous»
Show car usage data

«secondary»
Determine car

usage data

«include»

uc Secondary use cases car usage

«include»

 Defi nitions
 An include relationship describes that a use case is included in another use
case.

 This relationship is used to enable writing only once flows that occur in more
than one use case. However, a flow occurring several times is hardly ever a fully
fledged use case. In such a use case, the domain trigger, the result, or the actor do
not exist or correspond to the use case definition of our approach. This is the rea-
son why this type of use cases is marked with the stereotype «secondary» . This
is an extension of UML introduced by the SYSMOD profile. UML itself does not
know this differentiation.

 An include relationship is denoted as a dashed arrow with the keyword
 «include» . The arrowhead points to the use case that ’ s being included. For exam-
ple, in Figure 3.34 the secondary use case determine car usage data is included
in the use cases show car usage data and end car usage .

 You use an include relationship to model a scenario that you would execute in
exactly the same way if you weren ’ t describing your use cases in UML, but instead
just in text fi les. You ’ d swap common areas in a separate document, while only
inserting references in the original documents.

 3.6 The Activity Diagram
 An activity diagram is used wherever flows have to be described. From business
process modeling [33] to system use case flows to detailed descriptions of algo-
rithms and operations.

 This diagram represents a model that describes the sequence of elementary
actions. This sequence can be split sequentially or into several fl ows, it can be

174 CHAPTER 3 UML—Unifi ed Modeling Language

concurrent, it can be synchronized, or it branches in various alternatives based on
conditions.

 The UML action model that describes the elementary and executable actions
is integrated in the activity model. This includes, for example, simple actions that
write or read a value, or actions that create or delete objects. All these actions
together allow us to create executable fl ow models, for example, to be able to sim-
ulate the system in the model and test it at an early stage (catchword: executable
specifi cation). However, current modeling tools concentrate on state machines
with regard to the execution of models.

 3.6.1 Activity

FIGURE 3-35

Notation of an activity with and without diagram frame.

Action

Name of activity «precondition» condition

«precondition» condition

act Name of activity

Action

«precondition» condition

«precondition» condition

11 Object Constraint Language [52].

 Defi nition
 An activity describes flows consisting of several elementary actions. A flow can be
parallel or synchronized, or it can be forked and joined on the basis of conditions.

 Similar to a state machine or an interaction, an activity is a complete behavior ele-
ment. In contrast to other UML behavior elements, however, an activity has its own
notation: a rectangle with rounded corners. Its name is in the upper left corner, and
the upper right corner can be used to optionally write preconditions or postcondi-
tions. The remaining area is used to describe the flow, including nodes and edges. The
activity rectangle is omitted in combination with the diagram frame (Figure 3.35).

 A precondition begins with the keyword «precondition» and is written in
the upper right corner of the activity (Figure 3.35). The condition itself can be an
arbitrary Boolean expression (e.g., in OCL 11) in a programming language, or in a
natural language. The activity starts only provided that the precondition is met.

175

 A postcondition is preceded with the keyword «postcondition» (Figure 3.35).
It is always deemed to have been met upon termination of the activity.

 Input parameters are used so that the caller of the activity can initially transmit
data. Output parameters are used so that the activity can return data outwards to
the caller upon termination. These parameters are denoted as rectangles (with-
out rounded corners) on the edge of the activity rectangle, and the name of the
parameter is inside. This is normally the name of the parameter type (Figure 3.36).
However, it is also possible to assign a name, regardless of the type. The syntax has
the pattern � name � : � Type � .

 One particularity is the possibility of a stream property for input and out-
put parameters. If it is activated, then the activity can accept or supply new data
through the parameters in running operation. Compared to an assembly line, this
means that you can continually put new work pieces on the assembly line and
have them transported in a machine (� activity). In the end, the fi nished elements
come out of the running assembly line. Without fl ow property—the standard
behavior of activity parameters—you would put a work piece on the assembly
line, the machine (� activity) would switch on and produce a result, and switch
off again. Subsequently, you could put the next work piece on the assembly line,
and so on.

 A stream property is denoted with the word {stream} on the parameter
(Figure 3.37).

 Playing marbles: The fl ow of an activity is determined by the so-called token
fl ow . A token can be thought of as a marble that rolls along the edges through the
activity. If it encounters an action, then this action can be activated.

 “ Playing marbles ” begins as soon as the activity is invoked. One marble is placed
on every initial node and every input parameter of the activity. More specifi cally, a
control token each is put on the initial nodes and an object token each is put on the
input parameters. An object token is a marble, which additionally describes that the
specifi ed object is present at the respective position within the fl ow. It can then be
consumed, for example, by an action as an input object over a pin.

 Two conditions have to be met in order for the marble to roll over an edge:

 1. The edge has to be ready to transport the marble. For example, this can be
infl uenced by a condition denoted at the edge.

3.6 The Activity Diagram

FIGURE 3-36

Notation for activity parameters.

act Check usage right

Usage rightMake usage
request

Customer

Customer

... Usage right

176 CHAPTER 3 UML—Unifi ed Modeling Language

 2. The destination has to be ready to accept the marble. An action is only ready
if marbles are available at all incoming edges of the action (AND semantics).
In Figure 3.38 , there is one marble ready on the left side after action 1. It
cannot start rolling, because the target node, action 3, is not ready yet. For
this to happen, action 2 also has to make a marble available. On the right-
hand side, there are marbles available at both incoming edges, and action 3
can be started.

 The AND semantics can easily lead to misunderstandings in practice. In other
fl ow notations (e.g., activity diagrams in UML 1) the OR semantics holds when there
are several incoming edges.

FIGURE 3-37

Example for the fl ow property of an activity parameter.

act Mail parcel (section)

Parcel Put stamp on
parcel

Parcel Parcel

...

{stream} {stream}

Parcel

FIGURE 3-38

Token fl ow rule AND semantics.

act AND semantics act AND semantics

Action 1 Action 2

Action 3

Action 1 Action 2

Action 3

Action 3 is not started Action 3 is started

177

 3.6.2 Action and PIN

3.6 The Activity Diagram

FIGURE 3-39

Example for input and output pins.

act Start car usage (section)

Car

Identify
customer

Check usage right

Usage right

Customer

 Defi nitions
 An action is an elementary executable step in an activity.

 A pin is the connecting link between the parameters of an action and the
object fl ow. We distinguish between input pin and output pin.

 An action is elementary and executable. UML already defines all actions, so that
they are independent of a special domain. Modeling tools can implement these
actions and make them available in a runtime environment.

 The notation for an action is a rectangle with rounded corners. It ’ s like the
notation for an activity, except that an action is not further decomposed. Several
predefi ned actions deviate from this standard notation, for example, the action for
sending a signal (see status display in Figure 3.42).

 Actions consume data and can supply new data as a result. The data are trans-
ported from and to actions by object tokens. Pins function like buckets for object
tokens and bind them to the parameters of an action.

 The notation for pins refl ects their name. It is a small rectangle that is pinned
to the action from the outside. Depending on whether a pin is connected with
incoming or outgoing edges, we distinguish between input pin and output pin
(Figure 3.39).

 Next to the pin is the name of the object that the pin can accept. This is nor-
mally the name of the object type. You can optionally add the state the object
should be in within square brackets next to that name (Figure 3.40).

 You can alternatively denote the input pin and the output pin between two
actions as one single rectangle if they have the same object. This allows you to

178 CHAPTER 3 UML—Unifi ed Modeling Language

visually separate the object fl ow stronger from the control fl ow (Customer in
 Figure 3.39).

 Unless otherwise specifi ed, a pin can accept an unlimited number of tokens.
You can limit the number to n tokens by stating {upperbound� � n � } next to the
pin (Figure 3.40).

 Similar to activity parameters, pins can also have the stream property. This
means that new data can be accepted over input pins, or previously created data
can be passed on over output pins while the action is still active. Pins with this
property are denoted with the keyword {stream} (Figure 3.41).

 So-called control pins play a special role. A control pin is not a model element
in itself, but a property of a pin (isControlType). An input pin with this property
accepts object tokens, but it doesn ’ t pass the object (i.e., the data) to the action.
In this case, the object token has the same effect as a control token, except that
control tokens cannot be buffered. SysML utilizes this property for the control
operator and the control value.

 Pins with this property are often not represented in the diagram. If they are,
then they are denoted with {control} next to the pin name.

 There are approximately 40 predefi ned actions in UML. This set includes
actions that read and write values, actions that compare, create, and destroy
objects, and actions that invoke a behavior or an operation. Each action is defi ned
such that a modeling tool can make a runtime environment available. Describing

FIGURE 3-40

Example for limiting the pin buffer.

act Produce six-pack (section)

Fill
bottle

Bottle
[filled]

Bundle
six-pack

Bottle
{upperbound�6}

Six-pack

Six-pack

FIGURE 3-41

Example for the stream property of a pin.

act Mail parcel (section)

Put stamp on
parcel{stream}

Parcel

...

{stream} {stream}

{stream}
Parcel

Parcel Parcel

1793.6 The Activity Diagram

each of these actions here would go beyond the scope and volume of this book.
You fi nd an extensive description of all these actions in [60].

 I limit my discussion of these actions here to the so-called CallBehaviorAction ,
the OpaqueAction , and the actions used to send and receive signals (SendSignal
Action and AcceptEventAction). They show the concept and explain why actions like
 identify customer are possible in use case fl ows, and what ’ s formally behind it.

 As its name suggests, the CallBehaviorAction invokes a behavior. This can be a
state machine or an activity, for example. If there are input pins at the action, then
they are mapped on input parameters of the behavior. Similarly, the output pins
correspond to the output parameters. If the invoked behavior is an activity, then
a fork symbol is denoted in the lower right corner of the action rectangle to sym-
bolize the call hierarchy of activities (Figure 3.42).

 OpaqueAction integrates an implementation in an arbitrary language in the
model. This can be something executable (e.g., something written in a program-
ming language) or a natural-language text that explains the implementation. The
purpose of OpaqueAction is to formally embed such user-specifi c instructions in
the entire model. For example, the step check emergency driving in Figure 3.42 is
an OpaqueAction . You can ’ t see this in the notation, but this information is stored
in the model.

 We even used the SendSignalAction twice in Figure 3.42 —both times for send-
ing the signal status display . The notation of this action differs of those of the
other actions. It ’ s a kind of arrow symbolizing that something is being sent. You
cannot represent the receiver of the signal in the diagram, though this informa-
tion is present in the model. Here the receiver is the card reader that switches its
light-emitting diodes as a result of the signal (Section 2.4.5).

 There is also an action to receive a signal—an AcceptEventAction —modeled in
 Figure 3.42 . Here we receive the signal timeout reservation system . It is a timing
signal, shown by a symbolized hourglass. The left-hand receive symbol from Figure
3.43 is used for all other signal variants.

 The AcceptEventAction in Figure 3.42 is not within a fl ow, like SendSignal
Actions , which is also permitted. In this case, it plays the special role of receiving
a signal to terminate the interruptible activity region.

 The action concept is not only known in UML. There are a number of textual
languages that map elementary actions and support a runtime environment. The
 Action Specifi cation Language (ASL) was developed in the early 1990s. Later ver-
sions of the language consider the action model of UML 1.5. Development tools
for ASL are available from Kennedy Carter .

 The Object Action Language (OAL) is used as a language for the action model
of UML 1.5 in the BridgePoint development tool by Accelerated Technology .

 3.6.3 Parameter Set

 Defi nition
 A parameter set is a complete set of input parameters or output parameters of
a behavior exclusively selected instead of other parameter sets of that behavior.

180 CHAPTER 3 UML—Unifi ed Modeling Language

FIGURE 3-42

Check usage right.

181

 A parameter set is always used in combination with other parameter sets that
mutually exclude each other. They each contain all input or output parameters
a behavior requires. This allows you to model behavior that requires alternative
inputs or produces alternative outputs. Two parameter sets may have common
parameters, but they must not be fully identical.

 The pins that belong to a parameter set are enclosed by an additional rect-
angle (Figure 3.44).

act Receive signal notation

Signal

Time signal

FIGURE 3-43

Notation for AcceptEventAction.

3.6 The Activity Diagram

FIGURE 3-44

Example for parameter sets.

act Buy soft drink (section)

Pay soft drink

[Cannot read card]

[Insufficient amount
on card]

[o.k.]

Money cardMoneyChange:Money

182 CHAPTER 3 UML—Unifi ed Modeling Language

 3.6.4 Activity Edge

 Defi nitions
 An activity edge is a directed relationship between two nodes of an activity.
We distinguish between object flow and control flow.

 An object fl ow can only transport object tokens, while a control fl ow can
only transport control tokens.

 Edges are the transport paths for tokens in the activity. In the model we distinguish
between object flow and control flow. In the diagram the notation is the same for
both types. The difference can be seen only in the context, for example, whether
the target of an edge is a pin (object flow) or directly an action (control flow).

 The notation is an arrow with solid line. SysML introduces a notation variant,
where object fl ows have a solid line and control fl ows have a dashed line. Various
information that infl uence the token transport can be added to the edge, includ-
ing the following.

 ■ A Boolean condition that allows the transport only if it is true. The condition
is denoted within square brackets at the edge.

 ■ A weight that specifi es how many tokens are transported concurrently over
the edge as a minimum. The default (when nothing else is stated) is 1. This
weight information is written in the text form {weight� � n � } , where n is a
natural number, or * is used for an unlimited number (Figure 3.45). An arbi-
trary number means that all tokens that come along will be transported.

 ■ A transformation transforms an object into another value. For example,
this can be a single attribute value of the object. The transformation can
be denoted in any language. It is written within a comment symbol that is
connected with the edge. The keyword «transformation» precedes the
condition. The transformation in Figure 3.45 describes how to get from the
customer object to the PIN check code object. The point indicates that pin-
CheckCode is an attribute of customer .

 It often happens in activity diagrams that there are very long edges, or edges
that run across other elements. The result can be quite messy. To solve the prob-
lem, you can conduct such edges through a “ tunnel. ” Both the entry and the exit
of the tunnel are denoted with a small circle that has a unique identifi er in pairs
(Figure 3.47). The UML specifi cation calls this notation variant “ connector, ” not to
be confused with the connector used in composite structure diagrams.

 3.6.5 Initial and Final Nodes

 Defi nitions
 An initial node is the starting point for a control flow that is started as the
activity is invoked.

183

 A control token is placed on each initial node, thus starting a flow, as soon as an
activity is invoked. An activity can have from none to any number of initial nodes.
If there are more than one initial nodes, then there are concurrent flows right at
the start of the activity (Figure 3.46). An initial node is denoted as a black filled
circle (Figure 3.46).

 An activity fi nal node terminates the entire activity as soon as a token hits the
node, regardless of how many other tokens (i.e., fl ows) are still underway in that
activity (Figure 3.47). The notation for an activity fi nal node is a black fi lled circle
with an open outer circle. It probably reminds you of a bull ’ s eye from the game

3.6 The Activity Diagram

FIGURE 3-45

Example for weight and transformation.

act Transformation example (section)

Identify customer

Check disposal right

Customer

PIN check code

«transformation»
Customer.pinCheckCode

act Weight example (section)

Fill bottle

Bottle

Bundle
six-pack

Bottle
{upperbound�6}

{weight�6}

Six-pack

 An activity fi nal node terminates the entire activity as soon as a single fl ow
arrives at the node.

 A fl ow fi nal node terminates the fl ow in an activity that arrives at this node.

184 CHAPTER 3 UML—Unifi ed Modeling Language

FIGURE 3-46

Example with two initial nodes.

act Make coffee

Boil
water

Grind
beans

Brew
coffee

FIGURE 3-47

Example for activity fi nal nodes.

act Playing Bingo

Check
numbers

Player A Player B Player C

Won

[Bingo]

[else]

Accept
numbers

Check
numbers

Won

[Bingo]

[else]

Accept
numbers

Check
numbers

Won

[Bingo]

[else]

Accept
numbers

T1 T2 T3

T1 T2 T3

185

of darts. 12 It ’ s the target you want to hit. In Figure 3.47 , you can see an activity
that contains three tokens after it had been invoked. The entire activity is termi-
nated as soon as an activity fi nal node is reached.

 In contrast to activity fi nal nodes, a fl ow fi nal node swallows the token that
hits it, while all other tokens in the activity continue rolling. This means that only
this one fl ow is terminated. If it is the only or fi nal fl ow in the activity, then the
entire activity is terminated by the motto “ the last one turns the light off. ”

 The notation for a fl ow fi nal node is a circle with a cross, similar to the lamp
symbol used in electrical engineering (Figure 3.48). Note that there is no causal
connection.

 3.6.6 Decision and Merge Nodes

3.6 The Activity Diagram

FIGURE 3-48

Example for fl ow fi nal nodes.

act Booking a trip

Plan
trip

Book
hotel

Book
flight

12 In the game of darts you normally try to hit exactly the center of the dart board—the bull’s eye.

 Defi nitions
 A decision node is a node in an activity at which the flow branches into sev-
eral optional flows. There is exactly one incoming edge and an arbitrary num-
ber of outgoing edges, which each have a condition.

 A merge node is a node in an activity at which several fl ows are merged into
one single fl ow. There is an arbitrary number of incoming edges and exactly
one outgoing edge.

 A flow within an activity is generally controlled by conditions. If XY is true, then
do A , otherwise do B . What we need for this is a decision node. The notation is a

186 CHAPTER 3 UML—Unifi ed Modeling Language

rhombus with one incoming edge and an arbitrary number of outgoing edges, at
which there is a condition each within brackets (Figure 3.49).

 A condition is a Boolean expression in any language. 13 Never more than one
condition may be true. Also, exactly one condition must always be met. We can
use the [else] condition to ensure this. This way is always chosen when all other
conditions are false (Figure 3.49).

 The notation for merge nodes is the same as that for decision nodes. A merge
node is the counterpart that merges several optional fl ows into one single fl ow.
As fl ows are merged, no conditions are tested, and there is no waiting for special
events (Figure 3.50).

 3.6.7 Fork and Join Nodes

13 The runtime environment of the model must be capable of evaluating the expression. The run-
time environment can also be a human.

FIGURE 3-49

Example for decision nodes.

act Buy soft drink (section)

Pay soft drink

[cannot read card]

[insufficient amount on card][o.k.]

[else]

Payment by chip
card only

 Defi nitions
 A fork node is a node in an activity that splits a flow into several concurrent flows.
There is exactly one incoming edge and an arbitrary number of outgoing edges.

 A join node is a node in an activity that synchronizes several concurrent fl ows
and joins them into one single fl ow. There is an arbitrary number of incoming
edges and exactly one outgoing edge.

 In contrast to a decision node that enables several optional flows, a fork node
creates several concurrent flows. To make this happen, the token that arrives at
the fork node over the incoming edge is copied several times, so that there is one
token available for each outgoing edge. A fork node is denoted as a black bar.

187

 A token waits at the fork node bar when the target is not ready to accept it.
This can cause a situation, for example, where, at two outgoing edges, one fl ow
already starts while the other fl ow is still waiting. The waiting token is subject to
the FIFO 14 principle if more tokens arrive at the fork node. In Figure 3.51 , action A
is not ready if no token is present at the edge coming from the far right. The token
has to wait at the fork node bar. Action B is ready and can be started. This action ’ s

14 First In, First Out.

3.6 The Activity Diagram

FIGURE 3-51

Example for fork nodes.

act Fork node (section)

A B

FIGURE 3-50

Example for merge nodes.

act Check usage right (section)

Request usage right

[Usage right o.k.]

[usage not authorized]

Check emergency
driving

188 CHAPTER 3 UML—Unifi ed Modeling Language

token doesn ’ t have to wait. The fork node bar is the only control node in the activ-
ity model where tokens can wait.

 A join node joins concurrent fl ows to form one single fl ow. Similarly to fork
nodes, join nodes are denoted as black bars. The effect is a synchronization (i.e.,
the joined fl ow won ’ t start before all incoming fl ows have arrived). This is subject
to the following rules:

 1. If control tokens arrive at all incoming edges, then all tokens except one
are deleted. The remaining token is made available at the outgoing edge.

 2. All control tokens are deleted if both object tokens and control tokens
arrive.

 3. If several object tokens arrive, then all of them are made available at the
outgoing edge, because a join node does not delete any data from the
fl ow. An exception occurs when several object tokens refer to an identical
object. In this case, only one object token is forwarded.

 Figure 3.52 shows a simple example. The object token trip from the action
 plan trip is duplicated at the fork node. The concurrent actions add a booked

FIGURE 3-52

Example for fork and join nodes.

act Booking a trip

plan
trip

Trip

Book
hotel

Trip

Trip
[with hotel]

Trip
[with flight]

Book
flight

Trip

Confirm
trip

Trip

189

hotel and a fl ight to the trip. Two object tokens trip that refer to the identical
object arrive at the join node. Only one object token is forwarded according to
the synchronization rule. Finally the trip is confi rmed. Note that, in this example,
two different fl ows access the same resource concurrently, which can potentially
lead to confl icts. However, this is not considered in the activity.

 3.6.8 Interruptible Activity Region

3.6 The Activity Diagram

FIGURE 3-53

Example for interruptible activity regions.

act Interruptible activity region (section)

Select
soft drink

Pay
soft drink

Time interruption

User
termination

 Defi nition
 An interruptible activity region characterizes a region within an activity,
which can be terminated by a token flow at special interruption edges.

 Many system flows can be terminated. Either a user pushes a stop button, or a
time interruption occurs when a defined time window is exceeded, or another
condition occurs. An interruptible activity region supports exactly this flow
behavior.

 Interruptible actions are denoted as dashed rectangles with rounded corners.
Special interruption edges that lead out of this region are denoted by a lightning
symbol. An alternative notation is a normal edge to which a small lightning arrow
is attached (Figure 3.53).

 The interruption edges interrupt every fl ow within the marked region as soon
as a token rolls over them. An interruptible activity region is often used in connec-
tion with events that trigger the interruption.

190 CHAPTER 3 UML—Unifi ed Modeling Language

 3.6.9 Expansion Region

FIGURE 3-54

Example for an extension region.

act Assign positions (section)

Register
container ship

Cargo

Assign
position

Container

Container
[with position]

Cargo

Cargo
[with positions]

iterative

 Defi nition
 An expansion region is a node in an activity that accepts a set of objects,
then processes each object individually and finally returns the set with the pro-
cessed objects.

 UML offers the expansion region node to allow us to individually process the single
objects of a set. An expansion region is denoted as a dashed rectangle with rounded
corners. There are four small squares one next to each other on the rectangle ’ s bor-
der for input and output sets. The number “ four ” has no particular significance. It
merely symbolizes that a set is accepted and returned at these points (Figure 3.54).

 Inside the rectangle there are actions that form a fl ow for processing of set
objects. Starting from the incoming group of four pins runs an object fl ow edge to
one of the inner actions with an input pin, which can take an object from the set.
Vice-versa, the last action of the fl ow has an output pin, which carries the processed
object over an object fl ow edge to place it in the outgoing group of four pins.

 The object Cargo in Figure 3.54 is a set of containers that are assigned to a
position as the set is being processed. The type of set processing is described in
the upper left corner of the dashed rectangle. There are three options:

 1. Iterative —The objects of the set are processed one after the other in con-
secutive steps. An object gets into the fl ow when the previous object has
been fully completed.

191

 2. Parallel —The objects of the set are all processed in parallel. This means
that there is no defi ned sequence. They don ’ t necessarily have to be pro-
cessed concurrently.

 3. Streaming —The objects of a set are all fed to the processing as one fl ow.
Similar to an assembly line, no object has to wait for processing of the pre-
vious object to be complete to place a new object on the assembly line.

 3.6.10 Activity Partition

3.6 The Activity Diagram

FIGURE 3-55

Example for an activity partition.

act Withdraw cash at ATM (section)

«subsystem»
Card reader

«subsystem»
ATMControl

«subsystem»
Input/Output

Read
customer card

Identify
customer

Display
amount menu

Select
amount

Check
availability

 Defi nition
 An activity partition divides the nodes and edges of an activity into partitions
based on defined common features.

 It is common to assign the actions of an activity directly to structures of the sys-
tem that realize these actions. This can be expressed by an activity partition in the
activity diagram. Each partition stands for a structure (e.g., a class) and contains
the corresponding actions. Moreover, a control node, such as a decision node or
a fork node, as well as edges can be assigned to a partition. However, the focus is
clearly on actions. Grouping criteria other than structures are possible as well.

 Still common is the UML 1 name for this model element: swimlane .
 One single partition is denoted by drawing a frame around the activity region

(Figure 3.55). The name of the partition goes in a separate area. It describes the
grouping criterion. If the grouping criterion is a model element, then the type of
element can be denoted within Guillemets 15 above the name.

15 French quotation marks, also called “angle quotes.”

192 CHAPTER 3 UML—Unifi ed Modeling Language

 3.7 The State Machine Diagram
 A system is always in a state that abstracts a combination of values given in the
system. Events arriving at the system lead to reactions—depending on the state—
that change values and results in new states.

 A state machine diagram describes this behavior. It contains state machines
with states and state transitions that are triggered by events. The semantics of the
state model is defi ned in such great detail in the UML specifi cation that it can also
be executed. Several modeling tools offer this possibility. These tools include, for
example, Rhapsody by Telelogic and ARTiSAN Studio by ARTiSAN Software Tools.

 Executability has the benefi t that the model can be verifi ed in an early stage
(catchword: executable specifi cation). In software development, an executable
state machine can also be seen as an implementation, and it can be transferred to
the software by source-code generation.

 The UML state machines are based on the work of David Harel [22] who, among
other things, combined the theory of the general Mealy and Moore machines to cre-
ate a model that lets you describe complex system behavior.

 3.7.1 State Machine

 Defi nition
 A state machine describes the states and state transitions of a structure.

 A state machine describes behavior of a structure that is generally a class. With
regard to the concrete execution, we often speak of a context object.

 A state machine has no notation of its own. It is represented by the entire
state machine diagram. This means that the diagram frame forms the border of the
state machine. It is not possible to show a graphical connection between the state
machine and the pertaining class in the diagram (Figure 3.56). However, the rela-
tionship is explicitly present in the model.

 A state machine forms a semantic capsule around states, transitions, and pseu-
dostates. This normally includes the execution rules. A state machine has a queue
for events that are consumed by states and transitions in the sequence in which
they occur. This means that they lead to state transitions, or to internal actions in
a state.

 State machines are subject to the so-called run-to-completion semantics,
which says that the next event will be consumed only provided that all actions of
the previous event have been completed. One exception is the state behavior that
does not have to be completed before the next event can be processed. An event
that cannot be consumed, for example, because there is no matching transition, is
discarded.

 The state machine in Figure 3.56 can consume the two time events at() and
the event terminate . The latter event activates the transition that leads to the fi nal
state, so that the state machine terminates since no other region is active.

193

 3.7.2 State

16 Note that the state machine works meaningfully only provided that the world is created at
daytime.

3.7 The State Machine Diagram

FIGURE 3-56

A state machine, Day of Time, with pertaining structure.

stm
Time of day

class Time of Day

Day Night

at(sunset)/goToSleep()

at(sunrise)/getUp()

Terminate

hour:Integer
minute:Integer
second:Integer

Time of day

 Defi nition
 A state represents a set of value combinations for the underlying element.
It has a name, and may have an internal behavior that is executed based on
defined events.

 A state represents a set of value combinations, for example, values for the
attributes of a class. In Figure 3.56 , you can see a class, Time of Day , in a class
diagram and a corresponding simple state machine diagram. The state Day stands
for all value combinations of the attributes hour , minute , and second , between
the two events, sunrise and sunset. 16 This example shows clearly that a state is
an abstraction of possible value combinations. Not every value combination is a
meaningful state, for example, the state “ 13:17:31 ” (HH:MM:SS), which is not mod-
eled here. What is meaningful and what isn ’ t eventually depends on the domain
we model, of course.

 States are represented by rounded rectangles (Figure 3.57). The name of the
state is within the rectangle. Another compartment shows the internal behavior,
which is triggered by events, similar to transitions, but which does not cause the
state to be exited.

194 CHAPTER 3 UML—Unifi ed Modeling Language

 In addition to the internal behavior, a state can also have three special behav-
iors that are triggered on the basis of predefi ned events:

 ■ The entry behavior is executed immediately upon entering the state.
 ■ The exit behavior is executed immediately before exiting the state.
 ■ The do behavior is executed while the state is active.

 In Figure 3.58 , you can see internal behavior in the state machine of a railroad
crossing. This example utilizes the fact that the state behavior is interruptible. For
example, the barriers are closed in the state block . The state behavior close() is
interrupted by the event endPosition(down) . The entry behavior and the exit
behavior are not interruptible.

 An important UML extension versus the classic Finite State Machine (FSM)
is the possibility to decompose states into smaller units. This allows us to fi rst
describe states on a general level and then further detailing them.

 Figure 3.59 shows the state Day after further detailing. It is a so-called com-
posite state, containing a region with states and transitions. We can recognize this
by the “ spectacles ” symbol in the lower right corner of the state in the upper dia-
gram. The detailing itself is not shown here; it is shown in the bottom diagram.

stm Notation for state

State
event [condition]/behavior

State

State

FIGURE 3-57

Notation for state.

FIGURE 3-58

Example for state behavior.

stm Railroad crossing

closed

open

do/open()
exit/blink(off)

release

do/close()
entry/blink(on)

block

endPosition(down)train(leaves)

endPosition(up) train(arrives)

195

 A system can also have several states concurrently. When looking out of
the window now I fi nd not only that it is afternoon, but also that it is a warm
afternoon. To map this on a state machine, we need a so-called orthogonal state.
An orthogonal state is divided into an arbitrary number of independent regions,
which are each separated from the others by a dashed line. In Figure 3.60 , the
state Day (with the substate afternoon) and the state warm can now be active at
the same time.

 3.7.3 Transition

3.7 The State Machine Diagram

FIGURE 3-59

Example for a state detailing.

stm Time of day

stm Day

Day

afternoon

morning

noon

Day Night

at(sunset)/goToSleep()

at(sunrise)/getUp()

Terminate

 Defi nition
 A transition specifies a state transition. It is a directed relationship between
two states, and defines a trigger and a condition that both lead to the state tran-
sition, as well as a behavior that is executed during the transition.

 Together with the states, transitions form the core elements of a state machine.
They describe a transition between two states, regardless of one or more triggers
and a condition. Triggers and a condition can be stated optionally. A transition
without trigger is activated as soon as the source state has completed internal
actions, if any, or as soon as the internal final state of a composite state has been

196 CHAPTER 3 UML—Unifi ed Modeling Language

reached. If a condition is defined at the transition, then this condition must be met
in order for the transition to be activated.

 In Figure 3.60 , the transition from the orthogonal state Climate to the fi nal
state has no trigger. It is activated automatically as soon as the source state has
terminated. In this example, this happens as soon as the fi nal states in both
regions of the state Climate have been reached.

 A transition is denoted as an arrow with solid line and a description in the
following syntax:

 trigger1, trigger2, ... [condition] / behavior

 Triggers can alternatively be denoted using a special symbol, which corre-
sponds to the symbol for receive signals from activity diagrams (Figure 3.61).

 The condition is a Boolean expression that can be stated in any language.
For example, you could use a formal language, such as OCL, or a programming
language, or a natural language such as English or German. Which one you use
depends on the runtime environment that will execute the state machine: man or
machine. There is no symbol for conditions. It can be denoted only in text form
near the transition.

 The fl ow within a region is often infl uenced by the state that is active in another
region, particularly with orthogonal states. States can be polled by the OCL expres-
sion oclInState(<state>) , which can be used as a condition. For example,
you could add a state poll, warmFront[oclInState(Day)] , to the transition
from the state cold to the state warm in Figure 3.60 .

 The details of the behavior syntax depend on action language of the
model. Rather than in text form, actions can be denoted in rectangles on the
transition arrow. One of the frequent actions for sending signals is denoted
inside the symbol that is also used for send signal actions in the activity diagram
(Figure 3.61).

FIGURE 3-60

Example for an orthogonal state.

stm Weather

Climate

Night
Sunset

Sunrise

terminate
Day

warm cold
coldFront

warmFront

terminate

197

 3.7.4 Trigger and Event

3.7 The State Machine Diagram

FIGURE 3-61

Example for a transition with behavior.

stm Time of day

Day

Night

terminate

sleep() at(sunset)

getUp()alarmClock on

at(sunset) alarmClock off

 Defi nitions
 A trigger references exactly one event and establishes a relationship to a
behavior.

 An event specifi es some occurrence that can be measured with regard to loca-
tion and time.

 A trigger is the connecting link between event and behavior in the model. Denoted
at a transition means that the transition is activated as soon as the event occurs.

 UML knows four types of events that can trigger a transition (Figure 3.62):

 1. A call event occurs when an operation is invoked.
 2. A change event occurs when a Boolean expression tests to true. This is the

case when a value has changed accordingly in the system.
 3. A signal event occurs when a signal has been received.

198 CHAPTER 3 UML—Unifi ed Modeling Language

 4. A time event is further distinguished. A relative time event occurs when the
state from which the corresponding transition originates has been active
over a certain period of time (keyword after(<time>)). An absolute time
event occurs when the defi ned absolute time occurs (keyword at(<time>)).

 3.7.5 Initial and Final States

FIGURE 3-62

Examples for the types of events.

stm Example absolute time event (Time of day)

Day Night
at(sunset)/sleep()

stm Example relative time event (traffic light)

green red
after(2 minutes)

stm Example signal event (railroad crossing)

open block
Train(arrives)

stm Example change event (coffee percolator)

heat brew
[temp � MAX]

stm Example call event

off on
switchOn()

 Defi nition s
 An initial state is a pseudostate with one outgoing transition that points to
the initial state.

 A fi nal state is a state that describes the end of a composite state or a state
machine.

 A state machine or a composite state has a beginning and generally one or sev-
eral defined ends. The beginning is shown by the initial state. It is a pseudostate
(i.e., its only purpose is to control the state machine) and it does not describe a

199

real state of the context object. The transition that originates from the initial state
points to the “ real ” initial state. This transition is mandatory, and there can always
be one only. No event or condition is permitted at this transition. However, the
transition may define a behavior.

 In contrast to the initial state, a fi nal state is a real state (i.e., the context object
can be present in this state). There are value combinations that describe the fi nal
state. In contrast to the “ normal ” states, a fi nal state does not have any outgoing
transitions of course, and it has no internal behavior and cannot be described in
more detail by decomposition. If no other regions of the enclosing state machine
are active, then the fi nal state completes the state machine.

 An initial state or a fi nal state is denoted similar to an initial or fi nal node of an
activity (Figure 3.63).

 3.7.6 Pseudostate

3.7 The State Machine Diagram

FIGURE 3-63

Notation for initial and fi nal states.

stm Notation

Final state

Initial state

 Defi nition
 A pseudostate is a control element that influences the sequence of events in
a state machine. It is not a real state, and a pseudostate does not represent a
value combination either.

 UML knows 10 different pseudostates. Each of them describes a special property
that controls state transitions. For example, the initial state discussed in Section
3.7.5 is a pseudostate. It is responsible for marking the initial state of a state
machine.

 I ’ ll briefl y describe the other nine states below:

 ■ Shallow history
 ■ Deep history
 ■ Join
 ■ Fork
 ■ Junction
 ■ Choice
 ■ Exit point
 ■ Entry point
 ■ Terminate

200 CHAPTER 3 UML—Unifi ed Modeling Language

 There are two types of history state: shallow history and deep history . To bet-
ter understand history states, let ’ s fi rst look at the state machine of a hairdryer
(Figure 3.64) 17 . Don ’ t pay attention to the circle symbol with the letter “ H ” for
now. As soon as the hairdryer is switched on, it jumps into the initial state con-
fi guration, cold and low . Unless you are particularly concerned about damaging
your hair, you will probably switch the hairdryer from low to high and from cold
to hot . The state hot lets you additionally select either normal or extreme . When
you switch it off, the hairdryer changes to off state.

 The next time you use the hairdryer it will come on in the default state con-
fi guration— low and cold . So again, you have to go through the hassle of reset-
ting it to high and hot . After the third, fourth, or fi fth time you do this, you might
come to think that this hairdryer is not fi t for everyday use. This situation can be
improved, at least in the model, by using history states.

 We ’ ll now have a closer look at the circle symbol with the “ H. ” This is the
notation for shallow history. Shallow history causes the substate of the pertain-
ing region that was last active to be saved. When you now switch the hairdryer
on a second time, when traversing the shallow history, the device will read the
state that was last active and activate it directly. This means that the hairdryer will
immediately jump into the low and hot / normal confi guration after the second
time you use it.

 As the name implies, deep history has a “ deeper ” effect than shallow history.
Using shallow history, when you switch it on again, the device sets itself to the
state hot, as described above. Within this state, the substate normal is activated
since the initial state points to it. However, when using deep history, the device

FIGURE 3- 64

A state machine, Hairdryer.

stm Great Hairdryer

on

hot

off
switchOn()

switchOff()

low

high

cold

warm

H

normal

extreme k
w
h

w

s1

s2

17 Ever noticed the wide range of different, sometimes weird hairdryer systems in hotels?

201

also restores the substates in the confi guration that was active last. More specifi -
cally, when you switch it on again, the hairdryer jumps into the state confi guration
 low and hot / extreme . The notation for deep history is the same as for shallow his-
tory, with an additional asterisk (*) behind the “ H. ”

 A junction connects transitions and merges them to form a path. It is possible
to merge several incoming transitions, or to put several outgoing transitions into
a junction. A junction has no additional semantics. Its notation is a black circle
(Figure 3.65). In contrast to an initial state, which always has the same notation,
a junction has always at least one incoming transition. The merging of transitions
is comparable to the merge node in activity diagrams, except that the symbol is
different.

 A choice has several outgoing transitions that each have a condition. In con-
trast to junctions, the conditions of a choice can be evaluated on the basis of val-
ues that are determined only at the time of the state transition (Figure 3.65). It is
therefore also referred to as a dynamic choice . A choice is not used for merging
of transitions. The notation for choices is identical to the one for a decision in an
activity diagram—a rhombus.

3.7 The State Machine Diagram

FIGURE 3-65

A state machine with choice and junction.

202 CHAPTER 3 UML—Unifi ed Modeling Language

 A terminate state causes the state machine to exit without the context object
taking on a new value confi guration. Otherwise, it wouldn ’ t be a termination, but
a real new state—the fi nal state. A terminate state is denoted as a cross without
enclosing circle or rectangle (Figure 3.66).

 Fork and join are similar to the elements of the same names from the activity
diagram. A fork has one incoming transition and several outgoing transitions that
lead to different states, positioned orthogonally to one another. This means that all
target states are activated. The outgoing transitions may have neither conditions
nor triggers (Figure 3.67).

FIGURE 3-66

A state machine with termination.

stm Time of day

Day Night

at(sunset)/sleep()

at(sunrise)/getUp()

terminate

FIGURE 3.67

Example for fork and join.

stm Weather

Climate

Night

at(sunset)

at(sunrise)

terminate
Day

warm cold

coldFront

warmFront

terminate

rainy dry

Sun

Clouds
terminate

203

 In contrast, a join has several incoming transitions, which originate from states
that are positioned orthogonally to one another, and one outgoing transition
(Figure 3.67).

 Both elements are denoted as fi lled bars. They differ in the context of incom-
ing and outgoing transitions.

 An entry point describes a special entry into a state machine. A transition leads
from the entry point to a state of the state machine, or to one state each of every
region in case of an orthogonal state.

 An exit point terminates a state machine. If a transition from any region in the
state machine reaches an exit point, then the state machine is terminated, and the
transition originating from the exit point is activated.

 An entry point is denoted as a white circle, and the exit point as a circle with a
cross. Viewed from the outside the circle appears on the border of the correspond-
ing state. In the inner view, transitions terminate or start at the circle (Figure 3.68).

 3.8 Interaction Diagrams
 In UML “ interaction diagram ” is a generic term for sequence diagram, communica-
tion diagram, timing diagram, and interaction overview diagram. Since SysML uses
only the sequence diagram the other diagram types will not be discussed in detail
in this book.

3.8 Interaction Diagrams

FIGURE 3.68

Entry and exit points.

stm State X

passive

active
Cancel

End

stm Entry and Exit points

State X State Y

End

Continue

Activate

quickStart

stm State X

passive

active

quickStart

204 CHAPTER 3 UML—Unifi ed Modeling Language

 Sequence diagrams are based on the interaction model that describes the inter-
action between elements of the system. It answers the question: “ When does who
call whom and how? ” In contrast, the activity model answers the question: “ What
happens in which sequence? ” , and the state model: “ How does an object respond
to events in a specifi c state? ”

 The other UML interaction diagrams that are not used by SysML are views on
the same interaction model. This means that you don ’ t lose any modeling poten-
tial, but only different options of representing the model.

 3.8.1 Interaction
 An interaction describes a communication between lifelines. This communication
is based on the exchange of messages in the form of operation calls or signals.

 An interaction describes a behavior of the system, just like an activity or a
state machine. The elements of an interaction are essentially lifelines and mes-
sages. Lifelines represent communication partners, while messages represent the
communication.

 Interactions have no notation of their own. They are represented by the entire
diagram (Figure 3.69), similar to state machines. In some cases, the diagram frame
is included in the modeling (Figure 3.70).

 An interaction describes a specifi c scenario. It represents the participating ele-
ments (communication partners) and the sequence showing who sends whom

FIGURE 3-69

A sequence diagram, “cooling soft drink.”

sd Cooling soft drink

opt

:TemperatureSensor :RefrigeratingSystem

Temperature(16)

Cooling(on)

checkTemperature()

«system»
:Soft-drink

vending machine

[cooling required]

205

a message and when. The concrete scenario does not have to be complete. We
model only messages that are of interest in the context of the interaction.

 Sequence diagrams had not been invented together with UML. They are
based on the Message Sequence Charts (MSC) of the SDL (Specifi cation and
Description Language) modeling language [36, 37]. In addition to UML and
SysML, these charts are used in other languages too.

 3.8.2 Lifeline

3.8 Interaction Diagrams

 Defi nition
 A lifeline represents a communication partner in an interaction. It describes
the name, the type, and the lifecycle of the element.

 A communication partner represented by a lifeline is a role. The same model ele-
ment is also used in composite structure diagrams—the internal block diagram
in SysML. This diagram shows who the role is connected with (i.e., with whom
it can communicate). Here in the sequence diagram we can describe the actual
communication.

 The header of a lifeline is denoted similarly to the pertaining element from the
composition structure diagram. If you are familiar with the sequence diagrams of
UML 1 you will probably notice that the name of the lifeline is no longer under-
lined. The underscore is the notation for objects, and communication partners in
UML 1 sequence diagrams are objects. In UML 2—and thus in SysML too—they are
roles rather than objects. This is a minor formal difference that shouldn ’ t irritate you
in practice.

 The body of a lifeline does justice to the name of the model element and is
denoted as a dashed line. It shows the lifecycle of the object that assumes the role
specifi ed by the lifeline. If the object is destroyed during the interaction, then the
line ends, and the destruction event is additionally shown with a cross (Figure 3.70).

FIGURE 3-70

Destruction of a lifeline.

sd Unregister customer

:On-board
computer control

user:Customer

unregisterCustomer()

terminate()

206 CHAPTER 3 UML—Unifi ed Modeling Language

 All lifelines end at the end of the interaction. However, unless there is a destruc-
tion event, the objects are not destroyed, but continue living even after the interac-
tion. On the other hand, the header of the lifeline at the beginning of the interaction
does not mean that the pertaining objects are only created at this point.

 If an object comes into being in the course of an interaction, then the lifeline
header is drawn accordingly further below. The message created by that object
points directly to the header (Figure 3.71).

 Bars can be used on the lifeline to show the positions at which the instance
belonging to the lifeline is active (i.e., where it executes behavior) (Figure 3.71).
The bar represents a so-called execution focus . This notation is optional. Active
areas result automatically from incoming and outgoing messages.

 3.8.3 Message

FIGURE 3-71

Creating an object in an interaction.

sd Unregister customer

:On-board computer
control

identifyCustomer(data)

new()
user:Customer

 Defi nition
 A message is a communication between two lifelines. It can be synchronous
or asynchronous, and it can invoke an operation, transport a signal, or create an
object.

 Parts of the system send messages to each other to exchange information and
jointly execute a behavior. In the sense of UML and particularly of SysML, this is
not to be understood as mere operation calls in the context of a programming lan-
guage. For example, if you model a pumping system that pumps a liquid from A to
 B , then this transmission can be seen as a message between A and B (send signal).

 Both the transmission of a signal and the call of an operation are represented
by a message. The notation is an arrow from the sender ’ s lifeline to the receiver ’ s
lifeline. Different arrow shapes mark different characteristics of a message.

 Figure 3.71 describes a message to create objects. The arrow is dashed. For all
other forms of messages the arrow is solid, but with different arrowheads.

207

 A synchronous message has a fi lled arrowhead (Figure 3.72). Synchronous
means that the sender waits until the receiver has processed the message. The
end (i.e., the return to the sender) is denoted by a dashed arrow.

 An asynchronous message has an open arrowhead (Figure 3.73). Asynchronous
means that the sender does not wait for the receiver; it can continue its own pro-
cessing work immediately upon sending the message. This implies that the sender
and the receiver are in different execution processes. There is no dashed return
arrow here.

 3.8.4 Combined Fragment

3.8 Interaction Diagrams

FIGURE 3.73

Example for an asynchronous message.

FIGURE 3-72

Example for a synchronous message.

sd Check PIN entered

:On-board computer
control

checkUsageRight()

:ReservationSystem

sd Identify customer

:Card reader

identifyCustomer(card data)

:On-board computer
control

 Defi nition
 A combined fragment describes an expression, consisting of an interaction
operator and interaction fragments as operands.

 A sequence diagram represents a concrete scenario (i.e., an interaction between
selected elements in a limited situation). This is the reason why loops and

208 CHAPTER 3 UML—Unifi ed Modeling Language

conditional branches are not needed as intensively as they are in activity diagrams,
which describe sets of possible flows. But they are helpful in modeling simple
variants of a flow.

 The interaction operators of a combined fragment trigger the conditional exe-
cution of an operand, loops, parallel execution, and other variants. The operands
are interaction fragments (i.e., a set of messages between lifelines).

 A combined fragment is denoted similar to a diagram frame: a rectangle with
solid lines and a small pentagon in the upper left corner. Interaction operators
appear inside the pentagon. Interaction operands are separated by dashed lines.
Depending on the operator, there are interaction conditions as well. They appear
at the beginning of the interaction fragment near the fi rst lifeline (Figure 3.74).

 In total, there are 12 different interaction operators:

 ■ Branches and loops: alt , opt , break , loop .
 ■ Concurrency and order: seq , strict , par operator .
 ■ Filters and constraints: critical , neg , assert , consider , ignore .

 I will explain only a few selected operators in more detail below. You fi nd a
full description in [61].

 Alternative fl ows are described with the interaction operator alt . There are
two operands modeled in Figure 3.74 . If subsystem 1 was initialized successfully,
then subsystem 2 is also initialized. Otherwise, subsystem 1 is restarted.

 The interaction operator opt is comparable to the operator alt . It is subject to
the constraint that only one operand is permitted, which means that this is the
operand that describes an optional fl ow.

 The interaction operator break is similar to opt . They differ in that the enclos-
ing interaction is terminated when the break operand has been traversed. In

FIGURE 3-74

Example for the interaction operator “alt.”

:System :Sub System1 :Sub System2

s�initialize()

alt

restart()

sd System start

Interaction
operand

Combined fragment

Interaction
operand

[s.isOk()]
initialize()

[else]

209

 Figure 3.75 , the subsequent initialize() call is not executed if the condition of
the break operand is true.

 Parallel fragments are marked with the interaction operator par . The two mes-
sages in Figure 3.76 can occur concurrently or in any sequence.

 A loop is specifi ed by the interaction operator loop . You can state a minimum
and maximum number of loop traversals as well as a termination condition. The

3.8 Interaction Diagrams

FIGURE 3-75

Example for the interaction operator “break.”

:System :SubSystem1

s�initialize()

break

:SubSystem2

restart()

initialize()

sd System start

[s.isNotOk()]

FIGURE 3-76

Example for the interaction operator “par.”

sd System start

:System :SubSystem1

start()

par

:SubSystem2

initialize()

initialize()

210 CHAPTER 3 UML—Unifi ed Modeling Language

 car management system in Figure 3.77 queries the status of all on-board comput-
ers (numberBC) in a loop. 18

 3.8.5 Interaction Use

18 This is a simplified representation; it does not show how each of the on-board computers is
determined.

FIGURE 3.77

Example for the interaction operator “loop.”

sd System status

:Car management
system

queryStatus()

bc[i]:On-board
computer

loop(0,numberBC)

 Defi nitions
 An interaction use is a reference to an interaction. The model is designed
such that the reference could be substituted by the referenced interaction.

 A part decomposition describes the internal interactions of a lifeline.

 An interaction use is used to describe parts of interactions from one sequence
diagram in a separate sequence diagram. This means that large interaction can be
decomposed into manageable units.

 Decomposing sequence diagrams into manageable sizes is only one benefi t
of an interaction use. The fact that it is possible to reference an interaction from
within several different sequence diagrams is much more important. This helps
avoid redundancies (i.e., several descriptions of the same interaction) and allows
you to reuse the interaction.

 An interaction use is denoted with the interaction operator ref , similar to a com-
bined fragment. The name of the interaction is inside the fragment (Figure 3.78).

 There is another decomposition mechanism, in addition to the interaction use.
It allows us to decompose a single lifeline. It works like zooming into the lifeline.
The reference to the detailed sequence diagram is denoted in the header under-
neath the name (Figure 3.79).

211

 3.8.6 State Invariant

3.8 Interaction Diagrams

FIGURE 3-78

Example for an interaction use.

sd Read card

:Card :Card reader

Trigger card resetref

ref Change protocol

Command1

Response1

sd Trigger card reset

:Card :Card reader :Card reader

RESET

opt

ATR

sd Change protocol

[Change protocol]

PTS Request

PTS Response

:Card

 Defi nition
 A state invariant is a constraint that refers to a lifeline, and which has to be
met at system runtime.

 A state invariant is a condition that is placed on a lifeline. It specifies that the
pertaining instance fulfills the condition upon the next event occurring on that
lifeline (e.g., sending or receiving a message).

212 CHAPTER 3 UML—Unifi ed Modeling Language

 The condition is denoted within curly brackets on a lifeline. The expression
can optionally be written within a comment symbol, which is then attached to
the lifeline (Figure 3.80).

 The third notation option explains the name of the state invariant. If the condi-
tion is formulated so that it describes a state from a state machine of the instance
that belongs to the lifeline, then you can place the state symbol directly on the
lifeline (Figure 3.80).

 3.8.7 Time Constraints
 UML knows a simple time model. It includes an option to describe and to meas-
ure a point in time or a period of time. The measured values can then be used to
formulate time constraints.

FIGURE 3-79

Example for a lifeline decomposition.

sd Read card

:Card

ref

ref

:Card reader
ref Create customer

data

Trigger card reset

Change protocol

Command1

Response1

Response1
new()

sd Create customer data (section Response1)

:CardProtocol

Customer name

:Customer data

213

 This time model is not limited to interactions; it can also be used in other
model areas. However, its most common use is in interaction diagrams.

 In Figure 3.81 , the time when the customer card is placed on the card reader
(@ t) and the time when the car doors are unlocked (@ s) are measured. @ speci-
fi es the action at the measurement of time. The measured values are put into the

3.8 Interaction Diagrams

FIGURE 3-81

Example for time constraints.

sd Unlock car

:Customer

:On-board
computer

Reservation system Car central locking
system

Card &sms1
Check usage right

&sms2
Usage right

Unlock car

@t

@s
{t-s < 2}

t:Time
s:Time

sms1:Duration
sms2:Duration

FIGURE 3-80

Example for a state invariant.

sd Driving a car [incl. filling tank]

:Tank

ref

Full

Full

Empty

ref Fill tank

Driving a car

:Engine

Engine is off

Engine is off

214 CHAPTER 3 UML—Unifi ed Modeling Language

time constraint and describe that the entire process may not take longer than 2
minutes ({ t � s � 2}). The on-board computer and the reservation system com-
municate via SMS. The duration of the transmission is measured (& sms1 , & sms2).
 & specifi es the action subject to time measurement.

 t , s , sms1 , and sms2 are local attributes of the interaction. They are declared in
the upper area of the diagram (� name � : � Type �).

 If you need more possibilities to model time aspects, you can use the con-
cepts of the standardized UML Profi le for Modeling and Analysis of Real-Time
and Embedded (MARTE) systems 19 [49]. This profi le was created for the devel-
opment of real-time and embedded systems, but it can also be used in systems
engineering.

 3.9 The Package Diagram
 Most models quickly reach a number of model elements that makes it necessary
to somehow structure them, even for small systems. Similar to how directories
group files on the hard disk, packages take care of structures in models. The
grouping criterion is not explicitly modeled; it is up to the modeler to decide. The
package diagram shows the packages and their relationships.

 3.9.1 Package
 A package groups model elements and forms a namespace.

 In addition for forming groups, a package forms a namespace as well. All model
elements contained can be identifi ed by unique names. This means that no two ele-
ments of the same name can be in one package. The fully qualifi ed name of an ele-
ment refl ects the nesting of namespaces with the double colon, for example, Use
Cases::Car usage::Start car usage in Figure 3.82 .

 SysML demands that elements in diagrams that origin from another namespace
than that represented by the diagram be specifi ed with their fully qualifi ed names.

 The notation is based on the usual symbols for directories. The name of the
package is in the center or on the folder tab, if the content of the package is rep-
resented. The contents can also be shown in tree structure using the include 20
relationship (Figure 3.82).

 3.10 Other Model Elements
 This section discusses UML model elements that do not fit in one of the previous
categories such as the class diagram. They offer cross-section functions that can be
used in a wide range of different areas. These elements include, for example, the
information flow that shows the data flow in various diagrams.

19 OMG is still working on the profile and will probably finalize it in 2007/2008.
20 Not to be confused with the include relationship between use cases (⇒ page 173 (Section 3.5.3)).

215

 3.10.1 Diagram Frame
 All UML diagrams can be drawn with a frame. This is useful especially when you
want to integrate your diagrams in a text document.

 The frame is a rectangle with a diagram header in the upper left corner, which
is separated by the other diagram surface by a pentagon (Figure 3.83).

 The information shown in the diagram header includes the diagram type, the
diagram name, and parameters, if applicable. All diagram types are specifi ed in
UML and described in Table 3.4 .

3.10 Other Model Elements

pkg Use case packages (section)

Use cases

Car usage

Service

Start car usage

Configure
on-board
computer

FIGURE 3-82

Example for a package.

[<Diagram type>] <Name> [<Parameter>]

<Diagram surface>

FIGURE 3-83

The notation for diagram frames.

216 CHAPTER 3 UML—Unifi ed Modeling Language

 3.10.2 The Stereotype Extension Mechanism
 UML would certainly not be what it is today if there weren ’ t any stereotypes.
It is the extension mechanism of stereotypes that allows UML to be generally
described (i.e., unified) and that it can be used in specific projects. This means
that the general UML vocabulary (e.g., use case) can be extended by adding
domain-specific, approach-specific, or project-specific vocabulary, such as second-
ary use case («secondary»).

Table 3.4 The UML diagram types.

Diagram Name and Type Abbreviation

Activity diagram act

Use case diagram uc

Class diagram –

Package diagram pkg

Interaction diagram sd

State machine diagram stm

 Defi nitions
 A stereotype adds more properties and semantics to an existing model ele-
ment. A newly defined model element can also have a new notation, in addi-
tion to its name.

 A profi le is a set of stereotypes.

 An extension extends a UML model element by additional properties that are
defined by stereotypes.

 Of course, the UML model elements are very general. For example, there is a
 class , but there is no system , or subsystem , or hardware unit , or software unit ,
and so on. The wide range of class categories can be extended by stereotypes. This
allows us to extend the UML vocabulary.

 In the simplest case a stereotype defi nes a name and some additional semantics.
In Figure 3.84 , you can see the defi nition of the stereotype EnvironmentalEffect . The
stereotype itself is denoted similar to a class, but with the keyword «stereotype» .

 The basis of a stereotype—the UML model element—is also denoted like a
class, with the keyword «metaclass» . The relationship between the two elements
is a so-called extension . Its notation is an arrow with a solid line and fi lled arrow-
head. Other properties that the stereotype can defi ne are listed as attributes in the
stereotype symbol. They are also commonly called tagged values . In Figure 3.85 ,
you can see the stereotype defi nition Requirement from SysML.

217

 When using the new vocabulary, the name of the stereotype appears within
Guillemets 21 near the name of the stereotyped model element (Figure 3.86).

 The stereotype properties are listed in a comment symbol for reasons of space
(Figure 3.86). The name of the stereotype is shown at the beginning to distin-
guish the symbol from a regular comment, followed by the values of the stereo-
type properties.

 Since UML 2.1.1, stereotype properties can alternatively be denoted in a sepa-
rate compartment within the stereotyped model element, provided that the model
element supports compartments. This is the case with the class in Figure 3.86 , for

3.10 Other Model Elements

21 French quotation marks, also called “angle quotes.”

class Stereotype EnvironmentalEffect

«stereotype»
EnvironmentalEffect

«metaclass»
Actor

FIGURE 3-84

Example for defi ning a stereotype, EnvironmentalEffect.

FIGURE 3-85

Example for a stereotype with properties.

class Stereotype Requirement

+id:String
+text:String

«stereotype»
Requirement «metaclass»

Class

FIGURE 3-86

Example for stereotype notation.

class Stereotype notation

«requirement»
On-board

computer size

«requirement»
id� “4711”
text� “The on-board
computer...”

«requirement»
id� “4712”
text� “The operating
elements...”

«requirement»
Usage concept

218 CHAPTER 3 UML—Unifi ed Modeling Language

example. Of course, this is not possible with relationship elements, such as asso-
ciation or dependency.

 If a new symbol is defi ned for a stereotype, then it can be used instead of the
UML notation. A third notation option lets you mix the two symbols. Figure 3.87
uses the system process element, which is a stereotype of the use case, to demon-
strate the notation variants.

 A profi le is a special package that groups stereotypes. Using a profi le is the
only way to assign a stereotype to a model and use it there (Figure 3.88). There
are standardized profi les, such as the UML Testing Profi le [53], or the UML Profi le
for MARTE systems [49]. This profi le includes stereotypes that defi ne test vocabu-
lary (e.g., test case or test context) to describe a test model. Chapter 5 describes
the SYSMOD profi le that introduces the SYSMOD approach in this book.

 3.10.3 Information Item and Information Flow

FIGURE 3-87

Example for a stereotype symbol.

uc [package] SysML book [system process notation]

System processSystem process
«systemProcess»
System process

 Defi nitions
 An information item is an abstract UML concept used to model the existence
and transmission of information on a rough level.

 An information fl ow is a directed relationship between actors, use cases,
classes, ports, roles, interfaces, or packages. The relationship expresses that
information can be exchanged between these elements.

 The information flow concept is the data flow modeling of UML. This concept had
been introduced in UML 2. UML 1 lets you model the flowing of data only implic-
itly, for example, as messages in sequence diagrams, or as object flows in activity
diagrams. However, these levels are rather concrete, requiring a view onto the sys-
tem that are rich in details. Seen on a more abstract level, the exchange of mes-
sages between objects could be an exchange of information between actor and
use case. From this perspective, the information flow is to be understood as a kind
of comment that reflects a concrete detailed exchange of data on a coarser level.

 An information item is denoted with a rectangle, like a class. In addition, there
is a black triangle in the upper right corner (Figure 3.89). No additional informa-
tion can be stated, such as attributes and operations with classes.

219

FIGURE 3-88

Example for using a profi le.

pkg Using a profile On-board computer

On-board computer

«profile»
SYSMOD

«apply»

 Information structures are modeled using representation relationships. The
notation is a dashed arrow with the keyword «representation» . Figure 3.89 shows
that the route represents a destination and the type of route (fast, short, country
road, and so on). Multiplicities are not permitted for this relationship.

 In addition to information structures, you can also use the representation rela-
tionship to connect an abstract information element with a concrete design ele-
ment from the model. For example, the design class Waypoint in Figure 3.89 is
represented by the information item destination on an abstract level.

 Information items fl ow through the system in the sense that they get from one
element to another element. For example, status information fl ows from the sys-
tem class on-board computer to the actor car management system (Figure 3.90).
How the information is transported does not yet play a role in information fl ow
modeling.

FIGURE 3-89

Example for information structures.

class Navigation system information

Route Destination

Type of route

«representation»

«representation»

Waypoint
«representation»

3.10 Other Model Elements

220 CHAPTER 3 UML—Unifi ed Modeling Language

FIGURE 3-90

Notations for information fl ows.

class Information flow

Car management system

«system»
On-board computerStatus

Car service
employee

Status
«flow»

 An information fl ow is denoted as a dashed arrow with the keyword «fl ow» .
At the arrow appear information items, separated by commas, which fl ow in the
direction shown (Figure 3.90). Alternatively, an information fl ow can be denoted
directly at the relationship that realizes it. This relationship is an association, if
the fl ow is between actor and system. An information fl ow is shown as a black
triangle that indicates the direction and attached to the relationship. In case of
associations you have to be careful not to confuse the information fl ow with the
direction in which the association names are read.

 A bi-directional information fl ow is denoted by two arrows or two triangles.
There are no real bi-directional information fl ows.

 3.10.4 Comment
 A comment is a note in text form that can be attached to any element.

 In all model areas there is a need to place comments. A comment may be
required either to point open issues, or to explain a complicated situation, or to
provide general information for the reader.

 A comment is denoted as a rectangle with a dog ear on the upper right corner,
and it is attached to the commented element by a dashed line.

 The comment symbol is often used in UML to capture free text in a diagram.
For example, you can denote a constraint in comment form. In this case, however,
it is merely the comment notation but not a real comment. A constraint appears
in the model.

 3.10.5 Constraint

 Defi nition
 A constraint is a condition that always has to be met, and which restricts the
semantics of model elements.

221

 A constraint is a Boolean expression in either a natural language or a machine-
readable language. It refers to one or several model elements and restricts their
semantics.

 A constraint is denoted within curly brackets (Figure 3.91). You can optionally
state a name in front of the Boolean expression and separate from it by a colon.
A constraint is denoted either directly next to the model element concerned, or in
a comment symbol that is attached to the model element (Figure 3.91).

FIGURE 3-91

Example for constraints.

class Geometric figure

radius:Integer {radius � 0}

Circle Triangle

a:Integer
b:Integer
c:Integer

{c �� a � b}

3.10 Other Model Elements

This page intentionally left blank

223

 “ Learn the rules so you know how to break them properly. ”
 (14th Dalai Lama)

 The Unified Modeling Language (UML) was originally specified as a modeling
language for software development. Thanks to its wide proliferation and its inte-
grated extension mechanisms, such as stereotypes, it has been used successfully in
other areas as well. Together with the new UML Version 2.0, the bandwidth of its
use possibilities has been further extended (see, e.g., [33]). One field of use that
has moved closer into focus is systems engineering.

 Systems engineering is a discipline that has not had a uniform modeling lan-
guage. It requires a language that is independent of specifi c disciplines like soft-
ware, hardware, or mechanics. UML 2 looks like a good candidate. First, it meets
the most important requirements of systems engineering, and second, it is already
popular and widely used. In addition, there is a considerable amount of literature,
and many seminar programs are offered. The mighty extension mechanisms of this
language allow you to adapt it to the needs of systems engineering.

 The International Council of Systems Engineering (INCOSE) —the world-
wide systems engineering organization—set itself the objective in 2001 to estab-
lish UML as a standard language for systems engineering. The language has been
expanded by several elements, such as a possibility to explicitly model require-
ments and continuous systems. The adapted UML is called Systems Modeling
Language , or SysML for short.

 Now, UML is pretty extensive. This is one of the points the language is criti-
cized on. Nevertheless, more elements have been added. To ensure that SysML will
not get too big, even elements explicit to UML but not required in systems engi-
neering are excluded (Figure 4.1). This includes, for example, components that are
too much on the software side for systems engineering, and several rather exotic
elements for class modeling, such as power types and package merge . The core of
object orientation—classes, objects, inheritance—are moved into the background.
An electrical or mechanical engineer won ’ t fi rst have to study object orientation
to be able to use SysML. Accordingly, the UML chapter (Chapter 3) describes only
those elements of UML that directly or indirectly belong to SysML.

 SysML—The Systems
Modeling Language 4

CHAPTER

224 CHAPTER 4 SysML—The Systems Modeling Language

 The most important extensions or changes to UML are:

 ■ Classes are called blocks . In SysML, the UML class diagram is called block
defi nition diagram .

 ■ The UML composite structure diagram is called internal block diagram in
SysML.

 ■ Item fl ows between elements in the internal block diagram can be
modeled.

 ■ Continuous functions are supported by action and object nodes in activity
diagrams, and Enhanced Functional Flow Block Diagrams (EFFBD) are
also supported.

 ■ New diagram types were added: the requirement diagram and the paramet-
ric diagram.

 ■ The ISO AP-233 data format was added to support the exchange of data
between different tools.

 4.1 History
 SysML is a very young language, and its history is accordingly short. Nevertheless
it is rewarding to have a look at how it was born to better understand its objec-
tives and structures.

 UML has been used in many systems engineering projects, mainly those heav-
ily inclined to the software side, but it lacked a standardized extension. Such an
extension was required to satisfy special needs, including, for example, ways to
model different forms of requirements, support for continuous functions, and
decomposition structures. In September 2001, the Object Management Group
 (OMG) , together with INCOSE , founded the Systems Engineering Domain Special
Interest Group (SE DSIG) [20] to develop a standardized extension of UML to be
used as a modeling language for the specifi cation, the design, and the verifi cation
of complex Systems. According to the standardization process of OMG [34], a
 Request for Information (RFI) [40] was published in February 2002 to obtain
information about requirements to the UML extension. In March 2003, based on

FIGURE 4-1

SysML = UML++––.

SysMLUML UML for SysML

225

the responses to the RFI, a Request for Proposal (RFP) entitled “ UML for Systems
Engineering ” [47] was formulated to describe a rough framework and invite sub-
missions of specifi c proposals.

 A work group by the name of SysML Partners was formed in May 2003. They
called their proposal for the requested extension Systems Modeling Language
(SysML). This work group was composed of various representatives from the
industry (e.g., Lockheed Martin Corporation, Deere & Company, oose Innovative
Informatik GmbH), governmental authorities (e.g., NASA/JPL, NIST), modeling
tool manufacturers (e.g., IBM, Telelogic, ARTiSAN Software Tools, EmbeddedPlus
Engineering), and other cooperatives (e.g., INCOSE, ISO AP-233).

 A fi rst draft of the language was submitted to OMG in October 2003. In
Summer 2005, the SysML Partners work group split-up into two (SysML Partners
and SysML Submission Team) due to disputes. In November 2005, the two groups
submitted competing SysML specifi cations to OMG. This caused some confusion
in the public perception of this work, the more so as the two specifi cations had
two different version numbers.

 At the beginning of 2006, the two separate work groups found together again
(SysML Merge Team). Eventually, there was a common specifi cation in the end of
the entire process, avoiding a crucial vote. At fi rst sight, the separation of the work
group appeared to have been destructive. A closer look in arrears reveals, how-
ever, that it was rather healthy, encouraging a creative process, and it had a posi-
tive effect on the quality of the SysML specifi cation.

 At the end of April 2006, at the occasion of the OMG Meeting in St. Louis, SysML
was accepted as a standard. At that time, the specifi cation was “ frozen ” and ready
to be used in practice without fearing that there might be more changes. The fi nal
standardization process took almost a year and fi ne-tuned the specifi cation. OMG
published SysMLTM Version 1.0 as an offi cial standard in September 2007.

 Naturally this doesn ’ t mean that the development of SysML is over. SysML Version
1.0 certainly contains errors, and some language elements are still missing. Just as
UML evolved from Version 0.9 to 1.5 and fi nally to 2.1.1, there will be successor ver-
sions of SysML, refl ecting the experiences gained from practical use. You can report
errors or suggest improvements directly to OMG. You can fi nd the online form on
the OMG Internet pages at http://www.omg.org/technology/issuesform.htm .

 The SysML Revision Task Force is currently working on Version 1.1, which is
scheduled for publication in the fi rst half of 2008. Many companies and individu-
als from the SysML Merge Team are active in this task force, including myself as
the representative of oose Innovative Informatik GmbH.

 4.2 Structure and Concepts
 Since SysML and UML are closely related, their structures and concepts are very
similar (see Section 3.2). While SysML is an extension of UML, it omits UML ele-
ments (Figure 4.1).

 The extensions introduced to SysML are restricted to stereotypes and several
new diagrams. The stereotypes can be defi ned in any UML tool. No special SysML

4.2 Structure and Concepts

226 CHAPTER 4 SysML—The Systems Modeling Language

tool is required. Only the new diagrams require some special support. But this
concerns only the diagram level, and not the model. Nevertheless, a SysML mod-
eling tool can naturally support the language better and offer suitable functions.

 The fact that several UML elements are missing doesn ’ t play a major role in
practice. All SysML tools available so far and planned for the near future are UML
tools extended by the SysML language set. The UML elements left out in SysML are
still present in the modeling tool and can be used as usual. However, you should
be aware of the fact that your model is then neither an UML model nor a SysML
model, but a mixed form. This means that you will depend on tools that support
such mixed forms. That ’ s no standard.

 We can distinguish both between model and diagram and between structure
and behavior. The area of the elements to which neither structure nor behavior
can be allocated is much larger in SysML than it is in UML, and it includes one of
the new diagram forms: the requirement diagram (Figure 4.2).

 The extension mechanism of UML (profi les, stereotypes) is also part of SysML.
This means that you can defi ne new vocabulary on the basis of existing elements
to adapt the language to your needs (see also Chapter 5).

 You can see various SysML diagram types in Figure 4.3 . The diagrams that are
new to SysML, compared to UML, and UML diagrams that were changed in SysML
are highlighted. All diagram types not highlighted in the fi gure were added to
SysML from UML in unchanged form. The concepts and artifacts described in the
UML chapter (Chapter 3) also apply to SysML.

 4.3 The Requirement Diagram
 SysML defines several elements to describe and model requirements, such as
response times, size or functions of a system, which means that it closes a gap in
UML. While functional requirements can be modeled with use cases, there is no
element in UML to explicitly describe non-functional requirements.

FIGURE 4-2

The structure of SysML.

Activity diagram
Use case diagram
State machine diagram
Sequence diagram

Block definition diagram
Internal block diagram
Parametric diagram
Package diagram

Behavior modelStructure model

D
ia

g
ra

m
M

o
d

el
Structure Behavior

R
eq

ui
re

m
en

t d
ia

gr
am

, s
te

re
ot

yp
e,

m
od

el
 v

ie
w

, A
P

-2
33

, X
M

I M
et

ad
at

a
In

te
rc

ha
ng

e
fo

rm
at

Other

227

 However, since such elements are needed in practice, a number of different
proposals emerged in the course of time to allow you to model requirements
using UML. Most of these proposals are based on the defi nition of special stereo-
types. One of these proposals is SysML. It differs from the other proposals par-
ticularly in that it is standardized and explicitly supported by tools. To support
requirement modeling, SysML has a separate diagram type that shows require-
ments and their relationships to other model elements (Figure 4.4).

 4.3.1 Requirement

FIGURE 4-3

SysML diagrams.

4.3 The Requirement Diagram

bdd [package] SysML book [SysML diagrams]

«domain»
SysML

Diagram

«domain»
Structure
diagram

«domain»
Parametric

diagram

«domain»
Behavior
diagram

«domain»
Block definition

diagram

«domain»
Activity
diagram

«domain»
Sequence
diagram

«domain»
State machine

diagram

«domain»
Use case
diagram

New

Renamed
& extended

«domain»
Package
diagram

«domain»
Internal block

diagram

Renamed
& extended

«domain»
Requirement

diagram

New

Extended

Defi nition
A requirement describes one or more properties or behaviors of a system
that always have to be met.

It is a stereotype «requirement» of the UML element class.

 Requirements describe a contract between the principal and all those who create
the system design and implement the system. A requirement specifi es fl ows or
conditions that have to be met by the system.

228 CHAPTER 4 SysML—The Systems Modeling Language

 A requirement is a stereotyped class. This means that a requirement has the
semantics of a class, extended by the specifi c semantics and properties of the ste-
reotype, which will be discussed below.

 Two elementary properties of a requirement are a unique identifi er (ID) and a
descriptive text. They are attributes of the stereotype, which means that they can
be described for any modeled requirement.

 The ID is a simple string. It is up to the tool or to the modeler to ensure that it
is unique. SysML does not dictate a structure for the ID.

 The explanatory text is also a simple string. It includes a description of the
requirement itself or references an external source, for example, a legal code or
a data record in a requirement management tool. In the latter case, the original
requirements is stored externally, while the SysML requirement is merely a refer-
ence in the model to produce the connection to design and test elements.

 Operations are not permitted. Functional requirements are described in more
detail in other model elements, such as use cases or interfaces, but not by using
operations with the requirement element itself. Attributes are not permitted either.

 These two properties of a requirement (ID, text) are not attributes of the
requirement itself, but modeled as attributes of the stereotype «requirement» .
Other properties, such as a priority, can be introduced over an independent

FIGURE 4-4

Example for a requirement diagram.

req [package] On-board computer requirements [selection]

«requirement»
id � “REQ2.1”
text � “The central unit of the on-
board computer has to fit in a
DIN compartment.”

«requirement»
Enclosure size central unit

«requirement»
DIN compartment

«deriveReqt»

«requirement»
id � “REQ2.2”
text � “The central unit of the on-
board computer must not exceed
the admissible weight of 2.5 kg.”

«requirement»
Weight central unit

«usabilityRequirement»
Display size

«deriveReqt»

«trace»

«requirement»
Resolution

229

extension of the stereotype. This also includes the introduction of requirement
categories (e.g., usability requirements). Section 5.3 describes the extensions for
requirements in the SYSMOD profi le.

 Since requirements are pure specifi cation elements, it wouldn ’ t make sense to
create instances of requirements. For this reason, requirements are always abstract.

 Requirements must not be generalized. And it wouldn ’ t make much sense,
because they have neither operations nor attributes to inherit.

 The stereotype «requirement» is defi ned without a notation of its own. This
means that the standard notation for stereotypes applies (Figure 4.4).

 The term feature is often used synonymously for requirement. Unfortunately,
there is no uniform defi nition of this term. It is one of those unfortunate words that
are used in almost all projects without having clear defi nitions of its meaning. This
causes many minor misunderstandings that, in total, can lead to serious problems.

 4.3.2 The Derive Requirement Relationship

FIGURE 4-5

Example for a derive requirement.

4.3 The Requirement Diagram

req [package] Usability requirements [selection]

«businessRequirement»
Usage comfort

«businessRequirement»
Field of use

«deriveReqt»

«performanceRequirement»
Response time

reservation system

«deriveReqt»

«requirement»
Card material

Defi nition
A derive requirement relationship describes that a requirement was derived
from another requirement.

It is a stereotype «deriveReqt» of the UML element abstraction.

 Business requirements can result in technical requirements which, in turn, can
lead to other requirements. The derive requirement relationship shows these
relations explicitly. It is permitted only between requirements.

 You may already be familiar with the UML «derive» relationship, or with
derived attributes or associations. The term derive is used a lot in UML. To make
sure it is not “ overstressed, ” SysML introduces a separate relationship.

 The derive requirement relationship is denoted as a dashed arrow with stereo-
type «deriveReqt» . It is read in direction of the arrowhead, as we read in Figure 4.5 ,

230 CHAPTER 4 SysML—The Systems Modeling Language

for example: The response time of the reservation system is derived from the
business requirement usage comfort .

 There are cases when we don ’ t want to represent all elements participating
in a derive requirement relationship in the diagram. Figure 4.6 shows the derive
requirement relationship from Figure 4.5 in the form of comment symbols—the
so-called callout notation . This example shows all elements in the diagram for
better understanding.

 The term derive is often used for the generalization relationship as well. You
should be careful in discussions and during your modeling work not to confuse
the term to avoid misunderstandings.

 4.3.3 Namespace Containment

FIGURE 4-6

Alternative notation for the derive requirement relationship.

1 You can think of namespaces in SysML as directories on your hard disk. The elements in a name-
space correspond to files.

Defi nition
A namespace containment describes that a requirement is contained in
another requirement.

 Requirements are on different hierarchical levels. Very general requirements that
have rather the status of a heading contain more specific, more detailed require-
ments. A namespace containment shows this relation. It is subject to the rule that
the master requirement is satisfied when all of its sub-requirements are satisfied.

 Formally the relationship means that a requirement is present in the
namespace of the master requirement. The consequence is that a requirement
must not contain requirements by the same name, which makes sense. Another
consequence is that a requirement must not concurrently be part of more than
one requirement. 1 This latter rule contradicts the need to reuse requirements in
other contexts. SysML offers the copy relationship to this end.

req [package] Usability requirements [select alternative notation]

«businessRequirement»
Usage comfort

«performanceRequirement»
Response time

reservation system

Derived
«requirement» Response time
reservation system

DerivedFrom
«requirement» Usage comfort

231

 The namespace containment corresponds to the UML notation for the rep-
resentation of nested classes (think of “ inner class ”): a circle with a cross, from
which starts a line to the contained element (Figure 4.7).

 4.3.4 Satisfy Relationship

2 In this case, explicitly drawing the relationship would be clearer.

FIGURE 4-7

Example for a namespace containment.

4.3 The Requirement Diagram

req [package] Usability requirements [usage concepts]

«usabilityRequirement»
Usage concept

on-board computer

«usabilityRequirement»
Usage concept

key deposit

«usabilityRequirement»
Usage concept

card reader

«usabilityRequirement»
Usage concept

central unit

Defi nition
A satisfy relationship describes that a design element satisfies a requirement.

It is a stereotype «satisfy» of the UML relationship realization.

 Each design element in your model has the direct or indirect purpose of satisfy-
ing a requirement to the system. You could also say: The design element realizes
that requirement. For this reason, «satisfy» is a stereotype for the UML relationship
 realization . If this relation is modeled, then it can be seen what effect changes to
the design will have to the requirements. Vice-versa, you can identify the design
elements concerned by changes to the requirements.

 The startup element for the satisfy relationship can be any arbitrary model
element. Naturally, it makes sense to use a comprehensive element of the design
(i.e., a package or block). On a level with too fi ne granularity the cost of modeling
would exceed the benefi t.

 The notation deviates from the standard notation for UML realization . SysML
uses the notation as a dashed arrow with normal arrowhead and the keyword
 «satisfy» (Figure 4.8).

 It is not always meaningful to explicitly draw the relationship in the diagram.
 Figure 4.9 shows the same scenario from Figure 4.8 . We normally don ’ t represent
the elements all together in one diagram when we use this notation. 2

232 CHAPTER 4 SysML—The Systems Modeling Language

 The satisfy relationship does not state whether the requirement is satisfi ed in
full or only in part. You can easily add this information by using a comment or a
stereotype. If a requirement is satisfi ed by several design elements, then you can
express this alternatively by using one single relationship. In theory, the satisfy
relationship can have several source and target elements. Figure 4.10 shows one
single satisfy relationship, which interconnects several elements. In practice, this
will most likely fail due to a lack in support by the SysML/UML modeling tool.

FIGURE 4-8

Example for a satisfy relationship.

req [package] Standards and legal requirements [satisfy relationship]

«requirement»
id�“R9.3”
text�“The card reader must be
compatible with Standard ISO
14443A.”

«legalRequirement»
ISO 14443A Mifare Standard

«block»
Card reader

«block»
Customer card

«satisfy»

«satisfy»

FIGURE 4-9

Alternative notation for the satisfy relationship.

req [package] Standards and legal requirements [alternative notation]

“requirement”
id�“R9.3”
text�“The card reader must be
compatible with Standard ISO
14443A.”

“legalRequirement”
ISO 14443A Mifare Standard

“block”
Card reader

“block”
Customer card

SatisfiedBy
“block” Card reader
“block” Customer card

Satisfies
“requirement” ISO 14443A Mifare
Standard

Satisfies
“requirement” ISO 14443A Mifare
Standard

233

 4.3.5 Copy Relationship

FIGURE 4-10

Relationship with several source and target elements.

FIGURE 4-11

Example for a copy relationship.

4.3 The Requirement Diagram

req [package] SysML book [multiple satisfy relationship]

«requirement»
Requirement 2

«satisfy»

«requirement»
Requirement 1

«block»
Block 2

«block»
Block 1

req [package] Legal requirements [CE symbol]

«requirement»
Radio

«legalRequirement»
RADIO CE symbol

id�“R2.7”
text�“The CE symbol...”

«requirement»
Navigation system

id�“R6.2”
text�“The CE symbol...”

«legalRequirement»
NAV CE symbol«copy»

Defi nition
A copy relationship describes that a requirement is a copy of another
requirement.

It is a stereotype «copy» as a specialization of the UML stereotype «trace».

 There is often a need in the requirement model to reuse a requirement in another
context. This can lead to formal problems in connection with the containment
requirement (see discussion in Section 4.3.3). The copy relationship was intro-
duced for this reason, and to enable the use in different contexts.

 The copy relationship allows you to create a copy that is maintained consis-
tently with the original. The name and the ID may be different though. The require-
ment text is write-protected in the copy and always identical with the original.

 The copy relationship is denoted as a dashed arrow pointing from the copy to
the original and with the stereotype «copy» (Figure 4.11).

234 CHAPTER 4 SysML—The Systems Modeling Language

 SysML lets you use the callout notation as an alternative notation for the copy
relationship as well, but only in one direction. You can attach a comment symbol
with the keyword master and the model element to the copy (Figure 4.12).

 4.3.6 Verify Relationship

FIGURE 4-12

Alternative notation for copy relationships.

FIGURE 4-13

Example for a verify relationship.

req [package] legalRequirements [alternative notation CE symbol]

Master
«legalRequirement»
RADIO CE symbol

«legalRequirement»
NAV CE symbol

req [package] Test [customer identification]

«testCase»
IdentifyCustomerTest

«verify» «functionalRequirement»
Car usage without staff

Defi nition
A verify relationship connects a test case with the requirement that is veri-
fied by that test case.

It is a stereotype «verify» as a specialization of the UML stereotype «trace».

 The test model normally defi nes a large number of test cases that test whether or
not the requirements are correctly implemented by the system. The verify rela-
tionship describes which test case tests which requirement.

 It is denoted as a dashed arrow with the stereotype «verify» . The arrow points
in the direction from the test case to the requirement (Figure 4.13).

 The callout notation, which is valid for almost all relationships between
requirements, allows you to use an alternative notation to show that an element
participates in a verify relationship. Figure 4.14 shows the same scenario from
 Figure 4.13 in this alternative notation. This notation allows you to represent the
verify relationship without the need to use the arrow to all participating elements
(i.e., you don ’ t have to show all participating elements in the diagram).

 The verify relationship doesn ’ t say anything about the completeness of the test
case with regard to the requirement. Similarly to the satisfy relationship, you can use
a comment or stereotype to add this information. You could actually use several source
and target elements, but this normally fails due to the modeling tool in practice.

235

 4.3.7 Test Case

FIGURE 4-14

Alternative notation for verify relationships.

3 SysML/UML allows you to define behavior in an arbitrary language (e.g., a programming
language) or a natural language, such as English or German. Free behavior is formally called
OpaqueBehavior [61].

4.3 The Requirement Diagram

req [package] Test [alternative notation customer identification]

«testCase»
IdentifyCustomerTest

«functionalRequirement»
Car usage without staff

Verifies
«requirement»
Car rental without staff

VerifiedBy
«testCase»
IdentifyCustomerTest

Defi nition
A test case is a flow that checks whether or not the system satisfies a
requirement.

It is a stereotype «testCase» of the UML elements operation and behavior.

 SysML does not offer any model elements to build an extensive test model.
Extensive test models can be built with the UML Testing Profi le [53]. This profi le
consists of a set of stereotypes you can use to extend your SysML or UML toolbox
and test vocabulary.

 As far as testing is concerned there is only a test case in SysML. This element is
probably suffi cient for simple models. However, it was primarily defi ned to create a
kind of basis for a more extensive testing languages, such as the UML Testing Profi le .

 A test case is a stereotype for the model elements behavior —that is, activity,
interaction, state machine, and free behavior 3 —and operation . You can use these
elements for a detailed and executable description of a test case (i.e., describing
concrete executable testing steps). The notation is a rectangle with the name of
the test case and the stereotype «testCase» (Figure 4.15).

 4.3.8 Refi ne Relationship

Defi nition
A refine relationship specifies that a model element describes the properties
of a requirement in more detail.

It is a standard stereotype «refine» of the UML abstraction relationship.

236 CHAPTER 4 SysML—The Systems Modeling Language

FIGURE 4-16

A refi ne example.

req [package] Functional requirements [car usage without staff]

Start car usage

End car usage

Show car
usage data

«refine»

«functionalRequirement»
Car usage without staff

«refine»

«refine»

FIGURE 4-15

Test case example.

req [package] Test [send messages]

«testCase»
SendMessagesTest

«verify» «functionalRequirement»
Car usage without staff

 A requirement is a rather coarse model element. In addition to the name and an
ID, you can add some text to describe a requirement. This is not suffi cient for a
detailed description.

 For example, a functional requirement can be refi ned by one or more use
cases (Figure 4.16).

 This relationship is used only within the model. It does not serve for refi ning
by external sources, such as a requirement management tool. For this purpose,
you ’ d use the text property of the requirement, which references an external
source.

 SysML takes this relationship unchanged from UML, but it adds an alternative
notation that let ’ s you denote the relationship within a comment symbol (Figure
4.17).

 4.3.9 Trace Relationship

Defi nition
A trace relationship is a relationship between a requirement and an arbitrary
model element; it describes a general relation for traceability reasons only.

It is a standard stereotype «trace» of the UML abstraction relationship.

237

 The trace relationship is very general, and its semantics is accordingly weak. It
expresses that the model elements have a relationship without specifying this
relationship in more detail. The sole purpose of a trace relationship is to create
traceability between elements. It does not state why there is a relation.

 SysML takes this relationship unchanged from UML, but it adds an alternative
notation, similarly to using a comment symbol (Figure 4.17) for the refi ne relation-
ship. In this case, it uses the keywords TracedTo and TracedFrom . This alternative
notation is useful especially when the participating model elements should not or
cannot appear in a diagram.

 You can see an example for trace in Figure 4.18 . In this example, the usability
concept is related to the display size.

 4.3.10 Table Notation
 Many people like to represent requirements in pure text form—most frequently
in tables—rather than in graphical form. This is meaningful mainly when you
want to display total overviews of several hundred or thousand requirements
(requirements list). SysML offers a table notation. The table is a diagram extension

4.3 The Requirement Diagram

FIGURE 4-17

Alternative notation for refi ne.

req [package] Functional requirements [alternative notation refine]

Refines
«requirement» Car usage without staff

Start car
usage

«functionalRequirement»
Car usage without staff

RefinedBy
«usecase» Start car usage
«usecase» End car usage
«usecase» Show car usage

FIGURE 4-18

Example for a trace relationship.

req [package] On-board computer requirements [example trace]

«usabilityRequirement»
Display size

«trace»

«usabilityRequirement»
Usage concept

central unit

238 CHAPTER 4 SysML—The Systems Modeling Language

that cannot be defined by stereotypes. It has to be explicitly supported by the
modeling tool.

 The columns of a requirements table represent the properties of the ID and
the requirement text (Figure 4.19) as well as the relationships of that requirement
to other requirements (Figure 4.20).

 4.4 Allocation
 An allocation is a general mechanism from the field of systems engineering to
interconnect elements from different model areas. For example, binding an item
flow in the internal block diagram, which occurs in a different form, as an object
flow, in an activity diagram (Figure 4.21). Such a binding is normally present
in a complete model through a wealth of details and deeply hidden paths, and
not visible at a glance. A systems engineer cannot penetrate these detail depths.
Nevertheless, they want to model the connections, even in an early project phase.

 There are different types of allocations. SysML proposes three general types and
let ’ s the developer introduce additional project-specifi c variants. The predefi ned
types are behavior allocation, structure allocation, and object fl ow allocation.

FIGURE 4-19

Table notation for requirements.

table [package] On-board computer requirements

ID

R1

R2.1

Name Text

Car rental without staff The cars must be picked up and returned
by customers without assistance.

Enclosure size

R2.2 On-board computer weight The on-board computer must not
exceed the admissible weight of 2.5 kg.

The on-board computer has to fit
in a DIN compartment.

FIGURE 4-20

Table notation for requirements with relationships.

table [package] On-board computer requirements [with relationships]

ID

R1

R2.1

Name Relation ID Name

Car rental without staff deriveReqt R7.8

trace ...

...

Enclosure size

239

 The object fl ow allocation is used to connect an item fl ow in a structure dia-
gram with an object fl ow edge in an activity diagram (Figure 4.21).

 The structure allocation allows you to separate logical structures from physical
structures. In a fi rst approach, the systems engineer can build the system logically,
while building the concrete hardware structure of the system in a second step.
The structure allocation binds elements of both levels. You can see examples in
Figure 2.81 and Figure 4.22 .

 The behavior allocation is used to allocate a behavior (e.g., an activity, or a
single action) to a block that realizes this behavior.

FIGURE 4-21

Example for an object fl ow allocation.

4.4 Allocation

ibd [block] On-board computer [selection] act Identify customer

:Card reader

:On-board computer
control

Read card

Card data

Identify
customer

Card data
kd

Customer

Customer

allocatedTo
«connector» card readerC

Card readerC
allocatedFrom
«objectflow» kd

FIGURE 4-22

The notation for allocations.

bdd [package] Design [card reader port]

Concrete designLogical design

«block»
On-board computer

control

«block»
On-board computer

control

k:CardReaderPort r:RS232

«allocate»

240 CHAPTER 4 SysML—The Systems Modeling Language

 4.4.1 Allocation

4 The strict separation of structure and behavior is not object-oriented. A particular characteristic of
an object (block) is the unification of structure and behavior in the form of attributes and opera-
tions. This corresponds to objects in the real world.

FIGURE 4-23

Alternative notation for allocations.

bdd [package] Design [allocation card reader port alternative notation]

Concrete design

Logical design

«block»
On-board computer

control

«block»
On-board computer

control

CardReaderPort

RS232

allocatedTo
«port» RS232

allocatedFrom
«port» CardReaderPort

Defi nition
An allocation is an abstract relationship between elements of different type, or
on different levels. It allocates a target element to one or more source elements.

It is a stereotype «allocate» of the UML element abstraction.

 Common aspects such as structure and behavior are initially considered separately
in the modeling work. 4 The concrete binding—say, behavior XY is executed on or
by a structure ABC —follows only later. The allocation relationship allows you to
express this relation in an early stage. The relationship is abstract in the sense that
it describes, for example, how a behavior is allocated to a structure, but doesn ’ t
say anything about how exactly this allocation looks like.

 An allocation is denoted as a dashed arrow with the keyword «allocate» . Figure
4.22 shows a structure allocation in this notation.

 Similarly to the notation variants for requirement relationships, you can alter-
natively denote an allocation in a comment symbol at the target and source ele-
ments, instead of using a dashed line (callout notation). This is necessary because
elements are often in different diagram types (e.g., in an activity diagram and in
an internal block diagram) (Figure 4.21), never appearing jointly in one single dia-
gram. Accordingly, we cannot use the arrow notation. You can see the alternative
notation for the scenario in Figure 4.22 and Figure 4.23 .

241

 When representing allocations we have several options. You already saw two
notation forms. There is a third notation for elements that supports compart-
ments, such as blocks (Figure 4.24). The domains are denoted with the keywords
 allocatedFrom and allocatedTo .

 4.4.2 Allocate Activity Partition

FIGURE 4-24

Other alternative notation for allocations.

4.4 Allocation

bdd [package] On-board computer [allocations card reader]

allocatedFrom
«activity» Read customer card

«block»
Card reader

FIGURE 4-25

Example for an allocate activity partition.

«essential»
act Identify customer

Read
customer

card

Customer

«allocate»
Card reader

«allocate»
Customer card

Transmit
card data

Card data

Card data Card data

Card data

«allocate»
On-board

computer control

Customer

Identify
customer

Defi nition
An allocate activity partition is a special activity partition that allocates each
action within that partition to the structure that represents this partition.

It is a stereotype «allocateActivityPartition» of the UML element activity
partition.

 An activity partition puts actions into groups based on common features. The
allocate activity partition restricts the grouping criteria. The common features
of actions within an allocate activity partition form a block to which these actions
are allocated. This means that an action is the target element (the from end) of
an allocation relationship, while the structure is the source element (the to end).
The allocate activity partition is a behavior allocation (Figure 4.25).

242 CHAPTER 4 SysML—The Systems Modeling Language

 4.4.3 Table Notation
 In addition to the requirement diagrams, SysML extends also the area of alloca-
tions by a way to represent allocation relationships in table notation (Figure 4.26).

 An additional matrix representation is defi ned as well (Figure 4.27). This rep-
resentation is of general interest for all types of relationships, but presently SysML
describes it only for allocations.

 4.5 Block Diagrams
 The central elements in object orientation are classes and objects. Closely related
to classes are components in UML as well. Since the two terms are historically
at home in the software development discipline, SysML doesn ’ t use them in this
form. All static concepts and objects are blocks in SysML.

 Blocks describe the structure of a system. They possess information about
the block itself (attribute), or they reference other blocks they are bound with

FIGURE 4-26

Allocation relationships in table notation.

table [package] On-board computer control [allocations]

type name end relation end type name

port k:Card readerPort from allocateStructure to port r:RS232

action Transmit card data from allocateBehavior to block Customer card

action Read customer card from allocateBehavior to block Card reader

action Identify customer from allocateBehavior to block On-board
computer control

FIGURE 4-27

Allocation relationships in matrix notation.

matrix [package] On-board computer control [allocations]

Source Target

r:RS232 Customer card Card reader On-board computer control

k:Card readerPort allocate

Transmit customer data allocate

Read customer card allocate

Identify customer allocate

243

(association). In addition to the purely static structure, blocks also describe opera-
tions (i.e., behavior they can execute).

 Formally blocks are stereotyped classes. Apart from some notation differences,
the same as described in the UML chapter applies to them: SysML uses the term
 block defi nition diagram instead of class diagram (as in UML; Section 3.3) and
the term internal block diagram instead of composite structure diagram (as in
UML; Section 3.4).

 Blocks describe a system as a collection of parts that each play a certain role
in a defi ned context. Look at this specifi c example: The construction plan of the
 card reader block is described in the block defi nition diagram (Figure 4.29) and
its role is described in the context of the on-board computer in an internal block
diagram of the on-board computer (Figure 4.28).

 4.5.1 Block

FIGURE 4-28

Card reader in the on-board computer.

4.5 Block Diagrams

ibd [block] On-board computer [access system]

:Card reader

:On-board
computer control

:Customer card

Defi nition
A block describes parts of the structure of a related system.

It is a stereotype «block» of the UML element class.

 Together with the block, SysML defi nes an element to be used for describing the
static structure of systems. A block can be both a logical and a physical unit (soft-
ware, hardware, functional blocks, and so on).

 The notation deviates slightly from the standard representation of stereotyped
classes. The stereotype name «block» can also be omitted in the notation. Note
that I always show it in this book to emphasize the difference to an UML class.

 The single compartments of the block rectangle are denoted with a heading
each (Figure 4.29). The heading for values of the block is values . Values are attri-
butes with either an UML data type or a SysML value type. For example, the value
 operatingTemperature in Figure 4.29 has an interval as its distribution defi nition.

244 CHAPTER 4 SysML—The Systems Modeling Language

 The heading for parts of a block that are bound by means of a composition is
 parts . Properties that are of type block but not bound via composition are listed
with the heading references in a compartment. These are properties, for example,
which are modeled by aggregation or association, such as card of type customer
card in Figure 4.29 and Figure 4.30 , respectively.

 If differentiating compartments in the representation is not desired, then prop-
erties of any type can be listed with the heading properties in a compartment.

 The compartment of operations is denoted with the heading operations , while
constraints are listed with the heading constraints in the compartment. Altogether
you obtain a tabular representation of the properties of a block. You can arbitrarily
show or hide single compartments in a diagram, and you can add other user-
specifi c compartments. The SysML/UML tool is responsible for providing you with
suitable mechanisms.

 In SysML all properties of a block have the visibility public . This means that it
is not necessary to explicitly represent the visibility.

 In addition to the text notation, SysML let ’ s you also represent compartments
in graphical form. The structure compartment contains an internal block diagram
that describes how the block is structured (Figure 4.30). Parts of a block appear as
rectangles in the diagram, while references are shown as rectangles with dashed
lines, and values are not permitted here.

 The internal block diagram can also be used as an independent diagram. You
use an internal block diagram to show how the properties of a block are intercon-
nected. This means that it describes the internal structure of a block. The diagram
corresponds to the UML composite structure diagram described in Section 3.4.

FIGURE 4-29

The notation for blocks.

bdd [package] Card reader

constraints
{rate � 32}

parts
c:Chip
fastening:Suction cup
g:Enclosure

references
card:Customer card

operations
led(f:color, blinking:Boolean)

values
frequency:MHz
rate:kBaud
«interval» {min � �20, max � 65} operatingTemperature:Celsius

«block»
{encapsulated}
Card reader

2454.5 Block Diagrams

FIGURE 4-30

A block with a “compartment” structure.

bdd On-board computer [customer card detail view]

structure

«block»
Customer card

s:Coil

c:Chip

:Current

<>

<
>

<
>

m:Energy

:Current

«block»
Card reader

«block»
On-board computer

card

0..1

 You can see in Figure 4.31 that the types card reader and customer card of
two roles, protoreader7 and protocard1 , are enclosed by square brackets. They
have been extended specifi cally—for this context only—by initial values for prop-
erties. SysML let ’ s you defi ne such context-specifi c types to avoid having to defi ne
an entire new block when all you need is a variant of an existing block in a cer-
tain context.

 As you can see, the card reader uses the UML version to defi ne initial values.
SysML offers yet another possibility. You can state the initial values in a separate
compartment with the heading defaultValues . This description is more compact
since it is separate from the defi nition that includes both type and multiplicity.

 You also have a possibility to pull deeply nested blocks “ to the surface ” in the
internal block diagram. You can see in Figure 4.32 that the left and right represen-
tations are equivalent. The notations of arbitrary nesting depths is another exten-
sion introduced by SysML. In contrast, UML doesn ’ t allow you to show the internal
structures of roles in a composite structure.

 As a logical consequence, you can use connectors in an internal block diagram
to directly connect the elements across several nesting borders (Figure 4.33).
Though this violates the object-oriented encapsulation principle, this form can
be often observed in real-world systems. In Figure 4.33 , the GPS sender does not
communicate with the wrapper of the capsule (i.e., the truck, but directly with a
part—the navigation system).

246 CHAPTER 4 SysML—The Systems Modeling Language

 A block can be explicitly modeled as a black box. In addition to the name of
a black-box block, we denote the keyword {encapsulated} (Abb. 4.29). In this
case, a connector must not be connected directly from the outside to a role in
the inside. The property is denoted by the verb {encapsulated} above the block ’ s
name (Figure 4.29).

 Since interfaces are rather a software domain in the sense of UML, while blocks
are defi ned in more general terms, and considering that they can also represent
hardware elements, they are generally not used in combination with blocks.

 However, interfaces are part of SysML. They are used to describe standard ports.

FIGURE 4-32

Nested blocks.

bdd [package] On-board computer [notation nesting]

«block»
On-board computer

card:Customer card

structure

structurecard.c:Chip

c:Chip

structure

«block»
On-board computer

FIGURE 4-31

Specifi c type of a block attribute.

ibd [block] Prototype 1

structure

rate�115

card#:CardID�2342

prototype 1:On-board computer

protoreader7:[card reader]

protocard1:[customer card]

protoctr13:On-board computer control

default Values

rate:kBaud
values

values

247

 4.5.2 Distribution Defi nition

4.5 Block Diagrams

FIGURE 4-33

Nested connectors.

ibd [block] Traffic orientation system

coord:GPS

sig:GPS
:GPS sender:Navigation system

:Truck

Defi nition
A distribution definition describes how values are distributed over a defined
value range.

It is a stereotype «distributedProperty» of the UML element property.

 A distribution defi nition describes how values could possibly be distributed.
Specifi c distribution defi nitions have to be defi ned as specialized stereotypes.
SysML defi nes the interval distribution and the normal distribution as basic exam-
ples (Figure 4.34).

 The notation corresponds to the notation for standard stereotypes. You can see
an example for the interval distribution for the value operatingTemperature in
 Figure 4.29 .

 4.5.3 Value Type

Defi nition
A value type defines values that have no identity, and cannot be referenced by
a block, but can have a unit or dimension.

It is a stereotype «valueType» of the UML element data type.

 UML data types describe values that have no identity, for example, integers. This
means that two data types with the same value cannot be distinguished. This is
different with instances of blocks or UML classes. They can be distinguished, even
if they have the same attribute values.

 A value type is a data type with the added property that it can have a unit and
dimension. This means that you can defi ne a unit as a type (Figure 4.35).

248 CHAPTER 4 SysML—The Systems Modeling Language

 The notation is identical to that for the UML data type, except that we write
the stereotype «valueType» above the name. The stereotype name also serves as
heading of the compartment for which the unit or dimension is described (Figure
4.35).

 4.5.4 Unit and Dimension

FIGURE 4-35

Value types.

FIGURE 4-34

SysML distribution defi nitions.

Defi nition
A unit describes the structure of a physical unit.

It is a stereotype «unit» of the UML element instance specification.

249

5 The international unit system SI (acronym of the French name Le Système International d’unités)
is the most commonly used unit system for physical units. It defines many basic units, including
meter, kilogram, second, ampere, Kelvin, mole and candela.

4.5 Block Diagrams

FIGURE 4-36

SI units.

Defi nition
A dimension describes the quantity of a unit.

It is a stereotype «dimension» of the UML element instance specification.

 Many values are normally bound to units in systems engineering models to pre-
vent system errors due to a faulty interpretation of values without units. A tragic
real-world example for such errors was the failed Mars mission Mars Climate
Orbiter . The probe was lost on Mars due to a unit error in the navigation system.
While NASA computed using SI units 5 (Newton), a part of the system used the
imperial unit system (pound) [14].

 A unit describes a specifi c physical unit. Units are not types. To use a unit as a
type in a block property, you have to pack it into a value type (Figure 4.35).

 SysML includes a model library that defi nes SI basic units (Figure 4.36). It let ’ s
you easily add more units to the library.

250 CHAPTER 4 SysML—The Systems Modeling Language

 4.5.5 Flow Port

FIGURE 4-37

Example for a fl ow specifi cation.

bdd [package] Engine [flow specification]

«flowSpecification»
FS_Engine

flowProperties
out engineData:SigEngineData
in mix:Real
in throttleValvePosition:Real

revolutions:Integer
temperature:Real
knockSensor:Boolean

«signal»
SigEngineData

Defi nitions
A flow port describes an interaction point of a block used by the block to
interact with its environment, and objects can flow into and out of the block
over this port.

It is a stereotype «flowPort» of the UML element port.

A flow specification is a special interface, which specifies data incoming and
outgoing to and from a flow port.

It is a stereotype «flowSpecification» of the UML element interface.

 Not all interactions of a block with its environment are based on services in the
sense of interface descriptions. For example, a block can have an interaction point
over which it is supplied with electric power. An UML standard port would not
be suitable. You ’ d have to describe the fl ow of electric power in an operation of
an interface (givePower():Power).

 However, a fl ow port doesn ’ t let pass just any objects one can think of. The
fl ow specifi cation is a special interface that describes incoming and outgoing data.
It has no operations.

 You can see a fl ow specifi cation in Figure 4.37 . The data descriptions have
the heading fl ow properties . Incoming data is prefi xed with the keyword in , and
outgoing data is prefi xed with the keyword out . Data that is transported in both
directions have the keyword inout . The fl ow port of the block engine is denoted
with small arrowheads, like an UML port. The fl ow specifi cation is the type of the
port (Figure 4.38).

 The opposite fl ow port requires the same fl ow specifi cation, except that the
incoming data and the outgoing data are swapped. For the sake of simplicity,

251

SysML offers a conjugated fl ow port that is denoted inversely to the normal fl ow
port (Figure 4.39).

 Another variant is the atomic fl ow port. It allows only one data type to pass it
in one direction. In this case, no fl ow specifi cation is required. The data type that
can be transported is directly the type of the port. The direction is denoted by an
arrow in the port rectangle (Figure 4.40).

4.5 Block Diagrams

FIGURE 4-38

A fl ow port in the block defi nition diagram.

bdd [package] Engine [flow port]

Engine
fp:FS_Engine

FIGURE 4-39

Example for conjugated fl ow ports.

ibd [block] Drive system [CAN]

e:Engine

ctrl:Control

ctrl:FS_Engine

Engine:FS_Engine

FIGURE 4-40

Example for atomic fl ow ports.

ibd [block] On-board computer [power supply card]

:Card reader :Customer card
e:Energy

e:Energy

252 CHAPTER 4 SysML—The Systems Modeling Language

 4.5.6 Item Flow

Defi nition
An item flow is a special information flow that describes at a connector in the
internal block diagram that specific objects are transported.

It is a stereotype «itemFlow» of the UML element information flow.

 An UML information fl ow describes only abstract types—information that fl ows
between two elements. SysML extends the information fl ow by a way to use con-
nectors in the internal block diagram to describe the fl ow of specifi c objects. The
fl owing object is a property defi ned in the context of the block. While the fl ow
port describes the objects that can fl ow there, the item fl ow describes what really
fl ows.

 You can see in Figure 4.41 that the object water of type H 2 O fl ows from the
atomic fl ow port of a container, a , to the atomic fl ow port of a pump. The fl ow
ports specify more generally that liquids can fl ow through them.

 4.5.7 Association Block

FIGURE 4-41

Example for an item fl ow.

ibd [block] Pump system [example SysML book]

a:Container

:Liquid

b:Container

:Liquid

:Pump

:Liquid

:Liquid

Water:H2O

Water:H2O

Defi nitions
An association block describes the structural properties of an association.

It is the SysML name for the UML element association class.

A participant property describes the end of an association in the internal
structure of an association block.

It is a stereotype «participantProperty» (or «participant» for short) of the UML
element property.

253

 An association block is the association class of SysML. SysML extends the concept
by ways to describe the structure of an association block in an internal block
diagram.

 The participant property is a property of the association block. It contains a
reference to a property that is specifi ed by a participant. This means that you can
also list participants in the internal block diagram of an association block, in addi-
tion to the usual structures.

 As a reference, a participant property is shown with dashes in the internal
block diagram. The referenced participant property is denoted as stereotype attri-
bute end within curled brackets (Figure 4.42).

 4.5.8 Data Types
 UML defines four primitive data types: Boolean , Integer , String , and Unlimited
Natural . SysML adds the data types Real for real numbers and Complex for complex
numbers (Figure 4.43), which are commonly used in systems engineering.

4.5 Block Diagrams

FIGURE 4-42

Example for association blocks.

ibd [block] Hose

bdd [package] Pump system

«block»
Pump system

«block»
Container

«block»
Pump

source 1 destination1

pump
0..2
tank

0..1

«block»
Hose values

isOn:Boolean

«block»
Valvev

1

p 1

«participant»
{end � tank}

tankInLink:Container

«participant»
{end � pump}

pumpInLink:Pump

v:Valve

254 CHAPTER 4 SysML—The Systems Modeling Language

 4.6 The Parametric Diagram
 SysML allows you to define parametric relationships between properties of blocks.
For example, Newton ’ s physical law says that force equals mass times acceleration
(f � m * a). The mass results from the sum of the masses of the single blocks.
Acceleration is calculated from the properties of the drive of a system (e.g., a fly-
ing object). Now force can also be computed with Newton ’ s law.

 We can model such relationships to integrate performance or reliability mod-
els in the system model. This allows us, for example, to check alternative design
studies with regard to response times, costs, and weight of the system.

 The relations between properties of different blocks can be described and
defi ned in a parametric diagram. The constraints form a network across all prop-
erties of the blocks.

 Figure 4.44 shows a system that describes (strongly simplifi ed) the world of
Sir Isaac Newton. We will use this not entirely serious model below to model the
legendary fall of an apple on Newton ’ s head.

 4.6.1 Constraint Block

FIGURE 4-43

The “complex” and “real” data types.

bdd [modelLibrary] Blocks

«valueType»
Real

realPart:Real
imaginaryPart:Real

«valueType»
Complex

Defi nition
A constraint block describes constraints on system structures and the param-
eters required.

It is a stereotype «constraintBlock» (or «constraint» for short) as a specializa-
tion of the SysML stereotype «block».

 A constraint block is defi ned free from any context, so that it can easily be reused.
This allows you to defi ne a constraint library so that you ’ ll be able to pick con-
straints for various projects.

 Formulated constraints are regular UML constraints. You can formulate con-
straints in any language. Ideally the language you use can be evaluated automati-
cally, so that you can use a tool to check your constraints.

255

 A constraint block describes the parameters of its constraints as well. They are
defi ned like attributes.

 The notation is similar to that for blocks, except that the stereotype « con-
straint » instead of «block» is written above the name. 6 There are exactly two
other compartments. One contains the constraints—denoted as UML constraint
in curled brackets—and the other contains the defi nition of parameters for con-
straints. Both compartments have their respective heading (i.e., constraints and
 parameters) (Figure 4.45).

 You apply a constraint block to the model in a parametric diagram—a special
internal block diagram (Figure 4.46). The parameters are denoted in the form of
small squares attached from the inside to the rectangle of the applied constraint.
In this case, the rectangle has rounded corners. However, you can alternatively
denote it as a usual role. Above the name will then additionally appear the stereo-
type name « constraint » . The parameters are bound with parameters of other con-
straint blocks or with system properties via connectors. Values of blocks can be
addressed directly by the dot notation without the pertaining block. This allows
you to pull deeply nested values to the surface.

6 It should more exactly read «constraintBlock», since that’s the correct name of the stereotype
for constraint blocks. SysML deviates from the standard notation for stereotypes, using a
short form.

4.6 The Parametric Diagram

FIGURE 4-44

Newton’s world.

bdd [package] Newton's world

values
gravitation:acceleration

«block»
Planet

*

values
d: Density
v: Volume

«block»
Apple

*�apples

�trees

�trees

�personundertree

�newton’s
tree

values
impact:Energy

«block»
Human

0..1

0..1

0..1
values

height:Length

«block»
Apple tree

256 CHAPTER 4 SysML—The Systems Modeling Language

 4.7 The Use Case Diagram
 UML use cases are independent of their realization by a system. They do not con-
tain any information as to whether the serves they describe are implemented
in software or hardware, or by an individual. The applications for use cases are
accordingly numerous, including systems engineering.

 The use case model is integrated in SysML in unchanged and complete form
from UML (Figure 4.47).

FIGURE 4-45

Example for a constraint library.

FIGURE 4-46

Using constraint blocks.

par [block] Newton’s world

«constraint»
mb:Mass relationship

Apple.volume

v :

Apple.density

d :

m :
m :

gN:Newton’s law

Planet.gravitation

a:

pE:Potential energy

f :

f :

Apple
Tree.height

h :

Human.impact
E :

bdd [package] Constraint library [Newton’s world]

parameters

constraints

«constraint»

m : Mass
v : Volume
d : Density

parameters

constraints

«constraint»

f : Force
m : Mass
a : Acceleration

parameters

constraints

«constraint»

f : Force
h: Height

Mass relationship Newton’s law Potential energy

{m �v *d} {f �m *a} {E � f *h}

257

 4.8 The Activity Diagram
 The activity model specifies flows as well as input and output data, which are
required or created during a flow. Flows can run in parallel, or they can be syn-
chronized, or split based on conditions.

 More simply, the model shows what will be done in which sequence, which
data all of this requires, and which data will be output. The activity model of UML
2 is extended by several properties in SysML:

 ■ Extended control fl ow with additional information to stop actions or con-
trol the fl ow via so-called control operators.

 ■ Support for modeling of continuous systems.
 – Continuous or discrete object fl ow.
 – Object nodes can reject data that are no longer current.
 ■ Probabilities of fl ows.
 ■ Modeling rules for activities in the form of a block defi nition diagram (func-

tion trees).

 The activity model of SysML is compatible with the EFFBD popularly used in
systems engineering. 7 SysML defi nes an activity stereotype, «effbd» , which dictates
a few constraints in order to maintain compatibility. For example, such an activity
must not have partitions, because they cannot be mapped in EFFBD. You fi nd a
complete list of constraints in [44].

 SysML introduces an extension of the UML notation, which facilitates distin-
guishing between different things. The control fl ow edge can alternatively be
shown as a dashed arrow. However, whether or not you can use this notation vari-
ant depends on your SysML modeling tool.

7 This diagram is based on the Functional Flow Block Diagram (FFBD) developed by TRW in the
1950s; it represents complex flows in a very simple way. EFFBD diagrams add data flow information
to a flow.

4.8 The Activity Diagram

FIGURE 4-47

Example for use cases.

uc [package] Regulate speed

«system»
Car

Regulate
Speed

Driver

258 CHAPTER 4 SysML—The Systems Modeling Language

 4.8.1 Activity Composition (Function Tree)
 Formally, activities are special classes or, in SysML lingo, blocks. An object of this
class is a concrete execution. This means that you can also generalize activities
and let them participate in associations. You can use this feature to model a kind
of function tree.

 You can invoke actions of other actions from within an activity. Actions are
denoted with a fork symbol in the lower right-hand corner. If this call is synchro-
nous, then this means for the execution that the called activity is terminated as
soon as the call terminates. This corresponds to the semantics of a composition
between classes.

 You can represent object nodes in an activity as well. This is an association,
rather than a composition, from the activity to the element that describes the type
of object node (e.g., a block) such as customer in Figure 4.48 .

 You should select a diagram layout that matches a tree structure. The action
that invokes the activity is the role name at the composition end in this represen-
tation. In practice, activity names and action names are normally identical. In this
case you can omit the role name.

 Note, however, that this works only with activities. An action is formally not
related to the class, so that it cannot become a node or leaf in the function tree.
This means, for example, that confi rm usage start in Figure 4.48 would actually
be illegal. We can solve this problem with a modeling trick: We introduce an activ-
ity that includes only one single action (Figure 4.49).

 Think carefully whether or not you really need function trees since they nor-
mally translate in additional modeling work. Your modeling tool may perhaps be
capable of doing this work for you, since it requires many steps that can be auto-
mated once you have modeled the activity itself.

 4.8.2 Control Operator

Defi nitions
A control operator specifies a behavior that can enable and disable actions
through control values.

It is a stereotype «controlOperator» of the UML elements behavior and
operation.

A control value is an enumeration type with values describing the control of
a control operator.

 The activities of continuous systems normally contain actions that run continu-
ally. A control operator allows you to control such actions from the outside (i.e.,
you can terminate and start them). To this effect, the control operator outputs a

259

control value that either starts or terminates the subsequent action, depending on
the value.

 Figure 4.50 shows an action that invokes a control operator. The stereotype
 «controlOperator» is denoted at this action. The control operator itself is an activ-
ity in this example (Figure 4.56). The control operator has an output pin, which is
normally not represented. It is shown in Figure 4.50 for better understanding.

4.8 The Activity Diagram

FIGURE 4-48

Function tree for “start car usage.”

bdd [package] Start car usage [function tree]

«activity»
Start car usage

«activity»
Identify customer

«activity»
Check usage right

«activity»
Request usage right

«activity»
Unlock car

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

0..1

«activity»
Check disposal right

«activity»
Start car usage

«activity»
Activate car

«activity»
Confirm usage start

«activity»
Cancel usage start

«domain»
Customer

260 CHAPTER 4 SysML—The Systems Modeling Language

 In contrast, the subsequent action requires an input pin as well. It is a control
pin, which is not normally shown either. This means that it is no longer visible at
a glance whether or not it is a control fl ow or an object fl ow. The control pin at
the action show car usage data in Figure 4.50 is an optional parameter.

 A control value defi ned in SysML describes only two values, enable and dis-
able (Figure 4.51). SysML leaves it up to the modeler to extend the enumeration
type, for example, by the values suspend and resume (Figure 3.22).

FIGURE 4-49

Modeling trick for function trees.

act Confirm usage start

Confirm
usage start

FIGURE 4-50

Example for the control operator «continuous».

act Show car usage data

Car movement
data

Determine car
usage data

Car movement data

Time

Car usage data

Show car
usage data

Car usage data
{stream}

End
usage

Updating

«discrete»
{rate�1/minute}

Display
on/off

«controlOperator»
Enable/disable

display

«overwrite»
{upperbound�1}

ControlValue

«optional»
ControlValue
{control}

261

 4.8.3 Rate

4.8 The Activity Diagram

FIGURE 4-51

Example for control values.

bdd [package] UML4SysML [ControlValue]

«enumeration»
ControlValue

enable
disable

FIGURE 4-52

Example for using a rate.

act Determine car usage data (section)

Determine car
usage data

Updating

«discrete»
{rate�1/minute}

Movement data

Car usage data

Time

Defi nition
A rate describes the frequency in which elements traverse an activity edge, or
flow in and out of a parameter.

It is a stereotype «rate» of the UML elements activity edge and parameter.

 Elements are transported along an edge between two actions or object nodes. The
interval in which they are transported is important for the specifi cation of that
fl ow. The same applies to activity parameters, which can accept or supply data in
a certain frequency, provided they have fl ow property. The rate specifi es this fre-
quency (e.g., liters per second).

 We distinguish between continuous rate, for example, of a liquid in a pipeline,
and discrete rate, such as work pieces on an assembly line. We use the stereotypes
 «continuous» and «discrete» (Figure 4.53).

 The rate is denoted in curled brackets at the edge. In addition, we can denote
either «continuous» or «discrete» next to it (Figure 4.52).

 {rate= < constant value > } or {rate= < distribution definition > }.

 4.8.4 Special Object Node Properties
 The stereotype «nobuffer» describes object nodes that reject tokens if they can-
not be accepted by subsequent edges or actions.

262 CHAPTER 4 SysML—The Systems Modeling Language

 The stereotype «overwrite» describes object nodes, the tokens of which are
overwritten by newly arriving tokens.

 The stereotype «optional» describes parameters that do not have to have val-
ues in order to execute the pertaining behavior.

FIGURE 4-53

Stereotypes for rate.

bdd [package] OMGSysML::Activity [rate]

«metaclass»
UML::Parameter

«metaclass»
UML::ActivityEdge

«stereotype»
Rate

«stereotype»
Continuous

«stereotype»
Discrete

Use stereotype on UML basic
elements

Specialization of the
stereotype rate

FIGURE 4-54

Example for using «overwrite».

«continuous»
act Show car usage data [section]

Car movement
data

Determine car
usage data

Car movement data

Time

Car usage dataUpdating

«discrete»
{rate�1/minute}

«overwrite»
{upperbound�1}

263

 The standard behavior of an object node is the behavior of a buffer. This means
that it can accept an arbitrary number of object tokens, passing them on by the
FIFO 8 principle as soon as subsequent edges or actions are ready to accept them.
The stereotypes «nobuffer» and «overwrite» change this standard behavior.

 The stereotype «nobuffer» suppresses a node ’ s buffer functionality. This is an
important property for continuous data streams or data arriving quickly in order
to prevent an overfl ow. It is also important when transient values, such as elec-
tric power, are transported, which must not or cannot be buffered. Tokens arriv-
ing at an object node with this property are rejected, unless they are immediately
forwarded.

 The stereotype «overwrite» causes object tokens that arrive at an object node
to overwrite existing—buffered—tokens as soon as the object node is full (i.e.,
when the specifi ed upper limit ({upperbound � n}) is reached) (Figure 4.54).
What is overwritten are the oldest tokens in the object node based on a defi ned
order—FIFO (default) or LIFO .9 An arriving null token removes all existing tokens.
The stereotype «overwrite» is assigned to a pin that can accept one object token
at most. This means that the subsequent action always gets the most current value.
This does not disable the buffer functionality, in contrast to the «nobuffer» prop-
erty. The buffer contains the most current element.

 Note that both «nobuffer» and «overwrite» have the same meaning for data
that arrive continually («continuous»). It is important to know that these object
node properties are independent of the streaming property.

 These stereotypes are denoted directly next to the pin, or above the name of
an activity parameter.

 It is possible to model actions and activities with optional input and output
values (i.e., with optional pins or activity parameters).

 Figure 4.55 shows the section of an extension from Figure 4.50 . With this
extension, we can now optionally display special messages.

4.8 The Activity Diagram

FIGURE 4-55

Example for using «optional».

«continuous»
act Show car usage data [with special messages; section]

Show car
usage data

Car usage data
{stream}

Special message
«optional»

Special message

8 First In, First Out.
9 Last In, First Out.

264 CHAPTER 4 SysML—The Systems Modeling Language

 4.8.5 Probability

FIGURE 4-56

Example for probabilities.

Defi nition
A probability describes at an outgoing edge of a choice or an object node
how probably it is that this edge will be used by a token.

It is a stereotype «probability» of the UML elements activity edge and param-
eter set.

 Edges outgoing from a choice have conditions and describe OR semantics. This
means that a token that arrives at a choice node will continue to fl ow over one of
the outgoing edges only where the condition is true.

 A probability is a value between zero and one, which describes at each outgo-
ing edge how probably it is that the token will fl ow over it. You can state the same
at the outgoing edges of an object node, since the OR 10 semantics also applies to
them. The sum of probabilities for all edges of the same origin has to result in 1.
Probability values can also be attached to parameter sets. Different incoming or
outgoing parameter sets have OR semantics.

 The probability is denoted at an edge in the following syntax (Figure 4.56):

 {probability= < value between 0 and 1 > }

 4.9 The State Machine Diagram
 The UML state model is used in SysML completely and in unchanged form. The
state machines and the corresponding diagram are independent of the respective

10 To be more exact it is the XOR (exclusive or) semantics. However it is more common to speak of
OR versus AND semantics.

«controlOperator»
act Enable/disable display

disable enable

[on][off]

ControlValue

{probability�0.5} {probability�0.5}

Display
on/off

265

discipline of the system we model, and they do not contain any software-specific
elements. Every system, regardless of whether it is a software or hardware sys-
tem, or a social or biological system has states and state transitions that can be
described in a state model (Figure 4.57).

 4.10 Interaction Diagrams
 In UML, this category includes four specific diagrams: the sequence diagram, the
communication diagram, the timing diagram, and the interaction overview dia-
gram. Of these diagrams SysML uses only the sequence diagram (Figure 4.58).

 While activity diagrams allow us to describe fl ows more or less independently
of the executing system elements, interaction diagrams show us who calls which
system behavior. In interaction, it is normally used to describe a concrete fl ow
(scenario).

 4.11 General Modeling Elements
 This section introduces model elements of SysML that do not belong entirely to
one of the categories discussed above, such as the requirement diagram. They can
be used in various diagram categories instead.

4.11 General Modeling Elements

FIGURE 4-57

State machine diagram.

stm [block] On-board computer [LED]

Standby

Ready for use

Checking usage right

Usage denied

off

after(20 seconds)

UsageRightSignal
[no authorization]

UsageRightSignal
[o.k.]

after(60 seconds)

CardReaderSignal(data)

CardReaderSignal(data)

CardReaderSignal(data)

after(240 seconds)
[usage start
error]

266 CHAPTER 4 SysML—The Systems Modeling Language

 4.11.1 Rationale

FIGURE 4-58

Example for the “unlock car” sequence diagram.

Defi nition
A rationale documents the principles or reasons for a modeling choice.

It is a stereotype «rationale» of the UML element comment.

 Your model is full of analysis and design choices. It is normally diffi cult for a
reader of the model to reproduce them. This can lead to diffi culty in understand-
ing and misunderstandings. This problem can easily be solved by using a com-
ment that describes the modeling rationale (Figure 4.59).

 The stereotype «rationale» characterizes this type of comments. It does not
add any properties to the UML element comment .

 4.11.2 Diagram Frame
 Some of the diagram types that are denoted in the upper left corner of a diagram
frame deviate in SysML from the UML identifiers (Table 4.1). Note that I used the
UML identifiers for the diagrams in the UML chapter (Chapter 3) (e.g., class for a
 class diagram and not bdd for a block definition diagram). In all other chapters,
however, I use the SysML convention.

sd [block] On-board computer context [system/actors unlock car]

«system»
:On-board computer

:Reservation
system

:Customer

Apply card

SigLED(yellow, blinking�true)

SigLED(green, blinking�false)

Usage right request

Usage right

Unlock car

:Central locking
system

267

 The matrix and table notations don ’ t belong to the normative part of the
SysML specifi cation (i.e., they are recommended) but are not mandatory in order
to be SysML-compliant. In SysML the model element and the element type are
denoted in addition to the diagram type and the diagram name. The syntax for a
full diagram header is as follows:

 type [model element type] model element [diagram name]

 For example,
 bdd [package] system context [with information flow]

Table 4.1 SysML diagram types.

Diagram Name and Type Abbreviation

Activity diagram act

Requirement diagram req

Use case diagram uc

Block defi nition diagram bdd

Internal block diagram ibd

Package diagram pkg

Parametric diagram par

Sequence diagram sd

State machine diagram stm

Matrix −

Table −

4.11 General Modeling Elements

FIGURE 4-59

Example for a rationale.

req [package] Sizes [enclosure for central unit]

«requirement»
Enclosure size central unit

«requirement»
id�“REQ2.1”
text�“The central unit of the on-board
computer has to fit in a
DIN compartment.”

«rationale»
The on-board computer has to be
built in the car radio compartment.

268 CHAPTER 4 SysML—The Systems Modeling Language

 describes a block defi nition diagram that represents the content of the package
 system context .

 The diagram frame is a mandatory description in SysML. The title has to
include the type and name of the model element, while the model element type
and diagram name are optional. If the elements represented in the diagram are
not within the namespace of the model element that is shown in the diagram,
then they have to be fully qualifi ed, for example, requirements::core::functional::
security rather than just security .

 For shortage of space I don ’ t show fully qualifi ed names in the diagrams in this
book. This is probably how it ’ s done in practice too.

 4.11.3 Model View and Viewpoint

Defi nitions
A view is a representation of the entire system, seen from a defined viewpoint.

It is a stereotype «view» of the UML element package.

A viewpoint specifies the structure of a view based on the goals of a set of
stakeholders.

It is a stereotype «viewpoint» of the UML element class.

A conform relationship binds a view with the viewpoint the requirements of
which it satisfies.

It is a stereotype «conform» of the UML element dependency.

 A model ’ s target group is very heterogeneous: system engineers, hardware and
software developers, analysts, project managers, quality assurance managers, tes-
ters, customers, and so on. Depending on the project, this list can get very long.

 Each of these groups of individuals has a certain vision of the model and pur-
sues their own interests. For example, a requirement analyst is not much inter-
ested in the design, while a hardware developer is not interested in the software,
and a project manager doesn ’ t really care about the details hidden deep down in
the model.

 A view supports all kinds of various interests by providing a view of the entire
model especially for a target group. More specifi cally, a view describes a set of
model elements that can be represented in various diagrams. This is a fi ltered
view of the model. It is denoted as an UML package with stereotype «view»
(Figure 4.60).

 Each view realizes exactly one viewpoint. A viewpoint describes the stake-
holders and their concerns, the view ’ s purpose, rules as to how the view should
be created (methods) as well as languages used to create the view. A viewpoint is
denoted as a class with stereotype «viewpoint» (Figure 4.60).

269

FIGURE 4-60

Example for a view.

bdd [package] Customer requirement view [requirements/use cases]

«view»
Customer view

Requirements Use cases

«conform»

«viewpoint»
CustomerRequirementViewpoint

«viewpoint»
stakeholder�“Customer, requirements engineer, projectmanager”
concerns�“Which requirements does the system satisfy?”
purpose�“Show the requirements, including their relationships, that are of
primary interest for the customer.” methods�“The model view
includes all use cases...”
languages�“SysML”

4.11 General Modeling Elements

FIGURE 4-61

Example for a problem.

bdd [package] On-board computer [card reader problems]

«block»
On-board
computer

«block»
Card reader

«problem»
It has been reported that the competitor system
frequently suffers form read errors and failures.
This is not acceptable.

«block»
Customer card

270 CHAPTER 4 SysML—The Systems Modeling Language

 The conform relationship is modeled between a view and a viewpoint (Figure
4.60). The defi nition of views and viewpoints is coordinated with IEEE standard
1471 [3].

 4.11.4 Problem

Defi nition
A problem documents an (potential) error or a flaw in the model or in the
modeled system.

It is a stereotype «problem» of the UML element comment.

 We usually discover real or potential problems that cannot be solved in an ad-hoc
way during the different system development phases—analysis, design, implemen-
tation, test, production, and operation. The model element problem allows us to
document this information in the model (Figure 4.61).

271

 People who speak too many languages usually don ’ t say much in any of them.
 (Peter Ustinov)

 Together, the stereotypes discussed in this chapter form the SYSMOD engineering
profi le required for the SYSMOD approach discussed in this book (Chapter 2). You
will most likely introduce additional stereotypes and defi ne an individual profi le in
your own projects. Depending on the domain, such as aeronautics, for example, and
the development process or model simulation used, each project requires its own
modeling vocabulary in the form of stereotypes and profi les. The SYSMOD profi le is
generic, forming a good starting platform for your own project-specifi c profi les.

 The profi le extends the SysML language. If you want to use UML only, rather
than SysML, you have to additionally use the SysML stereotypes on which this
profi le depends. For example, the «domain» stereotype is a specialization of the
SysML stereotype «block» which, in turn, is an extension of the UML element class .

 The UML extension mechanism for stereotypes is discussed in Section 3.10.2.
Each good SysML/UML tool supports this form of language extension. Ideally, the
profi le can be developed independently and used for your respective project model.

 Many modeling tools come with various stereotypes. Unfortunately, they are
not always explained and often mixed among the pure SysML/UML elements so
that it is diffi cult for developers to see whether they are looking at a pure lan-
guage element or a stereotype. The situation in the literature is similar. This is why
I knowingly paid attention in this book to separate the profi le description from
the UML and SysML descriptions.

 5.1 Actor Categories

 Systems Engineering
Profi le—SYSMOD 5

CHAPTER

 Defi nitions
 An environmental effect is a factor from the environment that infl uences the
system without communicating with it directly.

 It is a stereotype «environmentalEffect» of the UML element actor.

272 CHAPTER 5 Systems Engineering Profi le —SYSMOD

 An external system is a system that interacts directly with the system to be mod-
eled. In its role as an interaction partner, the external system is seen merely as a
black box.

 It is a stereotype «externalSystem» of the UML element actor .

 Defi nitions
 A user system is a special external system serving a user as a medium to inter-
act with the system.

 It is a stereotype «userSystem» as a specialization of the stereotype
 «externalSystem» .

 A boundary system is a special external system serving another external sys-
tem as a medium to interact with the system.

 It is a stereotype «boundarySystem» as a specialization of the stereotype
 «externalSystem» .

 An actuator is a particular external system that serves the system to influence
its environment.

 It is a stereotype «actuator» as a specialization of the stereotype
 «externalSystem» .

 A sensor is a special external system that accepts information from the envi-
ronment and forward it to the system.

 It is a stereotype «sensor» as a specialization of the stereotype
 «externalSystem» .

 A mechanical system is a special external system that has only mechanical
aspects from the system’s view.

 It is a stereotype «mechanical system» as a specialization of the stereotype
 «externalSystem» .

 Actor categories distinguish the different types of an actor, helping us to bet-
ter understand the system context and the use cases (Figure 5.1). Each category
requires a different modeling approach, e.g., when identifying the use cases
(Section 2.4.1). The categories defi ned here are customary and have proven in
practice. Nevertheless, there may be a need for additional categories, or a subset
of the categories suggested here in a specifi c project, of course.

 Figure 5.2 shows the symbols of actor categories. The fi gure does not list the
user who is a standard UML actor, i.e., users are not part of the profi le. The user
is denoted as a stick man. In our approach, we introduce the actor categories in
Section 2.3.1.

273

bdd [package] SYSMOD profile (actor categories)

«metaclass»
UML4SysML::Actor

«stereotype»
External system

«stereotype»
User system

«stereotype»
Boundary system

«stereotype»
Actuator

«stereotype»
Sensor

«stereotype»
Environmental

effect

«stereotype»
Mechanical

system

 FIGURE 5-1

 Stereotypes for actor categories.

5.1 Actor Categories

bdd [package] SYSMOD profile notations [symbols for actor categories]

Actuator Sensor

Interface systemUser system

Environmental influenceExternal system

Mechanical system

 FIGURE 5-2

 Symbols for actor categories.

274 CHAPTER 5 Systems Engineering Profi le —SYSMOD

 5.2 Discipline-Specifi c Elements
 SysML was not designed to replace discipline-specifi c modeling languages, such
as UML or MATLAB®/Simulink®. SysML is used to describe a system across disci-
plines. This is why the model ’ s degree of details should stop when a mixture of
disciplines is no longer given.

 If you have elements in your SysML model that can be fully allocated to one
single discipline, then it is meaningful to mark them with a stereotype.

 Discipline-specifi c elements are blocks or connectors, and they may be other
elements that can be fully allocated to one single discipline. They generally form the
bottom limit of the SysML model. A discipline-specifi c block is detailed in a model
and in a language pertaining to that discipline. The SYSMOD profi le defi nes several
stereotypes for discipline-specifi c elements by way of example (Figure 5.3).

 Figure 5.4 shows a simple model for our example system concerning the attach-
ment of a card reader to the windshield of rentalCar (Figure 2.3). There are two
suction cups that hold the housing tight on the windshield pane. The mechanical
connection and the mechanical blocks are defi ned with a stereotype each.

bdd [package] SYSMOD profile [discipline-specific elements]

«stereotype»
Mechanical block

«stereotype»
Software block

«stereotype»
Hardware block

«stereotype»
OMGSysML::Block

«stereotype»
Mechanical
connector

«stereotype»
Software

connector

«stereotype»
Hardware
connector

«metaclass»
Connector

 FIGURE 5-3

 Discipline-specifi c elements.

275

 ID and text, the properties defi ned in SysML for a requirement, are not suffi cient
in a specifi c project. The extended requirement shows how we can close this
gap. The properties introduced here are common, but not necessarily important
or exhaustive in every project. The extended requirement adds the following
properties:

 ■ Priority : How important is this requirement? This piece of information helps
you focus on high-priority requirements.

 ■ Obligation : Is the requirement obligatory or just desirable?
 ■ Stability : Will the requirement change in the course of the system ’ s develop-

ment, or will it remain stable?
 ■ Type : The user type includes requirements specifi ed by the contractor.

The system type normally includes requirements that emerge from refi ning
contractor requirements and by including a technical solution. Require-
ment types refl ect the difference between user specifi cation and system
specifi cation.

ibd [block] On-board computer context [fastening a card reader]

:Card reader

«mechanical block»
:Suction cup

2
«mechanical block»

:Case
«mechanical connector»

:Windshield

«mechanical connector»

 FIGURE 5-4

 Modeling mechanical elements.

5.3 Extended Requirement

 Defi nition
 An extended requirement is a requirement that extends the requirement in
question by the following properties: priority , obligation , stability , type , and risks .

 It is a stereotype «extendedRequirement» as a specialization of the SysML
stereotype «requirement» (Figure 5.5).

 5.3 Extended Requirement

276 CHAPTER 5 Systems Engineering Profi le —SYSMOD

 ■ Risks : What risks hide behind a requirement? For example, are there doubts
whether the technical realization is at all possible, or whether the require-
ment will encourage political forces that might work against the project?

 You can group a large number of possible requirements in categories. The
 FURPS model distinguishes between fi ve categories: F unctionality, U sability,
 R eliability, P erformance, and S upportability [19]. It is normally a good idea to defi ne
your own stereotypes for these requirement categories. SysML does not provide any
specifi cation since the categories are all very project-specifi c and cannot be defi ned
for general purposes. Figure 5.6 shows the categories of the SYSMOD profi le.

 5.4 Essential Activity

bdd [package] SYSMOD profile [extendedRequirement]

«stereotype»
OMGSysML::Requirement

priority:PriorityKind
obligation:ObligationKind
stability:StabilityKind
type:ReqTypeKind
risks:String[*]

«stereotype»
Extended requirement

high
medium
low

«enumeration»
PriorityKind

obligatory
nonobligatory

«enumeration»
ObligationKind

stable
instable

«enumeration»
StabilityKind

user
system

«enumeration»
ReqTypeKind

 FIGURE 5-5

 The «extendedRequirement» stereotype.

 Defi nition
 An essential activity describes the degree of details of an essential use case
step.

 It is a stereotype «essential» of the UML element activity.

 To ensure that essential steps are directly visible in the diagram and that they can
be recognized by document generators, for example, the corresponding activities
are defi ned with the «essential» stereotype (Figure 5.7). The stereotype is also vis-
ible in actions that invoke such an activity (CallBehaviorAction).

277

 You can fi nd an example for essential steps in the fl ow model in Figure 2.59 in
Section 2.4.5.

 5.5 Domain Block

bdd [package] SYSMOD profile [requirement categories]

«stereotype»
Extended requirement

«stereotype»
Functional

requirement

«stereotype»
Constraint

requirement

«stereotype»
Usability

requirement

«stereotype»
Legal and business
rules requirement

«stereotype»
Reliability

«stereotype»
Supportability

«stereotype»
Performance

 FIGURE 5-6

 Requirement categories.

bdd [package] SYSMOD profile
[essential activity]

«metaclass»
UML4SysML::Activity

«stereotype»
Essential

 FIGURE 5-7

 The «essential» stereotype for activities.

5.5 Domain Block

 Defi nition
 A domain block represents an object, a concept, a location, or a person from
the real-world domain. A domain block is directly known to the system.

 It is a stereotype «domain» as a specialization of the SysML stereotype «block»
(Figure 5.8).

278 CHAPTER 5 Systems Engineering Profi le —SYSMOD

 Domain blocks differ from “ normal ” blocks in that they do not represent a real
object of the system. They are the basic elements of the domain knowledge
model, describing domain terms known to the system. The specifi c fl avor in the
real-world system is normally specifi ed by other model elements—often from the
software discipline.

 In our approach, we use domain blocks in the domain knowledge model dis-
cussed in Section 2.5.

 5.6 Weighted Requirement Relationships

 FIGURE 5-9

 Weighted requirement relationships.

bdd [package] SYSMOD profile [weighted requirement relationships]

coverage:Real {0�coverage	1} coverage:Real {0�coverage	1}

«stereotype»
Weighted satisfy

«stereotype»
Weighted verify

«stereotype»
OMGSysML::Satisfy

«stereotype»
OMGSysML::Verify

 Defi nition
 Weighted satisfy and weighted verify add information about the degree of
coverage to the SysML satisfy and verify relationships.

They are the stereotypes «weightedSatisfy» and «weightedVerify», respectively,
as a specialization of the SysML stereotypes «satisfy» and «verify» (Figure 5.9).

bdd [package] SYSMOD profile [domain block]

«stereotype»
OMGSysML::Block

«stereotype»
Domain

 FIGURE 5-8

 The «domain» stereotype for blocks.

279

bdd [package] SYSMOD profile [use cases]

«metaclass»
UML4SysMLUseCase

«stereotype»
Continuous

«stereotype»
Secondary

«metaclass»
UML4SysML::Activity

 FIGURE 5-11

 Stereotypes for use cases.

5.7 Continuous and Secondary Use Cases

 FIGURE 5-10

 Example for a weighted satisfy relationship.

req [package] Functional requirements [card reader cover]

«functionalRequirement»
Identify customer

«block»
Card reader«weightedSatisfy»

{coverage�0.4}

 The SysML satisfy relationship merely states that a system element meets a given
requirement. It does not say anything as to whether the requirement is fully or
partially satisfi ed. The coverage of the weighted satisfy relationship describes the
degree of fulfi llment. A coverage of 1 means full coverage. Figure 5.10 shows that
the card reader meets 40 percent of the functional requirement. The same applies
to the weighted verify relationship. The coverage describes how muchof the
requirement in percent (a number between 0 and 1) is verifi ed by the test case.

 5.7 Continuous and Secondary Use Cases

 Defi nitions
 A continuous use case is a special use case that starts in a defi ned system
state and continually supplies results. No fi nal result is required.

 It is a stereotype «continuous» of the UML elements use case and activity
(Figure 5.11).

 A secondary use case is an incomplete use case fragment. It lacks a domain
trigger, a result, or an actor

 It is a stereotype «secondary» of the UML elements use case and activity
(Figure 5.11).

280 CHAPTER 5 Systems Engineering Profi le —SYSMOD

 A normal use case begins with a trigger; it has a temporally coherent fl ow and
ends with a result. Normal use cases are not suitable for all kinds of services pro-
vided by a system. For example, control circuits often have no domain triggers
and hardly ever a fi nal result. We, therefore, use continuous use cases to describe
these types of services.

 Activities that describe the fl ow of a continuous use case are also defi ned with
the «continuous» stereotype. Actions that invoke continuous use case activities
(CallBehaviorAction) show stereotypes in their notation.

 You can optionally use the stereotype symbol for continuous use cases. It is an
ellipse with arrows (Figure 5.12).

 In our approach, we use continuous use cases in Section 2.4.1 (Figure 2.37),
for example.

 A secondary use case characterizes a use case fragment. This is a “ piece ” of use
case that has no trigger, no result, or none of the other use case criteria. It is mod-
eled only if its fl ow is part of several (primary) use cases. This allows us to avoid
redundant descriptions. Include creates a relationship between primary and sec-
ondary use cases.

 Activities that describe the fl ow of a secondary use case are also defi ned with
the «secondary» stereotype, as are actions that invoke secondary use case activities
(CallBehaviorAction). You can optionally use the stereotype symbol for second-
ary use cases. It is a dashed ellipse (Figure 5.13).

 We have used secondary use cases in Section 2.4.4 (Figure 2.54), for example,
in our approach.

uc [package] SYSMOD profile notations [secondary use case]

«secondary»
Secondary
use case

Secondary
use case

 FIGURE 5-13

 Notation for secondary use cases.

uc [package] SYSMOD profile notations [continuous use case]

«continuous»
Continuous

use case

Continuous
use case

 FIGURE 5-12

 Notation for continuous use cases.

281

 5.8 Stakeholders

bdd [package] SYSMOD profile [stakeholder]

«metaclass»
Actor

concerns:String

«stereotype»
Stakeholder

 FIGURE 5-14

 The stereotype for stakeholders.

5.8 Stakeholders

 FIGURE 5-15

 Example for stakeholders.

req [package] Comfort functions [Stakeholder]

«stereotype»
Marketing

«stereotype»
Customer

«requirement»
Comfort functions

«trace»

«trace»

Defi nition
A stakeholder is a person or institution that has an interest in the system,
potentially contributing requirements.

It is a stereotype «stakeholder» of the UML element actor (Figure 5.14).

 Section 2.2.1 is fully dedicated to stakeholders. Pragmatically, they are docu-
mented in a word processor, for example. You can use the «stakeholder» stereo-
type if you want to explicitly add stakeholders to your model. Though this means
that you will initially have more work, compared to documenting them in a word
processor, you will then have a possibility to use the trace relationship to relate
the stakeholders with other model elements, such as requirements (Figure 5.15).

282 CHAPTER 5 Systems Engineering Profi le —SYSMOD

 5.9 Systems and Subsystems

 We introduced the system element in Section 2.3.1.

bdd [package] SYSMOD profile [system and subsystem]

«stereotype»
OMGSysML::Block

«stereotype»
Subsystem

«stereotype»
System

 FIGURE 5-16

 The stereotype for subsystems.

Defi nition
A subsystem is a system block that, in turn, represents an independent system.
This is often the case in large system (System of Systems, SoS). For example,
our on-board computer in Chapter 2 includes the subsystems radio and navi-
gation. Again, there are no hard criteria as to how subsystems are denoted. It is
eventually a project decision.

Defi nitions
A system is an artifact created by humans and consisting of blocks that pursue
a common goal that cannot be achieved by the system’s individual elements.
A block can be software, hardware, a person, or an arbitrary unit [45].

It is a stereotype «system» as a specialization of the SysML stereotype «block».

A subsystem describes a closed unit within a larger system.

It is a stereotype «subsystem» as a specialization of the SysML stereotype
«block» (Figure 5.16).

A block can describe very small elements, but also very large ones. SysML does
not dictate anything in this respect. The largest block in a system is the system
itself. This special role is emphasized by the stereotype «system».

 In our approach, we used subsystems in Section 2.7.3.

283

bdd [package] SYSMOD profile [system context element]

«stereotype»
OMGSysML::Block

«stereotype»
System context

 FIGURE 5-17

 The stereotype for system context elements.

5.11 System Processes

Defi nition
A system context element is a virtual wrapper around the entire system and
its actors.

It is a stereotype «systemContext» as a specialization of the SysML stereotype
«block» (Figure 5.17).

 5.10 System Context Elements

 SysML itself offers only very few modeling possibilities to describe the environ-
ment of a system in more detail. The system context element creates a virtual
wrapper, so that the actors are no longer outside the modeling context, but put in
relation to the context element within. This supports a more detailed view of the
internal block diagram.

 Apart from the general stereotype representation, the system context element
has no notation of its own. It is normally not represented in a diagram.

 We introduced the system context element in Section 2.3.2 in our approach.

 5.11 System Processes

Defi nition
A system process describes a fl ow across use cases. It consists of a set of use
cases that have a domain-logical sequence.

It is a stereotype «systemProcess» of the UML elements use case and activity
(Figure 5.18).

284 CHAPTER 5 Systems Engineering Profi le —SYSMOD

 The use cases of a system can be subject to a domain-logical sequence. This
means, e.g., that use case A cannot be executed before use case B was executed.
This is implicitly formulated by defi ning pre- and postconditions for the use cases.
The postcondition of use case B is part of the precondition of use case A .

 If you want to model this explicitly, the system process describes the sequence
of selected use cases. It is itself a stereotyped use case that includes the selected
use cases via the include relationship, and it describes the sequence in an activity
that also uses the «systemProcess» stereotype.

To distinguish the system process clearly from regular use cases, it has its own
notation. It is the most widely used process symbol (Figure 5.19). We have used
system processes in Section 2.4.3 in our approach.

bdd [package] SYSMOD profile [system process]

«metaclass»
UML4SysML::UseCase

«stereotype»
System process

«metaclass»
UML4SysML::Activity

 FIGURE 5-18

 The stereotype for system processes.

uc [package] SYSMOD profile notations [system process]

System process System process «system Process»
System process

 FIGURE 5-19

 Notation for system processes.

285

 The important thing is not to stop questioning.
 (Albert Einstein)

 In addition to SysML- and UML-specifi c terms, this glossary also includes terms from the SYSMOD
approach in particular and systems engineering in general. The origin of each term is marked
with either [SysML], [UML], [SYSMOD], or [other]. Of course, the UML terms also belong to the
SysML language (Section 4.2).

 A
 Abstraction [other] : The result of a way of mapping things that emphasizes certain aspects

while omitting others.
 Abstraction dependency [UML] : The mapping between model elements onto various abstrac-

tion levels.
 AcceptEventAction [UML] : An elementary �action that receives an �event, or accepts the

arrival of a signal.
 Action [UML] : An action is an elementary executable step within an activity.
 Activity [UML] : An activity describes the coordinated sequencing consisting of elementary

actions. The sequencing can be parallel or synchronized, or split and recomposed on the basis
of conditions.

 Activity diagram [UML] : A diagram that depicts behavior associated with activities using input/
output and control fl ow. It is the visualization of an �activity.

 Activity edge [UML] : An activity edge is an abstract class for directed connections between
two �activity nodes. We distinguish between �object fl ow edges and �control fl ow edges.
Synonym: Edge.

 Activity fi nal node [UML] : The activity fi nal node terminates the entire �activity as soon as a
single fl ow arrives at the node.

 Activity parameter node [UML] : An activity parameter node is an �object node for inputs and
outputs to activities.

 Activity partition [UML] : An activity partition is a kind of activity group for identifying actions
that have some characteristic in common.

 Actor [UML] : An actor is a role that interacts with the system. This role can be played by a user
or any other system. An actor is external to the system.

 Actuator [SYSMOD] : An actuator is a particular �external system that serves another system to
infl uence its environment.

 Aggregation [UML] : Describes a �class as an aggregate and specifi es a whole-part relationship
between the aggregate (whole) and a component part. In contrast to a �composition, the
aggregate is not responsible for its parts.

 Allocate activity partition [SysML] : A special �activity partition that allocates each �action
within the partition to the structure that is represented by the partition.

 Allocation [SysML] : An abstract relationship between elements of different types or on different
levels. It allocates a target element to one or more source elements.

 Association [UML] : An association is a structural relationship between two �classes.
 Association block [SysML] : An association block describes the structural properties of an

�association.
 Association class [UML] : An association class unifi es the properties of an �association with

those of a �class.
 Asynchronous message [UML] : A �message where its sender does not wait for the receiver to

complete processing it, but continues with its fl ow immediately upon sending it.
 Atomic fl ow port [SysML] : An �object fl ow port that is not typed by an �object fl ow specifi ca-

tion, but which is a �system component or a �data type.
 Attribute [UML] : An attribute defi nes a structural property of a class. This description consists of

visibility, name, type, and a multiplicity.

 Glossary

286 Glossary

 B
 Behavior diagram [UML] : A diagram used in �SysML and �UML to describe dynamic aspects.
 Block [SysML] : A modular unit that describes the structure of a system or element.
 Block defi nition diagram [SysML] : A diagram that shows the defi nition of �blocks and their

relationships (e.g., a �composition).
 Boundary system [SYSMOD] : A special �external system that provides an interface to another

external system.

 C
 Call event [UML] : �Event.
 CallBehaviorAction [UML] : An elementary action that invokes a behavior element, such as an

activity, directly.
 CallOperationAction [UML] : An elementary action that invokes an �operation.
 Change event [UML] : �Event.
 Choice pseudo state [UML] : The decision is a �pseudo state which, when reached, evaluates

conditions to select the next �transition.
 Class [UML] : A class describes the structure and behavior of �objects, which have identical

characteristics and semantic. The structure is described by �attributes, while the behavior is
described by �operations.

 Class diagram [UML] : A diagram that shows �classes and their relationships. This diagram is
available in UML only. SysML uses a different form called �block defi nition diagram.

 Combined fragment [UML] : A combined fragment describes an expression consisting of an
�interaction operator and �interaction fragments as operands.

 Comment [UML] : A comment is a textual annotation that can be attached to a set of elements.
Synonym: Note.

 Communication path [UML] : A communication path is an �association between �actor and
�use case, or between actor and system. The name is used synonymously for a relationship
in the �deployment diagram.

 Complexity [other] : Refers to the number and type of relationships between elements in a
system.

 Composite state [UML] : A �state that has at least one �region.
 Composite structure diagram [UML] : A diagram that describes the internal structure of a

�class consisting of �roles and �connectors. The diagram is available in UML only. SysML
uses a different form called �internal block diagram.

 Composition [UML] : A composition denotes a �class as an aggregate and describes a whole-
part hierarchy. The aggregate is existentially responsible for its parts.

 Conform [SysML] : A relationship that connects a �model view with a �viewpoint the require-
ments of which it meets.

 Connector [UML] : A connector specifi es a relationship between two �roles that allows them
to communicate.

 Constraint [UML] : A condition that constrains the semantic of model elements, and which must
always be met.

 Constraint block [SysML] : A block that describes �constraints of system structures and the
parameters required for this.

 Context object [UML] : A relative term that refers to a behavior and the �object in which that
behavior is executed.

 Continuous use case [SYSMOD] : A special �use case that starts in a defi ned system state and
continually supplies results. A fi nal result is not required.

 Control fl ow [UML] : An �activity edge that is traversed by �control tokens only.
 Control node [UML] : A node in an �activity that controls the fl ow of �control tokens or �object

tokens.
 Control operator [SysML] : A control operator specifi es a behavior that can enable and disable

�actions by use of �control values.
 Control pin [UML] : A �pin that accepts �object tokens. It can cause an �action to be

executed, but does not forward the �object to the action.

287Glossary

 Control token [UML] : �Token.
 Control value [SysML] : An �enumerated value that is used to control a �control operator.
 Copy [SysML] : A relationship describing that a �requirement is a copy of another requirement.
 Core requirement [SYSMOD] : A requirement that refers to the entire system; it is independent

of the particularities of system variants.

 D
 DataType [UML] : A type with �instances that can be identifi ed by their values only.
 Decision node [UML] : The decision is a node in an �activity where several optional fl ows

branch. There is exactly one incoming �edge and an arbitrary number of outgoing edges,
each having a condition.

 Dependency [UML] : A relationship between two elements which describes that one element
requires another element for its specifi cation or implementation.

 Deployment diagram [UML] : A diagram that shows the hardware structure and the deployment
of software. This diagram is not part of �SysML.

 Derive requirement [UML] : A �requirement that has been derived from another requirement.
 Derived association/attribute [UML] : An association or attribute that can be derived from

other model elements. Not to be confused with �generalization.
 Destruction event [UML] : An event that specifi es the time in an �interaction at which the

instance belonging to the �lifeline will be destroyed.
 Diagram frame [UML] : A rectangle around a SysML/UML diagram with a diagram heading in the

upper left corner, which describes the diagram (type, name, and other information).
 Dimension [SysML] : A dimension describes the quantity of a �unit.
 Distribution defi nition [SysML] : A defi nition that describes in the form of a defi ned value range

how values are distributed.
 Do behavior [UML] : An optional behavior that is executed if the �state is active.
 Domain block [SYSMOD] : A domain �block represents an object, a concept, a location, or a

person from the real-world domain. A domain block is directly known to the system.
 Domain experts [other] : A domain consists of domain experts who supply domain-specifi c

�requirements.
 Domain model [SYSMOD] : A domain model describes the �domain blocks of a system and

their relationships.

 E
 Edge [UML] : Synonym: �Activity edge.
 Enhanced Functional Flow Block Diagram (EFFBD) [other] : A diagram based on the Func-

tional Flow Block Diagram (FFBD), which was developed by TRW in the 1950s, representing
complex fl ows in a simple way. An EFFBD adds data fl ow information.

 Entry behavior [UML] : An optional behavior that is executed immediately upon entering a
�state.

 Entry point [UML] : A particular point of entry in a �state machine. From the entry point, a tran-
sition leads to a state, or to a state in each �region in case of orthogonal regions.

 Enumeration [UML] : A special �data type with a value range consisting of a limited set of de-
fi ned literals.

 Environmental effect [SYSMOD] : A factor in the environment that infl uences the �system
without communicating directly with it.

 Essential activity [SYSMOD] : An essential activity denotes �activities that describe the details
of an essential use case step.

 Essential requirement [SYSMOD] : A �requirement describing the pure domain intention,
regardless of the technical implementation (solution).

 Event [UML] : An occurrence, the time and location of which can be measured, that can trigger
behavior in an �object. SysML/UML distinguishes between call, change, signal, and time events.

 Execution specifi cation [UML] : Specifi es that the �object represented by the �lifeline
executes behavior at this point.

288 Glossary

 Exit behavior [UML] : An optional behavior that is executed immediately prior to exiting
a �state.

 Exit point [UML] : An exit point stops a �state machine. When a �transition in any �region of
the state machine reaches an exit point, then the state machine is terminated, and the transi-
tion outgoing from the exit point is activated.

 Expansion region [UML] : A node in an �activity that accepts a set of objects, then processes
each of these objects individually, and fi nally returns the set of processed objects.

 Extension [UML] : A relationship that extends an UML model element by additional properties
that are defi ned as �stereotype.

 External system [SYSMOD] : A system that interacts directly with the system to be modeled. In
its role as an interaction partner, an external system is considered merely a black box.

 F
 Final state [UML] : A �state that describes the end of a �composite state or a �state machine.
 Flow allocation [SysML] : Flow allocation connects an �information object fl ow in a structure

diagram with a �fl ow edge in an �activity diagram.
 Flow fi nal node [UML] : A fi nal node that terminates a fl ow in an �activity.
 Flow port [SysML] : Describes an interaction point of a �system block, including its environ-

ment, over which objects can fl ow into the block or out of it.
 Flow specifi cation [SysML] : A special interface that specifi es data incoming and outgoing over

a �fl ow port.
 Fork node [UML] : A node in an �activity, which splits a fl ow into several concurrent fl ows.

There is exactly one incoming �edge and an arbitrary number of outgoing edges.
 Fork pseudo state [UML] : A pseudo state, which splits an incoming �transition into two or

more transitions that lead to orthogonal �regions.
 Frequency [SysML] : �Rate.

 G
 Generalization [UML] : A generalization is a taxonomic relationship between a more general

�class and a more specifi c class. Synonym: Specialization, Inheritance.
 Glossary [SYSMOD] : The glossary explains all domain-specifi c terms of a project in a style simi-

lar to a lexicon.

 H
 History pseudo state [UML] : A pseudo state that stores the last state confi guration of a �region

in which it resides. We distinguish between deep history (with substates) and shallow history
(without substates).

 I
 Include relationship [UML] : A relationship describing that a �use case is included in another

use case.
 Information fl ow [UML] : A directed relationship between �actors, �use cases, �classes,

�ports, �roles, �interfaces, �packages, or �objects. It shows that �information items are
exchanged between these elements.

 Information item [UML] : An abstract concept of UML used to model the presence and convey-
ance of information on a coarse level.

 Inheritance [UML] : �Generalization.
 Initial node [UML] : An initial node is the starting point for a fl ow that is started when an �activ-

ity is invoked.
 Initial state [UML] : An initial state is a �pseudo state with an outgoing �transition that points

to the initial �state.
 Input pin [UML] : �Pin.
 Instance [UML] : Synonym: Item, �Instance specifi cation, Object.

289Glossary

 Instance specifi cation [UML] : Describes a specifi c instance that has been created by the build-
ing plan of a type description (e.g., a �class). Synonym: Item, Instance, Object.

 Interaction [UML] : Describes a communication between �lifelines. This communication is based
on the exchange of messages in the form of �operation calls or �signals.

 Interaction diagram [UML] : A diagram that shows the communication between selected inter-
action partners in a limited situation.

 Interaction fragment [UML] : Part of an �interaction.
 Interaction operator [UML] : The operator of a �combined fragment. SysML/UML defi nes these

operators: alt, opt, break, loop, seq, strict, par, critical, neg, assert, consider, and ignore.
 Interaction use [UML] : A reference to an �interaction. The model is designed such that the

reference could be substituted by the referenced interaction.
 Interface [UML] : An interface specifi es structure and behavior. It does not contain any imple-

mentation, and no �object can be created by its building plan.
 Internal block diagram [SysML] : A special composite structure diagram that describes the

structure of a �block.
 Interruptible activity region [UML] : A region within an �activity that can be terminated by a

�token fl ow via special interruptible edges.
 Intricacy [other] : Refers to the number of different elements in a system.
 Item fl ow [SysML] : A special �information fl ow, which describes at a �connector in the inter-

nal block diagram that specifi c �objects are being transported.

 J
 Join node [UML] : A node in an �activity that synchronizes several concurrent fl ows, grouping them

into one. There is an arbitrary number of incoming edges and exactly one outgoing �edge.
 Join pseudo state [UML] : A �pseudo state that groups �transitions from orthogonal �regions.
 Junction pseudo state [UML] : A �pseudo state that connects �transitions and composes them

into a path.

 L
 Lifeline [UML] : A lifeline represents a communication partner in an �interaction. It describes

the element ’ s name, type, and lifecycle.
 Link [UML] : An �instance of an �association (i.e., a specifi c relationship) between two

�objects.

 M
 Measure of Effectiveness (MOE) [SysML] : MOE, also called Effectiveness Measure, is a metric

stating a customer ’ s satisfaction with the technical properties of a system.
 Mechanical system [SYSMOD] : A special external system that has only mechanical aspects

from the own system ’ s view.
 Merge node [UML] : A node in an �activity at which several fl ows are merged into one fl ow.

There is an arbitrary number of incoming edges and exactly one outgoing �edge.
 Message [UML] : A form of communication between two �lifelines. It can be either �synchro-

nous or �asynchronous. It can invoke an �operation, or transport a �signal, or create an
�object.

 Model [UML] : A model describes a �system for a specifi c purpose.
 Model of Models (MoM) [other] : The �model of a �system of systems. It consists of indepen-

dent models that, together, describe a system.
 Modeling tool [other] : A software application used to create and manage �SysML or �UML

models.
 Multiplicity [UML] : An interval of positive integers that describes how many objects an

�attribute can accept.

 N
 Namespace [UML] : The namespace contains all elements that can be uniquely identifi ed by their

names. Examples for namespaces are �packages and �system blocks.

290 Glossary

 Namespace containment [UML] : A relationship describing that a �namespace is included in
another �namespace.

 Navigation [UML] : A property of associations specifying that objects at one �association end
can access objects at the other end.

 Note [UML] : Synonym: �Comment.
 Null token [UML] : A special �object token that contains a value of null.

 O
 Object [UML] : Synonym: Instance, �Object.
 Object [UML] : Synonym: Item, Instance, �Instance specifi cation.
 Object Constraint Language [UML] : A text-driven formal language used to formulate

�constraints in SysML/UML models. The language supports, among other things, navigation in
object models, Boolean Algebra, and set operations.

 Object diagram [UML] : A diagram that shows �objects and their relationships. It is a diagram of
UML and does not exist in SysML.

 Object fl ow [UML] : An �activity edge that can be traversed by object tokens only.
 Object identity [UML] : A property of the �objects of a �class that distinguishes them uniquely

from other objects, regardless of the �attribute values.
 Object node [UML] : An object node is an abstract �activity node that is part of defi ning object

fl ow in an activity.
 Object token [UML] : �Token.
 OpaqueAction [UML] : An elementary executable �action; its implementation is formulated in

an arbitrary language (e.g., in a programming language).
 Operation [UML] : An operation defi nes a behavior property of a �class. The description con-

sists of visibility, name, parameters, and return type.
 Optional parameter [SysML] : Describes �parameters that do not have to have values for the

pertaining behavior to be executed.
 Output pin [UML] : �Pin.

 P
 Package [UML] : A package groups model elements and forms a namespace.
 Package diagram [UML] : A diagram that shows how �packages relate, and how model elements

are distributed across packages.
 Parameter [UML] : A parameter describes values that are forwarded to, or returned from, a behav-

ior element (e.g., an �operation).
 Parameter set [UML] : A parameter set is a complete set of input or output parameters of a

behavior, which is selected regardless of other parameter sets of that behavior.
 Parametric diagram [SysML] : A diagram that shows a network of �constraints for the purpose

of modeling performance and reliability models.
 Part decomposition [UML] : Describes the internal �interactions of a �lifeline.
 Participant property [SysML] : A participant property describes the end of an �association in

the internal structure of an �association block.
 Partition [UML] : �Activity partition.
 Pin [UML] : A pin is a link between the parameters of an �action and the object fl ow. We distin-

guish between �input pin and �output pin.
 Port [UML] : A port describes an interaction point that is used by a �class (UML) or system block

(SysML) of the environment provides or requests services over �interfaces.
 Postcondition [UML] : A Boolean expression that is true once a behavior has executed.
 Precondition [UML] : A Boolean expression that has to be true before a given behavior can be

executed.
 Primary use case [SYSMOD] : A �use case that describes a central service of the system.
 Primitive type [UML] : A type describing a �data type that has no structures.
 Probability [SysML] : Describes at the outgoing edges of a �decision or an �object node the

probability that this �edge will be used by a �token.

291Glossary

 Problem [SysML] : A problem documents an (potential) error or weakness in the model or in
the modeled system.

 Profi le [UML] : A profi le is a set of �stereotypes.
 Profi le application [UML] : A profi le application assigns a �profi le to a �package, allowing the

use of the �stereotypes contained in the profi le at the model elements in the package.
 Property [UML] : A property describes a part of the structure of a structural element (e.g., a �class).
 Property string [UML] : A string that, in a diagram, shows a certain property of the pertaining

model element (e.g., {readonly}).
 Pseudo state [UML] : A control element that infl uences the fl ow of a �state machine. It is not a

real �state, so that the pseudo state does not represent any value combination.

 R
 Rate [SysML] : The rate describes the frequency in which elements traverse an �activity edge, or

in which they fl ow to or from a parameter. Synonym: �Frequency.
 Rationale [SysML] : A rationale documents the principles or reasons for a modeling decision.
 Realization [UML] : A relationship that connects an implementation with a specifi cation. The

implementation is responsible for realizing that specifi cation.
 Refi ne [UML] : A relationship describing that a model element describes the properties of a

�requirement in more detail.
 Region [UML] : A region is an orthogonal area in a �state or �state machine.
 Representation [UML] : A relationship that describes the model element that is represented by

a piece of �information.
 Requirement [SysML] : A requirement describes properties or behavior of a �system that al-

ways have to be met.
 Requirement diagram [SysML] : A diagram that shows �requirements and their relationships.
 Risk management [SYSMOD] : Risk management denotes the planned handling of risks. Poten-

tial risks are identifi ed and evaluated, and counteractions are formulated for prevention and
limitation of damages.

 Role [UML] : A role describes a structure in the context of a �class.

 S
 Satisfy [SysML] : A relationship describing that a design element meets a �requirement.
 Scenario [other] : A specifi c sequence for example, a possible variant of a �use case.
 Secondary use case [SYSMOD] : A secondary use case is an incomplete use case fragment. It

lacks domain �trigger, result, and �actor.
 SendSignalAction [UML] : An elementary �action that sends a �signal.
 Sensor [SYSMOD] : A sensor is a special �external system that accepts information from the

environment and forwards it to the system.
 Sequence diagram [UML] : A diagram that shows an �interaction, focusing on the temporal

sequence of messages.
 SI – International System of Units [other] : The International System of Units (French: Le Sys-

tème international d ’ unités) is the widest used system for physical units. It defi nes the meter,
kilogram, second, ampere, Kelvin, mol, and candela basic units.

 Signal [UML] : A signal describes the structure of a communication object.
 Signal event [UML] : �Event.
 Specialization [UML] : �Generalization.
 Stakeholder [SYSMOD] : A stakeholder is an individual or organization that has a direct interest

in the �system and that may have requirements.
 Stakeholder [SYSMOD] : A stakeholder is a person or institution that has an interest in the

�system and may make �requirements.
 Standard port [SysML] : Synonym: �Port.
 State [UML] : A state represents a set of value combinations for a given element. A state has a name

and may have an internal behavior that is executed based on defi ned events.

292 Glossary

 State invariant [UML] : A �constraint that refers to a �lifeline, and which must be met at system
runtime.

 State machine [UML] : A state machine describes the �states and �transitions of a structure.
 State machine diagram [UML] : A diagram that depicts a �state machine.
 Stereotype [UML] : A stereotype expands an existing model element by additional properties and

semantic. The newly defi ned model element can include a new notation, in addition to the
name. Stereotypes are grouped in �profi les.

 Streaming [UML] : A property describing that �activities or �actions can accept or supply new
values during active operation.

 Structural allocation [SysML] : A structural allocation is used to separate logical from physical
structures by producing a relationship between the two levels.

 Structure diagram [UML] : A generic term for all static diagrams in �SysML and �UML.
 Subsystem [SYSMOD] : A subsystem describes a closed unit within a larger �system.
 Synchronous message [UML] : The sender of the �message waits until the receiver has pro-

cessed the message.
 SysML [SysML] : The Systems Modeling Language (SysML) is a graphical language for modeling

systems in the �systems engineering discipline.
 SysML tool [other] : �Modeling tool.
 System [SYSMOD] : A system is a collection of system blocks that pursue a common goal, which

cannot be achieved by the individual elements. A �block can be software, hardware, a person,
or any other unit.

 System actor [SYSMOD] : �Actor.
 System context diagram [SYSMOD] : A diagram that shows the �system as a black box, includ-

ing its environment, and information that can be exchanged with the environment.
 System context element [SYSMOD] : A virtual wrapper that comprises the entire �system and

its �actors.
 System of Systems (SoS) [other] : A system composed of �blocks that can, in turn, be indepen-

dent systems.
 System port [SYSMOD] : A port at a �system.
 System process [SYSMOD] : The process that describes a fl ow beyond the use cases. It consists

of a set of �use cases that have a domain-specifi c sequence.
 Systems engineering [other] : Systems engineering is a discipline that concentrates on the

defi nition and documentation of system requirements in the early development stage, the
elaboration of a system design, and the verifi cation of the system as to compliance with
the requirements, taking the entire problem—operation, time, test, creation, cost and plan-
ning, training and support, and disposal—into account.

 T
 Technical requirement [SYSMOD] : A �requirement that describes a requirement based on a

solution approach.
 Terminate [UML] : A �pseudo state describing that the pertaining �state machine or the per-

taining �context object has terminated.
 Test case [SysML] : A test case is a sequence that verifi es whether or not the �system meets a

given �requirement.
 Time event [UML] : �Event.
 Token [UML] : A virtual element that describes the position of a fl ow in an �activity. Control

tokens mark only the fl ow, while object tokens additionally show that there is a defi ned
�object at that position.

 Token fl ow [UML] : A fl ow that uses �control �tokens and �object tokens to describe the
fl ow of an �activity.

 Tool [other] : A software application designed to support the development process (e.g., a
�modeling tool).

 Trace [UML] : A relationship between two model elements, describing a general context.

293Glossary

 Transition [UML] : A transition specifi es the passing from one �state into another. It is a directed
relationship between two states. It defi nes a trigger and a condition that both cause the state
transition and behavior that is executed during that transition.

 Trigger [UML] : A trigger connects exactly one �event with a behavior.
 Type [UML] : A type defi nes a value range (e.g., a �primitive data type or a �block).

 U
 UML [UML] : The Unifi ed Modeling Language (UML) is a graphical modeling language used to

describe software and other systems.
 UML tool [other] : �Modeling tool.
 Unit [SysML] : A unit describes the structure of a physical unit (e.g., kilogram, meter).
 Use case [UML] : A use case describes a temporally related and targeted interaction between an

�actor and a system. Its beginning is a domain trigger and the outcome is a defi ned result of
domain value.

 Use case diagram [UML] : A diagram that shows �actors and �use cases and their relation-
ships.

 User [SYSMOD] : A user is a human �actor.
 User system [SYSMOD] : A user system is a special �external system that serves the user as a

medium to interact with the �system.

 V
 Value type [SysML] : A type that defi nes values, which have no identity, and are not referenced by

a �block, and which can have a �unit or �dimension.
 Variant requirement [SYSMOD] : A requirement that refers exclusively to a variant, and which

is valid only for the system design of that variant.
 Verify [SysML] : A relationship that connects a �test case with the �requirement that is tested

by that test case.
 View [SysML] : A representation of an entire �system, seen from a defi ned �viewpoint.
 Viewpoint [SysML] : A viewpoint specifi ed the structure of a �model view based on the targets

defi ned by a number of �stakeholders.

 W:
 Weighted satisfy [SYSMOD] : A relationship that adds coverage information to a �satisfy

relationship.
 Weighted verify [SYSMOD] : A relationship that adds coverage information to a �verify

relationship.

 X
 XMI [UML] : The XML Metadata Interchange (XMI) is a data exchange format for models formu-

lated in XML.

This page intentionally left blank

295

 [1] A.T. Bahill and B. Gissing . Re-evaluating Systems Enginee ring Concepts Using Systems
Thinking . IEEE Transaction on Systems, Man and Cybernet ics, Part C: Appli cation and
Reviews , 1998 , 28 (4) : 516 – 527 .

 [2] Kent Beck . Extreme Programming Explained. Addison-Wesley Longman , Amsterdam , 2005 .
 [3] IEEE-SA Standards Board. IEEE Recommended Practice for Architectural Description of

Software-Intensive Systems . IEEE Std. 1471-2000, September 21 , 2000.
 [4] Barry Boehm . Some Future Trends and Implications for Systems and Software Engineering

Processes . Systems Engineering , Spring 2006 , 9 (1) : 1 – 19 .
 [5] Grady Booch . Object-Oriented Analysis and Design with Applications , 2nd ed ., Addison-

Wesley Longman , Amsterdam , 2007 .
 [6] Grady Booch. Software Development Trends. The Rational Edge , September 2003,

161–163.
 [7] Lewis Carroll . Alice in Wonderland . Harper Collins , 2005 .
 [8] Tom DeMarco . Structured Analysis and System Specifi cation . Yourdon Press , New York,

 1978 .
 [9] Tom DeMarco . The Deadline . Dorset House , 1997 .
 [10] DIN 69905—Projektabwicklung, Begriffe, 1997.
 [11] Laurent Doldi . UML 2 Illustrated . TransMeth Sud-Ouest , 2003 .
 [12] Bruce P. Douglass . Real-Time Design Patterns . Addison-Wesley Professional , 2002 .
 [13] EAST-EEA. http://www.east-eea.net , January 2006.
 [14] Edward A. Euler, Steven D. Jolly, and H.H. Curtis. The Failures of the Mars Climate Orbiter

and Mars Polar Lander: A Perspective from the People Involved. Proceedings of Guidance
and Control 2001 , AAS 01-074, 2001.

 [15] Martin Fowler . Analysis Patterns . Addison-Wesley Professional , 1996 .
 [16] Martin Fowler . Refactoring . Addison-Wesley Professional , 2005 .
 [17] Martin Fowler. MF Bliki:IncludeAndExtend . http://www.martinfowler.com/bliki/

IncludeAndExtend.html , January 2006.
 [18] Erich Gamma, Richard Helm , Ralph Johnson and John Vlissides. Design Patterns . Addison-

Wesley Professional , 1996 .
 [19] Robert Grady . Practical Software Metrics for Project Management and Process Improve-

ment . Prentice-Hall , 1992 .
 [20] Object Management Group. Systems Engineering Domain Special Interest Group . http://

syseng.omg.org .
 [21] Arthur David Hall . Methodology for Systems Engineering . Van Nost. Reinhold , 1962 .
 [22] David Harel . Statecharts: A Visual Formalism for Complex Systems . Science of Computer

Programming , June 1987 , 8 (3) : 231 – 274 .
 [23] DIN ISO 9126— Software Engineering: Product Quality , 1991.
 [24] ISO/IEC 15288— Systems Engineering: System Life Cycle Processes , 2002.
 [25] Ivar Jacobson , Magnus Christerson , and Patrik Jonsson . Object-Oriented Software Engi-

neering . Addison-Wesley Professional , 1992 .
 [26] Inc. Jaczone. http://www.jaczone.com , January 2006.
 [27] Hermann Kaindl . A Scenario-Based Approach for Requirements Engineering: Experience

in a Telecommunication Software Development Project . Systems Engineering , 2005 , 8 (3) .
 [28] Georg Klaus . Wörterbuch der Kybernetik (Dictionary of Cybernetics) , 3rd ed ., Dietz ,

 1969 .
 [29] Genrich Altshuller . Innovation Algorithm: TRIZ, Systematic Innovation and Technical

Creativity . Technical Innovation Center , 1st ed. , 1999 .

 References

296 References

 [30] Philippe Kruchten . Architectural Blueprints—The 4� 1 »View« Model of Software Archi-
tecture . IEEE Software , 1995 , 12 (6) .

 [31] Philippe Kruchten . The Rational Unifi ed Process: An Introduction . Addison-Wesley
Professional , 1998 .

 [32] Stephen J. Mellor and Marc Balcer . Executable UML . Addison-Wesley Professional , 2002 .
 [33] Bernd Oestereich, Christian Weiss, Claudia Schröder, Tim Weilkiens, and Alexander Len-

hard. Objektorientierte Geschäftsprozessmodellierung mit der UML (Object-Oriented
Business Process Modeling with UML) . dpunkt.verlag, Heidelberg, 2003.

 [34] The OMG Hitchhiker ’ s Guide: A Handbook for the OMG Technology Adoption Process,
Version 6.6 . http://www.omg.org/cgi-bin/doc? hh , 2004.

 [35] oose Innovative Informatik GmbH. OEP—oose Engineering Process . http://www.oose.
de/oep .

 [36] CCITT Recommendation Z100. SDL—Specifi cation and Description Language .
 [37] CCITT Recommendation Z120. MSC—Message Sequence Charts .
 [38] Suzanne Robertson and James Robertson . Mastering the Requirements Process . Addison-

Wesley Professional , 2000 .
 [39] James Rumbaugh. Trends in UML and e-Development . The Rational Edge , December 2000,

4–10.
 [40] James Rumbaugh , Michael Blaha , William Premerlani , Frederick Eddy , and William

 Lorensen . Object-Oriented Modeling and Design . Prentice Hall , 1991 .
 [41] James Rumbaugh , Ivar Jacobson , and Grady Booch . The Unifi ed Modeling Language

Reference Manual . 2nd ed ., Addison-Wesley Professional , 2004 .
 [42] Bran Selic , Garth Gullekson , and Paul T. Ward . Real-Time Object-Oriented Modeling . John

Wiley & Sons, Inc. , 1994 .
 [43] Bran Selic, and James Rumbaugh. Mapping SDL to UML. A Rational Software White Paper ,

1999.
 [44] OMG SysML Specifi cation . http://www.omgsysml.org/#Specifi cation , 2006.
 [45] Technical Board International Council on Systems Engineering (INCOSE). Systems Engi-

neering Handbook , Version 2a, June 2004.
 [46] UML for Systems Engineering: Request for Information . http://www.omg.org/cgi-bin/

doc?ad/02-01-17 , 2002.
 [47] UML for Systems Engineering: Request for Proposal . http://www.omg.org/cgi-bin/

doc?ad/03-03-41 , 2003.
 [48] UML 2.1.1 Superstructure Specifi cation . http://www.omg.org/cgi-bin/doc? formal/

07-02-03 , 2007.
 [49] A UML profi le for MARTE . http://www.omg.org/cgi-bin/doc? realtime/07-03-03 , 2007.
 [50] UML 2.0 Diagram Interchange . http://www.omg.org/cgi-bin/doc? ptc/2003-09-01 , 2003.
 [51] UML 2.0 Infrastructure Specifi cation . http://www.omg.org/cgi-bin/doc? ptc/2003-09-15 ,

2003.
 [52] UML 2.0 OCL Specifi cation . http://www.omg.org/cgi-bin/doc?ptc/2003-10-14 , 2003.
 [53] UML Testing Profi le . http://www.omg.org/cgibin/doc? formal/05-07-07 , 2005.
 [54] V-Modell XT 1.2.1: http://v-modell.iabg.de/v-modell-xt-html-english , checked January

2008.
 [55] Frederic Vester . Die Kunst vernetzt zu denken (The Art of Networked Thinking) , 4th ed .,

 dtv , 2002 .
 [56] Uwe Vigenschow and Björn Schneider . Soft Skills für Softwareentwickler (Soft Skills for

Software Developers) . dpunkt.verlag , Heidelberg , 2007 .
 [57] Uwe Vigenschow and Christian Weiss . Das Essenzschritt-Verfahren: Aufwandschätzungen

auf der Basis von Use Cases (The Essential-Step Method: Cost Estimates Based on Use
Cases) . ObjektSpektrum , 2003 , 2 .

 [58] L.v. Bertalanffy . General System Theory: Foundations, Development, Applications . George
Braziller , 1968 .

297References

 [59] Tim Weilkiens . Praxisbericht: Erste Projekterfahrungen mit der UML 2.0 (Initial Project
Experiences with UML 2.0) . ObjektSpektrum , 2004 , 3 .

 [60] Tim Weilkiens and Bernd Oestereich . UML 2-Zertifi zierung: Intermediate-Stufe (UML-2
Certifi cation: Intermediate) . dpunkt.verlag , Heidelberg , 2005 .

 [61] Tim Weilkiens . UML 2 Certifi cation Guide: Fundamental & Intermediate Exams (The
OMG Press) . Morgan Kaufmann, 1st ed. , 2006 .

 [62] Wikipedia—The Free Encyclopedia . http://wikipedia.org , 2006.
 [63] Wikiquote. http://de.wikiquote.org , 2006.
 [64] XML Metadata Interchange (XMI) Specifi cation. http://www.omg.org/cgi-bin/

doc? formal/2003-05-02 , 2003.

This page intentionally left blank

299

 [else], 92, 184, 186, 201, 208
 {encapsulated}, 244, 246
 {stream}, 100, 101, 175, 176, 178, 260, 263
 {upperbound�n}, 178, 183, 263
 {weight�n}, 182, 183
 «abstraction», 158
 «actuator», 272
 «allocate», 121, 123, 158, 239, 240, 241
 «allocateActivityPartition», 241
 «block», 54, 118, 123, 125, 133, 134, 135, 232,

233, 239, 240, 243, 245, 246, 253, 254,
255, 269, 271, 277, 282, 283

 «boundarySystem», 272
 «conform», 140, 268, 269
 «constraint», 254, 255, 256
 «constraintBlock», 254, 255
 «continuous», 101, 173, 260, 261, 262, 263,

279, 280
 «controlOperator», 101, 258, 259, 260, 264
 «copy», 233
 «derive», 158, 229
 «deriveReqt», 43, 44, 158, 228, 229
 «dimension», 249
 «discrete», 101, 260, 261, 262
 «distributedProperty», 247
 «effbd», 257
 «environmentalEffect», 271
 «essential», 90, 91, 92, 93, 95, 97, 99, 133,

180, 241, 276, 277
 «extend», 168
 «extendedRequirement», 275, 276
 «externalSystem», 272
 «fl ow», 49, 53, 54, 57, 220
 «fl owPort», 250
 «fl owSpecifi cation», 124, 250
 «include», 82, 86, 173
 «itemFlow», 252
 «metaclass», 216, 217, 262, 273, 274, 277,

279, 281, 284
 «nobuffer», 261, 263
 «optional», 260, 262, 263
 «overwrite», 101, 260, 262, 263
 «participant», 253
 «participantProperty», 253
 «primitive», 163
 «problem», 269, 270
 «rate», 261

 «rationale», 40, 266, 267
 «refi ne», 73, 133, 236
 «requirement», 40, 73, 130, 133, 217, 228, 229,

230, 232, 233, 235, 237, 267, 275, 281
 «satisfy», 125, 133, 160, 231, 232, 233, 278
 «secondary», 85, 173, 216, 279, 280
 «sensor», 272
 «signal», 58, 115, 122, 160, 161, 162, 250
 «stakeholder», 37, 281
 «stereotype», 216, 217, 248, 262, 273, 274,

276, 277, 278, 279, 281, 282, 283, 284
 «subsystem», 118, 123, 191, 282
 «system», 47, 48, 49, 50, 51, 53, 54, 57, 59, 62,

64, 115, 123, 132, 134, 168, 169, 220, 282
 «systemContext», 58, 60, 283
 «systemProcess», 81, 83, 218, 283, 284
 «testCase», 133, 234, 235, 236
 «trace», 73, 135, 158, 159, 228, 233, 234,

237, 281
 «transformation», 99, 182, 183
 «unit», 248, 249
 «userSystem», 272
 «valueType», 247, 248, 254
 «verify», 133, 234, 236, 278
 «view», 140, 268, 269
 «viewpoint», 140, 268, 269
 «weightedSatisfy», 278, 279
 4�1 architecture, 65

 abstract, 86, 151
 abstraction, 76
 abstraction dependency, 158, 159
 abstraction level, 18, 42, 94, 158
 Accelerated Technology, 179
 AcceptEventAction, 179, 181
 act, see activity diagram
 action, 82
 action model, 174, 179
 Action Specifi cation Language, 179
 activity, 98, 174–176, 258, 276–277
 activity diagram, 89, 126, 173, 257–264
 activity edge, 182
 activity fi nal node, 183, 184, 185
 activity parameter, 98, 139, 175, 176
 activity partition, 191, 241
 actor, 48, 54, 56, 67, 68, 69, 74, 156, 170–172,

271–273

Index

300 Index

 actuator, 50, 51, 68–69, 272
 adjective, 151, 169, 172
 ADL, see Architecture Description Language
 after(� time �), 198
 aggregation, 155, 156, 157
 algorithm, 144, 173
 Alice in Wonderland, 28
 allocate activity partition, 123, 241
 allocatedFrom, 241
 allocatedTo, 241
 allocation, 104, 238–242
 alt, see interaction operator
 alternatives, 11, 77–79, 124–125
 Altshuller, Genrich Soulovich, 32
 analysis paralysis, 44
 AND semantics, 176
 approach model, 22, 23, 25, 26, 33, 46, 66, 111
 Architecture Description Language, 18
 ARTiSAN, 17, 131, 192
 ASL, see Action Specifi cation Language
 Assembler, 2
 assembly line, 175
 assert, 208
 association:

 derived, 75, 155
 navigation, 154

 association block, 252, 253
 association class, 163–164
 association end, 155, 156
 association end property, 154–155
 association name, 154
 asynchronous, 207
 at(� time �), 198
 atomic, 120, 251
 attribute, 104, 105, 151–153, 158, 166
 Audi, 20
 automotive, 20
 Automotive Open System Architecture, 18
 AUTOSAR, 18

 ball, 160, 131
 ball-and-socket, 131
 bar diagram, 146, 206
 bdd, see block defi nition diagram
 Beck, Kent, 20
 behavior allocation, 238, 239
 behavior diagram, 131–132
 bidirectional, 220
 black box, 23, 60, 246
 block defi nition diagram, 63, 104, 123, 243, 251

 block diagram, 63, 131, 133, 242–254
 blossoming of methods, 145
 BMW, 14
 Boeing, 14
 Booch, Grady, 65, 145, 146
 booking center, 31
 Boolean, 153, 162, 186, 196, 253
 boundary, 20, 46, 50
 boundary system, 49–50, 68, 169, 272
 BPM, 19
 brainstorming, 27, 35
 break, 208, 209
 BridgePoint, 179
 buffer, 178, 263
 Business Process Modeling, 5, 143, 173

 call event, 197
 CallBehaviorAction, 179, 280
 callout notation, 121, 234
 Capability Maturity Model, 18–19
 car manufacturer, 18, 20
 Carroll, Lewis, 28
 case study, 24–33
 categories, 41, 50, 271–273, 277
 cell phone, 49, 130, 132
 change event, 197
 chip card, 79, 169
 choice [state machine], 201
 Churchill, Winston, 5
 class:

 abstract, 151, 169
 class diagram, 148–164
 class modeling, 148–149, 156, 157, 164
 CMM, 19
 CMMI, 19
 colon, 150, 151
 combined fragment, 207–210
 comment, 220, 266
 common features, 22
 communication diagram, 203, 265
 communication object, 57, 161
 communication partner, 204, 205
 comparative, 39
 compartment, 41, 150, 243, 244, 255
 complex, 7, 253, 254
 complexity, 7
 component, 2, 8
 component diagram, 146, 148
 composite, 16, 53, 156
 composite structure diagram, 164–168

301Index

 composition, 155–157, 165, 244
 concurrency, 89, 208
 concurrent fl ows, 183, 186, 188
 condition, 39, 174, 186, 196
 conform, 268, 270
 Confucius, 143
 conjugated, 124, 251
 connector, 166, 167
 consider, 208
 constraint, 220–221
 constraint block, 254–256
 constraint diagram, 220, 244, 255
 constraint library, 254, 256
 containment, 41, 43
 context object, 192, 199
 context-specifi c type, 245
 contractor, 20, 44
 control fl ow, 95, 136, 182
 control operator, 101, 258–260
 control pin, 137, 178, 260
 control token, 137, 182, 188
 control value, 258, 260, 261
 ControlValue, 101
 copy, 233
 copy relationship, 233–234
 core requirement, 129, 130
 corporate identity, 41
 creating objects, 150, 151, 206
 critical, 208
 Cunningham, Ward, 108
 customer, 51, 53, 69, 103–104, 105, 108,

109, 115, 151
 customer relationship management, 102

 Daimler-Chrysler, 20
 Dalai Lama, 223
 dart, 185
 data fl ow modeling, 56
 data interchange format, 147
 data type, 162–163, 247, 253, 254
 de Saint-Exupéry, Antoine, 1
 decision node [activity], 91, 185, 186
 defaultValues, 245
 DeMarco, Tom, 27
 dependency, 75, 157–158
 derive, 43, 229, 230
 derive requirement, 229–230
 derived element, 155
 design, 4, 26, 110, 231
 design model, 11, 158

 Design Pattern , 135
 design patterns, 135
 destroy, 178
 detailing depth, 8, 65
 Detour pattern, 136
 developer, 238, 271
 development environment, 1, 20, 149
 development process, 6, 8, 13, 33, 131
 diagram frame, 192, 204, 215–216, 266–268
 Diagram Interchange, 147
 digital camera, 72
 dimension, 248, 249
 DIN ISO 9126, 41
 discrete, 257, 261
 display, 39, 71, 83, 101
 distribution defi nition, 247, 248
 distribution diagram, 247, 248
 do behavior, 194
 domain, 56, 94, 108
 domain block, 103, 104, 131
 domain expert, 77, 89, 94
 domain knowledge, 102–107, 278
 DOORS, 21
 Douglass, Bruce P., 136
 dynamic choice, 201

 EAST-ADL, 18
 EAST-EEA, 18
 EFFBD, 257
 EIA-632, 16
 Einstein, Albert, 285
 embedded, 11, 45, 55
 embedded systems, 45, 74, 169, 214
 EmbeddedPlus Engineering, 17
 embedding, 2, 45, 46, 74
 engineer, 11, 12–13, 140
 Enhanced Functional Flow Block diagram,

16, 224
 entry behavior, 194
 entry point, 203
 enumeration, 105, 162, 163
 environmental effect, 50, 271
 essential activity, 276–277
 essential use case, 76, 89, 276
 event, 197–198
 executable specifi cation, 174, 192
 executability, 192
 execution environment, 136
 execution focus, 206
 exit behavior, 194

302 Index

 expansion region, 190–191
 EXPRESS, 21
 extend, 5, 216
 extend relationship, 168
 extended requirement, 275–276
 extension, 16, 41, 190, 216, 224, 225, 226,

271
 external system, 48, 49, 272

 feasibility study, 65
 feature, 229
 FFBD, 257
 FIFO, 187, 263
 fi nal node, 183, 184, 185
 fi nal state, 198, 199
 Finalization Task Force, 17
 fi nite machine, see fi nite state machine
 fi nite state machine, 20, 194
 fl ow diagram, 95
 fl ow fi nal node, 183, 185
 fl ow port, 250–251
 fl ow property, 100, 175, 176
 fl ow specifi cation, 250
 force, 254
 fork [state machine], 179, 202
 fork node [activity], 186–188
 fork symbol, 179, 258
 Fowler, Martin, 136
 FSM, see Finite State Machine
 function tree, 83, 258, 259, 260
 FURPS, 41, 276

 Gamma, Erich, 135
 General Motors, 14
 generalization, 87, 105, 106, 130, 158–160,

172
 Glossary:

 create, 107–110
 Goethe, Johann Wolfgang von, 32
 graphical user interface, 48
 GUI, see graphical user interface
 Guillemets, 191, 217

 hardware, 5, 7, 19, 144
 hardware developer, 7, 46
 Harel, David, 21, 192
 heuristics, 69, 79, 85
 history:

 deep, 200–201
 shallow, 200

 history pseudo state, 126
 HMI, see Human Machine Interface
 hourglass, 179
 HTML, 108
 Human Machine Interface, 48

 I-Logix, 21
 ibd, see internal block diagram
 IBM, 143
 ideal system (TRIZ), 31, 32
 IEEE 1471, 140, 270
 ignore, 208
 include [namespace], 214
 include [use case], 173
 include relationship, 82, 88, 173
 INCOSE, 3, 14, 16, 21, 223
 indirect fl ow, 137, 139
 infi nite, 135, 162
 information fl ow:

 modeling, 54–59
 information item, 218–220
 Information Technology for European

Advancement, 18
 inheritance, 158
 initial node, 182–183, 184
 initial state, 198–199
 initial value, 152, 245
 initialize(), 209
 input parameter, 153, 175
 input pin, 97, 177, 178
 instance specifi cation, 150
 integer, 104, 162, 247
 interaction, 61, 112, 113, 115, 204–205
 interaction diagram, 203–214, 265
 interaction fragment, 208
 interaction operand, 208
 interaction operator, 113, 114, 208–210
 interaction overview diagram, 203
 interaction partner, 45, 47, 48, 118
 interaction use, 210–211
 interface, 60, 62, 121, 160–161, 168
 interface system, 113, 114–116
 internal block diagram, 16, 63, 133, 244
 International Council on Systems

Engineering, 14–15
 International Telecommunication Union, 22
 interruptible activity region, 137, 189
 interruptible edge, 94
 intricacy, 7, 24
 isControlType, 178

303Index

 ISO 10303-21, 21
 ISO 10303-22, 21
 ISO 10303-28, 21
 ISO 10303-41, 21
 ISO 10303-46, 21
 ISO 10303-51, 21
 ISO 10303-104, 21
 ISO 10303-105, 21
 ISO 10303-214, 21
 ISO AP-214, 21
 ISO AP-233, 16, 21, 224, 225
 ISO/IEC 12207, 19
 ISO/IEC 15288, 14, 16, 19–20
 ISO/IEC 19501, 16
 ITEA, see Information Technology for

European Advancement
 item fl ow, 238, 252
 ITU, see International Telecommunication

Union

 Jacobson, Ivar, 63, 145, 168
 Jaczone, 63
 join [activity], 202
 join [state machine], 199, 202
 join node [activity], 186–189
 junction, 201

 Kennedy Carter, 179
 keyboard, 48, 53
 KeyDeposit, 160
 KeySignal, 57

 lifeline, 113, 204, 205–206, 212
 LIFO, 263
 line diagram, 146
 Lingua Franca, 5, 6
 link, 163–164
 local attribute, 214
 Lockheed Martin Corporation, 225
 lollipop, 115, 120, 161
 loop, 208, 209–210

 marbles, 136, 175, 176
 Mars Climate Orbiter, 249
 MARTE, 214, 218
 Matlab, 20, 274
 MATLAB, see Matrix Laboratory
 Matrix, 242, 267
 Matrix Laboratory, 20
 Mealy, 192

 measuring method, 39
 mechanical system, , 50, 51, 272
 mechanics, 6, 223
 merge node, 92, 185–186, 187
 message, 206–207
 Message Sequence Charts, 22, 205
 metaphor, 29, 30, 65
 metaplan card, 71
 model:

 executable, 65, 102, 130, 174
 Model of Models, 134, 135
 model simulation, 130–131
 model view, 130, 139–141, 268
 model zoom, 65, 118
 modeling, 16 18, 19, 40, 45, 54, 63, 84, 88, 94,

102, 112, 116, 130, 135, 265, 275
 modeling focus, 52, 171
 modeling language, 3, 16, 143, 223
 modeling tool, 20, 21, 66, 90, 143, 174, 177
 MoM, 134, 135
 Moore, 4, 192
 Motorola, 143
 MSC, see Message Sequence Charts
 multiple inheritance, 105
 multiplicity, 151, 152, 153, 167, 171

 namespace containment, 230–231
 NASA, 14, 225, 249
 Nassi–Shneiderman diagram, 144
 National Council on Systems Engineering,

14
 navigation, 72, 154, 282
 NCOSE, see National Council on Systems

Engineering
 neg, see interaction operator
 nested blocks, 245, 246
 nesting, 214, 245
 Newton, Isaac, 254, 255
 NIST, 143, 225
 null token, 98, 136, 263

 OAL, see Object Action Language
 object, 56, 96, 149, 150, 166, 206
 Object Action language, 179
 Object Constraint Language, 147
 object diagram, 146, 148
 object fl ow, 94–102, 137, 182
 object fl ow allocation, 238, 239
 object fl ow edge, 190
 object fl ow port, 62, 116, 120, 124

304 Index

 object fl ow specifi cation, 124
 object identity, 150, 162
 object level, 165, 166
 Object Management Group, 4, 143, 145, 224
 object model, 164, 166
 Object Modeling Technique, 145
 object-oriented programming, 144
 Object-Oriented Programming Systems,

Languages, and Applications, 145
 object token, 96, 100, 137, 175, 177, 178,

182, 188, 189, 263
 ObjecTime, 60
 Objectory, 145
 obligation, 275
 OCL, see Object Constraint Language
 OEP, see oose Engineering Process
 OMG, see Object Management Group
 OMG Systems Modeling Language, 16
 OMT, see Object Modeling Technique
 on-board computer, 28, 31, 43, 54, 62, 97,

104, 105, 109, 115, 119, 120, 123, 128,
134, 160, 219, 243

 OOPSLA, see Object-Oriented Programming
Systems, Languages, and Applications

 oose Engineering Process, 65
 oose Innovative Informatik GmbH, 4, 14,

143, 225
 OpaqueAction, 179
 OpaqueBehavior, 235
 Opel, 20, 164
 operation, 8, 41, 116
 opt, see interaction operator
 OR semantics, 172, 176, 264
 organizational chart, 12
 OSI layer model, 120
 output parameter, 98, 175, 179, 181
 output pin, 97, 100, 138, 177, 178

 package, 129, 152, 214, 215, 268
 package diagram, 8, 9, 214
 package merge, 223
 par, see constraint diagram
 par operator, see interaction operator
 parameter:

 optional, 260, 262
 parameter list, 153
 parameter set, 179, 181, 264
 parametric diagram, 254–256
 part decomposition, 118, 119, 210
 participant, 253

 participant property, 252, 253
 partition, 191
 patterns, 135–139
 pentagon, 208, 215
 performance model, 41
 person to contact, 36
 pie chart, 146
 pin, 57, 69, 96, 177–179
 pin:String, 153
 pinCheckCode, 130, 182
 pkg, see package diagram
 Porsche, 20
 port, 62, 63, 167–168
 postcondition, 81, 175
 power types, 223
 pragmatic description, 77, 78
 precondition, 81, 94, 174, 284
 predecessor, 22, 35
 primitive type, 162, 163
 principal, 20, 24, 35, 43, 227
 probability, 264
 problem, 9, 10, 270
 problem-solving cycle, 10
 product box, 29, 30
 profi le, 18, 132, 216, 218, 219, 271
 programming languages:

 object-oriented, 144
 project context, 28–33
 project diary, 27, 33, 37, 44–45, 53, 63, 75,

80, 94, 102, 107, 110, 116, 125
 project manager, 12, 140, 268
 property, 175, 176, 178, 247
 pseudostate, 198, 199–203
 punch cards, 2

 rate, 261, 262
 Rational Rose RT, 60
 Rational Software, 60, 145
 Rational Unifi ed Process, 65
 rationale, 40, 266, 267
 real, 253, 254
 realization, 9, 21, 160, 161, 231
 Realtime Object-Oriented Modeling, 60
 receive signal, 160, 162
 receiver, 161, 179, 206, 207
 redundancy, 75, 85, 90
 refactoring, 84
 refi ne, 236, 237
 refi ne relationship, 73, 235–236
 refi nement, 72–73

305Index

 region, 195
 reliability model, 254
 repository, 141
 representation, 56, 59, 163, 164, 219
 req, see requirement diagram
 Request For Information, 224
 Request For Proposal, 225
 requirement:

 collect, 5, 38–45, 64
 core, 129–130
 determine, 33–37, 129
 essential, 43–44, 129
 extended, 275–276
 functional, 40, 64, 73, 226, 228
 in charge of, 37
 list, 24, 42, 129, 237
 maintainability, 18, 143
 non-functional, 73, 226
 obligation, 275
 performance, , 40, 144
 priority, 63, 275
 reliability, 41
 risk, 276
 stability, 275
 technical, 41, 42, 43, 44, 129, 229
 type, 275

 requirement diagram, 226–238
 Requirement Interchange Format, 20–21
 requirement management tool, 143, 228,

236
 reservation center, 92, 94
 reservation system, 49, 69, 93
 return type, 153
 reuse, 230, 233
 Revision Task Force, 225
 RFI, see Request For Information
 RFP, see Request For Proposal
 Rhapsody, 21, 131, 192
 rhombus, 156, 186, 201
 RIF, see Requirement Interchange Format
 risk management, 11–12
 Robertson, 41
 role, 165–167
 role level, 63, 165
 ROOM, see Realtime Object-Oriented

Modeling
 Rumbaugh, James, 60, 145, 146
 run-to-completion, 192
 runtime environment, 130, 186, 196
 RUP, see Rational Unifi ed Process

 SA, see structured analysis
 satisfy, 224, 231
 satisfy relationship, 124, 160, 231–233, 234,

279
 scalability, 65
 scenario, 13, 113, 205, 207
 sd, see sequence diagram
 SDL, see Specifi cation and Description

Language
 SE DSIG, see Systems Engineering Domain

Special Interest Group
 secondary, 85, 173, 280
 secondary use case, 85, 173, 279–280
 SEI, see Software Engineering Institute
 Selic, Bran, 4, 60
 send signal, 196, 206
 sender, 49, 50, 207
 SendSignalAction, 179
 Sensor, 50, 69, 272
 seq, see interaction operator
 sequence diagram, 22, 113, 114, 118, 126,

127, 203, 204, 205, 210, 265, 266
 service, 45, 56, 65, 66, 110, 115, 168, 169
 service-oriented, 65
 set processing, 190
 SI basic units, 249
 Siemens, 14
 signal, 57, 58, 92, 116, 161–162
 signal event, 197
 SIMILAR, 10, 11
 simulation, 11, 130–131
 Simulink, 20, 274
 SMS, 32, 97, 118
 socket, 115, 160
 software application, 46, 48, 96
 software developer, 4, 7, 46, 106, 268
 software development, 2, 4, 19, 56, 143, 158
 Software Engineering Institute, 19
 solution search space, 31
 SoS, 134, 282
 source code, 149, 192
 Specifi cation and Description Language, 22
 SpeedyCar, 24, 27, 39, 69, 71
 SPICE, 19
 splitting, 33, 173, 225
 spreadsheet, 37, 146
 stability, 275
 stakeholder:

 identify, 34–37
 stakeholders, 35, 36, 37, 39, 40, 281

306 Index

 Standard for the Exchange of Product
Model Data, 21

 standard port, 62, 116, 120
 Star pattern, 74
 state:

 composite, 127, 194, 195, 198
 orthogonal, 195, 196

 state behavior, 192, 194
 state diagram, 127, 192–203, 264–265
 state invariant, 211–212, 213
 State Latch Pattern, 127
 state machine, 127, 128, 192–193, 198–199,

201, 202, 203
 state transition, 195–197
 Statefl ow, 20
 STATEMATE, 21
 STEP, see Standard for the Exchange of

Product Model Data
 stereotype, 104, 216–218, 228, 229, 235, 243,

247, 262, 263, 271, 272, 273, 279
 stick man, 48, 170, 272
 stm, see state diagram
 stream property, 175, 178
 strict, see interaction operator
 string, 40, 104, 152, 153, 253
 structural allocation, 121
 structure, 146–148, 225–226
 structure diagram, 164–168, 205
 structure property, 63, 151, 253
 structured analysis, 56
 subclass, 151, 158
 substate, 200, 201
 substitute, 39, 48
 subsystem, 116–117, 208, 282
 Success pattern, 137
 superclass, 158
 superlative, 39
 suppliers, 18
 supportability, 41
 synchronization, 89, 188, 189
 synchronous, 62, 207, 258
 SysML, see Systems Modeling Language
 SysML Merge Team, 225
 SysML partners, 225
 SysML Submission Team, 225
 SysML/UML tool, 37, 45, 77, 85, 131, 244, 271
 SYSMOD, 5, 23, 168
 SYSMOD profi le, 218, 271
 system:

 embedded, 56, 74, 169

 system actor:
 identify, 45–54

 system boundary, 47, 52, 169
 system class, 149, 170, 219
 system context:

 diagram, 45, 47, 51, 53, 54
 modeling, 45–63, 66, 74

 system context diagram, 45, 47, 51, 53, 54
 system context element, 283
 system context model, 45–63, 66, 74
 system interaction point, 59–63
 System of Systems, 134–135, 282
 system overview, 10, 13, 88
 system port, 62, 116
 system process:

 describe, 80–84, 218, 283
 system specifi cation, 44
 system theory, 15
 System-Modeling.com, 3, 5, 24, 128
 systems engineer, 12–13
 Systems Engineering, 2, 3, 6–15, 19, 143,

223, 271
 Systems Engineering Domain Special

Interest Group, 224
 Systems Modeling Language:

 concepts, 53, 225–226, 253
 history, 224–225
 structure, 225–226

 table notation, 237–238, 242
 tagged values, 216
 taxonomy, 158
 Telelogic, 17, 21, 143, 192, 225
 Teorija Rezhenija Jzobretatel ’ skich Zadach, 32
 terminate, 98, 137, 138, 183, 192, 202
 Termination pattern, 137, 138, 139
 test case, 132, 133, 218, 234, 235, 236
 test component, 132
 test context, 132, 218
 test engineer, 140
 test model, 132, 158, 234, 235
 testing, 131–134, 235
 text document, 72, 90, 170
 Theory of Inventive Problem Solving, 32
 Three Amigos, 144, 145
 time diagram, 193
 time event, 93, 100, 198

 absolute, 198
 relative, 198

 time measurement, 214

307Index

 time model, 212, 213
 timing diagram, 203, 265
 TIPS, see Theory of Inventive Problem

Solving
 token, 98, 100, 136, 137, 178, 182, 187, 188,

263
 token fl ow, 136, 175, 176
 token tunnel, 182
 toolbox, 3, 22, 23
 top-down, 64, 116
 trace, 69, 113, 119
 trace relationship, 73, 134, 236–237, 281
 traceability, 11, 19, 125, 237
 TracedFrom, 237
 TracedTo, 237
 transformation, 182, 183
 transition, 127, 195–197, 199, 201, 202, 203
 triangle, 56, 154, 220
 trigger, 8, 69, 70, 169, 196, 197–198, 280
 TRIZ, 32
 tunnel, 182
 type, 5, 19, 55, 104, 105, 151, 153, 167, 175,

200, 238, 246, 258, 266, 267, 275
 type level, 63, 165

 uc, see use case diagram
 UM, see Unifi ed Method
 UML, see Unifi ed Modeling Language
 unidirectional, 154
 Unifi ed Method, 145
 Unifi ed Modeling Language:

 certifi cation, 144
 concepts, 225–226
 history, 224–225
 structure, 225–226
 UML 2.0, 145, 146, 223
 UML 2.1.1, 16, 143, 217
 UML 2.2, 143, 145
 Unifi ed Method, 145

 unit, 41, 43, 45, 92, 247, 248–249
 Unlimited Natural, 162, 253
 usage concept, 41
 use case:

 abstract, 70, 71, 77, 79, 86, 87, 110, 169
 continuous, 279–280
 essential, 75–80, 84, 85, 89
 identify, 65–75, 80
 model, 63, 102, 145, 168, 256
 modeling fl ows, 88–94
 redundancy, 85, 90, 280

 result, 69, 72
 secondary, 85, 173, 279–280
 trigger, 67, 70, 71, 280
 without redundant, 84–88
 workshop, 72

 use case diagram, 74, 168–173, 256–257
 use-case driven, 65
 use case fragment, 85, 280
 user, 48, 67, 68
 user specifi cation, 30, 44
 user system, 48, 49, 68, 272
 Ustinov, Peter, 271

 V-Model XT, 19, 22
 value combinations, 193, 199
 value distribution, 243, 247
 value type, 247–248
 variant management, 129–130
 verify, 234, 278
 verify relationship, 133, 234–235
 view, 23, 68, 69, 130, 134, 139–141, 268–270
 viewpoint, 140, 268–270
 visibility:

 package, 152
 private, 152
 protected, 152
 public, 152, 244

 Volkswagen, 20

 war of methods, 145
 Waypoint, 158, 219
 weight, 182, 183
 weighted, 278–279
 weighted satisfy, see satisfy
 weighted verify, 278, 279

 see also verify
 white box, 23
 whole-part hierarchy, 155
 wiki, 108, 109
 Wikipedia, 108
 WikiWikiWeb, 108
 word processor, 8, 281
 workfl ow, 19
 World Wide Web, 108
 WWW, see World Wide Web

 XML, 20, 21, 147
 XML Metamodel Interchange, see XMI

 Zuse, Konrad, 144

