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Preface

Principal component analysis (PCA) is one of the widely used matrix factorization
techniques for dimensionality reduction and revealing hidden factors that underlie
sets of random variables, signals, or measurements. PCA is essentially a method for
extracting individual signals from mixtures of signals. Its power resides in the
physical assumptions that the different physical processes generate unrelated sig-
nals. The main aim of PCA is to reduce the dimensionality of a data set in which
there are a large number of interrelated variables, while retaining as much as
possible of the variation present in the data set. This reduction is achieved by
transforming to a new set of variables, the principal components (PCs), which are
uncorrelated, and are ordered so that the first few retain most of the variation
present in all of the original variables.

PCA research can be motivated by the open problems and continuing research
on these problems, and hence a need to edit this book to report latest results on the
topic. These challenges motivate the further effort on the study of PCA, and the
book intends to report the new results of these efforts. This book aims to dissem-
inate timely to the scientific community the new developments in PCA spanning
from theoretical frameworks, algorithmic developments, to a variety of applica-
tions. The book covers the emerging techniques in PCA, especially those developed
recently, offering academic researchers and practitioners with a complete update
about the new development in this field. The book provides a forum for researchers
to exchange their ideas and to foster a better understanding of the state of the art
of the subject.

This book is intended for both computer science and electronics engineers
(researchers and graduate students) who wish to get novel research ideas and some
training in PCA, dimensional reduction, artificial intelligence, and image processing
and signal processing applications. Furthermore, the research results previously
scattered in several high-quality scientific journals papers will be methodically
collected and presented in the book in a unified form. As a result of its twofold
characteristics, the book is likely to be of interest to university researchers, R&D
engineers, and graduates wishing to learn the core principles, methods, algorithms,
and applications of PCA. Furthermore, the book may also be of interest to
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researchers working in different areas of science, as a number of results and con-
cepts will be included which may be useful for their further research.

For this book, we have collected nine chapters with several novel contributions,
namely the idea of sparse PCA by Zhenfang Hu, Gang Pan, Yueming Wang, and
Zhaohui Wu, Kernel PCA and dimensionality reduction in hyperspectral images by
Aloke Datta, Susmita Ghosh, and Ashish Ghosh, PCA in the presence of missing
data by Marco Geraci and Alessio Farcomeni, robust PCA using generalized mean
by Jiyong Oh and Nojun Kwak, PCA techniques for visualization of volumetric data
by Salaheddin Alakkari and John Dingliana, outlier-resistant data processing with
L1-norm PCA by P. P. Markopoulos, S. Kundu, S. Chamadia, N. Tsagkarakis, and
D. A. Pados, damage and fault detection of structures using PCA by Francesc Pozo
and Yolanda Vidal, PCA for exponential family data by Meng Lu, Kai He, Jianhua
Z. Huang, and Xiaoning Qian, and application and extension of PCA concepts to
blind unmixing of hyperspectral data with intra-class variability by Yannick Deville,
Charlotte Revel, V´eronique Achard, and Xavier Briottet.

I would like to thank the authors for their excellent submissions (chapters) to this
book and their significant contributions to the review process which have helped to
ensure the high quality of this publication. Without their contributions, it would
have not been possible for the book to come successfully into existence.

Kingswood, Australia Ganesh R. Naik
September 2017
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Sparse Principal Component Analysis
via Rotation and Truncation

Zhenfang Hu, Gang Pan, Yueming Wang and Zhaohui Wu

Abstract This chapter begins with the motivation of sparse PCA–to improve the
physical interpretation of the loadings. Second, we introduce the issues involved in
sparse PCA problem that are distinct from PCA problem. Third, we briefly review
some sparse PCA algorithms in the literature, and comment their limitations as well
as problems unresolved. Forth, we introduce one of the state-of-the-art algorithms,
SPCArt Hu et al. (IEEE Trans. Neural Networks Learn. Syst. 27(4):875–890, 2016),
including its motivating idea, formulation, optimization solution, and performance
analysis. Along with the introduction, we describe how SPCArt addresses the unre-
solved problems. Fifth, based on the Eckart-Young Theorem, we provide a unified
view to a series of sparse PCA algorithms including SPCArt. Finally, we make a
concluding remark.

1 Motivation of Sparse PCA

Commonly, the dimensions of the data have physical explanations. For example, in
financial or biological applications, each dimension may correspond to a specific
asset or gene [3]. However, the loadings obtained by PCA are usually dense, so
the principal component, obtained by inner product, is a mixture of all dimensions,
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2 Z. Hu et al.

which makes it difficult to interpret. If most of the entries in the loadings are zeros
(sparse), each principal component becomes a linear combination of a few non-zero
entries. This facilitates the understanding of the physical meaning of the loadings as
well as the principal components [10]. Further, the physical interpretation would be
clearer if different loadings have different non-zero entries, corresponding to different
dimensions. This is the motivation of sparse PCA.

2 Involved Issues

Sparse PCA attempts to find a sparse basis to make the result more interpretable [11].
At the same time, the basis is required to represent the data distribution faithfully.
Thus, there is a tradeoff between statistical fidelity and interpretability.

During the past decade, a variety of methods for sparse PCA have been pro-
posed. Most have considered the tradeoff between sparsity and explained variance.
However, three points have not received sufficient attention: orthogonality between
loadings, balance of sparsity among loadings, and the pitfall of deflation algorithms.

• Orthogonality. PCA loadings are orthogonal. But in pursuing sparse loadings, this
property is easily lost. Orthogonality is desirable in that it indicates the indepen-
dence of the physical meaning of the loadings. When the loadings are sufficiently
sparse, orthogonality usually implies non-overlapping of their supports. So under
the background of improving the interpretation of PCA, each sparse loading is
associated with distinctive physical variables, so are the principal components.
This makes interpretation simpler. If the loadings are not an orthogonal basis,
the inner products between the data and the loadings, used to compute the com-
ponents, do not constitute an exact projection. As an extreme example, if two
loadings were very close, the two components would be similarly close, which
would be meaningless.

• Balance of sparsity. There should not be any member of the loadings that is highly
dense, particularly those leading ones that account for most variance. We empha-
size this point, because quite a few existing algorithms yield highly dense leading
loadings (close to those of PCA) while the minor ones are sparse. Thus, sparsity
is achieved by the minor loadings, whereas variance is explained by the dense
loadings. This is unreasonable, since sparse PCA aims to find sparse loadings that
explain as much variance as possible.

• Pitfall of deflation. Existing work can be categorized into deflation and block
groups. To obtain r sparse loadings, the deflation group computes one loading at
a time, with others calculated via removing components that have been computed
[17]. This follows traditional PCA. The block group finds all loadings together.
However, in general, the optimal loadings found when we restrict the subspace
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to be of dimension r may not overlap with the r + 1 optimal loadings when the
dimensionality increases to r + 1 [12]. This does not occur for PCA, whose load-
ings successively maximize the variance, and the loadings found via deflation are
always globally optimal for any r . But it is not the case for sparse PCA, the defla-
tion method is greedy and may not find optimal sparse loadings, whereas the block
group has the potential to obtain optimal solutions and should be preferred.

Finally, it should be mentioned that the loadings obtained by deflation are nearly
orthogonal, while the block group usually does not ensure orthogonality.

3 Related Work

First we give a brief review of various sparse PCAmethods proposed previously, and
then introduce a newmethod, called SPCArt [9], that has achieved the state-of-the-art
performance recently.

• Post-processing PCA. Originally, interpretability was gained by post-processing
the PCA loadings. Loading rotation (LR) [12] applied various criteria to rotate the
PCA loadings so that ‘simple structure’ appeared, e.g., varimax criterion drives
the entries to be either small or large, which is close to a sparse structure. Simple
thresholding (ST) [2] obtains sparse loadings via directly setting entries of PCA
loadings below a small threshold to zero.

• Covariance matrix maximization. More recently, systematic approaches based on
solving explicit objectives have been proposed, starting from SCoTLASS [11],
which optimizes the classical objective of PCA, i.e.,maximizing the quadratic form
of the covariance matrix, while imposing a sparsity constraint on each loading.

• Matrix approximation. SPCA [29] formulates the problem as a regression-type
optimization, to facilitate the use of LASSO [22] or elastic-net [28] techniques to
solve the problem. Recently, it has been extended to the tensor context [14]. rSVD
[21] and SPC [24] obtain sparse loadings by solving a sequence of rank-1 matrix
approximations, with an imposed sparsity penalty or constraint.

• Semidefinite convex relaxation. Most proposed methods are local, which suffer
from being trapped in local minima. DSPCA [4] transforms the problem into a
semidefinite convex relaxation problem, so that global optimality of the solution
is guaranteed. This distinguishes it from most local methods. Unfortunately, its
computational complexity is as high as O(p4

√
log p) (p is the number of vari-

ables), which is expensive for most applications. A variable elimination method
[27] of complexity O(p3) was later developed to make the application feasible on
large scale problems.
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• Greedymethods. In [19], greedy search and branch-and-boundmethods were used
to solve small instances of the problem exactly. Each step of the algorithmhas com-
plexity O(p3), leading to a total complexity of O(p4) for a full set of solutions
(solutions of cardinality ranging from 1 to p). This bound was improved for clas-
sification [18]. In contrast, another greedy algorithm PathSPCA [3] was proposed
to further approximate the solution process of [19], resulting in complexity of
O(p3) for a full set of solutions. For a review of DSPCA, PathSPCA, and their
applications, please refer to [26].

• Powermethods. TheGPowermethod [13] formulates the problemasmaximization
of a convex objective function, and the solution is obtained by generalizing the
power method [8] used to compute the PCA loadings. Recently, a new power
method,TPower [25], and a somewhat different but relatedpowermethod, ITSPCA
[16], which aims at recovering sparse principal subspace, have been proposed.

• Augmented Lagrangian optimization. ALSPCA [15] solves the problem based on
an augmented Lagrangian optimization. The most special feature of ALSPCA is
that it simultaneously considers the explained variance, orthogonality, and corre-
lation among principal components.

Among these methods, only LR [12], SCoTLASS [11], and ALSPCA [15] have
considered the orthogonality of loadings. SCoTLASS, rSVD [21], SPC [24], the
greedy methods [3, 19], one version of GPower [13], and TPower [25] belong to the
deflation group. Only the solution of [4] is guaranteed to be globally optimal.

3.1 SPCArt

Recently a new approach: Sparse PCA via rotation and truncation (SPCArt) has
been proposed [9]. Distinct from most traditional work, which are based on adding
a sparsity penalty on the PCA objective, SPCArt looks for a rotation matrix and a
sparse basis such that the sparse basis approximates the loadings of PCA after the
rotation. The resulting algorithm consists of three alternative steps: rotating PCA
loadings, truncating small entries, and updating the rotation matrix.

SPCArt resolves or alleviates the three issues discussed above. It has the following
merits. (1) SPCArt is able to explain as much variance as the PCA loadings, since
the sparse basis spans almost the same subspace as the PCA loadings. (2) The new
basis is close to orthogonal, since it approximates the rotated PCA loadings. (3) The
truncation tends to produce more balanced sparsity, since vectors of the rotated PCA
loadings are of equal length. (4) SPCArt belongs to the block group, it is not greedy
compared with the deflation group.

We list the computational complexities of some of the above algorithms in Table1.
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4 SPCArt: Sparse PCA via Rotation and Truncation

We first explain the basic idea of SPCArt, then introduce the motivation, the objec-
tive and optimization, and the truncation types. Finally, we introduce performance
analysis. The major notations are listed in Table2.

The basic idea of SPCArt is as follows. Any rotation of the r PCA loadings,
[V1, . . . , Vr ] ∈ R

p×r , constitutes an orthogonal basis spanning the same subspace,
denoted with X = V R (R ∈ R

r×r , RT R = I ). SPCArt wants to find a rotation
matrix, R, through which V is transformed to a sparse basis, X . It is difficult to solve
this problem directly, so SPCArt seeks a rotation matrix and a sparse basis such that
the sparse basis approximates the PCA loadings after the rotation V ≈ XR.

4.1 Motivation

SPCArt was motivated by the Eckart-Young theorem [6]. This theorem considers the
problem of approximating a matrix by the product of two low-rank matrices.

Theorem 1 (Eckart-Young Theorem) Assume the SVD of a matrix A ∈ R
n×p

is A = U�V T , where U ∈ R
n×m, m ≤ min{n, p}, � ∈ R

m×m is diagonal with

Table 2 Major notations

Notation Note

A ∈ R
n×p A data matrix with n samples of p variables

V = [V1, V2, . . . ] PCA loadings arranged column-wise. Vi denotes the i th column. V1:r
denotes the first r columns

R The rotation matrix

Z The rotated PCA loadings, i.e., V RT

X Sparse loadings arranged column-wise, similar to V

Polar(·) For a matrix B ∈ R
n×p , n ≥ p, let the thin SVD be WDQT , D ∈ R

p×p ,
then Polar(B) = WQT

Sλ(·) 0 ≤ λ < 1. For a vector x , Sλ(x) is entry-wise soft thresholding:
Sλ(xi ) = sign(xi )(|xi | − λ)+, where [y]+ = y if y ≥ 0 and [y]+ = 0
otherwise

Hλ(·) 0 ≤ λ < 1. For a vector x , Hλ(x) is entry-wise hard thresholding:
Hλ(xi ) = xi [sign(|xi | − λ)]+, i.e., Hλ(xi ) = 0 if |xi | ≤ λ, Hλ(xi ) = xi
otherwise

Pλ(·) λ ∈ {0, 1, 2, . . .}. For a vector x , Pλ(x) sets the smallest λ entries
(absolute value) to zero

Eλ(·) 0 ≤ λ < 1. For a vector x , Eλ(x) sets the smallest k entries, whose energy
accounts for at most λ proportion, to zero. k is found as follows. Sort
|x1|, |x2|, . . . in ascending order: x̄1, x̄2, . . . , then
k = maxi i, s.t.

∑i
j=1 x̄

2
j /‖x‖22 ≤ λ
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�11 ≥ �22 ≥ · · · ≥ �mm, and V ∈ R
p×m. A rank-r (r ≤ m) approximation of A

is to solve the following problem:

min
Y,X

‖A − Y XT ‖2F , s.t. XT X = I, (1)

where Y ∈ R
n×r , and X ∈ R

p×r . A solution is

X∗ = V1:r , Y ∗ = AX∗, (2)

where V1:r is the first r columns of V .

Alternatively, the solution can be expressed as

Y ∗ = U1:r�1:r , X∗ = Polar(ATY ∗), (3)

where Polar(·) is the orthonormal component of the polar decomposition [13]. From
the SVD perspective, its equivalent definition is provided in Table2.

Note that if A is a mean-removed data matrix with n samples, then V1:r are the
loadings obtained by PCA. Clearly, X∗ = V1:r R and Y ∗ = AX∗ = U1:r�1:r R are
also a solution of (1), ∀ rotation matrix R. This implies that any rotation of the r
orthonormal leading eigenvectors, V1:r , is a solution of the best rank-r approximation
of A. That is, any orthonormal basis in the corresponding eigensubspace is capable
of representing the original data distribution as well as the original basis. Thus, a
natural idea for sparse PCA is to find a rotationmatrix, R, so that X = V1:r R becomes
sparse, i.e.,

min
R∈Rr×r

‖V1:r R‖0, s.t. RT R = I, (4)

where ‖ · ‖0 denotes the sum of �0 (pseudo) norm of the columns of a matrix, i.e.,
the count of non-zeros of a matrix.

4.2 Objective and Optimization

Unfortunately, the above problem is difficult to solve, so SPCArt approximates it.
Since X = V1:r R ⇔ V1:r = XRT , SPCArtwants to find a rotationmatrix, R, through
which a sparse basis, X , approximates the PCA loadings. Without confusion, we use
V to denote V1:r hereafter. Let us first consider the �1 version:

min
X,R

1

2
‖V − XR‖2F + λ

∑

i

‖Xi‖1, (5)

s.t.∀i, ‖Xi‖2 = 1, RT R = I,
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where ‖ · ‖1 is the �1 norm of a vector, i.e., the sum of absolute values. The �0
version will be introduced in the next section. It is well-known that �1 norm is
sparsity inducing, which is a convex surrogate of the �0 norm [5]. Under this objec-
tive, the solution may not be orthogonal, and may deviate from the eigensubspace
spanned by V . However, if the approximation is accurate enough, i.e., V ≈ XR, then
X ≈ V RT would be nearly orthogonal and explain similar variance as V . Note that
the above objective turns out to be a matrix approximation problem of the Eckart-
Young theorem.The key difference is that a sparsity penalty is added, but the solutions
still share some common features.

There are no closed-form solutions for R and X simultaneously. To find a local
minimum, SPCArt solves the problem by fixing one and optimizing the other alter-
nately, i.e., the block coordinate descent [23]. Fortunately, both subproblems have
closed-form solutions.

4.2.1 Fixing X and Solving R

When X is fixed, it becomes a Procrustes problem [29]:

min
R

‖V − XR‖2F , s.t. RT R = I. (6)

The solution is R∗ = Polar(XT V ). It has the same form as the right part of (3).

4.2.2 Fixing R and Solving X

When R is fixed, it becomes

min
X

1

2
‖V RT − X‖2F + λ

∑

i

‖Xi‖1, s.t.∀i, ‖Xi‖2 = 1. (7)

There are r independent subproblems, one for each column:minXi 1/2‖Zi − Xi‖22 +
λ‖Xi‖1, s.t. ‖Xi‖2 = 1, where Z = V RT . It is equivalent to maxXi ZT

i Xi − λ

‖Xi‖1, s.t. ‖Xi‖2 = 1. The solution is X∗
i = Sλ(Zi )/‖Sλ(Zi )‖2 [13]. Sλ(·) is the

entry-wise soft thresholding, defined in Table2. This is the truncation type T-�1, i.e.,
soft thresholding.

The solution has the following physical explanations. Z contains the rotated PCA
loadings, so it is orthonormal. X is obtained via truncating small entries of Z . On one
hand, because of the unit length of each column in Z , a single threshold 0 ≤ λ < 1 is
feasible tomake the sparsity distribute evenly among the columns in X ; otherwise we
have to apply different thresholds for different columns, which would be difficult to
determine.On the other hand, because of the orthogonality of Z and small truncations,
X is still possible to be nearly orthogonal. These are the most distinctive features of
SPCArt, which enable simple analysis and parameter setting.



Sparse Principal Component Analysis via Rotation and Truncation 9

Algorithm 1 SPCArt
1: Input:Datamatrix A ∈ R

n×p , number of loadings r , truncation type T , and truncation parameter
λ.

2: Output: Sparse loadings X = [X1, . . . , Xr ] ∈ R
p×r .

3: Initialize R: R = I .
4: PCA: compute rank-r SVD of A: U�V T , V ∈ R

p×r .
5: repeat
6: Rotation: Z = V RT .
7: Truncation: ∀i , Xi = Tλ(Zi )/‖Tλ(Zi )‖2.
8: Update R: thin SVD of XT V : WDQT , R = WQT .
9: until convergence

The algorithm of SPCArt is presented in Algorithm 1, where the truncation in
line 7 can be any type, including T-�1 and the others that will be introduced in next
section.

The computational complexity of SPCArt is shown in Table1. Except for the
computational cost of PCA loadings, SPCArt scales linearly with the data dimension.
When the number of loadings is not too large, it is efficient.

4.3 Truncation Types

Given rotated PCA loadings, Z , we introduce the truncation operation of SPCArt,
Tλ(Zi ), where Tλ is one of the following four types: T-�1, soft thresholding Sλ; T-�0,
hard thresholding Hλ; T-sp, truncation by sparsity Pλ; and T-en, truncation by energy
Eλ. T-�1 was introduced in the previous section, we now introduce the remaining
three types.

T-�0: hard thresholding. Set the entries below threshold λ to zero: X∗
i =

Hλ(Zi )/‖Hλ(Zi )‖2. Hλ(·) is defined in Table2. It is resulted from �0 penalty:

min
X,R

‖V − XR‖2F + λ2
∑

i

‖Xi‖0, s.t. RT R = I. (8)

The optimization is similar to the �1 case. Fixing X , R∗ = Polar(XT V ).
Fixing R, the problem becomes minX ‖V RT − X‖2F + λ2‖X‖0. Let Z = V RT , it
can be decomposed to p × r entry-wise subproblems, and the solution is apparent: if
|Z ji | ≤ λ, then X∗

j i = 0, otherwise X∗
j i = Z ji . Hence the solution can be expressed

as X∗
i = Hλ(Zi ).

There is no normalization for X∗ compared with the �1 case. This is because, if
the unit length constraint, ‖Xi‖2 = 1, is added, there will be no closed-form solution.
However, in practice, SPCArt still uses X∗

i = Hλ(Zi )/‖Hλ(Zi )‖2 for consistency,
since empirically no significant difference is observed.
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Note that both �0 and �1 penalties only result in thresholding operations on
Z . Hence, we may devise other heuristic truncation types irrespective of explicit
objectives.

T-sp: truncation by sparsity. Truncate the smallest λ entries: Xi = Pλ(Zi )/

‖Pλ(Zi )‖2, λ ∈ {0, 1, . . . , p − 1}. Table2 gives the precise definition of Pλ(·). It can
be shown that this heuristic type is resulted from the �0 constraint:

min
X,R

‖V − XR‖2F , (9)

s.t.∀i, ‖Xi‖0 ≤ p − λ, ‖Xi‖2 = 1, RT R = I.

When X is fixed, it is the same as the �0 and �1 cases.When R is fixed, the solution
is X∗

i = Pλ(Zi )/‖Pλ(Zi )‖2, where Z = V RT (refer to [9] for the proof).
T-en: truncation by energy. Truncate the smallest entries whose energy (sum

of square) accounts for λ proportion: Xi = Eλ(Zi )/‖Eλ(Zi )‖2. Eλ is described in
Table2. Unlike previous cases, the objective associated with this type is not clear.

Algorithm 1 describes the complete SPCArt algorithm. SPCArt promotes the
seminal ideas of simple thresholding (ST) [2] and loading rotation (LR) [12]. When
using T-�0, the first iteration of SPCArt, i.e., Xi = Hλ(Vi ), corresponds to the ad-
hoc ST, which is frequently used in practice and sometimes achieved good results
[19, 29]. The motivation of SPCArt, i.e., (4), is similar to LR, whereas SPCArt
explicitly seeks sparse loadings via �0 pseudo-norm, LR seeks a ‘simple structure’
via various criteria. For example, the varimax criterion maximizes the variances of
squared loadings,

∑
i [
∑

j Z
4
j i − 1/p(

∑
k Z

2
ki )], where Z = V R. It drives the entries

to distribute unevenly, either small or large (see Sect. 7.2 in [10]).

4.4 Performance Analysis

This section discusses the performance bounds for each truncation type. For Xi =
Tλ(Zi )/‖Tλ(Zi )‖2, the following problems are studied:

1. How much sparsity of Xi is guaranteed?
2. How much does Xi deviate from Zi?
3. What is the orthogonality degree of X?
4. How much variance is explained by X?

The derived performance bounds are functions of λ. The sparsity, orthogonal-
ity, and explained variance can be directly or indirectly controlled via λ.1 We first
introduce some definitions.

1Theorem 13 is specific to SPCArt, which concerns the important explained variance. The other
results are applicable tomore general situations: Propositions6–11 are applicable to anyorthonormal
Z , Theorem12 is applicable to anymatrix X . To obtain results specific to SPCArt, some assumptions
of the data distribution are needed.
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Definition 2 ∀x ∈ R
p, the sparsity of x is the proportion of zero entries: s(x) =

1 − ‖x‖0/p.
Definition 3 ∀z ∈ R

p, z �= 0, x = Tλ(z)/‖Tλ(z)‖2, the deviation of x from z is
sin(θ(x, z)), where θ(x, z) is the included angle between x and z, 0 ≤ θ(x, z) ≤ π/2.
If x = 0, θ(x, y) is defined to be π/2.

Definition 4 ∀x, y ∈ R
p, x �= 0, y �= 0, the nonorthogonality between x and y is

| cos(θ(x, y))| = |xT y|/(‖x‖2 · ‖y‖2), where θ(x, y) is the included angle between
x and y.

Definition 5 Given data matrix A ∈ R
n×p containing n samples of dimension p, ∀

basis X ∈ R
p×r , r ≤ p, the explained variance by X is EV (X) = tr(XT AT AX).

LetU be any orthonormal basis in the subspace spanned by X , then the cumulative
percentage of explained variance is CPEV (X) = tr(UT AT AU )/tr(AT A) [21].

Intuitively, larger λ leads to higher sparsity and larger deviation. When two trun-
cated vectors deviate from their originally orthogonal vectors, in the worst case, the
nonorthogonality degenerates as the ‘sum’ of their deviations. On the other side, if
the deviations of a sparse basis from the rotated loadings are small, we may expect
the sparse basis still represents the data well, and the explained variance maintains
a similar level to that of PCA. In a word, both the nonorthogonality and explained
variance depend on the deviation, and the deviation and sparsity in turn are controlled
by λ. We now go into details. For the proofs of the results, please refer to [9].

4.4.1 Orthogonality

Proposition 6 The relative upper bound of nonorthogonality between Xi and X j ,
i �= j , is

| cos(θ(Xi , X j ))| ≤
{
sin(θ(Xi , Zi ) + θ(X j , Z j )) , θ(Xi , Zi ) + θ(X j , Z j ) ≤ π

2 ,

1 , otherwise.

(10)

The bounds can be obtained by considering the two conical surfaces generated by
the axes Zi and Z j , with rotational angles θ(Xi , Zi ) and θ(X j , Z j ). The proposition
implies the nonorthogonality is determined by the sum of deviation angles.When the
deviations are small, the orthogonality is good. The deviation depends on λ, which
is introduced below.

4.4.2 Sparsity and Deviation

The following results only concern a single vector of the basis. We will denote Zi

by z, and Xi by x for simplicity, and derive bounds of sparsity, s(x), and deviation,
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sin(θ(x, z)), for each T . They depend on a key value, 1/
√
p, which is the entry value

of a uniform vector.

Proposition 7 For T-�0, the sparsity bounds are

{
0 ≤ s(x) ≤ 1 − 1

p , λ < 1√
p ,

1 − 1
pλ2 < s(x) ≤ 1 , λ ≥ 1√

p .
(11)

The deviation is sin(θ(x, z)) = ‖z̄‖2, where z̄ is the truncated part: z̄i = zi if xi = 0,
and z̄i = 0 otherwise. The absolute bounds of deviation are:

0 ≤ sin(θ(x, z)) ≤
{√

p − 1λ , λ < 1√
p ,

1 , λ ≥ 1√
p .

(12)

All the above bounds are achievable.

Since when λ < 1/
√
p, there is no sparsity guarantee, λ is usually set to be 1/

√
p

in practice. It generally works well.

Proposition 8 For T-�1, the bounds of s(x) and lower bound of sin(θ(x, z)) are the
same as T-�0’s. In addition, there are relative deviation bounds

‖z̄‖2 ≤ sin(θ(x, z)) <

√
‖z̄‖22 + λ2‖x‖0. (13)

It is still an open question whether T-�1 has the same upper bound of deviation as
T-�0. By the relative lower bounds, we have

Corollary 9 The deviation of soft thresholding is always larger than that of hard
thresholding, if the same λ is applied.

This implies that results obtained by T-�1 have potentially greater sparsity and
less explained variance than those of T-�0.

Proposition 10 For T-sp, λ/p ≤ s(z) < 1, and

0 ≤ sin(θ(x, z)) ≤ √
λ/p . (14)

Generally s(z) = λ/p, except for the unusual case that x originally has many
zeros. The main advantage of T-sp lies in its direct control on the sparsity.

Proposition 11 For T-en, 0 ≤ sin(θ(x, z)) ≤ √
λ. In addition,

�λp/p ≤ s(x) ≤ 1 − 1/p. (15)

If λ < 1/p, there is no sparsity guarantee. When p is moderately large, �λp/p ≈ λ.
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Due to the discrete nature of the operand, the actually truncated energy may be
less than λ. However, in practice, and especially when p is moderately large, the
effect is negligible. Thus, usually sin(θ(x, z)) ≈ √

λ. The main advantage of T-en is
that it allows direct control of deviation. Recall that the deviation has direct influence
on the explained variance. Thus, if it is desirable to gain specific explained variance,
T-en is preferable. Besides, if p is moderately large, T-en also provides control on
sparsity.

4.4.3 Explained Variance

Finally, we introduce bounds for the explained variance EV (X). Two results are
obtained. The first is general and applicable to any basis X , not limited to sparse
ones. The second is tailored to SPCArt.

Theorem 12 Let rank-r SVD of A ∈ R
n×p be U�V T , � ∈ R

r×r . Given X ∈ R
p×r ,

assume the SVD of XT V to be WDQT , D ∈ R
r×r , dmin = mini Dii , then

d2
min · EV (V ) ≤ EV (X), (16)

and EV (V ) = ∑
i �

2
i i .

The theorem can be interpreted as follows. If X is a basis that approximates
the rotated PCA loadings well, then dmin will be close to one, and so the variance
explained by X is close to that explained by PCA. Note that the variance explained
by PCA loadings is the largest value that is possible to be achieved by an orthonormal
basis. Conversely, if X deviates greatly from the rotated PCA loadings, then dmin

tends to zero, so the variance explained by X is not guaranteed to be large. Thus, the
less the sparse loadings deviate from the rotated PCA loadings, the more variance
they explain.

When SPCArt converges, i.e., Xi = Tλ(Zi )/‖Tλ(Zi )‖2, where Z = V RT , and
R = Polar(XT V ) hold simultaneously, there is another estimation (mainly valid
for T-en).

Theorem 13 Let C = ZT X, i.e., Ci j = cos(θ(Zi , X j )), and let C̄ be the diagonal-
removed version. Assume ∀i , θ(Zi , Xi ) = θ and

∑r
j C

2
i j ≤ 1, then

(cos2(θ) − √
r − 1 sin(2θ)) · EV (V ) ≤ EV (X). (17)

When θ is sufficiently small,

(cos2(θ) − O(θ)) · EV (V ) ≤ EV (X). (18)

Since the sparse loadings are obtained by truncating small entries of the rotated
PCA loadings, and θ is the deviation angle, the theorem implies that if the deviation



14 Z. Hu et al.

is small then the explained variance is close to that of PCA, as cos2(θ) ≈ 1. For
example, if the truncated energy ‖z̄‖22 = sin2(θ) is approximately 0.05, then 95%
EV of PCA loadings is guaranteed.

The assumptions θ(Zi , Xi ) = θ and
∑r

j C
2
i j ≤ 1, ∀i , are broadly satisfied by

T-en using small λ. Uniform deviation θ(Zi , Xi ) = θ ∀i can be achieved by T-en, as
indicated by Proposition 11.

∑r
j C

2
i j ≤ 1 means the sum of projected length is less

than 1 when Zi is projected onto each X j . It is satisfied if X is exactly orthogonal,
whereas it is likely satisfied if X is nearly orthogonal (note Zi may not lie in the
subspace spanned by X ), which can be achieved by setting small λ according to
Proposition 6. In this case, about (1 − λ)EV (V ) is guaranteed.

In practice, we prefer CPEV [21] to EV. CPEV measures the variance explained
by subspace rather than basis. Since it is also the projected length of A onto the
subspace spanned by X , the higher CPEV, the better X represents the data. If X is not
an orthogonal basis, EV may overestimate or underestimate the variance. However,
if X is nearly orthogonal, the difference is small, and it is nearly proportional to
CPEV.

5 A Unified View to Some Prior Work

A series of methods: PCA [10], SCoTLASS [11], SPCA [29], GPower [13],
rSVD [21], TPower [25], SPC [24], and SPCArt, although proposed indepen-
dently and formulated in various forms, can be derived from the common source of
Theorem 1, the Eckart-Young Theorem.Most of them can be seen as the problems of
matrix approximation (1), with different sparsity penalties. Most of them have two
matrix variables, and the solutions of them can usually be obtained by an alternating
scheme: fixing one and solving the other. Similar to SPCArt, the two subproblems
are a sparsity penalized/constrained regression problem and a Procrustes problem.

PCA [10]. Since Y ∗ = AX∗, substituting Y = AX into (1) and optimizing X , the
problem is equivalent to

max
X

tr(XT AT AX), s.t. XT X = I. (19)

By the Ky Fan theorem [7], X∗ = V1:r R, ∀RT R = I . If A is a mean-removed data
matrix, the special solution X∗ = V1:r contains exactly the r loadings obtained by
PCA.

SCoTLASS [11]. Constraining X to be sparse in (19), we get SCotLASS

max
X

tr(XT AT AX), s.t. XT X = I, ∀i, ‖Xi‖1 ≤ λ. (20)

Unfortunately, this problem is not easy to solve.
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SPCA [29]. If we substitute Y = AX into (1) and separate the two X ’s into two
independent variables X and Z (so as to solve the problem via alternating), and then
impose some penalties on Z , we obtain SPCA

min
Z , X

‖A − AZ XT ‖2F + λ‖Z‖2F +
∑

i

λ1i‖Zi‖1, (21)

s.t. XT X = I,

where Z is the target sparse loadings, and λ’s are weights. When X is fixed, the
problem is equivalent to r elastic-net problems: minZi ‖AXi − AZi‖2F + λ‖Zi‖22 +
λ1i‖Zi‖1. When Z is fixed, it is a Procrustes problem: minX ‖A − AZ XT ‖2F , s.t.
XT X = I , and X∗ = Polar(AT AZ).

GPower [13]. Except for some artificial factors, the original GPower solves the
following �0 and �1 versions of objectives:

max
Y,W

∑

i

(Y T
i AWi )

2 − λi‖Wi‖0, s.t.Y T Y = I,∀i, ‖Wi‖2 = 1, (22)

max
Y,W

∑

i

Y T
i AWi − λi‖Wi‖1, s.t.Y T Y = I, ∀i, ‖Wi‖2 = 1. (23)

They can be seen as derived from the following more fundamental cases (see [9] for
details).

min
Y,X

‖A − Y XT ‖2F +
∑

i

λi‖Xi‖0, s.t.Y T Y = I, (24)

min
Y,X

1

2
‖A − Y XT ‖2F +

∑

i

λi‖Xi‖1, s.t.Y T Y = I. (25)

These two objectives can be seen as derived from a mirror version of (1): minY,X

‖A − Y XT ‖2F , s.t. Y T Y = I , where A ∈ R
n×p is still a data matrix containing n

samples of dimension p. The solution is X∗ = V1:r�1:r R and Y ∗ = Polar(AX∗) =
U1:r R. Adding sparsity penalties to X , we get (24) and (25).

Following the alternating optimization scheme, when X is fixed, in both cases
Y ∗ = Polar(AX). When Y is fixed, the �0 case becomes minX ‖ATY − X‖2F +∑

i λi‖Xi‖0. Let Z = ATY , then X∗
i = H√

λi
(Zi ). The �1 case becomes

minX 1/2‖ATY − X‖2F + ∑
i λi‖Xi‖1, X∗

i = Sλ(Zi ). The i th loading is obtained
by normalizing Xi to unit length.

The iterative steps combined together produce essentially the same solution
processes as the original ones in [13]. However, the matrix approximation formu-
lation makes the relations of GPower to SPCArt and others apparent. The methods
rSVD, TPower, and SPC below can be seen as special cases of GPower.
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rSVD [21]. rSVD can be seen as a special case of GPower, i.e., the single compo-
nent case (r = 1). Polar(·) reduces to unit-length normalization. More loadings can
be obtained via deflation [17, 21], e.g., updating A ← A(I − x∗x∗T ) and running
the procedure again. Since Ax∗ = 0, the subsequent loadings obtained are nearly
orthogonal to x∗.

If the penalties in rSVD are replacedwith constraints, we obtain TPower and SPC.

TPower [25]. The �0 case leads to TPower

min
y∈Rn ,x∈Rp

‖A − yxT ‖2F , s.t. ‖x‖0 ≤ λ, ‖y‖2 = 1. (26)

By alternating optimization, y∗ = Ax/‖Ax‖2, x∗ = Pp−λ(AT y). Pp−λ(·) sets the
smallest p − λ entries to zero.2 By iteration, x (t+1) ∝ Pp−λ(AT Ax (t)), which indi-
cates equivalence to the original TPower algorithm.

SPC [24]. The �1 case is miny,d,x ‖A − ydxT ‖2F , s.t. ‖x‖1 ≤ λ, ‖y‖2 = 1,
‖x‖2 = 1, d ∈ R. d serves as the length of x in (26). If the other variables are
fixed, d∗ = yT Ax . If d is fixed, the problem is: maxy,x tr(yT Ax), s.t. ‖x‖1 ≤ λ,
‖y‖2 = 1, ‖x‖2 = 1. A small modification leads to SPC:

max
y,x

tr(yT Ax), s.t. ‖x‖1 ≤ λ, ‖y‖2 ≤ 1, ‖x‖2 ≤ 1,

which is biconvex. y∗ = Ax/‖Ax‖2. However, there is no analytic solution for x , it
is solved by linear searching.

SPCArt shares a close relation with GPower, and based on the ideas of SPCArt,
an improved version of GPower called rSVD-GP has been developed, please refer
to [9] for detailed discussions.

6 Conclusion

According to the experimental results in [9], SPCArt, rSVD-GP, and PathSPCA
generally perform well. PathSPCA consistently explains most variance, but it is
the most computational expensive among the three. rSVD-GP and SPCArt perform
similarly on sparsity, explained variance, orthogonality, and balance of sparsity.How-
ever rSVD-GP is more sensitive to parameter setting (except rSVD-GP(T-sp), i.e.,
TPower), and it is a greedy deflation algorithm. SPCArt belongs to the block group,
its solution improves with the target dimension, and it has the potential to obtain a
globally optimal solution.

When the sample size is larger than the dimension, the time cost of PathSPCA
and rSVD-GP go nonlinearly with the dimension, while that of SPCArt increases
much slower. They can deal with high dimensional data under different situations,

2[21] did implement this version for rSVD, but using a heuristic approach.
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SPCArt: when the number of loadings is small; rSVD-GP: when the sample size is
small; PathSPCA: when the target cardinality is small.

The four truncation types of SPCArt work well in different aspects: T-�0 performs
well overall; T-�1 provides the best sparsity and orthogonality; T-sp directly controls
the sparsity; T-en guarantees explained variance.

There are still two open questions unresolved. (1) Under what conditions can
SPCArt recover the underlying sparse basis? Efforts have been made recently in
[1, 16, 20, 25]. (2) Is there any explicit objective formulation for T-en?
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PCA, Kernel PCA and Dimensionality
Reduction in Hyperspectral Images

Aloke Datta, Susmita Ghosh and Ashish Ghosh

Abstract In this chapter an application of PCA, kernel PCAwith their modified ver-
sions are discussed in the field of dimensionality reduction of hyperspectral images.
Hyperspectral image cube is a set of images from hundreds of narrow and contigu-
ous bands of electromagnetic spectrum from visible to near-infrared regions, which
usually contains large amount of information to identify and distinguish spectrally
unique materials. In hyperspectral image analysis, reducing the dimensionality is an
important step where the aim is to discard the redundant bands and make it less time
consuming for classification. Principal component analysis (PCA), and the modified
version of PCA, i.e., segmented PCA are useful for reducing the dimensionality. A
brief detail of these PCA based methods in the field of hyperspectral images with
their advantages and disadvantages are discussed here. Also, dimensionality reduc-
tion using kernel PCA (one of the non linear PCA) and itsmodification i.e., clustering
oriented kernel PCA in this field are elaborated in this chapter. Advantages and dis-
advantages of all these methods are experimentally evaluated over few hyperspectral
data sets with different performance measures.

1 Introduction

Development of hyperspectral sensors [1] is a significant breakthrough in remote
sensing. Hyperspectral sensors acquire a set of images from hundreds of narrow and
contiguous bands of the electromagnetic spectrum from visible to infrared regions.
Images captured by hyperspectral sensors have ample spectral information to identify
and distinguish spectrally unique materials. There are various applications of hyper-
spectral images [2–5] like target detection, material identification, mineral mapping,
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vegetation species identification, mapping details of surface properties etc. To per-
form these tasks, homogeneous pixels with defined similarity have to be grouped
together (recognition/classification) in hyperspectral images.

Recognition/Classification of patterns is either of the two tasks: supervised clas-
sification (or simply known as classification) and unsupervised classification (also
known as clustering) [6]. Classification task of hyperspectral images is a very chal-
lenging task in recent days due to the presence of a large number of features for
each pixel. The performance of a classifier depends on the interrelationship between
sample sizes, number of features and classifier complexity. The minimum number
of training patterns required for proper training may be an exponential function of
the number of features present in a data set [7]. It has been often observed that more
features may not increase the performance of a classifier, if the number of training
samples is small relative to the number of features. This phenomenon is termed as
“curse of dimensionality” [6, 8]. Another fact of hyperspectral images is that the
neighboring bands are generally strongly correlated. As a result, it is possible that
very less relevant information is actually being added by increasing the spectral res-
olution. Thus, it can be concluded that large number of features is not always needed.
In case of analysis of hyperspectral images, dimensionality reduction is an important
issue [9–11].

The main two approaches of dimensionality reductions in hyperspectral images
are feature selection and feature extraction [8, 12]. In brief, feature selection
[6, 13–19] is nothing but selecting a subset of features from the original set of
features to preserve crucial information and reduce redundancy among information.
Feature selection methods preserve the original physical meaning of the features;
whereas, transforming the original features into a reduced set of features, which pre-
serves the class separability as much as possible in the transformed space, is called
feature extraction [20–24]. The extracted features lose the meaning of the original
features, but each of the original features may contribute to make a transformed fea-
ture. The main advantages of performing feature selection and feature extraction are
to improve the classification accuracy by avoiding the “curse of dimensionality” and
to reduce the computational cost for classification or clustering of data. Depending
on the availability of labeled patterns, feature selection/extraction is categorized into
supervised and unsupervised ones. Supervised methods use class label information
of patterns and, when no labeled patterns are available, unsupervised method is used
for dimensionality reduction.

In this chapter, our main aim is to represent principal component analysis and
its various modifications in respect to feature extraction in hyperspectral images.
Principal component analysis (PCA) [10], and the modified version of PCA, i.e.,
segmented PCA [20] are useful for reducing the dimensionality. A brief detail of
these PCA based methods in the field of hyperspectral images with their advantage
and disadvantages are discussed here. Also, dimensionality reduction using kernel
PCA (one of the non linear PCA) [22, 25] and itsmodification i.e., clustering oriented
kernel PCA [26] in this field are elaborated in this chapter. Advantages and disad-
vantages of all these methods are experimentally evaluated over few hyperspectral
data sets in terms of different performance measures.



PCA, Kernel PCA and Dimensionality Reduction in Hyperspectral Images 21

2 Principal Component Analysis (PCA) Based Feature
Extraction Method

Principal component analysis (PCA) [10, 12, 27] is an orthogonal basis transfor-
mation with the advantage that the first few principal components preserve most of
the variance of the data set. This method [27], initially, calculates the covariance
matrix of the given data set, and then finds the eigenvalues and eigenvectors of this
matrix. Next it selects a few eigenvectors whose eigenvalues are more to form the
transformation matrix to reduce the dimensions of the data set.

Suppose, there are D number of band images. So, a pixel has D number of different
responses over different wavelengths. As a consequences, a pixel may be treated as
a pattern of D attributes. The main target is to reduce the dimensionality from D to
d (d � D)of hyperspectral image pixel.

Let, there be a set of pattern xi , where xi ∈ �D , i = 1, 2, ..., N . Assume that
the data are centered, i.e., xi ⇐= xi − E{xi }. Conventional PCA formulates the
eigenvalue problem by

λV = Σx V (1)

where λ is eigenvalue, V is eigenvector, Σx is the corresponding covariance matrix
over data set x which is calculated by the following equation

Σx = 1

N

N∑

i=1

xi x
T
i . (2)

The projection on the eigenvector V k is calculated as

xkpc = V k .x . (3)

The principal component based transformation is defined as

yi = WT xi ; (4)

where W is the matrix of first d normalized eigenvectors of highest eigenvalues of
the image covariance matrix Σx . T denotes the transpose operation.

Here, a pattern xi from original D-dimensional space is transformed into yi , a
pattern in reduced d-dimensional space by choosing only the first d components
(eigenvectors of highest d eigenvalues).

The transformeddata set has twomain propertieswhich are significant to the appli-
cation here. The variance in the original data set has been rearranged and reordered
so that first few components contain almost all of the variance in the original data,
and the components in the new feature space are uncorrelated in nature [20].
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3 Segmented Principal Component Analysis (SPCA) Based
Feature Extraction Method

In hyperspectral images, the correlations between neighboring spectral bands are
generally higher than for bands further apart. If conventional PCA based method is
modified so that the transformation is carried out by avoiding the low correlations
between the highly correlated blocks, the efficiency of PCA will be improved. Also,
the computational load is a major consideration in the case of hyperspectral data
transformation, i.e., it is inefficient to transform the complete data set. So, a segmented
principal component analysis comes into picture.

In this scheme [20], the complete data set is first partitioned into several subgroups,
depending on the correlations of neighboring features of hyperspectral images.
Highly correlated features are selected as subgroups. Then, PCA based transfor-
mation is conducted separately on each subgroup of data.

At the onset, the D number of bands of a hyperspectral images is partitioned into
a few number of contiguous intervals with constant intensities (i.e., K subgroups).
Highly correlated bands should be in a subgroup. Let I1, I2, ..., Ik , be the number of
bands in the 1st, 2nd, and K th group, correspondingly. The purpose is to obtain a
set of K breakpoints P = {p1, p2, . . . , pK }, which defines the contiguous intervals
Ik = [pk, pk+1). The partition should follow the principle that each band should be
inside one block.

Let Γ be a correlation matrix of size D × D, where D is the number of bands
present in a hyperspectral image. Each element of Γ is γi j , where γi j represents the
correlation between band images Bi and Bj . Let the size of each band image be
M × N . The correlation coefficient between Bi and Bj is defined as

γi, j = ΣM
x=1Σ

N
y=1|Bi (x, y) − μi ||Bj (x, y) − μ j |√

(ΣM
x=1Σ

N
y=1[Bi (x, y) − μi ]2)(ΣM

x=1Σ
N
y=1[Bj (x, y) − μ j ]2)

(5)

whereμi andμ j are themean of band images Bi and Bj , respectively. |Bi (x, y) − μi |
measures the difference between the reflectance value of pixel (x, y) from the mean
value of the total image.

It is observed that the correlation between neighboring spectral bands are gener-
ally higher than for bands further apart. Partitioning is performed based on the results
obtained by first considering only correlations whose absolute value exceeds a given
threshold, and simultaneously searching for edges in the “image” of the correlation
matrix [20]. Each value of the correlationmatrix is compared with a threshold (corre-
lation). If the magnitude is greater than the threshold value (i.e., denoted by Θ), then
replace it by 1; otherwise by 0. The value of Θ has been determined depending on
the value of average correlation (μcorr ) and standard deviation (σcorr ) of correlation
matrix Γ as

Θ = μcorr + σcorr ; (6)
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Fig. 1 Gray scale image
representation of the
correlation matrix of Indian
data set

where,

μcorr = 1

D2
ΣD

i=1Σ
D
j=1γi, j ; (7)

and

σcorr = sqrt (
1

D2
ΣD

i=1Σ
D
j=1(γi, j − μcorr )). (8)

The image of the thresholded correlation matrix will be a binary image with the
square blocks of white color in diagonal direction. These square blocks of white
color are treated as a subgroup or partition of bands. An example of the correlation
matrix of AVIRIS Indian data in image form is shown in Fig. 1.

Now, PCA based transformation is conducted on each subgroup of data. Selection
over obtained principal components from each subgroup is performed based on
pairwise separability measure, such as the Bhattacharyya distance [20].

4 Kernel Principal Component Analysis (KPCA) Based
Feature Extraction Method

PCA, basically, rotates the original axes, so that the newcoordinate systemalignswith
the orientation of maximum variability of data. Rotation is a linear transformation
and the new coordinate axes are then a linear combination of the original axes. So,
PCA as a linear algorithm is inadequate to extract the non linear structures of the
data. Also, PCA only considers variance between patterns which is a second order
statistics, that may limit the effectiveness of the method. So, a non-linear version of
PCA is considered, which is called kernel PCA (KPCA). It is capable of capturing
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a part of higher order statistics. So it is useful for representing the information from
the original data set which is more useful to discriminate among themselves.

Kernel principal component analysis [22], a nonlinear version of the PCA is capa-
ble of capturing a part of higher order statistics, which may represent the information
in a better way from the original data set to reduced data set [25]. This technique
is used for reducing the dimensionality of hyperspectral images. Here, the data of
the input space �D is mapped into another space, called feature space �, to capture
higher-order statistics. A non-linear mapping function Φ is used to transfer the data
from input feature space to a new feature space by

Φ : �D → �;

x → Φ(x). (9)

The non-linear functionΦ transforms a pattern x from D-dimensional input space
to another feature space �. The covariance matrix in this feature space is calculated
as

ΣΦ(x) = 1

N

N∑

i=1

Φ(xi )Φ(xi )
T . (10)

The principal components are then computed by solving the eigenvalue problem

λV = ΣΦ(x)V = 1

N

N∑

i=1

(Φ(xi ).V )Φ(xi ). (11)

Furthermore, all eigenvectors with nonzero eigenvalue must be in the span of
mapped data, i.e., V ∈ span{Φ(x1), ..., Φ(xN )}, and there exists coefficients αi (i =
1, 2, ..., N ) such that

V =
N∑

i=1

αiΦ(xi ). (12)

Here,V denotes the eigenvector and xi denotes the i th pattern. Multiplying Eq.11
by Φ(xk) from left and substituting Eq.12 into it, we get

λ

N∑

i=1

αi (Φ(xk)Φ(xi )) = 1

N

N∑

i=1

αi

⎛

⎝Φ(xk).
N∑

j=1

(Φ(x j ).Φ(xi ))Φ(x j )

⎞

⎠ ; (13)

for k = 1, ..., N .
Calculation of principle components in feature space � is computationally pro-

hibitive. It is possible to work implicitly in � while all computations is done in the
input space using kernel trick. Using kernel function, the product in feature space is
reduced to a possibly nonlinear function (denoted by ψ) in the input space



PCA, Kernel PCA and Dimensionality Reduction in Hyperspectral Images 25

Φ(xi ).Φ(x j ) = ψ(xi , x j ). (14)

Now, the N XN matrix, termed as kernel matrix Ψ , is defined as

Ψ =

⎛

⎜⎜⎜⎝

ψ(x1, x1) ψ(x1, x2) · · · ψ(x1, xN )

ψ(x2, x1) ψ(x2, x2) · · · ψ(x2, xN )
...

...
. . .

...

ψ(xN , x1) ψ(xN , x2) · · · ψ(xN , xN )

⎞

⎟⎟⎟⎠ .

Using the kernel matrix Ψ , Eq. 13 becomes

λα = Ψ α; (15)

where, α = (α1, ..., αN )T , T denotes the transpose operation, and one computes
an eigenvalue for the expansion coefficient αi , which is solely dependent on kernel
function.

Like PCA algorithm, the data needs to be centered in � and it is done by substi-
tuting the kernel matrix Ψ by

Ψc = Ψ − 1NΨ − Ψ 1N + 1NΨ 1N ; (16)

where 1N is a square matrix such as (1N )i j = 1/N .
For extracting features of a new pattern x with KPCA, one simply projects the

mapped pattern Φ(x) into kth eigen vector V k by

(V k .Φ(x)) =
M∑

i=1

αk
i (Φ(xi ).Φ(x)) =

M∑

i=1

αk
i ψ(xi , x). (17)

The KPCA incorporates nonlinearity in the calculation of the matrix elements of
Ψ and the evaluation of the expansion.

The function ψ is a positive semi-definite function on �D which incorporates
nonlinearity into processing. This is usually called a kernel. Selecting an appropriate
kernel is a new scope of research. It is better to use Gaussian kernel if there are
assumptions of the nature of clusters of data as Gaussian. Hyperspectral remote
sensing data are known to be well approximated by a Gaussian distribution [28]. So,
in this article, Gaussian kernel is used, which is described by following equation

ψ(xi , x j ) = exp

(
−||xi − x j ||

2σ 2

)
. (18)

In the Gaussian kernel, the parameter σ , controls the width of the exponential
function. For a very small value of σ , each sample is considered as an individ-
ual cluster, and vice-versa. The value of σ depends on data set [25]. This KPCA
based feature extraction method selects some percent of data from the total data set
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randomly to calculate the kernel matrix, i.e., value of σ [22]. The minimum distance
of all representative patterns xi with other patterns is calculated. Thus, if there are N
patterns, then there will be N minimum distances. The average of this N minimum
distances is calculated. σ is taken as five times of this minimum value. Thus, σ value
is dependent on the nature of data set.

5 Clustering Oriented Kernel Principal Component
Analysis (KPCA) Based Feature Extraction Method

The clustering oriented KPCA based feature extraction method [26] performs kernel
principal component analysis to transform the original data set of dimension D into d
dimensional space. The KPCA is non linear in nature and uses higher order statistics
of data set to discriminate the classes. Themost important thing is to select the proper
training set for calculating kernel matrix for KPCA. A randomly selected training
pattern may not represent the overall data set properly. Also, it should not be too
large so that the method becomes computationally prohibitive. So, a proper subset
of original hyperspectral data set which can represent the total data set properly
should be selected and this training set should not contain any noisy data. DBSCAN
clustering technique is used for choosing the proper representative training set. In this
section, selection of N representative patterns using DBSCAN clustering technique
is described and then discuss about the KPCA based transformation using these data.

KPCA shares the same properties as the PCA, but in a different space. Both PCA
and KPCA need to solve eigenvalue problem, but the dimensions of the problem are
different, D × D for PCA and N × N for KPCA, where D is the dimensions of data
set and N is number of representative patterns required to calculate kernel matrix
Ψ . The size of the matrix becomes problematic for large N . Number of pixel points
(N ) in hyperspectral images is huge, so it is difficult to perform KPCA by taking all
the pixels. If some percentage of total pixels are selected randomly, then the selected
pixels may not represent the characteristics of total data. So, it is better to make small
group of pixels according to their similarity, and then take some representative pixels
from each group to make the representative pattern set for KPCA.

Selecting of N Representative Pixels using DBSCAN Clustering
Pixels on homogeneous region have similar properties and make group or region
in hyperspectral images by clustering. Each pixel of a hyperspectral image can be
treated as a pattern with D attributes, where D represents the total number of features
present in the images. In the proposed investigation a density based spatial clustering
technique (DBSCAN) [29] is applied to obtain the region types. It does not require
prior information regarding the number of clusters. DBSCAN treats a noisy pattern
as an isolated point, rather than including it into any cluster. The main concept
of DBSCAN clustering technique is that within each cluster, density of points is
considerably higher than outside the cluster, whereas, the density around the noisy
area is lower than the density in any of the clusters. So, if the neighborhood of a
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given radius of a pattern, contains at least a minimum number of patterns, i.e. the
density in the neighborhood exceeds some threshold, then that pattern is in a cluster.

It requires two user-defined parameters, neighborhood distance (Eps) and the
minimum number of points (MinPts). For a given point, the points within an Eps
distance are called neighbors of that point. DBSCAN labels the data points as core
points, border points, and outlier points. Core points are those which have at least
MinPts number of points within the Eps distance in all directions. Border points can
be defined as points that are not core points, but are the neighbors of core points.
Outlier points are those which are neither core points nor border points.

The algorithm starts with an arbitrary starting point and then finds all the neigh-
boring points within Eps distance of the starting point. If the number of points of
its neighborhood is greater than or equal toMinPts, a cluster is formed. The starting
point and its neighbors are added to this cluster and the starting point is marked as
visited. The algorithm then repeats this process for all the neighbors iteratively. If the
number of neighbors is less than MinPts, the point is marked as noise (i.e., isolated
point). If a cluster is fully expanded, then the algorithm proceeds to iterate through
the remaining unvisited points in the data set. The steps of DBSCAN are given in
Algorithm 1.

Algorithm 1 Pseudo Code of DBSCAN Algorithm
1: Let S = {x1, x2, . . . , xn}
2: Let class(x) = −1,∀x ∈ S
3: Choose Eps and MinPts
4: class_no = 1
5: for i = 1 to n do
6: Ai = {x ∈ S : d(x, xi ) ≤ Eps}
7: if (| Ai |≥ MinPts) then
8: if (class(xi ) == −1) then
9: if (max(class(x : x ∈ Ai )) > −1) then
10: new_class_no = min(class(x : x ∈ Ai and class(x : x ∈ Ai ) > −1))
11: class(xi ) = new_class_no
12: class(x : ∀x ∈ Ai ) = new_class_no
13: else
14: class(xi ) = class_no
15: class(x : ∀x ∈ Ai ) = class_no
16: class_no = class_no + 1
17: end if
18: else
19: new_class_no = class(xi )
20: class(x : ∀x ∈ Ai ) = new_class_no
21: end if
22: end if
23: end for
24: return class

Let DBSCAN clustering technique produce C clusters. The isolated pixels iden-
tified by DBSCAN algorithm are discarded considering them as noise. Number of
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clusters (C) does not lie on any predefined range, it is dependent on the data set. Basi-
cally it is better that C be close to the number of regions/ land cover types present on
the hyperspectral image. The value of C gives an approximation on the number of
land cover types/ groups present in the images. DBSCAN clustering technique gives
only the clusters present in the data set, but not the cluster centers.

From each cluster, a certain percentage of pixels are selected as representative
patterns for calculating the kernel matrix of the KPCA based method. For example,
if a cluster C1 has N1 pixels, then N1/10 number of pixels are selected from that
cluster. The first selected pixels of each cluster is the mean of all the pixels present
in a cluster. If a cluster mean does not represent a physical pixel in that cluster, then
the nearest pixel of cluster mean is selected from that cluster. Then the next pixels
from another cluster is selected which has the maximum distance from other selected
pixels of that cluster. The isolated pixels or noisy pixels, which is far away from any
cluster (DBSCAN clustering technique detects them and considers them separately)
would not be included in the representative pattern set, because KPCA is susceptible
to noise.

Now, the KPCA based transformation is performed to reduce the dimensionality
from D to d, as described in Sect. 4, where the set of representative patterns are
selected by DBSCAN clustering technique to properly represent the characteristics
of whole data set. This technique is called as clustering oriented KPCA based feature
extraction method of hyperspectral images. An outline of the clustering oriented
KPCA based feature extraction method is given in Algorithm 2.

Algorithm 2 Clustering oriented KPCA based feature extraction algorithm
1. Selecting N representative pixels

• Perform DBSCAN clustering technique over pixels of hyperspectral images which is in
D-dimensional space using Algorithm 1.

• Choose some percentage of exemplar pixels from each cluster to make N representative
pixels.

• TheseN pixels are used as representative pixels for calculating the kernelmatrix inKPCA.

2. Using kernel PCA, transform data into reduced d-dimensional space

• Compute kernel matrix, Ψ , using Eq.18
• Center Ψ , using Eq.16
• Solve eigen value problem of Eq.15
• Extract the d first principal components using Eq.17
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6 Experimental Evaluation

6.1 Description of Data Sets

Experiments are carried out to evaluate the effectiveness of these feature extraction
methods on three hyperspectral remotely sensed images namely, Indian Pine [30],
KSC [31], and Botswana [31] images corresponding to the geographical areas of
Indian Pine test site of Northwest Indiana, Kennedy Space Center of Florida and
Okavango Delta of Botswana. The data sets are described here.

Indian Pine data:
Indian Pine image [30] data was captured by AVIRIS (Airborne Visible/Infrared
Imaging Spectrometer) over an agricultural portion of northwest Indiana’s Indian
Pine test site in the early growing season of 1992. The data has been taken within
the spectral range from 400 to 2500nm with spectral resolution of about 10nm and
has 220 spectral bands.

The size of the image is 145 × 145 pixels and spatial resolution is 20 m. Twenty
water absorption bands (numbered 104–108, 150–163 and 220) and 15 noisy bands
(1–3, 103, 109–112, 148–149, 164–165 and 217–219) were removed, resulting in a
total of 185 bands. There are 16 classes in this image. Class name and the number
of labeled samples for each class are given in Table1. Among the 16 classes, seven
classes contain fewer samples. For more details and ground truth information, see
[30] and visit http://dynamo.ecn.purdue.edu/biehl/ (Figs. 2, 3, and 4).

Table 1 Indian Pine data: class names and the number of samples

Class no Class name No. of samples

C1 Corn 191

C2 Corn-min 688

C3 Corn-notill 1083

C4 Soybean-clean 541

C5 Soybean-min 2234

C6 Soybean-notill 860

C7 Wheat 211

C8 Alfalfa 51

C9 Oats 20

C10 Grass/ Trees 605

C11 Grass/ Pasture 351

C12 Grass/ Pasture-mowed 17

C13 Woods 1293

C14 Hay-windrowed 477

C15 Bldg-Grass-Tree-Drives 380

C16 Stone-steel-towers 86

http://dynamo.ecn.purdue.edu/biehl/
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Fig. 2 Band 11 image of Indian Pine data

Fig. 3 Band 11 image of KSC data
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Fig. 4 Band 11 image of
Botswana data
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KSC data:
TheKSC [31] images, acquired overKennedySpaceCenter (KSC), Florida onMarch
23, 1996 byNASAAVIRIS, is of size 512 × 614. AVIRIS acquires data in 224 bands
of 10 nm width with wavelengths ranging from 400 to 2500nm. The data is acquired
from an altitude of approximately 20km with a spatial resolution of 18 m. After
removing the bands disturbed due to water absorption or with low signal-to-noise-
ratio (SNR) value (numbered 1–4, 102–116, 151–172 and 218–224), 176 bands are
used for analysis. Training data were selected using land cover maps derived from
color infrared photography provided by the Kennedy Space Center and Landsat The-
matic Mapper (TM) imagery. The vegetation classification scheme was developed
by KSC personnel in an effort to define functional types that are discernable at the
spatial resolution of Landsat and the AVIRIS data [31]. Discrimination of land cover
for this environment is difficult due to similarity of spectral signatures for certain
vegetation type. Details of the 13 land cover classes considered in the K SC data area
are listed in Table2. For more details and ground truth information, see [31] and visit
http://www.csr.utexas.edu/.

Botswana data:
The NASA Earth Observing 1 (EO-1) satellite acquired a sequence of 1476 × 256
pixels over the Okavango Delta, Botswana in 2001–2004 [31]. The Hyperion sensor
on EO-1 acquired data at 30m pixel resolution over a 7.7km × 44km surface are
in 242 bands from the 400–2500nm portion of the spectrum in 10nm windows.
Preprocessing of the data was performed by the UT Center for Space Research to
mitigate the effects of bad detectors, inter-detector miscalibration, and intermittent
anomalies. Uncalibrated and noisy bandswhich cover water absorption features were
removed, and the remaining 145 bands were included as candidate features: [10–55,
82–97, 102–119, 134–164, 187–220]. This data was acquired on May 31, 2001 and

Table 2 KSC data: class names and the number of samples

Class no Class name No. of samples

C1 Scrub 761

C2 Willow swamp 243

C3 Cabbage palm hammock 256

C4 Cabbage palm/oak hammock 252

C5 Slash pine 161

C6 Oak/broadleaf hammock 229

C7 Hardwood swamp 105

C8 Graminoid marsh 431

C9 Spartina marsh 520

C10 Cattail marsh 404

C11 Salt marsh 419

C12 Mud flats 503

C13 Water 927

http://www.csr.utexas.edu/
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Table 3 Botswana data: class names and the number of samples

Class no Class name No. of samples

C1 Water 270

C2 Hippo Grass 101

C3 FloodPlain Grasses 1 251

C4 FloodPlain Grasses 2 215

C5 Reeds 269

C6 Riparian 269

C7 Firescar 259

C8 Island Interior 203

C9 Acacia Woodlands 314

C10 Acacia Shrublands 248

C11 Acacia Grasslands 305

C12 Short Mopane 181

C13 Mixed Mopane 268

C14 Exposed Soils 95

consists of observations from 14 identified classes representing the land cover types
in seasonal swamps, occasional swamps, and drier woodlands located in the distal
portion of the Delta [31]. These classes were chosen to reflect the impact of flooding
on vegetation in the study area. Class names and corresponding number of ground
truth observations used in our experiment are listed in Table3. For more details and
ground truth information, see [31] and visit http://www.csr.utexas.edu/.

6.2 Performance Measures

In this section, four feature evaluation indices namely, class separability (S) [8],
overall classification accuracy (OA) [32], kappa coefficient (κ) [32] and entropy (E)
[33], have been describedwhich are considered for evaluating the effectiveness of the
extracted features. The first three measuring indices need class label information of
the samples while the last one does not require the same. The details of the evaluation
indices used in this thesis, are given below.

Overall Accuracy (OA):
Overall accuracy [32] represents the ratio between the number of samples correctly
recognized by the classification algorithm and the total number of test samples. To
measure the overall accuracy, initially, confusionmatrix is determined. The confusion
matrix is a square matrix of size C × C , where C represents the number of classes
of the given data set. The element ni j of the matrix denotes the number of samples
of the j th ( j = 1, 2, ...,C) category which are classified into i th (i = 1, 2, ...,C)

category. Let N be the total number of samples; where N = ∑C
i=1

∑C
j=1 ni j . The

http://www.csr.utexas.edu/
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overall accuracy (OA) is defined as

OA =
∑C

i=1 nii
N

. (19)

Kappa Coefficient (κ):
The kappa coefficient (κ) [32] is a measure defined on the difference between the
actual agreement in the confusion matrix and the chance agreement, which is indi-
cated by row and column totals of the confusion matrix. The kappa coefficient is
widely adopted, as it also takes into consideration the off-diagonal elements of the
confusion matrix and compensates for chance agreement. The value of κ lies in the
range [−1 , +1]. Closer the value of κ to +1, better is the classification.

Let, in the confusion matrix, the sum of the elements of i th row be denoted as ni+
(where, ni+ = ∑C

j=1 ni j ) and the sum of the elements of column j be n+ j (where

n+ j = ∑C
i=1 ni j ). The kappa coefficient is then defined as

κ = N
∑C

i=1 nii − ∑C
i=1 ni+n+i

N 2 − ∑C
i=1 ni+n+i

; (20)

where N denotes the total number of samples andC denotes the number of classes
of the given data set.
Class Separability:
Our aim is to look for a feature space where the inter-class distance is large and
at the same time the intra-class distance is as small as possible. Let there be C
classesω1, ω2, . . . , ωC . Assume Sw and Sb to be the intra-class and inter-class scatter
matrices, respectively and can be defined as

Sw =
C∑

i=1

piΞ{(x − μi )(x − μi )
T | ωi } =

C∑

i=1

piΣωi ; (21)

Sb =
C∑

i=1

pi (μ − μi )(μ − μi )
T ; (22)

where pi is the a priori probability that a pattern belongs to class ωi , x is a pattern
vector,μi represents the samplemean vector of classωi ,Σωi is the sample covariance
matrix of classωi , andΞ{·} calculates the expectation value. The overall mean vector
(μ) for the entire data set is defined as

μ =
C∑

i=1

piμi . (23)

Class separability [8], S, of a data set is defined as
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S = trace(S−1
b Sw). (24)

A lower value of the separabilitymeasure S ensures that the classes arewell separated.
Entropy:

The distance L pq between the patterns xp and xq can be defined as:

L pq =
⎛

⎝
D∑

j=1

(
xp, j − xq, j

max j − min j

)2
⎞

⎠
1/2

, (25)

where xpj denotes the j th feature value of pattern xp, max j and min j are the maxi-
mum and the minimum values computed over all the patterns along the j th direction.
Similarity between xp and xq , represented as Spq , can be defined as

Spq = e−αL pq ; (26)

where α is a positive constant. A possible value of α = −ln0.5
L̂

, where L̂ is the mean
distance among patterns computed over the entire data set. Hence α is determined
by the given data and can be calculated automatically.

Entropy [33] of a pattern xp with respect to all other patterns is calculated as

Ep = −
xp 
=xq∑

xq∈Υ

(
Spqlog2Spq + (1 − Spq)log2(1 − Spq)

)
. (27)

Here Υ is a set of all patterns. Entropy of overall data set is defined by

E =
∑

xp∈Υ

Ep = −
∑

xp∈Υ

p 
=q∑

xq∈Υ

(
Spqlog2Spq + (1 − Spq)log2(1 − Spq)

)
. (28)

It is to be noted that, entropy is less for stable configuration of patterns (data has
well formed clusters), and is more for disordered configuration, i.e., data is uniformly
distributed in the feature space.

6.3 Parameter Details

Experiments are conducted on three hyperspectral data sets, namely, Indian Pine,
KSC and Botswana. Details about the data sets are given in Sect. 6.1. As already
mentioned in the previous section, the clustering oriented KPCA based method first
perform DBSCAN clustering technique on pixels to choose N representative pat-
terns and then perform KPCA based transformation on the data set to reduce the
dimensionality.
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DBSCAN clustering algorithm uses two parameters, namely, minimum distance
with respect to a point for which neighborhood is calculated (denoted as Eps) and
the minimum number of points in an Eps-neighborhood of that point (denoted by
MinPts). Ester et al. [29] suggested to use MinPts equal to 4 and used a method
which considers the variation of the number of points with respect to their 4th nearest
neighbor distance to calculate the value of Eps. Although higher values for MinPts
have also been tested, it did not produce better results. The value of Eps is taken to be
the location of the first valley of this graph. In the clustering oriented KPCA based
strategy,MinPts and Eps are calculated in accordance to Ester et al. [29]. For Indian
Pine data set, Eps value is 110, which is the 4th nearest neighbor distance of the
first valley of the graph described at Ester et al. [29] with MinPts equal to 4. There
are about 19 clusters of pixels and few isolated pixels which do not belong to any
cluster. It is better to discard the isolated pixels and not consider them in formation
of representative patterns, because KPCA is susceptible to noise. Generally, the
principle for selecting representative patterns from each cluster is discussed in the
proposed method section. But the percentage of total patterns which are selected
for representative patterns, is needed to determine. Here, 2–12% of total patterns
are selected for representative patterns for calculating kernel matrix of KPCA and
the performance of the clustering oriented KPCA based method in terms of overall
accuracy for 18 number of extracted features for Indian Pine data is depicted in
Table4. From the table, it is observed that 8–10% data patterns are sufficient for
calculating kernel matrix. Similar observations are also found for the other data sets.
So, 10% data from each cluster are selected for making representative patterns. So
in the set of representative patterns, a small cluster has less number of pixels and
vice verse. For example, the number of representative patterns for Indian Pine data
is about 850.

To assess the performance of the abovementionedmethods, classification of pixels
is performed using transformed features. After completing the feature extraction,
fuzzy k-NN based classification (in theory, any good classification algorithm can be
used) is performed using the transformed features in 10-fold cross validationmanner.
10-fold cross validation is a well-known technique for choosing training and testing
data for classification. In this method, the whole data set is randomly partitioned into
10 blocks. Each time one block of data is treated as a testing data, and the remaining
9 blocks are training data. The whole process is repeated 10 times with different
training and test data sets and the average overall accuracy is calculated. There
may be overlapping of information between neighboring pixels of the hyperspectral

Table 4 Performance of the clustering oriented KPCA basedmethod in terms of OA for 18 number
of extracted features with different number of small representative samples for calculating kernel
matrix of KPCA for Indian Pine data

N (%) 2 5 8 10 12

OA (%) 65.57 79.45 86.36 87.69 87.58
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images. Fuzzy k-NN, rather than other classification techniques, is used to take care
of the fuzziness present in the hyperspectral images.

The desired number of transformed features is not known apriori, because it varies
with data set. In the present investigation, experiments are carried out for different
number of features ranging from 4 to 30 with a step size of 2. Overall classification
accuracy (OA), kappa coefficient (κ), class separability (S) and entropy (E) are
calculated for the transformed set of features to assess the effectiveness of the feature
extraction methods.

6.4 Analysis of Results

The cumulative eigenvalues of PCA, KPCA and clustering oriented KPCA based
methods are depicted in Table5 in percentage for Indian Pine data set. The cumu-
lative eigenvalues represent the cumulative variance of the data [22, 34]. It shows
that ninety five percent of cumulative variance of PCA is retained by the first six
components, while KPCA and clustering oriented KPCA based methods need 14
to 18 components. In PCA most of the information content is retained in the first
few features, where as, KPCA and clustering oriented KPCA based methods require
more number of components.

The obtained OA and κ for Indian Pine data after applying fuzzy k-NN classifier
over the transformed set of features by PCA, segmented PCA (SPCA), kernel PCA
(KPCA) and clustering oriented KPCA based methods are given in Table6. For PCA
based method, OA becomes saturated when the number of transformed feature is
10 and after that it is stabilized. For KPCA and clustering oriented KPCA based
methods, OA saturated at 18 and 16 number of features, respectively. It is due to

Table 5 Percentage of cumulative eigenvalues of principal components of PCA, KPCA and clus-
tering oriented KPCA based methods for Indian Pine data

No. of PCs PCA KPCA Clustering oriented
KPCA

(Cum.%) (Cum.%) (Cum.%)

2 72.32 57.74 63.18

4 85.89 68.11 73.74

6 96.69 76.41 81.54

8 98.37 83.37 88.62

10 99.06 87.16 91.97

12 99.23 89.78 94.24

14 99.33 91.71 95.86

16 99.37 93.48 96.92

18 99.42 94.82 97.60

20 99.46 95.84 98.15
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Table 6 Overall accuracy and kappa coefficients of PCA, SPCA, KPCA and clustering oriented
KPCA based methods for different number of extracted features for Indian Pine data

No. of
features

PCA SPCA KPCA Clustering oriented KPCA

OA(%) κ OA(%) κ OA(%) κ OA(%) κ

4 64.91 0.5952 52.19 0.4502 60.95 0.5516 61.15 0.5539

6 75.36 0.7167 66.24 0.6106 73.49 0.6948 74.86 0.7102

8 82.84 0.8031 74.31 0.7044 78.62 0.7541 80.18 0.7713

10 83.87 0.8144 78.92 0.7578 81.36 0.7859 82.58 0.7997

12 83.96 0.8154 82.31 0.7769 83.39 0.8092 84.27 0.8187

14 84.01 0.8159 83.68 0.8128 84.21 0.8180 86.49 0.8436

16 83.84 0.8140 84.78 0.8245 85.14 0.8287 87.61 0.8559

18 83.93 0.8149 85.16 0.8288 85.56 0.8332 87.73 0.8573

20 83.82 0.8137 85.02 0.8273 85.59 0.8336 87.66 0.8565

22 84.01 0.8159 84.98 0.8269 85.78 0.8356 87.49 0.8546

24 83.71 0.8124 85.13 0.8286 85.53 0.8328 87.58 0.8556

26 83.54 0.8102 85.01 0.8272 85.64 0.8341 87.82 0.8584

28 82.56 0.7995 84.91 0.8261 85.51 0.8324 87.46 0.8542

30 83.78 0.8132 85.10 0.8282 85.43 0.8316 87.38 0.8533

the fact that the number of principal components for PCA, KPCA and clustering
oriented KPCA methods, for containing most of the variance of data, are 10, 18 and
16, respectively (shown in Table5). It is noticed from Table6 that Kernel PCA based
methods (i.e., KPCA and clustering oriented KPCA) give better results than PCA
and segmented PCA based methods. From Table6, it is also observed that clustering
oriented KPCA method achieves better results in terms of OA and κ for different
number of transformed features. The reason behind this finding is that all the four
methods transform the original set of features into a new set of features considering
the maximum variance of data. Moreover, KPCA based methods incorporate the non
linearity in transformation. The clustering orientedKPCAmethod gives better results
than KPCA, because the representative patterns, for calculating kernel matrix for
KPCA, are not selected randomly (like KPCA). The DBSCAN clustering technique
is used to select the representative patterns so that it properly represents all the clusters
of the data set, as well as, discard noisy pattern.

Figure5 depicts the variation of average OA (in percentage) with number of fea-
tures for all themethods used in the experiment. The graph corroborates to our earlier
findings. For Indian Pine data, ground truth image with 16 classes is shown in Fig. 6,
where different colors are used to distinguish the pixels among classes. Figure7a–d
shows the pictorial representation of the classified image with the best subset of
features extracted using PCA, SPCA, KPCA and clustering oriented KPCA based
techniques, correspondingly. A view of the classified images show that the clustering
oriented KPCA based technique transforms a better set of features for classification
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Fig. 5 Comparison of the performance of PCA, SPCA, KPCA and clustering orientedKPCA based
methods in terms of overall accuracywith respect to the number of features used for Indian Pine data

Fig. 6 Ground truth image of Indian Pine data

of given hyperspectral images as compared to other methods. It is clearly observed
that the classified Indian Pine image with transformed feature set using clustering
oriented KPCA based method has very less misclassified pixels compared to other
methods. Table10 contains the optimum value of OA, κ , S and E for all three hyper-
spectral data sets for all four methods. From this table, it is noticed that clustering
orientedKPCAbasedmethod gives less value of S and E , which is better with respect
to the other three methods used in our experiments. It shows that the clustering ori-
ented KPCA method transforms better subset of features which gives well separated
classes as well as stable configuration of patterns compared to other methods.
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Fig. 7 Classified images of Indian Pine data with extracted feature set using (a) PCA, (b) SPCA,
(c) KPCA, and (d) clustering oriented KPCA based methods

Table 7 CPU time for PCA, SPCA, KPCA and clustering oriented KPCA based methods using
Indian Pine data

PCA SPCA KPCA Clustering
oriented KPCA

CPU time (s) 15.29 48.24 79.12 61.31

For comparing the computational costs, using an Intel(R) Core(TM) i7 2600
CPU @ 3.40-GHz processor and an Indian Pine image with 185 features of 145 ×
145 pixels, clustering oriented KPCA method required about 61.31 s. Programs are
developed in C. Table7 gives a simple quantitative analysis of the computational cost
of each method for Indian Pine data. The clustering oriented KPCA method takes
much less time than KPCA, where all the patterns are used for kernel matrix, but it
takes little more time than PCA based methods (i.e., PCA and SPCA).

Overall accuracy (OA) and kappa coefficient (κ) for KSC and Botswana data sets
are put in Tables8 and 9, respectively. From the table, it is observed that clustering
oriented KPCA based method is producing better results than the other methods
for both the data sets. A variation of OA for these methods with the number of
transformed features are depicted graphically in Figs. 8 and 9, respectively, for KSC
and Botswana data. Results for these data sets corroborate to our earlier findings.
It is also observed that KPCA based transformation (KPCA and clustering oriented
KPCA) are found to be better than PCA based methods (PCA and Segmented PCA).
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Table 8 Overall accuracy and kappa coefficients of PCA, SPCA, KPCA and clustering oriented
KPCA based methods for different number of extracted features for KSC data

No. of
features

PCA SPCA KPCA Clustering oriented KPCA

OA(%) κ OA(%) κ OA(%) κ OA(%) κ

4 69.44 0.6483 59.07 0.5311 65.84 0.6054 67.21 0.6213

6 78.37 0.7513 73.41 0.6943 77.31 0.7390 78.19 0.7493

8 86.21 0.8407 79.87 0.7703 85.37 0.8311 85.81 0.8359

10 88.50 0.8658 85.31 0.8304 87.21 0.8514 88.47 0.8655

12 88.72 0.8682 89.01 0.8714 88.79 0.8690 89.21 0.8736

14 88.84 0.8695 90.10 0.8835 89.38 0.8755 89.98 0.8822

16 88.89 0.8701 89.92 0.8815 90.61 0.8898 90.72 0.8910

18 88.69 0.8679 90.03 0.8827 90.72 0.8910 91.92 0.9042

20 88.42 0.8649 90.21 0.8847 90.89 0.8929 91.93 0.9044

22 88.51 0.8659 90.16 0.8841 90.81 0.8920 91.87 0.9036

24 88.10 0.8614 89.77 0.8798 90.64 0.8901 91.89 0.9039

26 88.27 0.8633 90.01 0.8825 90.32 0.8859 91.75 0.9023

28 88.48 0.8656 89.98 0.8822 90.57 0.8893 91.87 0.9036

30 88.46 0.8654 90.08 0.8833 90.61 0.8898 91.82 0.9031

If higher order statistics of a hyperspectral data set are considered with variance of
data, then the methods give better results than others.

Class separability and entropy values are also calculated for both the KSC and
Botswana data sets. Results of these data sets provide similar findings with the results
of Indian Pine data. Table10 incorporates the optimum values (for all the three data
sets) in terms of OA, κ , S and E . The optimum value of all the methods are achieved
in different number of extracted features which are also depicted in this table. The
different numbers of extracted features for different methods (for optimum results)
are in between 14 and 22, because different methods follow different extraction
principles. The best results are marked in bold. This table also confirms the fact that
clusteringorientedKPCAbased feature extraction algorithmgives better transformed
set of features for classification than the other methods used in our experiment.

It also has been noticed that richness of the information of hyperspectral data is
not fully handled using only variance of the data (by PCAmethod), it needs variance
as well as higher order statistics of the data (like KPCA based methods). The KPCA
based methods can extract more information from the hyperspectral data than the
conventional PCA. Also, a proper choice of representative patterns for kernel matrix
calculation, like clustering oriented KPCA based methods, produces better subset of
features.
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Table 9 Overall accuracy and kappa coefficients of PCA, SPCA, KPCA and clustering oriented
KPCA based methods for different number of extracted features for Botswana data

No. of
features

PCA SPCA KPCA Clustering oriented KPCA

OA(%) κ OA(%) κ OA(%) κ OA(%) κ

4 69.82 0.6552 58.31 0.5228 66.12 0.6085 68.02 0.6302

6 78.51 0.7529 72.42 0.6834 76.53 0.7244 77.23 0.7321

8 86.94 0.8486 79.98 0.7715 83.32 0.8084 85.21 0.8293

10 88.38 0.8645 86.31 0.8416 86.17 0.8439 88.19 0.8624

12 89.30 0.8746 87.83 0.8533 89.92 0.8815 90.71 0.8909

14 89.32 0.8748 89.39 0.8756 90.67 0.8904 91.32 0.8976

16 89.26 0.8740 90.43 0.8872 91.23 0.8966 91.78 0.9026

18 89.33 0.8749 90.72 0.8908 91.25 0.8988 92.68 0.9125

20 89.17 0.8730 90.74 0.8910 91.19 0.8961 92.89 0.9151

22 89.22 0.8735 90.63 0.8894 91.31 0.8975 92.71 0.9130

24 89.23 0.8736 90.68 0.8899 91.07 0.8968 92.34 0.9089

26 89.08 0.8719 90.21 0.8847 91.24 0.8987 92.21 0.9075

28 89.14 0.8726 90.19 0.8845 91.17 0.8979 92.46 0.9103

30 89.21 0.8734 90.52 0.8881 91.21 0.8983 92.61 0.9119
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Fig. 8 Comparison of the performance of PCA, SPCA, KPCA and clustering orientedKPCA based
methods in terms of overall accuracy with respect to the number of features used for KSC data



PCA, Kernel PCA and Dimensionality Reduction in Hyperspectral Images 43

5 10 15 20 25 30
55

60

65

70

75

80

85

90

95

Number of features

O
ve

ra
ll 

ac
cu

ra
cy

 in
 %

 

 

PCA
SPCA
KPCA
Clustering oriented KPCA

Fig. 9 Comparison of the performance of PCA, SPCA, KPCA and clustering orientedKPCA based
methods in terms of overall accuracy with respect to the number of features used for Botswana data

Table 10 Comparison of feature extraction methods for hyperspectral data sets

Data set
used

Method Selected
feature no.

Evaluation criterion

E S OA κ

Indian Pine
D=185

PCA 14 0.6013 0.2659 84.01 0.8159

SPCA 18 0.5929 0.2607 85.16 0.8288

KPCA 22 0.5815 0.2559 85.78 0.8356

Clustering
oriented
KPCA

18 0.5567 0.2413 87.82 0.8584

KSC
D=176

PCA 16 0.5637 0.1307 88.89 0.8701

SPCA 20 0.5529 0.1279 90.21 0.8847

KPCA 20 0.5496 0.1241 90.89 0.8929

Clustering
oriented
KPCA

20 0.5403 0.1193 91.93 0.9044

Botswana
D=145

PCA 16 0.4734 0.1002 89.33 0.8749

SPCA 20 0.4561 0.0913 90.74 0.8910

KPCA 22 0.4493 0.0896 91.25 0.8988

Clustering
oriented
KPCA

20 0.4376 0.0809 92.89 0.9151
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7 Conclusions

PCA and KPCA based feature extraction techniques for hyperspectral images in
unsupervised manner has been presented in this chapter, which transform the origi-
nal data to a lower dimensional space. PCA is a linear transformation, whereasKPCA
is non linear in nature and advantageous to attain the higher order statistics of data. In
clustering orientedKPCA, theDBSCAN clustering technique is used to select proper
training patterns for calculating kernel matrix for KPCA. To measure the effective-
ness of these methods, four evaluation measures (namely, overall accuracy, kappa
coefficient, class separability and entropy value) have been used. It is observed from
the results that clustering oriented KPCA technique has a significant improvement,
and a more consistent and steady behavior for different hyperspectral image data sets
(Indian Pine, KSC and Botswana data) with respect to the other methods, i.e., PCA,
SPCA and KPCA based methods in terms of all four evaluation measures.

It can be concluded from the abovementioned experimental results that clustering
orientedKPCAbasedmethodgives better performancewith respect to othermethods,
because the technique considers variance of the data set as well as other higher order
statistics by using kernel PCAbased transformation. Themethod also takes necessary
steps for choosing the representative patterns as well as avoid noisy patterns for
calculating kernel matrix of KPCA, which is a proper representation of the original
data set by using DBSCAN clustering algorithm.
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Principal Component Analysis
in the Presence of Missing Data

Marco Geraci and Alessio Farcomeni

Abstract The aimof this chapter is to provide an overviewof recent developments in
principal component analysis (PCA) methods when the data are incomplete. Miss-
ing data bring uncertainty into the analysis and their treatment requires statistical
approaches that are tailored to cope with specific missing data processes (i.e., ignor-
able and nonignorable mechanisms). Since the publication of the classic textbook
by Jolliffe, which includes a short, same-titled section on the missing data prob-
lem in PCA, there have been a few methodological contributions that hinge upon a
probabilistic approach to PCA. In this chapter, we unify methods for ignorable and
nonignorable missing data in a general likelihood framework. We also provide real
data examples to illustrate the application of these methods using the R language and
environment for statistical computing and graphics.

1 Introduction

Missing values occur frequently in all fields of research, including longitudinal stud-
ies [1, 18, 24], bioinformatics and gene expression [3, 5, 32], electrophysiology [31],
meteorology and satellite imagery [29, 40, 41], oceanology [10, 15], and, more in
general, signal processing.

It is well known that including in the analysis only complete cases, i.e. cases
that have been observed for all variables in the model, may have undesirable
consequences. Firstly, the results of complete case analyses can be biased. Sec-
ondly, the cumulative effect of missing data in several variables often leads to the
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exclusion of a substantial proportion of the original sample, resulting in a serious loss
of precision of the estimates and of power in detecting associations between vari-
ables. This clearly has tremendous consequences on the validity of the conclusions
drawn in these studies.

The literature on statistical methods that deal withmissing data is rich and diverse,
with seminal contributions dating back to the early 1970s concurrently with advances
in computer technology and programming. Several of the methods available today
have their roots in the works by Orchard andWoodbury [33], and by Little and Rubin
[26, 39], who have systemized concepts and principles of the treatment of missing
data within a likelihood framework. This is the framework to which we refer in
Sect. 2 of this chapter and which we adopt in Sect. 3 when we discuss the missing
data problem in principal component analysis (PCA).

Manymultivariate statistical analyses, includingPCA, start froma reduction of the
data to thefirst twomoments of the joint distribution. Suppose (y1, y2, . . . , yn) is sam-
ple of size n from some probability distribution F and each yi = (yi1, yi2, . . . , yip)�,
i = 1, 2, . . . , n, is a p-dimensional variate with p × 1 mean μ and p × p variance-
covariance matrix Σ . The question of how to calculate

sjk =
n∑

i

(yij − ȳj)(yik − ȳk), (1)

where

ȳj = 1

n

∑

i

yij, (2)

from incomplete data is of central importance [27].
For example, consider the data matrix

Y =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.07 0.68 1.91
0.60 1.72 0.98
— 0.64 —

1.17 −0.73 −0.36
−2.80 −3.12 −0.85
0.21 — 0.85

−0.01 0.97 —
3.57 0.73 −1.92
1.67 −0.22 −2.04

−3.44 −2.51 —

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where — denotes a missing value, and suppose that the goal is to estimate sjk ,
j, k = 1, 2, 3, as in (1). The analyst would face some challenges.

• Should the column averages ȳj’s be computed using all available information? In
this case, the loss of information would be 10% (i.e., 1 observation out of 10) for
ȳ1 and ȳ2, and 30% for ȳ3.
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• Should the ȳj’s be computed using only complete observations, i.e. observations
for which the values of all three variables are available? In this case, the loss would
be 40% for all estimates.

• Similarly, should the sjk’s be computed using pairwise available cases (with a 20%
loss for s12, 30% for s13, and 40% for s23) or should incomplete observations (i.e.,
observations with a missing value on any of the three variables) be removed first?

• Moreover, what is the value of the lost information? Does the latter just reduce
efficiency and thus increase the uncertainty of the inference or does it also radically
change the conclusions from such inference because of bias?

Common sense would probably tell the analyst that the smaller the loss of informa-
tion, the better. Thus, using pairwise complete observations, the estimated variance-
covariance matrix of Y would be

S̃ =
⎡

⎣
4.61 2.87 −1.08
2.87 2.69 0.92

−1.08 0.92 2.29

⎤

⎦ .

One could then compare this matrix to the one obtained using complete observations,
that is

Ŝ =
⎡

⎣
4.41 2.37 −1.19
2.37 2.83 0.92

−1.19 0.92 2.49

⎤

⎦ .

While apparently there are little numerical differences between S̃ and Ŝ, the for-
mer, unfortunately, is not positive semi-definite. Although lack of positive semi-
definiteness may not be seen necessarily as a problem in some contexts [28], in
others this may pose unacceptable consequences. Additionally, evaluating potential
for bias should always be a priority for the analyst.

In the next section, we examine the instances in which missing data have po-
tentially serious implications on the results of the analysis and on their subsequent
interpretation, and when, in contrast, the missing data problem is more benign. Given
the vast literature on this topic, we only introduce basic definitions and traditional
statistical approaches to the missing data problem. In Sect. 3, we linger on the ap-
plication of some of these methods in the context of PCA and we show practical
examples supported by R [36] code snippets.

2 Missing Data Mechanisms

The commonly adopted ontology of missing data [27] distinguishes among three
cases: missing completely at random (MCAR), missing at random (MAR), andmiss-
ing not at random (MNAR). These are called missing data mechanisms.
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In our set up, letY denote an n by pmatrix of continuous measurements obtained
from n units on p possibly correlated random variables Y1,Y2, . . . ,Yp. Let also M
denote an n by pmatrix with row vectorsmi, i = 1, 2, . . . , n, whose jth entry is given
by the binary indicator

mij =
{
1 if the i jth entry ofY is missing,

0 otherwise.

The matrix M describes the pattern of missing data. In a likelihood framework,
each element of M is assumed to be a random variable with marginal distribution
given by a Bernoulli with probability πij, that is, mij ∼ Bin(1, πij). All statements
regarding how missing data are generated arise from assumptions on the joint dis-
tribution of Y and M, and these assumptions, in turn, determine which methods are
most appropriate to deal with the missing data. Before we discuss MCAR, MAR,
andMNAR assumptions in detail, let us introduce some additional notation. Suppose
that the ith row of Y contains si ≥ 0 missing values. Then, yi is partitioned into the
si × 1 vector zi and the (p − si) × 1 vector xi. That is, xi is the observed part of yi
while zi is its unobserved part, which would have been recorded if at all possible.
Finally, let In denote the identity matrix of order n.

The MCAR mechanism assumes that yi and mi are marginally independent. In
otherwords, if in additionwe assume independence among themij’s, this is equivalent
to tossing a coin whose probability of heads equals πij, and to deleting the jth entry of
yi if heads comes up. This is the strongest of the three assumptions, seldom tenable
in practice.

Under the MAR mechanism, missingness may depend on the observed data
but not on the data that are missing. This means that the joint probability πi =(
πi1, πi2, . . . , πip

)�
has some relationship with xi, but not with zi. If in addition the

parameters of such relationship are distinct from the parameters involved in the data
generating process (i.e., the distribution of yi), then the missing data are said to be
ignorable and the analysis can be performed directly on the basis of the observed
data. At first sight, the difference between MAR andMCARmay seem of little prac-
tical relevance, given that statistical models are often estimated conditionally on the
observed data. This is not true. A better understanding of the difference between
MAR and MCAR is provided by Heitjan and Basu [14], who gave examples where
MCAR and MAR estimates are substantially different.

Finally, theMNARmechanism is the most difficult situation to deal with since the
missing data are not ignorable. The difficulty is as much practical as it is theoretical.
Since MNAR models cannot be completely general, their identifiability requires
explicit modeling assumptions and some simplifications [1, 4].

Just to reiterate the main concepts, the missing data mechanism is related to the
question “why values are missing?”, while the pattern of missing data is associated
with the question “which values are missing?”. The main reason why missing values
should be studied carefully is that if the true missing data mechanism is MNAR but
the data are analysed under a MAR assumption, then the estimates can be strongly



Principal Component Analysis in the Presence of Missing Data 51

biased. On the other hand, if MNAR methods are used when the data are actually
missing (completely) at random, then a loss of efficiency in the estimators should
be expected. Unfortunately, observed data provide only limited information on the
nature of the missing data mechanism and, in general, a decision must be made based
on the experimental design, including data collection, as well as sensitivity analyses.
We refer the reader to [4, 30] for a more theoretical discussion on this issue.

We conclude this section with a brief remark about themissing data pattern.When
the missing data occur following regular patterns, this information can be used to
simplify model assumptions or, at least, to improve model estimation. For example, a
univariate pattern is onewhere groups of items are either entirely observed or entirely
missing for each subject. In a monotone pattern, a missing item of the variable Yj for
a particular individual implies that all subsequent variables Yk , k > j, are missing for
that individual. This occurs in longitudinal experiments when subjects drop-out from
the study. In the remainder of this chapter, we generally assume that the missing data
follow an arbitrary pattern, that is, either a monotone or a non-monotone pattern.
For more discussion on this topic, we refer the reader to [27].

2.1 Missing Completely at Random

When the distribution of the missing data indicator does not depend on either the
observed or unobserved data, i.e. when

Pr(mi|zi, xi) = Pr(mi), (3)

then the missing data are said to be missing completely at random.
Lack of measurement is therefore unpredictable (as if tossing a coin, so to speak)

and, as such, not informative. One could therefore proceed with a complete case
(CC) analysis without the risk of incurring into estimation bias. As mentioned in
our introductory example, there are two possible choices for a CC analysis in the
multivariate context: observations can be discarded listwise or component-wise. A
listwise approach proceeds by discarding yi as soon as si > 0, that is, if any variable
has not beenmeasured, then the entire unit is discarded. A component-wise approach
proceeds by using as much information contained in xi as possible (“nothing goes to
waste”). For instance, if mi1 = mi2 = 0 and mi3 = 1, then yi1 and yi2 will contribute
to the estimation of s12 in a component-wise approach, but not in a listwise approach.

2.2 Missing at Random

When the distribution of the missing data indicator depends only on the observed
data, i.e. when

Pr(mi|zi, xi) = Pr(mi|xi), (4)
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then the missing data are said to be missing at random. This setting is more general
thanMCAR’s. Indeed, MCAR data are alwaysMAR. However, the converse is false.

The event that a measurement is missing may depend on the measurement itself
(e.g., wealthy people may be prone to refuse disclosing their income in a survey).
However, conditional on the observed data, this dependence disappears (e.g., the
propensity of people to disclose their income is completely explained by the knowl-
edge of their assets).

On the onehand, inmanycases aCCanalysis under aMARassumption is perfectly
valid. As most statistical procedures are conditional on the observed data, m cannot
give any additional information on z. Hence, missing values can be simply ignored.
On the other hand, it might be possible to incorporate in the analysis the uncertainty
for not knowing z by predicting z from x. This procedure is known as imputation.
There are several techniques that fall under this label.

A popular technique is hot deck single imputation. This involves selecting a num-
ber of donors, that is, units that are “similar” to the unit with missing values and then
predicting the missing values through the average of the donors’ observed values.
This method is simple and grounded on the fact that units that are similar with respect
to the observed values should also be similar with respect to the unobserved ones
(provided there is a strong association among variables). There are, however, some
difficulties with this technique. Firstly, choosing the number of donors can be some-
times difficult. Secondly, hot deck imputation is not based on a statistical model,
hence it lacks theoretical ground and it is difficult to adapt to specific problems. Fi-
nally, andmost importantly, hot deck single imputation (as any other technique based
on a single imputation) fails to take into account the uncertainty brought about by im-
putation. In other words, a predicted value replacing the missing value is effectively
treated as a direct measurement.

To overcome the latter limitation, one can consider amultiple imputation approach
which consists in repeatedly predicting the missing values. The results based on sev-
eral predictions can be averaged to produce a final estimate, or they can be evaluated
with respect to their sensitivity to specific imputed values.

Imputation (either single or multiple) can be made theoretically sound by drawing
imputations from probability models. The latter are used to capture the generating
mechanism of the missing values and can often formally take into account the im-
putation’s uncertainty.

2.3 Missing Not at Random

When the distribution of the missing data indicator depends on the unobserved data,
after conditioning on the observed data, i.e. when

Pr(mi|zi, xi) �= Pr(mi|xi), (5)
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then the missing data are said to be missing not at random. This setting is the most
general of all.

In the MNAR scenario the missingness indicator is assumed to be related with
unmeasured predictors and/or the unobserved response, even conditionally on the
observed data. MNAR data are also referred to as informative since the missing
values contain information about the MNAR mechanism itself.

It should be stressed that, if the true mechanism is MNAR, simple CC analyses or
naïve imputationmethods inevitably produce biased results. The extent and direction
of this bias is unpredictable, and even relatively small fractions of missing values
might lead to a large bias.

There are different approaches to the treatment of this kind ofmissing data.Model-
based procedures aremost commonly adopted. These aim atmodeling the joint distri-
bution of the measurement process and the dropout process, by specifying a missing
data model (MDM). The MDM must take into account the residual dependence be-
tween the missingness indicator and the unobserved response. Below, we summarize
the three main approaches.

• Pattern-mixture models. The joint distribution of yi and mi is factorized as

Pr(yi,mi) = Pr(yi|mi)Pr(mi).

This approach involves formulating separate submodels Pr(yi|mi) for each pos-
sible configuration of mi, or, at least, for each observed configuration. This is
appealing for studies where the main objective is to compare the response distri-
bution in subgroups with possibly different missing value patterns. On the other
hand, its specification can be cumbersome,while its interpretation at the population
level may become difficult.

• Selection models. The joint distribution of yi and mi is factorized as

Pr(yi,mi) = Pr(mi|yi)Pr(yi).

This approach involves an explicit model to handle the distribution of the missing
data process given the measurement mechanism. If correctly specified, the model
for yi is estimated without bias and its interpretation is not compromised.

• Shared parameter models. It is assumed that an unobserved variable, say U , con-
tains all the information that would lead to a MAR mechanism. Hence, condition-
ally on this latent variable, yi and mi are independent. This is the so-called local
independence assumption. The joint distribution of yi and mi can be expressed as

Pr(yi,mi) =
∫

u
Pr(yi|u)Pr(mi|u) f (u) du,

where f (u) denotes the density ofU . Of course, parametric assumptions are needed
for f . Usually it is assumed thatU is a zero-mean Gaussian variable with unknown
variance.
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3 Methods to Handle Missing Data in Principal
Component Analysis

In this section, we discuss selected missing data methods in PCA, some of which
are relatively recent at the time of writing. PCA, originally introduced by Karl Pear-
son [34], is arguably one the most popular multivariate analysis techniques. It is
often described as a tool for dimensionality reduction. Some authors consider PCA
as a descriptive method, which needs not be based on distributional assumptions,
whereas others provide probabilistic justifications in relation to sampling errors (see
for example [20] or [21] for alternative interpretations of the PCA model). It is not
our purpose to get embroiled in this discussion; here we take a probabilistic view as
it is an essential framework for a statistical treatment of the missing data problem.

There are basically two main approaches where sampling comes into play: fixed
and random effects PCA. (The random-effects approach can be formulated in either
a frequentist or a Bayesian framework. We focus on the former, while more details
on the latter can be found in [21]). In the fixed-effects approach, individuals are of
direct interest. Therefore, individual-specific scores are parameters to be estimated.
In symbols, the fixed-effects PCA model is given by

yi = μ + Wbi + εi, i = 1, . . . , n, (6)

where μ = (
μ1, μ2, . . . , μp

)�
is the vector with the mean of each variable, bi =(

bi1, bi2, . . . , biq
)�

is the ith row vector of fixed scores and W is a p × q ma-
trix of unknown loadings with elements wjh, j = 1, . . . , p, h = 1, . . . , q, with
q ≤ p. The error is assumed to be zero-centered Gaussian with homoscedastic
variance, εi ∼ N

(
0, ψIp

)
, where ψ is a positive scalar. Model (6)’s parameter,

θ = (μ,W, ψ,b1,b2, . . . ,bn), can be estimated viamaximum likelihood (or, equiv-
alently, least squares) estimation (MLE). A downside of this approach is that the
dimension of θ increases with the sample size.

The random-effects specification of the probabilistic representation of PCA [38,
42] is given by the model

yi = μ + Wui + εi, i = 1, . . . , n, (7)

where ui = (
ui1, ui2, . . . , uiq

)�
is the ith row vector of latent scores and W is, as

above, a matrix of unknown loadings. Furthermore, it is assumed that u is stochasti-
cally independent from ε. Conventionally, ui ∼ N

(
0, Iq

)
. If in addition the error is

assumed to be zero-centered Gaussian with covariance matrix Ψ , εi ∼ N (0,Ψ ), we
obtain the multivariate normal distribution yi ∼ N (μ,C),C = WW� + Ψ . We also
assume thatΨ = ψIp, so that the elements of yi are conditionally independent, given

ui. The parameter μ = (
μ1, μ2, . . . , μp

)�
allows for a location-shift fixed effect.

The marginal log-likelihood of model (7) is thus given by
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l (θ;Y) ≡
n∑

i=1

log
∫

Rq

f (yi,ui) dui = −n

2

{
p log(2π) + log |C| + tr

(
C−1S

)}
,

(8)
where f (yi,ui) = f (yi|ui) f (ui) is the joint density of the response and the ran-
dom effects and S = 1

n

∑n
i=1 = (yi − μ) (yi − μ)�. Model (7)’s parameter θ =

(μ,W, ψ) can be estimated via MLE, while the individual scores can be predicted
via the best linear predictor E (u|y) [42].

In the sections that follow, we consider alternative approaches to the estimation
of θ when some values in Y are missing. We discuss methods in relation to different
missing datamechanisms andwe illustrate their application using theRprogramming
language [36].

3.1 Missing (Completely) at Random

3.1.1 Single Imputation

R code 3.1 Summary statistics of the Orange data set.
> data(orange, package = "missMDA")
> Y <- orange
> summary(Y)
Color.intensity Odor.intensity Attack.intensity Sweet
Min. :4.083 Min. :4.292 Min. :3.917 Min. :4.083
1st Qu.:4.448 1st Qu.:4.958 1st Qu.:4.833 1st Qu.:4.510
Median :4.646 Median :5.292 Median :5.292 Median :4.938
Mean :5.083 Mean :5.326 Mean :5.319 Mean :4.943
3rd Qu.:5.948 3rd Qu.:5.938 3rd Qu.:5.375 3rd Qu.:5.479
Max. :6.583 Max. :6.167 Max. :7.417 Max. :5.792
NA’s :2 NA’s :1 NA’s :3 NA’s :4

Acid Bitter Pulp Typicity
Min. :4.125 Min. :2.833 Min. :1.292 Min. :3.417
1st Qu.:4.375 1st Qu.:3.104 1st Qu.:1.510 1st Qu.:3.958
Median :5.042 Median :3.583 Median :2.479 Median :4.438
Mean :5.065 Mean :3.536 Mean :3.312 Mean :4.462
3rd Qu.:5.292 3rd Qu.:3.792 3rd Qu.:4.521 3rd Qu.:5.042
Max. :6.750 Max. :4.375 Max. :7.333 Max. :5.250
NA’s :3 NA’s :4 NA’s :2

We begin this section by introducing a toy data set which is available in the R
package missMDA [16]. The data consist of 8 sensory measurements of 12 orange
juices (R code 3.1). Seven out of the eight variables are incomplete, although the
number of missing values is small and ranges between 1 and 4.

A crude approach to single imputation is mean imputation, whereby yij is replaced
with ȳj if yij is missing. This is the default approach used in FactoMineR [25] and
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is shown in the R code 3.2. To simplify the reporting of the results shown further
below in Table1 and Fig. 1, we kept only the first two components (ncp = 2). The
warning message indicates that the missing values were replaced by the mean of
the (observed) values from the corresponding variables. So, for example, the two
missing values of color intensity were replaced by 5.083, while all four missing
measurements of bitterness by 3.536. The same message suggests using a different
imputation approach which we now describe briefly.

R code 3.2 Principal component analysis with mean imputation.
> FactoMineR::PCA(Y, ncp = 2, graph = FALSE)
**Results for the Principal Component Analysis (PCA)**
The analysis was performed on 12 individuals, described by 8
variables *The results are available in the following objects:

name description
1 "$eig" "eigenvalues"
2 "$var" "results for the variables"
3 "$var$coord" "coord. for the variables"
...
[omitted]

Warning message:
In FactoMineR::PCA(Y, graph = FALSE) :

Missing values are imputed by the mean of the variable: you
should use the imputePCA function of the missMDA package

The so-called EM-PCA and regularized algorithms, discussed by [21] and avail-
able in the R package missMDA [16], can be used as a preliminary step to fill the
missing values in and then apply a standard PCA to the completed data set. The for-
mer algorithm (EM-PCA) consists in iteratively fitting a fixed effects PCA, while the

Table 1 Estimates of the first (PC1) and second (PC2) principal axes from the complete case PCA
and the single imputation EM-PCA. Bold denotes EM-PCA estimates that differ more than 20%
from the corresponding complete case estimate

Complete case EM-PCA

PC1 PC2 PC1 PC2

Color intensity 0.807 −0.068 0.774 −0.085

Odor intensity 0.570 0.693 0.563 0.717

Attack intensity 0.849 −0.247 0.935 −0.212

Sweet −0.688 −0.428 −0.650 −0.520

Acid 0.809 −0.174 0.727 −0.110

Bitter 0.458 0.563 0.532 0.359

Pulp −0.632 0.590 −0.533 0.722

Typicity −0.826 0.205 −0.836 0.244
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Fig. 1 Individuals maps for the Orange data set obtained from the complete case PCA (left) and
the EM-PCA (right)

latter (regularized) makes use of shrinkage to solve overfitting problems. As shown
in the R code 3.3, the function imputePCA requires the data matrix Y, the number
of components ncp used for predicting the missing values, and the specific imputa-
tion algorithm. Note that the number of components used for imputing the missing
values (in this example, we used as many as possible) does not necessarily coincide
with the number of components kept in the second stage of the analysis.

R code 3.3 Principal component analysis with iterative imputation.
> Yhat <- missMDA::imputePCA(Y, ncp = 7, method = "EM")$completeObs
> FactoMineR::PCA(Yhat, ncp = 2, graph = FALSE)

The results from the CC analysis and the (single imputation) EM-PCA are shown
in Table1 and Fig. 1. These two analyses produced loadings with the same signs. In
contrast, the magnitude of the coefficients differed between the imputation and the
CC analysis, with some of the differences being over 20%. As a result, the individual
projections gave slightly different maps (Fig. 1).

3.1.2 Multiple Imputation

As mentioned before, single imputation methods treat imputed missing values as
fixed (known). This means that the uncertainty related to the missing values is ig-
nored, which generally leads to deflated standard errors. Josse et al. [23] proposed
to deal with this issue by first performing a residual bootstrap procedure to obtain B
estimates of the PPCA parameters and then generateB data matrices, each completed
with samples from the predictive distribution of themissing values conditional on the
observed values and the corresponding bootstrapped parameter set. More formally,
one can proceed as follows:
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1. obtain an initial estimate μ̂, Ŵ, b̂i, i = 1, . . . , n, of the parameters in model (6)
(e.g., viaEM-PCAestimation). Reconstruct the data Ŷwith thefirstq dimensions
and calculate R = Y − Ŷ, where the n × p matrix R of residuals has missing
entries corresponding to those of Y;

2. draw B random samples from the non-missing rows of R. Denote each replicate
by R∗

b , b = 1, . . . ,B;
3. calculate Y∗

b = Ŷ + R∗
b , b = 1, . . . ,B and estimate the PPCA parameters μ̂∗

b,
Ŵ∗

b , b̂
∗
b,i, i = 1, . . . , n, from Y∗

b, b = 1, . . . ,B;

4. for {i : si > 0}, calculate y∗
b,i = μ̂∗

b + Ŵ∗
bb̂

∗
b,i + r∗, where r∗ is a newly sampled

residual fromR. Complete the vector yi with y∗
b,i to obtain the bth complete data

matrix Yb, b = 1, . . . ,B.

There are several ways to obtain bootstrapped residuals. One approach is to draw
a sample with replacement from the entries of the matrix R. Another approach,
recommended by [21], is to sample the residuals from a zero-centered Gaussian with
variance estimated from the non-missing entries of R. Improved results might be
obtained with corrected residuals (e.g., leave-one-out residuals).

Once B complete data matrices have been generated, the simplest analytic ap-
proach is to carry out a PPCA on each Yb, and then calculate the average of the B
sets of parameters. A multiple imputation PPCA of the Orange data set is given in
R code 3.4. Our example is based on B = 100 replicates, with q = 2. The individ-
uals and variables maps obtained from average scores and loadings are plotted in
Fig. 2. As compared to the complete case PCA and the single imputation EM-PCA
(Table1), the multiple imputation PCA produced noticeably different estimates of
Ŵ, especially for the second principal axis (R code 3.4). The uncertainty due to the
missing values is also shown in Fig. 2. For example, individual scores 1, 9, and 10
showedmore total variability, as given by the area of the ellipses, andmore variability
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along the second axis, as reflected in the eccentricity of the ellipses. The uncertainty
was greater for sweetness, color intensity, and bitterness, and, as in the case of the
individual scores, it was more prominent in relation to the second axis.

3.1.3 EM Algorithm for PPCA

In their seminal paper, Dempster et al. [6] discussed the use of the EM algorithm in
factor analysis. As a particular case of the standard factor analysis model, Tipping
and Bishop [42] proposed an EM algorithm to estimate the parameter θ in (8), where
the incomplete part of the data is represented by the latent variables. Let U be the
n × q matrix of latent scores. Given the complete data log-likelihood

l (θ;Y,U) =
n∑

i

log f (yi|ui, θ) + log f (ui) , (9)

R code 3.4 Principal component analysis with multiple imputation.
> set.seed(190)
> Yhat <- missMDA::MIPCA(Y, ncp = 2, method.mi = "Boot",
+ nboot = 100)
> fit.mi <- lapply(Yhat$res.MI, function(x)
+ FactoMineR::PCA(x, ncp = 2, graph = FALSE))
> tmp <- lapply(fit.mi, function(x) x$var$coord)
> What <- 0
> for(i in 1:100) What <- What + tmp[[i]]/100
> round(What, 3)

Dim.1 Dim.2
Color.intensity 0.790 0.299
Odor.intensity 0.587 0.660
Attack.intensity 0.919 -0.163
Sweet -0.841 -0.250
Acid 0.874 -0.195
Bitter 0.872 0.301
Pulp -0.679 0.657
Typicity -0.830 0.374
> plot(Yhat)

the EM approach alternates between an

(i) expectation step (E-step) Q(θ |θ (t)) = Eu|y,θ (t) {l (θ;Y,U)}; and a
(ii) maximization step (M-step) θ (t+1) = argmax

θ

Q(θ |θ (t)),

where θ (t) is the estimate of the parameter after t cycles. The expectation in step
(i) is taken with respect to the conditional distribution f

(
u|y, θ (t)

)
which, in the



60 M. Geraci and A. Farcomeni

Gaussian PPCA, is normal with parameters depending on θ (t) only. Closed-form
solutions to steps (i) and (ii) are provided by [42].

The EM estimation approach might have little immediate appeal as opposed to
the usual diagonalization of the sample covariance matrix. However, it provides
a computationally efficient strategy in analysing high-dimensional large datasets
[38] and it is particularly enticing in the presence of MAR values. In this case, the
incomplete part of the data would become (z,u) and the expectation in (i) would
be taken with respect to the density f

(
u, z|x, θ (t)

)
. See for example [42] for an

application of the PPCA EM algorithm in the presence of missing data.

3.2 Missing Not at Random

A number of statistical approaches have been developed to cope with nonignorable
missing mechanisms and such approaches have been applied in different analytic
frameworks. However, the approaches used in PCA have typically focused on as-
sumptions of ignorability [19, 21, 42]. Recently, Geraci and Farcomeni [11] ex-
tended Tipping and Bishop’s [42] EM approach to the case in which the vector y
is partially observed and the missing data mechanism is nonignorable. Specifically,
they proposed an adaptation of Ibrahim et al.’s [17] methods for missing responses
in random-effects models with non-monotone patterns of missing data.

Suppose that yi contains si, si < p, missing values. The ith contribution to the
complete data density of (yi,ui,mi) is given by

f (yi,ui,mi|θ , η) = f (yi|ui, θ) f (ui) f (mi|yi, η) , i = 1, . . . , n, (10)

where the additional factor f (mi|yi, η), indexed by the parameter η, is the MDM,
which we assume to be independent from ui. This assumption simplifies the sub-
sequent steps of the estimation algorithm, although it can be relaxed at the cost of
increased computational time (see [17, 18] for a discussion).

Estimation of θ would in general requiremarginalizing the log-likelihood based on
(10) over the unobserved data, which however leads to a rather intractable integral
of dimension si + q. Instead, the EM algorithm can be applied. The E-step at the
(t + 1)th iteration is defined as follows:

Q(λ|λ(t)) = Ez,u|x,m,λ(t) {l (λ;Y,U,M)} , (11)

with λ = (θ , η) and l (λ;Y,U,M) = ∑n
i log f (yi|ui, θ) + log f (ui) +

log f (mi|yi, η), and where the expectation is taken with respect to the conditional
distribution of zi and ui, given the observed data, evaluated at λ(t).

The E-step (11), however, does not yet offer a computational advantage since
it is not easy to solve analytically. Therefore, Geraci and Farcomeni [11] applied a
Monte Carlo E-step [17]. They considered an adaptive rejectionMetropolis sampling
(ARMS) algorithm [12] and specified the following MDM
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f (mi|yi, η) =
p∏

j=1

π
mij

ij

(
1 − πij

)1−mij
, (12)

where πij is the probability that yij is missing, conditional on the response yi. The
ARMS algorithm is convenient as, basically, no tuning is needed. In addition, it is
run in parallel for each row of the data matrix, which therefore greatly speeds up the
computation. Moreover, the PPCA Gaussian model provides scope for further re-
ductions in computational time during the calculation of the E-step. All the technical
details are given in appendix.

We now show an application of the MNAR approach to accelerometer data ob-
tained from seven-year-old children of theUKMillenniumCohort Study (MCS) [13].
The dataset, previously analyzed by [11], consists of six physical activity outcomes
derived from high sampling frequency accelerometer measurements that were col-
lected continuously over seven days. The outcomes, aggregated by day of the week,
are: (a) total number of counts (×1000), (b) total number of steps (×1000), (c) pro-
portion of time spent in sedentary behaviour (SB), (d) proportion of time spent in
moderate-to-vigorous activity (MVPA), (e) duration (minutes) of sporadic MVPA
bouts, and (f) frequency of sporadic bouts. Here, a sporadic bout is defined as a short
burst of intense activity that lasts less than ten minutes. An example of an individual
weekly physical activity profile is given in Table2.

Figure3 shows the heat map of the correlation between physical activity out-
comes. As expected, acceleration counts (a) and steps (b) are positively correlated
one to each other since they both quantify the amount of movement. As such, they
show a negative correlation with sedentary behaviour (c) but positive with all other
variables measuring activity. There are also temporal patterns within outcomes, with

Table 2 Example of weekly physical activity profile summary with six outcome variables for one
child of the Millennium Cohort Study (Reproduced from [11])

Mon Tue . . . Sun

Total activity

(a) Counts
(×1000)

287.7 564.7 … 305.7

(b) Steps (×1000) 7.4 13.3 … 6.5

Proportion of time (%) spent

(c) In sedentary
behaviour

61.4 51.5 … 57.9

(d) In MVPAa 5.0 11.0 … 5.4

Sporadic MVPAa bouts

(e) Total time
(minutes)

37.5 92.75 … 38

(f) Frequency 91 169 … 96
aModerate-to-vigorous activity
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stronger correlations between most of the weekdays but weaker between weekdays
and weekends.

Let us define yi =
(
y(Mon)
i1 , . . . , y(Mon)

i6 , y(Tue)
i7 , . . . , y(Tue)

i12 , . . . , y(Sun)
i42

)�
as the ith

response of dimensions 42 × 1 made up of the variables listed in Table2 on each
day of the week. Essentially, repeated measurements for each child are treated as
columns, analogously to multivariate methods for time series data such as singular
spectrum analysis (SSA) [20]. However, unlike SSA, the temporal correlation is not
explicitly modelled.

A large proportion of children (4,042 out of 5,682) did not provide valid obser-
vations for all seven days of the week. Overall, 22% of expected child-days (n · 7)
were missing. Moreover, the percentage of missing values by day of the week was
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Fig. 3 Heat map of the correlation between physical activity outcomes (Table2). The numbers in
the variable labels denote the days of the week (1, Monday; 2, Tuesday; . . .; 7, Sunday)
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equal to 17 (Monday), 18 (Tuesday), 16 (Wednesday), 15 (Thursday), 15 (Friday),
32 (Saturday), and 44 (Sunday). In a recent study on predictors of nonresponse using
the same data [37], it was found that children who exercised once a week or less
according to the MCS questionnaire-based data, were less likely to provide reliable
accelerometer measurements for all days of the week. Concerns about the informa-
tiveness of the missing data process are therefore justifiable and statistical methods
to reduce associated bias [27] are warranted.

Geraci and Farcomeni [11] analyzed the MCS physical activity data in two steps:

1. Missing data mechanism. Several models using AIC and BIC were compared.
The final model used for the analysis was the logistic regression

logit
{
πij

} = t�i η,

where ti is a 11 × 1 vector made up of 5 of the variables listed in Table2 with
each variable averaged over weekdays and weekend days, resulting in a 11 × 1
parameter vector η, including an intercept. (Duration of MVPA bouts was not
included to avoid identifiability issues due to its near-unity correlation with time
spent in MVPA.)

2. Probabilistic principal component. The number q of principal components to be
estimatedwas fixed to eight. This choice wasmotivated by the results obtained in
a separate complete-case PCA. A generalized cross-validation (GCV) approach
[22] gave q = 11 as optimal number of components. However, the value of the
GCV criterion for q = 11 was not substantially different from that for q = 8.
Moreover, the simplified E-step (15) was carried out as described in appendix
using a Monte Carlo sample size K = 100. The difference in scale between
variables was taken into account through standardization at each step of the EM
algorithm, whereby variables were divided by the current standard deviation
estimates (however, during the sampling step all the variables were transformed
back to their original scales).

We first discuss the results reported by [11] related to the MDM and then those
related to the PPCA.

During weekdays, the predicted probability of data being missing was lower with
higher volumes of activity as measured by total counts (Table3). Intuitively, this
could be explained by the lower occurrence of non-wear periods (i.e., extended time
intervals of 20min or more during which the accelerometer values are zero) when
more activity is recorded. The negative coefficient for sedentary time on the one
hand, but positive for steps and MVPA on the other, are perhaps a consequence of
higher compliance rates observed betweenMonday and Friday, hence when children
might be less active because they are involved in day-to-day routines.

In contrast, opposite associations were observed during weekend days, when the
fraction of missing values tend to be much higher. These results could be interpreted
as a consequence of a process by which children are more likely not to follow the
study protocol if they do not participate in moderate-to-vigorous activities. This
clearly leads to underestimate the volume of physical activity and the proportion of
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Table 3 Maximum likelihood estimates and standard errors (SE) from the Millennium Cohort
Study data for the missing data mechanism (Reproduced from [11])

Weekdays Weekends

Estimate SE Estimate SE

Total counts −4.682 0.162 4.239 0.090

Total steps 0.289 0.026 −0.817 0.024

Time in sedentary
behaviour

−0.818 0.036 0.202 0.022

Time in MVPA 2.794 0.105 −1.759 0.054

Frequency of
MVPA bouts

0.852 0.035 −1.671 0.032

sedentary time, but only during weekend days. This finding might also explain the
association found by [37] between lack of exercise and nonresponse in the MCS
data.

The barplot of the estimated loadings in Fig. 4 aids interpretation of the first
eight principal components. The first and most important component (35.6%) was
driven by the negative correlation between sedentary and active behaviours. In other
words, children with higher scores on this dimension tend to have higher levels
of moderate-to-vigorous physical activity (MVPA) and lower levels of sedentary
behaviour. Therefore, the first component relates to the ‘predominant behaviour’.
The second component (9.4%) contrasted weekday and weekend activity patterns,
while the third (7.2%) contrasted Saturday and Sunday patterns. Note also that, along
the third component, higher activity levels on Saturday are paralleled by higher levels
of sedentary behaviour on Sunday, and vice versa. Hence, it is reasonable to associate
the second and third dimensions with ‘weekend behaviours’.

Components four to seven, each accounting between 6.9 and 7.4% of the variabil-
ity, presented correlations with activities during distinct days of the week. Finally,
the eighth component (4.2%) specifically related to sedentary behaviour but was
otherwise minimally or not correlated with the other outcomes. It is important to
stress that, while the first component establishes a trade-off between sedentary and
active behaviours, the eighth dimension determines the relative location of children
in terms of sedentariness, independently from their predominant behaviour.

Figure5 shows the contribution of the first eight eigenvalues relative to the sum
of all 42 eigenvalues when ignoring the MDM as compared to that observed in
the nonignorable model. There is indication that the weights are redistributed when
accounting for the missing data, with a substantial reduction in weight for the first
component.
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Fig. 4 Results of the nonignorable principal component analysis of physical activity outcomes in
theMillenniumCohort Study: barplots of the loadings for the first eight components (PC1-PC8) and
proportion (%) of variability explained. Bars for total counts (a) and steps (b), sedentary behaviour
(c), moderate-to-vigorous activity (d), duration (e) and frequency (f) of bouts are colour-coded by
day of the week starting from Monday (lightest grey) to Sunday (darkest grey) (Reproduced from
[11])
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Fig. 5 Proportion of variability explained by the first eight principal components from the Mil-
lennium Cohort Study data for the ignorable (white) and nonignorable (grey) models (Reproduced
from [11])

4 Conclusion

In principal component analysis, increased uncertainty and potential bias of the esti-
mates due to the presence of missing data can be tackled in a likelihood framework
via a probabilistic approach to PCA. The application of missing data methods such
as multiple imputation or selection models is facilitated by the introduction of para-
metric assumptions about the multivariate distribution of the variables of interest. In
this chapter, we often entertained assumptions of normality. There exist a number of
alternative approaches whereby models are robustified and, thus, made less sensitive
to parametric specifications [9, 20]. However, one must not lose sight of the specific
nature of PCA and its properties when considering such alternatives. For example,
the L1-norm variant of PCA, which has been advocated for its robustness to outliers,
is not rotational invariant [7]. Several robust PCA methods are discussed in [8], and
their extension to the case of missing data is ground for further work. Moreover,
computational efficiency is also a fundamental aspect when evaluating statistical
methods for missing data, especially due to the multidimensional nature of PCA and
the increasingly larger size of the datasets that are now available for analysis. This
is particularly important for the case of robust methods.
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Appendix – EM Algorithm for PPCA with MNAR Values

In this appendix, we provide additional details on the Monte Carlo EM algorithm
introduced in Sect. 3.2 and we derive a simplified E-step where the random effects
are integrated out from the complete data log-likelihood.

The Monte Carlo E-step requires sampling from f
(
zi,ui|xi,mi,λ

(t)
)
. This task

can be carried out efficiently via ARMS [12] using the full conditionals

f
(
zi|xi,ui,mi,λ

(t)
) ∝ f

(
yi|ui,λ(t)

)
f
(
mi|yi,λ(t)

)
, (13)

f
(
ui|xi, zi,mi,λ

(t)
) ∝ f

(
yi|ui,λ(t)

)
f (ui) . (14)

An implementation of ARMS is available in the R package HI [35].
A sample ξi1, . . . , ξiK for i = 1, . . . , n is obtained at each EM iteration t, where

the (si + q) × 1 vector ξik = (z̃ik, ũik), k = 1, . . . ,K , contains ‘imputed’ values for
zi and ui (with the understanding that ξik = ũik if si = 0). Here the Monte Carlo
sample size K is kept constant throughout. Alternative strategies with varying K (t)

that may increase the speed or the accuracy of the EM algorithm can be considered
[2, 17]. The E-step (11) is approximated by

Q(λ|λ(t)) = 1

K

n∑

i=1

K∑

k=1

l (λ; ξik, xi,mi) . (15)

The maximization of (15) with respect to λ is straightforward. Define ỹik = (z̃ik, xi)
if si > 0 or ỹik = yi if si = 0, i = 1, . . . , n, k = 1, . . . ,K . The maximum likelihood
solution of the M-step at the (t + 1)th iteration is given by

μ̂(t+1) = 1

nK

n∑

i=1

K∑

k=1

(
ỹik − Ŵ(t)ũik

)
, (16)

Ŵ(t+1) =
{

n∑

i=1

K∑

k=1

(
ỹik − μ̂(t+1)

)
ũ�
ik

}(
n∑

i=1

K∑

k=1

ũik ũ�
ik

)−1

, (17)

ψ̂(t+1) = 1

nKp

n∑

i=1

K∑

k=1

‖ỹik − μ̂(t+1) − Ŵ(t+1)ũik‖22. (18)

Analogously, the MLE of η can be easily obtained using standard results for gener-
alized linear models.

Note that the computational burden can be alleviated by first integrating out the
random effects in (11) and then sampling from f

(
zi|xi,mi,λ

(t)
)
during the Monte

Carlo E-step. We obtain what we call a simplified E-step
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Qi(λ|λ(t)) =
∫∫

{log f (yi,ui|θ) + log f (mi|yi, η)} f (
zi,ui|xi,mi,λ

(t)
)
duidzi

=
∫∫

{log f (yi|ui, θ) + log f (ui)} f
(
zi,ui|xi,mi,λ

(t)
)
duidzi

+
∫

log f (mi|yi, η) f
(
zi|xi,mi,λ

(t)
)
dzi

=
∫ {

−p

2
log(ψ) − 1

2ψ
tr

(
W�WB(t)

) − 1

2ψ
‖yi − μ − Wv(t)

i ‖22

+ log f (mi|yi, η)

}
f
(
zi|xi,mi,λ

(t)
)
dzi

≡ Ez|x,m,λ(t) {l (λ; yi,mi)} , (19)

where v(t)
i = B(t)W(t)� (

yi − μ(t)
)
/ψ(t) and B(t) =

{
W(t)�W(t)/ψ(t) + Iq

}−1
. Note

that by assumption mi is independent from ui. The expectation above is now taken
with respect to

f
(
zi|xi,mi,λ

(t)
) ∝ exp

{
−1

2

(
yi − μ(t)

)�
C(t)−1 (

yi − μ(t)
)}

f
(
mi|yi, η(t)

)
,

C(t) = W(t)W(t)� + Ψ (t).
Again, we obtain a sample z̃ik , i = 1, . . . , n, k = 1, . . . ,K and calculate the approx-
imate E-step

Q(λ|λ(t)) = 1

K

n∑

i=1

K∑

k=1

l (λ; z̃ik, xi,mi) . (20)

The MLE equations of the M-step which follow frommaximizing the log-likelihood
in (20) are similar to equations (27) and (28) in [42] and they do not require explicit
computation of the covariance matrix. We omit them for the sake of brevity.

Finally, we note that, based on the linear predictions

ûik =
(
Ŵ�Ŵ + Ψ̂

)−1
Ŵ�(ỹik − μ̂), (21)

where ỹik = (z̃ik, xi) is the complete data vector at convergence, we can calculate
the element-wise variances of 1

K

∑K
k=1 ûik over the individuals space as estimates

of δ1, . . . , δq. The quantity (p − q) · ψ̂ provides the portion of the total variability
associated with the ‘discarded’ components.
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Robust PCAs and PCA Using Generalized
Mean

Jiyong Oh and Nojun Kwak

Abstract In this chapter, a robust principal component analysis (PCA) is described,
which can overcome the problem that PCA is prone to outliers included in training
set. Different from the other alternatives which commonly replace L2-norm by other
distance measures, our method alleviates the negative effect of outliers using the
characteristic of the generalized mean keeping the use of the Euclidean distance. The
optimization problem based on the generalizedmean is solved by a novelmethod.We
also present a generalized samplemean,which is a generalization of the samplemean,
to estimate a robust mean in the presence of outliers. The proposed method shows
better or equivalent performance than the conventional PCAs in various problems
such as face reconstruction, clustering, and object categorization.

1 Introduction

Dimensionality reduction [1] is a classical problem in pattern recognition and
machine learning societies, and numerous methods have been proposed to reduce
dimensionality of data. Principal component analysis (PCA) [2] is one of the most
popular unsupervised dimensionality reduction methods which tries to find a sub-
space where the average reconstruction error of training data is minimized. It is
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useful in representation of input data in a low dimensional space and it has been
successfully applied to face recognition [3, 4], visual tracking [5], clustering [6, 7],
and so on.

When automatically collecting a large data set, outliers may be contained in the
collected data since it is very difficult to examine whether each sample of data is
outlier or not [8]. It is well known that, in this case, the conventional PCA is sensitive
to outliers because it minimizes the reconstruction errors of training data in terms of
the mean squared error and a few outliers with large errors dominate the objective
function. This problem has been addressed inmany studies [8–16], some ofwhich are
described in this chapter. Several studies to achieve the purpose commonly utilized
L1-norm instead of L2-norm in the formulation of optimization problem to improve
the robustness of PCA against outliers [10, 13, 14]. In [13], the cost function for
optimization was constructed based on L1-norm and a convex programming was
employed to solve the problem. R1-PCA [10] was presented to obtain a solution
with the rotational invariance, which is a fundamental desirable property for learning
algorithms [17]. In [14], PCA-L1 was proposed, which maximizes an L1 dispersion
in the reduced space and an extension of PCA-L1 using L p-normwith arbitrary pwas
also proposed in [15]. Other method utilizing L p-norm was also presented in [16].
On the other hand, some of robust PCAs were recently developed using information
theoretic measures [11, 12]. He et al. [11] proposed MaxEnt-PCA which finds a
subspace where Renyi’s quadratic entropy [18] is maximized. The Renyi’s entropy
was estimated by a non-parametric Parzen window technique. In [12], HQ-PCA was
developed based on the maximum correntropy criterion [19].

After describing the above methods, we then introduce a new robust PCAmethod
based on the power mean or the generalized mean [20], which can become the
arithmetic, geometric, and harmonic means depending on the value of its parameter.
The proposed method, PCA-GM, is a generalization of the conventional PCA by
replacing the arithmetic mean with the generalized mean. The proposed method can
effectively prevent outliers from dominating objective function by controlling the
parameter in the generalized mean. Moreover, it is rotational invariant because it still
uses the Euclidean distance as the distance measure between data samples. In doing
so, we also introduce a generalized sample mean, which is an enhancement of the
conventional algebraic sample mean against outliers to address the problem that the
samplemean is easily affected by outliers. It is used in PCA-GM instead of the sample
mean. The optimization problems based on the generalized mean are efficiently
solved using a mathematical property of the generalized mean. Different from our
original work [21], we present MATLAB codes of the generalized sample mean and
PCAGMvia this chapter.1 Recently, Candés et al. proposed a robust PCA [22], which
is sometimes referred to as RPCA in the literature, where data matrix is tried to be
represented as a sum of a low rank matrix, which corresponds to reconstructions
of data, and a sparse matrix, which corresponds to reconstruction errors different
from the methods mentioned above. It can model pixel-wise noise effectively using
the sparse matrix, thus it has been known that RPCA is useful in the applications

1The MATLAB codes can be downloaded in http://mipal.snu.ac.kr/index.php/Jiyong_Oh.

http://mipal.snu.ac.kr/index.php/Jiyong_Oh
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such as background modeling from surveillance video and removing shadows and
specularities from face images [22] by using each element in the reconstruction error
vector (the column of the sparse matrix). On the other hand, in this chapter, an entire
sample is considered as an outlier if it has a large norm of the reconstruction error
vector.

The remainder of this chapter is organized as follows. Section 2 briefly intro-
duces PCA and the state-of-the-art robust PCAs. The proposed method is described
in Sect. 3. It is demonstrated in Sect. 4 that the proposed method gives better perfor-
mances in face reconstruction and clustering problems than other variants of PCA.
Finally, Sect. 5 concludes this paper.

2 PCA and Robust PCAs

Let us consider a training set of N n-dimensional samples {xi }Ni=1. Assuming that
the samples have zero-mean, PCA is to find an orthonormal projection matrix W ∈
R

n×m (m � n) by which the projected samples {yi = WT xi }Ni=1 have the maximum
variance in the reduce space. It is formulated as the following:

WPCA = arg max
W

tr(WTSW),

where S = 1
N

∑N
i=1 xix

T
i is a sample covariance matrix and tr(A) is the trace of a

square matrixA. The projection matrixWPCA can be also found from the viewpoint
of projection errors, i.e., it minimizes the average of the squared projection errors or
reconstruction errors. Mathematically, it is represented as the optimization problem
minimizing the following cost function:

JL2(W) = 1

N

N∑

i=1

||xi − WWT xi ||22,

where ||x||2 is the L2-norm of a vector x. The two optimization problems are equiv-
alent and easily solved by obtaining them eigenvectors associated with them largest
eigenvalues of S. Although PCA is simple and powerful, it is prone to outliers [8,
13] because JL2(W) is based on the mean squared reconstruction error. To learn a
subspace robust to outliers, Ke and Kanade [13] proposed to minimize an L1-norm
based objective function as follows:

JL1(W) = 1

N

N∑

i=1

||xi − WWT xi ||1,

where ||x||1 is the L1-norm of a vector x. They also present an iterative method to
obtain the solution for minimizing JL1(W).
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Although L1-PCAminimizing JL1(W) can relieve the negative effect of outliers, it
is not invariant to rotations. In [10], Ding et al. proposed R1-PCA, which is rotational
invariant, at the same time is robust to outliers. It is to minimize the following
objective function:

JR1(W) =
N∑

i=1

ρ

(√
xTi xi − xTi WWT xi

)

,

where ρ(·) is a generic loss function and Cauchy function or Huber’s M-estimator
[23] was used for ρ(·) in [10]. The Huber’s M-estimator ρH (s) is defined as

ρH (s) =
{

s2 if |s| ≤ c,
2c|s| − c2 otherwise

(1)

where c is the cutoff parameter that controls the regularization effect of weights in a
weighted covariancematrix. Note that ρH (s) becomes a quadratic or a linear function
of |s| depending on the value of s. The solution for minimizing JR1(W)was obtained
by performing a subspace iteration algorithm [24].

On the other hand, PCA-L1 was developed in [14] motivated by the duality
between maximizing variance and minimizing reconstruction error. It maximizes an
L1 dispersion among the projected samples,

∑N
i=1 ||WT xi ||1. A novel and efficient

method for maximizing the L1 dispersion was also presented in [14]. The method
allows PCA-L1 to be performed by much less computational effort than R1-PCA.

HQ-PCA is formulated based on the maximum correntropy criterion in terms of
information theoretic learning. Without the zero-mean assumption, which is nec-
essary in other variants of PCA, HQ-PCA maximizes the correntropy estimated
between a set of training samples {xi }Ni=1 and the set of their reconstructed samples
{Wyi + m}Ni=1, wherem is a data mean. Mathematically, HQ-PCA tries to maximize
the following objective function:

arg max
W,m

N∑

i=1

g

(√

xTi xi − xTi WWT xi

)

, (2)

where g(x) = exp(−x2/2σ 2) is the Gaussian kernel and xi = xi − m. Note that
HQ-PCA finds a data mean as well as a projection matrix. Using the Welsch M-
estimator ρW (x) = 1 − g(x), HQ-PCA is regarded as a robust M-estimator formu-
lation because it is equivalent to finding WH and mH that minimize the following
objective function:

JHQ(W, m) =
N∑

i=1

ρW

(√

xTi xi − xTi WWT xi

)

. (3)
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In [12], the optimization problem in (2)was effectively solved in the half-quadratic
optimization framework, which is often used to address nonlinear optimization prob-
lems in information theoretic learning.

3 Robust Principal Component Analysis Based
on Generalized Mean

3.1 Generalized Mean

For a p �= 0, the generalized mean or power mean Mp of {ai > 0, i = 1, . . . , N }
[20] is defined as

Mp{a1, . . . , aN } =
(
1

N

N∑

i=1

a p
i

)1/p

.

Figure 1 [25] shows thatMp{1, 2, . . . , 10} varies continuously as p changes from
−10 to 10. The arithmetic mean, the geometric mean, and the harmonic mean are
special cases of the generalized mean when p = 1, p → 0, and p = −1, respec-
tively. Furthermore, the maximum and the minimum values of the numbers can also
be approximated from the generalized mean by making p → ∞ and p → −∞,
respectively. Note that as p decreases (increases), the generalized mean is more
affected by the smaller (larger) numbers than the larger (smaller) ones, i.e., control-
ling p makes it possible to adjust the contribution of each number to the generalized
mean. This characteristic is useful in the situation where data samples should be

Fig. 1 The generalized
mean of {1, . . . , 10} for
various values of p
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differently handled according to their importance, for example, when outliers are
contained in the training set.

In [25], it was shown that the generalized mean of a set of positive numbers can
be expressed by a nonnegative linear combination of the elements in the set as the
following:

(
1

K

K∑

i=1

a p
i

)1/p

= c1a1 + · · · + cK aK . (4)

Each ci in this equation can be obtained by differentiating this equation with
respect to ci .

ci =
(
1

K

K∑

i=1

a p
i

) 1
p −1

a p−1
i

K
, (5)

where i = 1, . . . , K . In this chapter, it is further simplified as the following:

K∑

i=1

a p
i = b1a1 + · · · + bKaK

bi = a p−1
i , i = 1, . . . , K . (6)

Note that each weight bi has the same value of 1 if p = 1, where the generalized
mean becomes the arithmetic mean. It is also noted that, if p is less than one, the
weight bi increases as ai decreases. This means that, when p < 1, the generalized
mean is more influenced by the small numbers in {ai }Ki=1, and the extent of the
influence increases as p decreases. This equation plays an important role in solving
the optimization problems using the generalized mean.

3.2 Generalized Sample Mean

Most conventional PCAs commonly assume that training samples have zero-mean.
To satisfy this assumption, all of the samples are subtracted by the sample mean, i.e.,
xi − mS for i = 1, . . . , N , wheremS = 1

N

∑N
i=1 xi . The conventional sample mean

can be considered as the center of the samples in the sense of the least square, i.e.,

mS = arg min
m

1

N

N∑

i=1

||xi − m||22. (7)

In (7), a small number of outliers in the training samples dominate the objective
function because the objective function in (7) is constructed based on the squared
distances. To obtain a robust sample mean in the presence of outliers, a new opti-
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mization problem is formulated by replacing the arithmetic mean in (7) with the
generalized mean as

mG = arg min
m

(
1

N

N∑

i=1

(||xi − m||22
)p

)1/p

.

This problem is equivalent to (7) if p = 1. As mentioned in the previous sub-
section, the contribution of a large number to the objective function decreases as
p decreases. Thus, the negative effect of outliers can be alleviated if p < 1. From
now on, we will call mG as the generalized sample mean. Using the fact that x p

with p > 0 is a monotonic increasing function of x for x > 0, this problem can be
converted to

mG = arg min
m

N∑

i=1

(||xi − m||22
)p

. (8)

Although the minimization in (8) should be changed into the maximization when
p < 0, we only consider positive values of p in this paper.

The necessary condition formG to be a local minimum is that the gradient of the
objective function in (8) with respect tom is equal to zero, i.e.,

∂

∂m

N∑

i=1

(||xi − m||22
)p = 0.

However, it is hard to find a closed-form solution of the above equation. Although
any gradient-based iterative algorithms can be applied to obtain mG , they usually
have slow convergence speed. Alternatively, we develop a novel method based on
(6), which is more efficient than gradient-based iterative methods. Our method for
solving the problem in (8) is an iterative one, similar to the expectation-maximization
algorithm [26].

In the derivation, we decompose (8) into the form of (6) and consider the weight
bi in (6) as a constant. Then, (8) can be approximated by a quadratic function of
||xi − m||2 which can easily be optimized. The details are as follows. Let us denote
the value of m after t iterations as m(t). The first step of the update rule is, for m
close to a fixedm(t), to represent the objective function in (8) as a linear combination
of ||xi − m(t)||22 using (6), i.e.,

N∑

i=1

(||xi − m||22
)p ≈

N∑

i=1

α
(t)
i ||xi − m||22,

where
α

(t)
i = (||xi − m(t)||22

)p−1
. (9)
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Here, the approximation becomes exact when m = m(t). Note that the objective
function near m(t) can be approximated as a quadratic function of m without com-
puting the Hessian matrix of the objective function. The next step is to find m(t+1)

that minimizes the approximated function based on the computed α
(t)
i , i.e.,

∂

∂m

N∑

i=1

α
(t)
i ||xi − m||22 = 0.

The solution of this equation is just theweighted average of the samples as follows:

Algorithm 1 Generalized sample mean
1: Input: {x1, . . . , xN }, p > 0.
2: t ←− 0.
3: m(t) ←− mS .
4: repeat
5: Approximation: For fixed m(t), compute α

(t)
1 , . . . , α

(t)
N according to (9).

6: Minimization: Using the computed α
(t)
1 , . . . , α

(t)
N , update m(t+1) according to (10).

7: t ←− t + 1.
8: until A stop criterion is satisfied
9: Output: mG = m(t).

m(t+1) = 1
∑N

j=1 α
(t)
j

N∑

i=1

α
(t)
i xi . (10)

This update rule with the two steps is repeated until a convergence condition is
satisfied. This procedure is summarized in Algorithm 1 and the corresponding MAT-
LAB code can be found in Appendix 1. Note that a weighted average is computed
at each iteration in Algorithm 1. Thus, it can be said that Algorithm 1 is a special
case of the mean shift algorithm [27]. It is also noted that the number of initial points
is only one, which is set to mS . Since non-convex optimization methods depend
on initial points, they are generally conducted several times started from different
initial points and the solution is selected as the one providing the best performance.
However, we have empirically found that Algorithm 1 started frommS converges to
a local optimum point that is enough robust to outliers.

To demonstrate the robustness of the generalized sample mean obtained by Algo-
rithm 1, we randomly generated 100 samples from a two-dimensional Gaussian
distribution with the mean mi = 0 and covariance matrix Σi = diag [0.5, 0.5] for
inliers and also generated 10 samples from another two-dimensional Gaussian distri-
bution with the mean mo = [5, 5]T and covariance matrix o = diag [0.3, 0.3] for
outliers. Using the generated samples, the samplemeanwas computed and two gener-
alized sample means were also obtained by Algorithm 1 with p = 0.1 and p = 0.2,
respectively. Figure 2 shows the arithmetic sample mean and the two generalized
sample means together with the generated samples. It is obvious that the generalized
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Fig. 2 2D toy example with 100 inliers and 10 outliers. The arithmetic mean (mS) and the gener-
alized sample mean (mG ) are marked

sample means are located close to the mean of the inliers, [0, 0]T , whereas the arith-
metic sample mean is much more biased by the ten outliers. This illustrates that the
generalized sample mean with an appropriate value of p is more robust to outliers
than the arithmetic sample mean.

3.3 Principal Component Analysis Using Generalized Mean

For a projected sampleWT x, the squared reconstruction error e(W) can be computed
as

e(W) = x̃T x̃ − x̃TWWT x̃,

where x̃ = x − m.We use the generalized samplemeanmG form. To prevent outliers
corresponding to large e(W) from dominating the objective function, we propose to
minimize the following objective function:

JG(W) =
(
1

N

N∑

i=1

[ei (W)]p
)1/p

, (11)

where ei (W) = x̃i T x̃i − x̃i TWWT x̃i is the squared reconstruction error of xi with
respect to W. Note that JG(W) is formulated by replacing the arithmetic mean in
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JL2(W)with the generalized mean keeping the use of the Euclidean distance and it is
equivalent to JL2(W) if p = 1. The negative effect raised by outliers is suppressed in
the sameway as in (8). Also, the solution thatminimizes JG(W) is rotational invariant
because each ei (W) is measured based on the Euclidean distance. To obtainWG , we
develop an iterative optimization method similar to Algorithm 1.

Like the optimization problem for mG in the previous subsection, under the
assumption that p > 0, the optimization problem based on (11) is firstly converted
as the following:

Algorithm 2 PCA-GM
1: Input: {x1, . . . , xN }, mG , m, p.
2: t ←− 0.
3: W(t) ←− WPCA ∈ R

n×m .
4: repeat
5: Approximation: For fixed W(t), compute β

(t)
1 , . . . , β

(t)
N using (13).

6: Minimization: Using the computed β
(t)
1 , . . . , β

(t)
N , find W(t+1) by solving the eigenvalue

problem in (14).
7: t ←− t + 1.
8: until A stop criterion is satisfied
9: Output: WG = W(t).

WG = arg min
WTW=I

(
1

N

N∑

i=1

[ei (W)]p
)1/p

= arg min
WTW=I

N∑

i=1

[ei (W)]p , (12)

Next, let us denote W(t) as the value of W ∈ R
n×m after the t-th iteration. Near

a fixed W(t), the converted objective function in (12) can be approximated as a
quadratic function ofW according to (6) as

N∑

k=1

[ei (W)]p ≈
N∑

i=1

β
(t)
i ei (W),

where
β

(t)
i = [

ei (W(t))
]p−1

. (13)

Here, the approximation becomes exact ifW = W(t). After calculating each β
(t)
i ,

W(t+1) can be computed by minimizing the approximated function as
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W(t+1) = arg min
W

N∑

i=1

β
(t)
i ei (W)

= arg max
W

tr
(
WTS(t)

β W
)

, (14)

where S(t)
β = ∑N

i=1 β
(t)
i x̃i x̃Ti . Note that S

(t)
β is a weighted covariance matrix and the

columns of W(t+1) are the m orthonormal eigenvectors associated with the largest
m eigenvalues of S(t)

β . These two steps are repeated until a convergence criterion is
satisfied. Algorithm 2 summarizes this iterative procedure of computingWG and the
MATLAB code of PCA-GM can be found in Appendix 2. Unfortunately, the update
rule in Algorithm 2 does not guarantee that JG

(
W(t+1)

)
< JG

(
W(t)

)
. Nonetheless,

the experimental results show that WG obtained by the algorithm is good enough.
To help understanding of Algorithm 2, we made another toy example as shown

Fig. 3a where 110 two dimensional samples are plotted. Among the samples, 100
samples are regarded as inliers and the others are regarded as outliers. The samples
were generated as the following rule:

xi ∼ N (0, 1),

yi = xi + εi ,

where the random noise εi is sampled from N (0, 0.52) for inliers and N (0, 32) for
outliers, respectively. Figure 3b shows the objective function of PCA-GM in (11)
with p = 0.3 for the samples as shown in Fig. 3a. We can see from Fig. 3b that
the conventional PCA is based toward the ten outliers because its objective function
is minimized around W = [cos 60◦ sin 60◦]T . However, PCA-GM is robust to the
outliers because its objective function is minimized at W = [cos 48.9◦ sin 48.9◦]T ,
which is close to the solution without the outliersW∗ = [cos 45◦ sin 45◦]T . Given an
initial projection vectorW(0) = [cos 30◦ sin 30◦]T , the approximation step in Algo-
rithm 2 gives a quadratic function corresponding to the red dashed line in Fig. 3b. In
the second step, the next iteration W(1) is determined as [cos 32.1◦ sin 32.1◦]T by
minimizing the approximate function. Interestingly, it can be said that the approx-
imated function plays a similar role of an upper bound of the objective function
around W(0) in this update rule. It is also noted that the approximated function at
the local optimal point W = [cos 48.9◦ sin 48.9◦]T has its minimum as the same
location, which is denoted as the magenta dashed dotted line in Fig. 3b. This means
that Algorithm 2 converges to the local minimum point of the objective function for
the problem shown in Fig. 3a.

To figure out how different robust PCAs alleviate the negative effect of outliers,
we compare the contribution of each sample to objective functions for each method
in Table 1. Also, the contributions of the methods with respect to the reconstruction
error are plotted in Fig. 4. For R1-PCA and HQ-PCA, the Huber’s and Welsch M-
estimators are employed in (1) and (3), respectively and the contribution in PCA-GM
is computed based on (4) and (5). It is clear that the contribution of PCA increases
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Table 1 Comparison of
different versions of PCAs

Method Contribution of each sample xi to the
objective function

PCA xTi xi − xTi WWT xi = ||xi − WWT xi ||22
L1-PCA ||xi − WWT xi ||1
R1-PCA ρH

(||xi − WWT xi ||2
)

HQ-PCA ρW
(||xi − WWT xi ||2

)

PCA-GM
(||xi − WWT xi ||22

)p

Fig. 4 Contribution of a
reconstruction error to
objective function a PCA,
L1-PCA, and R1-PCA b
HQ-PCA and PCA-GM

 0

 20

 40

 60

 80

 100

 0  2  4  6  8  10

C
on

tri
bu

tio
n

Reconstruction error

R1-PCA(c=1)
R1-PCA(c=2)
R1-PCA(c=5)

L1-PCA
PCA

(a)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

C
on

tri
bu

tio
n

Reconstruction error

HQ-PCA(σ=1)
HQ-PCA(σ=2)

PCA-GM(p=0.1)
PCA-GM(p=0.2)

(b)



84 J. Oh and N. Kwak

quadratically, so that the contributions corresponding to outliers with large recon-
struction errors become very large. It is noticeable that PCA-GM indirectly modifies
the contribution of each sample by minimizing the generalized mean of the squared
L2 reconstruction errors whereas the other methods directly uses the L1-norm and
other distance measures in the formulation of their optimization problems.

In practice, when ei (W(t)) is zero or very small for any i,
[
ei (W(t))

]p−1
is numer-

ically unstable if p < 1, and Algorithm 2 can not proceed anymore. This problem
can also occur in Algorithm 1. It can be overcome by adding a small constant δ into
each ei (W) as

ei (W)′ = x̃Ti x̃i − x̃Ti WWT x̃i + δ, (15)

where δ should be small enough that the modified objective function is not affected
too much. This perturbation also changes S(t)

β in (14) into Ŝ(t)
β as

Ŝ(t)
β =

N∑

i=1

β
(t)
i

(

x̃i x̃Ti + δ

n

)

,

where n is the original dimensionality of data.

4 Experiments

To evaluate the proposedmethod, we considered face reconstruction, digit clustering,
and object categorization problems, the first two of which were addressed in [14]
and [12], respectively. The proposed method was compared with PCA, PCA-L1, R1-
PCA, and HQ-PCA. Except the conventional PCA, they have the parameters to be
predetermined and we determined the values of the parameters according to the
recommendations in [10, 14], and [12]. Also, in PCA-GM, the generalized sample
mean was used instead of the sample mean, and the perturbation parameter δ in (15)
was set to 0.01 times the minimum of ei (WPCA) for i = 1, . . . , N . For the iterative
algorithms as R1-PCA, HQ-PCA, PCA-GM, the number of iterations was limited to
100.

4.1 Face Reconstruction

We collected 800 facial images from the subset ‘fa’ of the Color FERET database
[28] for the face reconstruction problem. Each face image was normalized to a size
of 40 × 50 pixels using the eye coordinates, which were obtained in the database.
We simulated two types of outliers. For the first type of outliers, some of the facial
images were randomly selected, and each of the selected images was occluded by a
rectangular area, each pixel in which was randomly set to 0 (black) or 255 (white).
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Fig. 5 Examples of original face images (upper row) and the corresponding images (lower row)
occluded by rectangular noise

The size and location of the rectangular area were randomly determined. Figure 5
shows examples of original normalized faces in the upper rowand their corresponding
faces occluded by the rectangular noise in the lower row. To evaluate the proposed
method with different noise levels, we selected 80, 160, and 240 images from the 800
facial images and occluded them by rectangular noise, so that we made three training
sets including 80, 160, and 240 occluded images. For the second type of outliers,
other three training sets were constructed by adding 80, 160, and 240 dummy images
(outlier)with the same size to the original 800 face images (inlier), so that the numbers
of inliers and outliers in the three training sets are (800,80), (800,160), and (800,240).
Each pixel in the dummy images was also randomly set to 0 or 255.

After applying different versions of PCA to the training sets with the various num-
bers of extracted features m from 5 to 100, we compared the average reconstruction
errors as in [14] defined as

1

N

N∑

i=1

|| (xorii − m
) − WWT (xi − m) ||2, (16)

where xorii and xi are the i-th original unoccluded image and the corresponding train-
ing image, respectively, N is the number of the face images, and m is the mean of
the original normalized faces. For the training sets related to the second type of out-
liers, the dummy images were excluded when measuring the average reconstruction
errors, and xorii and xi were identical. Note thatW is the projection matrix obtained
from PCA, PCA-L1, R1-PCA, HQ-PCA, and PCA-GM for the various values of m.
Moreover, PCA-GM was performed using 0.1, 0.2, 0.3, and 0.4 for the value of p to
figure out the effect of it.

Figures 6 and 7 show the average reconstruction errors measured as in (16) for
the training sets constructed to simulate two types of outliers when 5 ≤ m ≤ 100.
As shown in the figures, PCA-GM and HQ-PCA generally gave better performances
than PCA, PCA-L1, and R1-PCA regardless of the types of outliers and the level of
noise, and they yielded competitive results to each other. When the number of the
occluded images is 240, which corresponds to Fig. 6c, HQ-PCA provided lower aver-
age reconstruction errors than PCA-GM for m ≤ 40 while PCA-GM with p = 0.1
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Fig. 6 Average reconstruction errors of different PCAmethods for the data sets where the numbers
of inliers and outliers (occlusion) are a (720,80), b (640,160), and c (560,240). These plots are best
viewed in colors

and p = 0.2 gave better performances than HQ-PCA for m ≥ 60. When the number
of the dummy images is 80, which corresponds to Fig. 7a, the lower reconstruction
errors could be obtained by PCA-GM rather than HQ-PCA when m ≤ 60 while
HQ-PCA preformed better than PCA-GM for 80 ≤ m < 100.

The effectiveness of the proposedmethod can also be found by visualizing projec-
tionmatrices in terms of theEigenfaces [4]. Figure 8 shows the first ten of Eigenfaces
obtained by different PCA methods when m = 40 and the number of outliers is 240
for both types of outliers. We can see that the Eigenfaces of HQ-PCA and PCA-GM
are less contaminated from the outliers than PCA, PCA-L1, and R1-PCA. Also, it
can be seen from the figure that PCA-L1 yielded projection matrix with different
property. This may be a reason of the fact that PCA-L1 provided relatively large
reconstruction errors when m is small as shown in Figs. 6c and 7c.

The effect of p in PCA-GM was as expected. For the occlusion noise as shown
in Fig. 6, the lower values of p gave better performances and the performance dif-
ferences are more distinct as m and noise level increase. For the dummy images as
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Fig. 7 Average reconstruction errors of different PCAmethods for the data sets where the numbers
of inliers and outliers (dummy images) are a (800,80), b (800,160), and c (800,240). These plots
are best viewed in colors

shown in Fig. 7, PCA-GM showed almost similar performances for all the values
of p except 0.4 when m ≥ 70. These results agree with the fact that the generalized
mean of a set of positive numbers depends on small numbers more and more as p
gets smaller.

4.2 Clustering

The clustering problem was dealt with using a subset of the MNIST handwritten
digit database,2 which includes a training set of 60,000 examples and a test set of
10,000 examples. We randomly gathered 100 examples per the digits ‘3’, ‘8’, and
‘9’ from the first 10,000 examples in the training set. To simulate outliers, we also

2http://yann.lecun.com/exdb/mnist/.

http://yann.lecun.com/exdb/mnist/
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Fig. 8 Eigenfaces obtained by PCA, PCA-L1, R1-PCA, HQ-PCA, and PCA-GM with p = 0.1 in
order of row. a Occlusion noise. b Dummy image noise
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Fig. 9 Examples of MNIST handwritten digit images used as inliers (first row; 3, 8, 9) and outliers
(second row; other digits)

Table 2 Clustering accuracy (%) of the digit images corresponding to ‘3’, ‘8’, and ‘9’ in the reduced
spaces which are obtained from the training set containing the other digit images as outliers

m PCA PCA-L1 R1-PCA HQ-PCA PCA-GM

50 70.00 69.00 69.67 70.00 70.00

100 70.00 72.00 70.00 69.33 69.67

150 70.67 74.00 70.67 70.00 70.00

200 70.33 73.67 70.33 73.67 75.00
250 70.33 73.67 73.67 74.00 74.00

300 70.33 75.00 75.00 73.67 73.67

randomly gathered 60 examples corresponding to the other digits from the same
10,000 examples. Thus, our training set for the clustering problem consists of 300
inliers and 60 outliers, which were normalized to unit norm. Figure 9 shows nine
images of the inliers in the upper row and nine images of the outliers in the lower
row.

After obtaining projection matrices by applying various versions of PCAs to the
training set, K-means clustering with K = 3 was performed using the projected
inlier examples. For the initial means of the K -means clustering, we selected the
two examples with the largest distance and then selected another example which
had the largest sum of the distances from the previously selected two examples.
The clustering accuracy was computed based on the class labels assigned to the
examples in the database. Table 2 shows the clustering accuracy for various numbers
of extracted features. As the previous experiments, we conducted PCA-GM using
the settings of p ∈ {0.1, 0.2, 0.3, 0.4}. The best performance was achieved when
p = 0.3 which is reported in Table 2. Considering the clustering accuracy without
the dimensionality reduction was 70%, PCA-GM improved the clustering accuracy
by 5%. Different from the results of the face reconstruction problem in the previous
subsection, R1-PCA and PCA-L1 gave similar highest clustering accuracy as PCA-
GM, while HQ-PCA performed pooly than PCA-GM. However, R1-PCA and PCA-
L1 provided the highest accuracy whenm = 300 whereas PCA-GM yielded the best
performance when m = 200.
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Fig. 10 Images of objects in a training and b test sets of NORB data set

4.3 Object Categorization

We evaluated the proposed method by performing object categorization on Small
NORB data set [29]. The NORB data set consists of images of 50 different objects
belonging to 5 categories each of which contains 10 objects. For each category, the
images of 5 objects shown in Fig. 10a belong to its training set and those of 5 objects
shown in Fig. 10b belong to its test set. The Small NORB data set is a subset of
the NORB data set comprising 24,300 images for training and 24,300 images for
testing, which are normalizedwith the size of 96 × 96 pixels on uniform background.
Each object in the data set was captured under 18 azimuths, 9 elevations, and 6
light conditions. To evaluate the proposed method for different numbers of training
samples, we uniformly sampled the three image capture variables to construct three
training sets with 3375, 12150, and 24300 samples. We also resized the images in the
data set to 48 × 48 and 64 × 64 pixels for computational efficiency. Consequently,
we have six training sets with different number of samples (N ) and dimensionality
of input samples (n).

Although there are various approaches to categorize an arbitrary sample z corre-
sponding to an image of an object, we performed the categorization by the nearest-
to-subspace, i.e., z is determined to belong to the category minimizing the distance
from z to the subspace spanned by the training samples in the category. For the dis-
tance from z to the subspace of the i-th category, we employed the squared residual
error of z to the subspace computed as z̃Ti z̃i − z̃Ti WiWT

i z̃i , where z̃i = z − mi and
Wi is the orthonormal basis of the subspace, which corresponds to the projection
matrix and can be obtained by one of the PCA methods aforementioned. Also, mi

is the mean of the training samples in the i-th category. We used the sample mean
mS formi in PCA, PCA-L1, and R1-PCA while we usedmH andmG instead ofmS
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in HQ-PCA and PCA-GM, respectively. For the purpose of comparison, the catego-
rization accuracy was evaluated varying the dimensionality of subspaces (m) from 5
to 50.

Figure 11 shows the the categorization accuracy measured on the 24300 test
images in Small NORB data set. It is necessary to note that artificial outliers were
not used in this experiments different from the previous ones. We can see that PCA-
GM with an appropriate value of p is competitive with the conventional PCA when
N = 3375 and the proposed method provides higher categorization accuracies than
PCA as N increases. Especially when N = 24300, the proposed method achieves
the best performance for all the cases of m. This trend appears in both cases of
n = 48 × 48 and n = 64 × 64. However, the other variants of PCA did not gave
higher accuracies than the conventional PCA for most cases. In particular, HQ-
PCA,which showed competitive performance in the face reconstruction experiments,
resulted in the lowest categorization accuracy. This means that the proposed method
can be an effective alternative to PCA in object categorization using the nearest-to-
subspace when training data is enough.

Together with the categorization accuracy, we measured number of iterations in
PCA-GM and running time of the proposed method to obtain projection matrices
from the above six training sets of the Small NORM data set. Table 3 shows the
average numbers of iterations performed in the proposed method. From this table,
we can find that PCA-GM converges in less than 50 iterations on average. Also, the
average number of iterations decreases as the value of p increases from 0.1 to 0.9.
This may have been resulted from the fact that the objective function of PCA-GMhas
manyfluctuationswhen the value of p is close to zerowhereas it is similar to one of the
conventional PCA,which is quadratic, when the value of p is close to one. The overall
running time of the proposed method described in Algorithm 2 varies depending on
the number of iterations needed until a stop criterion is satisfied. Thus, we divided the
overall running times by the average numbers of iterations performed in computing
five projectionmatrices with respect to five categories for every combination ofm, n,
and N , which are summarized in Table 4 in the setting of p = 0.1. From the other
values of p, we could see the similar tendencies. The running times were measured
on a 3.4 GHz Intel Xeon workstation with 12 cores using MATLAB. Each iteration
in the algorithm consists of two processes, the approximation and the minimization.
Compared to the approximation, theminimization requiresmuchmore computations.
It corresponds to the weighted eigenvalue decomposition, which was implemented
by applying the singular value decomposition (SVD) to the weighted data matrix
instead of computing the weighted covariance matrix and applying the eigenvalue
decomposition to it for efficiency. Thus, the running times reported in Table 4 can
be regarded as the running time of the SVD approximately. Considering the average
numbers of iterations shown in Table 3, it can be said that the proposed method is
feasible enough until N = 25000 and n = 5000 roughly.
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Fig. 11 Categorization accuracy of different PCA methods for the training sets with different
sizes of training images (n) and different numbers of training samples (N ); a (48 × 48, 3375), b
(48 × 48, 12150), c (48 × 48, 24300), d (64 × 64, 3375), e (64 × 64, 12150), c (64 × 64, 24300).
These plots are best viewed in colors

Table 3 Average numbers of iterations needed in PCA-GM on Small NORB data set

p = 0.1 p = 0.3 p = 0.5 p = 0.7 p = 0.9

22.89 23.43 19.27 14.80 8.42
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Table 4 Average running time in seconds per each iteration in PCA-GM with p = 0.1 on Small
NORB data set

m n = 48 × 48 n = 64 × 64

N = 3375 N = 12150 N = 24300 N = 3375 N = 12150 N = 24300

5 1.05 22.55 40.28 1.62 47.37 146.31

10 0.95 25.45 42.90 1.59 51.36 150.91

15 0.98 25.69 37.78 1.59 52.55 134.89

20 0.94 23.74 39.14 1.49 46.61 149.55

25 0.89 17.99 35.50 1.44 36.83 130.75

30 0.88 19.60 38.86 1.42 42.74 98.59

35 0.89 18.34 39.40 1.46 43.60 136.14

40 0.84 20.23 32.62 1.42 42.51 106.12

45 0.85 20.21 33.70 1.38 39.35 126.85

50 0.84 18.35 32.03 1.43 41.43 111.99

5 Conclusion and Discussion

We proposed a robust PCA using the generalized mean to mitigate the negative
effect of outliers belonging to the training set. Considering the fact that the sample
mean is prone to the outliers, a generalized sample mean was proposed based on
the generalized mean as an alternative to the sample mean in the framework of
the proposed method. The efficient iterative methods were also developed to solve
the optimization problems formulated using the generalized mean. Experiments on
the face reconstruction, clustering, and object categorization problems demonstrated
that the proposed method performs better than or equal to the other robust PCAs
depending on the problems tackled. We expect that the proposed methods can be
used in various applications. For example, a trimmed average, which is one of the
robust first-order statistics, was used in a scalable robust PCA method [30]. We
think that the generalized sample mean can be an effective alternative to the trimmed
average.
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Appendix 1

This MATLAB code is an implementation of Algorithm 1, which provides the gen-
eralized sample mean (generalizedSampMean) from the following input argu-
ments.
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• dataSamps: a two-dimensional matrix where each column vector corresponds
to each data sample.

• p: the intrinsic parameter of the generalized mean.

1 function generalizedSampMean = ...
GeneralizedSampleMean(dataSamps ,p)

2

3 nMaxIter = 50;
4 thresholdRatio = 0.01;
5

6 meanSamps = mean(dataSamps);
7 meanSampsIter = meanSamps;
8

9 nSamps = size(dataSamps ,1);
10 meanMat = repmat(meanSamps ,[nSamps ,1]);
11 dataSampsZM = dataSamps - meanMat;
12 objFunc = sum(diag(dataSampsZM*dataSampsZM ').^(p));
13

14 index = 0;
15 flag = 0;
16 while flag == 0
17 index = index + 1;
18

19 meanSamps_Before = meanSampsIter;
20 objFunc_Before = objFunc;
21

22 meanMat = repmat(meanSampsIter ,[nSamps ,1]);
23 dataSampsZM = dataSamps - meanMat;
24 alphas = diag(dataSampsZM*dataSampsZM ').^(p-1);
25 meanSampsIter = (dataSamps ' * alphas / sum(alphas))';
26

27 meanMat = repmat(meanSampsIter ,[nSamps ,1]);
28 dataSampsZM = dataSamps - meanMat;
29 objFunc = sum(diag(dataSampsZM*dataSampsZM ').^(p));
30

31 diffMeanVec = meanSampsIter - meanSamps_Before;
32 diffMeanVecNorm = sqrt(diffMeanVec*diffMeanVec ');
33

34 if index ≥ nMaxIter
35 flag = 1;
36 elseif ...

diffMeanVecNorm/sqrt(meanSampsIter*meanSampsIter ')*100 ...
< thresholdRatio

37 flag = 1;
38 elseif objFunc ≥ objFunc_Before
39 flag = 1;
40 meanSampsIter = meanSamps_Before;
41 end
42 end
43

44 generalizedSampMean = meanSampsIter;
45

46 end

1 function generalizedSampMean = ...
GeneralizedSampleMean(dataSamps ,p)
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2

3 nMaxIter = 50;
4 thresholdRatio = 0.01;
5

6 meanSamps = mean(dataSamps);
7 meanSampsIter = meanSamps;
8

9 nSamps = size(dataSamps ,1);
10 meanMat = repmat(meanSamps ,[nSamps ,1]);
11 dataSampsZM = dataSamps - meanMat;
12 objFunc = sum(diag(dataSampsZM*dataSampsZM ').^(p));
13

14 index = 0;
15 flag = 0;
16 while flag == 0
17 index = index + 1;
18

19 meanSamps_Before = meanSampsIter;
20 objFunc_Before = objFunc;
21

22 meanMat = repmat(meanSampsIter ,[nSamps ,1]);
23 dataSampsZM = dataSamps - meanMat;
24 alphas = diag(dataSampsZM*dataSampsZM ').^(p-1);
25 meanSampsIter = (dataSamps ' * alphas / sum(alphas))';
26

27 meanMat = repmat(meanSampsIter ,[nSamps ,1]);
28 dataSampsZM = dataSamps - meanMat;
29 objFunc = sum(diag(dataSampsZM*dataSampsZM ').^(p));
30

31 diffMeanVec = meanSampsIter - meanSamps_Before;
32 diffMeanVecNorm = sqrt(diffMeanVec*diffMeanVec ');
33

34 if index ≥ nMaxIter
35 flag = 1;
36 elseif ...

diffMeanVecNorm/sqrt(meanSampsIter*meanSampsIter ')*100 ...
< thresholdRatio

37 flag = 1;
38 elseif objFunc ≥ objFunc_Before
39 flag = 1;
40 meanSampsIter = meanSamps_Before;
41 end
42 end
43

44 generalizedSampMean = meanSampsIter;
45

46 end

Appendix 2

This MATLAB code is an implementation of Algorithm 2, which provides the pro-
jection matrix (W) from the following input arguments.

• dataSamps: a two-dimensional matrix where each column vector corresponds
to each data sample.
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• generalizedSampMean: the generalized sample mean computed from Algo-
rithm 1.

• nFeatsPCA: the dimension of the resuting subspace.
• p: the intrinsic parameter of the generalized mean.

1 function W = PCAGM(trainData ,generalizedMean ,nFeatsPCA ,p)
2

3 nMaxIter = 100;
4 threDiff = 10^( -5);
5 ratio = 0.01;
6

7 W = PCA(trainData ,nFeatsPCA);
8

9 nTrain = size(trainData ,1);
10 meanMat = repmat(generalizedMean ,[nTrain ,1]);
11 trainDataZM = trainData - meanMat;
12

13 residue = ComptResidualErrors(trainDataZM ,W);
14 objFunc = sum(residue. ^(p));
15

16 minResidue = min(residue);
17 eps = ratio * minResidue;
18

19 flag = 0;
20 index = 0;
21 while flag == 0
22 index = index + 1;
23

24 W_Before = W;
25 objFunc_Before = objFunc;
26

27 residue = residue + eps*ones(size(residue));
28 alphas = residue. ^(p-1);
29

30 A = sqrt(diag(alphas));
31 S = trainDataZM ' * A;
32 [eigVectors ,¬,¬] = svd(S,0);
33 W = eigVectors (:,1: nFeatsPCA);
34

35 residue = ComptResidualErrors(trainDataZM ,W);
36 objFunc = sum(residue. ^(p));
37

38 if objFunc_Before -objFunc < threDiff
39 flag = 1;
40 elseif objFunc ≥ objFunc_Before
41 flag = 1;
42 W = W_Before;
43 elseif index ≥ nMaxIter
44 flag = 1;
45 end
46

47 end
48

49 end
50

51 function errors = ComptResidualErrors(trainDataZM ,W)
52

53 trainDataProj = trainDataZM * W;
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54 R = trainDataZM*trainDataZM ' - trainDataProj*trainDataProj ';
55 errors = diag(R);
56

57 end
58

59 function W_PCA = PCA(trainData ,nFeatsPCA)
60

61 [nTrain ,nVar] = size(trainData);
62 meanTrain = mean(trainData);
63 meanMat = repmat(meanTrain ,[nTrain ,1]);
64 if nTrain < nVar
65 S = (trainData -meanMat)*(trainData -meanMat) '/nTrain;
66 U = diagonal(S);
67 W = U(:,1: nFeatsPCA);
68 W_PCA = (trainData -meanMat)'*W;
69 for k=1: nFeatsPCA
70 W_PCA(:,k) = W_PCA(:,k) / sqrt(W_PCA(:,k)'*W_PCA(:,k));
71 end
72 else
73 S = (trainData -meanMat) '*(trainData -meanMat)/nTrain;
74 W = diagonal(S);
75 W_PCA = W(:,1: nFeatsPCA);
76 end
77

78 end
79

80 function [Vectors ,Values] = diagonal(M)
81 % the input argument M should be an n by n square matrix.
82 [Vectors ,D] = svd(M);
83 d_1D = diag(D);
84 Values = d_1D. ^2;
85 end
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Principal Component Analysis Techniques
for Visualization of Volumetric Data

Salaheddin Alakkari and John Dingliana

Abstract We investigate the use of Principal Component Analysis (PCA) for the
visualization of 3D volumetric data. For static volume datasets, we assume, as input
training samples, a set of images rendered from spherically distributed viewing
positions, using a state-of-the-art volume rendering technique. We compute a high-
dimensional eigenspace, that we can then use to synthesize arbitrary views of the
dataset with minimal computation at run-time. Visual quality is improved by sub-
dividing the training samples using two techniques: cell-based decomposition into
equally sized spatial partitions and a more generalized variant, which we referred
to as band-based PCA. The latter approach is further extended for the compression
of time-varying volume data directly. This is achieved by taking, as input, full 3D
volumes comprised by the time-steps of the time-varying sequence and generating
an eigenspace of volumes. Results indicate that, in both cases, PCA can be used
for effective compression with minimal loss of perceptual quality, and could benefit
applications such as client-server visualization systems.

1 Introduction

Volumetric data comprises three-dimensional (3D) information in the form of a dis-
cretely sampled regular grid. In some cases this is obtained as a 3D stack of 2D
images acquired by imaging technologies such as Magnetic Resonance Imaging
(MRI), or directly generated by simulation techniques such as used in computational
fluid dynamics. In recent years, there has been a trend and a demand to visualize such
datasets interactively, so that viewers may peruse the dataset from different view-
points or based on different viewing parameters. Graphics Processing Units (GPUs),
which are becoming integral components in personal computers, have made it
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possible to generate high-fidelity interactive 3D visualizations of such data. How-
ever, the complexity of volumetric datasets in science and medicine has continued
to increase to the point that, often, the dataset cannot fit in GPU memory or the
processing and bandwidth overheads are too high that many of the advanced render-
ing techniques cannot be applied in real-time without considerable reduction of the
data. At the same time, the use of portable computing devices is becoming ubiquitous,
leading to a demand for visualization techniques suitable for such platforms, which
are more constrained than traditional desktop graphical workstations. For instance,
this has motivated the development of a number of client-server techniques, where a
limited front-end client delivers the visualizationwhilst the bulk of the computational
load or memory usage is devolved to a remote high-performance server or, indeed,
a distributed source such as the cloud.

In this paper, we investigate the feasibility of using Principal Component Analy-
sis (PCA) to improve the efficiency of visualizing 3D volumetric data. In particular,
we are motivated by facilitating increased capacity to visualize such data without
requiring dedicated high-end computing facilities such as supercomputers. Our pro-
posed techniques are intended to benefit visualizations on standard workstations and
eventually even on minimal client devices such as mobile tablets.

Our primary contribution is a prototype approach that uses PCA to generate a
high-dimensional eigenspace capturing a view-independent representation of any
3D volumetric dataset. Arbitrary views of the volume can then be reconstructed
on-demand, at real-time rates. The efficiency of the eigenspace is improved by two
adaptive decomposition mechanisms. The approach is further generalized for the
compression of large highly-complex time-varying volume datasets. Experimental
results indicate that our PCA-based solution can be used to generate high-quality
images of 3D volumetric datasets, whilst reducing computational complexity and
data bandwidth.

2 Related Work

Volume rendering is an area of computer graphics that deals with the digital presen-
tation of 3D volumetric data. Due to the ubiquity of such data (often referred to as
voxel datasets), many rendering techniques have been developed over the past three
decades, ranging from relatively simple slice-based techniques, that essentially blend
2D images, to highly complex 3D global illumination models. For instance, volume
ray-casting [12], is a popular technique which has become the de facto gold-standard
in interactive volume rendering. Ray-casting has many advantages such as its gener-
ality, flexibility and reduced pre-processing requirement, however it is performance
intensive, typically requiring a powerful graphical system with 3D texture handling
support in order to achieve real-time frame rates. On the other hand, many mobile,
portable and web-based graphical systems popular in some visualization domains
still have limited support for such hardware features, and thus are limited to simpler
rendering techniques such as slice-based rendering.
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Fig. 1 Face manifolds on the first three principal component for different set of poses. The face
images are from the Head Pose Image Database [10]

The use of PCA for analyzing 3D objects has been well reported in the last
two decades in Computer Vision and Computer Graphics. Kirby and Sirovich [13]
proposed PCA as a means for a holistic representation of the human face in 2D
images by extracting a few orthogonal dimensions which form the face-space and
were called eigenfaces [28]. Gong et al. [9] were the first to find the relationship
between the distribution of samples in the eigenspace, or manifold, and the actual
pose in an image of a human face. Figure1 shows manifold distributions on the first
three principal components (also called eigenfaces in this case) for different set of
face poses. The use of PCA was extended using reproducing kernel Hilbert spaces
which non-linearly map the face-space to a much higher dimensional space, Hilbert
space [30]. Knittel and Parys [14] employed a PCA-based technique to find initial
seeds for vector quantization in image compression.

Nishino et al. [21] proposed a method, called eigen-texture, which creates a 3D
image from a sample of range images using PCA. They found that partitioning
samples into smaller cell-images improved the rendering of surface-based 3D data.
Grabner et al. [11] proposed a hardware accelerated technique that uses the multiple
eigenspaces method [17] for image-based reconstruction of a 3D polygon mesh
model. To our knowledge, PCA has not yet been applied to image based-rendering
of volume data, which poses additional challenges as the rendered image typically
exposes interior details that need to exhibit consistent occlusion and parallax effects.
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There are a number of previous reported uses of PCA-related methods in the
visualization literature. For instance, [18] employed PCA for dynamic projections
in the visualization of multivariate data. Broersen et al. [2] discussed the use of
PCA techniques in the generation of transfer functions, which are used to assign
optical properties such as color and opacity to attributes in volume visualization.
Takemoto et al. [26] used PCA for feature space reduction to support transfer function
design and exploration of volumetric microscopy data. Fout and Ma [7] presented a
volume compression method based on transform coding using the Karhunen-Loève
Transform (KLT), which is closely related to PCA.

Many remote visualisation techniques have been proposed in the scientific and
medical visualization literature. The motivation for these range from facilitating col-
laborative multi-user systems [15], performance improvements through distributed
parallel rendering [8], web-based visualization on browsers [22], remote collabora-
tive analysis by distant experts [24] and to achieve advanced rendering on low-spec
client devices [20]. One strategy, in client-server volume rendering is to transmit
3D data on-demand to the client, after compression [20], partitioning [1] or using
a progressive rendering [3]. The client in all of these approaches is required to do
further processing to render the data. A second alternative, such as employed by
[6], is for a high-end server to remotely render the data and transmit only images
to the client, which has a much reduced responsibility of simply displaying the pre-
rendered image. This strategy, often referred to asThinClient (see Fig. 2), is a popular
approach for visualization on portable devices such as a mobile tablets, which may
be restricted in terms of computational capacity and GPU components. In between
these ends of the spectrum, some image-based approaches pre-compute intermediate
2D images that are post-processed or composited by the client before display [1, 23,
27]. Image-based approaches, in general, have been of interest, for improving the
efficiency of volume visualization [4, 5, 19]. At the cost of some additional computa-
tional load on the client, such a solution may provide improvements such as reduced
latency during interaction and it is in this category that our main contributions lie.

Fig. 2 Framework of a thin-client volume rendering system. Complex rendering operations are
performed on a high performance server, then images are streamed in real-time to clients that merely
display received images. In contrast our proposed approach is to pre-load data representative of the
eigenspace and then at run-time transmit only a small number of scores that are processed by clients
to build the image
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3 Concepts

In this section we define the essential concepts and general terminology, which will
be used in later sections to define our approach for interactive volume visualization
using PCA.

The basic approach to PCA is as follows. Given data samples X = [x1 x2 . . . xn] ∈
R

d×n , where each sample is in column vector format, the covariancematrix is defined
as

C = 1

n − 1

n∑

i=1

(xi − x̄) (xi − x̄)T , (1)

where x̄ is the samplemean.After that,we canfind the optimal low-dimensional bases
that cover most of the data variance by extracting the most significant eigenvectors
of the covariance matrix C . Eigenvectors are extracted by solving the following
characteristic equation

(C − λI ) v = 0; vT v = 1, (2)

where v ∈ R
d is the eigenvector and λ is its corresponding eigenvalue. Eigenval-

ues describe the variance maintained by the corresponding eigenvectors. Hence,
we are interested in the subset of eigenvectors that have the highest eigenval-
ues V = [v1 v2 . . . vp]; p � n. Then we encode a given sample x using its p-
dimensional projection values (referred to as scores) as follows

y = V T x . (3)

We can then reconstruct the sample as follows

xreconstructed = V y. (4)

Since in the case of n � d,C will be of rank n − 1 and hence there are only n − 1
eigenvectors that can be extracted from (2) and since C is of size d × d, solving (2)
becomes computationally expensive. We can find such eigenvectors from the dual
eigenspace by computing the n × n matrix XT X and then solving the eigenvalue
problem (

XT X − (n − 1)λI
)
vdual = 0 (5)

⇒ XT Xvdual = (n − 1)λvdual; vT
dualvdual = 1. (6)

Here, for simplicity, we assumed that the sample mean of X is the zero vector.
After extracting the dual eigenvectors, one can note that by multiplying each side of
(6) by X , we have

XXT Xvdual = (n − 1)λXvdual
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⇒ 1

n − 1
XXT (Xvdual) = λ (Xvdual)

⇒ C (Xvdual) = λ (Xvdual)

⇒ (C − λI ) (Xvdual) = 0

which implies that
v = Xvdual . (7)

In order to get the orthonormal eigenvectors, the following formula is used:

vnormali zed = 1
(
(n − 1)Var

(
vT X

)) 1
4

v.

Thus, when n � d, we only need to extract the dual eigenvectors using (6) and
then compute the real eigenvectors using (7). Only the first few eigenvectors Vp =
[v1 v2 . . . vp], p � n � d will be chosen to represent the eigenspace, those with
larger eigenvalues. One advantage of PCA is the low computational complexity
when it comes to encoding and reconstructing samples.

Definitions and Terminology Used

In this section, we will introduce some important definitions and terminology that
are used throughout the rest of this chapter.

Volume data Data that is represented in the form of a discretely sampled 3D field.
This is typically stored as a 3D rectilinear grid, with each element of the grid
referred to as a volume element or voxel. Practical examples include data scanned
using Computational Tomography or Magnetic Resonance Imaging.

Transfer function In volume visualization, the transfer function is a mapping
of optical properties, such as colour and opacity, to specific voxel values for
visualization.

Band A set of attributes. For instance, where data samples are volumes, a band
will comprise a set of voxels.

Occurrence The probability of an attribute to belong to a band. This is given by

Pr
(
x ∈ Bi=1...Nbands

) = B̄i

d
,

where B̄i is the cardinality of Bi and d is the total number of attributes.
Cell In the case that bands have equal occurrences, each band is then called a cell.
Sample variance A vector of variances computed for each attribute across the

whole set of training samples. This is given by the diagonal elements of the
covariance matrix as follows

ν = diag (C).
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Information The amount of variability covered by a band among all training
samples. This is defined by

info (B) = Var (B)
∑Nbands

i=1 Var (Bi )
,

where Var (B) is the pooled variance of band B, which is given by

Var(B) =
∑

i∈B
(
νi + (x̄i − x̄B)2

)

B̄
.

where x̄i is the mean value of attribute i and x̄B = ∑
i∈B x̄i/B̄.

Information to occurrence ratio The mean amount of information given by an
attribute in a band, defined by

� (B) = in f o (B)

Pr (x ∈ B)
.

This ratio is used to detect bands corresponding to background regions. (The term
background is used as a generalization of “empty” voxels. In volume data, this
may refer to voxels with a zero attribute or that contribute negligible information
to the data being represented).

Band-based PCA The case when PCA is applied to each non-background band
separately. In this case, the eigenvectors corresponding to each band are called
eigenbands.

Cell-based PCA The case when PCA is applied to each non-background cell
separately. In this case, the eigenvectors corresponding to each cell are called
eigencells.

Eigenvalue The amount of variability covered by an eigenvector.
Explained variance The accumulated ratio of most significant eigenvalues to the

total variance of training samples which is given by

Θ =
∑p

i=1 λi∑n
j=1 λ j

.

4 Cell-Based PCA for Volume Data

In this section, we investigate how well PCA is able to learn and preserve visual
information in volumetric data. Specifically, we present an approach for image-based
rendering of volume data using PCA.

Figure3 illustrates the steps for reconstructing and rendering a novel view image
using three alternative PCA techniques: Standard PCA involves applying PCA to
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Fig. 3 Overview of our technique for image reconstruction using PCA. Left: Standard PCA;
Middle: Cell-based PCA; Right: Band-based PCA

the whole image. In Cell-based PCA, the viewport is partitioned into rectangular
cells and the eigenspace computed for each cell image individually. This is similar
to the approach taken by [21], and we describe in this section how we apply and
extend it for volume data visualization. An alternate approach, which we refer to
as Band-based PCA, is discussed in Sect. 5 and entails partitioning the data more
generally into bands of similar attributes that may be randomly distributed in space.

For static volumedata,we assumea set of pre-rendered images as training samples.
In this case each image is considered a high-dimensional vector and used as input
into (1). We compute the eigenspace of the volume dataset by applying PCA to a
number of training images from uniformly-spaced viewing positions in a spherical
distribution (as illustrated in Fig. 4).

The 3D volumetric dataset is encapsulated using a small number of eigenimages
and, at run-time, views are reconstructed using (4), based on the scores obtained
by projecting sample values into the first p significant eigenvectors (as in (3)). By
interpolating between the scores of training samples in the eigenspace, we can further
synthesize output samples from novel viewing angles not in the training set.

Note that although a pre-processing stage is required to render the training samples
and generate the eigenspace, the advantage of the approach is that run-time perfor-
mance is independent of the complexity of the dataset or of the rendering technique.
Images are effectively reconstructed by computing a weighted sum of the eigenim-
ages, which are much fewer in number than, for instance, the average sampling rate
in a ray-caster.

For Standard PCA, the eigenspace is computed for the full-size training images.
In the case of Cell-based PCA, we first partition each image into a number of equally-
sized cell images. Then, we compute the eigenspace of each cell image individually.
It should be noted that the cell-based technique has similar computational complexity
and memory footprint as the direct PCA technique as we essentially perform a larger
number of much smaller iterations.
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Fig. 4 Volume ray-cast
images from spherically
distributed sample viewing
positions were used as
training samples

Results:As afirst test,we applyStandardPCAandCell-basedPCAfor visualizing
the VisMale Head1 from the Visible Human dataset, at a resolution of 300 × 300
pixels. We used 1,500 training images from uniformly-spaced viewing angles (3.6◦
spacing for the azimuthal angle and 12◦ spacing for the elevation angle) to generate
the input images to compute the eigenspace. The images were rendered using an
implementation of a standard GPU volume ray-caster based on the approach by [12]
with sampling rate of 1000 samples per ray.We then acquire test samples by applying
0.9◦ spacing for the azimuthal angle and 30◦ spacing for the elevation angle leading
to a total of 2400 unique views.We used 100 eigenvectors to represent the eigenspace
and, for each unique view, we synthesize the corresponding scores (projection values
into the first 100 significant eigenvectors).

Figure5 compares the reconstructed novel view images for both Standard PCA
and Cell-based PCA with a ray-cast rendering from the corresponding view. Clearly,
the cell-based approach produces much better quality results compared to the some-
what blurry images resulting from the standard technique with the same distribution
of training samples, consistent with what was reported in the previous literature
[21]. However the cell-based PCA results in subtle discontinuity artefacts at the
cell boundaries in the reconstructed images (see Fig. 5d). In terms of complexity,
both PCA based methods require only 100 scalar-vector multiplications at run-time,
which is computationally much cheaper compared to the operations required in the
equivalent ray-cast rendering.

1Head dataset is obtained from http://www9.informatik.uni-erlangen.de/External/vollib/.

http://www9.informatik.uni-erlangen.de/External/vollib/


108 S. Alakkari and J. Dingliana

Fig. 5 Novel view of the Vismale Head reconstructed at 300× 300 pixel resolution. a Reference
image rendered using the volume ray-casting technique. b Standard-PCA reconstruction. c Cell-
PCA reconstruction. d Subtle cell-boundary discontinuity artefacts are visible in the cell-based
reconstruction when zoomed in. Note that (d) has been contrast enhanced to accentuate the error
for inspection

Adaptive-cell PCA

A further improvement, is obtained by adaptively varying the number of eigenvectors
per cell in order to achieve a more optimal tradeoff between performance and quality.
The number required is determined based on total variability explained by the first
p eigenvectors. This can be expressed as follows:

Θ =
∑p

i=1 λi∑n
j=1 λ j

> T, (8)

where λ is the eigenvalue, n is the number of first significant eigenvectors, N is the
total number of eigenvectors and T is a threshold value, which affects the tradeoff
between high variability and low mean number of eigenvectors per cell.
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Table 1 Average number of eigenvectors per cell for a given threshold value, which is conserva-
tively chosen for each dataset to ensure a high perceptual similarity

Dataset VisMale head Tooth

Volume dimensions 128 × 256 × 256 140 × 120 × 161

Mean number of dimensions
per cell

46.27 26.4

T 98% 99.7%

Mean SSIM value 0.9303 0.9934

In our proof-of-concept implementation, the choice of threshold ismademanually
as desired by the user; in practice a value would be chosen so that it will result in
a perceptually adequate result for a particular visualization task. In theory, given
a reliable measure of perceptual quality, an iterative automated technique might
be employed to select a variance threshold to maximize perceptual quality, whilst
minimizing the number of eigenvalues. Given the threshold required, Eq. (8) is used
to choose the most significant eigenvectors that have explained variance above the
given threshold.

Results: For this study, we apply PCA for visualizing the VisMale Head and
Tooth2 datasets. The latter is chosen in order to determine how the approach scales to
a dataset of different complexity, in this case lower voxel resolution and a structurally
simpler object. This time, training samples were acquired using a standard ray-caster
of resolution 1080 × 1080 pixels and sampling rate of 1000 samples per ray to
achieve an image quality that might be used in a typical real-world application. For
each dataset, we computed the eigenspace of each cell using 900 training images
from uniformly spaced viewing angles (3.6◦ spacing for the azimuthal angle and 20◦
spacing for the elevation angle). Each cell is of size 30 × 30, resulting in a total cell
number of 36 × 36 = 1296.

Table1 shows the threshold and mean number of eigenvectors across all cells for
each dataset. Note that the Tooth dataset has higher threshold value and lower number
of eigenvectors, due to its lower complexity and detail compared to theHead dataset.
Figure6 shows two novel views from each dataset reconstructed using the adaptive-
cell technique. We found that the adaptive technique leads to visible reduction in
artefacts, including at cell boundaries, in comparison to the non-adaptive cell tech-
nique.When closely zoomed in some cell-boundary artefacts are still present in some
parts of the image, however, at normal viewing resolution, the reconstructed image
is almost indistinguishable from the equivalent ray-cast rendering. We analysed the
accuracy of the reconstructed image using the structural similarity (SSIM) index [29]
in comparison with a ray-cast rendering, which is used as a gold-standard. SSIM
scores of 0.9325 and 0.9938 respectively were recorded for the reconstructed Head
and Tooth images shown.

2The Tooth dataset is obtained from http://www9.informatik.uni-erlangen.de/External/vollib/.

http://www9.informatik.uni-erlangen.de/External/vollib/
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Fig. 6 Novel views of the Head and Tooth dataset visualized at 1080p resolution using the adaptive
cell PCA technique. A ray-cast rendering (left) is compared to a reconstructed view (middle). The
two PCA images are perceptually indistinguishable from the ray-cast rendering (SSIM 0.9325 and
0.9938 respectively) at normal viewing size but cell-boundary artefacts are visible in some areas
when closely zoomed in (right)

5 Band-Based PCA

In the previous section, we partitioned the input training samples into spatial cells
of uniform shape and size, with adaptive numbers of eigenvectors per cell. In this
section we generalize this further with an approach we refer to as band-based PCA
(see Fig. 3, right), where attributes are grouped into bands based on their distribu-
tion of values and PCA is applied to each non-background band separately. Mapping
attributes to different bands can be done inmany different ways.We use the following
mapping

Bi =
{
x̄ j | x̄ j ∈

(
min (x̄) + i − 1

Nbands
(max (x̄) − min (x̄)) , min (x̄) + i

Nbands
(max (x̄) − min (x̄))

]}
,

where the range of values of the sample mean is divided into uniform subranges and
then each range assigned to a band. We detect background bands (essentially empty
voxels or those that have negligible contribution to the final image) by using the
information to occurrence ratio as follows

� (B) < 0.1
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Fig. 7 Comparison of the Vismale Head dataset visualized at 1080p resolution with ray-casting
(left) and reconstructed using the adaptive cell-based PCA technique (middle) and the band-based
PCA (right). When zoomed-in (Bottom Row), cell-boundary artefacts are visible in some areas of
the cell-based PCA result and some dithering artefacts are visible in the band-based PCA (right)

In other words bands with information to occurrence ratio less than 0.1 are classified
as background. In general cases, we may have more than one layer of background.
In such cases, increasing the number of bands will detect such layers more precisely.
In contrast to the cell-based approach, the attributes in a band can be randomly
distributed across the image, do not have to be contiguous, and the bands need not be
spatially uniform. The main premise is that by sub dividing into bands, we provide
a more meaningful grouping of attributes and at the same time overcome the cell-
boundary artefacts.

Results: Figure7 shows the Vismale Head rendered at 1080p resolution using
volume ray-casting, compared to reconstructions using the cell-based (30 × 30) and
band-based (100 bands) techniques. At normal viewing resolution the reconstructed
images are quite similar to a ray-cast image of the original data (SSIM score of
0.9278 and 0.8958 respectively for the cell-based and band-based reconstructions
when compared ot the ray-cast rendering). However, when zoomed in closely, we
see the aforementioned boundary artefacts in the cell-based PCA. The band-based
approach, on the other hand, results in a more subtle dithering-like effect.

Figure8 shows the effect of changing the number of bands. Increasing from 50
bands (middle) to 100 bands (right) reduces dithered noise artefacts in the zoomed-in
view of the data. Increasing the bands further leads to negligible visual differences
as observable to the naked eye, so they are not shown here, however the SSIM scores
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Fig. 8 Sample views of band-based PCA reconstruction Vismale. Left: reference image by ray-
casting. Middle: result of using 50 bands (SSIM: 0.8666). Right: 100 bands (SSIM: 0.8779). Inset
is a zoomed-in area of each image

indicates an increase in accuracy: 0.866, 0.8779, 0.8905, 0.8911 for 50, 100, 150 and
200 bands respectively.

In order to visually compare with typical volume rendering systems, we used a
real-time volume ray-caster to generate the training images in all of our previously
presented results. However, a key advantage of our approach is that the run-time cost
of generating images is independent of the computational complexity of the rendering
process or the dataset. For instance, Fig. 9 shows a proof-of-concept reconstruction
of a chest dataset3 rendered at 1080p (i.e. high definition) resolution using the Expo-
sure Renderer [16], which achieves interactive progressive rendering by exploiting
high-end GPUs. In this case we allowed the progressive rendering to converge for 5
seconds for each frame rendered on an Intel PC equipped with a 3.4 GhZ i5-4670
CPU, NVIDIA GeForce GTX 775M GPU and 16 GB RAM. In contrast, once the
eigenspace is computed, our approach can be used to efficiently recreate such com-
plex images in high detail at real-time, even on a display device without a powerful
GPU (Figs. 10 and 11).

PCA for Time-Varying Volume Data Compression

Up to this point, we used PCA as an image-based rendering technique for sta-
tic volume datasets; using multiple rendered views as the training set, we used

3The chest dataset, ARTIFIX, is obtained from the DICOM Sample Image Library: http://www.
osirix-viewer.com/resources/dicom-image-library/.

http://www.osirix-viewer.com/resources/dicom-image-library/
http://www.osirix-viewer.com/resources/dicom-image-library/
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Fig. 9 Sample views of PCA reconstruction of photo-realistic volume renderings. Left: image ren-
dered at 1080p resolution by Exposure Renderer [16]; Middle:Cell-based PCA reconstruction with
threshold Θ = 99 and 30× 30 cell size (SSIM: 0.9819); Right Band-based PCA Reconstruction
with Θ = 99 and 50 bands (SSIM: 0.9991). Inset is a zoomed-in area of each image

Fig. 10 Preserved information (left) and compression ratio (right) graphs for different number of
bands and different theta values

Fig. 11 Preserved information versus compression ratios with 100 bands for the Supernova (left)
and Vortex (right)
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PCA to reconstruct novel views on demand. In this section, we show how band-
based PCA can also be employed to directly compress 3D volume data in time-
varying volume datasets. Such datasets are comprised of multiple 3D volumes, each
representing a frame in a sequence of time-varying data, typically obtained from
simulation processes.

In such a case, we can train PCA using the full 3D volumes from regularly spaced
timesteps in order to compute the eigenspace.

Reconstruction of frames takes place as discussed in previous sections, except
that, here, the input samples and reconstructed outputs are in the form of 3D volumes
rather than view-dependent images as we previously dealt with.

Results: Figure12 shows rendered example frames from the Supernova4 dataset
reconstructed using differentΘ values (Θ = 95% andΘ = 99%). Similarly, Fig. 13
shows example frames from the Turbulent Vortex dataset.5 In both cases, there is a
visible improvement in reconstruction quality with higher values of Θ .

Figure14 shows frames from theSupernova reconstructed using 20 and100bands.
Weobserve that increasing the number of bands leads to amore faithful reconstruction
of the original dataset as well as a reduction in the dithered noise artifacts.

Since we now employ PCA to reconstruct full volumes, we need to subsequently
apply a transfer function and then a 3D rendering process at run-time to generate the
output images. The visibility of noise artifacts in particular is subjective to the choice
of transfer function and other viewing parameters, thus the quality of the reconstruc-
tion cannot fully be gauged purely on the resulting images. A better indicator of
reconstruction quality is obtained by measuring how much information (variability)
is preserved in the reconstructed frames as follows

H (Xreconstructed) = Θ
∑

i /∈Background
info (Bi ), (9)

where Θ is the explained variance defined in the previous section. The preserved
information takes into account all non-background voxels and not only those that are
visible using a specific transfer function or viewing configuration.

After setting a threshold for Θ and measuring the preserved information, we can
then find the compression ratio as follows

ζ (Θ) = N × d

Nbands × (
d̄band + N × p̄

) ,

where N is the number of frames (training samples), d is the total number of attributes
(dimensionality), d̄band is the mean number of attributes per band and p̄ is the mean
number of eigenvectors per band.

4Supernova dataset obtained from: http://vis.cs.ucdavis.edu/VisFiles/pages/supernova.php.
5Turbulent Vortex dataset obtained from Time Varying Volume Data Reporsitory at UC Davis:
http://web.cs.ucdavis.edu/~ma/ITR/tvdr.html.

http://vis.cs.ucdavis.edu/VisFiles/pages/supernova.php
http://web.cs.ucdavis.edu/~ma/ITR/tvdr.html
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Fig. 12 Selected frames of the Supernova dataset. Each row shows an original frame from the
dataset (left), compared to the frame reconstructed using 100 bands and Θ = 95% (middle) and
Θ = 99% (right). The bottom row shows a zoomed in area of the visualizations in the third row
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Fig. 13 Selected frames from the Turbulent Vortex dataset. Original frame (left) is compared to
reconstructions using 100-band PCA, with Θ = 95% (middle) and Θ = 99% (right). The bottom
row shows a zoomed-in area of the visualizations in the third row

Figure10 shows the preserved information and compression ratio when recon-
structing the supernova dataset for different number of bands and differentΘ values.
It is evident that increasing the number of bands improves the preserved informa-
tion (with almost 4% from 20 bands to 100 bands) while the compression ratio is
not significantly affected. This is because increasing the number of bands leads to
better detection of background voxels. Figure11 shows the relationship between
compression ratio and preserved information using 100 bands for the Supernova and
Vortex datasets respectively. We observed that better compression was achieved for
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Fig. 14 Effect of bands on compression quality, Each row shows an original frame from the
Supernova dataset (left) compared a reconstruction using 20 bands (middle) and 100 bands (right)
with Θ = 99% in each case. The bottom row shows a zoomed-in area

the Supernova but the preserved information was slightly better for the Vortex. It is
likely that this is due to the fact that the background regions in the vortex data are
much smaller than in the supernova.

Whilst, in this use case, we do not use PCA to reduce rendering complexity, band-
based PCA appears to be an effective means for data compression in time-varying
volume datasets.

6 Conclusions and Future Work

In this paper, we investigated the use of PCA for volume visualization. Our primary
contribution is an adaptive decomposition technique that is able to reconstruct, in real-
time, any volumetricmodel through a finite number of training images and generalize
the eigenspace to produce high quality novel view images.We first extended the cell-
based PCA approach initially proposed by [21] to volume data which is challenging
due to its transparent nature and consequently its sensitivity to parallax errors. We
further propose band-based PCA, a more generalized alternative, which we found to
be less prone to cell-boundary artefacts at the cost of more random dithered noise.

Although both approaches necessitate a pre-computation stage, their run-time
performance and capabilities are essentially independent of the complexity of the
rendering process or of the volume data resolution. Thus, they could even be used in
a minimal-spec standalone system to allow interactive rendering of high-resolution
volumetric data, or data that has been visualized using complex rendering techniques
not normally possible in real-time.
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One clear limitation when using PCA for image-based rendering is that a change
in transfer function (material colors and opacities) currently requires a change in
the whole eigenspace. Where a suitable specific transfer function can be assumed,
as in some practical scenarios such as in Medicine, the process of computing the
eigenspace is done in a preprocessing step for the dataset. A potential generaliza-
tion to this, which we would like to investigate in the future, might be to combine
eigenspaces of different materials (e.g. flesh, bone, etc.) using composition tech-
niques such as image level intermixing [25]. Previous authors have demonstrated
that transfer function changes can be supported in a view-dependent image-based
technique by multi-layering [27], and it would be interesting to see if similar strate-
gies could be used to extend our approach.

As a second contribution, we extended the band-based PCA technique to directly
reconstruct voxel data of full time-step frames in time-varying volume datasets.
Results indicate that this can be used as an effective means of time-varying volume
data compression.

Although we analyzed several aspects of PCA-reconstructed volume data, includ-
ing rendering accuracy and information preservation, thesemeasureswere in the con-
text of static volumes or individual frames within a time-varying dataset. Based on
observing the datasets during an animated simulation sequence, we noted that it was
particularly difficult to notice inaccuracies and artefacts whilst they were undergoing
motion. Moreover a significant aspect that needs to be considered for time-varying
data is the accuracy of the dynamic behavior (i.e. motion) of the dataset itself. How-
ever, there is limited previous literature on evaluating the perception of motion, and
a complete analysis of this form was outside the scope of this paper. In future work,
we plan to conduct perceptual user studies as well more direct feedback from expert
users in specific user domains that employ volume data, in order to evaluate our tech-
niques and, further, to gauge best-fit strategies and optimal parameter configurations
to limit perceptible artefacts in the resulting visualizations.

Overall, PCA appears to be an interesting and viable alternative technique for
image-based volume visualization and time-varying volume data compression. The
reduction in computational complexity and compression of information provide
potential advantages for applications such as in client-server visualization systems.
Although our main motivation was to provide an alternative to a thin-client solution
for volume visualization, the PCA-based approach could generally have advantages
in volume compression andwhere run-time rendering complexity needs to be reduced
at the cost of pre-processing computations.
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Outlier-Resistant Data Processing
with L1-Norm Principal
Component Analysis

Panos P. Markopoulos, Sandipan Kundu, Shubham Chamadia, Nicholas
Tsagkarakis and Dimitris A. Pados

Abstract Principal Component Analysis (PCA) has been a cornerstone of data
analysis for more than a century, with important applications across most fields of
science and engineering. However, despite its many strengths, PCA is known to have
a major drawback: it is very sensitive to the presence of outliers among the processed
data. To counteract the impact of outliers in data analysis, researchers have been long
working on robust modifications of PCA.One of themost successful (and promising)
PCA alternatives is L1-PCA. L1-PCA relies on the L1-norm of the processed data
and, thus, tames any outliers that may exist in the dataset. Experimental studies in
various applications have shown that L1-PCA (i) attains similar performance to PCA
when the processed data are outlier-free and (ii) maintains sturdy resistance against
outliers when the processed data are corrupted. Thus, L1-PCA is expected to play a
significant role in the big-data era, when large datasets are often outlier corrupted. In
this chapter, we present the theoretical foundations of L1-PCA, optimal and state-of-
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the-art approximate algorithms for its implementation, and some numerical studies
that demonstrate its favorable performance.

1 Introduction and Problem Formulation

Fundamentally, Principal Component Analysis (PCA) seeks orthogonal directions
that span a subspace whereon data presence is maximized [2, 9, 13, 33]. These
directions are defined by the, so called, Principal Components (PCs) of the data. In
standard PCA, data presence is quantified by the aggregated squared L2-norm (or,
Frobenius norm) of the projected data onto the sought-after subspace. Therefore,
standard PCA is also known as L2-PCA. PCA has enjoyed great popularity over the
past decades, due to several reasons, including its familiar low-cost implementation
by means of Singular-Value Decomposition (SVD), its scalability (the kth principal
component can be found in the nullspace of the first k − 1 principal components),
and the close approximation it attains to the true maximum-variance subspace when
applied on clean/nominal data points.

In the big-data era, datasets are often contaminated by highly deviating samples,
faulty measurements, and bursty-noise, often referred to as outliers [1] –a term used
to describe that such points usually lie by far outside the nominal (sought-after) data
subspace. Outliers appear in practice due to a variety of causes, including errors
in data storage, or transcription, and intermittent sensor malfunctions. Of course,
sporadic incoherences of the sensed environment and malevolent outlier insertion
may also be causes of contamination/corruption of the processed dataset.

At the same time, standard PCA is observed to be highly sensitive to the presence
of outliers [5]. Expectedly, by placing squared emphasis on the magnitude of all
points benefits unfavorably points that lie in the dataset periphery; i.e., outliers.

To counteract the impact of outliers on PCA-based data processing, researchers
have focused on alternative PCA formulations that seek to maximize data presence
in the PC-spanned subspace by either (i) maximizing the aggregate L1-norm (sum
of absolute values) of the projected data [6–8, 16–18, 20, 23, 24, 27, 29, 29–31,
37] or (ii) minimizing the aggregate absolute data representation error (i.e., L1-norm
of error) [3, 4, 10, 14, 15, 36]. Due to their reliance on the L1-norm (in contrast to
standard PCA’s reliance on L2-norm), these methods are collectively referred to as
“L1-PCA” methods. On the one hand, the general solution to error-minimization L1-
PCA remains to date unknown and some approximate algorithms have been proposed
in the literature.On theother hand,maximum-projectionL1-PCAwas recently shown
to be equivalent to combinatorial optimization and, thus, two exact algorithms for its
optimal solution were presented [23, 24]. In addition to the optimal solutions –and,
in part, thanks to the insight they provided– several efficient suboptimal algorithms
for maximum-projection L1-PCA have been also proposed in the literature [16, 17,
27, 30]. Maximum projection L1-PCA has found many important applications in the
past five years, including image reconstruction [26], object recognition [12], reduced-
rank filtering [21], Direction-of-Arrival (DoA) estimation [25, 28, 35], radar-based
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indoor human motion classification [22], video surveillance [19], and others. For the
above reasons (namely, solvability and widespread research interest), in this chapter
we focus specifically on maximum-projection L1-PCA, which we henceforth refer
to simply as L1-PCA.

Consider data matrix X = [x1, x2, . . . , xN ] ∈ R
D×N of rank d ≤ min{D, N }.

L1-PCA seeks a low-rank orthonormal data subspace basis QL1 ∈ R
D×K of dimen-

sionality K < d that solves

QL1 = argmax
Q∈RD×K , Q�Q=IK

∥
∥X�Q

∥
∥
1 . (1)

In (1), ‖·‖1 denotes the L1-norm of its matrix argument, equal to the summation
of the absolute values of all its entries. It was recently shown that L1-PCA in the
form of (1) is formally an NP-hard problem in jointly asymptotic N and d [24, 30].
In fact, as shown below, (1) was equivalently rewritten as an optimization problem
over NK {±1}-binary variables and, thus, it was solved exactly by exhaustive search
with cost O(2NK ). Moreover, [24] showed that for the special case of fixed data
dimensionality d, (1) is not NP-hard and, in fact, it can be solved with polynomial
cost O

(

NdK−K+1
)

; the corresponding polynomial-time algorithm of [24] is to date
the fastest optimal L1-PCA calculator.

In the big-data era, very high data-dimension D and/or data-support size N may
render the optimal algorithms of [24] practically inapplicable. To counteract this pro-
hibitive computational-cost increase, authors in [16, 27] introduced recently L1-BF,
a bit-flipping based, near-optimal algorithm for the calculation of K ≥ 1 L1-PCs
that has computational cost comparable to that of SVD –i.e., standard PCA [11].
L1-BF in [27] was accompanied by rigorous proof of convergence, detailed asymp-
totic complexity derivation, and theoretically established performance guarantees.
Extensive numerical studies revealed that L1-BF algorithm outperforms all its sub-
optimal counterparts of comparable cost with respect to L1-PCA metric and at the
same time retains high outlier-resistance similar to that of optimal L1-PCA.

In the following Sect. 2, we present the main results on the optimal solution of
L1-PCA. Then, in Sect. 3, we present some of the most widely used algorithms for
approximate L1-PCA, including the state-of-the-art L1-BF. Finally, Sect. 4 holds
some numerical studies that illustrate the outlier-resistance of L1-PCA. Few con-
cluding remarks are drawn in Sect. 5.

2 Exact Solution of L1-PCA

In this section, we provide the guidelines for solving L1-PCA optimally, as it was
originally presented in [20, 24]. Consider matrix C ∈ R

m×n with m > n that admits
compact SVDC = U�n×nV�.Wedefine the unitarymatrixU (C) = UV� andnotice
that

U (C) = argmin
Q∈Rm×n

Q�Q=In

‖C − Q‖F , (2)
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where ‖ · ‖F denotes the Frobenius norm of a matrix, equal to the square root of
the summation of the squares of all its entries. That is, in accordance to the well-
studies Procrustes Problem [34],U (C) is the closest matrix toC that has orthonormal
columns.

Let us next denote by ‖ · ‖∗ the nuclear norm of its matrix argument, which equals
the summation of its singular values. In [20, 24] it was shown that, if

Bopt = argmax
B∈{±1}N×K

‖XB‖∗ , (3)

then the optimal solution to (1) is given by

QL1 = U (XBopt). (4)

In addition, [20, 24] showed that
∥
∥Q�

L1X
∥
∥
1 = ∥

∥XBopt

∥
∥∗ and Bopt = sgn(X�QL1),

where sgn(·) returns a matrix that contains the {±1}-signs of the entries of its matrix
argument. For K = 1, (3) becomes equivalent to a binary quadratic maximization
problem of the form

bopt = argmax
b∈{±1}N

‖Xb‖2 . (5)

This is because every c ∈ R
m admits SVD c = (c‖c‖−1

2 ) · ‖c‖2 · 1 and therefore,
‖c‖∗ = ‖c‖2. Accordingly, the L1-PC of X is given by

qL1 = U (Xbopt) = Xbopt
∥
∥Xbopt

∥
∥

−1
2 . (6)

In addition,
∥
∥X�qL1

∥
∥
1 = ∥

∥Xbopt
∥
∥∗ = ∥

∥Xbopt
∥
∥
2 and bopt = sgn(X�qL1).

In view of (3) and (4), both optimal algorithms seek first to obtain the optimal
binary matrix Bopt and then they return the L1-PCs through (4). Therefore, L1-PCA
is transformed into a combinatorial problem. For solving (3), the conceptually sim-
plest approach is to perform an exhaustive search over its size-2NK feasibility set,
{±1}N×K , and for every element in the set, say B ∈ {±1}N×K , evaluate ‖XB‖∗.
Finally, this exhaustive-search method returns the element of {±1}N×K that attained
the highest value to the metric. This method is certainly guaranteed to provide the
exact solution of L1-PCA. However, clearly, it demands 2NK nuclear-norm evalua-
tions. Each nuclear-norm evaluation has N -by-K SVD cost. Therefore, keeping the
dominant terms, this first algorithm has computational cost in O(2NK ), exponential
in N . In practice, taking advantage of the nuclear-norm invariability to negations and
permutations of the columns of the matrix argument, the exhaustive-search algo-
rithm searches in a size-

(2N−1+K−1
K

)

subset of {±1}N×K wherein a solution to (3) is
guaranteed to exist. Nevertheless, the asymptotic complexity of this search remains

O
((2N−1+K−1

K

)) ≡ O(2NK ).

The second optimal algorithm in [20, 24] is, in principle, not exhaustive. Instead,
it builds in a sophisticated way a subset B of {±1}N×K wherein a solution to (3)
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is proven to exist. Importantly, if d is considered to be a constant with respect to
N (a very meaningful assumption in most applications where D is the number of
measured features, or sensors), the cost to constructB and search exhaustivelywithin
it is O(NdK−K+1), polynomial in the number of data points, N .

2.1 Special Case: Non-negative Data

In the special case of non-negative data, such as images, the optimal calculation of
the L1-PC of X is proven to be simple [26].

Let X consist of non-negative entries, so that [X]i, j ≥ 0 ∀i, j . Then, X�X also
consists of non-negative entries. Therefore, the solution to (5) is, trivially, the all-ones
vector 1N . Accordingly, the L1-PC of X is given by qL1 = X1N‖X1N‖−1

2 . That is,
the L1-PC of X is simply the normalized vector on the direction of the mean of the
data points. Arguably, this result, presented for the first time in the context of image
reconstruction in [26], implies that the direction of the mean of non-negative data
exhibits an L1-PCA-certified robustness against outliers.

3 Approximate Algorithms

Prior to the exact algorithm of [24], there were three approximate popular solvers
for L1-PCA in the literature. In the sequel, we first present these three solvers and
then we present in more detail the L1-BF approximate solver, which was introduced
very recently and has been shown to attain state-of-the-art performance.

3.1 Sequential Fixed-Point Iterations [17]

The first approximate algorithm for L1-PCA was introduced by Kwak in 2008 [17,
18]. This algorithm first focuses on the K = 1 case. Initialized at some binary vector
b(0) ∈ {±1}N , the algorithm conducts converging fixed-point iteration

b(t) = sgn
(

X�Xb(t−1)
)

, t = 1, 2, . . . . (7)

Denoting by bfp,1 the convergence point of iteration in (7), the “first” L1-PC is
approximated by

qfp,1 = Xbfp‖Xbbf‖−1
2 . (8)

At this point, it is worth noticing that, in contrast to what holds true in standard
PCA, scalability does not hold in L1-PCA. That is, solving a (K = 1) problem in
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the nullspace of qfp,1 does not offer the “second” L1-PCA of X. This can be easily
deduced by the form of the nuclear-norm problem in (3), which demands that all
columns ofBopt are jointly calculated; thus, in turn, all columns ofQL1 = U (XBopt),
the solution to size-K L1-PCA must be jointly calculated as well. However despite
this lack of scalability in L1-PCA, for ease in computation, [17] proposes that the
“second” L1-PC is approximated by the solution to

max .
q∈RD×1, ‖q‖2=1

∥
∥
∥X�(ID − qfp,1q�

fp,1)q
∥
∥
∥
1
, (9)

pursued once again by means of fixed-point iterations. That is, [17] proposed that
the second L1-PC is approximated by

qfp,2 = Xbfp,2‖Xbfp,2‖−1
2 (10)

where bfp,2 is the converging point of the iterations

b(t) = sgn
(

X�(ID − qfp,1q�
fp,1)Xb

(t−1)
)

, t = 1, 2, . . . . (11)

Accordingly, the K th L1-PC is given by qfp,K = Xbfp,K‖Xbfp,K‖−1
2 , where bfp,K is

the converging point of the fixed-point iterations

b(t) = sgn

(

X�(ID −
K−1
∑

i=1

qfp,iq�
fp,i )Xb

(t−1)

)

, t = 1, 2, . . . . (12)

Certainly, all K iterations must be run sequentially, as the formulation of the
kth iteration demands the convergence of all previous k − 1 iterations. At the
end of the K -iteration, the algorithm of [17] approximated the solution to (1) by
Qfp = [qfp,1,qfp,2, . . . ,qfp,K ], which by construction satisfies Q�

fpQfp = IK . The
computational complexity of the algorithm of [17] can be found to be O(N 2DK ).

3.2 Joint Fixed-Point Iterations (“non-greedy” approach) [32]

An alternative approximate L1-PCA calculator was proposed in [32]. Authors in
[32] refer to the proposed algorithm as “non-greedy”, because in contrast to the
algorithm of [17] it tries to approximate all K columns of QL1 jointly. Specifically,
the algorithm of [32] initializes at an arbitrary binary matrix B(0) and conducts the
iterations

B(t) = sgn
(

X�U
(

XB(t−1)
))

, t = 1, 2, 3, . . . . (13)
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Then, if Bng is the converging point of the iterations, the algorithm returns Qng =
U (XBng) as an approximation to the optimal QL1. Certainly, for the single L1-PC
case (K = 1), the algorithm in [32] coincides with that of the scheme presented in
[17]. The computational cost to execute the scheme in [32] is O(N 2DK + NK 3).

3.3 Semi-definite Programming Relaxation [30]

A third approximate approach for solving (1), relying on a popular semi-definite
programming (SDP) approach, was presented in [30]. Specifically, focusing on the
K = 1 case, the authors in [30] notice that the binary quadratic form maximization
in (5) can be equivalently rewritten as

Zopt = argmax
Z∈S N+ , [Z]n,n=1 ∀n, rank(Z)=1

Tr
(

ZX�X
)

, (14)

whereS N+ is the set of positive semi-definite matrices inRN×N . Then, [Zopt];,n is an
optimal solution to the problem in (5), bopt, for any n ∈ {1, 2, . . . , N }. Expectedly,
though (14) is as hard to solve as (5). Therefore, authors in [30] opt to relax (14) by
removing the rank-1 constraint and forming instead, the convex SDP problem

Zsdp = argmax
Z∈S N+ , [Z]n,n=1 ∀n

Tr
(

ZX�X
)

. (15)

Then, the algorithm factorizes Zsdp = WWT and generates L instances of the binary
vectorb = sgn

(

W�r
)

defined upon arbitrary values of r drawn fromGaussian distri-
bution ∼ N (0N , IN ). This procedure is known as “Gaussian randomization”. Then,
an approximate L1-PC is designed as qsdp = Xbsdp‖Xbsdp‖−1

2 with bsdp being the
one out of L randomized binary-vector instances that maximizes ‖Xb‖2. For K > 1,
the remaining L1-PCs are generated similar to [17] using the method of sequential
nullspace projections. The computational complexity to solve the SDP (15) within ε

accuracy is O(N 3.5log(1/ε)) and thus the overall computational cost of this approx-
imate L1-PCA method turns out to be O(K N 3.5log(1/ε) + K L(N 2 + DN )). s

3.4 Bit-Flipping Iterations [16, 27, 29]

An efficient, low-cost, near-exact L1-PC solver was presented recently in [27, 29].
Similarly to the algorithms above, the algorithm is initialized at a binary matrix
B(0) ∈ {±1} and conducts, until convergence, optimal single-bit flipping iterations.
At the end of the iterations, it uses the convergence point,Bbf, to form the approximate
L1-PCs

Qbf = U (XBbf) . (16)
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This algorithm is known as L1-PCA Bit-Flipping, or L1-BF. The single-bit flipping
iterations are defined as follows.

At the t th iteration step, t = 1, 2, . . ., the algorithmfinds the binarymatrixB(t) that
(i) attains the highest possible value in the metric of (3) and (ii) it differs from B(t−1)

in exactly one entry (i.e., by a single bit flipping) the index of which does not belong
to the used-bits memory set W ⊆ {1, 2, . . . , NK }. At t = 1, W is set empty. We
observe that, flipping the (n, k)th bit of B(t−1) we obtain the binary matrix B(t−1) −
2B(t)

n,ken,Ne�
k,K where em,N denotes the mth column of N -order identity matrix IN .

Thus, mathematically, the algorithm seeks for the solution to

s(n, k) = argmax
(m,l)∈{1,2,...,N }×{1,2,...,K }

(l−1)N+m /∈W

∥
∥
∥XB(t−1) − 2B(t−1)

m,l xme�
l,K

∥
∥
∥ (17)

and defines the intermediate/temporary binary matrix Btemp = B(t−1) − 2B(t)
n,ken,N

e�
k,K . Under the two conditions above, the returned matrix Btemp may yield higher,
or lower value than B(t−1) to the objective metric in (3). If ‖XBtemp‖∗ > ‖XB(t−1)‖∗,
then the algorithm sets B(t) = Btemp (flips the (n, k)th bit), inserts the index of
the flipped bit, (k − 1)N + n, to W , and proceeds to the next iteration. If, how-
ever, ‖XBtemp‖∗ ≤ ‖XB(t−1)‖∗, then certainly flipping the (n, k)th bit does not
increase the metric of interest. Therefore, the algorithm resets the memory set W
to empty and solves (17) again, obtaining a new pair (n, k) and a new Btemp =
B(t−1) − 2B(t)

n,ken,Ne�
k,K . If, for this new Btemp it holds that ‖XBtemp‖∗ > ‖XB(t−1)‖∗,

then the algorithm sets B(t) = Btemp (flips the (n, k)th bit), inserts the index of the
flipped bit, (k − 1)N + n, to W , and proceeds to the next iteration. If, on the other
hand, it holds that ‖XBtemp‖∗ ≤ ‖XB(t−1)‖∗, then the iterations terminate, returning
Bbf = B(t−1).

3.4.1 Intelligent Initialization

To attain superior convergence point in fewer iterations, the authors in [29] proposed
an intelligently selected initialization point B(0). Specifically, they set

B(0) = sgn(v)1�
K , (18)

where v is the highest-singular-value right-hand singular vector of X and 1K is the
all-one vector of length K . The motivation behind this initialization was that for
d = 1 and K = 1, bopt = sgn(v).
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3.4.2 Complexity

To initialize the bit-flipping iterations, the algorithm calculates v, by means of SVD
of X, with O(NDmin{N , D}). Then, for the proposed initialization, XB(0) and
∥
∥XB(0)

∥
∥∗ are calculated in the beginning of the first iteration with low complex-

ity O(NdK ). To find a solution to (17), the worst case cost is O(NK (K 2 + d)).
Then, setting the maximum number of iterations to NK , Bbf is found with total
worst-case cost O(NDmin{N , D} + N 2K 2(K 2 + d)). Calculation of Qbf from Bbf

costs an additional O(NDmin{N , D} + NDK ). Since K ≤ d ≤ min{N , D}, the
total complexity of L1-BF is O(NDmin{N , D} + N 2K 2(K 2 + d)).

4 Numerical Studies

In this section, we present some numerical studies that compare the performances
of L2-PCA and L1-PCA when applied on clean/nominal and on outlier-corrupted
training data. Also, we provide numerical studies that compare all the approximate
calculators presented above, with respect to the L1-PCA metric of interest.

4.1 Line-Fitting

To illustrate the robustness of L1-PCA against outliers, and juxtapose it with the
sensitivity of standard PCA, we conduct the following line-fitting study.We generate
data matrixX2×40, drawing each of its columns independently from the multi-variate

(a) (b)

Fig. 1 a Principal component over the original clean data matrixX2×40 (∗), b Principal component
over data matrix X2×40 corrupted by 4 appended outliers (⊗) (angular deviation ΔθL2 =95◦ and
ΔθL1 =63◦)
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Gaussian distributionN

(

02,R =
[

15 12
12 29

])

. In Fig. 1a, we plot the data points inX

on the plane (∗). Together with these 40 points, we plot (i) the PC (i.e., L2-PC) ofX,
(ii) the L1-PC (exact) of X, and (iii) the maximum-variance line of the distribution,
defined by the highest-eigenvalue eigenvector of the autocorrelation matrix R. We
observe that both the L1-PC and the L2-PC, calculated over the 40 given nominal
points, approximate very well the maximum variance line of the distribution. Next,
we consider that four (4) outlier points in O ∈ R

2×4 are appended to the dataset X,
forming the corrupted dataset Xcorr = [X, O] ∈ R

2×44. The outliers are also plotted
on the plan in Fig. 1b (⊗). We now calculate the L1-PC and L2-PC of the corrupted
dataset Xcorr and plot them in Fig. 1b. For reference, we plot again the ideal, sought-
after maximum-variance line. We observe that, quite interestingly, the L1-PC stays
much closer to the maximum variance line than the L2-PC, which is completely
misled and points directly to the outliers.

4.2 Direction-of-Arrival (DoA) Estimation

We consider a uniform linear antenna array of D = 7 elements that collects
N = 30 observations of a binary phase-shift-keying (BPSK) signal that impinge
with direction-of-arrival (DoA) θ1 = 60◦, with respect to the broadside, in the pres-
ence of additive white complex Gaussian noise. The nth received observation is of
the form

xn = Abnsθ1 + vn, n = 1, 2, . . . , 30. (19)

In (19), sθ1 is the array response vector, vn ∼ CN (07, I7) is the additive white
Gaussian noise (AWGN), A > 0 accounts for the transmission power, and bn ∈ {±1}
is the Bernoulli equiprobable BPSK symbol. A is such that the signal-to-noise ratio
(SNR) is SNR1 = 3 dB.Next,we assume that 3 observations inX = [x1, x2, . . . , x30]
(without knowing which ones) are corrupted by 3 jammers transmitting from angles
−60◦,−30◦ and 5◦, with SNR 9 dB each. This jammer corruption transforms the
nominal dataset X, into the corrupted dataset Xcorr ∈ C

7×30 upon which the receiver
must operate to estimate the DoA of the signal of interest. As a first step, in accor-
dance to common practice, the receiver transforms Xcorr to its real-valued version
X′

corr =
[�(X�

corr), �(X�
corr)

]� ∈ R
14×30, where �(·) and �(·) return the real and

imaginary parts of their arguments, respectively. Then, it calculates the first PC (by
L1-PCA and standard L2-PCA/SVD) of X′

corr, q, and uses it to form the familiar
MUSIC DoA estimation spectrum [25]

Pq (θ) = 1

s′Tθ
(

I − qqT
)

s′θ
, θ ∈

(

−π

2
,
π

2

)

, (20)
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(a) (b)

Fig. 2 MUSIC analysis: a Instantaneous spectrum with jammers located at θjammer =
{−60◦,−30◦, 5◦} and signal of interest at θsource = 60◦. b Root-mean-square-error (RMSE) ver-
sus jammer SNR

where s′θ = [�(s�θ ), �(s�θ )
]� ∈ R

14×1. Finally, the receiver estimates the DoA
of the signal of interest (equal to 60◦) by the angle argument that yields the highest
peak of the MUSIC spectrum. In Fig. 2, we plot a single realization of the MUSIC
spectrum offered by the L1-PC and L2-PC. It is interesting to observe the corruption-
resistance of L1-PCA (in contrast to L2-PCA), which is virtually unaffected by the
jammers, despite the strong corruption of the processed dataset, it identifies the true
active signal direction of arrival.

In Fig. 2b, we repeat the same experiment 214 times and document average per-
formance of the two methods. Specifically, denoting by θ̂ (m) the estimated DoA at
the m-th experiment, we plot the root-mean-squared-error

RMSE =
√
√
√
√

1

M

M
∑

m=1

(

θ1 − θ̂ (m)

)2
(21)

versus the SNR of the jamming sources. The instant jammers’ locations are chosen
independently across the experiments, uniformly in θ j ∈ (−π

2 , π
2

)

. The corruption
resistance of L1-PCA is once again clearly documented and the performance gap
between L1-PCA and L2-PCA is striking.
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4.3 L1-PCA Computation Accuracy

This experiment compares the performance of the four approximate L1-PCA calcu-
lators discussed above with respect to the L1-PCA metric, using as benchmark the
optimum point attained by the exact algorithms of [24].

We generate 1000 arbitrary data matrices X ∈ R
3×8 with entries independently

drawn from a standard Gaussian distributionN (0, 1). Then, we calculate the K = 2
L1-PCs of each matrix, by means of the five algorithms: (i) Sequential Fixed-Point
Iterations [17], (ii) Joint Fixed-Point Iterations [32], (iii) Semi-Definite Program-
ming Relaxation (SDP) [30], L1-PCA by Bit-Flipping (L1-BF) [29], and (v) the
optimal one [24]. Then, for each approximate L1-PCA solution Q, we measure the
performance degradation ratio, with respect to the L1-PCA metric,

Δ(Q;X) = ‖X�QL1‖1 − ‖X�Q‖1
‖X�QL1‖1 , (22)

where QL1 is the optimal solution. Over the 1000 tested data matrices, we calculate
the empirical cumulative distribution function (CDF) of the performance degradation
in (22), for each one of the four approximate algorithms, and plot it in Fig. 3a. We
observe that L1-BF [29] returns the optimal solution with empirical probability 0.73
and, with probability 1, it suffers no more than 0.12 performance degradation.

Next, we run each algorithm on NK = 16 distinct initialization points, keeping
the run that attains higher value to the L1-PCA metric (for SDP we consider L = 16
Gaussian randomization instances). Expectedly, the performance of all methods will
be improved. In Fig. 3b, we plot again the empirical CDF of the performance degra-
dation rations. Quite interestingly, with multiple initializations L1-BF returns the
optimal solution with empirical probability 1 –i.e., L1-BF becomes, with probability
1, optimal L1-PCA calculator. Close to optimal, but inferior performance, is exhib-
ited by the Joint Fixed-Point Iteration algorithm [32]. On the other hand, due to the
sequential nullspace-projection approach they follow (that violates the no-scalability
property of L1-PCA), Sequential Fixed-Point Iterations and SDP suffer from heavy
performance degradation.

5 Conclusions

Research in wireless communications, signal processing, image processing,
computer vision, and genomics, among other fields, has shown that L1-PCA
(i) attains similar performance to PCA when the processed data are outlier-free
and (ii) maintains sturdy resistance against outliers when the processed data are cor-
rupted. Therefore, L1-PCA is expected to a play significant role in data analytics
in the big-data era, when large datasets are often outlier corrupted. In this chapter,
we presented the theoretical foundations of L1-PCA, optimal and state-of-the-art
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(a) (b)

Fig. 3 Empirical CDF of Δ(Qng;X), Δ(Qfp;X), Δ(Qsdp;X), and Δ(Qbf ;X) (D = 3, N = 8,
K = 2) for a L = 1 and b L = NK = 16 initializations

approximate algorithms for its implementation, and numerical studies that demon-
strated its favorable performance, compared to standard PCA.
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Damage and Fault Detection of Structures
Using Principal Component Analysis
and Hypothesis Testing

Francesc Pozo and Yolanda Vidal

Abstract This chapter illustrates the application of principal component analysis
(PCA) plus statistical hypothesis testing to online damage detection in structures,
and to fault detection of an advanced wind turbine benchmark under actuators (pitch
and torque) and sensors (pitch angle measurement) faults. A baseline pattern or PCA
model is created with the healthy state of the structure using data from sensors.
Subsequently, when the structure is inspected or supervised, new measurements are
obtained and projected into the baseline PCA model. When both sets of data are
compared, both univariate and multivariate statistical hypothesis testing is used to
make a decision. In this work, both experimental results (with a small aluminum
plate) and numerical simulations (with a well-known benchmark wind turbine) show
that the proposed technique is a valuable tool to detect structural changes or faults.

1 Introduction

Principal component analysis (PCA) is a statistical technique that transforms a num-
ber of possibly correlated variables into a smaller number of uncorrelated variables
called principal components. It is well-known that the basic idea behind the PCA is
to reduce the dimension of the data, while retaining as much as possible the variation
present in these data, see [1]. Applications of PCA can be found in a vast variety
of fields from neuroscience to image processing. This chapter provides a thorough
review to the application of PCA to detect structural changes (damages, structural
health monitoring) or faults (in the sensors or in the actuators, condition monitor-
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ing). First reviewing how data (from sensors) is usually represented, second showing
how in this work is represented in a different manner, then reviewing the group-
scaling processing of the data, and finally showing that PCA plus (univariate and
multivariate) statistical hypothesis testing is a valuable tool to detect structural
changes or faults.

In a standard application of the principal component analysis strategy in the field
of structural health monitoring or condition monitoring, the projections onto the
vectorial space spanned by the principal components (scores) allow a visual grouping
or separation. In some other cases, two classical indices can be used for damage or
fault detection, such as the Q index and the Hotelling’s T 2 index, see [2]. However,
when a visual grouping, clustering or separation cannot be performed with the scores
a more powerful and reliable tool is needed to be able to detect a damage or a fault.
The approaches proposed in this chapter for the damage or fault detection are based
on a group scaling of the data and multiway principal component analysis (MPCA)
combined with both univariate and multivariate statistical hypothesis testing [3–5].

On one hand, the basic premise of vibration based structural health monitoring
feature selection is that damage will significantly alter the stiffness, mass or energy
dissipation properties of a system, which, in turn, alter the measured dynamic re-
sponse of that system. Subsequently, the structure to be diagnosed is excited by the
same signal and the dynamic response is compared with the pattern, see [6]. In this
chapter, these techniques will be applied to an experimental set-up with a smooth-raw
aluminium plate.

On the other hand, in the fault detection case (condition monitoring), this chapter
applies the techniques to an advanced wind turbine benchmark (numerical simula-
tions). In this case, the only available excitation is the wind. Therefore, guided waves
in wind turbines cannot be considered as a realistic scenario. In spite of that, the new
paradigm described is based on the fact that, even with a different wind field, the
fault detection strategy based on PCA and statistical hypothesis testing will be able
to detect faults. A growing interest is being shown in offshore wind turbines, because
they have enormous advantages compared to their onshore version including higher
and steadier wind speed, and less restrictions due to remoteness to urban areas, see
[7]. The main disadvantages of offshore wind energy farms are high construction
costs, and operation and maintenance (O&M) costs because they must withstand
rough weather conditions. The field of wind turbine O&M represents a growing re-
search topic as they are the critical elements affecting profitability in the offshore
wind turbine sector. We believe that PCA plus statistical hypothesis testing has a
tremendous potential in this area. In fact, the work described in this chapter is only
the beginning of a large venture. Future work will develop complete fault detection,
isolation, and reconfigurable control strategies in response to faults based on efficient
fault feature extraction by means of PCA.

This chapter is divided into five main sections. In Sect. 1 we introduce the scope
of the chapter. Section 2 poses the experimental set-up and the reference wind turbine
where the techniques will be applied and tested. The methodology is stated in Sect. 3.
The obtained results are discussed and analyzed in Sect. 4. Finally, Sect. 5 draws the
conclusions.
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2 Experimental Set-Up and Reference Wind Turbine

The damage and fault detection strategies reviewed in this chapter will be applied to
both an experimental set-up and a simulated wind turbine, as described in Sects. 2.1
and 2.2. On one hand, with respect to the experimental set-up, the analysis of changes
in the vibrational properties of a small aluminum plate is used to explain, validate and
test the damage detection strategies. As the aluminum plate will be always excited
by the same signal, this experiment corresponds to guided waves in structures for
structural health monitoring. On the other hand, we will address the problem of online
fault detection of an advanced wind turbine benchmark under actuators (pitch and
torque) and sensors (pitch angle measurements) faults of different type. In this case,
the excitation signal is never the same, as it is given by the wind. Even in this case,
with a different wind signal, the fault detection strategy will be able to detect the
faults. More precisely, the key idea behind the detection strategy is the assumption
that a change in the behavior of the overall system, even with a different excitation,
has to be detected.

2.1 Experimental Set-Up

The small aluminium plate (25 cm × 25 cm × 0.2 cm) in Fig. 1 (top) is used to
experimentally validate the proposed approach in this work. The plate is suspended
by two elastic ropes in a metallic frame in order to isolate the environmental noise and
remove boundary conditions (Fig. 2). Four piezoelectric transducer discs (PZT’s) are
attached on the surface, as can be seen in Fig. 1 (bottom). Each PZT is able to produce
a mechanical vibration (Lamb waves in a thin plate) if some electrical excitation is
applied (actuator mode). Besides, PZT’s are able to detect time varying mechanical
response data (sensor mode). In every phase of the experimental stage, just one
PZT is used as actuator (exciting the plate) and the rest are used as sensors (and
thus recording the dynamical response). A total number of 100 experiments were
performed using the healthy structure: 50 for the baseline (BL) and 50 for testing
(Un, which stands for undamaged, is an abbreviation used throughout the chapter).
Additionally, nine damages (D1, D2, …, D9) were simulated adding different masses
at different locations, see Fig. 1 (bottom). For each damage, 50 experiments were
implemented, resulting in a total number of 450 experiments. The excitation is a
sinusoidal signal of 112 KHz modulated by a Hamming window, as illustrated in
Fig. 3 (top). An example of the signal collected by PZT2 is shown in Fig. 3 (bottom).



140 F. Pozo and Y. Vidal

Fig. 1 Aluminium plate
(top). Dimensions and
piezoelectric transducers
location (bottom)
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2.2 Reference Wind Turbine

The National Renewable Energy Laboratory (NREL) offshore 5-MW baseline wind
turbine [8] is used in the simulations of the fault detection strategy. This model is
used as a reference by research teams throughout the world to standardize baseline
offshore wind turbine specifications and to quantify the benefits of advanced land-
and sea-based wind energy technologies. In this work, the wind turbine is operated
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Fig. 2 The plate is
suspended by two elastic
ropes in a metallic frame.

in its onshore version and in the above-rated wind-speed range. The main properties
of this turbine are listed in Table 1.

In this chapter, the proposed fault detection method is SCADA-data based, that
is, it uses data already collected at the wind turbine controller. In particular, Table 2
presents assumed available data on a MW-scale commercial wind turbine that is used
in this work by the fault detection method.

The reference wind turbine has a conventional variable-speed, variable blade-
pitch-to-feather configuration. In such wind turbines, the conventional approach for
controlling power-production operation relies on the design of two basic control
systems: a generator-torque controller and a rotor-collective blade-pitch controller.
In this work, the baseline torque and pitch controllers are utilized, but the generator-
converter and the pitch actuators are modeled and implemented externally; i.e., apart
from the embedded FAST code. This will facilitate to model different type of faults
on the generator and the pitch actuator. The next subsections recall these models and
also the wind model used to generate the wind data.
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Fig. 3 Excitation signal
(top) and, dynamic response
recorded by PZT 2 (bottom)
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Table 1 Gross properties of the wind turbine [8]

Reference wind turbine

Rated power 5 MW

Number of blades 3

Rotor/Hub diameter 126, 3 m

Hub Height 90 m

Cut-In, Rated, Cut-Out Wind Speed 3, 11.4, 25 m/s

Rated generator speed 1173.7 rpm

Gearbox ratio 97

2.2.1 Wind Modeling

The TurbSim stochastic inflow turbulence tool (National Wind Technology Center,
Boulder, Colorado, USA) [9] has been used. It provides the ability to drive design
code (e.g., FAST) simulations of advanced turbine designs with simulated inflow tur-
bulence environments that incorporate many of the important fluid dynamic features
known to adversely affect turbine aeroelastic response and loading.

The generated wind data has the following characteristics: Kaimal turbulence
model with intensity set to 10%, logarithmic profile wind type, mean speed is set to
18.2 m/s and simulated at hub height, and the roughness factor is set to 0.01 m.

In this work, every simulation is ran with a different wind data set.
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Table 2 Assumed available measurements. These sensors are representative of the types of sensors
that are available on a MW-scale commercial wind turbine

Number Sensor type Symbol Units

1 Generated electrical power Pe,m kW

2 Rotor speed ωr,m rad/s

3 Generator speed ωg,m rad/s

4 Generator torque τc,m Nm

5 First pitch angle β1,m deg

6 Second pitch angle β2,m deg

7 Third pitch angle β3,m deg

8 Fore-aft acceleration at tower bottom abfa,m m/s2

9 Side-to-side acceleration at tower bottom abss,m m/s2

10 Fore-aft acceleration at mid-tower amfa,m m/s2

11 Side-to-side acceleration at mid-tower amss,m m/s2

12 Fore-aft acceleration at tower top atfa,m m/s2

13 Side-to-side acceleration at tower top atss,m m/s2

2.2.2 Generator-Converter Actuator Model and Pitch Actuator Model

The generator-converter and the pitch actuators are modeled apart from the embedded
FAST code, with the objective to ease the model of different type of faults on these
parts of the wind turbine.

On one hand, the generator-converter can be modeled by a first-order differential
system [10]:

τr(s)

τc(s)
= αgc

s + αgc

where τr and τc are the real generator torque and its reference (given by the controller),
respectively, and we set αgc = 50 [8]. The power produced by the generator, Pe(t),
can be modeled by [10]:

Pe(t) = ηgωg(t)τr(t)

where ηg is the efficiency of the generator and ωg is the generator speed. In the
numerical experiments, ηg = 0.98 is used [10].

On the other hand, the three pitch actuators are modeled as a second-order linear
differential equation, pitch angle βi(t), and its reference u(t) (given by the collective-
pitch controller) [10]:

βi(s)

u(s)
= ω2

n

s2 + 2ξωns + ω2
n

, i = 1, 2, 3 (1)
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where ωn and ξ are the natural frequency and the damping ratio, respectively. In the
fault free case, these values are set to ωn = 11.11 rad/s, and ξ = 0.6.

2.2.3 Fault Description

In this chapter, the different faults proposed in the fault tolerant control bench-
mark [11] will be considered, as gathered in Table 3. These faults selected by the
benchmark cover different parts of the wind turbine, different fault types and classes,
and different levels of severity.

Usually, pitch systems use either an electric or a fluid power actuator. However,
the fluid power subsystem has lower failure rates and better capability of handling
extreme loads than the electrical systems. Therefore, fluid power pitch systems are
preferred on multi-MW size and offshore turbines. However, general issues such as
leakage, contamination, component malfunction and electrical faults make current
systems work sub-optimal [12]. In this work, faults in the pitch actuator are considered
in the hydraulic system, which result in changed dynamics due to either a high air
content in oil (fault 1) or a drop in pressure in the hydraulic supply system due to
pump wear (fault 2) or hydraulic leakage (fault 3) [13], as well as pitch position
sensor faults (faults 5–7).

Pump wear (fault 2) is an irreversible slow process over the years that results in low
pump pressure. As this wear is irreversible, the only possibility to fix it is to replace
the pump, which will happen after pump wear reaches certain level. Meanwhile,
the pump will still be operating and the system dynamics is slowly changing, while
the turbine structure should be able to withstand the effects of this fault. Pump wear
after approximately 20 years of operation might result in pressure reduction to 75% of
the rated pressure, which is reflected by the faulty natural frequency ωn = 7.27 rad/s
and a fault damping ratio of ξ = 0.75.

Table 3 Fault scenarios

Fault Type Description

1 Pitch actuator Change in dynamics: high air content in oil
(ωn = 5.73 rad/s, ξ = 0.45)

2 Pitch actuator Change in dynamics: pump wear (ωn = 7.27 rad/s,
ξ = 0.75)

3 Pitch actuator Change in dynamics: hydraulic leakage (ωn = 3.42 rad/s,
ξ = 0.9)

4 Generator speed sensor Scaling (gain factor equal to 1.2)

5 Pitch angle sensor Stuck (fixed value equal to 5 deg)

6 Pitch angle sensor Stuck (fixed value equal to 10 deg)

7 Pitch angle sensor Scaling (gain factor equal to 1.2)

8 Torque actuator Offset (offset value equal to 2000 Nm)



Damage and Fault Detection of Structures … 145

Hydraulic leakage (fault 3) is another irreversible incipient fault but is introduced
considerably faster than the pump wear. Leakage of pitch cylinders can be internal or
external [12]. When this fault reaches a certain level, system repair is necessary, and
if the leakage is too fast (normally due to external leakage), it will lead to a pressure
drop and the preventive procedure is deployed to shut down the turbine before the
blade is stuck in undesired position (if the hydraulic pressure is too low, the hydraulic
system will not be able to move the blades that will cause the actuator to be stuck in its
current position resulting in blade seize). The fast pressure drop is easy to detect (even
visually as it is normally related to external leakage) and requires immediate reaction;
however, the slow hydraulic leakage reduces the dynamics of the pitch system, and
for a reduction of 50% of the nominal pressure the natural frequency under this
fault condition is reduced to ωn = 3.42 rad/s and the corresponding damping ratio is
ξ = 0.9. In this work, the slow (internal) hydraulic leakage is studied.

On the contrary to pump wear and hydraulic leakage, high air content in the oil
(fault 1) is an incipient reversible process, which means that the air content in the oil
may disappear without any necessary repair to the system. The nominal value of the
air content in the oil is 7%, whereas the high air content in the oil corresponds to 15%.
The effect of such a fault is expressed by the new natural frequency ωn = 5.73 rad/s
and the damping ratio of ξ = 0.45 (corresponding to the high air content in the oil).

The generator speed measurement is done using encoders. The gain factor fault
(fault 4) is introduced when the encoder reads more marks on the rotating part than
actually present, which can happen as a result of dirt or other false markings on the
rotating part.

Faults in the pitch position measurement (pitch position sensor fault) are also
advised. This is one of the most important failure modes found on actual systems
[12, 14]. The origin of these faults is either electrical or mechanical, and it can
result in either a fixed value (faults 5 and 6) or a changed gain factor (fault 7) on
the measurements. In particular, the fixed value fault should be easy to detect, and,
therefore, it is important that a fault detection, isolation, and accommodation scheme
be able to deal with this fault. If not handled correctly, these faults will influence the
pitch reference position because the pitch controller is based on these pitch position
measurements.

Finally, a converter torque offset fault is considered (fault 8). It is difficult to detect
this fault internally (by the electronics of the converter controller). However, from a
wind turbine level, it is possible to be detected, isolated, and accommodated because
it changes the torque balance in the wind turbine power train.

3 Fault Detection Strategy

The overall fault detection strategy is based on principal component analysis and
statistical hypothesis testing. A baseline pattern or PCA model is created with the
healthy state of the structure (plate or wind turbine) to study. When the current state
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has to be diagnosed, the collected data is projected using the PCA model. The final
diagnosis is performed using statistical hypothesis testing.

The main paradigm of vibration based structural health monitoring is based on the
basic idea that a change in physical properties due to structural changes or damage
will cause detectable changes in dynamical responses. This idea is illustrated in Fig. 4,
where the healthy structure is excited by a signal to create a pattern. Subsequently,
the structure to be diagnosed is excited by the same signal and the dynamic response
is compared with the pattern. The scheme in Fig. 4 is also know as guided waves in
structures for structural health monitoring [6].

However, in the case of wind turbines, the only available excitation is the wind.
Therefore, guided waves in wind turbines for SHM as in Fig. 4 cannot be considered
as a realistic scenario. In spite of that, the new paradigm described in Fig. 5 is based
on the fact that, even with a different wind field, the fault detection strategy based
on PCA and statistical hypothesis testing will be able to detect some damage, fault
or misbehavior. More precisely, the key idea behind the detection strategy is the

excitation

excitation healthy structure dynamic response

pattern

new 
measurements

Fig. 4 Guided waves in structures for structural health monitoring. The healthy structure is excited
by a signal and the dynamic response is measured to create a baseline pattern. Then, the structure
to diagnose is excited by the same signal and the dynamic response is also measured and compared
with the baseline pattern. A significant difference in the pattern would imply the existence of a fault

wind

wind healthy structure dynamic response

pattern

new 
measurements

Fig. 5 Even with a different wind field, the fault detection strategy is able to detect some damage,
fault or misbehavior
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assumption that a change in the behavior of the overall system, even with a different
excitation, has to be detected. The results presented in Sects. 4.3 and 4.4 confirm this
hypothesis.

3.1 Data Driven Baseline Modeling Based on PCA

Classical approaches to the application of principal component analysis can be sum-
marized in the following example. Let us assume that we have N sensors or variables
that are measuring during (L − 1)Δ seconds, where Δ is the sampling time and
L ∈ N. The discretized measures of each sensor can be arranged as a column vector
xi = (xi1, x

i
2, . . . , x

i
L)

T , i = 1, . . . ,N so we can build up a L × N matrix as follows:

X = (
x1 x2 · · · xN

) =

⎛

⎜
⎜⎜⎜⎜⎜⎜
⎜
⎝

x1
1 x2

1 · · · xN1
x1

2 x2
2 · · · xN2

...
...

. . .
...
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i x2

i · · · xNi
...

...
. . .

...
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L x2

L · · · xNL

⎞

⎟
⎟⎟⎟⎟⎟⎟
⎟
⎠

∈ ML×N (R) (2)

It is worth noting that each column in matrix X in Eq. (2) represents the measures
of a single sensor or variable.

However, when multiway principal component analysis is applied to data coming
from N sensors at L discretization instants and n experimental trials, the information
can be stored in an unfolded n× (N × L) matrix as follows:

X =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

x1
11 x1

12 · · · x1
1L x2

11 · · · x2
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...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
i1 x1

i2 · · · x1
iL x2
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iL · · · xNi1 · · · xNiL

...
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. . .
...

...
. . .

...
. . .

...
. . .

...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xNn1 · · · xNnL

⎞

⎟⎟⎟
⎟⎟⎟
⎠

(3)

In this case, a column in matrix X in Eq. (3) no longer represents the values
of a variable at different time instants but the measurements of a variable at one
particular time instant in the whole set of experimental trials. The work by Mujica
et al. [2] presents one of the first applications of multiway principal component
analysis (MPCA) for damage assessment in structures using two different measures
or distances (Q and T indices). One of the advantages of the classical approach of
principal component analysis is that the largest components (in absolute value) of the
unit eigenvector related to the largest eigenvalue gives direct information on the most
important sensors installed in the structure [15, 16]. This information is no longer
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available when multiway principal component analysis is applied to the collected
data [16]. Another important difference between the classical approach and MPCA
lies on normalization. On one hand, to apply the PCA in its classical version, each
column vector is normalized to have zero mean and unit variance. On the other hand
(MPCA), the normalization has to take into account that several columns contain the
information of the same sensor. In this case, several strategies can be applied, such
as autoscaling or group scaling. In this work we use the so-called group scaling, that
it is detailed in Sect. 3.1.3.

3.1.1 Guides Waves in Structures for Structural Health Monitoring:
Data Collection

Let us address the PCA modeling by measuring, from a healthy structure, N sensors
at L discretization instants and n experimental trials. In this case, since we consider
guided waves, the structure is excited by the same signal at each experimental trial.
This way, the collected data can be arranged in matrix form as follows:

XGW =
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⎜⎜⎜⎜⎜
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11 x1

12 · · · x1
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n2 · · · x1
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⎟
⎟⎟⎟⎟⎟
⎠

(4)

In this way, each row vector represents, for a particular experimental trial, the mea-
surements from all the sensors at every specific time instant. Similarly, each column
vector represents measurements from one sensor at one specific time instant in the
whole set of experimental trials. The number of rows of matrix XGW in Eq. (4),
n, is defined by the number of experimental trials. The number of columns of ma-
trix XGW, N · L, is the number of sensors (N) times the number of discretization
instants (L).

3.1.2 Condition Monitoring of Wind Turbines: Data Collection

In the case of wind turbines, the excitation comes from different wind fields. There-
fore, instead of considering different experimental trials as in Sect. 3.1.1, we will first
measure, from a healthy wind turbine, a sensor during (nL − 1)Δ seconds, where Δ

is the sampling time and n,L ∈ N. The discretized measures of the sensor are a real
vector

(
x11 x12 · · · x1L x21 x22 · · · x2L · · · xn1 xn2 · · · xnL

) ∈ R
nL (5)
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where the real number xij, i = 1, . . . , n, j = 1, . . . ,L corresponds to the measure
of the sensor at time ((i − 1)L + (j − 1)) Δ seconds. This collected data can be
arranged in matrix form as follows:

⎛

⎜⎜⎜
⎜⎜⎜
⎝

x11 x12 · · · x1L
...

...
. . .

...

xi1 xi2 · · · xiL
...

...
. . .

...

xn1 xn2 · · · xnL

⎞

⎟⎟⎟
⎟⎟⎟
⎠

∈ Mn× L(R) (6)

where Mn× L(R) is the vector space of n×L matrices over R. When the measures
are obtained from N ∈ N sensors also during (nL − 1)Δ seconds, the collected data,
for each sensor, can be arranged in a matrix as in Eq. (6). Finally, all the collected
data coming from the N sensors is disposed in a matrix XWT ∈ Mn× (N ·L) as follows:

XWT =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

x1
11 x1

12 · · · x1
1L x2

11 · · · x2
1L · · · xN11 · · · xN1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
i1 x1

i2 · · · x1
iL x2

i1 · · · x2
iL · · · xNi1 · · · xNiL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

x1
n1 x1

n2 · · · x1
nL x2

n1 · · · x2
nL · · · xNn1 · · · xNnL

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(7)

= (
X1

WT X2
WT · · · XN

WT

)

where the superindex k = 1, . . . ,N of each element xkij in the matrix represents the
number of sensor.

It is worth noting that in both approaches —guided waves for structural health
monitoring and condition monitoring of wind turbines— the structure of matrices
XGW and XWT in Eqs. (4) and (7), respectively, are completely equivalent. Therefore,
in the rest of the chapter, we will simply refer to these matrices as X.

The objective of the principal component analysis, as a pattern recognition tech-
nique, is to find a linear transformation orthogonal matrix P ∈ M(N ·L)× (N ·L)(R) that
will be used to transform or project the original data matrix X according to the
subsequent matrix product:

T = XP ∈ Mn× (N ·L)(R) (8)

where T is a matrix having a diagonal covariance matrix.

3.1.3 Group Scaling

Since the data in matrix X come from several sensors and could have different scales
and magnitudes, it is required to apply a preprocessing step to rescale the data using
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the mean of all measurements of the sensor at the same column and the standard
deviation of all measurements of a sensor [17].

More precisely, for k = 1, 2, . . . ,N we define

μk
j = 1

n

n∑

i=1

xkij, j = 1, . . . ,L, (9)

μk = 1

nL

n∑

i=1

L∑

j=1

xkij, (10)

σ k =
√√√√ 1

nL

n∑

i=1

L∑

j=1

(xkij − μk)2 (11)

where μk
j is the mean of the measures placed at the same column, that is, the mean

of the n measures of sensor k in matrix Xk —that corresponds to the n measures
of sensor k at the j-th discretization instant for the whole set of experimental trials
(guided waves) or the measures of sensor k at time instants ((i − 1)L + (j − 1))Δ

seconds, i = 1, . . . , n (wind turbine)—; μk is the mean of all the elements in matrix
Xk , that is, the mean of all the measures of sensor k; and σ k is the standard deviation
of all the measures of sensor k. Therefore, the elements xkij of matrix X are scaled to

define a new matrix X̌ as

x̌kij := xkij − μk
j

σ k
, i = 1, . . . , n, j = 1, . . . ,L, k = 1, . . . ,N . (12)

When the data are normalized using Eq. (12), the scaling procedure is called
variable scaling or group scaling [18].

For the sake of clarity, and throughout the rest of the chapter, the scaled matrix
X̌ is renamed as simply X. The mean of each column vector in the scaled matrix X
can be computed as

1

n

n∑

i=1

x̌kij = 1

n

n∑

i=1

xkij − μk
j

σ k
= 1

nσ k

n∑

i=1

(
xkij − μk

j

)
(13)

= 1

nσ k

[(
n∑

i=1

xkij

)

− nμk
j

]

(14)

= 1

nσ k

(
nμk

j − nμk
j

) = 0 (15)

Since the scaled matrix X is a mean-centered matrix, it is possible to calculate its
covariance matrix as follows:

CX = 1

n − 1
XTX ∈ M(N ·L)× (N ·L)(R) (16)
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The covariance matrix CX is a (N · L)× (N · L) symmetric matrix that measures
the degree of linear relationship within the data set between all possible pairs of
columns. At this point it is worth noting that each column can be viewed as a virtual
sensor and, therefore, each column vector X(:, j) ∈ R

n, j = 1, . . . ,N · L, represents
a set of measurements from one virtual sensor.

The subspaces in PCA are defined by the eigenvectors and eigenvalues of the
covariance matrix as follows:

CXP = PΛ (17)

where the columns of P ∈ M(N ·L)× (N ·L)(R) are the eigenvectors of CX. The diagonal
terms of matrix Λ ∈ M(N ·L)× (N ·L)(R) are the eigenvalues λi, i = 1, . . . ,N · L, of
CX whereas the off-diagonal terms are zero, that is,

Λii = λi, i = 1, . . . ,N · L (18)

Λij = 0, i, j = 1, . . . ,N · L, i �= j (19)

The eigenvectors pj, j = 1, . . . ,N · L, representing the columns of the transfor-
mation matrix P are classified according to the eigenvalues in descending order and
they are called the principal components or the loading vectors of the data set. The
eigenvector with the highest eigenvalue, called the first principal component, repre-
sents the most important pattern in the data with the largest quantity of information.

Matrix P is usually called the principal components of the data set or loading
matrix and matrix T is the transformed or projected matrix to the principal component
space, also called score matrix. Using all the N · L principal components, that is, in
the full dimensional case, the orthogonality of P implies PPT = I, where I is the
(N · L)× (N · L) identity matrix. Therefore, the projection can be inverted to recover
the original data as

X = TPT (20)

However, the objective of PCA is, as said before, to reduce the dimensionality of
the data set X by selecting only a limited number � < N · L of principal components,
that is, only the eigenvectors related to the � highest eigenvalues. Thus, given the
reduced matrix

P̂ = (p1|p2| · · · |p�) ∈ MN ·L× �(R) (21)

matrix T̂ is defined as

T̂ = XP̂ ∈ Mn× �(R) (22)

Note that opposite to T, T̂ is no longer invertible. Consequently, it is not possible to
fully recover X although T̂ can be projected back onto the originalN · L−dimensional
space to get a data matrix X̂ as follows:
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X̂ = T̂P̂
T ∈ Mn× (N ·L)(R) (23)

The difference between the original data matrix X and X̂ is defined as the residual
error matrix E or X̃ as follows:

E = X − X̂ (24)

or, equivalenty,

X = X̂ + E = T̂P̂
T + E (25)

The residual error matrix E describes the variability not represented by the data
matrix X̂, and can also be expressed as

E = X(I − P̂P̂T ) (26)

Even though the real measures obtained from the sensors as a function of time
represent physical magnitudes, when these measures are projected and the scores
are obtained, these scores no longer represent any physical magnitude [3]. The key
aspect in this approach is that the scores from different experiments can be compared
with the reference pattern to try to detect a different behavior.

3.2 Fault Detection Based on Univariate Hypothesis Testing

The current structure to diagnose—in Sects. 3.2 and 3.3 we will refer to a structure
as a generic noun for both the aluminium plate, the wind turbine or more complex
mechanical systems—is subjected to the same excitation (guided waves) or to a wind
field (wind turbines) as described in Sects. 3.1.1 and 3.1.2. When the measures are
obtained from N ∈ N sensors at L discretization instants and ν experimental trials
(guides waves) or during (νL − 1)Δ seconds (wind turbines), a new data matrix Y
is constructed as in Eqs. (4) and (7), respectively:

Y =

⎛

⎜⎜⎜
⎜⎜⎜
⎝

y1
11 y1

12 · · · y1
1L y2

11 · · · y2
1L · · · yN11 · · · yN1L

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

y1
i1 y1

i2 · · · y1
iL y2

i1 · · · y2
iL · · · yNi1 · · · yNiL

...
...

. . .
...

...
. . .

...
. . .

...
. . .

...

y1
ν1 y1

ν2 · · · y1
νL y2

ν1 · · · y2
νL · · · yNν1 · · · yNνL

⎞

⎟⎟⎟
⎟⎟⎟
⎠

∈ Mν × (N ·L)(R) (27)

It is worth remarking that the natural number ν (the number of rows of matrix Y)
is not necessarily equal to n (the number of rows of X), but the number of columns
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of Y must agree with that of X; that is, in both cases the number N of sensors and
the number of samples per row must be equal.

Before the collected data arranged in matrix Y is projected into the new space
spanned by the eigenvectors in matrix P in Eq. (17), the matrix has to be scaled to
define a new matrix Y̌ as in Eq. (12):

y̌kij := ykij − μk
j

σ k
, i = 1, . . . , ν, j = 1, . . . ,L, k = 1, . . . ,N, (28)

where μk
j and σ k are defined in Eqs. (9) and (11), respectively.

The projection of each row vector

ri = Y̌(i, :) ∈ R
N ·L, i = 1, . . . , ν (29)

of matrix Y̌ into the space spanned by the eigenvectors in P̂ is performed through
the following vector to matrix multiplication:

ti = ri · P̂ ∈ R
�. (30)

For each row vector ri, i = 1, . . . , ν, the first component of vector ti is called the
first score or score 1; similarly, the second component of vector ti is called the second
score or score 2, and so on.

In a standard application of the principal component analysis strategy in the field
of structural health monitoring, the scores allow a visual grouping or separation
[2]. In some other cases, as in [19], two classical indices can be used for damage
detection, such as the Q index (also known as SPE, square prediction error) and the
Hotelling’s T 2 index. The Q index of the ith row yTi of matrix Y̌ is defined as follows:

Qi = yTi (I − P̂P̂T )yi. (31)

The T 2 index of the ith row yTi of matrix Y̌ is defined as follows:

T 2
i = yTi (P̂Λ−1P̂T )yi (32)

In this case, however, it can be observed in Fig. 6—where the projection onto
the two first principal components of samples coming from the healthy and faulty
wind turbines are plotted—that a visual grouping, clustering or separation cannot
be performed. A similar conclusion is deducted from Fig. 7. In this case, the plot
of the natural logarithm of indices Q and T 2—defined in Eqs. (31) and (32)—of
samples coming from the healthy and faulty wind turbines does not allow any visual
grouping. A visual separation is neither possible from Fig. 8, where the first score for
baseline experiments of the healthy aluminium plate are plotted together with testing
experiments with several damages. Some strategies can be found in the literature
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Fig. 6 Projection onto the
two first principal
components of samples
coming from the healthy
wind turbine (red, circle) and
from the faulty wind turbine
(blue, diamond)
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Fig. 7 Natural logarithm of
indices Q and T2 of samples
coming from the healthy
wind turbine (red, circle) and
from the faulty wind turbine
(blue, diamond)
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with the objective to overcome these difficulties. For instance, principal component
analysis together with self-organizing maps SOM [20], a robust version of principal
component analysis (RPCA) in the presence of outliers [21] or even nonlinear PCA
(NPCA) or hierarchical PCA (HPCA) [22]. Some of these approaches have a high
computational cost that can lead to delays in the damage or fault diagnosis [16].
Therefore, the methodologies reviewed in this work can be seen as a powerful and
reliable tool with less computational cost with the aim of online damage and fault
detection of structures using principal component analysis.
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Fig. 8 First score for baseline experiments (diamonds) and testing experiments (circles)

3.2.1 The Random Nature of the Scores

Since the dynamic response of a structure (guided waves) and the turbulent wind
(wind turbine) can be considered as a random process, the dynamic response of
the structure (aluminium plate and wind turbine) can be considered as a stochastic
process and the measurements in ri are also stochastic. Therefore, each component
of ti in Eq. (30) acquires this stochastic nature and it will be regarded as a random
variable to construct the stochastic approach in this chapter.

3.2.2 Test for the Equality of Means

The objective of the present work is to examine whether the current structure to
diagnosed is healthy or subjected to a damage (aluminium plate) or to a fault as
those described in Table 3 (wind turbine). To achieve this end, we have a PCA model
(matrix P̂ in Eq. (21)) built as in Sect. 3.1.3 with data coming from a structure or
a wind turbine in a full healthy state. For each principal component j = 1, . . . , �,
the baseline sample is defined as the set of n real numbers computed as the j−th
component of the vector to matrix multiplication X(i, :) · P̂. Note that n is the number
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of rows of matrix X in Eq. (7). That is, we define the baseline sample as the set of
numbers {τ i

j }i=1,...,n given by

τ i
j := (X(i, :) · P̂)(j) = X(i, :) · P̂ · ej, i = 1, . . . , n, (33)

where ej is the j−th vector of the canonical basis.
Similarly, and for each principal component j = 1, . . . , �, the sample of the current

structure to diagnose is defined as the set of ν real numbers computed as the j−th
component of the vector ti in Eq. (30). Note that ν is the number of rows of matrix Y
in Eq. (27). That is, we define the sample to diagnose as the set of numbers {tij}i=1,...,ν

given by

tij := ti · ej, i = 1, . . . , ν. (34)

As said before, the goal of this chapter is to obtain a damage and fault detection
method such that when the distribution of the current sample is related to the dis-
tribution of the baseline sample a healthy state is predicted and otherwise a damage
or fault is detected. To that end, a test for the equality of means will be performed.
Let us consider that, for a given principal component, (a) the baseline sample is a
random sample of a random variable having a normal distribution with unknown
mean μX and unknown standard deviation σX ; and (b) the random sample of the
current structure is also normally distributed with unknown mean μY and unknown
standard deviation σY . Let us finally consider that the variances of these two sam-
ples are not necessarily equal. As said previously, the problem that we will consider
is to determine whether these means are equal, that is, μX = μY , or equivalently,
μX − μY = 0. This statement leads immediately to a test of the hypotheses

H0 : μX − μY = 0 versus (35)

H1 : μX − μY �= 0 (36)

that is, the null hypothesis is “the sample of the structure to be diagnosed is distributed
as the baseline sample” and the alternative hypothesis is “the sample of the structure
to be diagnosed is not distributed as the baseline sample”. In other words, if the result
of the test is that the null hypothesis is not rejected, the current structure is categorized
as healthy. Otherwise, if the null hypothesis is rejected in favor of the alternative,
this would indicate the presence of some damage or faults in the structure.

The test is based on the Welch-Satterthwaite method [23], which is outlined below.
When random samples of size n and ν, respectively, are taken from two normal
distributions N (μX , σX) and N (μY , σY ) and the population variances are unknown,
the random variable
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W =
(
X̄ − Ȳ

) + (μX − μY )
√(

S2
X

n
+ S2

Y

ν

) (37)

can be approximated with a t-distribution with ρ degrees of freedom, that is

W ↪→ tρ, (38)

where

ρ =

⎢⎢⎢⎢⎢
⎢
⎣

(
s2
X

n
+ s2

Y

ν

)2

(s2
X/n)2

n − 1
+ (s2

Y/ν)2

ν − 1

⎥⎥⎥⎥⎥
⎥
⎦

(39)

and where X̄, Ȳ is the sample mean as a random variable; S2 is the sample variance
as a random variable; s2 is the variance of a sample; and �·� is the floor function.

The value of the standardized test statistic using this method is defined as

tobs = x̄ − ȳ
√(

s2
X

n
+ s2

Y

ν

) (40)

where x̄, ȳ is the mean of a particular sample. The quantity tobs is the damage or fault
indicator. We can then construct the following test:

|tobs| ≤ t� =⇒ Fail to reject H0 (41)

|tobs| > t� =⇒ Reject H0, (42)

where t� is such that

P
(
tρ < t�

) = 1 − α

2
(43)

where P is a probability measure and α is the chosen risk (significance) level for the
test. More precisely, the null hypothesis is rejected if |tobs| > t� (this would indicate
the existence of a damage or fault in the structure). Otherwise, if |tobs| ≤ t� there is
no statistical evidence to suggest that both samples are normally distributed but with
different means, thus indicating that no damage or fault in the structure has been
found. This idea is represented in Fig. 9.
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Fig. 9 Fault detection will
be based on testing for
significant changes in the
distributions of the baseline
sample and the sample
coming from the wind
turbine to diagnose

hypothesis test

faultyhealthy

yes no

group
scaling

PCA

X Y

P̂

{τ ij} {tij}

|tobs| ≤t

3.3 Fault Detection Based on Multivariate Hypothesis Testing

In this section, the projections onto the first components —the so-called scores—
are used for the construction of the multivariate random samples to be compared and
consequently to obtain the structural damage or fault indicator, as it is illustrated in
Figs. 10 (guided waves) and 11 (wind turbine).

3.3.1 Multivariate Random Variables and Multivariate Random
Samples

As in Sect. 3.2, the current structure to diagnose is subjected to the same excitation
(guided waves) or to a wind field (wind turbines). The time responses recorded by
the sensors are arranged in a matrix Y ∈ Mν × (N ·L)(R) as in Eq. (27). The rows of
matrix Y are called ri ∈ R

N ·L, i = 1, . . . , ν, as in Eq. (29), where N is the number of
sensors,L is the number of discretization instants and ν is the number of experimental
trials (guides waves) or the number of rows of matrix Y in Eq. (27). Selecting the jth
principal component, vj, j = 1, . . . , �, the projection of the recorded data onto this
principal component is the dot product
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Fig. 10 The structure to be
diagnosed is subjected to a
predefined number of
experiments and a data
matrix XGW is constructed.
This matrix is projected onto
the baseline PCA model P to
obtain the projections onto
the first components T

sensor 1
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sensor 2
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tij = ri · vj ∈ R, i = 1, . . . , ν, j = 1, . . . , � (44)

as in Eq. (34).
Since the dynamic behaviour of a structure depends on some indeterminacy, its

dynamic response can be considered as a stochastic process and the measurements
in ri are also stochastic. On the one hand, tij acquires this stochastic nature and it will
be regarded as a random variable to construct the stochastic approach in this section.
On the other hand, an s-dimensional random vector can be defined by considering
the projections onto several principal components as follows

tij1,...,js = [
tij1 t

i
j2

· · · tijs
]T ∈ R

s, (45)

i = 1, . . . , ν, s ∈ N, j1, . . . , js ∈ {1, . . . , �}, jα �= jβ if α �= β.

The set of s-dimensional vectors
{

tij1,...,js

}

i=1,...,ν
can be seen as a realization of a

multivariate random sample of the variable tj1,...,js . When the realization is performed
on the healthy structure, the baseline sample is denoted as the set of s-dimensional
vectors

{
τ i
j1,...,js

}
i=1,...,n

,
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Fig. 11 The current wind turbine to diagnose is subjected to a wind field. Then the collected data
is projected into the new space spanned by the eigenvectors in matrix P

where n is the number of rows of matrix X in Eqs. (4) (guides waves) and (7) (wind
turbine). As an example, in the case of the aluminium plate experimental set-up, in
Fig. 12 two three-dimensional samples are represented; one is the three-dimensional
baseline sample (left) and the other is referred to damages 1 to 3 (right). This illus-
trating example refers to actuator phase 1 and the first, second and third principal
components. More precisely, Fig. 12 (right) depicts the values of the multivariate
random variable t1,2,3. The diagnosis sample is formed by 20 experiments and the
baseline sample is made by 100 experiments.

3.3.2 Detection Phase and Testing for Multivariate Normality

In this work, the framework of multivariate statistical inference is used with the
objective of the classification of structures in healthy or damaged. With this goal, a
test for multivariate normality is first performed. A test for the plausibility of a value
for a normal population mean vector is then performed.

Many statistical tests and graphical approaches are available to check the multi-
variate normality assumption [24]. But there is no a single most powerful test and it
is recommended to perform several tests to assess the multivariate normality. Let us
consider the three most widely used multivariate normality tests. That is: (i) Mardia’s;
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Fig. 12 Baseline sample (left) and sample from the structure to be diagnosed (right)

(ii) Henze-Zirkler’s; and (iii) Royston’s multivariate normality tests. We include a
brief explanation of these methods for the sake of completeness.

Mardia’s test
Mardia’s test is based on multivariate extensions of skewness (γ̂1,s) and kurtosis (γ̂2,s)
measures [24, 25]:

γ̂1,s = 1

ν2

ν∑

i=1

ν∑

j=1

m3
ij,

γ̂2,s = 1

ν

ν∑

i=1

m2
ij,

where mij = (xi − x̄)T S−1
(
xj − x̄

)
, i, j = 1, . . . , ν is the squared Mahalanobis dis-

tance, S is the variance-covariance matrix, s is the number of variables and ν is
the sample size. The test statistic for skewness, (ν/6) γ̂1,s, is approximately χ2 dis-
tributed with s (s + 1) (s + 2) /6 degrees of freedom. Similarly, the test statistic for
kurtosis, γ̂2,s, is approximately normally distributed with mean s (s + 2) and vari-
ance 8s (s + 2) /ν. For multivariate normality, both p-values of skewness and kurtosis
statistics should be greater than 0.05.

For small samples, the power and the type I error could be violated. Therefore,
Mardia introduced a correction term into the skewness test statistic [26], usually
when ν < 20, in order to control type I errors. The corrected skewness statistic for
small samples is (νk/6) γ̂1,s, where

k = (s + 1) (ν + 1) (ν + 3) / (ν (ν + 1) (s + 1) − 6) .
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This statistic is also χ2 distributed with s (s + 1) (s + 2) /6 degrees of freedom.

Henze-Zirkler’s test
The Henze-Zirkler’s test is based on a non-negative functional distance that measures
the distance between two distribution functions [25, 27]. If the data is multivariate
normal distributed, the test statistic HZ in Eq. (46) is approximately lognormally
distributed. It proceeds to calculate the mean, variance and smoothness parameter.
Then, mean and variance are lognormalized and the p-value is estimated. The test
statistic of Henze-Zirkler’s multivariate normality test is

HZ = 1

ν

ν∑

i=1

ν∑

j=1

e− β2

2 Dij − 2
(
1 + β2

)− s
2

ν∑

i=1

e
− β2

2(1+β2)
Di + ν

(
1 + β2

)− s
2 , (46)

where s is the number of variables,

β = 1√
2

(
ν(2s + 1)

4

) 1
s+4

,

Dij = (
xi − xj

)T
S−1

(
xi − xj

)
, i, j = 1, . . . , ν,

Di = (xi − x̄)T S−1 (xi − x̄) = mii, i = 1, . . . , ν.

Di gives the squared Mahalanobis distance of the ith observation to the centroid
and Dij gives the Mahalanobis distance between the ith and the jth observations.
If data are multivariate normal distributed, the test statistic (HZ) is approximately
lognormally distributed with mean μ and variance σ 2 as given below:

μ = 1 −
a− s

2

(
1 + sβ

2
a + s(s + 2)β4

)

2a2
,

σ 2 = 2
(
1 + 4β2

)− s
2 + 2a−s

(
1 + 2sβ4

)

a2
+ 3s(s + 2)β8

4a4

− 4w
− s

2
β

(

1 + 3sβ4

2wβ

+ s(s + 2)β8

2w2
β

)

,

where a = 1 + 2β2 and wβ = (
1 + β2

) (
a + 3β2

)
. Hence, the lognormalized mean

and variance of the HZ statistic can be defined as follows:

μlog = ln

⎛

⎝

√
μ4

σ 2 + μ2

⎞

⎠ ,

σ 2
log = ln

(
σ 2 + μ2

σ 2

)
.
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By using the lognormal distribution parameters, μlog and σ 2
log, we can test the signif-

icance of multivariate normality. The Wald test statistic for multivariate normality is
given in the following equation:

z = ln (HZ) − μlog√
σ 2

log

. (47)

Royston’s test
Royston’s test uses the Shapiro-Wilk/Shapiro-Francia statistic to test multivariate
normality [25]. If kurtosis of the data is greater than 3, then it uses the Shapiro-
Francia test for leptokurtic distributions. Otherwise, it uses the Shapiro-Wilk test for
platykurtic distributions. The Shapiro-Wilk test statistic is:

W =
(∑ν

i=1

(
ai · x(i)

))2

∑ν
i=1 (xi − μ)2 ,

where x(i) is the ith order statistic, that is, the ith-smallest number in the sample, μ

is the mean, a = mT V−1√
mT V−1V−1m

, V is the covariance matrix of the order statistics of a
sample of s standard normal random variables with expectation vector m. Let Wj be
the Shapiro-Wilk/Shapiro-Francia test statistic for the jth variable, j = 1, . . . , s, and
Zj be the values obtained from the normality transformation proposed by [28]:

if 4 ≤ ν ≤ 11 then x = ν and wj = − ln
(
γ − ln

(
1 − Wj

))

if 12 ≤ ν ≤ 2000 then x = ln(ν) and wj = ln
(
1 − Wj

)
.

Then transformed values of each random variable can be obtained from the following
equation:

Zj = wj − μ

σ
, (48)

where γ , μ and σ are derived from the polynomial approximations given in equations
[28]:

if 4 ≤ ν ≤ 11 γ = −2.273 + 0.459x,

μ = 0.544 − 0.39978x + 0.025054x2 − 0.0006714x3,

ln(σ ) = 1.3822 − 0.77857x + 0.062767x2 − 0.0020322x3,

if 12 ≤ ν ≤ 2000 μ = −1.5861 − 0.31082x − 0.083751x2 + 0.0038915x3,

ln(σ ) = −0.4803 − 0.082676x + 0.0030302x2.
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The Royston’s test statistic for multivariate normality is then defined as follows:

H = ε
∑s

j=1 ψj

s
∼ χ2

ε ,

where ε is the equivalent degrees of freedom (edf) and Φ(·) is the cumulative distri-
bution function for standard normal distribution such that,

ε = s/ (1 + (s − 1) c̄) ,

ψj = (
Φ−1 (Φ

(−Zj
)
/2
))2

, j = 1, 2, ..., s.

Another extra term c̄ has to be calculated in order to continue with the statistical
significance of Royston’s test statistic. Let R be the correlation matrix and rij be the
correlation between ith and jth variables. Then, the extra term can be found by using
equation:

c̄ =
s∑

i=1

∑

j �=i

cij
s (s − 1)

, (49)

where

cij = g
(
rij, ν

)
(50)

with the boundaries of g(·) as g(0, ν) = 0 and g(1, ν) = 1. The function g(·) is
defined as follows:

g(r, ν) = rλ

(
1 − μ

ξ(ν)
(1 − r)μ

)
. (51)

The unknown parameters μ, λ and ξ were estimated from a simulation study con-
ducted by [28]. He found μ = 0.715 and λ = 5 for sample size 10 ≤ ν ≤ 2000 and
ξ is a cubic function which can be obtained as follows:

ξ(ν) = 0.21364 + 0.015124 ln2(ν) − 0.0018034 ln3(ν). (52)

Quantile-quantile plot
Apart from the multivariate normality tests, some visual representations can also be
used to test for multivariate normality. The quantile–quantile (Q–Q) plot is a widely
used graphical approach to evaluate the agreement between two probability distribu-
tions [24, 25]. Each axis refers to the quantiles of probability distributions to be com-
pared, where one of the axes indicates theoretical quantiles (hypothesized quantiles)
and the other indicates the observed quantiles. If the observed data fit hypothesized
distribution, the points in the Q–Q plot will approximately lie on the bisectrix y = x.
The sample quantiles for the Q–Q plot are obtained as follows. First we rank the
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observations y1, y2, . . . , yν and denote the ordered values by y(1), y(2), . . . , y(ν); thus
y(1) ≤ y(2) ≤ · · · ≤ y(ν). Then the point y(i) is the i/ν sample quantile. The fraction
i/ν is often changed to (i − 0.5)/ν as a continuity correction. With this convention,
y(i) is designated as the (i − 0.5)/ν sample quantile. The population quantiles for
the Q–Q plot are similarly defined corresponding to (i − 0.5)/ν. If we denote these
by q1, q2, . . . , qν , then qi is the value below which a proportion (i − 0.5) /ν of the
observations in the population lie; that is, (i − 0.5) /ν is the probability of getting
an observation less than or equal to qi. Formally, qi can be found for the standard
normal random variable Y with distribution N(0, 1) by solving

Φ(qi) = P(Y < qi) = i − 0.5

ν
(53)

which would require numerical integration or tables of the cumulative standard nor-
mal distribution, Φ(x). Another benefit of using (i − 0.5) /ν instead of i/ν is that
ν/ν = 1 would make qν = +∞. The population need not have the same mean and
variance as the sample, since changes in mean and variance merely change the slope
and intercept of the plotted lie in the Q–Q plot. Therefore, we use the standard normal
distribution, and the qi values can easily be found from a table of cumulative standard
normal probabilities. We then plot the pairs (qi, y(i)) and examine the resulting Q–Q
plot for linearity.

Contour plot
In addition to Q–Q plots, creating perspective and contour plots can be also useful
[24, 25]. The perspective plot is an extension of the univariate probability distribution
curve into a three-dimensional probability distribution surface related with bivariate
distributions. It also gives information about where data are gathered and how two
variables are correlated with each other. It consists of three dimensions where two
dimensions refer to the values of the two variables and the third dimension, which
is likely in univariate cases, is the value of the multivariate normal probability den-
sity function. Another alternative graph, which is called the contour plot, involves
the projection of the perspective plot into a two-dimensional space and this can be
used for checking multivariate normality assumption. Figure 13 shows the contour
plot for bivariate normal distribution with mean

(
0 0

)T ∈ R
2 and covariance matrix(

0.250 0.375
0.375 1.000

)
∈ M2 × 2(R). For bivariate normally distributed data, we expect to

obtain a three-dimensional bell-shaped graph from the perspective plot. Similarly, in
the contour plot, we can observe a similar pattern.

3.3.3 Testing a Multivariate Mean Vector

The objective of this section is to determine whether the distribution of the multivari-
ate random samples that are obtained from the structure to be diagnosed (undamaged
or not, faulty or not) is connected to the distribution of the baseline. To this end, a
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Fig. 13 Contour plot for a
bivariate normal distribution.
The ellipses denote places of
equal probability for the
distribution and provide
confidence regions with
different probabilities
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test for the plausibility of a value for a normal population mean vector will be per-
formed. Let s ∈ N be the number of principal components that will be considered
jointly. We will also consider that: (a) the baseline projection is a multivariate random
sample of a multivariate random variable following a multivariate normal distribu-
tion with known population mean vector μh ∈ R

s and known variance-covariance
matrix Σ ∈ Ms× s(R); and (b) the multivariate random sample of the structure to be
diagnosed also follows a multivariate normal distribution with unknown multivariate
mean vector μc ∈ R

s and known variance-covariance matrix Σ ∈ Ms× s(R).
As said previously, the problem that we will consider is to determine whether a

given s-dimensional vector μc is a plausible value for the mean of a multivariate
normal distribution Ns(μh,Σ). This statement leads immediately to a test of the
hypothesis

H0 : μc = μh versus

H1 : μc �= μh,

that is, the null hypothesis is ‘the multivariate random sample of the structure to be
diagnosed is distributed as the baseline projection’ and the alternative hypothesis is
‘the multivariate random sample of the structure to be diagnosed is not distributed
as the baseline projection’. In other words, if the result of the test is that the null
hypothesis is not rejected, the current structure is categorized as healthy. Otherwise,
if the null hypothesis is rejected in favor of the alternative, this would indicate the
presence of some structural changes or faults in the structure.

The test is based on the statistic T 2—also called Hotelling’s T 2—and it is sum-
marized below. When a multivariate random sample of size ν ∈ N is taken from a
multivariate normal distribution Ns(μh,Σ), the random variable
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T 2 = ν
(
X̄ − μh

)T
S−1 (X̄ − μh

)

is distributed as

T 2 ↪→ (ν − 1)s

ν − s
Fs,ν−s,

where Fs,ν−s denotes a random variable with an F-distribution with s and ν − s
degrees of freedom, X̄ is the sample vector mean as a multivariate random variable;
and 1

nS ∈ Ms× s(R) is the estimated covariance matrix of X̄.
At the α level of significance, we reject H0 in favor of H1 if the observed

t2obs = ν (x̄ − μh)
T S−1 (x̄ − μh)

is greater than (ν−1)s
ν−s Fs,ν−s(α), where Fs,ν−s(α) is the upper (100α)th percentile of

theFs,ν−s distribution. In other words, the quantity t2obs is the damage or fault indicator
and the test is summarized as follows:

t2obs ≤ (ν − 1)s

ν − s
Fs,ν−s(α) =⇒ Fail to reject H0, (54)

t2obs >
(ν − 1)s

ν − s
Fs,ν−s(α) =⇒ Reject H0, (55)

where Fs,ν−s(α) is such that

P
(
Fs,ν−s > Fs,ν−s(α)

) = α,

where P is a probability measure. More precisely, we fail to reject the null hypothesis
if t2obs ≤ (ν−1)s

ν−s Fs,ν−s(α), thus indicating that no structural changes or faults in the
structure have been found. Otherwise, the null hypothesis is rejected in favor of the
alternative hypothesis if t2obs > (ν−1)s

ν−s Fs,ν−s(α), thus indicating the existence of some
structural changes or faults in the structure.

4 Results

In this section, the damage and fault detection strategies described in Sects. 3.2
and 3.3 are applied to both an aluminium plate and a simulated wind turbine. The
experimental results of the damage detection strategy applied to the aluminium plate
using the univariate and multivariate hypothesis testing are presented in Sects. 4.1
and 4.2, respectively. Similarly, the simulation results of the fault detection strategy
applied to the wind turbine using the univariate and multivariate hypothesis testing
are presented in Sects. 4.3 and 4.4, respectively.
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4.1 Aluminum Plate and Univariate HT

Some experiments were performed in order to test the methods presented in Sect. 3.2.
In these experiments, four piezoelectric transducer discs (PZTs) were attached to the
surface of a thin aluminum plate, with dimensions 25 cm × 25 cm × 0.2 cm. Those
PZTs formed a square with 144 mm per side. The plate was suspended by two elastic
ropes, being isolated from environmental influences. Figures 1 (left) and 2 shows the
plate hanging on the elastic ropes.

The experiments are performed in 4 independent phases: (i) piezoelectric trans-
ducer 1 (PZT1) is configured as actuator and the rest of PZTs as sensors; (ii) PZT2
as actuator; (iii) PZT3 as actuator; and (iv) PZT4 as actuator. In order to analyze the
influence of each projection to the PCA model (score), the results of the first three
scores have been considered. In this way, a total of 12 scenarios were examined. For
each scenario, a total of 50 samples of 10 experiments each one (5 for the undamaged
structure and 5 for the damaged structure with respect to each of the 9 different types
of damages) plus the baseline are used to test for the equality of means, with a level
of significance α = 0.30 (the choice of this level of significance will be later on).
Each set of 50 testing samples are categorized as follows: (i) number of samples from
the healthy structure (undamaged sample) which were classified by the hypothesis
test as ‘healthy’ (fail to reject H0); (ii) undamaged sample classified by the test as
‘damaged’ (reject H0); (iii) samples from the damaged structure (damaged sample)
classified as ‘healthy’; and (iv) damaged sample classified as ‘damaged’. The results
for the 12 different scenarios presented in Table 5 are organized according to the
scheme in Table 4. It can be stressed from each scenario in Table 5 that the sum of
the columns is constant: 5 samples in the first column (undamaged structure) and 45
samples in the second column (damaged structure).

In this table, it is worth noting that two kinds of misclassification are presented
which are denoted as follows:

1. Type I error (or false positive), when the structure is healthy but the null hypothe-
sis is rejected and therefore classified as damaged. The probability of committing
a type I error is α, the level of significance.

2. Type II error (or false negative), when the structure is damaged but the null
hypothesis is not rejected and therefore classified as healthy. The probability of
committing a type II error is called β.

Table 4 Scheme for the presentation of the results in Table 5

Undamaged sample (H0) Damaged sample (H1)

Fail to reject H0 Correct decision Type II error (missing fault)

Reject H0 Type I error (false alarm) Correct decision
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Table 5 Categorization of the samples with respect to presence or absence of damage and the result
of the test, for each of the four phases and the three scores

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 4 15 3 0 2 4 3 23

Reject H0 1 30 2 45 3 41 2 22

Score 2

Fail to reject H0 4 0 1 4 4 5 5 7

Reject H0 1 45 4 41 1 40 0 38

Score 3

Fail to reject H0 4 2 4 1 4 6 3 6

Reject H0 1 43 1 44 1 39 2 39

4.1.1 Sensitivity and Specificity

Two statistical measures can be employed here to study the performance of the test:
the sensitivity and the specificity. The sensitivity, also called as the power of the
test, is defined, in the context of this work, as the proportion of samples from the
damaged structure which are correctly identified as such. Thus, the sensitivity can
be computed as 1 − β. The specificity of the test is defined, also in this context, as
the proportion of samples from the undamaged structure that are correctly identified
and can be expressed as 1 − α.

The sensitivity and the specificity of the test with respect the 50 samples in each
scenario have been included in Table 7. For each scenario in this table, the results
are organized as shown in Table 6.

It is worth noting that type I errors are frequently considered to be more serious
than type II errors. However, in this application a type II error is related to a missing
fault whereas a type I error is related to a false alarm. In consequence, type II errors
should be minimized. Therefore a small level of significance of 1, 5% or even 10%
would lead to a reduced number of false alarms but to a higher rate of missing faults.
That is the reason of the choice of a level of significance of 30% in the hypothesis
test.

The results show that the sensitivity of the test 1 − β is close to 100%, as desired,
with an average value of 86.58%. The sensitivity with respect to the projection onto

Table 6 Relationship between type I and type II errors

Undamaged sample (H0) Damaged sample (H1)

Fail to reject H0 Specificity (1 − α) False negative rate (β)

Reject H0 False positive rate (α) Sensitivity (1 − β)
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Table 7 Sensitivity and specificity of the test for each scenario

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 0.80 0.33 0.60 0.00 0.40 0.09 0.60 0.51

Reject H0 0.20 0.67 0.40 1.00 0.60 0.91 0.40 0.49

Score 2

Fail to reject H0 0.80 0.00 0.20 0.09 0.80 0.11 1.00 0.16

Reject H0 0.20 1.00 0.80 0.91 0.20 0.89 0.00 0.84

Score 3

Fail to reject H0 0.80 0.04 0.80 0.02 0.80 0.13 0.60 0.13

Reject H0 0.20 0.96 0.20 0.98 0.20 0.87 0.40 0.87

the second and third component (second and third score) is increased, in mean, to a
91.50%. The average value of the specificity is 68.33%, which is very close to the
expected value of 1 − α = 70%.

4.1.2 Reliability of the Results

The results in Table 9 are computed using the scheme in Table 8. This table is based
on the Bayes’ theorem [29], where P(H1|accept H0) is the proportion of samples
from the damaged structure that have been incorrectly classified as healthy (true
rate of false negatives) and P(H0|accept H1) is the proportion of samples from the
undamaged structure that have been incorrectly classified as damaged (true rate of
false positives).

Since these two true rates are not a function of the accuracy of the test alone, but
also a function of the actual rate or frequency of occurrence within the test population,
some of the results are not as good as desired. The results in Table 9 can be improved
without affecting the results in Table 7 by considering an equal number of samples
from the healthy structure and from the damaged structure.

Table 8 Relationship between proportion of false negative and false positives

Undamaged sample (H0) Damaged sample (H1)

Fail to reject H0 P(H0|acceptH0)
True rate of false negatives

P(H1|accept H0)

Reject H0
True rate of false positives

P(H0|accept H1)
P(H1|acceptH1)
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Table 9 True rate of false positives and false negatives

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 0.21 0.79 1.00 0.00 0.33 0.67 0.12 0.88

Reject H0 0.03 0.97 0.04 0.96 0.07 0.93 0.08 0.92

Score 2

Fail to reject H0 1.00 0.00 0.20 0.80 0.44 0.56 0.42 0.58

Reject H0 0.02 0.98 0.09 0.91 0.02 0.98 0.00 1.00

Score 3

Fail to reject H0 0.67 0.33 0.80 0.20 0.40 0.60 0.33 0.67

Reject H0 0.02 0.98 0.02 0.98 0.03 0.97 0.05 0.95

4.1.3 The Receiver Operating Curves (ROC)

An additional study has been developed based on the ROC curves to determine
the overall accuracy of the proposed method. These curves represent the trade-off
between the false positive rate and the sensitivity in Table 6 for different values of
the level of significance that is used in the statistical hypothesis testing. Note that the
false positive rate is defined as the complementary of the specificity, and therefore
these curves can also be used to visualize the close relationship between specificity
and sensitivity. It can also be remarked that the sensitivity is also called true positive
rate or probability of detection [30]. More precisely, for each scenario and for a given
level of significance the pair of numbers

(false positive rate, sensitivity) ∈ [0, 1] × [0, 1] ⊂ R
2 (56)

is plotted. We have considered 49 levels of significance within the range [0.2, 0.98]
and with a difference of 0.02. Therefore, for each scenario 49 connected points are
depicted, as can be seen in Fig. 14.

The placement of these points can be interpreted as follows. Since we are interested
in minimizing the number of false positives while we maximize the number of true
positives, these points must be placed in the upper-left corner as much as possible.
However, this is impossible because there is also a relationship between the level
of significance and the false positive rate. Therefore, a method can be considered
acceptable if those points lie within the upper-left half-plane.

As said before, the ROC curves for all possible scenarios are depicted in Fig. 14.
On one hand, in phase 1 (PZT1 as actuator) and phase 4 (PZT4 as actuator), the
first score (diamonds) presents the worst performance because some points are very
close to the diagonal or even below it. However, in the same phases, second and third
scores present better results. It may be surprising that the results related to the first
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Fig. 14 The ROC curves for the three scores for each phase

score are not as good as those related to the rest of scores, but in Sect. 4.1.4 this
will be justified. On the other hand, all scores in phases 2 and 3 present a very good
performance to detect damages.

The curves are similar to stepped functions because we have considered 5 samples
from the undamaged structure and therefore the possible values for the false positive
rate (the values in the x-axis) are 0, 0.2, 0.4, 0.6, 0.8 and 1. Finally, we can say that
the ROC curves provide a statistical assessment of the efficacy of a method and can
be used to visualize and compare the performance of multiple scenarios.
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4.1.4 Analysis and Discussion

Although the first score has the highest proportion of variance, it is not possible to
visually separate between the baseline and the test. Each of the subfigures in Fig. 8
shows the comparison between the first score of the baseline experiments and the test
experiment for each damage. A similar comparison can be found in Fig. 15 where all
the observation points (first score of each experiment) are depicted in a single chart.
The rest of the scores neither allow a visual grouping.

One of the scenarios with the worst results is the one that considers the PZT1 as
actuator and the first score, because the false negative rate is 33%, the false positive
rate is 20% and the true rate of false negatives is 79% (see Tables 7 and 9). These
results, which are extracted from Table 5, are illustrated for each state of the structure
separately in Fig. 15. Just one of the five samples of the healthy structure has been
wrongly rejected (false alarm) whereas all the samples of the structure with damage
D1 have been wrongly not rejected (missing fault). Only one of the five samples of
the structure with damage D2 has been correctly rejected (correct decision). In this
case, however, the bad result can be due to the lack of normality (Fig. 16). This lack
of normality leads to results that cannot be reliable. In fact, these samples should not
have been used for a hypothesis test. The samples of the structure with damage D7
are not normally distributed, although in this case the results are right. This problem
can be solved by repeating the test excluding experiments with those damages (D2
and D7) or eliminating the outliers.

Contrary to what may seem reasonable, the projection on the first component
(which represents the larger variance of the original data) is not always the best
option to detect and distinguish damages. This fact can be explained because the
PCA model is built using the data from the healthy structure and, therefore, the first
component captures the maximal variance of these data. However, when new data
are projected in this model, there is no longer guarantee of the existence of maximal
variance in these new data.

Fig. 15 Results of the
hypothesis test considering
the first score and PZT1 as
actuator

Un
D1

D2
D3

D4
D5

D6
D7

D8
D9

1
2

3
4

5

Not rejected

  Rejected  

Sample



174 F. Pozo and Y. Vidal

BL Un D1 D2 D3 D4 D5 D6 D7 D8 D9
0

0.5

1
p−

va
lu

e
The chi−square goodness−of−fit test

−2 −1 0 1 2
0

5

10
BL (μ=−0.10694 , σ =0.60073)

−4 −2 0 2 4
0

5

10
Un (μ=0.066341 , σ =0.7855)

−2 −1 0 1 2
0

5

10
D1 (μ=−0.1468 , σ =0.59448)

−5 0 5
0

10

20
D2 (μ=−0.099647 , σ =0.88522)

−2 −1 0 1
0

5

10
D3 (μ=−0.3542 , σ =0.43621)

−4 −2 0 2
0

5

10
D4 (μ=−0.59597 , σ =0.71326)

−4 −2 0 2
0

5
D5 (μ=−0.60836 , σ =0.63611)

−4 −2 0 2
0

5

10
D6 (μ=−0.60265 , σ =0.56323)

−3 −2 −1 0 1
0

5

10
D7 (μ=−0.65752 , σ =0.53808)

−4 −2 0 2 4
0

5

10
D8 (μ=−0.15933 , σ =0.73189)

−4 −2 0 2
0

5

10
D9 (μ=−0.55684 , σ =0.58206)

Fig. 16 Results of the chi-square goodness-of-fit test applied to the samples described Sect. 4.1.
‘BL’ stands for baseline projection, ‘Un’ for the sample obtained from the undamaged structure and
‘Di’ for the damage number i, where i = 1, 2, . . . , 9. It can be shown by observing the upper-left
barplot diagram that all the samples are normally distributed except those corresponding to damages
D2 and D7

4.2 Aluminum Plate and Multivariate HT

As in Sect. 4.1, some experiments were performed in order to test the method pre-
sented in Sect. 3.3.

In this case, 500 experiments were performed over the healthy structure, and
another 500 experiments were performed over the damaged structure with 5 damage
types (100 experiments per damage type). Figure 17 shows the position of damages
1 to 5 (D1 to D5). As excitation, a 50 kHz sinusoidal signal modulated by a hamming
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Fig. 17 Dimensions and piezoelectric transducers location
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Fig. 18 Excitation signal (left) and dynamic response recorded by PZT 1 (right)

window were used. Figure 18 shows the excitation signal and an example of the
signal collected by PZT 1.

4.2.1 Multivariate Normality

As said in Sect. 4.1, the experiments are performed in 4 independent phases: (i)
piezoelectric transducer 1 (PZT1) is configured as actuator and the rest of PZTs as
sensors; (ii) PZT2 as actuator; (iii) PZT3 as actuator; and (iv) PZT4 as actuator. In
order to analyze the influence of each set of projections to the PCA model (score),
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Table 10 Results of the multivariate normality tests when considering the first three principal
components (PC1–PC3) in the four actuator phases. “−” means that all the tests rejected multivariate
normality, “+” means that at least one test indicated multivariate normality while the subindex shows
the tests that indicated normality: 1 (Mardia’s test), 2 (Henze-Zirkler’s test) or 3 (Royston’s test)

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

Undamaged (baseline) − +2 +2 −
Undamaged (first set to test) − +1,2,3 +2 −
Undamaged (second set to test) +1 +1,2 − −
Undamaged (third set to test) − +2 − +2,3

Undamaged (fourth set to test) − − − +1,2,3

Undamaged (fifth set to test) − − +1 +1,3

D1 +1,2,3 +2 +1,2 +3

D2 +1,2,3 +1,2,3 +1 +1,3

D3 +1,2,3 +2 +1,2 −
D4 +2 +2,3 − +3

D5 +1,2,3 − +1 −

the results of scores 1 to 3 (jointly), scores 1 to 5 (jointly) and scores 1 to 10 (jointly)
have been considered. In this way, a total of 12 scenarios were examined.

The multivariate normality tests described in Sect. 3.3.2 were performed for all
the data. We summarize in Table 10 the results of the multivariate normality test
when considering the first three principal components (PC1–PC3) for all the actuator
phases.

Some examples of Q–Q plots for the data we consider in this paper are shown
on Fig. 19. It can be observed that the points are distributed closely following the
bisectrix, thus indicating the multivariate normality of the data as stated in Table 10.

Moreover, some other examples of contour plots for the data we consider in this
Section are given in Figs. 20 and 21. These plots are similar to the contour plot of
the bivariate normal distribution in Fig. 13.

Finally, the univariate normality for each principal component and for each actu-
ator phase is also tested. The results are presented in Table 11. As it can be observed,
the univariate data is normally distributed in most of the cases. However, this does
not imply multivariate normality.

4.2.2 Type I and Type II Errors

For each scenario, a total of 50 samples of 20 experiments each one (25 for the
undamaged structure and 5 for the damaged structure with respect to each of the 5
different types of damages) plus the baseline are used to test for the plausibility of
a value for a normal population mean vector, with a level of significance α = 0.60.
Each set of 50 testing samples are categorized as follows: (i) number of samples from
the healthy structure (undamaged sample) which were classified by the hypothesis
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Fig. 19 Q–Q plots corresponding to: (i) fourth set of undamaged data to test, using the first three
principal components (PC1–PC3) in the actuator phase 4 (left) and (ii) damage 2 data, using the
first three principal components (PC1–PC3) in the actuator phase 1 (right). The points of these Q–Q
plots are close to the line y = x thus indicating the multivariate normality of the data

Fig. 20 Contour plot for
undamaged case (fourth set
to test), PZT4 act.,
PC1–PC2. The contour lines
are similar to ellipses of
normal bivariate distribution
from Fig. 13 that means that
the distribution in this case is
normal
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test as ‘healthy’ (fail to reject H0); (ii) undamaged sample classified by the test as
‘damaged’ (reject H0); (iii) samples from the damaged structure (damaged sample)
classified as ‘healthy’; and (iv) damaged sample classified as ‘damaged’. The results
for the 12 different scenarios presented in Table 12 are organized according to the
scheme in Table 4. It can be stressed from each scenario in Table 12 that the sum of
the columns is constant: 25 samples in the first column (undamaged structure) and
25 more samples in the second column (damaged structure).
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Fig. 21 Contour plot for
case D3, PZT1 act.,
PC1–PC2. The contour lines
are similar to ellipses of
normal bivariate distribution
from Fig. 13 that means that
the distribution in this case is
normal
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Table 11 Results of univariate normality tests when considering the first five principal components
separately in the four actuator phases. “−” means lack of normality while “+” means normality

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

Undamaged (baseline) −+−++ −+ + ++ − + + + + −++−+
Undamaged (first set to test) −−−+− −+ + +− −++−+ +−+ + +
Undamaged (second set to test) −++ + + −+ + ++ −+ + ++ −++−+
Undamaged (third set to test) −−+ + + −+ + ++ −+ + ++ −+ + ++
Undamaged (fourth set to test) −+−++ −+ + ++ −+ + +− −++−+
Undamaged (fifth set to test) −+−++ −+ + ++ −+ + ++ + + + + +
D1 −+ + ++ −++−+ −++−− + + + + +
D2 −+ + ++ −+ + ++ −+ + +− + + + + +
D3 + + + + + −+ + ++ −+ + ++ + + + + +
D4 −+ + ++ + + +−+ −+ + ++ −+ + ++
D5 + + ++− −+ + ++ −+−+− −+ + ++

As in Sect. 4.1, in Table 12 two kinds of misclassification are presented: (i) type
I errors (or false positive), when the structure is healthy but the null hypothesis is
rejected and therefore classified as damaged; and (ii) type II errors (or false negative),
when the structure is damaged but the null hypothesis is not rejected and therefore
classified as healthy.

It can be observed from Table 12 that Type I errors (false alarms) appear only
when we consider scores 1 to 3 (jointly) and scores 1 to 5 (jointly), while in the last
case (scores 1 to 10), all the decisions are correct.
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Table 12 Categorization of the samples with respect to presence or absence of damage and the
result of the test, for each of the four phases and considering the first score, the second score, scores
1 to 3 (jointly), scores 1 to 5 (jointly) and scores 1 to 10 (jointly)

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 22 13 21 7 18 13 22 12

Reject H0 3 12 4 18 7 12 3 13

Score 2

Fail to reject H0 21 2 24 18 18 5 22 14

Reject H0 4 23 1 7 7 20 3 11

Scores 1–3

Fail to reject H0 24 0 24 13 25 9 24 4

Reject H0 1 25 1 12 0 16 1 21

Scores 1–5

Fail to reject H0 21 0 23 0 21 0 20 0

Reject H0 4 25 2 25 4 25 5 25

Scores 1–10

Fail to reject H0 25 0 25 0 25 0 25 0

Reject H0 0 25 0 25 0 25 0 25

4.2.3 Sensitivity and Specificity

The sensitivity and the specificity of the test with respect to the 50 samples in each
scenario have been included in Table 13. For each scenario in this table, the results
are organized as shown in Table 6.

It is worth noting that type I errors are frequently considered to be more serious
than type II errors. However, in this application a type II error is related to a missing
fault whereas a type I error is related to a false alarm. In consequence, type II errors
should be minimized. Therefore a small level of significance of 1, 5% or even 10%
would lead to a reduced number of false alarms but to a higher rate of missing faults.
That is the reason of the choice of a level of significance of 60% in the hypothesis
test.

The results show that the sensitivity of the test 1 − β is close to 100%, as desired,
with an average value of 78%. The sensitivity with respect to Score 1 to 5 and Score
1 to 10 is increased, in mean, to a 100%. The average value of the specificity is 90%.

4.2.4 Reliability of the Results

The results in Table 14 are computed using the scheme in Table 8. As in Sect. 4.1.2,
Table 14 is based on the Bayes’ theorem [29], where P(H1|accept H0) is the propor-
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Table 13 Sensitivity and specificity of the test for each scenario

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score 1

Fail to reject H0 0.88 0.52 0.84 0.28 0.72 0.52 0.88 0.48

Reject H0 0.12 0.48 0.16 0.72 0.28 0.48 0.12 0.52

Score 2

Fail to reject H0 0.84 0.08 0.96 0.72 0.72 0.20 0.88 0.56

Reject H0 0.16 0.92 0.04 0.28 0.28 0.80 0.12 0.44

Scores 1–3

Fail to reject H0 0.96 0.00 0.96 0.52 1.00 0.36 0.96 0.16

Reject H0 0.04 1.00 0.04 0.48 0.00 0.64 0.04 0.84

Scores 1–5

Fail to reject H0 0.84 0.00 0.92 0.00 0.84 0.00 0.80 0.00

Reject H0 0.16 1.00 0.08 1.00 0.16 1.00 0.20 1.00

Scores 1–10

Fail to reject H0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Reject H0 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00

Table 14 True rate of false positives and false negatives

PZT1 act. PZT2 act. PZT3 act. PZT4 act.

H0 H1 H0 H1 H0 H1 H0 H1

Score
1

Fail to reject H0 0.63 0.37 0.75 0.25 0.58 0.42 0.65 0.35

Reject H0 0.20 0.80 0.18 0.82 0.37 0.63 0.19 0.81

Score
2

Fail to reject H0 0.91 0.09 0.57 0.43 0.78 0.22 0.61 0.39

Reject H0 0.15 0.85 0.13 0.88 0.26 0.74 0.21 0.79

Scores 1–3

Fail to reject H0 1.00 0.00 0.65 0.35 0.74 0.26 0.86 0.14

Reject H0 0.04 0.96 0.08 0.92 0.00 1.00 0.05 0.95

Scores 1–5

Fail to reject H0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Reject H0 0.14 0.86 0.07 0.93 0.14 0.86 0.17 0.83

Scores 1–10

Fail to reject H0 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00

Reject H0 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00
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tion of samples from the damaged structure that have been incorrectly classified as
healthy (true rate of false negatives) and P(H0|accept H1) is the proportion of sam-
ples from the undamaged structure that have been incorrectly classified as damaged
(true rate of false positives).

4.2.5 The Receiver Operating Characteristic (ROC) Curves

An additional study has been developed based on the ROC curves to determine the
overall accuracy of the proposed method. More precisely, for each scenario and for
a given level of significance the pair of numbers

(false positive rate, sensitivity) ∈ [0, 1] × [0, 1] ⊂ R
2 (57)

is plotted. We have considered 99 levels of significance within the range [0.01, 0.99]
and with a difference of 0.01. Therefore, for each scenario 99 connected points are
depicted, as can be seen in Figs. 22, 23 and 24 when we consider scores 1 to 3
(jointly), scores 1 to 5 (jointly) and scores 1 to 10 (respectively).

As said before, the ROC curves for the 12 possible scenarios are depicted in
Figs. 22, 23 and 24. The best performance is achieved for the case of scores 1 to
3 in phase 1 (Fig. 22) because all of the points are placed in the upper-left corner.
In phases 2–4, the points lie in the upper left half-plain but not in the corner, which
represents a very good behavior of the proposed method. When we consider the case
of scores 1 to 5 (jointly) in Fig. 23 and the case of scores 1 to 10 (jointly) in Fig. 24 it

Fig. 22 The receiver
operating characteristic
(ROC) curves for the scores
1 to 3 (jointly) in the four
actuator phases
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Fig. 23 The receiver
operating characteristic
(ROC) curves for the scores
1 to 5 (jointly) in the four
actuator phases
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Fig. 24 The receiver
operating characteristic
(ROC) curves for the scores
1 to 10 (jointly) in the four
actuator phases
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can be observed that the area under the ROC curves is close to 1 in all of the actuator
phases thus representing an excellent test.

4.2.6 Analysis and Discussion

Multivariate tests allow to get better results in damage detection than univariate
tests. This is perfectly illustrated in Fig. 25 where a correct or wrong detections is
represented as a function of the level of significance α used in the test. We can clearly
characterize four different regions:

• 0 < α ≤ 0.13. In this region, all the five univariate tests and the multivariate
statistical inference pass (correct decision).

• 0.13 < α ≤ 0.62. In this region, some of the five univariate tests fail (wrong de-
cision) while the multivariate statistical inference pass (correct decision).

• 0.62 < α ≤ 0.71. In this region, all the five univariate tests fail (wrong decision)
while the multivariate statistical inference pass (correct decision).

• 0.71 < α < 1. In this region, all the five univariate tests and the multivariate
statistical inference fail (wrong decision).

It is worth noting that in the region 0.62 < α ≤ 0.71, that is, when the level of
significance lies within the range (0.62, 0.71] the multivariate statistical inference
using scores 1 to 5 (jointly) is able to offer a correct decision even though all of the
univariate tests make a wrong decision.

The scenarios with the best results are those that considers scores 1 to 10, because
the false negative rate is 0% and the false positive rate is 0% for all the actuator phases.
The results for scores 1 to 5 (jointly) are quite good, because the false negative rate
is 0% for all actuators and the false positive rate is 7–17%.

Score 1
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score 2
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score 3
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score 4
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Score 5
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Level of significance

Scores 1−5
(multivariable)
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In this region, the five univariate test fail,
while the multivariate statistical inference passes.

In this region, both the five univariate tests
and the multivariate statistical inference pass.
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Fig. 25 Multivariate tests allow to get better results in damage detection that univariate tests. A
correct or wrong detection is represented as a function of the level of significance where four regions
can be identified
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4.3 Wind Turbine and Univariate HT

To validate the fault detection strategy presented in Sect. 3.2 using a simulated wind
turbine, we first consider a total of 24 samples of ν = 50 elements each, according
to the following distribution:

• 16 samples of a healthy wind turbine; and
• 8 samples of a faulty wind turbine with respect to each of the eight different fault

scenarios described in Table 3.

In the numerical simulations in this section, each sample of ν = 50 elements is
composed by the measures obtained from the N = 13 sensors detailed in Table 2
during (ν · L − 1)Δ = 312.4875 seconds, where L = 500 and the sampling time
Δ = 0.0125 s. The measures of each sample are then arranged in a ν × (N · L) matrix
as in Eq. (27).

4.3.1 Type I and Type II Errors

For the first three principal components (score 1 to score 3), these 24 samples plus the
baseline sample of n = 50 elements are used to test for the equality of means, with a
level of significance α = 0.36 (the choice of this level of significance will be justified
in Sect. 4.3.2). Each sample of ν = 50 elements is categorized as follows: (i) number
of samples from the healthy wind turbine (healthy sample) which were classified by
the hypothesis test as ‘healthy’ (fail to reject H0); (ii) faulty sample classified by the
test as “faulty” (reject H0); (iii) samples from the faulty structure (faulty sample)
classified as “healthy”; and (iv) faulty sample classified as “faulty”. The results for
the first four principal components presented in Table 15 are organized according to
the scheme in Table 4. It can be stressed from each principal component in Table 15
that the sum of the columns is constant: 16 samples in the first column (healthy wind
turbine) and 8 more samples in the second column (faulty wind turbine).

It can be observed from Table 15 that, in the numerical simulations, Type I errors
(false alarms) and Type II errors (missing faults) appear only when scores 2, 3 or 4
are considered, while when the first score is used all the decisions are correct. The
better performance of the first score is an expected result in the sense that the first
principal component is the component that accounts for the largest possible variance.

Table 15 Categorization of the samples with respect to the presence or absence of damage and the
result of the test for each of the four scores when the size of the samples to diagnose is ν = 50

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 16 0 12 1 11 5 9 1

Reject H0 0 8 4 7 5 3 7 7
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4.3.2 Sensitivity and Specificity

The sensitivity and the specificity of the test with respect to the 24 samples and for
each of the first four principal components have been included in Table 16. For each
principal component in this table, the results are organized as shown in Table 6.

The results in Table 16 show that the sensitivity of the test 1 − γ is close to
100%, as desired, with an average value of 78.00%. The sensitivity with respect to
the first, second and fourth principal component is increased, in mean, to a 91.33%.
The average value of the specificity is 75.00%, which is very close to the expected
value of 1 − α = 64%.

4.3.3 Reliability of the Results

The results in Table 17 are computed using the scheme in Table 8. This table is based
on the Bayes’ theorem [29], where P(H1|accept H0) is the proportion of samples
from the faulty wind turbine that have been incorrectly classified as healthy (true
rate of false negatives) and P(H0|accept H1) is the proportion of samples from the
healthy wind turbine that have been incorrectly classified as faulty (true rate of false
positives).

4.3.4 The Receiver Operating Curves (ROC)

The ROC curves are also used in this section to determine the overall accuracy of
the proposed method for the fault detection in wind turbines. We have considered
49 levels of significance within the range [0.02, 0.98] and with a difference of 0.02.

Table 16 Sensitivity and specificity of the test for each of the four scores when the size of the
samples to diagnose is ν = 50

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 1.00 0.00 0.75 0.13 0.69 0.62 0.56 0.13

Reject H0 0.00 1.00 0.25 0.87 0.31 0.38 0.44 0.87

Table 17 True rate of false positives and false negatives for each of the four scores when the size
of the samples to diagnose is ν = 50

Score 1 Score 2 Score 3 Score 4

H0 H1 H0 H1 H0 H1 H0 H1

Fail to reject H0 1.00 0.00 0.92 0.08 0.69 0.31 0.90 0.10

Reject H0 0.00 1.00 0.36 0.64 0.62 0.38 0.50 0.50



186 F. Pozo and Y. Vidal

Therefore, for each of the first four principal components, 49 connected points are
depicted, as can be seen in Fig. 26.

The results presented in Fig. 26, particularly with respect to score 1, are quite
remarkable. The overall behavior of scores 2 and 4 are also acceptable, while the
results of score 3 cannot be considered, in this case, as satisfactory.

In Figs. 27 and 28 a further study is performed. While in Fig. 26 we present the
ROCs when the size of the samples to diagnose is ν = 50, in Fig. 27 the reliability of
the method is analyzed in terms of 48 samples of ν = 25 elements each and in Fig. 28
the reliability of the method is analyzed in terms of 120 samples of ν = 10 elements
each. The effect of reducing the number of elements in each sample is the reduction
in the total time needed for a diagnostic. More precisely, if we keep L = 500, when
the size of the samples is reduced from ν = 50 to ν = 25 and ν = 10, the total time
needed for a diagnostic is reduced from about 312 s to 156 and 62 s, respectively.
Another effect of the reduction in the number of elements in each sample is a slight
deterioration of the overall accuracy of the detection method. However, the results
of scores 1 and 2 in Figs. 27 and 28 are perfectly acceptable.

A very interesting alternative to keep a very good performance of the method
without almost no degradation in its accuracy is by reducing L –the number of time
instants per row per sensor— instead of reducing the number of elements per sample
ν. This way, if we keep ν = 50, when L is reduced from 500 to 50, the total time
needed for a diagnostic is reduced from about 312 s to 31 s. Finally, with the goal
to reduce the computational effort of the fault detection method, a sensor selection
algorithm can be applied [16].

Fig. 26 The Receiver
Operating Curves (ROCs)
for the four scores when the
size of the samples to
diagnose is ν = 50

False positive rate

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

T
ru

e 
po

si
tiv

e 
ra

te

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Receiver operating curves

score 1
score 2
score 3
score 4



Damage and Fault Detection of Structures … 187

Fig. 27 The ROCs for the
four scores when the size of
the samples to diagnose is
ν = 25
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Fig. 28 The ROCs for the
four scores when the size of
the samples to diagnose is
ν = 10
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4.4 Wind Turbine and Multivariate HT

To validate the fault detection strategy presented in Sect. 3.3 using a simulated wind
turbine, we consider —as in Sect. 4.3— a total of 24 samples of ν = 50 elements
each, according to the following distribution:

• 16 samples of a healthy wind turbine; and
• 8 samples of a faulty wind turbine with respect to each of the eight different fault

scenarios described in Table 3.

In the numerical simulations in this section, each sample of ν = 50 elements is
composed by the measures obtained from the N = 13 sensors detailed in Table 2
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during (ν · L − 1)Δ = 312.4875 seconds, where L = 500 and the sampling time
Δ = 0.0125 seconds. The measures of each sample are then arranged in a ν × (N · L)

matrix as in Eq. (27).
For the sake of comparison, univariate and multivariate hypothesis testing are

performed, as described in Sects. 3.2 and 3.3, respectively. On one hand, and with
respect to the univariate HT, and for the first three principal components (score
1 to score 3), these 24 samples plus the baseline sample of n = 50 elements are
used to test for the equality of means, with a level of significance α = 0.10. On the
other hand, the same 24 samples plus the baseline sample are used to test for the
plausibility of a value for a normal population mean vector, with the same level of
significance, considering scores 1 to 2 (jointly), scores 1 to 7 (jointly) and scores 1 to
12 (jointly). Each sample of ν = 50 elements is categorized as follows: (i) number
of samples from the healthy wind turbine (healthy sample) which were classified by
the hypothesis test as ‘healthy’ (fail to reject H0); (ii) faulty sample classified by the
test as “faulty” (reject H0); (iii) samples from the faulty structure (faulty sample)
classified as “healthy”; and (iv) faulty sample classified as “faulty”. The results for
the univariate HT for the first three principal components are described in Table 18.
Similarly, the results for the multivariate HT for scores 1 to 2 (jointly), scores 1 to 7
(jointly) and scores 1 to 12 (jointly) are detailed in Table 19. In both tables, the results
are organized according to the scheme in Table 4. It can be stressed from these tables
that the sum of the columns is constant: 16 samples in the first column (healthy wind
turbine) and 8 more samples in the second column (faulty wind turbine).

By examining Tables 18 and 19, it is worth noting that, for a fixed level of sig-
nificance α = 10%, all decisions are correct only when the first twelve scores are
considered jointly. Although the results for the score 1 in Table 18 are quite accept-

Table 18 Categorization of the samples with respect to the presence or absence of a fault and the
result of the test considering the first score, the second score and the third score, when the size of
the samples to diagnose is ν = 50 and the level of significance is α = 10%

Score 1 Score 2 Score 3

H0 H1 H0 H1 H0 H1

Fail to reject H0 16 1 13 7 16 8

Reject H0 0 7 3 1 0 0

Table 19 Categorization of the samples with respect to the presence or absence of a fault and the
result of the test considering scores 1–2 (jointly), scores 1–7 (jointly), and scores 1–12 (jointly),
when the size of the samples to diagnose is ν = 50 and the level of significance is α = 10%

Scores 1–2 Scores 1–7 Scores 1–12

H0 H1 H0 H1 H0 H1

Fail to
reject H0

12 0 13 0 16 0

Reject H0 4 8 3 8 0 8
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Fig. 29 Percentage of
correct decisions using the
multivariate hypothesis
testing fault detection
strategy (scores 1 to 12,
jointly) and the univariate
hypothesis testing (for the
first, second and third score),
as a function of the level of
significance α
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able and it can be improved by increasing the level of significance, it is also important
to try to keep α as small as possible since it is related to the probability of committing
a type I error. In this sense, it can be observed from Fig. 29 that for very small values
of the level of significance α, the percentage of correct decisions in the multivariate
HT—considering scores 1 to 12 jointly—is 100%, while in the rest of the univariate
HT cases, the correct decisions are about to 65–75%.

5 Concluding Remarks

Two different problems have been addressed in this chapter: early detection of dam-
age in structures, and detection of faults in a wind turbine. In both cases, the proposed
methodology, based on PCA plus hypothesis testing, proved to be effective.

In particular, for the experimental set-up, the univariate test showed that the results
related to the first score are not as good as those related to the rest of scores. Thus,
it is important to note that the projection on the first component is not always the
best option to detect damage. Finally, it is shown that multivariate tests improve
significantly the results with respect to univariate HT.

On the other hand, for the numerical simulations of the benchmark wind turbine,
the univariate HT results using the first score has an excellent performance as all
decisions are correct when the used level of significance is α = 0.36. However,
recall that it is advisable to use small values of significance as this will reduce the
number of type I errors. In this case, for α ∈ (0, 0.12], the multivariate HT obtains
the best results with a 100% of correct decisions (while in the univariate HT cases
the correct decisions are about 65–75%).
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Principal Component Analysis for
Exponential Family Data

Meng Lu, Kai He, Jianhua Z. Huang and Xiaoning Qian

Principal component analysis (PCA) is a powerful and widely-used dimension re-
duction tool, which seeks for low-rank approximation to the original data, either
achieving the minimum deviation or preserving the maximum variation [14]. The
derivation of PCA based on either criterion inherently assumes that the original data
are real-valued and follow a multivariate Gaussian distribution. However, such in-
herent assumptions may not be appropriate when analyzing other data types, for
example, with binary, categorical, or count values. Exponential family PCA (ePCA)
generalizes traditional PCA for real-valued data to the data belonging to the expo-
nential family. With diverse data types collected in this modern big data era, ePCA
is increasingly attracting research attention.

1 A Probabilistic Model for Exponential Family Principal
Component Analysis (ePCA)

PCA can be formulated as a maximum likelihood estimation (MLE) problem [35].
From the probabilistic modeling perspective, PCA maximizes the data likelihood,
assuming each data point is sampled from a multivariate Gaussian distribution in
a low-dimensional subspace. The multivariate Gaussian distribution is suitable for
modeling real-valued data, but not appropriate for other data types, especially for
discrete data types. For example, binary data are often modeled with Bernoulli dis-
tributions; and other types of discrete data can be modeled by the corresponding
distributions in the exponential family. Thus, appropriate distributions should be as-
sumed according to the data types to analyze in the MLE framework. The ePCA
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model generalizes PCA as a MLE problem for the general exponential family of
distributions.

1.1 A Probabilistic View of PCA

Given a set of data samples x1, . . . , xn ∈ Rd , PCA projects the data into a principal-
component subspace with a lower dimension L(≤ d). A probabilistic interpretation
of PCAassumes that the data points can be approximated by linear projections of low-
dimensional latent variables plus a Gaussian noise. For each sample xi (1 ≤ i ≤ n),
given its corresponding vector of latent variables zi lying in the principal-component
subspace, we assume

xi = Wzi + b + ε,

whereW is a principal loading matrix whose columns span the principal-component
(PC) subspace; b is a bias vector and ε follows a Gaussian distribution N (0, σ 2 I ).
Assuming avector of canonical parameters θi = Wzi + b, the conditional probability
of xi given θi is then represented as:

p(xi |θi ) ∼ N (xi |θi , σ 2 I )

and the conditional probability of xi given zi is:

p(xi |zi ) ∼ N (xi |Wzi + b, σ 2 I ).

PCA is formulated as an optimization problem of maximizing the log-likelihood
of the given data set with respect to the model parameters zi , W , and b, which is
equivalent to maximizing the following objective function:

∑

i

− ||xi − (Wzi + b)||2 s.t. WTW = I. (1)

Obviously, this problem is equivalent to minimizing the sum of Euclidean distances
from the original data points to their projections in the principal-component subspace,
which is exactly the minimum deviation interpretation of PCA [29].

1.2 Exponential Family PCA

From a probabilistic perspective, it is natural to generalize PCA to the exponential
family. In the exponential family, a probabilistic latent variable model representing
the conditional distribution of a data sample xi has a general form as follows [5]:
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p(xi |θi ) = exp(θT
i xi + log q(xi ) − A(θi )), (2)

where θi denotes the vector of canonical parameters corresponding to the data sample
xi . A(xi ) is the log-normalization factor with the form based on the base measure
q(xi ): log

∫
exp(θT

i xi )q(xi )dxi , ensuring that the sumof the conditional probabilities
over the domain of xi equals 1. The probability distribution functions for different
members in the exponential family have different A(·) functions. The A(·) functions
for severalwell-knowndistributions in the exponential family are provided inTable1.
The resulting data log-likelihood function with respect to the canonical parameters
may be of a quadratic form (for Gaussian) or more complicated forms for other
exponential family members.

To achieve dimension reduction, the canonical parameters θi are further parame-
terized with a form ofWzi + b using lower-dimensional latent variables zi , principal
loading matrix W and a bias vector b, as similarly done in traditional PCA. In gen-
eral, ePCA can be achieved by maximizing the data likelihood based on a general
form of the probability function shown by (2). After substituting θi by the low-rank
representation from zi , W , and b into the data likelihood, ePCA is formulated as the
following problem:

min
Z ,b

min
W :WTW=I

∑

i

A(Wzi + b) − tr((ZWT + 1bT )XT ), (3)

where Z is the n × L principal component score matrix whose i th row is zi . In some
cases, people might consider imposing the orthonormal constraints on Z instead of
W to obtain orthogonal principal components, due to computational considerations.

Taking Gaussian for instance, A(θi ) takes a form of θT
i θi/2 to ensure (2) to be

a Gaussian distribution function. Then, its data log-likelihood function given θ is
equivalent to ∑

i

− ||xi − θi ||2 (4)

up to a constant. After substituting θi into (4), we arrive at (1), which is exactly the
objective function of PCA.

Table 1 The A(·) functions and its first derivatives for several well-known exponential family
members of scalar variables

Distribution A(θ)
∂A(θ)

∂θ

Gaussian θ2

2 θ

Bernoulli log(1 + exp(θ))
exp(θ)

1+exp(θ)

Poisson exp(θ) exp(θ)

Exponential − log(−θ) − 1
θ
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Fig. 1 Probabilistic
graphical model for ePCA W b

nxi

zi

i

A probabilistic graphical model to illustrate ePCA is shown in Fig. 1. Note that
the principal component subspace is derived for canonical parameters instead of data
samples directly. The low-rank representation of canonical parameters is related to
the data through a link function, depending on the data type and assumed distribution
function.

2 Two Computational Algorithms for ePCA

Depending on the exponential family distribution functions, solving the ePCA prob-
lem (3) can lead to an optimization problem of minimizing a non-jointly convex
objective function with non-convex and non-smooth constraints. It is unsatisfactory
to utilize the classical gradient descent or block coordinate algorithms to solve this
problem, mainly due to the orthogonal constraints. Alternatively, Collins et al. [5]
proposed to sequentially update the loading vectors by solving a corresponding set of
simple subproblems resembling generalized linear models (GLMs) [26] iteratively.
Although the problem complexity is simplified, such a method can not guarantee
the joint optimality and joint orthogonality when multiple principal components are
required. Different from this method, Guo et al. [10] proposed to solve the ePCA
problem by transforming a regularized ePCA to an equivalent problem by exploiting
the convex duality of the optimization subproblems. The solutions are obtained by
solving the new equivalent problem that admits an efficient optimization procedure.
In the following, the above two methods will be reviewed in detail. Other promising
methods that solve the special cases of ePCA will be discussed in the Sect. 3.

2.1 Sequential Optimization

Before we study the sequential optimization technique to update the unknown vari-
ables for solving (3), we first focus on the simple case of the problem when L = 1.
The loss function is then reduced to:
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�(z,w,b) =
n∑

i=1

d∑

j=1

A(ziw j + b j ) − (ziw j + b j )xi j ,

s.t. ‖w‖2 = 1. (5)

This problem can be solved by alternately updating z,w and b, each timeminimizing
one of them while keeping the others fixed. Let x̃ j be a vector containing the value
of the j th feature of all the samples. Specifically, in each iteration,
for i = 1, …, n

z(t+1)
i = min

zi
�(zi ,wt ,bt ) = min

zi
A(ziwt + bt ) − zixTi w

t ;

for j = 1, …, d

w
(t+1)
j = min

w j

�(w j , zt ,bt ) = min
w j

A(w jzt + btj1n) − w j x̃Tj z
t

w(t+1) = w(t+1)/‖w(t+1)‖2;

for j = 1, …, d

b(t+1)
j = min

b j

�(b j , zt ,wt ) = min
b j

A(w jzt + btj1n) − btj x̃
T
j 1n.

One can see that there are n + 2d optimization subproblems with only one pa-
rameter for each of them to be optimized over in each iteration. Each subproblem
is essentially identical to a simple GLM problem, in which zi or w j corresponds to
the coefficient to be estimated; xi or x̃ j corresponds to the outcome of the dependent
variable; and the other fixed variables correspond to the independent variables.

Now, get back to the original ePCA problem (3) with more than one prin-
cipal components to be estimated. Considering the canonical parameter matrix
Θ = ∑L

l=1 zlw
T
l , one can estimate each component sequentially by holding the other

components and their resulting canonical parameters fixed. For each lth component,
zl and wl can be estimated by solving the similar subproblems as minimizing (5).
The procedure can be described as below:

Initialize Z ,W and b.
Repeat
{
For each component l = 1, . . . L ,
{
si j = ∑

c �=l z
t
icw

t
jc.

Solve the following problem similarly as minimizing (5):
z(t+1)
il , w

(t+1)
jl = argminzil ,w jl

∑
i

∑
j A(zilw jl + btj + si j ) − zilw jl xi j .

}
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b(t+1) = argminb
∑

i A(Wtzti + b) − tr((ZtW tT + 1bT )XT ).
}
until convergence.

The convergence is not guaranteed to reach the global minimum since the objec-
tive function in each subproblem is not jointly convex in zl andwl though it is convex
in either one of them when the other one is fixed. Moreover, the joint orthogonality
constraints for the components might be violated while implementing the sequen-
tial updates for the components one by one, which is the price that the sequential
technique has to pay.

2.2 Transformation by Convex Conjugate

In order to address the difficulties in solving the ePCA problem, an alternative op-
timization strategy [10] was proposed to add a quadratic regularizer on the loading
vectors to the ePCA problem in order to formulate a new problem that is easier to
solve. This regularized version of the ePCA problem was proven to be equivalent to
a new problem wth a much nicer structure so that the transformed problem can be
solved by alternating the updates of Z and W based on closed-form updating rules.
There is no worry about the violation of joint orthogonality constraints here because
the subproblems under the orthogonality constraints have closed-form solutions ac-
cording to the Procrustes rotation theorem [25].

Recall the ePCA problem (3). Without loss of generality, a regularized extension
can be formulated as

min
Z :ZT Z=I

min
W

∑

i

A(Wzi ) − tr(ZWT XT ) + λ

2
tr(WTW ), (6)

by including a quadratic regularizer onW . This regularization term can be interpreted
as a zero-mean Gaussian prior onW with a diagonal covariance matrix. The addition
of such a regularization term allows a maximum a posteriori (MAP) formulation
of the problem and also makes the subsequent optimization procedure simpler. The
orthogonality is maintained by the constraints ZT Z = I for the model simplicity.

It is natural to consider directly optimizing Z and W by gradient decent or block
coordinate descent methods; but the constraints on Z make the optimization proce-
dure more complex, which results in low computational efficiency. The main diffi-
culty in solving the ePCAproblem is theminimization over Z under the orthogonality
constraints. Instead of directly tackling the original problem (6), the problem trans-
formation strategy transforms the original optimization problem based on the convex
conjugate of the A(·) function to introduce an optimization function over a new vari-
ableU , which enables the minimization over Z in the new problem has closed-form
solutions.
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There are three main steps to transform the regularized ePCA problem (6) to a
new equivalent problem that can be efficiently solved.

Step 1 Replacing the A(·) function by introducing its convex conjugate.
Let U be a n × d matrix and A∗(ui ) is the Fenchel conjugate of A(Wzi ). Note

that A(·) and A∗(·) are both convex functions. Then, A(Wzi ) can be rewritten as

A(Wzi ) = max
ui

uT
i Wzi − A∗(ui ).

Thus, the inner minimization of (6) becomes

min
W

max
U

−
∑

i

A∗(ui ) + tr(ZWT (U − X)T ) + λ

2
tr(WTW ). (7)

Step 2 Exchange the order of minimization onW andmaximization onU in (7).
Let F(W ;U ) denote the objective function in (7). Guo et al. [10] claimed that

one can verify that F satisfies the conditions of the strong minmax theorem [3, 30],
which allows the order of the minimization and maximization to be reversed. That
is, based on the strong minmax theorem one can conclude that (7) is equivalent to

max
U

min
W

−
∑

i

A∗(ui ) + tr(ZWT (U − X)T ) + λ

2
tr(WTW ). (8)

Then, the inner minimization onW can be easily solved since the objective func-
tion of (8) is convex in W for fixed U . By substituting W = 1

λ
ZT (X −U ), the

transformed problem (8) turns into

max
U

−
∑

i

A∗(ui ) − 1

2λ
tr((X −U )(X −U )T Z ZT ). (9)

After adding back the outerminimization over Z to (9), one arrives at the following
problem equivalent to the regularized ePCA problem (6):

min
Z :ZT Z=I

max
U

−
∑

i

A∗(ui ) − 1

2λ
tr((X −U )(X −U )T Z ZT ). (10)

Step 3 Exchange the order ofminimization on Z andmaximization onU in (10).
First, rewrite the outer minimization of Z as a minimization in terms of a square

matrix M with constraints: {M : I � M � 0; tr(M) = L}. The problem (10) is then
relaxed as follows:
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min
Z :ZT Z=I

max
U

−
∑

i

A∗(ui ) − 1

2λ
tr((X −U )(X −U )T Z ZT )

≥ min
M :I�M�0;tr(M)=L

max
U

−
∑

i

A∗(ui ) − 1

2λ
tr((X −U )(X −U )T M), (11)

where the equivalence holds when M2 = M , which implies M = Z ZT for some Z
such that ZT Z = I .

In the relaxed optimization problem (11), the outer minimization problem with
respect to M is convex since the maximum of linear functions is convex and the
constraints are convex. After relaxation, the objective function of (11) satisfies the
conditions of the strong minmax theorem, which allows another order change of a
minimization andmaximization in the relaxed optimization problem shown as below:

max
U

min
M :I�M�0;tr(M)=L

−
∑

i

A∗(ui ) − 1

2λ
tr((X −U )(X −U )T M). (12)

Since solving a semidefinite problem

min
M :I�M�0;tr(M)=L

tr(MA)

is equivalent to solve
min

Z :ZT Z=I
tr(Z ZT A),

the problem (12) can be further transformed to the equivalent problem:

max
U

min
Z :ZT Z=I

−
∑

i

A∗(ui ) − 1

2λ
tr((X −U )(X −U )T Z ZT ). (13)

Denote (U ∗, Z∗) as the solutions to (13). Then (U ∗, M∗) are also the solutions
to (12) where M∗ = Z∗Z∗T . Because of M∗2 = M∗, the problem (11) is equivalent
to (10), suggesting that (U ∗, Z∗) are also the solutions to (10).

After a series of equivalent transformations, one ends up at an efficiently solvable
problem (13), enabling efficient solutions for the ePCA problem (6). The solutions
can be achieved by alternately updating Z and U until convergence. According to
the Procrustes rotation theorem [25], Z can be updated by

Zt+1 = QL
max ((X −Ut )(X −Ut )T ),

where QL
max (A) denotes the first L eigenvectors of A. U can be updated based on

the gradient descent methods where the gradient is given by

− ∂

∂U

∑

i

A∗(ui ) − 1

λ
Z ZT (U − X).
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Unlike the sequential optimization technique, this transformation strategy allows
utilizing closed-form updating rules to search for the optimal Z that satisfies the
orthogonal constraints, which thus results in effective and efficient solutions. Apart
from these two general approaches to solve the ePCA problem, there are also other
methods [18–20] proposed to solve the special cases of ePCA such as logistic PCA,
which will be discussed in the following section.

3 A Special Case: Logistic PCA

We have previously introduced the general methods for solving the ePCA problem.
In this section, we will discuss some other methods proposed to solve the special
cases of ePCA, which are easier to implement than the general methods. A special
case of ePCA refers to the applications of ePCA on a particular type of data that
follows a certain distribution in the exponential family. For example, when the ePCA
model is applied on a binary data set, this is a special case of ePCA called logistic
PCA since the model exploits the log-odds as the natural parameter of the Bernoulli
distribution and the logistic function as the canonical link.

In the applications of ePCA, the choice of appropriate form of A(·) function re-
sults in the appropriate distribution to model the given data, which shall intuitively
lead to the best model performance. For example, the A(θ) function should be chosen
as a quadratic function θ2

2 corresponding to the Gaussian distribution assumed for
real-valued data. In this case, ePCA reduces to the standard PCA problem. Its corre-
sponding objective function is also a quadratic function that allows the solution can
be easily found by solving the corresponding singular value decomposition (SVD).
Compared to the quadratic form, other more complex non-quadratic A(·) functions
chosen for the distributions other than Gaussian make the general ePCA problem
computationally challenging in the applications with non-real-valued data. Next, we
will focus on logistic PCA, where A(θ) = log(1 + eθ ) in the ePCA model for ap-
plications with binary data. The way PCA generalized to logistic PCA is analogous
to the way linear regression generalized to logistic regression. In the following, we
will discuss a strategy [20] proposed by Leeuw to solve logistic PCA which is easier
to implement than the general methods.

The general ePCA problem (3) becomes the logistic PCA with A(θ) =
log(1 + eθ ):

min
b,Z ,W

�(b, Z ,W ) = min
W :WTW=I

min
b,Z

∑

i

A(Wzi + b) − tr((ZWT + 1bT )XT )

= min
W :WTW=I

min
b,Z

∑

i

∑

j

log(1 + ez
T
i w j+b j ) − (zTi w j + b j )xi j

= min
W :WTW=I

min
b,Z

∑

i

∑

j

− log
eθi j xi j

1 + eθi j
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= min
W :WTW=I

min
b,Z

∑

i

∑

j

− logπ(qi jθi j ), (14)

in which the canonical parameters are still assumed to take a low-rank representation
θi j = zTi w j + b j ; π(a) = ea

1+ea ; and

qi j = 2xi j − 1 =
{ −1, xi j = 0

1, xi j = 1.

Asweobserved, the objective function (the log-likelihood function) of (14) is non-
quadratic. Instead of directly dealing with the non-quadratic objective function, the
majorization-minimization (MM) algorithm [11, 17] is employed by Leeuw [20] to
minimize the objective functionby iterativelyminimizing a suitably definedquadratic
surrogate function. The MM algorithm guarantees that the objective function de-
creases in each iteration and converges to a local minimum of the original objective
function. When applying the MM algorithm, the minimization of the surrogate func-
tion in each iteration is easier to solve than solving the original optimization problem
but the surrogate function should be carefully chosen to satisfy several conditions
for the performance guarantee of the MM algorithm.

Let f (θ) be the objective function to be minimized. At the kth iteration of the
algorithm, a constructed convex function g(θ |θk) will be a qualified surrogate func-
tion (the majorized version of the objective function) at θk if

g(θ |θk) ≥ f (θ) f or all θ

g(θk |θk) = f (θk).

TheMMalgorithmminimizes g(θ |θk) instead of f (θ). In each iteration, θ is updated
until convergence based on the following iteration rule:

θk+1 = argmin
θ

g(θ |θk).

The minimization of the surrogate function will drive f (θ) to converge to a local
optimum as k goes to infinity, which can be proven as follows:

f (θk+1) ≤ g(θk+1|θk) ≤ g(θk |θk) = f (θk).

The majorization algorithm is also known as the variational methods, or variational
bounding [12] in the machine learning literature.

In order to apply the MM algorithm to solve the logistic PCA problem (14), one
need to find a surrogate function for − logπ(α). The surrogate function g(α|αk)

is constructed by bounding the second-order derivative of − logπ(α) according to
Leeuw [20]. Assume there exists a function w ≥ 0 such that
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− logπ(α) ≤ g(α|αk)

= − logπ(αk) + −d logπ(α)

dα
(α − αk) + 1

2
w(αk)(α − αk)

2 (15)

for all α and αk . Then, this bounding function w leads to a quadratic majorization of
− logπ(α). One can choose

w = 1

4

to achieve the uniform majorization or

w(αk) = 1 − 2π(αk)

2αk

to achieve the non-uniformmajorization according to [12]. By completing the square,
the surrogate function of − logπ(α) can be rewritten as

g(α|αk) = − logπ(αk) + 1

2
w(αk)

(
α − (αk − h(αk)

w(αk)
)
)2 − 1

2

h2(αk)

w(αk)
,

where h(αk) denotes the first-order derivative of − logπ(α) at αk . By substituting α

by qi jθi j and αk by qi j (θi j )k to g(α|αk), one will arrive at the surrogate function of
− logπ(qi jθi j ).

To solve the logistic PCA problem (14), the MM algorithm works by iteratively
minimizing the surrogate function g(qi jθi j |qi j (θi j )k) until convergence. In each iter-
ation,

(Zk+1,Wk+1,bk+1) = arg min
Z ,W,b

∑

i

∑

j

g(qi jθi j |qi j (θi j )k)

= arg min
Z ,W,b

∑

i

∑

j

{qi jθi j − [
qi j (θi j )k − h(qi j (θi j )k)

w(qi j (θi j )k)

]}2

= arg min
Z ,W,b

∑

i

∑

j

{θi j − [
(θi j )k − qi j

h(qi j (θi j )k)

w(qi j (θi j )k)

]}2

s.t. WTW = I,

where θi j = zTi w j + b j .

Let

Mk+1 = {(Mi j )k+1} = (θi j )k − qi j
h(qi j (θi j )k)

w(qi j (θi j )k)
.

In the (k + 1)th iteration, one can first calculate Mk+1 based on Zk,Wk and bk , and
then update (Zk+1,Wk+1,bk+1) by solving the following problem:
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(Zk+1,Wk+1,bk+1) = arg min
Z ,W,b

||ZWT + 1bT − Mk+1||2F
s.t. WTW = I. (16)

This is a least-squarematrix approximation problem that can be easily solved by solv-
ing SVD. Thus, closed-form solutions are available for updating (Zk+1,Wk+1,bk+1)

in the (k + 1)th iteration, which makes the MM algorithm easier to implement and
more computationally efficient than the aforementioned general methods that involve
computing gradients.

In summary, the algorithm works as follows. Start with some initial Z0,W0 and
b0. Suppose Zk,Wk and bk are the current best solutions. We keep calculating Mk+1

and updating (Zk,Wk,bk) to find a better solution (Zk+1,Wk+1,bk+1) based on (16)
until the log likelihood function converges. This is similar to the iterations between
the E-step and the M-step in the EM-algorithm.

4 An Alternative Formulation: Projection of Saturated
Model Parameters

The previous logistic PCA is formulated by the low-rank approximation of the canon-
ical parameters for Bernoulli distributions, motivated by the interpretation of the
standard PCA from the low-rank approximation perspective. The standard PCA as-
sumes that the data follow Gaussian distributions and maximizes the log-likelihood
function, resulting in the following problem:

min
∑

i

∑

j

(xi j − E(xi j ))
2

= min
W :WTW=I

min
Z

||X − (ZWT + 1bT )||2F ,

where the expectation E(xi j ) equals the canonical parameter θi j for the Gaussian
distribution which is approximated by a low-rank decomposition. The logistic PCA
generalizes PCA by replacing the Gaussian distribution by Bernoulli and retaining
the low-rank factorization of the canonical parameters. In this way, each sample has
its own associated latent factor and the number of parameters increases with the
number of samples. When applying logistic PCA to new data for prediction, one
needs to carry out another matrix factorization, which is prone to overfit. Thus, the
previous formulation of logistic PCAmay not get satisfactory performance if applied
for prediction on binary data. In contrast, the standard PCA predicts the principal
component scores for the new data based only on the linear combinations of the
observed values of the variables. It only requires to know the principal component
loading matrix for prediction.

To maintain this property for other members in the exponential family, a new for-
mulation was proposed by Landgraf and Lee to generalize PCA in such away that the
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generalized principal component scores are linear functions of the data variables [15].
The Pearson’s interpretation of PCA aims to find the optimal low-dimensional repre-
sentation of multivariate data with the minimum squared error. Along this line, PCA
is formulated as:

min
W :WTW=I

n∑

i=1

||xi − b − WWT (xi − b)||2F ,

which should also be equivalent to minimizing the Gaussian deviance D(X,Θ):

n∑

i=1

||xi − θi ||2F

proportional to the negative log-likelihood. This guarantees that the Pearson’s inter-
pretation of PCA is essentially equivalent to the interpretation from maximizing the
data log-likelihood perspective. According to Landgraf and Lee [15], the equivalence
suggests that

θi = b + WWT (xi − b)

= b + WWT (θ̃i − b), (17)

where θ̃i denotes the canonical parameter of the saturated model that is the best
possible fit to the data. Compared to the low-rank approximation of Θ , (17) is a
different representation that treats Θ as the function of the canonical parameters of
the saturated model. In this way, PCA is interpreted as a projection of the canonical
parameter of the saturatedmodel thatminimizes theGaussiandeviance (ormaximizes
the likelihood).

To generalize PCA to binary data, one shouldminimize the Bernoulli deviance (or
maximizes the likelihood) with respect to W that projects the canonical parameters
of the corresponding saturated model to a lower dimensional space. The calculation
of the canonical parameter of a saturated model is discussed below.

For a random variable x from a one-parameter exponential family distribution,
the first-order derivative of A(θ) equals its expectation E(x)where θ is the canonical
parameter for x . The canonical link function g(·) is the inverse of the derivative of
A(·) function, which suggests

θ = g(E(x)).

Let θ̃ denote the canonical parameter for the saturated model. As the value of each
variable equals its expectation in the saturated model, one will have

θ̃ = g(x).
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For example, θ̃ = x for the Gaussian distribution; θ̃ = logit(x) for Bernoulli distri-
bution; and θ̃ = log(x) for Poisson distribution.

Since Θ̃ contains constant values for a multivariate random vector, an alternative
formulation of generalized PCA is an optimization problemwith respect toW and b:

min
W :WTW=I

min
b

∑

i

A(b + WWT (θ̃i − b)) − tr((1bT + (Θ̃ − 1bT )WWT )XT ).

When it is applied to binary data, one should assume correspondingly that xi j is
sampled from Bernoulli(pi j ) where pi j is the success probability that is also the
expectation E(xi j ). The natural parameter for the Bernoulli distribution is θi j =
logit(pi j ). The saturated model occurs when pi j = xi j , giving

θ̃i j = logi t (xi j ) =
{ −∞, xi j = 0

∞, xi j = 1.

As the value of θ̃i j in this case is not finite, Landgraf and Lee [15] suggest that one
can approximate θ̃i j by mqi j for a large number m where qi j is defined as 2xi j − 1
which equals {−1, 1}when xi j takes values {0, 1}. Given Θ̃ = {θ̃i j }, the logistic PCA
can be formulated as:

min
W :WTW=I

min
b

∑

i

1T log(1 + exp(b + WWT (θ̃i − b)))

− tr((1bT + (Θ̃ − 1bT )WWT )XT ), (18)

where the objective function can be re-expressed as:

∑

i

∑

j

− log
eθi j xi j

1 + eθi j

=
∑

i

∑

j

− logπ(qi jθi j ),

with
θi j = [1bT + (Θ̃ − 1bT )WWT ]i j .

As we can observe, the objective function of (18) has the same form as that of the
previous logistic PCA problem (14) when their objective functions are expressed as
functions of canonical parameters θi j . From the optimization perspective, the only
difference between these two formulations of logistic PCA lies in the representation
of θi j , which thus leads to two different optimization problems after θi j is substituted.
Therefore, all the properties we have discussed on − logπ(qi jθi j ) still apply here.
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Similarly, one can also employ the MM algorithm to solve (18). As we discussed,
the surrogate function g(qi jθi j |qi j (θi j )k) for − logπ(qi jθi j ) is

{θi j − [
(θi j )k − qi j

h(qi j (θi j )k)

w(qi j (θi j )k)

]}2 + C,

where C is a constant term irrelevant with θi j . Let

(Mi j )k+1 = (θi j )k − qi j
h(qi j (θi j )k)

w(qi j (θi j )k)
,

and Mk+1 = {(Mi j )k+1}.

Then, the surrogate function of
∑

i

∑
j − logπ(qi jθi j ) is

∑

i

∑

j

{θi j − (Mi j )k+1}2 + C

= ||Θ − Mk+1||2F + C.

Remember that the new formulation of logistic PCA differs from the previous for-
mulation in the representation of Θ which equals 1bT + (Θ̃ − 1bT )WWT instead
of ZWT + 1bT . Thus, one will have the surrogate function of the objective function
in (18) as

||1bT + (Θ̃ − 1bT )WWT − Mk+1||2F + C,

where Mk+1 is correspondingly calculated based on Wk and bk by substituting Θk .
The MM algorithm works by iteratively minimizing this surrogate function. In

the (k + 1)th iteration, one can first calculate Mk+1 based on Wk and bk , and then
update Wk+1 and bk+1 by solving the following problem:

(Wk+1,bk+1) = argmin
W,b

||1bT + (Θ̃ − 1bT )WWT − Mk+1||2F
s.t. WTW = I, (19)

which will simultaneously drive the objective function to decrease for each iteration.
The solutions to (19) can be achieved by alternately updating the unknown variables
until convergence. Let b̃t+1 and W̃ t+1 denote the (t + 1)th step estimates when
solving problem (19). The updating rules for them are shown as follows.

Update b

b̃t+1 = 1

n
(Mt

k+1 − Θ̃W̃ t W̃ t )T 1.

Update W
Denote
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P = Θ̃ − 1(b̃t )T

and
Q = Mk+1 − 1(b̃t )T .

Solve

min
W

||PWWT − Q||2F
s.t. WTW = I.

W̃ t+1 is updated as the first L eigenvectors of

PT Q + QT P − PT P

by solving the eigen-decomposition [8]. If it takes r iterations to converge when
solvingproblem (19), thenWk+1 andbk+1 will be estimated as W̃ r and b̃r respectively.

In summary, the MM algorithm works as follows. Start with some initial W0 and
b0. Suppose Wk and bk are the current best solutions. One need to keep calculating
Mk+1 and updating (Wk,bk) to find a better solution (Wk+1,bk+1) based on (19)
until the log-likelihood function converges. The above MM algorithm and updating
rules can also be employed for solving the alternative formulations of ePCAproblems
generalized to other types of data [16], in which the corresponding surrogate function
has to be re-defined and θ̃i j should be replaced by the value of the corresponding
canonical link function for the given data xi j .

5 Applications: Dimension Reduction and Aggregate
Association Study

The generalization of PCA to exponential family enables the extension of PCA to
many modern applications with various types of data frequently appearing in bio-
medicine, finance, and electronic commerce. Compared with PCA, the performance
of dimension reduction will be enhanced by applying the corresponding ePCA suit-
able to the data types. In the recommender systems built by the e-commerce sites,
such as Amazon.com, the ratings from customers for each item are in unary or finer
continuous scales. By assuming the data distribution as Bernoulli (unary case) distri-
bution or multinomial distribution (integer case) in the ePCA model, the user and/or
item characteristics are extracted by the top principal components for further cal-
culation of user and/or item similarity for recommendations. In this case, ePCA is
applied as a latent factor analysis tool for unsupervised study.

Apart from unsupervised applications, ePCA can also be embedded in a regres-
sion framework for aggregate association analysis. For example, in the applications
of identifying the causal factors for diseases, millions of omics variables measured
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using different high-throughput profiling technologies may contain continuous, bi-
nary, or count data. The corresponding data distribution in the ePCA model is thus
assumed as Gaussian, Bernoulli, or Poisson respectively when applying ePCA to
analyze such diverse omics data mapped to pathways or functional regions. The
resulting principal component scores are regarded as the surrogate aggregate sig-
nals for the pathways to analyze their associations with the disease. The analysis
of association between pathways and disease provides a better way to understand
disease etiology from a systematic perspective, which also allows relevant robust
results compared to the association analysis of millions of individual genetic vari-
ables. Typically, the aggregate association analysis of pathways are accomplished
by performing regression analysis between the disease outcome and the aggregate
signals for the pathways [21–24].

How to derive good aggregate signals for a pathway is a critical problem that will
affect the results of consequent association analyses. With appropriate assumptions
of the data distributions tailored to the data types, ePCA is a promising tool that
can generate better aggregate signals to capture more accurate genetic variations.
Moreover, ePCA should be performed on the subset of genetic variables (GVs) con-
taining the most influential information regarding the disease outcome because the
irrelevant GVswill dilute the aggregate signal for the given pathway. The selection of
such a subset can be done by two means: (1) automatic selection from the integrated
supervised framework involving sparse penalization on the PC loading vectors. (2)
heuristic selection guided by the performance of statistical association with disease
outcome. The second way is simple and widely applied in the literature [1, 2, 4, 21,
23, 24]. In each pathway, its mapped GVs are first ranked based on their statistical
association with disease outcome and grouped as candidate units by gradually in-
creasing the size as typically done in forward feature selection. With the ranked list,
ePCA is then implemented to derive multiple potential summary statistics for the
formed candidate groups respectively. The final statistical significance of each path-
way is the best value derived from the candidate group with the most discriminating
power. The heuristic procedure of applying ePCA for aggregate association analysis
is summarized as follows:

(1) Generate candidate GV groups for each pathway
For each individual GV assigned to a given pathway, its significance (p-value)
can be computed by fitting a logistic regression model. Given all GVs belonging
to a pathway,we generate several (for example, 20) incremental candidate groups
by setting 20 thresholds at each increment of 5 percentiles of p-values for those
GVs. Hence, for each pathway, 20 groups of GVs {S1, . . . , S20} are formed by
sequentially groupingGVswith p-values less than each corresponding threshold.

(2) ePCA on candidate GV groups
ePCA can be implemented to compute the first PC scores for 20 candidate groups
respectively in each pathway.

(3) Calculate M statistics for candidate groups
For each candidate group S�(1 ≤ � ≤ 20), we fit a logistic regression model
using the corresponding first PC scores as regressors and estimate the t-statistic
t�. Let M = {t� : |t�| = max1≤�≤20|t�|}.
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(4) Estimate the null distribution of M statistics
For each pathway, we perform the permutation test by generating randomdisease
status for each sample from a Bernoulli distribution with the success probability
set to the disease prevalence. Based on randomly generated outcomes, the cor-
responding M statistic for each pathway can be calculated by repeating steps (1)
to (3) as a random sample from the null distribution of M .

(5) Calculate p-value for each pathway
Given the M value for each pathway based on true disease status and its cor-
responding null distribution of M statistic, an empirical p-value for each path-
way can be calculated to estimate the pathway significance. This provides a
self-contained test which compares pathways to the non-associated genomic
background.

By embedding ePCA in a heuristic supervised framework, it has the potential to
aggregateweak signals from individualGVswith the explicitmodeling of categorical
GV data considering outcome. The supervised ePCA is expected to provide more
effective association analysis for high-dimensional modern data and is more likely
to produce reproducible results.

6 Sparse ePCA Through Penalization

As we have discussed in Sect. 1, ePCA is an attractive method to reduce the di-
mensionality of exponential family data by making respective appropriate model as-
sumptions based on the specific data types. In addition to deriving low-dimensional
projections for model complexity reduction and reproducibility of learning results,
people often want to know the physical meanings of the original variables and how
they contribute to these projections. For example, when analyzing images, it is of
much interest to know which image regions are crucial to represent or capture the
essential information contained in the given images. Identifying variables expressing
the maximum data variation will also be of interest for next-generation sequencing
data analysis in bioinformatics since it would help greatly reduce the profiling cost
for biomarker discovery. This is one of the motivations for deriving the sparse model
extension of ePCA, named as sparse ePCA, to better interpret the obtained principal
components based only on a subset of contributing variables. When the exponential
family data are in high-dimensional spaces with n � d, the model consistency and
effectiveness of ePCA can be questionable, for which the sparse models can help
greatly improve the performance. The theoretical discussion of the model inconsis-
tency of standard PCA when d is comparable or larger than n can be found in the
literature [13, 27, 28].

The sparse ePCA model enforces sparse non-zero entries in the principal compo-
nent loading matrix by adding a penalty term of the loading vectors into the ePCA
model formulation discussed in Sect. 1. This idea is similar to the way of formulat-
ing sparse generalized linear models such as sparse logistic regression and sparse
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loglinear (Poisson) regression. Both of them impose the assumptions of exponential
family distributions and sparsity regularization simultaneously in their models; how-
ever, sparse ePCA encounters even more difficult challenges in finding its solutions.
The difficulties are mainly caused by the non-joint convexity of its objective func-
tion and the non-convex and non-smooth constraints in the resulting optimization
problem.

A general form of the sparse ePCA problem can be formulated as follows:

min
Z :ZT Z=I

min
W,b

n∑

i=1

A(Wzi + b) − tr((ZWT + 1bT )XT ) + P(W, λ), (20)

where P(W, λ) denotes the penalty term to enforce sparse non-zero entries of W . A
non-zero entry w jl indicates that the j th variable is selected contributing to the
lth PC. There are various choices of the penalty function P(., .). For example,∑d

j=1

∑L
l=1 P(|w jl |, λ) and

∑d
j=1 P(‖w j‖2, λ) to achieve the element-wise spar-

sity and row-sparsity respectively. The tuning parameter λ controls the level of spar-
sity. A larger value of λ will result in fewer non-zero entries in W . This penalized
maximum-likelihood estimator attempts to estimate the optimal PC loading vectors
that are sparse and meanwhile maintain high accuracy in low-rank approximation.
The resulting parsimonious model enables meaningful interpretation of the derived
PCs and is expected to alleviate the inconsistency of ePCA in applications with high-
dimensional data. In other words, sparse ePCA is an enhanced ePCAmodel with the
aim to improve the performance and model interpretation. It is encouraged to be ap-
plied for reducing dimensionality of high-dimensional modern data of various data
types, including real-valued data, binary data, categorical data, and count data.

7 Two Computational Algorithms for Sparse ePCA

As we mentioned previously, it is not easy to solve the sparse ePCA problem (20)
though the objective function is marginally convex with respect to those unknown
variables. One of the big challenges lies in the non-convex and non-smooth con-
straints on Z . As we discussed for the ePCA problem (3), utilizing variants of
gradient descent methods to alternately update b,W and Z is unsatisfactory and
computationally slow to solve sparse ePCA problem under such constraints. This
problem can be phrased as a Stiefel manifold optimization one, for which packages
are already available [32, 37]. These methods have been claimed to be valid yet still
computationally expensive for high-dimensional data sets [38].

An alternativeway is to employ theMMalgorithm to optimize a surrogate function
for the original objective function, which is guaranteed to reach a local minimum.
The MM algorithm has already been employed by Lee et al. [19] to solve sparse
logistic PCA problem that performs dimension reduction for binary data. The sparse
logistic PCAproblem is a specific case of sparse ePCA tailored to binary data. For the
binary data following Bernoulli distributions, the corresponding data log-likelihood
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can be written as a summation of a set of log inverse logit functions, for which
the quadratic upper bounds for the negative log inverse logit functions specified
by Jaakkola and Jordan [12]; de Leeuw [20] are chosen as the surrogate functions.
Finding an appropriate surrogate function is crucial to ensure that the MM algorithm
works. Sometimes it is quite challenging when the objective function is complex for
other different types of data, for example, categorical and count data. Recently, a
general form of surrogate functions were proposed by Zhang and She [38] to solve
the sparse ePCA problem.

Instead of employing theMMalgorithm, Lu et al. [22] have proposed another way
to solve sparse ePCA problem by transforming it into an equivalent problem that can
be solved more effectively and efficiently. Closed-form updating rules are available
for alternately updating the unknown variables in the new problem to achieve high
computational efficiency.

Next, the above two strategies: the MM algorithm and transformation by convex
conjugate will be discussed in detail.

7.1 Majorization-Minimization

To address the difficulty in solving (20) caused by non-quadratic objective function
with non-convex constraints, the MM algorithm can help by solving a rather easier
minimization problem instead with a quadratic surrogate function as the objective
function. Compared to directly optimizing the original objective function, minimiz-
ing a quadratic function under the orthogonal constraints can be efficiently solved
using closed-form updating rules according to Procrustes rotation theorem [25].
Then, the big concern we have now is how to construct the quadratic surrogate func-
tion to guarantee the MM algorithm works. A qualified surrogate function has to be
convex and meet some inequality conditions, as we discussed earlier.

For the sparse ePCA problem, one can rewrite the objective function in (20) as

f (Θ) =
n∑

i=1

A(θi ) − tr(ΘXT ) + P(W, λ),

by assuming that Θ = ZWT + 1bT , taking the usual low-rank representation.
Let l(Θ) = ∑n

i=1 A(θi ) − tr(ΘXT ). Zhang and She [38] define

g(Θ|Θk) = l(Θk) + ∇Θ l(Θk)(Θ − Θk)
T + ρk

2
‖Θ − Θk‖2F + P(W, λ)

= l(Θk) + ( n∑

i=1

∂A(θi )

∂Θ
|Θ=Θk − X

)(
Θ − Θk

)T + ρk

2
‖Θ − Θk‖2F + P(W, λ)

as the surrogate function. It is clear that g(bk, Zk,Wk |bk, Zk,Wk) = f (bk, Zk,Wk).
Moreover, they claimed that g(b, Z ,W |bk, Zk,Wk) ≥ f (b, Z ,W ) can be realized
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by Taylor expansion when setting a large enough value for ρk . Details in choosing the
appropriate ρk for each iteration are discussed in [38].With these conditions satisfied,
minimizing this quadratic surrogate function will guarantee that f (Θ) can converge
to a local minimum by applying the MM algorithm. Thus, one can approximate the
solutions by iteratively updating b, Z ,W based on

(bk+1, Zk+1,Wk+1) = arg min
b,Z ,W

g(b, Z ,W |bk, Zk,Wk). (21)

This problem (21) can be rewritten as

(bk+1, Zk+1,Wk+1) = arg min
b,Z ,W

( n∑

i=1

∂A(θi )

∂Θ
|Θ=Θk − X

)(
ZWT + 1bT − Θk

)T

+ρk+1

2
‖ZWT + 1bT − Θk‖2F + P(W, λ)

= arg min
b,Z ,W

1

2
‖ZWT + 1bT − Mk+1‖2F + 1

ρk+1
P(W, λ), (22)

whereMk+1 = Θk + 1
ρk+1

(
X − ∑n

i=1
∂A(θi )

∂Θ
|Θ=Θk

)
. The resulting optimization prob-

lem (22) is a quadratic minimization problemwith orthogonal constraints, which can
be easily solved by alternately updating b, Z ,W based on the closed-form updating
rules shown below. Let b̃t+1, Z̃ t+1 and W̃ t+1 denote the corresponding (t + 1)th step
estimates of b, Z and W respectively.

Update b

b̃t+1 = 1

n
(MT

k+1 − W̃ t (Z̃ t )T )1.

Update Z
Given b̃t and W̃ t , the minimization problem with respect to Z is:

min
Z :ZT Z=I

||MT
k+1 − 1(b̃t )T − Z(W̃ t )T ||2F .

This can be identified as a Procrustes rotation problem that has closed-form solutions.
Denote Q as Mk+1 − b̃t1T . One can first compute the SVD of Q(W̃ t )T = R�V T

and then update Z̃ t+1 by R[, 1 : L]V T .
Update W
Given b̃t and Z̃ t , the minimization problem with respect toW is a penalized least

square problem:

min
W

||MT
k+1 − 1(b̃t )T − Z̃ tW T ||2F + 2

ρk+1
P(W, λ).

To estimate W̃ t+1, one can refer tomany existingwork studying this type of problems
which adopt various penalty functions including such as �1, �0, �1/�2, SCAD [7], and
�p(0 < p < 1). Proximal gradientmethod is attractive to solve such convexproblems
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with non-smooth norm penalizations. Iterative reweighted �1 and �2 minimization
are also two efficient schemes that help produce more focal estimates as optimization
progresses. The non-separable iterative reweighing algorithms can even enforce row-
sparsity on the presentation ofW thatmakes variable selection occur in amore natural
way [6]. In addition, thresholding-based iterative selection procedure (TISP) [31] can
be used to solve a P-penalized problem for any penalty term P associated with a
thresholding rule [33].

If it takes r iterations to converge when solving problem (22), then bk+1, Zk+1

and Wk+1 will be estimated as b̃r , Z̃ r and W̃ r respectively.

7.2 Transformation by Convex Conjugate

The reformulation of the sparse ePCA problem (20) is achieved via replacing the
term A(Wzi + b), which is not jointly convex in Z andW , by introducing its convex
conjugate. The convex conjugate for a function h(α) is defined as:

h∗(u) = sup
α∈M

<u,α> − h(α),

where h∗(u) is always convex since the maximum of a linear function is convex.
Let A∗(·) denote the convex conjugate of A(·). The explicit form of A(·) and A∗(·)
specific to each distribution in the exponential family are listed in the following
table2.

Let Θ be a n × d matrix whose i th row is θi . By introducing linear constraints,
the problem (20) is first rewritten as follows:

min
Z :ZT Z=I

min
W,b

min
Θ

∑

i

A(θi ) + g(Z ,W,b)

s.t. θi = Wzi + b, 1 ≤ i ≤ n, (23)

where g(Z ,W,b) = −tr((ZWT + 1bT )XT ) + P(W, λ). Due to the potentially
complex A(·) function forms, it is difficult to directly solve (23). In order to replace

Table 2 Convex conjugate duals corresponding to A(·) for several well-known exponential family
members of scalar variables

Distribution A(θ) A∗(u)
∂A∗(u)

∂u

Gaussian θ2

2
u2
2 u

Bernoulli log(1 + exp(θ)) u log u + (1 −
u) log(1 − u)

log u
1−u

Poisson exp(θ) u log u − u log u

Exponential − log(−θ) −1 − log u − 1
u
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the complex A(·), the minimization of A(·) is first transformed to its equivalent dual
problem based on the following Lemma 1 proposed by Lu et al. [22].

Lemma 1 Let U be the n × d matrix whose i th row is ui . The inner minimization
of (23) with respect to Θ is equivalent to solving the dual problem:

max
U

−
∑

i

A∗(−ui ) − <ui ,Wzi + b> + g(Z ,W,b).

Proof The Lagrangian of (23) is defined as

∑

i

A(θi ) + <ui , (θi − Wzi − b)> + g(Z ,W,b).

The innerminimization of (23) onΘ can be reformulated as the saddle point problem

min
Θ

max
U

∑

i

A(θi ) + <ui , θi> − <ui ,Wzi + b> + g(Z ,W,b). (24)

Since the inner minimization of (23) on Θ is a convex problem with feasible lin-
ear constraints, it satisfies Slater’s conditions for strong duality and the order of
minimization and maximization in (24) can be exchanged:

max
U

min
Θ

∑

i

A(θi ) + <ui , θi> − <ui ,Wzi + b> + g(Z ,W,b)

= max
U

−(max
Θ

∑

i

−A(θi ) − <ui , θi>) − <ui ,Wzi + b> + g(Z ,W,b)

= max
U

−
∑

i

A∗(−ui ) − <ui ,Wzi + b> + g(Z ,W,b),

which completes the proof for the lemma. �

Then, based on Lemma 1, the original optimization problem (20) can be trans-
formed to an equivalent problem by Theorem 1 according to Lu et al. [22].

Theorem 1 The optimization problem (20) is equivalent to

min
Z :ZT Z=I

min
W,b

max
U

−
∑

i

A∗(−ui ) − tr((ZWT + 1bT )(U + X)T ) + P(W,b).

(25)

Proof It suffices to show that (23) is equivalent to (25). From Lemma 1, it is straight-
forward to prove that (23) is equivalent to the following problem:
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min
Z :ZT Z=I

min
W,b

max
U

−
∑

i

A∗(−ui ) − <ui ,Wzi + b> + g(Z ,W,b)

= min
Z :ZT Z=I

min
W,b

max
U

−
∑

i

A∗(−ui ) − tr((ZWT + 1bT )(U + X)T ) + P(W,b),

which leads to (25) and completes the proof for the theorem. �

Closed-form updating rules

Despite of the non-quadratic objective function and non-convex constraints, one
can still find the closed-form updating rules to solve (25) with good solution quality.
The algorithm based on these updating rules will converge much faster than gradient
descent methods. The solutions are achieved by alternately updating the unknown
variables based on the closed-form solutions, which are given below.

Let f (Z ,W,b,U ) denote the objective function of the min-max problem (25).
Obviously, f (·, ·, ·,U ) is concave in U . In each iteration, one can update U by
solving the following optimization problem:

max
U

−
∑

i

A∗(−ui ) − tr((ZWT + 1bT )UT ). (26)

According to Lu et al. [22], we have:

Theorem 2 The optimal ûi to the problem (26) is the negative mean vector of the
sample xi : −Eθi [xi ]|θi=Wzi+b, which is also equal to − ∂A(θi )

∂θi
|θi=Wzi+b.

Proof To solve (26), one need the following result as proposed by [36]: For all
canonical parameters γ of the exponential family distribution of random variables
y ∈ Y , supμ∈M {〈γ ,μ〉 − A∗(μ)} is attained uniquely at the mean vector μ∗ speci-
fied by the moment matching condition:

μ∗ =
∫

Y
yp(y|γ )dy = Eγ [Y ].

Similarly, consider anoptimizationproblem:maxv∈M ′ − 〈γ , v〉 − A∗(−v),where
M ′ = {m : −m ∈ M }. Its maximum is attained at the vector v∗ = −μ∗ = −Eγ [Y ].

According to this result, the optimal ûi in (26) is obtained as the negative mean
vector of the sample xi :−Eθi [xi ]|θi=Wzi+b. Since the mean vector is further shown to
be equal to the first-order derivative of the log-normalization factor A(·) according
to Proposition 1 given in [36], we have ûi = − ∂A(θi )

∂θi
|θi=Wzi+b. One can also verify

this solution by setting the first-order derivative of the objective function in (26) with
respect to ui equal to 0. �

For the outer minimization problem on Z , W and b, Lu et al. [22] consider the
penalty term P(W,b) using λ0||ZWT + 1bT ||2F + ∑L

l=1 λl |W:l | where W:l denote
the lth column of W . The l2-norm penalty term is involved here to ensure the stable
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reconstruction of principal components when n < d and X is not a full rank matrix.
It could also be interpreted as a Gaussian prior for canonical parameters to ensure
the stability of the model. Then, the objective function f (Z ,W,b, ·) is quadratic as
shown below.

f (Z ,W,b, .)|ZT Z=I

= −tr((ZWT + 1bT )(U + X)T ) + λ0||ZWT + 1bT ||2F +
L∑

l=1

λl |W:l | + C0

= λ0|| 1

2λ0
(X +U ) − ZWT − 1bT ||2F +

L∑

l=1

λl |W:l | + C1,

where C0 and C1 are constant terms unrelated to Z , W , or b. Although the mini-
mization problem with respect to Z , W , and b involves non-convex constraints, an
efficient solution can be achieved owing to the elegant problem structure.

Specifically, in the (t + 1)-th iteration, given an optimalUt , bt+1 can be updated
as:

bt+1 = 1

N

( 1

2λ0
(X +Ut ) − ZtW tT

)T
1.

To update Z , the minimization problem with respect to Z is:

min
Z :ZT Z=I

|| 1

2λ0
(X +U ) − 1bT − ZWT ||2F

≡ min
Z :ZT Z=I

|| 1

2λ0
(X +U )T − b1T − WZT ||2F .

Denote Q as 1
2λ0

(X +U ) − 1bT . One need first compute the SVD of QtW t =
R�V T and then update Zt+1 by R[, 1 : L]V T according to the Procrustes rotation
approach [25].

To updateW , the minimization problem with respect toW is a LASSO problem:

min
W

|| 1

2λ0
(X +U ) − ZWT − 1bT ||2F +

L∑

l=1

λl

λ0
|W:l |

≡ min
W

||Q − ZWT ||2F +
L∑

l=1

λl

λ0
|W:l |.

The optimal Wt+1
:l for l = 1, . . . , L is given by

(|QtT Z t
:l | − λl

2λ0

)
+Sign(QtT Z t

:l),
where Z :l denotes the lth column of Z corresponding to the lth PC.

Computational complexity
In the initialization step, it takes O(nd2) computational operations to compute the

SVD. Our algorithm contains two main steps: maximization ofU and minimization
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of Z ,W , and b. ComputingU has the computational complexity of O(ndL) in each
iteration. In each iteration of optimizing Z , computing QWT and the corresponding
SVD has the complexity O(ndL) and O(nL2), respectively. The estimation of W
using the soft-thresholding operation has the complexity of O(ndL) in each iteration.
In total, the computational complexity is O(nd2) + rO(ndL) if it takes r iterations
to converge. If n � d, the cost of SVD in the initialization step can be reduced to
n2d and the total computational complexity is O(n2d) + rO(ndL). The algorithm
usually takes only a few iterations to converge according to our experience.

8 Connection of Sparse ePCA with ePCA and Sparse PCA

The sparse ePCA model is a generalization of both ePCA model and sparse PCA
model. It reduces to ePCA or sparse PCA in special cases. The connections can be
illustrated in the context of two aforementioned solution methods.

Majorization-Minimization
The sparse ePCAproblem reduces to the standard ePCAproblem (3) exactlywhen

the penalty term P(·, ·) is removed. Different from the solution methods discussed in
Sect. 2, the MM algorithm helps approximate the solutions to ePCA by minimizing a
quadratic surrogate function. The resulting closed-form updating rules lead to rather
higher computational efficiency than the sequential optimization.

When the data are assumed to be sampled from Gaussian distributions, the sparse
ePCA has some connections with the following sparse PCA problem:

min
Z :ZT Z=I

min
W

‖X − ZWT − 1bT ‖2F + P(W, λ). (27)

Assume the MM algorithm takes r iterations to converge. We have A(θi ) = θT
i θi/2.

Thus, at br , Zr , and Wr , the surrogate function reaches the optimum value

g∗ = g(Θr |Θr ) = 1

2
‖ 1

ρr
(X −

n∑

i=1

∂A(θi )

∂Θ
|Θ=Θr )‖2F + 1

ρr
P(Wr , λ)

= 1

2ρ2
r

(‖X − ZrW
T
r − 1bT

r ‖2F + P(Wr , 2ρrλ)
)
.

This is equivalent to solving the above sparse PCA problem (27) with a scaled λ.

Transformation by convex conjugate
When λl is set to 0 and the bias term b is dropped, sparse ePCA reduces to an

optimization problem with the same objective function and constraints as the ePCA
problem presented by Guo [10] but with a different alternating order of optimiza-
tion with respect to Z , W and U . Fortunately, these two problems are shown to be
equivalent irrespective of the optimization order by [10].Without the l1-norm penalty
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term on W , the algorithm updates W and Z by 1
2λ0

ZT (X +U ) and the first L left
vectors of matrix X +U respectively, which conforms to the updates given by [10].
As for the U update step, it directly updates U by a closed-form solution instead of
the gradient ascent method used in [10]. Eventually, Guo’s gradient ascent approach
will find the same solution since the objective function is concave with respect toU ;
however it will take longer time than the above algorithm discussed.

When the data set X is assumed to be sampled from a Gaussian distribution,
A(θi ) = θT

i θi/2 and A∗(ui ) = uT
i ui/2. Consequently, U is estimated as −ZWT −

1bT . After substituting the estimated U into the objective function in problem (25),
one will arrive at the sparse PCA problem (27) with an elastic net penalty term.

9 Application: Clustering of Facial Images

Sparse ePCA is a promising dimension reduction tool inmany applicationswith high-
dimensional modern data such as various types of genetic data measuring millions
of omics variables in bioinformatics, millions of customer ratings for commercial
items in e-commerce, and high-resolution images in computer vision. Take the digital
image data for example, it contains millions of integer-valued pixels which requires
an appropriate assumption of the data distribution and sparse representations of the
loading vectors to alleviate the model inconsistency caused by high-dimensionality.

Here, sparse ePCAwill be applied to address a clustering problem that categorizes
the given images to several clusters based on their visual appearance. Each image is
treated as a sample in the data set while the pixel intensity at each position is treated
as a variable. As image data are usually high-dimensional and involve redundant
information caused by locally related pixels, sparse ePCA is applied to reduce the
dimension and redundancy with variable selection to pursue better performance and
interpretation. The clustering performance is investigated based on the obtained PCs
lying in a lower-dimensional space instead of the original high-dimensional space
using k-means clustering. Standard PCA, ePCA, and sparse ePCA are compared in
this application.

We consider a subset of images from the Yale image database [9] in this ex-
periment. There are 11 different images for each of 15 distinct subjects in the Yale
database. The images of each subject vary with different facial expressions or config-
urations: center-light, w/glasses, happy, left-light, w/no glasses, normal, right-light,
sad, sleepy, surprised, and wink. A data set containing 44 images from 4 subjects:
1, 4, 6 and 8, corresponding to 4 ground-truth clusters are randomly selected for
our experiment. Consider a center region of 128 × 128 (=16,384) pixels from the
original images by removing the redundant white background pixels. These images
are shown in Fig. 2. This data set can be represented by a 44×16,384 matrix with
each row corresponding to one image. The goal is to cluster these images into 4
clusters corresponding to the four selected subjects. Due to the high dimensionality
of of these face images, one can perform the clustering in a lower L-dimensional
subspace constructed by the generalized principal components obtained by perform-
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Fig. 2 Visualization of the 44 Yale images from subjects 1, 4, 6 and 8 shown by four rows corre-
spondingly
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Fig. 3 Visualization of the distribution of the 44 Yale images from 4 subjects in the 2-PC subspaces
constructed by PCA, ePCA, and sparse ePCA respectively

ing sparse ePCA on the images, where the pixel intensities are considered as count
data following Poisson distributions. The irrelevant or redundant pixels are taken
care by sparsity regularization of the PC loading vectors. In this experiment, we con-
sider L as 2. The problem transformation strategy is utilized to solve sparse ePCA,
where λ0 is set to 1E + 4 and (λ1, λ2) is set to (60, 0). Standard PCA and ePCA
are also applied on this data set for comparison. Figure3 shows the two-dimensional
projections obtained from PCA, ePCA, and sparse ePCA respectively, from which
one can see that the PCs of sparse ePCA shows more obvious clustering boundary
and smaller within-cluster distance. This demonstrates that sparse ePCA can obtain
more accurate results by alleviating the model inconsistency of ePCA when applied
on high-dimensional data.
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10 Conclusions and Future Directions

This chapter introduces two dimension reduction tools: ePCA and sparse ePCA,
suitable for large-scale modern data with various data types other than the real-
valued Gaussian data. They generalize PCA and sparse PCA respectively and extend
their applications to various types of data that can be modeled by the distributions
in the exponential family. The ePCA and sparse ePCA extensions are promising
dimension reduction tools that can be applied in many areas such as computer vision,
bioinformatics, e-commerce, finance, and social science.

Both ePCA and sparse ePCA models lead to non-jointly convex optimization
with non-convex constraints, which makes finding efficient optimization solutions a
challenging problem. Solution strategies including the MM algorithm and problem
transformation strategy based on convex conjugate are the current two popular ways
more efficient than those gradient methods. Both solutions are favorable in compu-
tational efficiency due to the closed-form updating rules for alternating updates of
the unknown variables. There is more space to study efficient optimization strategies
for solving ePCA and sparse ePCA problems since the scalability of the algorithms
is still a concern when applying ePCA and sparse ePCA on large-scale modern data.

The sparse model of exponential family PCA—sparse ePCA—enables variable
selection in low-dimensional analysis of exponential family data for better systematic
interpretation in real-world applications. Sparse ePCA also improves the reconstruc-
tion accuracy of ePCA when the data dimension is larger than the sample number or
the data has a latent sparse structure.

Finally, the choice of the form of exponential family distributions can be made
by examining the data distribution before running any PCA methods. When the
data follow the Gaussian distribution, the specific form of ePCA or sparse ePCA
naturally reduces to standard PCA or the sparse PCA [34]. It is convenient to use the
Bernoulli distribution for binary data and Poisson distribution for count data when
applying ePCA or sparse ePCA method. Sparse ePCA is generally preferred over
ePCA when there is a large number of variables under consideration because of its
model consistency and good interpretation of results.

Sparse ePCA is flexible and highly extensible.With integration of additional label
information into the current framework, it can be extended to a supervised-learning
model to solve classification or regression problems involving high dimensional
exponential family data. Compared to the heuristic supervised ePCA, the appro-
priately integrated supervised sparse ePCA allows the optimal subset of variables
containing the most discriminant information automatically selected by the model
itself. The problem transformation strategy by convex conjugate is still applicable
for this problem due to the similar form of models shared by ePCA and GLMs.
Similar closed-form updating rules can be derived for efficient supervised learning.
Based on such supervised sparse ePCA models, hierarchical analysis based on sev-
eral dominant variables can also be derived to simultaneously estimate the principal
component effects as well as the individual effects of the dominant variables in as-
sociation analyses. Moreover, one can introduce different regularization terms on
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principal component loadings such as involving prior network structure to achieve
smoothness or perform graph-regularized learning. The network structure regulariza-
tion can be widely considered to involve the relations between customers or users for
user behavior analysis in social science or to take care of the gene-gene interactions
for association analysis in bioinformatics.
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Application and Extension of PCA Concepts
to Blind Unmixing of Hyperspectral Data
with Intra-class Variability

Yannick Deville, Charlotte Revel, Véronique Achard and Xavier Briottet

Abstract The most standard blind source separation (BSS) methods address the
situation when a set of signals are available, e.g. from measurements, and all of
them are linear memoryless combinations, with unknown coefficient values, of the
same limited set of unknown source signals. BSS methods aim at estimating these
unknown source signals and/or coefficients. This generic problem is e.g. faced in the
field of Earth observation (where it is also called “unsupervised unmixing”), when
considering the commonly used (over)simplified model of hyperspectral images.
Each pixel of such an image has an associated reflectance spectrum derived from
measurements, which is defined by the fraction of sunlight power reflected by the
corresponding Earth surface at each wavelength. Each source signal is then the single
reflectance spectrum associated with one of the classes of pure materials which are
present in the region of Earth corresponding to the overall considered hyperspec-
tral image. Besides, the associated coefficients define the surfaces on Earth covered
with each of these pure materials in each sub-region corresponding to one pixel of
the considered image. However, real hyperspectral data e.g. obtained in urban areas
have a much more complex structure than the above basic model: each class of pure
materials (e.g. roof tiles, trees or asphalt) has so-called spectral or intra-class variabil-
ity, i.e. it yields a somewhat different spectral component in each pixel of the image.
In this complex framework, this chapter shows that Principal Component Analysis
(PCA) and its proposed extension are of high interest at three stages of our inves-
tigation. First, PCA allows us to analyze the above-mentioned spectral variability
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of real high-dimensional hyperspectral data and to propose an extended data model
which is suited to these complex data. We then develop a versatile extension of BSS
methods based on Nonnegative Matrix Factorization, which adds the capability to
handle arbitrary forms of intra-class variability by transposing PCA concepts to this
original version of the BSS tramework. Finally, PCA again proves to be very well
suited to analyzing the high-dimensional data obtained as the result of the proposed
BSS method.

1 Introduction

Standard Blind Source separation (BSS) methods [4–8, 11, 20], also called unsu-
pervised (or blind) unmixing methods by the Earth observation community, may be
briefly defined as follows. They aim at estimating a set of “source signals” (which
have unknown values but some known properties), using a set of available signals
which are “mixtures” of the source signals to be restored, without knowing (or with
very limited knowledge about) the “mixing transform”, i.e. the transform of source
signals which yields their mixtures. The term “signal” is here to be understood in a
broad sense: the considered problem not only concerns monodimensional functions
(especially time-dependent functions), but also images and various types of data.

BSS is thus a generic signal processing problem, which may be represented as
shown in Fig. 1, where s1(t) to sM(t) are the M unknown source signals to be restored,
x1(t) to xP(t) are the P available (or “observed”) mixed signals used for restoring
the source signals and y1(t) to yM(t) are the M estimated source signals. Various
practical configurations corresponding to this generic model may then be derived,
depending on the considered application domain. In particular, the BSS problem has
been studied in the field of audio and acoustics. The associated typical configuration
is shown in Fig. 2. In that case, each source signal is an emitted acoustic signal (speech
signal or “noise” e.g. generated by a car) and each observed signal is provided by a
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Fig. 1 General configuration for the blind source separation problem



Application and Extension of PCA Concepts … 227

Fig. 2 Application of blind source separation methods to acoustic signals

corresponding sensor, which is a microphone. Besides, the mixing phenomenon then
results from the simultaneous propagation of all source signals to each microphone.
Another application field, which is of major interest in the framework of this chapter,
is Earth observation, also referred to as “remote sensing”. The definition of the
corresponding configuration requires a more detailed analysis than above and is
therefore postponed to Sect. 2.1. That analysis shows that the basic version of that
Earth observation problem falls in the scope of the above type of BSS configurations.

A major feature of the above generic mixing model, corresponding to standard
BSS configurations, is that all observed signals are mixtures of the same set of source
signals. This assumption is relevant in many applications. For instance, in the audio
application considered above (see Fig. 2), all microphones receive combinations of
the same speech signals, which may be considered as emitted by a limited set of
point-like sources in various configurations.1 More generally speaking, using the
terminology provided in Fig. 1 for this standard mixing model, this model is such
that any observed signal xi (t) with index i is influenced by any source with index j
by depending on the same source signal s j (t) whatever the value of i . However, that
standard model may be too simplified for other application fields. This especially
includes applications where the source signals have so-called “variability” from one
observed signal to another. Still using the terminology of Fig. 1, this means that any
observed signal xi (t) with index i is here influenced by any source with index j by
depending on a source signal which is not exactly the same for observed signals with
different indices i , although these observation-dependent versions of “the j th source
signal” share some similarities in all observed signals. As detailed in Sect. 2.2, this
phenomenon especially appears in Earth observation data and is the main motivation
of the investigation reported in this chapter.

The above source variability then leads us to use and extend Principal Component
Analysis (PCA) concepts at the following three levels:

1. This source variability should first be detected, and its magnitude should then
be characterized. This cannot easily be performed by using a plain visualization

1 “noise source signals”, when non-negligible, may correspond to more complex phenomena.
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of the considered data, since they consist of a large number of spectra extracted
from hyperspectral images (defined in Sect. 2.1) and therefore lie in very high-
dimensional spaces. A dimensionality reduction method is therefore needed to
analyze these data, and the tool used to this end is PCA, as shown in Sect. 3.

2. Due to the existence of source variability in the considered data, standard BSS
techniques do not apply to them. Therefore, we then develop original BSS meth-
ods aiming at handling sources which have arbitrary variability patterns. As
shown in Sect. 4, this is achieved by extending PCA concepts to the considered
original version of the BSS framework.

3. Finally, the performance of the proposed BSS methods should be assessed. This
essentially consists of determining with which accuracy the estimated source
spectra approximate the actual ones. Again, the visual analysis of these high-
dimensional data requires one to first reduce their dimensionality, by using PCA,
as detailed in Sect. 5.

Conclusions are eventually drawn from this investigation in Sect. 6.

2 Mixing Models for Earth Observation

2.1 Standard Model

The BSS problem investigated in this chapter concerns the analysis of hyperspectral
images of parts of the Earth surface. These images are provided by sensors onboard
a satellite or an aircraft, as shown in Fig. 3. Whereas each “observation” (i.e. each
observed signal) was a function of time in the configurations shown in Sect. 1, it is
a function of wavelength in the approach considered here [14]. More precisely, the
data typically derived for each pixel of an image sensor consist of a reflectance spec-
trum corresponding to the part of Earth surface seen by this pixel. This reflectance
spectrum is a monodimensional series of values, which forms a vector, where each
value corresponds to a given wavelength (more precisely, to a narrow spectral band),
situated or not in the visible part of the spectrum of sunlight. At each considered
wavelength, the corresponding value of the above reflectance spectrum is equal to
the fraction of light power which is reflected by the Earth and sent to the considered
sensor pixel, with respect to the light power received from the sun by the considered
surface on Earth. In the specific case when a pixel receives light from a flat and
homogeneously illuminated part of Earth surface only covered with a single pure
material, the observed reflectance spectrum derived for that pixel is directly equal to
the reflectance spectrum specific to this pure material. But in practice, a pixel often
corresponds to a part of Earth surface which is composed of several pure materials
(see Fig. 3). For flat and homogeneously illuminated surfaces on Earth (and without
intimate mixing), the observed reflectance spectrum obtained for a pixel may then
be shown to be well approximated by a linear combination of the reflectance spectra
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Fig. 3 Linear mixing in Earth observation in the spectral reflective domain, [0.4 μm, 2.5 μm]: the
light emitted by the sun is reflected by the surface of the Earth and then reaches the sensing device
(courtesy of S. Karoui)

of the pure materials present in the associated surface on Earth [3, 15], and the coef-
ficients of that combination are referred to as the “mixing coefficients”. Moreover,
the following simplifying assumption is most often made: any given type of pure
materials (e.g. roof tile, tree or asphalt) is considered to yield exactly the same pure
reflectance spectrum in any pixel of the considered scene which is partly or fully cov-
ered with this pure material. This yields the standard linear (memoryless [8]) mixing
model, where each source signal to be estimated is the reflectance spectrum of a pure
material, each observation is the reflectance spectrum obtained for one pixel and, for
each observation, the mixing coefficients associated with all sources are respectively
equal to the fractions of surface on Earth associated with all pure materials, within
the overall surface corresponding to the considered pixel. In this Earth observation
framework, the mixing coefficients are therefore often called “abundance fractions”
or “abundances”. It should be noted that all source values and mixing coefficients
are nonnegative in this configuration.

More precisely, the mixing model resulting from the above analysis may be for-
mally expressed as follows. Let us denote as L the number of wavelengths at which the
considered hyperspectral image is recorded. Each pixel, with index p, of this image
then yields a recorded reflectance spectrum defined by a column vector xp ∈ R

L×1.
Due to the above mixing model, this vector reads



230 Y. Deville et al.

xp =
M∑

m=1

cpmrm ∀p ∈ {1, . . . , P} (1)

where P is the number of pixels in the considered image, m is the index of one of the
M pure materials (also called endmembers2) which are here the sources, rm ∈ R

L×1

defines the mth source spectrum and cpm is the mixing coefficient associated with
pixel p and pure material m. The number M of sources is assumed to be known in
this chapter (in practice, it is estimated). As stated above, all values of the source
and observed spectra rm and xp and all mixing coefficients cpm are nonnegative.
Besides, in each pixel with index p, the fractions of surface corresponding to all
M pure materials involved in the overall considered scene sum up to 100% of the
surface corresponding to this pixel, i.e.

M∑

m=1

cpm = 1 ∀p ∈ {1, . . . , P}. (2)

The mixing model (1) may also be expressed as follows in matrix form. Let
X = [x1, . . . , xP]T , with T standing for transpose, denote the matrix of recorded
reflectance spectra, and let R = [r1, . . . , rM]T denote the matrix of pure material
reflectance spectra. Besides, let us denote as cp = [cp1, . . . , cpM ]T the M-element
column vector containing the set of mixing coefficients associated with the pth
observed spectrum. Finally, C = [c1, . . . , cP]T is the mixing coefficient matrix. The
mixing model (1) then yields

X = CR. (3)

Only knowing matrix X, the blind unmixing problem then consists of estimating
the pure material spectra (i.e. source signals) which compose matrix R and/or the
abundance fractions (i.e. mixing coefficients) which compose matrix C, under the
above-defined nonnegativity and sum-to-one constraints. For reviews of (blind or
non-blind) unmixing methods dedicated to this mixing model, the reader may e.g.
refer to [3, 15].

2.2 Extended Model: Intra-class Variability

The above mixing model (1) or (3) represents a complete hyperspectral image with
a very limited number M of pure material spectra. For example, it may aim at
describing a complete urban scene by using a single spectrum for all tiles which
cover roofs, together with a single spectrum for all areas covered with trees, a single
spectrum for all areas covered with asphalt and so on. This model is widely used
because of its simplicity, but it is only a coarse approximation of most actual data.

2The term “endmembers” is also used for the reflectance spectra of these pure materials.
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For instance, the reflectance spectra of the roof tiles of a scene are not the same in
all pixels of the considered scene, e.g. because (i) the overall magnitude of these
spectra depends on the illumination of the considered tiles, (ii) these tiles may be
more or less weathered due to aging or (iii) they may have slightly different mineral
compositions. These spectra are stated to have some variability. Yet, they may be
hoped to remain rather similar to one another, so that the “distances” between them
may be hoped to often remain lower than the distances between such tile spectra and,
say, spectra corresponding to trees or asphalt. This means that, although each “type
of materials” (e.g. tiles) cannot then be reduced to a single spectrum, it may hopefully
still be relevant to consider that it yields a class of spectra, which has limited intra-
class variability, and which can thus be distinguished from another class of spectra
corresponding to another type of materials (e.g. trees), since these classes have no
or limited overlap in data representation domains.

A survey of spectral variability problems and of associated unmixing methods
is available in [29]. These methods most often require prior knowledge about the
considered data. However, the shape of the subspace or, more generally, manifold
that may be spanned by the spectra belonging to the same class in a real scene is
not always well characterized, and it may be quite general as will be shown by the
example provided in Sect. 3. To handle such varied situations, we hereafter consider
a versatile extended version of the standard mixing model (1)–(3), that we started
to introduce in [23], and we investigate associated general blind unmixing methods.
In this extended model, a separate set of M pure material spectra rm(p), with m
ranging from 1 to M , is associated with each pixel p. Each recorded spectrum xp is
then expressed with respect to this pixel-dependent set of pure material spectra, still
considering a linear model for combining them, that is

xp =
M∑

m=1

cpmrm(p) ∀p ∈ {1, . . . , P}. (4)

Extracting this large number of source spectra (M × P spectra for the complete
image) from such observations without further constraining them would yield an ill-
posed problem. Therefore, further in this chapter, we will show that PCA concepts
are particularly suited to introducing constraints which are relevant for the considered
application. Moreover, we here keep the type of constraints defined above for the
standard mixing model, that is (i) the nonnegativity of all spectra rm(p) and all
mixing coefficients cpm , and (ii) the sum-to-one constraint (2).

The extended mixing model (4) may then be expressed in matrix form as follows.
We introduce R(p) = [r1(p), . . . , rM(p)]T ∈ R

M×L , which contains the set of
M source (i.e. pure) spectra associated with the observed spectrum xp, then R̃ =⎡

⎣
R(1)

. . .

R(P)

⎤

⎦ ∈ R
PM×L , the matrix containing all the source spectra of the complete

scene and C̃ ∈ R
P×PM the block-diagonal extended mixing coefficient matrix:
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C̃ =

⎡

⎢⎢⎢⎣

c1T 0 . . . 0 . . . 0 . . . 0
0 . . . 0 c2T . . . 0 . . . 0

. . .

0 . . . 0 0 . . . 0 . . . cPT

⎤

⎥⎥⎥⎦ (5)

with cp defined as in Sect. 2.1. Equation (4) then yields the matrix expression

X = C̃R̃. (6)

It should be noted that, for any given class of pure materials with indexm, wherem ∈
{1, . . . , M}, the pure spectra corresponding to that class and to pixels p = 1, . . . , P
are equal to the rows with indices (m + (p − 1)M) of matrix R̃.

Only knowing matrix X, we aim at estimating matrices C̃ and R̃ under the non-
negativity and sum-to-one constraints, and the PCA-related constraint introduced
further (and possibly up to the usual scale and permutation indeterminacies of BSS).

A different and much more restricted mixing model, which includes some aspects
of intra-class variability, has also been used in the literature (see e.g. [27]). It may be
seen as a subset of model (4), obtained as follows: separately for each class of pure
materials, i.e. separately for each value of m, the pure spectra involved in all pixels
p for that class are constrained to be proportional, i.e.

∀m ∈ {1, . . . , M}, ∀p ∈ {1, . . . , P}, ∃ γpm ∈ R
∗+, rm(p) = γpmrm, (7)

where rm is the single prototype reflectance spectrum associated with the considered
class m of pure materials and each parameter γpm defines with which scale factor the
above prototype appears in each pixel p. This model mainly describes the intra-class
variability which is due to illumination variations, that e.g. result from landscape
slope variations in non-flat areas, such as slope differences from one part of a roof to
another. However, this model does not take into account other types of variability, e.g.
due to the above-mentioned aging or composition variations. The resulting limitations
are shown in the next section.

3 Experimental Characterization of Spectral Variability
with PCA

The first step of the standard procedure for developing a BSS method [7, 8] is the
definition of the considered mixing model (and associated sources). Therefore, we
here analyze which of the above-defined models is relevant for the considered Earth
observation application, especially focusing on urban scenes. To this end, we use
a part of a hyperspectral image which was recorded over the center of Toulouse
city, France (see Fig. 4). This image contains 405 bands covering the wavelength
domain ranging from 414 to 2498 nm. It was converted to a 1.8 by 1.8 m pixel spatial
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Fig. 4 Part of image used for characterizing spectral variability [2]

resolution. In this part of image, we manually selected a set of pixels which belong to
homogeneous areas and which are assumed to be pure. The corresponding reflectance
spectra are thus supposed to belong to three classes, namely tile, vegetation (trees)
and asphalt. It should be clear that this pre-characterization of some features of the
considered type of data is not performed in the same conditions as the final operation
of the BSS methods addressed further in this chapter: whereas we here use pure
(i.e. unmixed) observed spectra, each belonging to a known class, we will eventually
aim at using blind source separation methods operating with observed mixtures of
unknown types of pure spectra. The non-blind non-mixed framework considered in
the first investigation reported in the current section only aims at choosing the mixing
model to be later used.

The most natural approach for analyzing the features of the above recorded spec-
tra consists of representing each of them in a two-dimensional figure, by plotting
the variations of the considered reflectance with respect to wavelength. Gathering all
these plots on the same graph yields Fig. 5, where we removed the reflectance values
corrresponding to the bands where they have poor quality, due to atmospheric absorp-
tion entailed by water vapor, CO2... The remaining data thus consists of 214 spectral
bands. This figure reveals part of the important features of the considered data. First,
if these spectra could be described with the standard model of Sect. 2.1, all spectra
recorded for the same class of materials would be identical and therefore superim-
posed in this figure. Clearly, this is not the case, which means that these classes of
spectra exhibit intra-class variability. We then need to analyze the structure of this
variability, which cannot easily be performed with Fig. 5, especially because most
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Fig. 5 Examples of reflectance spectra of three classes of materials: tile, vegetation (trees) and
asphalt

spectra from the same class, and some from different classes, are close to one another
or even interleaved. Besides, as discussed in Sect. 2.2, we should here determine if
it is relevant to associate a separate class with each type of materials. To this end,
we should determine if the above classes do not highly overlap, i.e. if the intra-class
variabilities are lower than class-to-class variabilities. Although Fig. 5 may suggest
that this condition is actually met for the considered data, this type of representation
does not allow one to analyze this phenomenon in detail.

To avoid the limitations of the above plain graphical representation, we then
need a much more powerful data processing and visualization tool. This tool is
requested to be able to process the overall set of recorded spectra, without taking
their above user-defined classes into account during this processing, so as to check if
classes with different features naturally emerge from the processed data. Moreover,
this data processing tool should allow one to display a transformed version of each
recorded spectrum as a point in a two-dimensional subspace, to allow one to plot the
scatter plot of these points. We will then create this scatter plot by using a different
pictogram for each of the above user-defined classes, to check if the spectra as
labeled above do belong to classes with different features from the point of view of
the considered representation : we will check if the points belonging to the same user-
defined class tend to be close to one another but further from the points belonging to
other user-defined classes, thus leading to no or limited overlap between the subsets
of points corresponding to different pictograms in the considered representation. This
means that the transform used to map the original high-dimensional-space spectra to
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the very-low-dimensional-space (2 dimensions) scatter plot to be visually analyzed
should be selected so as to make this scatter plot readable. To this end, the points in
the scatter plot of the transformed data should be kept far enough from one another,
and ideally “as far as possible”. Although the above requests might be considered to
be quite demanding, a data analysis tool which meets all these constraints does exist:
these constraints are precisely those which lead to Principal Component Analysis
(PCA). PCA has been used in many application fields and the reader may e.g. refer
to [1, 9, 11, 13, 25, 26] for its description.3 Therefore, we here do not detail the
well-known practical procedure which results from the data processing concepts that
we presented above, and we directly focus on how the resulting data interpretation
principles defined above may be applied to the Earth observation problem tackled
in this chapter. PCA uses a set of “objects” or “individuals”. Each of them is here
represented by a recorded reflectance spectrum. PCA considers a set of variables as
its inputs. Each of these variables here corresponds to the reflectance value (for each
object) measured at a given wavelength. PCA creates new variables, which are linear
combinations of the original variables, i.e. here linear combinations of reflectances
measured at different wavelengths. Its defines new directions in the data space, called
principal axes, and it measures the components of the considered data along these
axes. The latter components are called principal components. Keeping only the first
two of these components for each object allows one to reduce these objects to a two-
dimensional representation (by projecting the original data on the subspace spanned
by the first two principal axes), while preserving “as much as possible” the shape
of the scatter plot of the original high-dimensional data. This scatter plot of the
projected objects (i.e. spectra) in the above two-dimensional subspace is the main
result of PCA considered hereafter. It is shown in Fig. 6, where the data corresponding
to the “tile” class are moreover split into two sub-classes, namely “sunny tiles” and
“shaded tiles”, to analyze these data in more detail.

This figure should be analyzed keeping in mind the two mixing models with
intra-class variability that we introduced in Sect. 2.2:

• If spectral variability in a given class, with index m, is reduced to scale factors,
as defined by (7), then all reflectance vectors rm(p) associated with that class are
collinear. Therefore, all corresponding points in the PCA projection are situated
on the same line, which goes through the origin and which has a direction defined
by the value of the prototype vector rm of that class. Each such point then moves
further from the origin when the scale factor γpm is increased.

• On the contrary, if spectral variability can lead to “any” spectral vector rm(p) in any
pixel p, then the corresponding points in the two-dimensional PCA representation
may be situated anywhere in the projection plane.

Applying these considerations to the data of Fig. 6 shows that the scale-based
mixing model (7) is of interest but not sufficient for describing the complexity of

3In all this chapter, the metric used for PCA is defined by the identity matrix.
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Fig. 6 Projection of pure reflectance spectra on first and second principal axes

these data. For each (sub)class, two effects appear in the corresponding part of the
scatter plot:

1. All points more or less tend to be close to the same line, hereafter called the
“main class axis”, which goes through the origin (and which may approximately
be considered as the line which contains the center of gravity of that part of the
scatter plot), as expected from the scale-based mixing model (7). The data have a
large variance along that main class axis. Moreover, for the two tile sub-classes,
the scale of each reflectance spectrum is highly correlated to the illumination of
the considered tile: the shaded tiles yield points in Fig. 6 which are closer to the
origin than the points obtained for sunny tiles. Similarly, The two (sub)classes
which correspond to the darkest materials in the considered data are shaded tile
and asphalt. They are therefore expected to yield projected points which are
closer to the origin than the points associated with the other two (sub)classes.
Figure 6 confirms that this is actually the case.

2. However, each part of the scatter plot associated with one (sub)class also has
significant variance along the “orthogonal class axis”, i.e. the axis corresponding
to the direction of Fig. 6 which is orthogonal to the above main class axis.4 To
model the considered data accurately enough, this variance along the orthogonal
class axis should not be disregarded. Therefore, the scale-based mixing model
(7) is not suitable in this situation and we will hereafter instead use the more gen-
eral model (4), or its matrix form (6), when developing blind source separation
methods which aim at handling spectral variability.

4Among all lines which have this “orthogonal direction”, one may e.g. consider the line which
includes the center of gravity of the considered part of the scatter plot. What matters here is not the
position of the orthogonal class axis, but its direction.
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4 A New PCA-related Blind Source Separation Method for
Handling Spectral Variability

4.1 Background: Nonnegative Matrix Factorization (NMF)

One of the main classes of BSS methods is Nonnegative Matrix Factorization (NMF).
Under this name, it was introduced by Lee and Seung in [17, 18]. However, related
methods were previously reported, especially by Paatero et al. [21], under the name
Positive Matrix Factorization (PMF). Since the beginning of the 2000s, many NMF
methods have been developed, e.g. including Lin’s algorithms [19]. For a detailed
overview of NMF, the reader may e.g. refer to [5]. NMF is also described e.g. in
[6, 8]. More specifically, NMF has been adapted to remote sensing applications, as
discussed e.g. in [3].

The basic aspects of the most standard NMF method which are of importance for
the current chapter are as follows. The considered data follow the standard mixing
model (3), moreover with nonnegative matrices R and C, and hence X. The standard
NMF method involves two nonnegative matrices R̂ and Ĉ, which aim at respectively
estimating R and C (up to scale and permutation indeterminacies, as usual in BSS),
so as to achieve X � ĈR̂. To this end, this method minimizes the cost function
defined as

Jnm f = 1

2

∥∥X − ĈR̂
∥∥2

F
(8)

where
∥∥.

∥∥
F stands for Frobenius norm. This cost function therefore defines the

reconstruction error achieved when deriving an approximation of the observed data
matrix X as the product of the adaptive matrices Ĉ and R̂. The “hat” sign, i.e. ,̂ used
above in the notations Ĉ and R̂ for the adaptive variables is often omitted for the
sake of simplicity. The above cost function (8) is then expressed as

Jnm f = 1

2

∥∥X − CR
∥∥2
F . (9)

We stress that the latter notations should be used with care: in (9), C and R are not
the fixed matrices involved in the mixing model (3), otherwise the cost function (9)
would always be equal to zero!

4.2 Proposed Unconstrained Pixel-by-pixel NMF Method

4.2.1 Principle and Cost Function

When considering our extended mixing model (6), instead of the standard model
(3), we are led to introduce a natural extension of the standard NMF method based
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on the cost function (9). Instead of the actual matrices C and R and their estimates
Ĉ and R̂ considered in the above standard NMF method, we here use the extended
matrices C̃ and R̃ and their estimates, still requesting all of them to be nonnegative.
Then, instead of the above cost function (9), we here introduce its extended form

Jupnm f = 1

2

∥∥X − C̃R̃
∥∥2

F
(10)

where we again stress that C̃ and R̃ do not represent the actual data which lead to the
observed reflectance spectra according to (6), but the associated adaptive variables
used to estimate the actual matrices: the “hat” signˆis here again omitted for the sake
of readability. The adaptive matrix R̃ of this new approach thus yields a separate
set of estimates of pure spectra for each pixel (together with the associated mixing
coefficients in the adaptive matrix C̃). These spectra are arranged in the adaptive
matrix R̃ as in the corresponding actual matrix involved in the mixing model (6).
Therefore, due to the structure of that actual matrix detailed above (just after Eq.
(6)), the structure of the adaptive matrix R̃ considered here is as follows. For any
given class of pure materials with index m, where m ∈ {1, . . . , M}, the estimated
pure spectra corresponding to that class and to pixels p = 1, . . . , P are equal to the
rows (m + (p − 1)M) of the adaptive matrix R̃.

This adaptive matrix R̃ is here only subject to the nonnegativity constraint of NMF
(and sum-to-one constraint), as opposed to the additional constraint introduced in a
modified version of this type of approaches, further in this paper. This first proposed
method is therefore referred to as Unconstrained Pixel-by-pixel NMF, or UP-NMF,
hereafter (“pixel-by-pixel” means that a separate set of spectra is estimated for each
pixel; all these sets are simultaneously estimated).

4.2.2 Gradient-Based Algorithm

The algorithm used hereafter to minimize the above cost function is based on a
gradient descent, combined with

• a projection of all elements of the adaptive matrices C̃ and R̃ on R
+∗, to ensure

the nonnegativity of these matrices,
• the normalization of all mixing coefficients, separately for each pixel, to ensure

that their sum is equal to one, as in (2).

To perform the required gradient calculations, the cost function (10) is first rewritten
as

Jupnm f = 1

2
Tr((X − C̃R̃)(X − C̃R̃)T ). (11)

Standard matrix derivation properties, e.g. available in [22], then yield
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∂ Jupnm f

∂R̃
= −C̃T (X − C̃R̃) (12)

∂ Jupnm f

∂C̃
= −(X − C̃R̃)R̃T . (13)

Denoting αR̃ and αC̃ the positive adaptation gains, the associated gradient-descent
rules for updating the adaptive matrices C̃ and R̃ read

R̃(i+1) ←− R̃(i) − αR̃

∂ J (i)
upnm f

∂R̃
(14)

C̃(i+1) ←− C̃(i) − αC̃

∂ J (i)
upnm f

∂C̃
(15)

except that only part of the adaptive matrix C̃ should in fact be thus updated, so
that this matrix keeps the same structure as the actual matrix of coefficients of the
mixing model, defined by (5): only the parts of the adaptive matrix C̃ corresponding
to all cpT in (5) should be updated with (15), whereas the other elements of this
adaptive matrix C̃ are kept to zero. The updates of the resulting complete UP-NMF
algorithm, including projection and sum-to-one normalization, read as follows (ε is
a small positive constant).

1. Update matrix R̃ :
R̃(i+1) ←− R̃(i) + αR̃C̃

(i)T (X − C̃(i)R̃(i))

R̃(i+1) ←− max(R̃(i+1), ε)

2. Update matrix C̃ :
for p = 1 to P do

cp(i+1)T ←− cp(i)T +αC̃(xpT − cp(i)TR(p)(i))R(p)(i)T

cp(i+1) ←− max(cp(i+1), ε)

end
3. Normalize coefficients :

for p = 1 to P do
cp(i+1) ←− cp(i+1)/

∑M
m=1 cpm

(i+1)

end

In the above algorithm, the superscripts (i) and (i+1) define the considered val-
ues of the adaptive variables, throughout their evolution (these superscripts are not
exponents).

The procedures for initializing the adaptive matrices R̃ and C̃ are discussed further
in this paper, when introducing an extended version of this algorithm (see Sect. 4.3.3).
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4.2.3 Limitations

As explained above, after running the UP-NMF algorithm, the estimates of the pure
spectra corresponding to a given class with index m and to all pixels are obtained
in rows of the adaptive matrix R̃ which have fixed indices (that is, rows m, [m +
M], . . . , [m + (P − 1) × M]). Even if these rows were initialized coherently before
running UP-NMF (e.g. with similar spectra, typical of that class, for all pixels), the
above UP-NMF update rules then let them evolve so that they may end up with quite
different values. In other words, that simple algorithm introduces a very large number
of adaptive spectra per class, but does not guarantee that they eventually keep similar
enough features to still represent the same class of materials. To avoid this issue, an
improved version of that approach is introduced hereafter.

4.3 Proposed Inertia-Constrained Pixel-by-pixel NMF
Method

4.3.1 Principle and Cost Function

As explained in Sect. 4.2.3, the above UP-NMF algorithm should be further
extended, so as to control to which extent all estimates (one per pixel) of pure spectra
corresponding to the same class of materials are allowed to spread away from one
another. This is achieved by adding a penalty term, which measures the spread of
these spectra, to the cost function of UP-NMF. The question is then how to define
such a penalty term. PCA concepts then yield a natural answer to this question,
defined as follows. As explained above, throughout the adaptation of matrix R̃, the
estimated pure spectra for any class m consist of all L-element row vectors of R̃
with indices equal to m + (p − 1)M . These P vectors may equivalently be seen
as a set of P points in an L-dimensional space. From PCA, it is well known (see
e.g. [25]) that their spread, as measured by their inertia, is equal to the trace of the
covariance matrix of these points associated with class m. The latter quantity is here-
after denoted as Tr(Cov(R̃Cm)), where R̃Cm ∈ R

P×L is the matrix containing all
above-defined estimates of pure material spectra for the mth class and for pixels 1 to
P , respectively in its rows 1 to P . We therefore here choose to use the sum of these
inertias5 associated with all M classes as the overall penalty term of our extended
method. The resulting cost function reads

5We use the quantity
∑M

m=1 Tr(Cov(R̃Cm )), not the inertia which is defined as Tr(Cov(R̃)) and
which gathers the estimated spectra corresponding to all classes. This is motivated by the fact that
the latter expression tends to aggregate the spectra of all classes, whereas we here aim at aggregating
spectra separately for each class.
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Jipnm f = 1

2

∥∥X − C̃R̃
∥∥2

F
+ μ

M∑

m=1

Tr(Cov(R̃Cm )) (16)

where its IP-NMF acronym refers to the fact that this algorithm thus performs
an Inertia-constrained Pixel-by-pixel NMF, and where the positive parameter μ is
selected so as to define the emphasis put on the penalty term.

4.3.2 Gradient-Based Algorithm

As in Sect. 4.2.2, the algorithm used hereafter to minimize the cost function (16)
is based on a gradient descent, combined with projection on R

+∗ and sum-to-one
normalization. To perform the required gradient calculations, the cost function (16)
is first rewritten as

Jipnm f = JRE + μJI (17)

with

JRE = 1

2

∥∥X − C̃R̃
∥∥2

F
(18)

JI =
M∑

m=1

Tr(Cov(R̃Cm)) (19)

=
M∑

m=1

(
1

P
Tr(R̃T

Cm
R̃Cm) − 1

P2
Tr(QCm )

)
(20)

QCm = R̃T
Cm

1P,P R̃Cm (21)

where 1P,P is the P × P-dimensional matrix with all elements equal to one. As
shown by (18), JRE defines the Reconstruction Error achieved when deriving an
approximation of the observed data matrix X as the product of the adaptive matrices
C̃ and R̃. Besides, JI defines the Inertia constraint.

As shown by (18) and (10), JRE is equal to Jupnm f . The gradient terms associated
with JRE are therefore already available from (12) and (13). Besides, JI does not
depend on C̃, so the corresponding derivative is equal to zero. Finally, to obtain the
derivative of JI with respect to R̃, we here partly use a scalar approach. We start
by transforming JI so as to express part of it with respect to R̃. Equation (20) thus
yields
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JI =
M∑

m=1

(
1

P

L∑

l=1

P∑

k=1

[R̃Cm ]2
k,l − 1

P2
Tr(QCm )

)
(22)

= 1

P

M∑

m=1

L∑

l=1

P∑

k=1

[R̃]2
(k−1)M+m,l − 1

P2

M∑

m=1

Tr(QCm ) (23)

= 1

P

PM∑

κ=1

L∑

l=1

[R̃]2
κ,l − 1

P2

M∑

m=1

Tr(QCm ) (24)

= 1

P
Tr(R̃T R̃) − 1

P2

M∑

m=1

Tr(QCm ). (25)

The derivative of the first term of (25) can be determined by using the matrix formulas
in [22], which yield

∂

∂R̃

(
1

P
Tr(R̃T R̃)

)
= 2

P
R̃. (26)

Now focusing on the second term of (25) and taking (21) into account, we introduce

A = R̃T
Cm

(27)

B = 1P,P R̃Cm . (28)

Their elements with indices (i, j) respectively read

ai j = [R̃Cm ] j i (29)

bi j =
P∑

β=1

[R̃Cm ]β j . (30)

As shown by (21),
QCm = AB. (31)

Therefore, its element with indices (i, j) reads

[QCm ]i j =
P∑

α=1

aiαbα j (32)

=
P∑

α=1

P∑

β=1

[R̃Cm ]αi [R̃Cm ]β j . (33)

Hence
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Tr(QCm ) =
L∑

l=1

[QCm ]l,l (34)

=
L∑

l=1

P∑

α=1

P∑

β=1

[R̃Cm ]α l[R̃Cm ]β l . (35)

From (34) we can calculate the derivative of
∑M

m=1 Tr(QCm ) with respect to one
element of R̃, denoted as [R̃]γ λ. Due to the above-defined structure of R̃Cm , a given
element [R̃]γ λ is present in only one of the matrices QCm , i.e. the one with m =
1 + (γ − 1)(mod M), denoted as η hereafter. Therefore

∂

∂[R̃]γ λ

(
M∑

m=1

Tr(QCm )

)
=

M∑

m=1

∂

∂[R̃]γ λ

(Tr(QCm )) (36)

= ∂

∂[R̃]γ λ

(Tr(QCη
)) (37)

= ∂

∂[R̃]γ λ

⎛

⎝
L∑

l=1

P∑

α=1

P∑

β=1

[R̃Cη
]α l[R̃Cη

]β l

⎞

⎠ (38)

due to (35). In (38), four cases should be distinguished:

∂
(∑L

l=1[R̃Cη
]α l[R̃Cη

]β l

)

∂[R̃]γ λ

=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 if α �= γ and β �= γ,

[R̃Cη
]β λ if α = γ and β �= γ,

[R̃Cη
]α λ if α �= γ and β = γ,

2[R̃Cη
]α λ if α = β = γ.

(39)

Equation (38), then yields

∂

∂[R̃]γ λ

(
M∑

m=1

Tr(QCm )

)
= 2

P∑

α=1

[R̃Cη
]α λ (40)

= 2
P∑

α=1

[R̃](α−1)M+η,λ. (41)

The expression (41) for one element [R̃]γ λ can then be extended to all elements of
R̃, which yields

∂

∂R̃

(
M∑

m=1

Tr(QCm )

)
= 2UR̃ (42)
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with U ∈ R
PM×PM defined as

U =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

M

⎧
⎪⎪⎨

⎪⎪⎩

M︷ ︸︸ ︷
1 0 . . . 0
0 1 . . . 0
...

. . .

0 0 . . . 1
1 0 . . . 0
...

1 . . .

0 . . .
...

0 . . .

1 . . .

. . .

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡

⎢⎣
IdM . . . IdM

...
. . .

...

IdM . . . IdM

⎤

⎥⎦ (43)

where the notation IdD stands for the D-dimensional identity matrix. Equations (25),
(26) and (42) then yield

∂ JI

∂R̃
= 2

P
(IdPM − 1

P
U)R̃. (44)

By combining (12), (13) and (44) we obtain the two partial derivatives of the general
cost function (17) with respect to R̃ and C̃:

∂ Jipnm f

∂R̃
= −C̃T (X − C̃R̃) + 2μ

P
(IdPM − 1

P
U)R̃ (45)

∂ Jipnm f

∂C̃
= −(X − C̃R̃)R̃T . (46)

The resulting gradient-based algorithm is obtained by inserting the above expres-
sions of derivatives in the same update rules as (14) and (15) except that, again,
only the parts of the adaptive matrix C̃ corresponding to all cpT in (5) should be
updated with (15), whereas the other terms of this adaptive matrix C̃ are kept to zero.
Again, projection and normalization are then applied. The complete IP-NMF update
algorithm thus obtained reads as follows.

1. Update matrix R̃ :
R̃(i+1) ←− R̃(i) + αR̃(C̃(i)T (X − C̃(i)R̃(i)) − 2μ

P (IdPM − 1
PU)R̃(i))

R̃(i+1) ←− max(R̃(i+1), ε)

2. Update matrix C̃:
for p = 1 to P do

cp(i+1)T ←− cp(i)T + αC̃ (xpT − cp(i)TR(p)(i))R(p)(i)T

cp(i+1) ←− max(cp(i+1), ε)

end
3. Normalize coefficients:

for p = 1 to P do
cp(i+1) ←− cp(i+1)/

∑M
m=1 c

(i+1)
pm

end
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4.3.3 Algorithm Initialization

As usual e.g. for NMF algorithms, the proposed UP-NMF and IP-NMF algorithms
require one to select the initial values of the adaptive matrices R̃ and C̃. Various meth-
ods previously reported for initializing standard NMF algorithms (see e.g. [5], [12,
16]) may be extended to our approaches. In particular, we considered the following
approaches.

The initial value R̃(0) of the adaptive matrix R̃ may be set as follows. Separately
for each class with index m, the same class-dependent value may be assigned to all P
adaptive spectra of R̃ associated with that class. The M pure spectra thus needed to
initialize R̃ may e.g. be obtained by using one of the following alternative methods:

1. Randomly select M mixed spectra from the observations.
2. Process the observed data matrix X with a classical remote sensing blind source

separation method, such as N-FINDR [28], which only extracts a single set of
M relatively pure spectra from the whole image. This is expected to yield better
performance than the random selection of M mixed spectra used in approach no.
1 above.

3. When performing characterization tests by mixing known pure spectra, a possible
third initialization method consists of using, for each class with index m, the
average of all the pure spectra which are available for that class (and which were
extracted from the observed image in the present investigation). This is likely to
yield a good initialization, which then allows one to investigate how the considered
unmixing methods behave in such good conditions. However, it should be clear
that this approach cannot then be used in real (i.e. blind) conditions, since the
pure (i.e. source) spectra are then unknown and to be estimated.

The matrix C̃ of mixing coefficients may be initialized by using the following alter-
native methods:

1. For each pixel, set all M coefficients to the same value, which is therefore equal
to 1

M , due to the sum-to-one constraint.
2. Use the standard Fully Constrained Least Square (FCLS) regression method [10]

to derive these coefficients from the observed data matrix X and from the value
R̃(0) of the adaptive matrix R̃ assigned as explained above.

5 Analyzing Source Separation Results with PCA

The tests reported here were performed with the following data:

• Three classes of pure materials were considered, namely tiles, vegetation and
asphalt. For each of these classes, various supposedly pure spectra were extracted
from the hyperspectral image shown in Fig. 4. These pure spectra are plotted in
Fig. 5.
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• A semi-synthetic hyperspectral image was created by computing each spectrum
associated with a pixel as a linear combination of a tile spectrum, a vegetation
spectrum and an asphalt spectrum randomly selected from the above-defined set
of pure spectra. The nonnegative coefficients of this linear combination were ran-
domly drawn and then rescaled so as to sum to one in each pixel.

This approach combines several attractive features: it is guaranteed to follow the
mixing model (6), it uses realistic pure spectra (including realistic variability) and,
especially, it uses known pure spectra, which allows one to compare them with the
estimated spectra that are extracted by the considered source separation methods,
which operate in a blind way, so as to assess the performance of these methods in
this investigation dedicated to their characterization.

Still, the above approach leaves one question open, which is how to compare the
actual pure spectra (hereafter also called constituent spectra), used above to create
numerically mixed spectra, with their estimates derived from BSS methods. Plotting
all these spectra is not a suitable solution, especially because many such spectra are
to be analyzed (three estimated spectra per pixel) and they contain a large number of
points. This problem is therefore the same as the one that we faced in Sect. 3, when
analyzing the properties of a large set of spectra. Therefore, this problem is here
solved by using the same approach as in Sect. 3: here again, PCA is a very attractive
tool, because it allows one to project all spectra to be analyzed on a two-dimensional
subspace, essentially in order to check if the pure spectra estimated by the considered
BSS methods for any given class yield projected points which are close to one another
and close to the points associated with the actual pure spectra for that class, whereas
they are further from the points associated with estimated and actual spectra for other
classes. Moreover, standard (i.e. without the sum-to-one constraint) NMF methods
can only estimate the pure spectra up to positive scale factors, and the proposed UP-
NMF and IP-NMF methods may be expected to yield related scale indeterminacies
because they use limited constraints (thanks to the additional degrees of freedom
provided by the use of different estimated pure spectra from one pixel to another). For
each point of the two-dimensional PCA representation, changing such a scale factor
results in moving that point along the line containing the position of that point before
it was moved and the origin. This should be taken into account when analyzing each
scatter plot of estimated points associated with a given class of materials in the PCA
representation, and when comparing the estimated class scatter plots with the class
scatter plots of the actual pure spectra used to create the considered semi-synthetic
mixed spectra: even if the estimated points are shifted along the above-mentioned
lines, due to scale factors, the main class axes of the actual and estimated scatter plots
should remain coherent, and the spreads of these scatter plots along their orthogonal
class axes should be interpreted accordingly. Before moving to that discussion of
the obtained results, we hereafter define in which conditions the considered BSS
methods were operated.

Before applying the update rules of the UP-NMF and IP-NMF algorithms, the
adaptive matrices R̃ and C̃ were initialized by using the following approach, among
those described in Sect. 4.3.3: R̃(0) was derived from the N-FINDR method and



Application and Extension of PCA Concepts … 247

Fig. 7 Projection, on the first two PCA axes, of constituent spectra (blue, red, green stars), UP-NMF
spectra (black, cyan, yellow stars) and standard NMF spectra (blue, red, green circles)

all mixing coefficients were set to 1
M . For more details about the influence of the

initialization procedure on the performance of the UP-NMF and IP-NMF methods,
the reader is referred to [24], which is dedicated to this topic. Besides, for the IP-NMF
method, the constraint parameter μ involved in the cost function (16) was varied from
0 to 100 to assess the impact of its value on algorithm performance. As shown by
(16) and (10), for μ = 0 the IP-NMF method becomes identical to UP-NMF. Tests
were also performed with the well-known NMF method of [18] (extended to the sum-
to-one constraint), which is based on the standard mixing model (3) and therefore
provides a single estimated spectrum per class of materials, that is, three spectra for
the whole considered image: a tile spectrum, a vegetation spectrum and an asphalt
spectrum.

Figure 7 shows the projections, on the first two PCA axes,6 of (i) the sets of pure
spectra used to create the semi-synthetic observations, (ii) the spectra estimated by
IP-NMF operated with μ = 0 (that is, by UP-NMF) and (iii) the spectra estimated
with standard NMF. Figures 8 and 9 are organized in the same way, except that they
respectively correspond to μ = 30 and μ = 100 for IP-NMF. This shows the impact
of the inertia constraint of the cost function of IP-NMF on the scatter plots of the
estimated spectra.

As expected, the PCA representations in the above-mentioned figures make it
possible to easily analyze the behavior of the considered methods. The main outcomes

6In Figs. 7, 8 and 9, the PCA axes are determined by applying PCA to the complete set of constituent
spectra. These axes are then used to project these constituent spectra and the spectra provided by
the considered BSS methods.



248 Y. Deville et al.

Fig. 8 Projection, on the first two PCA axes, of constituent spectra (blue, red, green stars), IP-NMF
spectra with μ = 30 (black, cyan, yellow stars) and standard NMF spectra (blue, red, green circles)

Fig. 9 Projection, on the first two PCA axes, of constituent spectra (blue, red, green stars), IP-NMF
spectra with μ = 100 (black, cyan, yellow stars) and standard NMF spectra (blue, red, green circles)
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of this analysis are as follows. Of course, the standard NMF method provides a
very restrictive view of the actual pure spectra involved in the observations, since
it represents each scatter plot associated with a class of such constituent spectra
by a single estimated spectrum and hence a single “point” (actually, a circle in
these figures) in the considered PCA representation. Moreover, even this point is
not satisfactory: it is situated significantly outside the corresponding class scatter
plot, whereas one would like this NMF method to provide a kind of average of
all the projected spectra of the considered class. Both above limitations are strong
motivations for moving to the proposed UP-NMF and IP-NMF methods. Among the
latter two approaches, we anticipated in Sect. 4.2.3 that UP-NMF is likely to have
the drawback of allowing the spectra estimated for one class to spread too far away
from one another and from the constituent spectra. For the considered data, this is
confirmed by Fig. 7, where the scatter plots (one per class of materials) of estimated
spectra tend to have wider projected “extents” (e.g. measured by their variance or by
the width of their interval of variation) along the orthogonal class axes than the scatter
plots of constituent spectra (as explained above, one should not focus on their extents
along the main class axes, in case they would be influenced by scale indeterminacies).
This problem of UP-NMF is solved by resorting to the IP-NMF method: as shown
by Fig. 8, for intermediate values of μ (e.g. μ = 30), the constituent and estimated
spectra yield relatively similar extents along the orthogonal class axes. Other tests,
not detailed here, resulted in similar performance for a wide range of values of μ.
The performance obtained for a quite large value of μ (that is, μ = 100) is provided
in Fig. 9. This PCA representation shows that, by highly increasing this parameter μ

and hence the weight of the penalty term in the cost function (16), one can force the
extents of the class scatter plots of the estimated spectra to remain quite close to or
even somewhat lower than those of the constituent spectra.

The performance improvement achieved by the proposed methods, as compared
with the standard one, is obtained at the expense of significantly higher computational
times: around 6 s per run for UP-NMF or IP-NMF, instead of around 0.02 s for
standard NMF, when running Matlab implementations of these methods on current
PCs. However, this is not an issue, since these computational times remain quite low
anyway.

6 Conclusion

Principal component analysis (PCA) is a well-known data analysis tool, especially
used to project high-dimensional data on a two-dimensional subspace, which then
allows one to explore the structure of the resulting scatter plots in detail. The first
aspect of this chapter consists of using these capabilities of PCA in two ways:

• PCA is first used to analyze the intra-class variability of observed data faced in the
application field of Earth observation: each initial data point processed by PCA here
corresponds to a high-dimensional reflectance spectrum. This variability analysis
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was a required first step for deriving an original model suited to the considered
data.

• New blind source separation (BSS) methods (also called unsupervised unmixing
methods) based on the above model were developed to tackle intra-class variability.
PCA was then needed again to analyze the structure of the data obtained as the
outputs of these BSS methods, in addition to its above-mentioned application to
the observed data which are the inputs of these BSS methods.

Whereas the above aspects may be considered as “black-box use” of this PCA tool
(in an original application), we also proceeded further in this chapter, by exploiting
the internal data processing concepts underlying PCA. More precisely, as explained
above, PCA mainly requires one to measure the “spread”, related to covariance and
inertia, of projections of the considered data, in order to select optimal projection
directions. We here reported on detailed mathematical derivations, performed to
transpose this concept to a processing function which is different from plain projec-
tion, that is, blind source separation: we developed a modified cost function, which
aims at controlling the “spread” of the extracted sources in the advanced configura-
tion faced when arbitrary source variability is taken into account.

This investigation shows that, although standard uses of PCA concepts are now
well-defined, these concepts are still a source of inspiration for new data processing
functions, that we plan to further investigate.
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